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1 Introduction

The sharing economy for a wide range of goods and services is expanding across the world.

This expansion has generated new interest in the potential to stimulate rental markets for

equipment in developing countries, where small scale of production, low capital intensity

and low capital quality are prevalent (Chen, 2020; Caunedo and Keller, 2020). These rental

markets could be disruptive to agriculture in particular because they provide access to pro-

ductive capital for small scale farmers, who conduct the lion’s share of farming in developing

countries (Adamopoulos and Restuccia, 2014).

Startups are entering and creating mechanization rental markets across Asia and Africa

to serve billions of small-holder farmers (Daum et al., 2021), often aided by government sub-

sidies and tax incentives.1 Proponents of government interventions in these markets point

to the lack of mechanization in agriculture as evidence of frictions in access to capital, e.g.

financial constraints; or of the unsuitability of engaging in large indivisible investments for

farmers operating at small-scale, e.g. the purchase of a tractor. At the same time, there

are concerns that subsidies to capital can be regressive, benefitting large-holder farmers, or

granting market power to a handful of providers (Pingali et al., 1988). Despite the grow-

ing importance and increased government engagement in these markets, the efficiency and

distributional impacts of increased equipment supply via government interventions are yet

not well understood. Do increases in equipment supply disproportionally benefit large-scale

farmers? Does efficiency in allocations favor rationing out small-scale farmers? Under-

standing whether there is a trade-off between access to capital and efficiency in equipment

allocations is the focus of this paper.

To answer these questions, we combine a unique primary dataset with a novel model of

frictional rental markets and optimal service dispatch. Our data comprise transaction-level

information from the largest supplier of government-subsidized mechanization rental services

in India, a census of 40,000 farming households characterizing demand and supply of rental

services across 150 villages, and a survey of detailed farming activities from 7000 households

1For instance, the Sub-Mission on Agricultural Mechanization (SMAM) in India disbursed $304 million
between 2014-2020 (or 0.01% of annual GDP) to several states for a range of mechanization initiatives,
including establishment of custom hiring centers (CHCs) and distribution of agricultural equipment. China
allocated a similar amount of GDP for farm equipment subsidies in 2020 alone.
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which contains information on private rental markets as well as the joint spatial, productivity

and farm size distribution for a subset of those farmers.2

We start by characterizing equipment rental markets in Karnataka, India, using our own

Census of agricultural households. Karnataka is a particularly relevant state for this study

because ownership rates of agricultural equipment were low prior to government intervention

(less than 4% for tractors), and production scales are low (2.5 acres on average in our

sample). We begin by documenting disparate engagement of small-scale and large-scale

farmers in rental markets from private supply, with large scale farmers being more prevalent

participants. Our survey of detailed farming activities shows that the most prevalent problem

in accessing equipment rental services are delays in service provision, a more prevalent barrier

than lack of credit or financing. Delays are disproportionally borne by small-scale farmers,

but this disparity is partly driven by the spatial distribution of plots. When we control for

village fixed effects, i.e. we compare plots in the neighbour of a village, the disparities across

production scales are attenuated, with no evidence of differential delays between large- and

small-scale farmers. We then bring in high-frequency data from ICRISAT to estimate the

cost of these delays for farming output. We find that the average output per acre cost of

delays within a 10-day window of the optimal planting date is 3.4% per day.

By 2016, the government of Karnataka had launched a private-public partnership with

an objective to “assist the small and marginal farmers to provide machineries at their door

steps”, i.e. increase mechanization access to small farmers. The intervention was designed

to boost equipment supply in areas with low equipment ownership rates. Transaction-level

data from the universe of Custom Hired Centers (CHC) set by the policy allows us to

study queuing behaviour across farmers. This dataset includes information on machine-hours

requested, acreage serviced, implement type and location. We document variation in queue

lengths throughout the agricultural season consistently with synchronicity in equipment

demand. We also document shifts in the composition of the queue between large-scale and

small-scale farmers, which contributes to congestion in demand. While prices in CHCs are

regulated not to vary throughout the agricultural season and across farmers, we document

substantial price dispersion in informal rental arrangements.

2The survey of detailed farming activities is a representative sample of the average population in the
Census in terms of average plot size, agricultural revenue, and crop choice.
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The documented price dispersion and queueing behaviour motivates a model of frictional

rental markets.3 We build a directed search model with two-sided heterogeneity, as in Shi

(2002), and generalize it to accommodate multiple services within a period and service

capacity constraints. The first feature allows us to discuss compositional changes in the

serviced orders between large and small scale farmers as well as to optimize service provision

in space. The second feature, paired with the discreteness in hours demanded, speaks directly

to the role of small-scale orders in maximizing capacity utilization within a period.

The two sided heterogeneity in the market is driven by farmers’ scale of production

(i.e. mechanization hours demanded); and by providers’ dispatch technology. We model

dispatch technologies following two prevalent methods. There are profit-maximizing owners

of equipment that travel around villages providing services, i.e. “market” providers.4 There

are also CHCs that serve orders in a first-come-first-served fashion, so that order size and

location are uncorrelated with the timing of service, i.e. labelled “fcfs” providers. This

dispatch system may benefit small-holder farmers. Consistent with the data, providers can

serve up to three orders within a day, posing an interesting combinatorics problem given the

provider’s service capacity. This service capacity (hours per machine) is split between travel

time and service time. In the model, providers set prices with commitment and farmers sort

into available providers. Rental prices are allowed to vary by the scale of mechanization

hours demanded but not by travel time. The reason is that empirically, we see no variation

along this dimension;5 and technically, allowing contracts to vary with travel time when

multiple orders can be served within the period requires making contracts contingent on the

composition (along size and location) of those multiple orders. This feature would expand

the set of rental contracts substantially.

The main predictions of the model are that when small- and large-scale farmers are

equally distributed in space, small-scale farmers are more likely to approach the fcfs providers

than the market provider. Conversely, large-scale farmers are more likely to approach market

3As highlighted by Lagos (2000) and Sattinger (2002), queueing models are powerful to micro-found a
matching process between, in this case, farmers’ orders and service providers.

4It is also possible that owners may farm their own land and rent out their excess capacity, but given the
low-ownership rates in our environment, we assume this source away.

5The reason for which we see little variation in prices with travel distance is likely that most of these
markets are local, with equipment traveling no more than an hour from the CHC to meet demand in a given
location.
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providers. At the same time market providers have incentives to attract small-scale farmers

to optimize capacity utilization, whereas fcfs have incentives to attract large scale farmers

to obtain higher returns per time travelled. Sorting induces disparities in service finding

rates between small and large-scale farmers but in equilibrium, rental rates adjust so that

farmers face identical expected profits from either provider. The combination of price posting

behaviour and directed search assures that allocations (queues) are constrained efficient

Wright et al. (2021) and therefore, as we compare allocations, only distributional concerns

are relevant.6 Hence, when assessing a potential equity-efficiency trade-off across allocations,

we only consider differences in small-scale farmers’ access to rental services.

We then assess the distributional impact of shifts in equipment supply, including the

impact of the government imposed dispatch rules that intend to benefit small-holder farm-

ers. There are three features that determine the distributional effects: (i) equipment moves

in space to provide services, and this movement is costly; (ii) service capacity per ma-

chine is finite and idle capacity is costly for providers; (iii) agricultural production is highly

time-sensitive and delays in provision are costly for farm output. These features generate

economies of density because when farmers are closer in space they can be serviced faster

than when farms are further away; and congestion in demand, because demand for equip-

ment is synchronous. Servicing large-scale farmers lowers the cost of transport per hour

serviced, so profit maximizing providers would like to prioritize those orders. At the same

time, the discreteness in the size of plots and the provider costs from having idle machine

capacity makes small-scale orders attractive, particularly if located in geographically dense

areas.

First, we ask how does the current status quo equilibrium compares to allocations prior to

the creation of CHCs, assuming that market providers accommodated the entry of subsidized

providers (market providers are less than 5% of the total supply of equipment in these

villages). We find that the subsidy generated a substantial increase in service capacity,

which lead to two-to-three fold increases in service findings rates, and declines in the cost of

6As in Shi (2002), giving priority to large-scale orders among providers that have a technology to select
farmers’ types is optimal because those orders have the lowest marginal cost of service per unit of time
traveled. To show that the equilibrium queues are socially optimal it suffices to show that providers set the
expected value of market participation of the farmers to their social marginal return. This return takes into
account the value of production for farmers, as well as possible crowd-out effects on other farmers queueing
with a provider, i.e. longer delays for others.
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service provision of more than 20% per hour serviced.

Second, we investigate the nature of the equilibrium when CHCs are allowed to dispatch

orders like their market counterparts, i.e. a market deregulation that allows them to prioritize

large-scale orders. The short run response of the economy (with no endogenous entry or exit

of providers) implies higher service finding rates for large-scale farmers relative to the fcfs

provision, consistent with the profit maximizing strategy of market providers. However, their

service finding rates are below those of small scale farmers that are drawn to the market in

response to the increased supply of services. While service findings rates for small-holder

farmers do not change relative to the baseline, the rental costs increase for all farmers in the

short run. In the long run, once the number of providers adjusts through entry and exit,

rental costs fall again towards their baseline levels, and service findings rates are still higher

for small holder farmers than large holder farmers.

Third, the service probability for small-holder farmers relative to that of large-holder

farmers depends on the size of the subsidized supply of services. Only large enough in-

creases in supply benefit small-holder farmers relatively to large-scale farmers. The level of

the increase in supply that induces such an outcome depends on the joint spatial and size

distribution of demand. Indeed, we show that market suppliers have comparable wait times

to a fcfs service dispatch for plots that entail lower travel costs, irrespective of their size. The

largest differences in service wait times, and productivity costs associated to delays across

providers are concentrated in farms operating farther away from service hubs, i.e. where

spatial density is lower.

These findings are drawn from a calibrated version of the model where we target the

queue lengths for small-scale farmers, as observed in the transaction level data from the fcfs

platform; the share of large scale farmers in each market, as inferred from the Census data;

and the observed average profitability of fcfs providers. With these targets, we jointly cali-

brate the composition of farmers in each market, the ratio of farmers per provider and the

cost of service provision as parameterized by the wage of equipment drivers. The main out-

come of this calibration exercise are the endogenous queues by provider and farmer type, and

the equilibrium rental prices per hour of equipment. We then add additional heterogeneity in

farmers’ demand in terms of equipment-hours as well as their locations. We bootstrap queues

from the empirical joint distribution of equipment-hours demanded, productivity and plot
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location to assess the merits of different dispatch systems in terms of expected wait-times

and transportation costs. It also allows us to optimize routes in space given the realization

of the queues.

Literature Review To our knowledge, this is the first paper to study the distributional

consequences of rental markets for productive capital. In particular, we focus on heteroge-

neous access by scale of production and spatial allocation. A novel dimension of our problem

is that service capacity constraints bring value to small-scale service orders because they im-

prove capacity utilization. The value of small-scale producers in bringing density to demand

has been mostly overlooked in the literature. We propose a tractable model that expands a

common framework used in the search literature Shi (2002), along two relevant dimensions:

multiple services and capacity constraints.

The notion that there might be scale economies associated to concentrating production

in certain locations goes back to Marshall (1890). Holmes and Lee (2012) explore it in the

context of crop choices of adjacent plots, where agglomeration economies rely on economies

of scale in output. In our application, agglomeration economies stems from lower transport

costs for service provision as in models of trade, Rossi-Hansberg (2005), as well as from the

indivisibility of capital purchases, which generates incentives for sharing services through

rental markets. Duranton and Puga (2004) review the micro-foundations for agglomeration

economies and classifies them into three mechanisms: “sharing”, “matching” and “learning”.

In our framework the first two mechanisms are at play. A paper that studies the “sharing”

mechanism is Bassi et al. (2022), with an application to rental markets for door producers in

urban Uganda, where they argue frictions are relatively limited. In contrast, we document

substantial price dispersion in rental rates paired with unused service capacity, a common

symptom of matching frictions. We are explicit about the role of “matching” in generating

service transactions between providers and input demanders, and how they affect rental

prices and queueing behaviour. Empirically, the ability to simultaneously observe supply

of equipment services and queueing from the demand side of the market is an important

advantage to discipline the properties of the matching process, as pointed out in Brancaccio

et al. (2020).

Our problem is also distinct from previous studies in two important dimensions: agricul-

tural production is time-sensitive, which makes demand synchronous, and delays are costly
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for farm output.7 Delays are often overlooked as a barrier to technology adoption, yet they

are a potentially important mechanism in sectors like agriculture, where returns are ex-

tremely sensitive to the timing of activities. The role of barriers to technology adoption in

agriculture as a source of low productivity in poor countries has received extensive attention

(see Suri and Udry, 2022 for a review). We contribute to a growing literature that highlights

the importance of adopting mechanized practices, Caunedo and Keller (2020); Caunedo and

Kala (2021), by drawing attention to rental markets, which could be disruptive in lowering

adoption costs relative to labor, (Yang et al., 2013; Yamauchi, 2016; Manuelli and Seshadri,

2014).

Finally, our quantitative results are of relevance to rationalize the seemingly contradicting

and heterogeneous impact of mechanization policies throughout Africa, LatinAmerica and

Asia. Pingali (2007) argues that “public sector run (...) tractor-hire operations have neither

been successful nor equitable”. He suggests that mechanization attempts have failed because

market infrastructure and economic incentives that induce production response were not

there. Our theory and quantitative assessment suggests that the success of increases in

equipment supply in improving accessibility to capital and ultimately, productivity, depend

on the joint spatial and size distribution of farms. The role of geography for agricultural

productivity has been studied by Adamopoulos and Restuccia (2021), but their work focuses

on soil characteristics rather than on the accessibility to inputs of production.

2 Data and reduced form evidence

2.1 Data description

We combine four sources of data from the state of Karnataka for this project. Karnataka

is one of the least mechanized states in India (Satyasai and Balanarayana, 2018). First,

we use transaction level data from the universe of equipment rentals engaged through a

public-private enterprise in Kharif 2018 (May-October). Second, we conducted a census of

7Other markets with similar features include the market for perishable products, or the allocation of
personal shoppers. There is an extensive literature that studies taxi markets which also feature frictional
meetings between customers and providers Frechette et al. (2019), however, costs bared by consumers from
delays in service provision are typically abstracted away.
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farming households covering 40,000 households across 150 villages, including information on

equipment ownership and rental market engagement. Third, we collected detailed survey

data covering 5500 farming households with information on ownership and rental market

engagement, including information on equipment rental pricing, delays in service provisions,

as well as output and input expenses, crop choices and land ownership. Fourth, we use

high-frequency data from International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT), covering 6,200 plots in 18 villages in India during 2009-2014, with daily detailed

measures of inputs and output in farming.

2.1.1 Mechanization platform data

In 2016, the state government partnered with the largest manufacturer of agricultural equip-

ment in India to design and manage a platform through which farmers could rent equipment.

As a public partnership, custom hiring centers (CHCs, also known as “hubs”) were set up

in 25 districts throughout the state. Figure 1 plots currently active hubs in space. These

CHCs provide rental services in nearby areas and farmers can access these services through

a call-center, via an app on a smart-phone, or in person at the CHC.

Our administrative data consists of all the transactions completed through the platform

since 2016 for about 60 hubs in Karnataka (27 hubs entered in 2016, 29 in 2018 and 10

in 2019). Over the time period covered by the data (October 2016-May 2019), over 17,000

farmers from 840 villages rented equipment from these CHCs. The data contains information

on number of hours requested, acreage, implement type, as well as farmer identifiers (such

as their name, village, and phone number). Equipment available varies across CHCs (hubs)

but the median hub provides equipment that ranges from sprayers to rotavators. We focus

our analysis on rentals of rotavators and cultivators, which are the pieces of equipment most

commonly used at the land-preparation stage. Land-preparation is most likely to have been

exposed to some form of mechanized practices in our sample (Caunedo and Kala, 2021).

Rental rates are fixed throughout the season in this platform, and regulated to be about

10% below market values. The service provision is first-come-first-served. When a service

is fulfilled, a professional driver brings and operates the equipment at the farmer’s plot.

Equipment arrives within a lapse of two days in most cases. If delays are longer, farmers

9



Figure 1: Locations of CHCs and Demand

Triangles indicate CHCs. We aggregate demand following the village where each farmer is registered. Green
dots correspond to demand for the smallest plots (1 acre or less), red dots correspond to demand for the
largest plots (4 acres or more).

are informed at the moment of booking (and may choose to cancel). Table 1 reports the 10

most commonly rented implements for the years 2017 and 2018, the number of transactions

recorded for each implement, their per-hour rental price, and month where the implement is

most commonly rented (has the highest number of transactions).

Table 1: Summary Statistics of Commonly Rented Implements from Rental Database

Commonly Rented Implements
Number of Transactions Median Price Per Hour Peak Month

Rotavator 6 Feet 11,239 770 July
Cultivator Duckfoot 7,287 550 April
Cultivator 9 Tyne 5,245 525 May
Plough 2MB Hydraulic Reversible 3,716 450 February
Trolley 2 WD 2,436 250 January
Harvester Tangential Axial Flow (TAF)-Trac 2,048 1800 May
Rotavator 5 Feet 1,811 700 September
Blade Harrow Cross 1,793 360 March
Knapsack Sprayer 20 Litres 1,688 22.5 October
Blade Harrow 5 Blade 1,600 360 June
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2.1.2 Survey and census data

We also exploit survey data collected in June-July 2019 around a representative sample of the

equipment hubs in the main sample. The survey includes approximately 5,000 farmers, and

asks for detailed information on input and output per plot, crop choices as well as a variety

of details related to farmers’ engagement in rental markets, and equipment ownership. We

also ask about their perceptions on barriers to participation in the market.

To validate the the characteristics of the farmers in the survey relative to the population,

we also run a census of agricultural farmers including more than 40,000 farmers in the villages

covered by the survey data. This data contains a handful of questions related of equipment

ownership which is helpful to construct measures of market supply.

2.1.3 ICRISAT data

We use data from a broader set of Indian states as recorded in ICRISAT’s household-level

panel data. This data contains high-frequency (daily) agricultural information, including,

season-level agricultural operations, their timing, costs and total revenues. The data covers

eighteen villages over 2009-2014 in Andhra Pradesh, Gujarat, Karnataka, Maharashtra, and

Madhya Pradesh.

2.2 Motivating facts

We start by describing the characteristics of the service demand and farmers equipment

supply. Then, we focus on a handful of outcomes that are informative to the theory that

we describe in Section 3. First, because agricultural activities are highly time sensitive, the

timing of demand is synchronous leading to endogenous waiting times as a function of service

capacity. The service capacity includes farmers’ ownership as well as CHCs capacity. Sec-

ond, because equipment needs to travel for transactions to take place, the joint distribution

between travel time and the scale of demand, i.e. equipment-hours per request, is a key

input when optimizing service provision. Third, we document substantial price dispersion

in rental rates after controlling for observable household characteristics and village/market

characteristics, consistent with frictional rental markets. Fourth, delays in service provision
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are costly to farmers, because they affect field productivity. In what follows we document

each of these features.

2.2.1 Service Capacity and Service Demand.

We start by reporting patterns of ownership (service capacity by farmers) and rentals of

equipment across the farmers in our survey (see Figure 2).8 Most farmers report owning

hand tools and animal pulled equipment. Less than 10% of the farmers report owning larger

equipment such as tractors, or rotavators and cultivators. At the same time, tractors and

cultivators are among the pieces of equipment with the highest equipment-hours rented.

The average hours rented in a season per farmer is 12 hours for tractors and 10 hours

for cultivators. These rental transactions mostly entail relational contracts. We collect

information on the typical customer for a farmer that rents out his/her equipment. We find

that 72% of owners report to renting out to people they know from the village or with whom

they have worked with in the past.

Delays are the most common issue faced by farmers when renting equipment, with 78%

of farmers reporting it as an issue. Importantly, larger farmers (cultivating at the 75th

percentile of the land size distribution) are nearly 5 percentage points less likely to report

delays as an issue. Hence, delays in accessing mechanization are more pervasive among

smaller farmers.

Given the disparities in value of agricultural implements as well as their contribution to

production, it is useful to construct a measure of equipment services from rentals and owned

equipment. We measure these services as the product of average hours of usage during a

season hi, market rental rates, ri and the number of implements i owned or rented, Ni.

Hence, equipment services in a farm k are

k =
∑
i

Nirihi

The main hypothesis behind this measure is that differences in rental rates across implements

shall reflect differences in the services they provide, and that therefore, more expensive

equipment provides higher services to production. The main challenge in constructing such

8Appendix D reports similar statistics using data from the Census.
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Figure 2: Ownership and rentals by implement.
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The ownership rate is the share of farmers that report owning a given implement relative to the total
population surveyed. Rental hours correspond to the average hours reported for the whole season.

a measure is the availability of data on market rental rates. We exploit our transaction level

dataset to construct mean rental rates per implement at the village level. Figure 3 displays

log owned and rented services. Harvesters (the most expensive implement in our bundle) is

reported to be only rented. For those farmers using tractors, more than 60% of the services

available in the farming sector come from rentals whereas the remaining 40% stem from

ownership. Services associated with smaller and cheaper equipment, such as sprayers, are

equally accounted for by rentals and ownership.

It is worth noting that given land holdings, ownership of equipment is not cost-effective

for most farmers. For instance, the rental price of a rotavator is between |750 and |1,000 per

hour (including tractor, a driver and fuel) and the average farmer demands about 6 hours of

rotavator services in the season or between |4500 and |6000 in services. The purchase price

of a new rotavator is over |110,000 which means that, absent maintenance costs (which are

certainly non-negligible), the average farmer needs 19 years to amortize the investment. The

rental rate for an inferior technology that serves a similar purpose, i.e. a harrow, is half of the

rental rate of the rotavator (|360) and the cost of purchase is about |50000. Overall, these

price differentials are consistent with the observed extensive engagement in rental markets

for equipment.
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Figure 3: Capital services from ownership and rentals, by implement.
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2.2.2 Heterogeneous Queuing by Production Scale

The demand for equipment rental services vary by agricultural process and therefore through-

out the agricultural season. The synchronous nature of many of these processes across farm-

ers induces queuing in the market. Our transaction level data allows us to measure demand

fluctuations by computing hours outstanding for service at a daily frequency. We focus on

two commonly rented implements for land preparation, rotavators and cultivators. Indeed,

our survey data indicates that farmers are most likely to engage in the rental market for

land preparation.

Figure 4 shows hours of unfulfilled orders for each of these implements over the 2018

kharif season. Queueing peaks by the end of July for rotavators and beginning of August

for cultivators. At the peak of the season, the average provider faces 40 hours of demanded

services in queue, which account for over 12 orders on average at a point in time.

Demand moves distinctively between large and small requests, measured in service hours

(Figure 4). A large portion of hours outstanding are accounted for by small orders (less than
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Figure 4: Hours outstanding in the queue.

Cultivator

0
10

20
30

40
50

N
um

be
r o

f h
ou

rs

6/1/2018 7/1/2018 8/1/2018 9/1/2018 10/1/2018 11/1/2018
Date

0
20

40
60

80
10

0
Pe

rc
en

ta
ge

    Jun.                                       Jul.                              Aug.                              Sept.                             Oct.                
Time

Small orders (< 4hrs) Large orders (>= 4hrs)

by size

Rotavator

0
10

20
30

40
50

N
um

be
r o

f h
ou

rs

6/1/2018 7/1/2018 8/1/2018 9/1/2018 10/1/2018 11/1/2018
Date

0
20

40
60

80
10

0
Pe

rc
en

ta
ge

    Jun.                                       Jul.                              Aug.                              Sept.                             Oct.                
Time

Small orders (< 4hrs) Large orders (>= 4hrs)

by size
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4 hours of service), although at peak time the share of hours accounted for by large farmers

increases.

2.2.3 Delays in rental services

As demand fluctuates over the season in a somehow predictable manner, it is expected that

service supply may adjust. If supply expands proportionally to the increase in demand,

any delays in service supply could be constant across the season. We find that service rates

fluctuate during the season, and that they positively correlate with hours serviced suggesting

some adjustment in supply (see Appendix Figure 16). The relationship between hours in
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the queue and service rates is non-linear, increasing for low service rates and declining for

high-service rates, suggesting longer delays then. At peak queue hours, service rates in the

CHC are 40% on average, suggesting that it takes 2.5 days to go through a hub’s queue.

Because our queue measures and service rates exploit data from the administrative plat-

form only, we complement this analysis with delays reported by the farmers in our survey

data. Service delays are negatively associated with cultivated area suggesting that even

if the productivity costs of delays are of same magnitude between small- and large-holder

farmers, the incidence of those delays is disproportionally borne by those with small plot

sizes, columns (1) and (3) in Table 2. It is possible that these delays are explained by the

geographical location of plots since equipment needs to travel to generate services. Columns

(2) and (4) in Table 2 show that delays have an important spatial dimension, because adding

village fixed effects substantially attenuates the coefficient on the log of land size, and in-

creases the r-squared by eight or nine times (depending on whether only positive delays are

considered, or all delays are included in the regression). That is, in the surroundings to a

particular village, small and large farmers face similar delays, but if this clustering is not

accounted for, smaller farmers face longer delays.

Table 2: Delays as a Function of Land Area and Location Fixed Effects

Delays (Sum of Average Delays Over the Season)

Log(Area) -0.215* -0.144 -0.319** -0.128
(0.115) (0.0926) (0.145) (0.108)

Observations 5,615 5,615 4,345 4,345
R-squared 0.002 0.182 0.003 0.252
Village Fixed Effects No Yes No Yes
Mean Delays 2.158 2.158 2.789 2.789

Estimated coefficients from a regression of reported delays in service provision and the log(area) owned. The
first two columns include those that report zero delays whereas the last two columns only focus on those
that report positive delays.

2.2.4 How costly are these delays?

We define an optimal planting time as the date that maximizes the profits per acre in a

given village year.9 ICRISAT’s high frequency data is particularly suitable for this exercise.

9The optimal measure is constructed using the approach in Kala (2017).
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Then, we define the cost of the delay as the difference in average value added per acre or

profit per acre (depending on the variable of interest) as we move away from the optimal

planting date. Formally, we estimate

Yi,year = β0 + β+
1 (Planting Date-Optimal)>0 + β−1 (Planting Date-Optimal)≤0 + αXi,year + εi,year

where X are controls for plot characteristics, farmer, village and time fixed effects. Standard

errors are clustered at the village level. Our estimates for the costs in value added per acre

are reported in Table 9. They indicate that within a 5-day windows, each additional day

away from the profit maximizing date entails a cost of 3.4% in terms of value added per

acre. In the 5-day window, for farmers that plant too early relative to the optimal date,

moving closer to the optimal date by one day increases value added per acre by INR 391

per acre. Conversely, for farmers that plant too late relative to the optimal date, moving

away from the optimal date by one day reduces value added per acre by INR 215 per acre.

Therefore, moving closer to optimal date increases returns. This result is robust to enlarging

the window around the optimal planting date, with an estimate cost of delay in the planting

date of 8.5% per day.

2.2.5 Frictional rental markets

But why are there delays to begin with? Is this a consequence of low ownership rates and

service capacity, or rather the consequence of frictions in the rental market that prevent

farmers and providers to contract services when desired? There are two features of the

market that indicate the presence of frictions in the rental market.

The first features is that the current supply of equipment seem adequate to serve market

demand. To compute supply we turn to a Census of 150 villages from the same area, which

includes information on over 40,000 farmers. We assume that the equipment has a catchment

area of about 10km, since transporting equipment over large distances is time-consuming and

expensive, particularly for farmers whose main activity is not equipment rentals.10 We also

include machines available in the CHCs within each relevant catchment area. On average, the

10This 10km cutoff was decided based on conversations with our data partner but results are robust to
enlarging the catchment area to 20km radius.
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number of available cultivators within a 10 km radius can serve up to 2016 orders per season,

while average demand is 1190 orders per season. For rotavators, available supply can serve

up to 1008 orders in the season while market demand is 450 orders. In these computations

we assume a six-week plant preparation season and that each piece of equipment serves three

orders a day. The latter is consistent with serviced orders per equipment per driver at peak

utilization in our transactions dataset.11 Hence, these machine-hours supply and demand

estimates within each geographical market suggests that congestion may not be related to

supply shortages.

The second, and perhaps most important feature, is the presence of price dispersion in

rental prices of equipment within a 10km catchment area of each village. As part of our

survey we ask farmers how much did they pay for land-preparation equipment rentals during

the season prior to Kharif 2018. Plant-preparation equipment includes mostly rotavators

and cultivators, implements that rent out for similar hourly rates at the CHC. Figure 5

shows the distribution of rental rates paid per hour, controlling for village fixed effects.That

is, the variation in rental rates per hour serviced across farmers within a village.12 The

interquartile range is 1.71 while the coefficient of variation is 0.67. Burdett and Judd (1983)

were the first to show that price dispersion could arise in an environment with identical

agents where consumers/farmers found it costly to search for providers. Price dispersion can

also be related to informational asymmetries (Varian, 1980) or to consumer preferences for

certain providers over others (Rosenthal, 1980). Overall, the exchange of identical goods for

heterogeneous prices is typically a sign of frictions in the market, which we entertain through

the structural model that we study next.

11Even when assuming a shorter 4 week season, supply would account for 1344 orders per season for
cultivators and 672 orders per season for rotavators, well under seasonal demand for each equipment.

12Observed dispersion is similar even after we account for total area cropped. Indeed, on average hourly
rental rates are lower for farmers with larger cropped area. These results are available upon request.
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Source: Own survey data.

3 A frictional model of capital rental services in space

To build a quantitative assessment of the workings of these rental markets, we extend the

two-sided heterogeneity framework of Shi (2002) along two dimensions. First, we allow for

multiple orders to be served within each period. Second, we build in capacity constraints for

service providers. The first feature is important to assess implications for travel times across

orders, i.e. optimal service routes and the costs associated to them. The second feature

is important to quantify congestion and the equilibrium service delays as a function of the

composition of the service queue in terms of the size and geographical location of the plots

being served.

3.1 Environment

Consider an economy populated by F farmers that use capital services for production. There

are H service providers (machines) that provider capital services through frictional rental

markets. The locations of farmers and service providers is given, and a market is defined as

a catchment area around any of these providers.

Farmers differ in their demand for equipment-hours and in their geographic location. A

fraction s of them are large-scale farmers and demand ks hours, while the remaining (1− s)
fraction are small-scale farmers, and demand ks− hours. We think of the demand scale as
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being determined by land-holdings. Farmer’s productivity gets realized once inputs have

been committed, e.g., weather shocks or delays in equipment rental service provision that

affect the output from the farm. These shocks induce revenue costs to farmers. For simplicity,

we focus on ex-post shocks related to delays in service provision, which are idiosyncratic to

the farm.

Service providers that can serve up to o orders a day and have the same service capacity,

up to k̄ machine-hours a day, but their technology for service provision differs. A fraction

h of providers use a first-come-first-served (fcfs) dispatch technology, while the remaining

fraction 1−h has access to a selection technology that allows them to prioritize certain type of

service requests (mkt).13 For simplicity, we assume no depreciation or capital accumulation

and no maintenance costs.

Denote the ratio of farmers to service providers, f = F
H

, and focus on the case where

the market is large, i.e. F,H → ∞ and neither side is infinitely larger than the other,

f ∈ (0,∞). Providers post prices rij and a selection criteria (with commitment) simulta-

neously at the beginning of each period. Rental prices can depend on the scale of the plot

serviced.Geographical considerations for service provision are included into the opportunity

cost of moving equipment from a provider to the plot. Farmers decide whether and which

provider to approach, generating queues for each available provider. Providers decide which

orders to serve given their selection criteria and capacity constraint. Then, farming produc-

tion takes place. Given the large number of providers and farmers we focus on a symmetric

mixed-strategy equilibrium where ex ante identical providers and farmers use the same strat-

egy and farmers randomize over the set of preferable providers. We assume that agents find

it difficult to coordinate their decisions in a large market.14

A type i-farmer’s strategy is a vector of probabilities Pi ≡
(
pi,fcfs, ....; pimkt, ....

)
where pij

is the probability of applying to each type j-provider. Those that request a service from the

fcfs provider face the same probability of being first in line irrespective of the machine-hours

demanded. A type-j provider’s strategy consists of rental rates per hour serviced, rij and

13Albeit h and H are assumed exogenous, both of them can be easily endogeneized with a costly set up of
providers and an associated free-entry condition.

14Lack of coordination in demand seems to be a prevalent feature of this market. Using the population
relevant to these subsidies we piloted an incentive scheme inducing discounts in rental costs for farmer
coordinating demand in time and space. We find little evidence of coordination.
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a selection rule χj ∈ [0, 1] for the market provider. The selection rule applies only when a

provider receives requests from both types of farmers, in which case the provider prefers the

large scale farm if χj = 1, prefers a small scale farm if χj = 0, and he is indifferent between

them for χj ∈ (0, 1). When the market provider receives requests from a single farmer type,

he randomly selects one farmer for service. The fcfs providers serve orders as they arrive in

the queue.

Each farmer maximizes expected profits from farming trading off the probability of ob-

taining a rental service and the cost of such a service. The characteristics of their demand

and geographical locations are as in Assumption 1.15

Assumption 1: Equipment-hours demanded by small and large scale farmers satisfy

ks > ks−. The expected travel time to servicing small-holder farmers is weakly higher than

that for large-scale farmers, ds ≤ ds−.

The service capacity of providers satisfies Assumption 2.

Assumption 2: Providers can serve at most o-orders within a day, and capacity satisfies

o(ks− + ds−) <= k̄ and o(ks + ds) > k̄,

(o− 1)(ks + ds) + ks− + ds− <= k̄,

(o− 1)(ks− + ds−) + ks + ds <= k̄.

Hence, if the provider serves only large-scale orders, it can serve (o − 1) orders, or it can

instead combine those (o− 1) orders with one small scale order. Finally, we assume enough

capacity to serve o− 1 small scale orders and one large scale order.

We assume the empirically relevant service capacity for each provider: o = 3 orders can

be fulfilled within the period. This value is consistent with the median number of orders

served within a day in our administrative data.

15The capital demand for a farmer is given exogenously. We could trivially model the link between land-
holdings and capital demand through a Leontief production function between capital and land. The key
assumption is that the decision to mechanize is either taken for the entire plot, or not at all.
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3.2 Queue lengths as strategies

A convenient object for analysis is the queue length, i.e., the expected number of farmers

requesting a service from a given provider.16 Let qij be the queue length of type i farmers

that apply to a type j provider, where i ∈ {s, s−} and j ∈ {fcfs,mkt}. Then, qsj = sFpsj

and qs−j = (1 − s)Fps−j. The probability of approaching different providers for a single

farmer should add up to one, which leads to the following feasibility constraints

H
(
hqs,fcfs + (1− h)qs,mkt

)
= Fs (1)

H
(
hqs−,fcfs + (1− h)qs−,mkt

)
= F (1− s) (2)

A farmer of scale i that requests service from provider j gets served with probability

∆ij. This conditional probability depends on the provider’s selection criteria, its capacity,

machine-hours demanded ki and the expected travel time for service di. Hence, ∆ij is the

sum across all possible number of orders of type i being served, ōi, of the probability of

servicing ōi type i farmers , φij(ōi), times the probability that a certain farmer of type i is

chosen, ∆̃ij(ōi),

∆ij =
∑

ōi∈{1,2,3}

φij(ōi)∆̃ij(ōi).
17 (3)

The probability of type i being served (weakly) declines in the queue length of type i′ 6= i

farmers. For the first-come-first-served provider the result is straightforward because service

probabilities decline with the number of machine-hours in the queue, irrespective of their

type. For the market provider with a selection criteria that favours type i′ farmers, the

decline in the probability of service for type i 6= i′ is strict as the number of type i′ farmers

in the queue increases. The service probability for type i′ farmers is independent of the

queue length of type i 6= i′ due to the selection criteria.

16From a theory standpoint, when the number of providers and firms grow large, the probability of re-
questing a service to a given provider approaches zero and it is inconvenient to work with. From an empirical
standpoint, queues are observable in our administrative data, while probabilities are not.

17The full derivation can be found in Appendix A.
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3.3 Market cost of provision.

We follow Burdett et al. (2001) and describe a farmer’s decision as a function of the market

price it would get for the rental service, rij, which in turn determines its expected “market”

profit, Ui. Farmers take the value of the market profit as given when the number of agents

in the economy is large, F,H → ∞. Each farmer chooses a service provider to minimize

costs given Ui and the production technology:

min
j
rijki

subject to

πij(zij, ki, rij) ≡ ∆ij

(
E(z(∆ij))k

α
i − rijki

)
≥ Ui,

where πij are the expected profits of the farm when requesting service from provider j and

zij ≡ E(z(∆ij)) is the expected productivity in the farm, possibly a function of expected

service probability. Farm’s productivity depends on the realization of a random shock that

yields the timing of agricultural activities. We summarize the optimal timing for agricultural

activities by the optimal “land preparation” date, θ?, and relate deviations from this optimal

timing to productivity costs. The realization of the land preparation date is a random draw,

θ, from a known distribution G(θ̄(∆ij)) with mean θ̄(∆ij) that depends on provider j’s

probability of service. We assume that
∂θ̄(∆ij)

∂∆
< 0 so that a high probability of service

induces shorter average wait time to service. If the realization of the preparation date differs

from the optimal, the farmer faces a productivity cost proportional to the delay relative to

the optimal date as follows, z = z̄(1 − η(θ − θ?)Iθ?≤θ), where η is the productivity cost per

delayed service day in percentage. Expected productivity is

E(z(∆ij)) = z̄(1− η(θ̄(∆ij)− θ?)Iθ?≤θ̄(∆ij)).

The expected productivity is independent of the choice of provider whenever the expected

wait time is relatively low, i.e. the probability of service is high. Finally, because the draw

of the service provision is idiosyncratic, there is no aggregate uncertainty in the economy

and factor prices are time independent.

A type i farmer requests a service from a type j firm with positive probability if the
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expected profits are weakly larger than Ui. The strict inequality cannot hold because then

a type i farmer would apply to that provider with probability 1, yielding qij → ∞ as the

number of farmers grows large. Then, ∆ij → 0 contradicting that πij(zij, rij, ki) > Ũi.

The farmers’ strategy is

qij ∈ (0,∞) if πi(zij, rij, ki) = Ũi (4)

qij = 0 if πi(zij, rij, ki) < Ũi (5)

This expression summarizes the tradeoff between lower provision cost and higher farming

profits; and a lower probability of service. Given the shape of the probability function (which

enters into expected profits, π) there exist a unique queue q(rij, Ui) that satisfies the problem

of the farmer. The farmer decides his queueing strategy as a function of his capital demand,

ki, expected productivity zij and market prices rij.

3.4 Service Providers

A service provider with capacity j maximizes expected returns. The cost of servicing a

farmer depends on its location relative to the provider. The location of each plot is indexed

by di and dq̂ is a vector collecting the locations of the orders completed within a period,

q̂ ∈ q. Providers choose the cost of service rij taking the the machine-hours demanded by

each type of farmer as given. For a vector {Ui, ki, di}i=s,s− , he chooses the queue lengths by

picking the cost of service and service strategy. The cost of travel time includes the foregone

services that could have been provided if the equipment was not travellng as well as the

opportunity cost of the driver, which commands a wage w per hour. Finally, the queue

length is reset each period and therefore the service provision problem is static.18

Consider the problem of a first-come-first-served provider. His value is the expected

return from servicing at most o = 3 orders within each period. Let ōi be the number of

orders of type i being served within the period. The per period return Ṽ from facing queue

qfcfs depends on the number of orders of each type being served, {ōs, ōs−} and the revenue

18This feature allow us to handle the high dimensionality of the combinatorics problem when providers
are allowed to prioritize certain farmer types.
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per type net of labor and transportation costs, {ri,fcfski − wki − wdi}.19 The value for a

first-come-first-served provider is

V (k̄) = max
{ri,fcfs}i=s,s−

Ṽ
(
{ōs, ōs−}qfcfs

, {ri,fcfski − wki − wdi}i=s,s−
)
, (6)

subject to farmers’ strategies, equation 4, and feasibility

∑
i∈qfcfs

ki + di ≤ k̄. (7)

Consider now the problem of a market provider who, in addition to choosing the cost

of provision, rmkt, chooses a selection criteria χ. This choice in turn determines the type

of orders being served and their quantity, given service capacity. The value of a market

provider is

V (k̄) = max
χ,{ri,mkt}i=s,s−

Ṽ
(
{ōs, ōs−}(qmkt,χ), {ri,mktki − wki − wdi}i=s,s−

)
, (8)

subject to farmers’ strategies, equation 4, and feasibility

∑
i∈qmkt

ki + di ≤ k̄. (9)

The full description of the value of these providers, Ṽ , can be found in Appendix B.

4 Symmetric Equilibrium

A symmetric equilibrium consists of farmers expected profits Us, Us− , provider strategies

rij, χ, and farmer strategies, qij for i = {s, s−} and j = {fcfs,mkt}, that satisfy:

1. given Us, Us− and other providers’ strategies, each type provider maximizes value,

equations 6 or 8;

2. observing the providers’ decisions, farmers choose who to queue with, equation 4; and

19We assume the revenue is separable in the number of orders and relax this assumption in the quantitative
exercise when the provider minimizes transportation cost across orders.
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3. the values Us, Us− , through qij, are consistent with feasibility, equations 1 and 2.

Proposition 1. In all symmetric equilibria where providers serve both types of farmers, the

selection process is χ = 1 and the per period profit of servicing farmers of type i is V j
i :

V j
i = γj1i(z̃k

α
s − wks − wds) + γj2i(z̃k

α
s− − wks− − wds−),

where γj1,i, γ
j
2,i are non-linear functions of the queue lengths and the elasticity of the service

probabilities with respect to the length of the queue and z̃ ≡ z̄(1− η).20

The expected per period value of servicing large-scale farmers is higher than for low-scale

farmers, V j
s > V j

s−. If the surplus from large-scale orders is sufficiently larger than from

small-scale orders, the expected profit for large-scale farmers is greater than for small-holder

farmers, Us > Us−.21

A few characteristics are worth highlighting. First, differences in location and the cost

of travel explain disparities in the incentives to serve farmers operating different scales.

For two plots located at the same distance to the provider, the marginal cost of service is

lower for larger scale farmers. Second, small-scale farmers are useful in terms of capacity

utilization (Assumption 1) and therefore, even providers that prioritize large-scale farmers

have incentives to serve them. Third, the fcfs provider manages to attract some large-scale

farmers by lowering their rental costs relative to the mkt provider. These lower costs for both

large and small farmers compensate them for higher expected queues at the fcfs provider.

Finally, the farmers’ expected profit from equipment services depends on the return to his

own demand for services and on the equilibrium rental rates. In equilibrium, farmers that

are served by both providers shall be indifferent between them. Hence, the product between

the probability of service, conditional on machine-hours demanded, and the cost of service

should equalize across providers.

20The expected productivity z̃ is a log-linear function of an exogenous component z̄ and an endogenous
component 1 +

∂zij
∂∆ij

∆ij

zij
which depends on the elasticity of productivity to the probability of service. Under

Assumption 3 in Appendix B this elasticity is constant an equal to −η. This assumption guaranties that the
surplus from transactions is independent of the probability of service.

21The ratio of the surpluses
z̃kαs −wks−wds

z̃kα
s−

−wks−−wds−
must be larger than a constant that depends on the elasticity

of the probability of service, see equation 24 in Appendix B.
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5 Government regulation in equipment rental markets

In this section, we bring the model to the data to characterize how allocations change with the

presence of a fcfs dispatch system relative to the market dispatch system, both in space and

across farmers of different production scales. The key outcomes of interest are the selection

of farmer types across providers, the equilibrium delays and therefore farming productivity

costs, as well as provider profitability. We then ask whether small scale farmers are hurt by

this deregulation despite efficiency improvements in allocations. Our market deregulation

consists of (i) allowing first-come-first-serve providers to have access to a service selection

technology, and (ii) allowing providers’ entry and exit in the market mimicking the “long-

run” equilibrium for the deregulated market. We show that the increase in capital supply

from the subsidy is large enough to generate a disproportionally higher increase in service

probability for small-holder farmers relative to large-scale ones. The relatively higher service

probability for small-holder farmers is however not warranted for every level of the subsidy:

only large enough subsidies benefit small-holder farmers relatively more.

5.1 Bringing the model to the data

The quantitative assessment of the impact of the government intervention in the rental

markets for equipment consists of two blocks. The first block solves the model in Section 3

for the equilibrium market rental rates and queue lengths, given the empirical supply and

demand for equipment services. The second block simulates queues and service provision

strategies for farmers with different scales and geographical locations.

Solving the first block requires taking a stand on the heterogeneity in machine-hours de-

manded. We construct two groups of farmers following their average machine-hours requests

in the transaction data: those with requests of more than 3.5 machine-hours per order are

denominated large-scale while those with requests of less than 3.5 machine-hours are denom-

inated small-scale. Then, we solve for an equilibrium in which both types of farmers are

served by both types of providers, as in the data. We call this equilibrium the “status quo”.

The second block involves finding the expected delay and subsequent productivity costs

as well as provider profitability under alternative dispatch systems using equilibrium rental
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rates and queue lengths from the first block. In theory, the queue length itself yields the

expected wait time by farm type. However, we recognize that empirically, farmer hetero-

geneity is richer than the one accommodated by the stylized theoretical model both in terms

of machine-hours demanded and in the spatial allocation of demand. We simulate 1000

paths of queues of length q? and composition (q?s , q
?
s−) as dictated by the equilibrium of the

selection model. The sample paths for queues (q?s , q
?
s−) are drawn from the joint empirical

distribution of machine-hours and geographical location. Then, given the equilibrium rental

rates and the technology for dispatch, we let the provider optimize service delivery. The

optimization of service provision in space is effectively the solution to a traveling salesman

problem, conditional on the set of orders in the queue.

5.1.1 Parameterization

There are 10 parameters per hub that need to be calibrated, as shown in Table 3. Eight of

these parameters are calibrated directly from the data while the remaining two are calibrated

internally by solving the model. Consistently with the evidence in Section 2 we use data

for the Kharif season (June to October) in year 2018. We exploit four sources of data:

(1) detailed transaction data from the government subsidized service provider, (2) our own

survey of farmers, (3) our own census of farming households in the catchment area of the

subsidized service providers and (4) high-frequency data from ICRISAT.

From those parameters measured in the data, four of them are common across hubs:

the providers’ discount factor β, and their opportunity cost of moving equipment in space

w, the productivity cost of delays η, and the curvature of the farming profit function α.

The remaining 6 parameters are hub specific and include the share of first-come-first-serve

providers relative to the total supply of equipment in the catchment area of a hub h, the

parameters characterizing the joint distribution of productivity and machine-hours demand

within the catchment area of the hub (i.e., mean and standard deviation of productivity and

the correlation between productivity and machine-hours), the ratio of farmers demanding

service to the providers in the catchment area of each hub f , as well as the share of large

farmers in the population of farmers demanding equipment in the catchment area of the

hub s. The latter two model-calibrated parameters are chosen to match the queue length of

small-holder farmers at first-come-first-served providers, and to make sure the equilibrium
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Table 3: Parameterization

Parameter Description Value Source/Moment

Measured directly in the data
common across hubs

α Curvature of the profits function 0.6 Survey data
β Discount factor 0.999 Interest rate
w Travel/op. cost (INR/hr) 75 Platform data
η Productivity loss/day 3.4% ICRISAT sample

hub specific method/value

h Share of fcfs providers Table 4 Census data
µ Log-normal mean of productivity MLE Survey data
σ Log-normal s.d. of productivity MLE Survey data
ρ Correlation order size and productivity Table 4 Survey + Platform data
ki, di Joint-distribution of order size and travel time B-splines Platform data
k̄ hub-capacity (hours) Table 4 Platform data, peak

Calibrated using the model (hub-specific)

s Share of large farmers Table 4 Census data
f No. of farmers/No. of equipment Table 4 Small-scale queue, fcfs

Notes: Benchmark model parameterization. Productivity is measured as output per acre. Hub-capacity
corresponds to the hours serviced per machine within a day at the peak of service demand, i.e. the maximum
number of hours outstanding in the queue during the season.

displays positive queues of small and large-scale farmers with both providers, as we observe

in the data. In addition to these 10 parameters, we feed the distribution of plots in space

(and their corresponding travel-time) as measured from the platform data.

We set the discount factor to β = 0.999 with an implied daily discount rate of 0.1%. The

opportunity cost of travel time equals the hourly wage of a driver which is directly observed

from the platform data, at w =|75. The curvature of the profit function is set to 0.6, as

estimated from our own survey data on farm profitability. We exploit the fact that farming

profits are proportional to this parameter, i.e. πi = (1−α)yi and estimate α from the average

ratio of profits to value added as reported by farming households.

To discipline the productivity costs of delays, η = 3.4%, we use high frequency data from

ICRISAT as described in Section 2. We also need to calibrate the optimal planting date,

θ?. We assume there is enough service capacity in the market that allows farmers to choose

providers in advance in a manner that on expectation, there are no productivity losses from
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using mechanized services, i.e. E(z(∆ij)) = z̄.22 Once queues are realized, productivity costs

realize as a feature of the service provision process. Finally, we need a mapping between

the probability of service and the realization of the service date, θ(∆ij). We set it to be a

strictly monotonic function, i.e. θ(∆ij) = − ln(∆it). Its logarithmic shape brings tractability

to the problem because it implies a constant elasticity of the delay time to the probability

of service equal to the productivity costs of delays η, see Appendix B.

Then, we calibrate hub-specific parameters. We use our census, to compute the share

of machinery available from government-subsidized hubs and that available from machine-

owners (i.e. we count inventory of implements per hub and implements owned by farmers

within the catchment area of each hub). To characterize the productivity of farmers request-

ing different machine-hours we use the subsample of transactions that overlaps with the

survey data (approximately, 1,300 observations) and compute the underlying correlation be-

tween farm productivity, measured as output per acre, and machine-hours requested. Their

correlation ranges from -0.28 to 0.35 displaying the wide-heterogeneity in demand character-

istics across hubs, column (5) in Table 4. When machine-hours requested are proportional to

plot sizes a negative correlation between output per acre and machine-hours follows from the

negative correlation between productivity and farm size, as has been documented by others

in the literature, e.g. Foster and Rosenzweig (2022). A positive correlation is consistent with

more productive mechanized farms. Our data is rich enough to display both patterns. We

assume that the distribution of productivity is log-normal, ln(z̄) ∼ N (µ, σ) and fit the em-

pirical distribution of value-added per acre for survey farmers in the catchment area of each

hub via maximum likelihood. The estimated mean of productivity suggests differences in log

productivity across hubs of 36% (from 7.4 to 9.3) on average, and a log-variance ranging from

1.1 to 2.9, columns (3-4) in Table 4. Finally, we fit the joint distribution of machine-hours

demanded and travel time to services from the platform data for each hub using B-splines,

akin to a non-parametric estimation of the distribution, see Figure 17 in Appendix D. On

the travel dimension, the distribution is typically bimodal, with orders bunching at less than

10-minutes travel time from the hub and 30-minutes travel time.23

22This is analogous to assuming an outside option that entails no usage of mechanization services and that
is large enough so that farmers only participate in this market if on expectation, they face no productivity
costs.

23We could have alternatively calibrated a joint distribution of productivity, machine-hours requested and
travel time. However, the overlap of the survey data and platform accounts for 20% of the survey data and
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Table 4: Hub specific characteristics.

Measured Directly Calibrated
Supply Demand Farmers

Hub sh. fcfs capacity Productivity Correlation sh. large per provider
h k̄ mean variance prod - hours s f

(1) (2) (3) (4) (5) (6) (7) (8)

1 0.80 4 9.83 1.12 -0.01 0.3 5.0
2 0.86 4 8.89 1.33 -0.12 0.3 4.6
3 0.86 5 8.67 1.49 0.07 0.3 4.4
4 0.86 5 9.08 1.52 0.07 0.3 5.2
5 0.86 6 9.35 1.08 -0.20 0.5 3.3
6 0.86 6 9.08 1.52 0.07 0.5 3.3
7 0.86 7 9.08 1.52 0.07 0.4 5.3
8 0.63 8 8.85 2.56 0.16 0.4 4.1
9 0.75 11 8.85 2.56 0.16 0.4 3.4
10 0.67 11 8.15 2.89 0.01 0.4 4.7
11 0.75 14 8.85 2.56 0.16 0.3 3.4

average 0.79 7 8.97 1.83 0.04 0.4 4.3

Notes: Hub-specific parameters for each hub-implement combination, “Hub” in Column (1). Hubs labeled 3,
4 and 8 correspond to Cultivators while the remaining hubs contain information for Rotavators. Information
for hubs labeled 4-5 correspond to different implements in a single government subsidized hub, and therefore
demand characteristics are the same. Column (2) reports the share of first-come-first-serve providers in
the total equipment supply within each catchment area. Columns (3)-(5) report demand characteristics for
each hub, including the characteristics of the distribution of productivity across farmers and its correlation
between hours demanded. Columns (6)-(7) report parameters calibrated jointly in the model.

Table 5: Moments

Share of Queue Queue
large scale untargeted

s qs−fcfs qsfcfs/qs−fcfs
data model data model data model

(1) (2) (3) (4) (5) (6) (7)

1 0.29 0.45 1.5 3.0 0.5 1.4
2 0.25 0.30 2.3 3.5 1.2 3.2
3 0.19 0.30 3.3 3.3 3.3 2.9
4 0.28 0.30 4.0 4.0 4.0 3.4
5 0.12 0.40 1.3 2.0 0.7 1.8
6 0.35 0.40 2.0 2.0 2.0 1.8
7 0.19 0.25 7.3 4.3 1.5 3.8
8 0.35 0.50 1.0 2.5 0.3 2.2
9 0.39 0.40 0.7 2.0 0.2 1.9
10 0.31 0.30 2.0 4.0 0.5 4.1
11 0.28 0.35 1.0 2.0 1.0 2.0

Notes: Calibration moments, data and model counterparts, Columns (2-5). Untargeted queue length for
large-scale farmers relative to small-holder farmers, Columns (6-7).
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Parameters calibrated jointly include the ratio of farmers to providers in the catchment

area of each hub, as well as the the share of large-scale requests in that catchment area.

The ratio of providers to farmers minimizes the distance between the model predicted queue

of small-holder farmers at the fcfs provider and the data. We pick the share of large-

scale requests that its closest to its empirical counterpart while generating an equilibrium

allocation that displays service request from both types of farmers to both type of providers

(as in the data). To do so, we take the stand that small-holder farmers are those with

requests of up to 3.5 machine-hours per order, and large-scale farmers are those with orders

of more than 3.5 machine-hours per order.

The calibrated ratio of farmers to providers ranges from 3.3 to 5.3, where a provider

should be interpreted as a piece of equipment, column (8) in Table 4. The calibrated shares

of large-scale farmers are higher than in the data (0.4 in the model vs. 0.27 in the data on

average across hubs).24 When there are few large-scale requests, the model generates queue

lengths for small farmers that are broadly in line in the data, Table 5. Queues that are

“too short” (less than 2 orders) fail to generate equilibria where both type of farmers request

service from both providers because a queue length of 1 order for the market provider implies

that small farmers are served with probability one there, given capacity. If the queue length

is instead “too long” (more than 5 orders) the model benefits an equilibrium where small-

farmers only request service from fcfs providers, which is inconsistent with the engagement

of farmers across both types of providers, which we observe in the data.

For completeness, we report the (untargeted) ratio of queue lengths of large-scale and

small-holder farmers. On average, this ratio is lower in the data than in the model, i.e. small

scale farmers are more strongly sorted into fcfs providers than predicted by the model. This

difference is in part driven by a larger share of large-scale farmers in the model than observed

in the data, to be able to sustain equilibria where both types of farmers reach out to both

providers.

we therefore benefitted including the fullness of the distribution of machine-hours and travel time. The latter
is a key input into the costs of service and therefore the incentives to service large and small scale farmers.

24Alternatively, we could have targeted the queue of large-scale farmers in the first-come-first-serve
providers which we currently report as an untargeted moment. Results are qualitatively similar to those
reported here and available upon request.
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Figure 6: Equilibrium
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Notes: Equilibrium rental rates and service findings rates by hub for the calibrated economy. Hubs are
ordered by increasing service capacity as in Table 4.

5.2 Status quo equilibrium

We solve for the rental rates and queue lengths when both types of farmers have access to

both types of providers, i.e. the status quo equilibrium. In the remainder of the analysis

we order hubs by service capacity k̄ in increasing order. The rental rates for both types of

farmers are lower at the fcfs provider than at the mkt provider to compensate for the longer

queues, Figure 6 panel (a). Rental rates are particularly lower for small farmers queueing

with fcfs providers, which makes these providers attractive. Consistently, the service finding

rate for small-scale farmers is larger with the fcfs than with the market providers, while the

opposite is true for large-scale farmers, as shown in Figure 6 panel (b). Service finding rates

are defined analogously to findings rates in the search literature (Barnichon and Figura,

2015), i.e. the ratio between the number of serviced orders per period and the number of

farms searching for a service,
qij∆ijH

F
=

qij∆it

f
.

The level of the rental rates are higher for small-scale than for large-scale farmers due

do the higher cost of service per machine-hour rented (e.g. travel costs), see Table 10 panel

(b) in Appendix D. At the same time, rental rates weigh differences in the probability of

service across providers, with lower rental rates for the fcfs provider irrespective of scale.

This is a consequence of lower conditional probabilities of service with the fcfs on average,
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Figure 7: Relative Surplus
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Notes: Expected surplus from a small-scale transaction (dark red diamonds) and a large-scale transaction
(red dots) across providers, i.e. V̄ij + Ui. Ratio of expected surplus from the market to the fcfs provider.
Hubs are ordered by increasing service capacity as in Table 4.

∆ij, particularly for large-scale farmers. The flip side of this feature are higher queues of

small farmers with the fcfs and higher queues of large-scale farmers with the market provider,

see Table 10 panel (a) in Appendix D. It is important to highlight that despite the fcfs has

higher service probability for small-scale farmers, the conditional probabilities of service are

lower than with the market providers. In other words, a higher service probability is driven

by queue lengths. Figure 18 in Appendix D decomposes service finding rates into differences

in queue lengths and service probabilities and compares them across providers.

Before describing the implications of adding further heterogeneity into this problem,

we compute the expected surplus generated across providers service type, i.e. the sum of

the expected profitability of providers and the value of market participation for servicing a

farmers of a given scale, V̄ij + Ui. Figure 7 presents the size of the surplus for a transaction

serviced by the mkt relative to the fcfs provider conditional on farmers’ sizes. Two patterns

emerge, the surplus generated by market providers is always larger than the one generated

by fcfs. This should not be surprising since market providers could behave as fcfs providers

if they wish to do so. More interestingly, the surplus from servicing large-scale farmers is

higher than from servicing small-holder farmers.
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5.3 Accommodating empirically relevant heterogeneity

The stylized equilibrium queueing model does not capture for full extent of the observed

heterogeneity in location and machine-hours demand. We accommodate this heterogeneity

through simulation exercises where service queues to each provider are drawn from the

empirical joint distribution of location and machine-hours observed in the catchment area

of each hub. In other words, the queue lengths of small and large scale orders are the

equilibrium ones, but their composition is allowed to vary following the empirical distribution

of machine-hours and location observed in the data. We sample, with replacement, 1000

queues per provider. Each order in the queue is a three dimensional object that includes the

machine-hours demanded, the location of the plot, and the productivity of the farmer that

requested service. This productivity level (output per acre) is then used to compute the cost

of equilibrium delays in service provision.25

On the supply side, we solve the service dispatch system through two possible delivery

routes. One follows a “hub and spoke” pattern, under which the equipment must return to

the CHC between two consecutive orders. The other allows for a solution to a “Traveling

Salesman Problem (TSP)”, where the implement travels optimally from order to order within

the day. Under fcfs, the provider follows the route that minimizes the travel time within

a given day for a given set of requests (and their order) in the queue. Under the market

allocation, the type of requests being served are jointly determined with the best service

route. The value of an order in the market allocation depends on the density of orders

around them, and the size of the order relative to serving capacity.26 We then estimate

the value function for each provider, i.e. a function that maps any queue of orders to their

service value, conditional on the dispatch system and the delivery route. As expected the

value of service when we solve the TSP problem is always higher than without it, at the

same time, the value of service provision is higher for market providers, and particularly so,

for relatively close and larger orders, see Figure 19.

25As robustness, we simulate outcomes when we assume no correlation between farm productivity and
order sizes within the catchment area of a hub. These results are available upon request.

26As we explain in Appendix C, this is a high dimensional problem, and the number of possible combina-
tions of orders to be served within a period grows exponentially with the number of orders in the queue and
its characteristics (including hours serviced and location, i.e., latitude and longitude).
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Figure 8: Demand characteristics by provider

(a) Size: average farm acreage
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(b) Location: average hours traveled to service
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Notes: Panel (a) shows the sorting of farmers across providers by average farm acreage per order and Panel
(b) shows the travel time to the service location, in hours. Hubs are ordered by increasing service capacity
as in Table 4.

5.3.1 Farmer allocation across providers

We start by describing the sorting of farmers into different providers, classifying farmers by

order size, i.e. the acreage of the plot for service; and by location, i.e. the travel time for

service, see Figure 8.

The average order size served by a market provider is 3 acres while the average order size

served by a fcfs provider is 2.2 acres. This differential is a consequence of the disparities in

the queue composition discussed before. At the same time, there are systematic differences

in the travel time to locations. During a service day, market providers travel on average

.8 hours (48 minutes), while fcfs providers travel twice as much. This differential travel

time reflects not only differences in the queue composition along the location dimension, but

also disparities in the ability to prioritize orders. While equal-access-concerns may favour a

fcfs service arrangement, it is possible to improve upon the baseline allocation by allowing

government subsidized hubs to optimize service delivery within a day. Figure 9 displays

travel times when providers are allowed to solve a TSP among the orders served within each

day. This option is particularly beneficial to fcfs providers that are not allowed to prioritize

order sizes. The average travel time (as % of service time) is 11% for the market provider

and it declines to 9% once optimizing routes. The average travel time (as % of service time)
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Figure 9: Travel times

FCFS

0
.1

.2
.3

tra
ve

l t
im

e 
(%

 o
f s

er
vi

ce
 ti

m
e)

, F
C

FS

1 2 3 4 5 6 7 8 9 10 11

 without TSP  with TSP

Market

0
.0

5
.1

.1
5

.2
.2

5
tra

ve
l t

im
e 

(%
 o

f s
er

vi
ce

 ti
m

e)
, M

kt

1 2 3 4 5 6 7 8 9 10 11

 without TSP  with TSP

Notes: Travel time by provider and dispatch system, “with TSP” correspond to allocations where providers
are allowed to solve a traveling salesman problem for the orders serviced within a day. Travel time is
expressed as a ratio of the total service within a day. Hubs are ordered by increasing service capacity as in
Table 4.

is 15% for the fcfs provider and it declines to 11.5% once solving the TSP.

5.3.2 Effectiveness in service delivery

Figure 10 panel (a) compares waiting times across the bootstrapped samples for different

dispatch system and demand characteristics. On average, the mean wait time faced by

farmers queueing with market providers is longer that with fcfs. This feature is in part due

to differences in the composition of the queue. Market providers have higher service rates

for large-scale farmers, but those farmers are slightly more than 30% of the population of

farmers in the economy on average. For the remainder of the farmers, market providers have

lower service rates than fcfs providers (Figure 6), which is reflected in higher waiting time

among those queueing with market providers.

Despite the better waiting time for farmers queueing with fcfs providers, these providers

face equipment transportation costs (in terms of the opportunity cost of time) that can

double those of the market providers. In other words, their inability to prioritize order sizes

also affects their ability to service demand in space, traveling “too much” relative to their

market counterparts, see Figure 10 panel (b). It is not surprising then that the value of
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Figure 10: Time management by hub

(a) Farmer wait time
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(b) Travel time, % of service time
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Notes: Panel (a) shows average days waiting for service across providers for the average farm in the catchment
area of each hub. Panel (b) shows the average travel time as a ratio of the service time by provider and hub.
Hubs are ordered by increasing service capacity as in Table 4.

optimizing service routes is higher for fcfs providers as we showed before. Finally, notice

that hubs are ordered in terms of service capacity with hub 1 holding less than a third of the

service capacity of hub 11. On average, travel time as % of service time increases as service

capacity increases, and this correlation is stronger for the market provider than it is for the

fcfs provider.

5.3.3 The cost of delays and of service provision in space

Delays in service provision are costly for farmers. Delays are an equilibrium outcome in

our economy given the nature of search in the market for rental equipments, the disparities

in service provision across providers and the spatial distribution of service demand. Figure

11 displays the distribution of waiting time for service time across farmers located near

the catchment area of a hub (less than 30 minutes of travel time, left panel) and those

located far (more than 30 minutes of travel time, right panel). Most of the excess delay in

near locations observed for market providers has to do with the sorting of demand by size,

i.e. the market providers attract relatively more large-scale farmers, which induces delays

in service provision toward smaller farmers. The difference in delays between providers is

maximized for far away locations, because market providers systematically avoid servicing
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Figure 11: Delays in space
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(b) Far from the hub
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Notes: Panel (a) shows the average days waiting for service across providers for the average farm in locations
within 30 minutes of travel of the centroid of each hub. Panel (b) shows the same measure for the average
farm in locations more than 30 minutes away from the centroid of each hub. Hubs are ordered by increasing
service capacity as in Table 4.

those.

These delays induce costs in revenue per acre that depend on the joint distribution of

location, size and productivity. Figure 12 reports the productivity cost per acre across

providers for the bootstrapped samples. These are measured as the decline in revenue per

acre relative to the average revenue per acre in the catchment area of a hub. Despeite

the documented disparities in delays across providers in near locations, productivity costs

per acre are similar across dispatch systems. For example, in hub 4, the market provider

induces a delay in provision of roughly an additional day relative to the fcfs provider (form

2.5 to 4 days). However, those farmers that wait longer are on average less productive and

therefore the cost per acre is similar across providers, 8.4% of average revenue per acre

for the fcfs provider and 9% for the market provider. Conditional on servicing far away

locations, the disparities in delays are so large across providers, that those delays induce

stronger productivity costs for those queueing with the market providers. Still, as in nearby

locations, the disparities in productivity are smaller than in delays across providers.
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Figure 12: Productivity costs in space
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(b) Far from the hub
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Notes: Panel (a) shows the cost in revenue per acre for the average farm in locations within 30 minutes of
travel of the centroid of each hub. Panel (b) shows the same measure for the average farm in locations more
than 30 minutes away from the centroid of each hub. The cost is measured in p.p. of the average revenue
per acre in the catchment erea of each hub. Hubs are ordered by increasing service capacity as in Table 4.

6 The value of the subsidies

6.1 The market prior to the subsidy

We now study how the status quo equilibrium compares to the equilibrium prior to the

intervention. While data for the pre-subsidy market is unavailable, we can account for this

effect by running a counterfactual analysis where we shut down the supply of equipment

stemming from fcfs, i.e. the government subsidized supply. This counterfactual is valid

under the assumption that market participants accommodated the entry of new supply in

the market. This is a plausible scenario due to the low ownership of equipment in the

population and the desire of most farmers to engage in rentals.

The substantial increase in equipment supply due to the subsidy implies an increase in

the service finding rates, moving from 15% prior to the subsidy to between 40% and 55%

after the subsidy depending on the provider, see Table 6. Gains in service findings rates are

mostly attributed to small farmers, which prior to the subsidy faced a service finding rate

of 6% and after the subsidy face a service finding rate of 56%, with a bit more than half

of it attributed to the fcfs providers. Market providers’ service probability also increases in

40



equilibrium because the cost of service declines in response to stronger competition. Rental

rates fall by 18% for small scale farmers and by 5% for large farmers. The differential effect

is a consequence of the implicit priority given to small-holder farmers by the fcfs subsidized

provider.

Table 6: Effect of the subsidy

prior to post subsidy
policy fcfs mkt

Service Finding Rate
average farmer 0.15 0.41 0.56
small-scale 0.05 0.28 0.22
large-scale 0.1 0.13 0.34
Rental Rate
small-scale 142 121 125
large-scale 94 93 94

Notes: This table shows the service findings rates and hourly rental rates (in rupees) across different equilib-
rium allocations. These results are presented by farmer scale of production and by provider. The “prior to
policy” equilibrium corresponds to an allocation where only the market suppliers are available. The “post
subsidy” equilibrium corresponds to our benchmark economy.

6.2 Market Deregulation

One of the findings in Section 5.3.2 is that fcfs providers could benefit from operating a

technology that allows them to optimize equipment in space as well as optimize the type of

orders being served. We study the effect of a market deregulation through counterfactuals.

Because prioritizing large-scale farmers is costless and the fcfs providers are at least as well

off as before (i.e. they can now prioritize the high marginal return orders), a profit driven

fcfs provider would choose to adopt the technology, leading to a shift in provider composition

towards h = 0.27 In other words, there is no longer any differentiation between these two

types of providers. The nature of the equilibrium may however change due to the endogenous

farmer sorting, and pricing of services.

The short run response of the economy (without endogenous entry or exit of providers)

implies higher service finding rates for large-scale farmers relative to the fcfs provision, con-

sistently with the profit maximizing strategy of market providers (see Table 7). However,

27As we pointed out before, the value of service for market providers is always above the one for first-come-
first-served providers, and therefore each provider has incentives to adopt a dispatch system that prioritizes
large orders.
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Table 7: Effect of Market Deregulation

Benchmark Deregulation
fcfs mkt short-run long-run

Service Finding Rate
average farmer 0.41 0.56 0.49 0.5
small-scale 0.28 0.22 0.29 0.3
large-scale 0.13 0.34 0.2 0.21
Rental Rate
small-scale 121 125 122 120
large-scale 93 94 92 92

Notes: This table shows the service findings rates and hourly rental rates (in rupees) across different equi-
librium allocations. These results are presented by farmer scale of production and by provider. The “bench-
mark allocation” corresponds to the calibrate economy, whereas the “deregulated” economy corresponds to
economies where fcfs providers are allowed to prioritize orders as their market counterparts. The “short-run”
is an equilibrium without providers’ entry-and-exit whereas the “long-run” allows for it.

their service finding rates are below those of small scale farmers that are drawn to the market

in response to the increased supply of services. While service findings rates for small-holder

farmers do not change relative to the baseline, the rental costs increase for all farmers. The

long run response of the economy (with endogenous entry and exit) restores rental costs

to their baseline levels, and generates allocations where service findings rates are higher for

small holder farmers than large holder farmers, despite market providers prioritizing the

latter. The reason is that small-scale requests are valuable when there are service capacity

constraints because they improve capacity utilization.

Figure 13 plots the change in average farm sizes served and the travel time for service,

i.e. the change in the distribution of served location, as the market deregulates. Exit of

providers induces an increase in the average size of the farm served by each provider, and a

reduction in the travel time to service, consistently with providers prioritizing services with

low marginal cost of provision. Travel time as a proportion of the service time declines by

20%, on average across hubs.

6.3 Small-holder access and equipment supply.

An extensive literature in agricultural economies has studied the effect of government sub-

sidies for equipment. Two conclusions arise: (a) equipment subsidies are regressive because

they benefit relatively wealthier farmers; (b) the impact of these subsidies in mechanization
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Figure 13: Impact of Deregulation, demand characteristics

(a) Size: average farm acreage
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(b) Travel time, % service time
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Notes: Panel (a) shows the sorting of farmers by average farm acreage per order. Panel (b) shows the average
travel time to the service location as a ratio of the average service time. Hubs are ordered by increasing
service capacity as in Table 4.

Figure 14: Impact of Deregulation, delays
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(b) Far from the hub
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Notes: Panel (a) shows the average days waiting for service across providers for the average farm in locations
within 30 minutes of travel of the centroid of each hub. Panel (b) shows the same measure for the average
farm in locations more than 30 minutes away from the centroid of each hub. In purple we include outcomes
for the deregulated economy, i.e. where fcfs providers can prioritize orders. Hubs are ordered by increasing
service capacity as in Table 4.
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is widely heterogeneous, with only a handful of successful cases (see review in Pingali, 2007).

Our results suggest a different interpretation of the heterogeneity in the effectiveness of

subsidies. First, small-holder farmers can benefit disproportionally more from these subsidies

than large-scale farmers (at least in terms of service findings rates), as they do in our bench-

mark result. Their ability to do so depends on their value in terms of capacity utilization,

or the density of their location in space; and the generosity of the subsidy, or the increase in

the supply of machine-hours. Indeed, if the supply increase is relatively low, service finding

rates for small-holder farmers are below that of large-scale farmers as we show in Table 8.

One could erroneously interpret this results as the subsidy being regressive.

Table 8 also highlights that heterogeneity in the success of these government programs

for generating long-term shifts in mechanization may have been related to heterogeneity in

the subsidy amounts, and the joint spatial and size distribution of farms.

Table 8: Service finding rates across supply of machine-hours, H.

Hps H relative to Hps

1 1.4 2 3.3 5

average farm 0.15 0.21 0.28 0.39 0.47
small-scale 0.05 0.08 0.12 0.19 0.26
large-scale 0.10 0.13 0.16 0.19 0.20

Note: Column Hps corresponds to the level of pre-subsidy supply of machine-hours. The pre-subsidy supply
level is estimated as the equipment supply absent CHC’s machine hours, see Section 6.1. Service finding
rates are computed as described in the text.

7 Conclusion

Rental markets hold considerable promise in expanding mechanization access and increasing

productivity in the farming sector. However, the spatial distribution of demand in space and

its synchronous nature, as well as the fixed supply capacity, poses important policy-relevant

trade offs for service provision. The returns to these rental markets depend crucially on

factors such as spatial density, i.e. the proximity of suppliers to farmers, the overall supply

capacity, and the ability to optimize traveling equipment time. In this paper, we document

and quantify how these factors determine the distributional effects of rental markets.
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We find that when the government increases service capacity by subsidizing the purchase

of equipment for rental service provision, and at the same time imposes a first-come-first-

serve dispatch system to allocate services, it induces misallocation in service provision. When

equipment owners are allowed to maximize their profits by prioritizing larger scale orders, the

equilibrium allocation may induce higher finding rates for small-scale producers. The reason

is that small-scale orders are valuable in terms of service capacity-utilization, particularly

when located in high-density areas.

We provide a parsimonious framework to study the allocation of shared services across

heterogenous demand and spatial allocations. The framework can be readily extended to

study similar markets where capacity utilization and geography are important determinants

in service provision. Finally, while we take the location of service providers as given, a

natural step forward would be to study the properties of the endogenous location of providers

in space, as in Oberfield et al. (2020).
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A Characterization of the probability of service.

A.1 Probability of service for a particular farmer

The probability that a provider chooses a particular farmer given that he chooses one of type

i is ∆̃ij(1), i.e.

∆̃ij(1) =

fi−1∑
n=0

(
fi − 1

n

)
pnij(1− pij)fi−1−n 1

n+ 1
,

where fi is the number of farmers of type i searching for a provider, fs = sF and fs− =

(1− s)F and
(
fi−1
n

)
= fi−1!

n!(fi−1−n)!
. Hence,

∆̃ij(1) =
1− (1− pij)fi

fipij
.

As the number of agents in the economy gets large, and using the definition of queue lengths

above, the service probability simplifies to

∆̃ij(1) =
1− e−qij

qij
.

That is, the probability that at least one farmer of type i has requested a service, 1− e−qij ,
divided by the number of requests of a given type, qij.

Next, consider the probability of a particular farmer being served when the provider

serves ō = 2 orders of type i, ∆̃ij(2). Similar computations to those above yield a service

probability as follows

∆̃ij(2) = 2(
1− e−qij

qij
)− e−qij .

Finally, consider the probability of a particular farmer being served when the provider

serves ō = 3 orders of type i, ∆̃ij(3), which follows

∆̃ij(3) = 3(
1− e−qij

qij
)− 2e−qij − e−qijqij.

A.2 Probability of service of a farmer of type i

Next, we characterize the probability that a provider of type j services a farmer of type i

given that a farmer of type i is standing in the queue.

First-come-first-served. The fcfs provider only considers feasibility and the position

of the farmer in the queue. Let the probability of serving ō farmersof type i be φi,fcfs(ō).
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Given the queue lengths at this provider, there are qs+qs−Po =
qs+qs− !

(qs+qs−−o)!
possible permuta-

tions for the o-tuple, (the provider identifier has been dropped for notational convenience).

Under Assumption 1, a fcfs provider serves a single large-scale farmer if one of the large-

scale farmers are among the first three positions in the queue, which occurs with probability

φ̂s,fcfs(1) ≡ 3qs
q
s−P2

qs+q
s−P3

; and at least one has applied.

φs,fcfs(1) = ψs,fcfs(1)φ̂s,fcfs(1), 28

where ψs,fcfs(1) ≡ (1−e−qs−,fcfs−qs−,fcfse−qs−,fcfs) is the probability of having at least three

orders in the queue of which at least two are of type s−, when a single farmer of type s has

requested service. To this probability we should add the probability of service when less than

3 farmers apply for service. The latter is ψ̂s,fcfs(1) ≡
(
e−qs,fcfs(e−qs−,fcfs + qs−,fcfse

−qs−,fcfs)
)
,

i.e. the probability of service of large scale order when there are no other service request or

there is exactly one additional order requested.

A fcfs provider services 2 large-scale farmers if there are two or more large-scale orders in

the first o positions of the queue and at least two large scale farmers have requested service.

Let the first probability be φ̂s,fcfs(2) ≡ 3qs(qs − 1)
qs−2+q

s−P1
qs+q

s−P3

φs,fcfs(2) = ψs,fcfs(2)φ̂s,fcfs(2),

where ψs,fcfs(2) = (1 − e−qs,fcfs − e−qs−,fcfsqse
−qs,fcfs) is the probability that there are at

least three orders in the queue conditional of a farmer of type s requesting service, of which

at least two are of type s (including the one requesting service).29 To this probability

we should add the probability that there are only two large-scale farmers in the queue

ψ̂s,fcfs(2) ≡
(
qs,fcfse

−qs,fcfse−qs−,fcfs
)
.

Given feasibility, the fcfs provider never serves 3 large-scale orders, φs,fcfs(3) = 0.

A fcfs provider serves a single small-holder farmer if there is one of them in the first o

positions of the queue. This probability is defined analogously to its counterpart for large

scale orders,

φs−,fcfs(1) = ψs−,fcfs(1)φ̂s−,fcfs(1),

and adding the probability ψ̂s−,fcfs(1) when there are less than three orders.

A fcfs provider services 2 small-holder farmers if at least two small-scale orders in the

28Note that φ̂s,fcfs(i) are not the expected probabilities, but rather the probability conditional on the
observed queue length. We can numerically show that when F,H →∞ these two are arbitrarily close.

29This is the probability that at least another large scale and at least one small scale farmer request service,
or at least two other large scale farmers request service.
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first o positions of the queue, φ̂s−,fcfs(2) ≡ 3
qs− (qs−−1)qs
qs+q

s−P3

φs−,fcfs(2) = ψs−,fcfs(2)φ̂s−,fcfs(2),

where ψs−,fcfs(2) = (1−e−qs,fcfs)(1−e−qs−,fcfs) is the probability that there are at least three

orders in the queue conditional of a farmer of type s− requesting service, of which at least

one is of type s and at least two are of type s− (including the one requesting the service). To

this probability we should add the probability that there are only two orders in the queue,

ψ̂s−,fcfs(2) defined analogously than for large-scale farmers.

A fcfs provider services 3 small-holder farmers if there are three small-scale orders in the

first o positions of the queue. This probability is defined as φ̂s−,fcfs(3) =
q
s−P3

qs+q
s−P3

φs−,fcfs(3) = ψs−,fcfs(3)φ̂s−,fcfs(3),

where ψs−,fcfs(3) is the probability of having at least two other small scale requests, i.e.

ψs−,fcfs(3) = (1− e−qs−,fcfs − qs−,fcfse−qs−,fcfs).
The general form for the probability of service is,

∆i,fcfs =
3∑
ō=1

ψ̂i,fcfs(ō) + φi,fcfs(ō)∆̃i,fcfs(ō), (10)

where we have defined ψ̂s,fcfs(3) ≡ 0 to ease notation.

The main difference in the probability of service for large and small relies on the queue

lengths. If the queue lengths are identical, then a first-come-first-served provider serves both

types of farmers with the same probability,
∑3

ō=2 φs−,fcfs(ō) =
∑3

ō=2 φs,fcfs(ō).

Market. The market provider has a technology that allows him to prioritize farmers

of either type. The probability of interest is the probability that exactly ō farmers of type i

are served conditional on the farmer under consideration having applied.

Conditional on a large farmer having applied, a single large-scale farmer is served by

a market provider if the provider does not prioritize large scale farmers and there is one

large-scale order among the first o available positions, which happens with probability (1−
χ)φ̃s,mkt(1) = (1−χ)φs,fcfs(1); or if the provider prioritizes large scale farmers and no other

large-scale farmer requested service, χψs,mkt(1) = χe−qs,mkt(1 − e−qs−,mkt − qs−,mkte−qs−,mkt).
These service probabilities add up to,

φs,mkt(1) = χ(ψs,mkt(1)) + (1− χ)φ̃s,mkt(1),
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the latter assumes that at least three orders have been requested. We should add to these

the event that there are less than three orders, which happens with probability ψ̂i,mkt(1) =

ψ̂i,fcfs(1) for any i=s, s− by definition.

Two large-scale farmers are served by a market provider if he does not prioritize large or-

ders and they stand in the first 3 positions, which happens with probability (1−χ)φ̃s,mkt(2) =

(1−χ)φs,fcfs(2); or if the provider prioritizes those orders and there is at least one additional

large-scale service request, which happens with probability χψs,mkt(2) = χ(1 − e−qs,mkt −
e−qs−,mktqse

−qs,mkt).30 These service probabilities add up to

φs,mkt(2) = χ(ψs,mkt(2)) + (1− χ)φ̃s,mkt(2).

We then add the probability when less than three orders are in the queue, ψ̂s,mkt(2) defined

analogously to the fcfs provider.

Feasibility prevents three large-scale orders to be served within the period and therefore,

φs,mkt(3) = 0.

Analogous arguments can be used to describe the probabilities of service of small scale

farmers. A single small-holder farmer is always served by a market provider (conditional

on a request) if it prioritizes high-scale requests and at least two large scale farmers have

requested service, which occurs with probability χψs−,mkt(1) = χ(1− e−qs,mkt − qs,mkte−qs,mkt ;
or if the provider does not prioritize high-scale requests and there is a single small-scale order

among the first three orders in the queue, (1− χ)φ̃s−,mkt(1), where φ̃s−,mkt(1) = φs−,fcfs(1).

The reason for always serving a small scale order even when prioritizing large scale is that

capacity constraints allow the provider to serve at most o− 1 orders leaving always and idle

slot. Finally, we add the probability that there are less than two large-scale orders in the

queue.

φs−,mkt(1) = χ(ψs−,mkt(1)) + (1− χ)φ̃s−,mkt(1),

and ψ̂s−,mkt(1).

Two small-holder farmers are served by a market provider if it prioritizes high-scale re-

quests and exactly one large-scale farmer requests service and at least another small scale

farmer requests service, which occurs with probability χψs−,mkt(2) = χqs,mkte
−qs,mkt(1 −

e−qs−,mkt). Alternatively, two small-holder farmers are served if the provider does not prior-

itize large-scale orders and there are two small-scale orders among the first three orders in

30If there are more large-scale orders the provider still serves two because of its capacity constraints.
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the queue.

φs−,mkt(2) = χ(ψs−,mkt(2)) + (1− χ)φ̃s−,mkt(2).

To these probabilities we add those associated to the event when there are strictly less than

two orders in the queue, ψ̂s−,mkt(2).

Three small-holder farmers are served by the market provider if it prioritizes high-scale

requests and no large-scale farmer requests service and there are at least three small requests,

which occurs with probability χψs−,mkt(3) = χe−qs,mkt(1− e−qs−,mkt− qs−,mkte−qs−,mkt), or if it

does not prioritize them and there are three small-scale orders among the first three in the

queue,

φs−,mkt(3) = χψs−,mkt(3) + (1− χ)φ̃s−,mkt(3).

In sum, the probability of service for a market provider follows

∆i,mkt =
3∑
ō=1

ψ̂i,mkt(ō) + φi,mkt(ō)∆̃i,mkt(ō). (11)

Following equations 10 and 11, the probability of being served for a given type i (weakly)

declines in the queue length of the other type of farmers. In the first-come-first-served

provider the result is straightforward. For the market provider, the decline in the probability

of service is strict for the small scale farmers and independent of the queue length of small-

scale orders when the provider prioritizes large-scale orders.

A.3 Unconditional probabilities of service.

The unconditional probabilities of service are important in characterizing the value of service

for each provider. We consider alternative scenarios, i.e. when the provider serves at capacity

(o = 3 orders) and when the provider serves less than capacity.

The first-come-first-served provider can serve three orders of small scale (given feasibility)

with a service probability of

Φs−,fcfs(3) =

(
1− e−qs−,j(1 + qs−,j +

1

2
q2
s−,j)

) qs−,jP3
qs,j+qs−,jP3

;

or to serve two orders of one type and one of another, with probability

Φ̄i,fcfs(1) = (1− e−qi,j)(1− e−qi′,j − qi′,je−qi′,j)
3qi,jqi′,j(qi′,j − 1)

qi,j+qi′,jP3

,
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and Φ̄i′,fcfs(2) = Φ̄i,fcfs(1) for i′ 6= i.

The provider can also serve two orders of large size, (either because he received only two

orders, or because all orders in the queue are of large scale)

Φ̃s,fcfs(2) =
(
1− e−qs,fcfs − qs,fcfse−qs,fcfs

)
e−qs−,fcfs ,

or it can receive exactly two orders of small size and serve those,

Φ̃s−,fcfs(2) =
1

2
q2
s−,je

−qs−,j(e−qs,j).

Finally, the provider can serve two orders, one of each type

Φ̃i,fcfs(12) =
(
qi,je

−qi,jqi′,je
−qi′,j

)
.

or only one order, with occurs with probability

Φ̃i,fcfs(11) =
(
qi,je

−qi,je−qi′,j
)
.

The probabilities for the market provider are similar to the ones above, except that we

need to account for the market provider’s ability to select large scale orders.

The market provider can serve three orders of small scale,

Φ̄s−,mkt(3) = χe−qs,mkt(1−e−qs−,mkt−qs−,mkte−qs−,mkt−
1

2
q2
s−,mkte

−qs−,mkt)+(1−χ)Φs−,fcfs(3),

(12)

or the orders of large scale and one small,

Φ̄s,mkt(2) = χ((1− e−qs,mkt − qs,mkte−qs,mkt)(1− e−qs−,mkt) + (1− χ)Φ̄s,fcfs(2), (13)

or two orders of small scale and on large,

Φ̄s−,mkt(2) = χqs,mkte
−qs,mkt(1− e−qs−,mkt − qs−,mkte−qs−,mkt) + (1− χ)Φ̄s−,fcfs(2). (14)

When there are less than three orders in the queue there is no need to prioritize orders,

and therefore the probabilities of service are identical to those characterized for the FCFS

problem, i.e. Φ̃i,mkt = Φ̃i,fcfs.

Expected value of service provision The characterization of the probability allows
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us to compute the expected value of service provision:

Ṽ
(
{ōs, ōs−}qfcfs

, {(ri,fcfs − w)ki − wdi}i=s,s−
)
≡∑

i=s,s−

Φ̄i,fcfs(2)
[
2
(
(ri,fcfs − w)ki − wdi

)
+ (ri′,fcfs − w)ki′ − wE(di′)

]
+

Φ̃i,fcfs(11)
(
(ri,fcfs − w)ki − wdi

)
+

+Φ̃i,fcfs(12)
(
(ri,fcfs − w)ki − wdi + (ri′,fcfs − w)ki′ − wE(di′)

)
+

Φ̃i,fcfs(2)2
(
(ri,fcfs − w)ki − wdi

)
Φs−,fcfs(3)3((rs−,fcfs − w)ks− − wds−), (15)

Ṽ
(
{ōs, ōs−}(qmkt,χ), {(ri,mkt − w)ki − wdi}i=s,s−

)
≡∑

i=s,s−

Φ̄i,mkt(2)
[
2
(
(ri,mkt − w)ki − wdi

)
+ (ri′,mkt − w)ki′ − wE(di′)

]
+

Φ̃i,mkt(11)
(
(ri,mkt − w)ki − wdi

)
+

+Φ̃i,mkt(12)
(
(ri,mkt − w)ki − wdi + (ri′,fcfs − w)ki′ − wE(di′)

)
+

Φ̃i,mkt(2)2
(
(ri,mkt − w)ki − wdi

)
Φs−,mkt(3)3((rs−,mkt − w)ks− − wds−). (16)

where the first two terms in either expression correspond to the expected value of serving

three orders or different types, while the remaining terms correspond to the expected returns

of serving strictly less than three orders.

B Proofs

B.1 Proposition 1

First, we solve for the equilibrium value of service when both farmers queue with both

providers. Then, we show the value when the service provider serves a single type of farmers.

Then we show that the guess that the selection criteria for the market provider should be

to prioritize large scale orders. Finally, we show that the expected value of service is higher

for large scale farmers.

Value of service when serving both type of farmers.

Proof. Using the definition of the expected value of service provision (equations 15 and 16)

and rearranging terms, as well as the participation constraint for the farmers, equation 4,
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the problem of the provider is

max
qs,j ,qs−,j

∑
i=s,s−

Φi,j(2)[zijk
α
i −

Ui
∆ij

− w(ki + di)] +

∑
i=s,s−

Φi,j(1)[zijk
α
i′ −

Ui′

∆i′j
− w(ki′ + E(di′))] +

Φs−,j(3)3[zijk
α
s− −

Us−

∆s−j
− w(ks− + ds−)],

where Φi,j(2) = (Φ̄i,j(2)2 + Φ̃i,j(2)2 + Φ̃i,j(11) + Φ̃i,j(12)) and Φi,j(1) = (Φ̄i,j(2) + Φ̃i,j(12)).

Let V̄ij be the profit per order of type i for provider j, i.e. V̄ij ≡
(
(ri,j − w)ki − wdi

)
.

The optimality condition swith respect to the queue length of large-scale and small-holder

farmers are

∑
i=s,s−

(
∂Φi,j(2)

∂qs,j
V̄i +

∂Φi,j(1)

∂qs,j
V̄i′

)
+ 3

∂Φs−,j(3)

∂qs,j
V̄s− +

∑
i=s,s−

(
Φi,j(2)

∂V̄i
∂qs,j

+ Φi,j(1)
∂V̄i′

∂qs,j

)
+ Φs−,j(3)3

∂V̄s−

∂qs,j
= 0, (17)

∑
i=s,s−

(
∂Φi,j(2)

∂qs−,j
V̄i +

∂Φi,j(1)

∂qs−,j
V̄i′

)
+ 3

∂Φs−,j(3)

∂qs−,j
V̄s− +

∑
i=s,s−

(
Φi,j(2)

∂V̄i
∂qs−,j

+ Φi,j(1)
∂V̄i′

∂qs−,j

)
+ Φs−,j(3)3

∂V̄s−

∂qs−,j
= 0, (18)

where

∂V̄i
∂qi,j

= −

 V̄i + w(ki + di)− zijkαi (1 +
∂zij
∂∆ij

∆ij

zij
)

∆ij

(∂∆i,j

∂qij

)
.

Assumption 3. Let θ̄(∆ij) = − ln(∆ij), a strictly decreasing function of the probability

of service.

Given Assumption 3 elasticity of productivity to the probability of service equals −η.

We can define

z̃ ≡ z̄(1− η),

as the “adjusted” productivity, and the envelope condition reads
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∂V̄i
∂qi,j

= −(V̄i + w(ki + di)− z̃kαi (1− η))
1

∆ij

(
∂∆i,j

∂qij

)
.

Let the elasticity of the probability of service with respect to the queue length be ζq∆(o) ≡
−∂∆sj

∂q

qsj
∆sj(o)

, let the elasticity of the value of service to the queue length be ζV̄ q ≡ ∂V̄
∂qij

qij
V̄

and

that of the probability of arrival of o orders to the queue length be ζqψ(o) ≡ ∂ψ
∂q

q
ψ(o)

. The

envelope condition indicates that the elasticity of the value of service to the queue length is

an inversely proportional function of the elasticity of the probability of service to the queue

length, ζ∆ij.

ζV̄i =

(
1 +

w(ki + di)− z̃kαi
V̄i

)
ζ∆ij.

Equations 17 and 18 form a system of linear equations that can be solved for the two

unknowns V̄s− , V̄s as a function of the queue lengths.31

Γ

[
V̄s

V̄s−

]
= a

[
z̃kαs − w(ks + ds)

z̃kαs− − w(ks− + ds−)

]

where Γ =

[
Γ1Γ2

Γ3Γ4

]
, for

Γ1 =
∂Φs,j(2)

∂qs,j
+
∂Φs−,j(1)

∂qs,j
+ ζ∆sqs(

Φs,j(2)

qs,j
+

Φs−,j(1)

qs,j
)

Γ2 =
∂Φs−,j(2)

∂qs,j
+
∂Φs,j(1)

∂qs,j
+ 3

∂Φs−,j(3)

∂qs,j
+

ζ∆s−qs(
Φs,j(1)

qs,j
+

Φs−,j(2)

qs,j
+ 3

Φs−,j(3)

qs,j
)

Γ3 =
∂Φs,j(2)

∂qs−,j
+
∂Φs−,j(1)

∂qs−,j
+ ζ∆sqs−(

Φs−,j(1)

qs−,j
+

Φs,j(2)

qs−,j
)

Γ4 =
∂Φs−,j(2)

∂qs−,j
+
∂Φs,j(1)

∂qs−,j
+ 3

∂Φs−,j(3)

∂qs−,j
+

ζ∆s−qs−(
Φs,j(1)

qs−,j
+

Φs−,j(2)

qs−,j
+ 3

Φs−,j(3)

qs−,j
)

31Note that equation 17 reduces to 21 when there are no small-scale orders.
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and in the LHS

a =

[
a11 a12

a21 a22

]
=

 ζ∆sqs(
Φs,j(2)

qs,j
+

Φs−,j(1)

qs,j
) ζ∆s−qs(

Φs,j(1)

qs,j
+

Φs−,j(2)

qs,j
+ 3

Φs−,j(3)

qs,j
)

ζ∆sqs−(
Φs−,j(1)

qs−,j
+

Φs,j(2)

qs−,j
) ζ∆s−qs−(

Φs,j(1)

qs−,j
+

Φs−,j(2)

qs−,j
+ 3

Φs−,j(3)

qs−,j
)


The last vector on the LHS corresponds to the surplus from trade for each farmer type.

Standard matrix algebra implies that expected value to the providers satisfies

V̄ j
s = γj1s(z̃k

α
s − wks − wds) + γj2s(z̃k

α
s− − wks− − wds−) (19)

V̄ j
s− = γj1s−(z̃kαs− − wks− − ds−) + γj2s−(z̃kαs − wks − wds) (20)

for γj1s− = Γ1a22−a12Γ3

Γ1Γ4−Γ2Γ3
and γj2,s− = a21Γ1−a11Γ3

Γ1Γ4−Γ2Γ3
while γj1,s = a11Γ4−Γ2a21

Γ1Γ4−Γ2Γ3
and γj2s = a12Γ4−Γ2a22

Γ1Γ4−Γ2Γ3
.

Notice that the denominator of each of the γ parameters shifts depending on the provider

as a function of the probability of service. This heterogeneity changes the value for the

derivatives in Γ.

Value of service when serving only large scale farmers.

If a provider j attracts only large-scale farmers, i.e. qs−j = 0, then the expected

per period profit of the provider satisfies

V̄s = γ(qsj, ζ∆q, ζψq, α)(z̃kαs − w(ks + ds))

where the second term corresponds to the surplus associated to the transaction and γ ∈ (0, 1)

is a non-linear function of the queue length, the elasticity of the service probability with

respect to the length of the queue, ζ, and the share of capital in farming production.

Proof. The problem of the supplier when it only receives large scale orders is

max
qsj ,rsj

ψV̄s

subject to

∆sjπs(rsj, ks) ≥ Us∑
i∈q̂j

ks(i) + E(ds(i)) ≤ k̄

where ψ = 2
(
1− e−qs,mkt(1 + qs,mkt)

)
+ e−qs,mktqs,mkt because there are no small-scale orders

and either the supplier serves one or two orders of large scale.
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Using the definition of profits to the farmers, equation 4, we can replace the cost of

capital into the objective function. Replacing the rental price of capital as a function of the

expected profits, the provider solves

max
qsj

ψ

[
z̄kαs −

Us
∆sj

− w(ks + ds)

]

Note that the properties of the probabilities ψ and ∆ (decreasing and convex in the queue

length) imply that the first order conditions to the problem are necessary and sufficient for

an optimum. The optimality condition for the queue length is

∂ψ

∂q
V̄s − ψ

[
V̄s + w(ks + ds)− z̃kαs

∆̃sj(2)

]
∂∆̃sj(2)

∂q
= 0. (21)

Let the elasticity of the probability of service with respect to the queue length be ζq∆(o) ≡
−∂∆sj

∂q

qsj
∆sj(o)

and let the elasticity of the probability of arrival of o orders to the queue length

be ζqψ(o) ≡ ∂ψ
∂q

q
ψ(o)

. Finally, let γ(qs,j, ζ∆q, ζψq, α) ≡ ζq∆
ζqψ+ζq∆

,

V̄s = γ(qsj, ζ∆q, ζψq, α)(z̃kαs − w(ks + ds)) (22)

which proves the result. For the value to be positive we require γ > 0 which is true by

construction. The provider takes a fraction of the surplus from the transaction.

If a provider j attracts only small-holder farmers, i.e. qs,j = 0, then the expected

per period profit of the provider satisfies

V̄s− = γ(qs−j, ζ∆q, ζψq, α)(z̃kαs− − w(ks− + ds−))

where γ ∈ (0, 1) is a non-linear function of the queue length, the elasticity of the service

probability with respect to the length of the queue, ζ, and the share of capital in farming

production.

The derivations when the provider serves only small-scale providers follow the same steps

as the ones above, so we omit them for brevity.

The market provider wants to prioritize large scale orders: Compute ∂Πmkt

∂χ
,

which are strictly positive, given the definition for the unconditional probabilities of service,

12 to 14, and the value of the provider, equations 8 and 16. Then, the optimal selection rule

is at the corner, χ = 1.
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Expected profits to the farmers The expected profits to the farmers depend on the

equilibrium being realized, i.e. whether providers serve both type of farmers or providers

specialize in a single type. The reason is that the expected profits to the farmer depend on

the cost of service, which can be in turn expressed as a function of the value of service using

the definition of the value per period, z̃kαi − Ui
∆ij
− w(ki + di) = V̄ j

i

Ui = (z̃kαi − w(ki + di)− V̄ j
i )∆ij (23)

Replacing the values of expected profits for the providers we obtain

1. If providers serve both type of farms,

Us = ∆sj((1− γj1s)(z̃kαs − wks + wds)− γj2s(z̃kαs− − wks− + wds−))

Us− = ∆s−j((1− γj1s−)(z̃kαs− − wks− + wds−)− γj2s−(z̃kαs − wks + wds))

2. If a provider serves only large scale farmers,

Us = ∆̃sj(1− γ(qsj, ζ∆q, ζψq, α))(z̃kαs − wks + wds)

3. If a provider serves only small scale farmers,

Us− = ∆̃s−j(1− γ(qs−j, ζ∆q, ζψq, α))(z̃kαs− − wks− + wds−)

When the providers specialize in service provision, they determine the expected profits to

the farmer.

Equilibrium queue lengths. In an equilibrium where farmers reach out to both

providers, they should be indifferent across them and the feasibility constraints of the

economy should be satisfied.32 We describe the indifference condition for large scale

farmers, the ones for small scale farmers are analogous.

∆smkt

∆sfcfs

=
(1− γfcfs

1s )(z̃kαs − wks − wds)− γfcfs
2s (z̃kαs− − wks− − wds−)

(1− γmkt
1s )(z̃kαs − wks − wds)− γmkt

2s (z̃kαs− − wks− − wds−)

32If they choose to reach out to a single provider, then the equilibrium queue length is determined by
feasibility only, which in turn determines the expected value for farmers.
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When small scale farmers queue only with fcfs providers, the indifference condition for

the large farmer is

∆smkt

∆sfcfs

=
(1− γfcfs

1s )(z̃kαs − wks − wds)− γfcfs
2s (z̃kαs− − wks− − wds−)

(1− γmkt
s )(z̃kαs − wks − wds)

These indifference conditions jointly with the feasibility constraints of the economy,

equations 1 and 2, yield the optimal queue lengths by provider and type.

Rental rates The rental rates can be computed from the definition of U once the

optimal queues have been solved for.

Value of service for farmers Us ≥ Us− whenever the different in the surplus of

service for large-scale providers is large enough. Because in equilibrium the market

value of service is the same irrespective of the provider, it is w.l.o.g. to use the values

from the fcfs providers.

Us − Us− ≥ 0

(∆sj(1− γj1s) + ∆s−jγ
j
2s−)(z̃kαs − wks − wds)−

(∆sjγ
j
2s + ∆s−j(1− γj1s−))(z̃kαs− − wks− − wds−)) ≥ 0

If the surplus is weakly higher for large scale farmers, z̃kαs −wks−wds ≥ z̃kαs−−wks−−
wds− , then it is sufficient that

(∆sj(1− γj1s) + ∆s−jγ
j
2s−)

(∆sjγ
j
2s + ∆s−j(1− γj1s−))

≥
(z̃kαs− − wks− − wds−)

(z̃kαs − wks − wds)
. (24)

The above is a condition on the elasticities of the probability of service to the queue

lengths (in γ) relative to the values of the surplus.

Value of service for providers The value of serving large farmers is higher than

the value of serving small-farmers for any provider For V̄s > V̄s− it is sufficient that

(γ1s − γ2s−) > 0 and (γ2s − γ1s−) > 0, see equations 19 and . This is the same as

a11(Γ4 + Γ3)− a21(Γ2 + Γ1)

a12(Γ4 + Γ3)− a22(Γ2 + Γ1)

If the queue lengths are the same Γ4 + Γ3 = Γ2 + Γ1 and also a11 > a21 and a12 > a22

because the elasticity of the probability of service to the queue large farmers is higher

than for the queue of small farmers. By continuity, if the queue lengths are not too
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different the above result holds. Intuitively, the reason is that if there are no systematic

differences in travel time across farmers, then the provider’s marginal cost of provision

is higher for the smaller farmers and therefore the provider finds them less valuable.

C Numerical Solution and Output

C.1 Value function computation

The value function maps an ordered queue to the expected present value of this queue.

Each order i in the queue comprises two dimensions: hi, the number of hours demanded

discretized to 6 bins, and di the travel hours to and from the hub that represents a

variable cost of service. For a queue length equal to 3, the value function is a mapping

from R6 to R1.

V ({(k1, ν1), (k2, ν2), (k3, ν3)}) : R6 → [0,∞]

The relatively high dimensionality of the problem prompts us to implement the sparse-

grid method proposed by Smolyak (1963) (see Judd et al. (2014) for details). The grid

points are selected for an approximation level of 2, which results in 85 grid points. We

then construct a Smolyak polynomial consisting 85 orthogonal basis functions, which

belong to the Chebyshev family. The integration nodes are selected by applying the

tensor product rule to the one-dimensional Smolyak grid points at the approximation

level of 2. Integration is carried out using Newton-Cotes quadrature.

C.2 Simulations

We simulate the expected wait time and productivity cost under the fcfs arrangement

and the market arrangement respectively for three cases: when productivity is uncorre-

lated, negatively correlated or positively correlated to the number of hours demanded.

Productivity, measured in revenue per acre, is simulated and assigned to each order ob-

served in the actual data. We make a large number of draws of productivity sequences,

each with length equal to the number of actual orders, from a log normal distribution

where the parameters are obtained by fitting the actual productivity information to a

log normal distribution by hub. We then choose a sequence for each simulation case

that produces a correlation with hours demanded in the data that is the closest to

a target correlation for that case, and assign that sequence to the actual orders. In

the uncorrelated case, the target is zero; in the negatively correlated case, the target
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is the actual correlation for that hub; in the positively correlated case, the target is

symmetric to the negative correlation.

We use bootstrap sampling of the actual orders for the simulation and assume each

bootstrap sample represents an actual queue.

We compute the wait time for the first three orders in each bootstrap sample under

the fcfs arrangement and the market arrangement respectively. In any period if one

or more out of these three orders are not served, the queue is filled going through the

bootstrap sample. The productivity cost is calculated by multiplying the simulated

productivity by the wait-time and the percentage productivity loss per day as described

in the table 3.

D Additional Tables and Figures

Figure 15: Ownership and rentals by implement.
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Notes: The ownership (rental) rate is the share of farmers that report to own a given implement relative to
the total population surveyed.
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Table 9: Costs of Delays Relative to Optimal Planting Time, Value Added per Acre

Cost per day, value added per acre

Whole Sample 5-day around optimal 10-day around optimal
Before After Before After

β1 -41.97 391.1** -215.7 1,166*** -931.1***
(26.33) (140.2) (146.9) (338.7) (298.5)

Observations 6,034 1,461 1,882 1,010 1,221
R-squared 0.408 0.625 0.584 0.706 0.659
Mean of Value Added per acre 10228 11425 10694 11921 10998

Notes: The optimal date is a village-year measure, and is the sowing date that maximized mean value added
per acre in the village in a given year. Standard errors clustered at the village-level in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001.

Table 10: Status Quo Equilibrium Outcomes

(a) Average queue length

small large
fcfs mkt fcfs mkt

1 2.0 2.0 1.1 2.6
2 3.0 1.7 2.1 2.7
3 3.5 1.5 1.1 3.0
4 3.3 1.8 1.2 2.4
5 4.3 2.0 1.1 2.5
6 2.0 2.2 1.1 2.2
7 2.0 2.8 1.0 1.7
8 2.0 1.9 1.1 2.6
9 2.5 1.3 1.1 3.6
10 4.0 1.6 1.2 3.9
11 4.0 1.9 1.0 2.3

(b) Rental rates

small large
fcfs mkt fcfs mkt

1 1.00 1.01 0.76 0.76
2 0.84 0.89 0.73 0.74
3 1.04 1.09 0.82 0.82
4 0.92 0.97 0.73 0.74
5 0.95 0.98 0.74 0.74
6 1.10 1.11 0.81 0.81
7 1.22 1.23 0.85 0.86
8 1.04 1.06 0.75 0.76
9 0.92 0.99 0.74 0.74
10 0.90 0.93 0.68 0.69
11 0.96 1.02 0.75 0.78

Notes: Panel (a) reports equilibrium average queue lengths by hub for farmers of different scale
and different providers. Panel (b) reports the equilibrium rental rates per hour for each provider
and service type within each market. Rental rates are normalized to the rental rate charged by the
fcfs provider to small-scale farmers in hub 1.
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Figure 16: Service rates.
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Notes: Service rates and queueing behavior in CHCs, Kharif 2018. Each data point corresponds to the
average queue or hours served across hubs per day in the season. The bottom panels include a polinomial
fit of the series. Source: Own computations and CHC admin data.
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Figure 17: Empirical distribution of location and demand hours

Notes: Example of the empirical joint distribution of location and demand hours used to bootstrap queue
samples.
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Figure 18: Service finding rate decomposition

(a) Probability of service, ∆ij
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(b) Queue lenghts, qij
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Notes: Conditional probability of service and queue lengths by hub for the calibrated economy.
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Figure 19: Value Functions

Benchmark TSP

Notes: Value of service provision, economy with full heterogeneity. Blue dots corresponds to the nodes for
the tensor product interpolation as described in Appendix C. The left panel corresponds to the benchmark
economy, while the right panel corresponds to the economy where service providers optimize service in space,
i.e. solve a traveling salesman problem, “TSP”. The top panel correspond to the value of the FCFS providers
while the bottom panel corresponds to the market provider.
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