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1. Introduction

Product differentiation plays an important role in many fields of economics. In indus-
trial organization, for example, it is a necessary condition if prices are to exceed marginal
costs with Bertrand competition. While recent empirical work in industrial organization
has focused attention on estimating non-observable price-cost margins, detailed empirical
treatments of product differentiation have been scant. ! An important exception to this
is Bresnahan (1981, 1987). He has estimated a model of demand and oligopolistic pricing
for products which are differentiated along one dimension as in a Hotelling (1921) model.

In international trade theory, too, product differentiation has been recently integrated
into theoretic models. Much of this literature is well treated in Helpman and Krugman
(1985,1989). One lesson that falls out of this literature is that the market conduct and
product differentiation of firms are critical in determining the welfare impact of trade re-

strictions. The industries in which one might hope to evaluate the empirical relevance of

1 A survey of the New Empirical Industrial Organization (NEIO), including some studies of product
differentiation, is provided by Bresnahan (1988). A recent study b Trajtenberg (1989) models consumer
preferences with products differentiated in many dimensions, as we consider here. His paper. though, is
quite different from ours. He derives the demand and welfare gains from the introduction of a new product.
while we, in contrast, derive demand and oligopoly pricing. Because Trajtenberg considers a product with
few available varieties (CT scanners), he is able to estimate demand with a multinomial logit model. We
shall consider a product with many varieties (autos), and this requires new and different functional forms
and estimation techniques. See also footnote 11. )



these theories are often characterized by multi-dimensional product differentiation. Exam-
ples include the auto, aircraft, and computer industries. To test the hypotheses developed
in this literature, it is therefore essential to have an econometric model incorporating both
multi-dimensional product differentiation and oligopolistic pricing. ?

Economic theorists have also recently turned their attention to the careful modelling
of product differentiation. On the demand side, Anderson, de Palma, and Thisse (1989)
investigate the conditions under which a demand system for multidimensionally differenti-
ated products satisfy properties such as that of gross substitutes and symmetry. Adding a
supply side, Caplin and Nalebuff (1988) provide conditions under which there exists a pure-
strategy price equilibrium for firms producing multi-dimensionally differentiated products.
It is of special note that this newer theoretical work models product differentiation as
occurring in many dimensions. * This is a welcome concession to reality.

In this paper, we demonstrate how to estimate a model of product demand and oligopoly
prices when products are multi-dimensionally differentiated. We ;;rovide an empirical coun-
terpart to the recent theoretical work on product differentiation. Using specifications in-
formed by economic theory, we simultaneously estimate a demand system for differentiated
products and price-marginal cost margins.

Our work may be seen as a generalization of Bresnahan’s work. In the theory underlying
his empirical methods, varieties of a product are arranged along a line of quality so that
each model (except the lowest and highest) has two competitors on the line.” Taking the
quality of each model as exogenous (i.e. solved in the first stage of a two stage game), the
demand and profit-maximizing prices for each variety of the product are simultaneously
determined. A critical variable is the distance between each model and its competitors:
as competitors get closer, the demand for a model becomes more elastic and its price-
marginal cost markup decreases. Our generalization of Bresnahan’s work allows us to

drop the Hotelling set-up and instead allow products to vary over multiple dimensions.

2 Examples of empirical trade papers which do model multi-dimensional product differentiation but
do not model oligopolistic firms are Feenstra (1988) who investigates the gains from trade resulting from
the introduction of new products, and Levinsohn (1988) who analyzes the effect of tariffs on the demand
for differentiated products.

3 Our approach is compared to these papers in footnotes 7, 9, and 11



This means that each model of the product can have many competitors. In earlier work
(Levinsohn and Feenstra, 1989), we have shown how the utility functioﬁ of consumers can
be used to obtain a metric on characteristics space, which makes it possible to identify
‘competitors. In this paper, we use a particularly simple utility function which implies that
the metric is (the square of ) Euclidean distance after the units of each characteristic have
been properly adjusted.

Since a utility function is used in identifying competitors, it should also place restric-
tions on the form of demand. However, demand for each model is evaluated as a multiple
integral over the market space, and we are not able to obtain a closed-form solution.
Our central theoretical result evaluates the derivatives of demand, and so a first-order
approximation to the demand function can be determined. We find that the elasticity of
demand is inversely related to the “distance” between a model and its competitors. but
that “distance” should be measured as the harmonic mean of distances from a model to
each of its competitors.! The harmonic mean has the property that if any one competing
model is arbitrarily close, the harmonic mean approaches zero, so the elasticity of demand
approaches infinity: when two models have the same characteristics, they are perfect sub-
stitutes. Thus, our theory gives us an economically meaningful way to measure “distance”
when there are many competitors.

With this first-order approximation to demand, we solve for the profit-maximizing
prices for firms under Bertrand competition, and these prices are directly related to the
harmonic mean of distances to competitors. The pricing equation for each model takes a
particularly simple form: price is a linear function of characteristics (reflecting marginal
cost), the harmonic mean of distances from competitors, and a term which arises from
the joint maximization of profits over all goods sold by a multi-product firm. If models

are arbitrarily close, then the latter terms approach-zero and price is just a function of

4 The harmonic mean of a series whose observations are denoted by z, is given by:

N -1
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characteristics: this corresponds to the price schedule derived by Rosen (1974) with a
continuum of products. Thus, our analysis shows how the conventional hedonic regression
must be modified when there are a discrete number of products and oligopoly pricing.

In Section 2, we derive the theoretical results of the paper. These are used to provide
the econometric specification of the demand function and the pricing equation that are
estimated in Section 3. In that section, we use a panel data set from the U.S. automobile
market, and simultaneously estimate the demand and oligopoly pricing equations. We are
able to test several interesting hypotheses that arise from our multi-dimensional set-up.
For example, does the elasticity of demand for a model rise as competing models become
more similar? Do oligopolistic firms really charge a higher price for their product as other
competing products become more different? If the oligopolistic firms are multi-product
firms, do they charge a higher price for products that compete primarily with other of
their own products? A number of rather novel estimation issues arise, and these are
discussed in turn. Section 4 presents and interprets the estimation results. In Section 3,
we conduct sensitivity analyses to investigate the robustness of our results. Conclusions

are presented in Section 6, and the proofs of Propositions are gathered in the Appendix.

2. The Model

2.1 Utility and Competitors

While we formalize our ideas generally, we will use automobiles as a running example of our
theory. We describe each car available by a vector of characteristics z = (z1,...,zx) > 0.
These characteristics are assumed to be exogenous, and we can think of them as being
determined in the first stage of a two-stage game between firms. Consumers obtain utility
U(z,a) from purchasing a car, where & = (a1,...,ak) is a vector of taste parameters
which varies across consumers. While some of our results can be obtained with a quite
general form of utility (see Levinsohn and Feenstra, 1989), the estimation requires a specific

form which we shall adopt now:

K
Uz,a) =0 In(z —a) (1)

i=1
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where ¢ > 0 is common across consumers. 3 We shall assume that a > 0, and this vector
can be interpreted as the minimum acceptable characteristics for a consumer, since z < a
would yield utility of —~oco. We assume that the taste parameters of all consumers are given
by a compact set A C R¥.

The prices and products available to consumers are denoted respectively by p,, and zm,
for models m=1,...,M. In principle, this set of products should also include alternatives to
purchasing a new car, such as used cars and alternative modes of transport. However, in
our estimatijon we shall only use data on new cars. In this sense, our paper deals with the
choice of which model to purchase, but not with the decision of whether to buy a car at
all.

We shall find it convenient to make a change of variables from the taste parameters a
to the consumers’ “ideal” product z*. As in Lancaster (1979), the ideal product z* is what
each consumer would purchase if all models z > 0 were hypothetically available. However.
in order to determine this optimal choice, we must also specify what prices would be. To
this end, we shall assume that if the continuum of products z > 0 were available, prices
would equal marginal costs. After solving for the equilibrium of our model, we shall be able
to return and justify this assumption (see section 2.3). We shall suppose that marginal

costs C(z) are a linear function of characteristics:

Clz)=fo+ Bz 220 (2)

When the continuum of products z > 0 are available, consumers face prices equal to costs
C(z), but when the discrete products z,, m = 1,...M are available, consumers then face
actual prices p,,. The actual price will generally not equal marginal cost, and the price-cost

margin T, is defined as,

3 This utility function is a bit more general than it appears, since multiplying z; by + we can
write E In(vizi —aj) = E In(vi) + Z In{z; = (@i /+)]. The first term in this expression is constant and
can be omitted, and the second term Is already captured by (1.)

6 Bresnahan (1981, 1987) is able to estimate the price and quality of alternatives to purchasing

a new car, as he locates the alternatives at the lower and upper ends of the quality line. With multiple
characteristics, the same approach does not seem feasible.



Tm = pm — (B0 + B8'2m), m=1,..M. (3)

When all products z > 0 are available consumers are faced with the prices in (2), so

they will choose the ideal products:

z* = argmax {U(z,a) = (B0 + 8'2)},

or, using the specific utility function in (1):

z =°-'+';:- (4)

Condition (4) shows how the ideal product z* is determined by the taste parameters.
We can think of it as establishing a one-to-one mapping from a to z*. Then instead of
identifying consumers by their tastes , we can identify them by their ideal products z*.
Inverting (4) shows the taste parameters which correspond to each choice of z*:

o

a;=2z] - — (4)

Bi
Substituting (4’) into (1) we obtain utility as a function of the consumed characteristics

z and the preferred product z*:

K
V(zz) =0 Y In(zi— 2 + 3-). (5)
i=1 ﬂi
We will use a second-order approximation to {5). Calculating the derivatives with respect
to z, and evaluating at z = z*, we find that %’: = f; and % = —E;?-, using (4). We then
have:
1
Viz,2") = V(z*, 2"+ 8'(z —2") - g(z —-z*)'B(z — 2%), (6)
where
B is a diagonal matrix with elements B;; = 8% and B;; =0 for.i # j. (6")

6



Using (5), we calculate that V(z*,2*) = ¢ T In( #;), which is constant. The second term
in (6) shows that utility rises with the actual characteristics consumed, reflecting the fact
that consumers prefer higher amounts of any z;. From the last term in (6), we see that
utility decreases with the “distance” between the actual and preferred products, where
“distance” is measured as the square of Euclidean distance after each characteristic z; is
multiplied by 5;. .

A utility function like (6) has been used elsewhere in the literature on product differen-
tiation, and is quite conventional.” Our derivation using the utility function in (1) shows
exactly how the “weighting” matrix B is constructed (i.e. diagonal with elements 3?).
Note that B depends on the parameters of marginal cost function in (2), so the utility
function (6) combines elements of preferences and technology. This occurs because the
mapping from « to z* in (4) depends on the technology. Our theoretical results through-
out section 2 are valid for any positive definite matrix B, but in our estimation we shall
use the specific djagc;na.l form in (6").

Using (6), we can define the “market space” of each product. First, note that the entire

set of ideal products is given by:

g
Bi’

using (4).2 Then the set of consumers with ideal products z* who would choose model z,,

S={z"1z] =a; + 1=1,.K, a€ A}l (7

m=1,...,M, is given by:

Sm={z"€ 8| V(zmz*) = pm 2 V(2a,2") —pa, 1 <n< M}
(8)

1 1
_ = — ¥\ ™ — - m< n - LAY n = - n
{z €5|2—a(zm z*)YB(z )+ _2_0(2 z2*)'B(zn = z") + ™a}

where the second line of (8) follows from (3) and (6).

To illustrate the “market space” Sp, note that the inequality in (8) can be written as:

7 See Lancaster (1979) who uses a single characteristic, and Anderson, Palma, and Thisse {1989)
who use a muiti-dimensional version very similar to (6). Caplin and Nalebuff adopt a general utility
function which includes (6) as a special case.

8 Since we assumed that A4 is compact, so is S.



(z,Bzn — zyBzm)
2

2YB(zn —zm) S 0(fn — Tm) +

(9)

When. (9) holds with equality it is the equation for a plane in z space, with the normal
vector B(za — zm). In Figure 1, we show the planes between each pair of products A,
B,and C (with characteristics za, z3, zc) as perpendicular to the dashed lines between
these points. This illustration is valid so long as the characteristics z; are first multiplied
by B, as labelled on the axes. The planes we have drawn are the boundaries of the market
spaces S,, Sb, and S.. The exact position of each plane is determined by the price cost
margins T, as follows.

I mm = 7n, then it is readily checked that a z* satisfying (9) with equality is z* =
ﬁi’%‘l, or the midpoint between z;, and z,. Thus, if 7, = 7y = 7. in Figure 1, then the
boundaries of the market segments are equi-distant between each pair of products. Now
suppose that m, rises. The boundaries of the market space S, are still planes, satisfying
(9) with equality, but are drawn towards the point A as illustrated with the arrows. °
Consumers with preferred product z* who were formerly indifferent between models 4
and B, and therefore on the boundary between S, and S, now purchase model B (and
similarly for consumers formerly indifferent between A and (). Thus, as prices and price-
cost margins rise, the market space of a model shrinks. We can use the market spaces to
define the competitors of a product:

Definition: Models m and n are neighbors if S N S, # 8, mn=1,.. M.

We will let the integer set I, C {1,...M} denote the competitors or neighbors of
model m, which depends on prices and locations of products. In section 3, we shall discuss

how the set of neighbors is determined empirically, but here suppose that I is known.

9 Note that the boundaries of the market spaces, where (9) holds with equality, vary continuously

with prices. Our characterization of the market spaces is the same as in Caplin and Nalebuff (1988), who
have a more general utility function. They also use a more general density function for consumers, and so
their results on the existence of a pure-strategy price equilibrium apply to our model.



2.2 Demand

We shall make the strong assumption that the density of consumers over § is uniform

with parameter p.!® Then demand for model m is:

Qm = sz‘. (10)

Sm
Since the market spaces depend on prices, so does demand in (10). We are not able to
obtain a closed-form solution for this multiple integral.!! However, our central theoretical
result, proved in the Appendix, derives the first derivatives of (10).!? This allows us to

compute a first-order approximation to demand, summarized as follows:

Proposition 1: There exist values Omn > 0 such that a first-order approximation to

demand Qm around the point 7m = Ty, 1 € I, is:

. Omnm
z - . 2 _m v mnin
InQm = InQ;, — 2Ka(7=) + 21\0"; o (11)

where

(@) Bmn =(2m — 2n)'B(zm — za);

1

(b)) Hn=g——5—;

Znel... %::.

() D Omn=1if Sn is in the strict interior of S,
NnElm

To interpret this result, note that B, is the square of Euclidean distance from model

m to n (after the characteristics are first adjusted by ;). Then the derivative of InQ,, with

1o If we begin with a density function f(a) over taste parameters, then using (5), the density
over characteristics is g(z*) = f(z - ;’%, O 1—3’;) Assuming that g(z*) = p is the same as assuming
f(a) = p. See also footnote 11.

1 Anderson, Palma, and Thisse (1989) do obtain closed form solutions for demand. They
assume that the number of models, M, does not exceed the number of characteristics K by more than one
(M < K +1) and they need a special arrangement of models in characteristics space. They are then able
to consider a wide range of density functions for consumers, including that which leads to the multinomial
logit demand system (see also Anderson, de Palma, and Thisse (1988)). In contrast, we have many more
models than characteristics, and we wish to derive the properties of demand with an arbitrary location of
models, but we need a uniform density of consumers.

12 Note that in the Appendix we derive the first derivatives of (10} around any price-cost margins,
Tm and 7. In Proposition 1, we restrict our attention to the special case #m = 7,. This greatly simplifies
our estimation procedures.



respect to T, is inversely related to this distance: a change in the price of a competitor
will have a smaller effect if it is farther away. The cross-price derivative is directly related
to ymn, which is an unknown value. In the Appendix (Remarks 1 and 2), we provide an
interpretation of #m» using Figure 2. In Figure 2, the market space §4 is divided into
various sub-spaces as illustrated. Then we can interpret 83, as equal to ‘-';'%((ST‘:)Z, for
n = a,b,c. In other words, mn is the volume of a triangle (or more generally a trapezoid)
with vertex at z,, and base at the common boundary of S, and S, relative to the entire
volume of Sy,. '3 Turning to the derivative of InQm with respect to Tm, we note that
it is inversely related to Hm. From (b), Hm is interpreted as a weighted harmonic mean
of the distances from model m to its neighbors, with the weights Omn. If these weighits
sum to unity, then it is readily shown that Hm lies between the minimum and maximum
values of Bmn, 7 € Im. In addition, if Bma = 0 for any one neighbor, then Hn = 0: if two
models have the same characteristics, then they are perfect substitutes, and the elasticity
of demand is infinity.

We will not be able to estimate (11) directly, since the values §,, are unknown. For

estimation, we shall let 8, take on the values:

Omn = (i), where N, = number of neighbors of model m. (12)
m

This choice for 8mn will satisfy the restriction in (c) that 3~ 8mn = 1 for Sm in the strict

interior of §. In Figure 2, with four products and two characteristics, only the market

13 Substituting this interpretation of myn into (11), we can compute dinQm/dpn as:

Lde =2Ko area{Smn)
Qm dpna area(Sm)Bmn

Multiplying the top and bottom of the right by p, we see that Qm will cancel with p area(Sm). In addition,

the triangle Smn has height @ and base S N Sy. It follows that area(Smn) = ﬁgﬁl—_‘&m-ct.z(S,..l NSna).
Substituting this into the above, we obtain,

4Qm = —pK—varea(Sm M Sn).

dpn 2vBmn

Thus, the derivative of Qm with respect to pn is directly related to the size of the common boundary
between Sm and Sa, which reflects the number of consumers who will switch products as prices change,
and inversely related to the Euclifiean distance between models.

10



space of model D is in the strict interior of S. However, as the number of products grows
relative to characteristics, more models will be surrounded by neighbors, and then have
their market spaces strictly interior to §. The choice of 8, in (12) means that we will be

replacing the weighted harmonic mean in (b) by the simple harmonic mean.

2.3 Oligopoly Pricing

We will solve for the profit-maximizing prices for each firm under Bertrand competition.
To illustrate the solution, let us initially suppose that each firm produces only one model,
and then consider multiproduct firms. We assume that the marginal costs of producing
a model with characteristics z,, are constant and equal to 3y + 3'zm. The characteristics
of the model are exogenous, i.e. solved in the first stage of a two-stage game. We will
suppose that the profits available from each model are enough to cover fixed costs. but do

not analyse these. Then each firm solves the problem:

u::xmem —(Bo+ 8 7m)Qm. (13)

Notice that choosing pm is the same as choosing 7, since they are related by (3).

Then the solution to (13) is calculated using the demand function in (11):

m

pm=ﬁ0+ﬁzm+21\_,a (14)

Thus, the optimal prices for each product increase according to the harmonic mean of
distances to neighbors. The price-cost margin equals {;&- The economic intuition behind
this is appealing. If models are very close to each other then H,, approaches zero and
the prices approach marginal cost. This justifies our assumption in section 2.1 that price
would equal marginal cost if all products z > 0 were available. When the continuum of
products is available, the equilibrium schedule pm = 8y + 3'zm corresponds to that derived

by Rosen (1974).!4

14 The hedonic price schedule pm = g + 3'zm is linear because we have assumed that marginal

costs C(z) are linear in characteristics and independent of quantity. Jones (1988) has recently examined
conditions on consumer preferences which imply a linear hedonic price schedule, and found that these are
very restrictive.
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When each firm produces multiple products, let J. C {1,...M} be the set of models

produced by company c. Then the profit-maximization problem is restated as:

max 3 pmQm = (Fo + 5'2m)Qm. (15)

™ me€lJ.
_ The solution to (15) is derived in the Appendix, and using the same notation as in Propo-

sition 1, we have:

Proposition 2: The profit-maximizing prices under Bertrand competition are:

H r
—_ i m m
pm—ﬁo+ﬁzm+—2KU+—2KU‘ (16)

where
(@) (Ty,.esTar) =(C+CH+C* + ) (Huy oo Hu )
(b) C is an MxM matrix with Cmm =0, and Cip = fmnHm/Bmna if m and n are

neighbors and made by the same company ; Cmn = 0 otherwise.

We see that the optimal prices still increase with the harmonic mean, but (16) contains
an extra term arising from the extra profits that the multi-product oligopolists earns from
collusive within-firm pricing. The matrix C can be arranged to be block-diagonal in the
products of each company, and its rows sum to less than unity so long as no model and
all its neighbors belong to the same company. This will ensure that the infinite sum
C +C? +C? + ... converges. When actually calculating ['m we continue the summation in

(2) until Ci(H,, ..., Hu)' becomes suitably small.

3. Data and Estimation Issues

3.1 Equations to be Estimated

Equations (11) and (16) provide the system comprised of a demand and a oligopoly
pricing equation that is to be estimated. Simple substitutions using the definitions of the
harmonic mean (from equations (11) and (12)), the weighting matrix B (from (6)), price-

cost margins (from (3)), and the term arising from joint profit maximization (from (16))

12



give the estimating equations in terms of observable data and parameters to be estimated.
With characteristics indexed by j, a model indexed by m and its neighbors by n, and time

indexed by t, we have:

K
Pmt — Bo - Zﬁjzmtj

j=1

InQme =do + dy +‘h(

1 )“)
<nezl,, Nm 2;;1((2""1’ = 2nt;)B;)? (17)
K
Pnt — Bo — Zﬁjzmj

=1
+ 72 > + é-'mt
(nezl:... N Y00 ((Gmej = 2nej)B5)?

K ) -
=B+ B+ Y Bizme + ) ( )
? ' t ; e 1 Z Nem Z;il((‘"mtj = znej)B3;)? (18)

n€lm
+ A2l me(B,2) + €me
where dy and d; are a constant and coefficients on year dummies, respectively, and similarly
for B and f.

Note that I'm: in (18) is itself a function of Hp,’s which are themselves non-linear
functions of characteristics z and the 3’s. (See Proposition 2(b) for the exact definition.)
Also, the summations over n € I, are summations over the set of neighbors to a given
model. This set is determined by (8) and the definition of neighbors given in section 2.1.

Before any detailed discussion of the data with which we estimate the system or the
estimation techniques employed, first note that the data required to estimate the system
are sales - the Q's, prices - the p’s, and characteristics - the z's. The s, ~’s, and \’s
are parameters to be estimated. The theory developed in Section 2 imposes a particular

relationship between the A's and the v's. This relationship is given by:

. _1 1
71—72—/\1—/\2

Rather than impose these restrictions from the outset, we will treat them as testable

implications of the theory. Underlying these restrictions is some straightforward economic

13



intuition. The restriction —v; = 7. implies that if the prices of all models rise by one
dollar, individual model demands are unaffected. This restriction is an implication of our
assumption that there are no outside goods.

The restriction A; = Aq is related to the pricing strategy employed by multi-product
firms. To better understand this restriction, note that the oligopoly prices in (16) de-
pend on both the harmonic mean of distances to neighbors Hm, and on the joint profit
maximization term ['m. As the harmonic mean increases, the optimal price rises with the
coefficient A;(= 1/2K¢). But now suppose that the harmonic mean for a neighboring
model H, rises, where models m and n are made by the same company. Then the increase
in H, leads to a rise in the neighbors price according to Az(= 1/2R 7). Of course, this
increase in the neighbor’s price would also affect the price of model m due to joint profit
maximization. The restriction \; = A simply says that a company will use the same rule
for all of its products when converting harmonic means to optimal prices. We regard this
as a quite reasonable consistency requirement on the pricing decisions of a multi-product
firm.

The restriction —v; = »\1—1 implies that the demand elasticity resulting from consumer
behavior is the same elasticity used by oligopolists in setting optimal prices.

We have added stochastic disturbance terms, Sme¢ and €q¢ in (17) and (18). Comparing
(11) and (17), we see that 6me = InQh, —(do +d:). The term InQ},, in (11} is interpreted
as demand for each model if price-cost margins were equal (i.e. *m = ™, Vm,n). In this
case, demand would depend on the locations of the products: models whose neighbors
were farther away would have higher demand. We shall treat InQ7,, as iid normal in each
year. Interpreting do + d; as the mean value of InQ%,, for each ¢, we then obtain §m; as id
normal with mean zero.

Since equation (16) holds with equality, there should be no error in (18) if we had the
“true” equilibrium prices and our model was an exact description of reality. However. we
shall be using the suggested retail prices (SRP), which may differ from the transactions
prices paid by consumers. Then one interpretation of ém: is the measurement error arising
from using SRP. We shall treat en; as iid normal with mean zero, and independent of Omt.

The independence assumption is needed for the system to be identified. Since ppm: — 30 —

14



B'zm¢ depends on en¢ and appears on the right hand side of (17), we could not obtain
unbiased estimates of that equation if ém¢ and e€n¢ were correlated. The independence
assumption is justified in our context by our use of suggested retail prices which are
axinounced at the start of the model-year. In contrast, the quantity data for sales are
over the entire year. This means that pm¢’s are announced before Qm.’s are known.
Finally, the‘yea.r dummies in (17) and (18) may be thought of as fixed effects in a
panel context. These variables are included to pick up unmodelled components of the
disturbance terms that are correlated with time. In (17), one might imagine that cyclical
macro variables may effect auto demand in a given year. In (18), the year dummies are

more likely to pick up inflationary trends. '3’

2.2 Data

We estimate (17) and (18) using a panel data set comprised of 86 models of automobiles
sold in the United States during the period 1983 through 1987. We include all models sold
for each of these five years except exotica (Lotus, Ferrari, Rolls Royce, and the like.) The
complete list of models is included in Table 1.1¢

We model automobiles as differentiated over five dimensions. That is, the vector of
characteristics for each model in each period, zm., has five elements. These differentiating
characteristics are weight (in thousands of pounds), horsepower, aerodynamics (measured
as the inverse of height in inches), and dummy variables for whether the car has air con-
ditioning as standard equipment (a proxy for luxury) and whether the car is European.!?

We choose to limit the product differentiation to five characteristics for computational

18 With the year dummies appearing in (18), an alternative way to measure the price-cost margins

" y > g 1n { g
appearing in the numeratorson the right of (17) is (pmt =80 =3t —8'zm¢). We choseto use (pm¢—39~3"zm;)
in (17) to slightly simplify the estimation, but the two formulations are equivalent when —v; = 1.

16 A measure of the distance between a model and its competitors is in the denominator of several
of the terms in (17) and (18). A few models have as neighbors a twin model that is always made by the
same parent firm and has absolutely identical characteristics (as we measure them.) Hence the distance
between the model and the twin is zero. We combined the sales figures for these twin models and include
them as one model.

17 The characteristics for each model are those that come standard with the base model.
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reasons. In the sensitivity analyses, we check to see how robust results are to the choice
of characteristics.

The sales data are sales by nameplate (measured in thousands), and the price data are
list prices of the base models (in thousands of dollars.) While something like the average
transaction price for each model in each year is of course preferable to list prices, such data
are simply not available on an all-encompassing basis. All data are from the 4utomotive

News Market Data Book (annual issues.)!®

3.9 Estimation Issues

Estimating (17) and (18) poses some unique econometric issues. The first of these
involves estimating the set of neighbors for each model. The second issue arises because
each observation is itself summed over a different set of neighbors. The third relates to
the extensive non-linearity of the system. We elaborate on each of these in turn.

The simple harmonic mean of distances from a model to its neighbors appears in both
(17) and (18). Before the system can be estimated, it is necessary to know which models
neighbor which. The first step in estimation, then, is to determine I, - the set of neighbors
to each model.!® The theory developed in section 2.1 guides this process. Recall that two
models m and n are neighbors if S;s N S, # 8, m,n = 1,..., M. We can interpret this
definition as saying that two models are neighbors if consumers indifferent to these models
prefer these models to all other available models. As noted in section 2.1, a particularly
convenient feature of the utility function (1) is that the consumer whose ideal variety is
the midpoint of a line drawn between two models will be indifferent to the two models.
The metric by which the midpoint is determined is simply (the square of) Euclidean
distance when each characteristic has been pre-multiplied by 5;. The vector 3, though,
is estimated in the system given by (17) and (18), and to estimate these, one must know
the set of neighbors. We address this problem by applying OLS to (2) to get preliminary

estimates of 3. These 3i's are then used to compute neighbors. In the sensitivity analyses

18 All data are available as ascii files on floppy disk upon request to the authors.

19 We describe the identification of neighbors in much greater detail, using a more general utility
function, in Levinsohn and Feenstra (1989).
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in Section 5, we will take the 3 that results from estimation of the system, and use that 3
to recompute neighbors. With the new neighbors, the system can then be re-estimated.

The algorithm which computes neighbors is straightforward. We first take a pair of
potential neighbors. We locate the midpoint of the line connecting these two models. 2°
With this midpoint as the ideal variety, z*, we then ask if any other available models are
closer to z* using the metric discussed above. If no available model is closer, the two
models are, by our definition, neighbors. Conversely, if another available model is closer,
the two are not neighbors. We repeat this procedure for every possible pair of models
within a year. (We do not model possible inter-temporal competition between models.)
This procedure will identify neighbors in multi-dimensional characteristics space which is
needed to form I in (17) and (18).22

Once the set of neighbors, I, has been determined, we turn our attention to estimating
(17) and (18). Because the disturbance terms are additive in each equation, estimation
by Non-linear Least Squares (NLS) and Maximum Likelihood (MLE) are asymptotically
equivalent. Since each observation contains variables summed over sets unique to that
observation (the I’s), though, standard NLS and MLE estimation programs are not
suitable. We estimate (17) and (18) using a variant of the Gauss-Newton algorithm for
NLS that was designed specifically for estimating systems with the properties of (17) and
(18).22

The Gauss-Newton algorithm is an iterative method. For the problem at hand, two

issues deserve special note. First, in general, it is preferable to utilize analytic deriva-

20 As discussed in section 2.1, a consumer with ideal product :* = (zm + za)/2 is indifferent
between purchased models m and n when their prices satisfy ¥, = 7,. In our search for neighbors, we
are implicitly assuming that #m = ro¥Ym, n. Alternatively, we are assuming that ¢ is very small in (9), so
that the term o(7m — s ) vanishes.

21 Since we do not map out the hyperplanes which serve as boundaries between market spaces. our
procedure can falsely reject two models as neighbors, but can never falsely accept. This is illustrated in
Figure 2, where the mid-point of a line between B and C lies in S3. This means that the consumer whose
ideal product is midway between B and C would prefer model A, and our procedure would reject B and C
as neighbors. This rejection is false, however, since S, and S. have a non-zero intersection as illustrated.
Heuristically, the false rejection of neighbors seems more likely for models near the boundary of S.

2 The programs for Gauss-Newton are written in Fortran 77. The source code is available from

the authors on request.
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tives when using Newton-type methods.?® Given the fairly extreme nonlinearity in our
estimating equations, the advantages of analytic derivatives are magnified. Accordingly,
our Gauss-Newton method employs analytic derivatives.2* Second, note that with each
iteration, the estimated values of 3 will typically change. As these change, the set of
neighbors In might change. We do not allow this to occur. Rather, we assume that the
set of neighbors is constant between iterations. The reason for this is that if the set of
neighbors changed with each iteration, there is no reason to expect iterative methods to
converge. As mentioned above, after obtaining NLS estimates of (17) and (18) using the
neighbors identified by preliminary (OLS) values of 3, we shall then re-compute neighbors

and re-estimate the system.

4. Results and Interpretation

The first step in the estimation is identifying the set of neighbors for each of the 36
models in the sample. This is done using the 1985 cohort of models. We assume that
the set I is constant over the period of estimation.?® Prior to computing these sets of

neighbors, initial estimates of the §’s are required. Applying OLS to (2) for all years yields:

Pmt = — 18.177 +2.861 WEIGH T + .072 HPm: + 4.819 AIRmi+
(19)
644.136 AERO: + 6.887 EUROPE ¢ R? =715, N =430

Although only the parameter estimates are used to identify neighbors, all coefficients are
significant at the 99 percent level. Determining neighbors is just the first step in estimating
the system given by (17) and (18). We report the results of this initial step in Table 1.
Table 1 lists the 86 models in the sample and the model numbers of each neighbor of
each model. For example, the first line of Table 1 indicates that the set of neighbors for the

23 See Quandt (1983) for a discussion of why this is so.

24 1t is not difficult to analytically compute the derivatives of (17) and (18) with respect to
(8, 4, A), except for the derivatives with respect to the term ['m:(8, z) defined in Proposition 2. We
compute d(T'1,.....[m)/d8 = (C+C*+ C% + ...)d(H,Ha, oo ,Hm)/dB for each t, and are therefore
ignoring the change in C with respect to 3. We believe this simplification is unimportant because the
pattern of zero and positive elements in C is invariant to 8 (for given sets of neighbors I'm).

25 Experiments show that while the set I'm does change slightly from year to year, the average of
the squared Euclidean distances, which is what matters, is quite stable.
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the Toyota Tercel is comprised of the Nissan Pulsar (i.e.y model number 12), the Mazda
GLC, the Subaru DL/GL, and the Renault Alliance. Because the technique is new and
not of the standard econometric variety, diagnostics are not developed. Readers can judge
the validity of the technique by asking themselves whether the neighbors to the car they
own are reasonably close substitutes. We believe that our technique, which relies solely on
the primitives of utility maximization, gives quite reasonable results.

Once the sets (Im’s) have been estimated, we are ready to estimate (17) and (18).
As noted in footnote 16, the average squared Euclidean distance to a model’s neighbors
appears in the denominator of terms in (17) and (18). Identical models were combined
to avoid division by zero. Some models, though, are almost identical in some but not all
years. This gives rise to values of the terms that the A's and 4’s multiply that are several
thousand times as large as all the other values. We could either combine these models
with their near-twins for all years (even if the problem existed for only one year) or delete
these outliers (26 out of 430 observations) from the sample. We adopt the latter option
since combining models made by different firms poses difficulties when estimating a firm’s
joint profit maximization opportunities.

We estimate the system subject to various restriction, and these results are summarized
in Table 2. The first column of Table 2 contains system estimates when no restrictions are
imposed on the ¥'s or A’s. The signs of all coefficients are consistent with our theoretic
mode] and all coefficients except v, are statistically significant.?®

When we impose the restriction —4; = <3, parameter estimates are those given in
column 2 of the table. Using the likelihood ratio test, we find that the data do not reject
this restriction. The test statistic is .8831 and is distributed Chi-Square with one degree
of freedom. Again, the signs are theory-consistent and all coefficients are now statistically
significant.

We next impose the additional constraint that A; = A2 and these results are presented
in column 3 of Table 2. Again employing the likelihood ratio test, we find that the data do

not reject this restriction as the test statistic is 1.718 and distributed Chi-Square with two

28 We will use the term “statistically significant” to mean statistically different from zero at the 95
percent confidence level unless we indicate otherwise.
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degrees of freedom. When the restriction is imposed, signs remain consistent with theory
and all coefficients are statistically significant.?

The rest of this section discusses the interpretation of the results. Since the joint
restrictions A; = A; and —7; = ¥ are suggested by the theory and accepted by the data,
we shall focus on this case as we discuss results.?®

We find that v, is negative (-.0099) and statistically significant. This supports the
notion that the demand for a model, given the location of its neighbors, falls when the
price of the model rises. The own elasticity of demand is easily computed using (17).
One feature of our model is that every model in each year has a different own elasticity
of demand, and this elasticity depends on the location of neighboring models. All else
equal, models whose neighbors are quite close have more elastic own price responses. We
calculate the elasticity of demand for every model in the sample.?? We find that the
own price elasticity of demand has an average value of -.516 and a median value of only
_.911. These inelastic values are clearly incompatible with an oligopolistic equilibrium. In
general, it Appea.rs that the magnitudes of the estimated v's are not theory-consistent. Our
approach to the demand equation attempts to measure levels of demand using derivatives
of demand. We adopt this strategy due to the difficulty of estimating the multiple integral
in (10) directly. While every coefficient in our demand equation was of the correct sign
and statistically significant, the “derivatives” approach does not appear to yield own price
elasticities of demand that are consistent with an oligopolistic equilibrium.3°
Also v, is positive (.0099) and statistically significant. As the prices of a model’s

competitors rise, the model’s own sales also rise. Again, every model has a different cross-

7 Although not reported in Table 2, we also estimate the model with the additional cross equation
constraint that —y; = 1/); imposed. As a quick glance at the estimates of the 4’s and A’s indicates, this
restriction is resoundingly rejected. Discussion of why this might be so and the economic implications of
this rejection are discussed in Section 6.

28 The reader will note, though, that coefficient estimates in the restricted and unrestricted cases

are all very similar.

29 These results are available on request to the authors.

30 Bresnahan (1981), in contrast, evaluates the simpler integral that results from his Hotelling

model. He appears to impose the cross- and within-equation restrictions we test and arrives at reasonable
demand elasticities averaging about -2.3.
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price elasticity in our set-up. This elasticity is greater the closer 2 model’s competitors
are (using the measure of distance provided by the theory in section 2.) The demand
equation also permits estimates of a very wide variety of elasticities. One can perturb the
system on any of a number of nia.rgins, and compute how model demand changes. For
example, automobile industry analysts could use (17) to compute the elasticity of demand
for Fords with respect‘ to a change in the price of General Motor’s models. Trade economists
could compute the demand elasticity for domestic cars with respect to a price change in
Japanese models; and regulatory economists could compute the demand elasticity for light
autos with respect to a price change (tax) on high horsepower models.3! In sum, the
estimated demand equation is useful in a variety of interesting economic situations.

In the oligopoly pricing equation, (18), we find that A;, the term that multiplies the
harmonic mean of neighbors’ distances, is positive (.410) and statistically significant. All
else equal, as a model’s competitors become farther away, the price-cost margin rises. Just
as the estimated demand equation implies an own price elasticity of demand for every
model, so does the pricing equation. It is straightforward to show that this elasticity for
model m in period t is given by fﬂ: where H,,, is the harmonic mean of distances
to neighbors. The resulting elasticities may be interpreted as the ones used by firms in
setting their prices whereas the elasticities from the demand equation may be thought of as
resulting from consumer behavior. In a theoretically consistent world, these two elasticities
would be the same.

We find that the demand elasticity implied by the pricing equation has a median value
of -51.7. This value seems reasonable when we keep in mind this is the elasticity for
a given model (of the almost 100 available) and that any model has many substitutes.
The distribution of elasticities is illustrated in Figure 3. Figure 3 shows the wide range of
elasticities. The figure Iso shows that many models have virtually perfectly elastic demands.
These observations have at least one neighbor that is very similar. In general, the demand
elasticities implied by the pricing equation appear reasonable and are compatible with an

oligopolistic equilibrium.

31 See Levinsohn (1988) for a discussion of some of these issues.

21



By computing the harmonic means for each model using the simultaneously estimated
B’s, we can also calculate the mean price-cost margin excluding any returns to collusion
arising from the multi-product nature of the market. That is, we can compute the term
Hn/2Ko in'(16). We find this mark-up has an average value of $599 and a median value
of $200. One interpretation of this figure is that it represents the mark-up that would
result if the 86 models in the sample were produced by 86 separate firms. Again due to the
presence of outliers, summary statistics may be misleading. We present the distribution of
these mark-ups for each model-year in Figure 4. There we see that about half the sample
(205 of 404 observations) have a mark-up of $500 or less while 36 have a mark-up of over
$5000.

We find that A\ is alsc positive (.410) and is precisely estimated. The data strongly
support the hypothesis that oligopolistic multi-product firms increase the prices of those
products that have as competitors products made by the same parent firm. We find the
magnitude of this within-firm collusion can be quite substantial. Using the simultaneously
estimated (’s, we compute the term that A; multiplies. The average value of this term
for products that have at least one neighbor made by the same firm times the estimated
Az gives the extra price-cost markup. We find this additional markup due to joint profit
maximization has a median value of $144 and averages $606. The distribution of the
additional mark-ups due to joint profit maximization is illustrated in Figure 5. There we
see that more than half (230 of 404) of the observations have at least one neighbor made by
the own parent firm. Of these observations, about half (128 of 230) have extra mark-ups
of $500 or less while 24 observations have mark-ups greater than $§4000.

The estimates of 3 are also reported in Table 2. All of the 3’s (except the constant)
are positive which. is what our theory predicts. Also, all the parameter estimates are
statistically significant. The 3’s that appear in (17) and (18) are used to measure distances.
Positive 3’s indicate that as a model’s competitors become farther away in any of the five
dimensions in which the products are differentiated, the own and cross price responses
in demand are reduced and oligopoly markups are increased. We can also go back to
equation (2) {which was substituted into (17) and (18)) to iﬁterpret the 3’s. Then each 3

can be thought of as the marginal cost of producing an additional unit of a characteristic.
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Here, though, interpretation is tenuous since many of the characteristics are proxying for a
variety of other characteristics. In the instance of air conditioning, 3air = 4.894. Clearly, it
does not cost a firm almost 35000 on the margin to add air conditioning to a model. Insofar
as the dummy variable AIR is proxying for the wide range of luxury items associated with
air conditioning as standard equipment, the estimate is more reasonable. Similar caution
should be exercised when interpreting the other §’s.

The next to last two lines of Table 2 report the R? for the demand and the pricing
equations. We find that our specification explains about 81 peréent of the variation in
model prices and about 5.0 percent of the variation in model demands. While the data
support the behavioral hypotheses suggested by our theory, a substantial amount of the
variance in model demands remains unexplained.??

The estimates of the parameters on the dummy variables for years are not reported in
Table 2. We find that these parameters are close to zero and not statistically significant in
the demand equation. In the pricing equation, the parameters are positive and significant.

Their magnitude indicates that the average price of all models rises about $500 each year.

5. Sensitivity Analyses

Ideally, the 3’s reported in the first three columns of Table 2 should be used to estimate
the sets of neighbors instead of the initial estimates generated by (19). (But then with
different sets of neighbors, 3 will again change which leads to yet another set of neighbors
and so on.) As a sensitivity exercise, we re-calculated the sets of neighbors using the
NLS A’s in column 3 of Table 2. With these new sets of neighbors, we then re-estimated
equations (17) and (18) (still imposing that —v1 = 72 and A; = Az.) Column 4 of Table 2
presents the new system estimates. This experiment shows that the results are quite robust
to our inability to simultaneously estimate distances and sets of neighbors. All coeflicients
except the 7’s that were statistically significant in the base case (column 3) remain sc.
(The ~’s are just statistically insignificant unless we impose our priors that v < 0 and

employ a one-tailed test.) Further, the magnitudes of most coefficients in columns 3 and

32
(11).

The low R? in the demand equation is not surprising since the residual includes (nQ7,, from
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4 are qx;ite similar. Apparently the inability to simultaneously estimate distances from
neighbors and the set of neighbors is not important to our results.

Leamer (1983, 1985) has argued in a persuasive and entertaining fashion for experiments
which test the importance of ad hoc specification decisions. In our context. the precise
list of characteristics may be viewed as “doubtful.” In this spirit, Table 3 investigates how
sensitive results are to the choice of characteristics. In that table, we drop one characteristi ¢
and instead use a plausible alternative. For example, we drop horsepower and instead use
engine displacement. The other substitutions are a dummy for foreign instead of the
dummy for European, a continuous measure of luxury®® instead of the dummy for air
conditioning, and an alternative measure of aerodynamics (using the inverse of headroom
instead of inverse height).** In each case, we re-estimate the system using non-linear least
squares and imposing that A\; = A; and —y; = 7.

Table 3 reports the average own elasticity of demand, the average price-cost margin,
and the average extra mark-up due to within firm joint profit maximization.’® We find
that using alternate sets of characteristics changes the magnitude of the elasticity and
mark-ups, but never affects our qualitative results. Demand elasticities from the demand
equation are all negative and remain fairly inelastic. Mark-ups are all positive and with
the i)ossible exception of when the SHORT proxy (the inverse of headroom) is used, are
even similar in magnitude. With any of the sets of characteristics, the resulting average
mark-ups lie in the central part of the distribution of base case mark-ups (as illustrated
in Figures 4 and 5.) Overall, we conclude that our qualitative results do not depend on a

fortuitous choice of characteristics.

33 Our proxy for luxury is (AIR + 1)*Legroom*Headroom

34 We do not substitute for WEIGHT, since without it many of the distances between models are

close to zero (i.e. products are not sufficiently differentiated.)

35 We report the elasticity of demand from the demand instead of pricing equation in column 1 of

Table 3. This is because had we reported the more sensible elasticity from the pricing equation, we would
have no information about how robust estimates of the v's were.
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8. Conclusions

Since theoretic models in many fields of economics assume product differentiation, and
in the real world this differentiation is frequently multi-dimensional, econometric methods
which might allow researchers to test the theories are needed. In this paper, we have
developed a method for estimating demand and oligopoly pricing when products are multi-
dimensionally differentiated.

Our technique is solidly rooted in consumer utility maximization and firm profit max-
imization, and this theoretic model directly guides our econometric specifications. We
derive a demand system for multi-dimensionally differentiated products that has ‘several
testable hypotheses. Our theory, for example, predicts that both the price of a model and
the appropriately measured distance from a model to its competitors will effect the demand
for that model. Similarly, oligopoly pricing depends on the model's own characteristics,
and how far away a model’s neighbors are. Qur theory also indicates how to estimate
the extra oligopoly rent multi-product firms accrue when their products compete with one
another. )

We estimate the equations generated by our theory using data from the U.S. automobile
market. We find that the data broadly support the predictions of the model. For example,
the estimated demand equation indicates that demand for a model falls as the model’s own.
price rises and as the prices of competing models fall. Further, the own- and cross- price
responses becomes more elastic as a model’s competitors become closer. The magnitudes ot
these demand elasticities, though, are not consistent with an oligopolistic equilibrium. On
the oligopoly pricing side of our model, the data support the notion that a firm will increase
a model’s price if that model’s competitors are farther away. We also find support for the
existence of extra oligopoly rents due to multi-product firms. The demand elasticities
implied by the pricing equation are consistent with an oligopolistic equilibrium. Were our
model completely supported by the data, the demand elasticities implied by the deman<
and by the pricing equations would be the same. They are not.

The within-equation restrictions on the demand and pricing equations were tested and
readily accepted. There are, though, other restrictions which were implicitly imposed and

not tested. For example, for more general utility functions than that in (1), it can be
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shown that the 8's which enter the harmonic means and marginal costs indeed differ. We
have not pursued this generalization here since it would substantially increase the number
of parameters to be estimated. Experimenting with more general utility functions, though,
is a direction for further work. Along the same lines, relaxing our assumption of a uniform
density of consumers may lead to a specification which is better supported by the data.

A more general assumption we have imposed on the model is that of Bertrand compe-
tition. Obviously, it would be desirable to extend the model to allow for other forms of
market conduct and to see if market conduct has changed in response to specific policies.
We are presently studying the effects of the “voluntary” export restraint with Japanese
auto firms, initiated in 1981, on the market conduct of American firms.

Future research, then, is directed toward relaxing some of these restrictive assumptions
while still deriving an empirically implementable model. Also, there are many other indus-
tries for which our approach is applicable. The promising results of this first attempt at
estimating the demand and oligop;oly pricing for multi-dimensionally differentiated prod-
ucts have prompted us to research these extensions and further applications. We hope

others might be similarly motivated.

26



Appendix

We shall prove Propositions 1 and 2 using results more general than those required in
the text. Let mm and m, denote the price cost margins on model m and its neighbors,

n € In. We restrict these to satisfy:

"an
20

where Bmn = (2m — 2n) B(zm — 2zn). From (8), it can be seen that (Al) ensures zm € Sm,

Tn = Tm >

(A1)

so that the market space of a model contains the model itself.

Demand in (10) is obtained as a multiple integral over Sp,. Since the boundaries of the
market space in (8) vary continuously with prices, we shall treat demand as continuously
differentiable. The derivatives of demand are given by:

Theorem 1

There exist values 8,,, > 0, depending on prices, such that the derivatives of demand

are:
(a) _1_8Qm _ 20 K8mn
Qm apn - Bmn + 20(771\ - ﬂ'm)
1 an Gmn
by ——=-20K
(b) Qm OPm 4 ,‘; Boon + 20(Tn — Tm)
{c) Z 8pn = 1 if Sm is in the strict interior of S.
n€lm
Proof:

(a) This follows by defining 8mn as,

1 9Qm
Qm OPn

From (8), we see that the market space S.. becomes larger as m, rises, so that %%4"- > 0.

Then using (A1), it follows that 6mn 2 0.

Omn = (

V[Bmn + 20(7n = Tm)|/20 K. (A2)

(b) The market spaces in (8) depend on (ma — 7m) = [(Pn = Pm) + B'(2m — 2za)], from
(3). This means that raising pm by an amount § will have the same effect on demand as

lowering pn by é for all n € I,,. That is,
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3Q_m=_23_%

apm nElm ap"

Then (b) follows directly from (a).

{c) Begin with some price-cost margins 72, and 72, satisfying (A1l). Let $2, denote the
market space of model m, with demand Q2,. We shall suppose that S?, is in the strict

intén'or of §, and so it is defined by (8) without any reference to S:

S ={z"] 9—1-(2,,. — 2"V B(zm —2") 4+ 72 < L(z,1 = 2")B(za—z")+ 75, 1<n < M)

20 ™= 20
Then for all n € I, consider the new price-cost margins:

5an
2

Tn =7 + Ag, where A, = +8(w) = 72). (A3)

m

For é sufficiently small, the new market space for model m will still be in the strict interior
of S, and is given by:
1 /
= = — —_ - — = o <
Sm={z" | 5=(zm = 2") B(zm — ") + 77, <
oi(z,, =2V B(zn = 2)+ 7+ Ap, 1< 0 < M},
2¢
Substituting for An from (A3) and simplifying, we can show that S,, equals:
Sm={z"|2"=7+6(Z—zm) and 7€ S%}. (A4)

Thus, the new market space S, is exactly an expanded (for § > 0) version of $2,. Demand

with the price-cost margins 7 can then be evaluated as:

Qm = / pdz*

= [, Azl =
=(1+8)%Qs,.
The second line of (A3) follows by making a change of variables from z* to 7 as indicated
in (A4). The determinant of this Jacobian is % = (1 + 6)X where K is the dimension

of characteristics space. Then the final line of (A5) follows from the definition of Q2.

28



From (A3), we calculate that,

0Qm e ,
W‘&:o =KQn. (46)

However, using (A3), we calculate that,

an - Z an 81"r,.
36 ls=o —ner Opn ls=0 36 ls=0
™ 80m (4D
= =m 9 —
n;m 6Pn §=0 [an + -U(ﬂn m )]/20

Setting (A6) equal to (AT), and using (A2), it follows immedia-Cely that 3 oy Bmn =1
when evaluated at 72, and r3. But since 72, and 72 were any price-cost margins satisfying
(A1), this proves part (c). Q.E.D.

Evaluating the derivatives in Theorem 1 at the price-cost margins 7, = T, n € I,
we obtain Proposition 1 in the text. In order to prove Proposition 2, we need the following

result.

Theorem 2
When demand is continuously differentiable, %%"’- = g—%l‘-.
Proof:

Total consumer surplus over the set of available products is,

M
w=3 /sm (V(2m, 2°) = pmlpd™. (A8)

m=1

With each consumer maximizing surplus, W is also maximized. That is, the market spaces
shown in (8) give the highest value of W compared to any other choices of Sm © S with
Sm N Sp of measure zero. Then analogous to the envelope theorem, when differentiating
(A8) with respect to prices, we can hold the market spaces S, constant. Calculating this

derivative,



Then by Young’s Theorem,

FPW  _ 9Qm __0Qa

apmapn T 3pn apm '
RQE.D.

Remark 1: Combining the immediately above result with part (a) of Theorem 1, we see
that QmOmn = @nfnm when m, = 7. This allows us to interpret the §m, in terms of
Figure 2. The market space Sy for model D in Figure 2 is divided into S4q, Sg5, and Sq..
Define,

area(Sim)
area(Sq) '
We clearly have 84, + 843 +94. = 1. But in addition, with 74 = 7, in Figure 2, the triangles

Bim = m=a,b,c. (49)

S.4 and Sy, are identical, since their common boundary is perpendicular to and crosses
the mid-point of a line between A and D. Then define .4 = %&ng)—) It follows thar
area (S,)8,4 = area (S4)84q. Since demand is the integral over market spaces. we obtain
Qa8sa = Qa4 as required. We conclude that (A9) is a valid interpretation of 6my,. While
we have assumed that 7, = 7, an extension of our argument can show that (A9) is still
valid when 7 # 7.

Remark 2: This interpretation of #mn suggests that for models m where S, includes a

boundary of S, we have,

Z Omn < 1. (410)
n€lm
P : . - area(S,s)+area(S,.)+area(S.q4)
This is demonstrated by model A in Figure 2, for which > TTTER) Lo« 1.

We expect that (A10) is the counterpart to Theorem 1(c) when Sp is not in the strict
interior of S, but do not prove this here.

Returning to Proposition 2, the first order conditions for (13) can be written as:

Qm 9Qn/%pm
Tm =~ —a — — Ta(go—n), me J, All
o R DALy (411)
where the summation is over n € (J. N [m). We can use Theorem 2 to replace gpi’: by %

in (All). Then evaluating all derivatives of Qm at the point #m = mp, n € In, we can
write (All) as,
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Tm 2KU+Z ..( B...,, ) neld (412).

Using the notation of Proposition 2, (Al2) can be written as (I-C)r = % where
= (m,....,7p) and H = (Hy,...., Hy)" are column vectors. It follows that 7 = (I —

)~'s4-. Assuming that Oma > 0 for n € Im, the rows of C sum to less than unity
so long as no model and its neighbors all belong to the sa.tﬁe company. We then have

(I-C)"'=I+C+C?*+C®+..., and so Proposition 2 is established.
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TABLE 1
Models and Their Neighbors

Model Number
and Name

Model Number of Neighbors

W 00 ~3J M U AW N

o W W W G NN NN NN DN NN DN e = e e
D N B W RN~ O ® 00U WN O © 00O WD O

Toyota Tercel
Toyota Corolla
Toyota Celica
Toyata Camry
Toyota Cressida
Toyota Supra
Nissan Sentra
Nissan Maxima
Nissan 300zx
Nissan 200SX
Nissan Stanza

Nissan PulsarNX

Honda Accord
Honda Prelude
Honda Civic
Mazda 626
Mazda RX-7
Mazda GLC
Suburu DL/GL
Chry/Ply Colt
Volvo DL
Volvo 760 GLE
VW Jetta
VW Quantum
BMW 320/318
BMW 530/528
BMW 733
Mercedes 300D
Mercedes 300SD
Mercedes 190E
Audi 5000
Audi 4000
Mitsub Tredia
Mitsub Cordia
Mitsub Starion
Saab 900 S

12 18
40 49
10 30
11 13

5 22
6 35
3 1
4 10
1 15
4 11
11 13
12 19
62 82
34 45
7 12
12 15
15 43
23 26
8 25
4 21
23 31
22 30
21 22

26 27
28 47
3 25
21 24
4 10
14 34
14 17

24 30

19
33
35
23
27
39

27
38
32
13
18
14
33
20

31
26
24
32
31
28
28
29
59
36
25
11
45
33
22
31

43
81
51
32
37
73

60
39
45
14
19
40
34
43

43
33

42
35
32
36
38
31
37
47
66

26
23
70
49
38
32

50

74
73
50
32

82
45

56
37
42
41
56
56
39
52
67

36
24
76

56
51

62

79

30

86

38
62
42

79
57
60
68

41

36

74
72

86

74
82
65

84
59
64

84
79
86
72

60
68

61
75

-~y =1
o W




TABLE 1 (continued)

Models and Their Neighbors

Model Number Model Number of Neighbors
and Name
37 Saab 900 Turbo 5 22 27 38 39
38 Porsche 944 9 22 25 35 37
39 Porsche 911 6 9 27 37 73
40 Isuzu -mark 2 13 82
41 Isuzu Impulse 24 31 54 65 71 79 83 84
42 Peugeot 505 21 23 24 44 71 72 84
43 Alliance 15 18 20 1 49 69
44 Eagle 42 71 72 78 85
45 Turismo 10 14 17 33
46 LeBaron 50 51 54 63 65 76
47 NewYorker/5thAv 28 29 52 57 538 59 66 68
48 Omni . 81
49 Charger 2 34 43 76 81
50 Aries 4 10 11 32 46 51 62 70
51 Dodge600 4dr 3 36 46 50 56
52 Diplomat 28 47 57 60 68 75 78
53 Escort 2 19 69 86
54 Mustang 41 46 63 65 72 76 83
55 Tempo 70 76 82
56 T-bird 21 25 26 35 51 64 71 72 T4 79 85
57 Crown Victoria 27 47 52 58 59 60 68
58  Grand Marquis 47 57 59 66 68 80
39 Continental 27 29 47 57 58 60 66 68 80
60 MarkVii 8 27 28 52 57 59 64 68
61 Lincoln 27 67 80
62 Skyhawk 4 16 23 50 63 65
63 Skylark 46 54 62 65 72 76
64 Electra 28 56 60 74 75 78 79 85
65 Cimarron 24 32 41 46 54 62 63 76
66 Seville 29 47 58 59 68 80
67 Cadillac 29 61 80
68 ElDorado 28 29 47 52 57 38 59 60 66
69 Chevette 43 353 81




TABLE 1 (continued)

Models and Their Neighbors

Model Number

Model Number of Neighbors

and Name
70 Cavalier 33 530 535 76
71 Camaro 21 41 42 44 56 83 85
72 Celebrity 21 24 31 36 42 44 54 56 63 84
73 Corvette 9 27 39
74 MonteCarlo 8 22 35 56 64 75 79 85
75 Chevrolet Impala 28 52 64 74 77 78
76 Firenza 33 46 49 54 35 63 65 70
77 Cutlass/Supreme 75 78 79 84 85
78 Olds88 28 44 52 64 75 IT
79 Olds98 8 22 26 41 56 64 74 7T 34
80 Toronado 38 539 61 66 67
81 1000 2 48 49 69
82 Sunbird {2000) 13 16 23 40 55
83 Firebird 41 54 71
84 Bonneville 21 26 41 42 72 77 79
85 GrandPrix 44 56 64 T1 T4 77
86 Rabbit 11 13 23 53




TABLE 2
Estimates of Demand and Oligopoly Pricing Equations
Restrictions Imposed
No “N=r -N=7 -7 =7
Restrictions A1 = A2 4/\1 = Ay
Results with
New 3
” -.0149" -.0101* -.0099* -.0064
(.0054) (.0047) (.0045) (.0040)
o .0063 .0101* .0099* .0064
(.0054) (.0047) (.0045) (.0040)
A .387* 451* 410 403"
(.083) {.090) (.071) (.073)
A2 332° 374" 4107 403"
(.087) (.093) (.071) (.073)
Bo -16.171* -16.844* -16.769* -14.965"
(.402) (.421) (.422) (.486)
Buwt 3.146* 2.987* 2.926" 2.675*
(.241) (.238) (.204) (.214)
Bhp .0441* .0398* .0416* .0474"
(.0053) (.0052) (.0044) (.0046)
Bair 4.379* 4.885* 4.894" 4.819*
(.398) (.398) (.398) (.406)
Beuro 5.454" 5.337* 5.370 5.185*
(.438) (.438) (.430) (.444)
Baero. 561.67* 635.33* 631.72* 544.00*
(38.69) (32.47) (32.40) (37.70)
do 3.9034* 3.899 3.899" 3.907"
(.128) (.128) (.127) (.127)
R 057 .051 .050 044
R? iing 815 816 .816 818
SSRiemand 518.36 322.02 5322.13 525.62
SSRpricing | 3633.20 3618.34  3616.59 3578.24

Notes: The standard errors are reported in parentheses. An asterisk indicates signifi-
cance at the 95 % level.



TABLE 3

Sensitivity Analysis

Re-estimation Of The System
Using Different Characteristics

—71 =7z and A} = Ag

Average Own Average Average Extra
Elasticity Mark-up Mark-up Due to
of Demand Joint Profit
from Demand Maximization
Equation
Base Case -.516 $599 $606
(NLS)
Drop HP -.159 §717 $543
Use DISP
Drop AIR -.571 $556 $378
Use LUXURY
Drop EUROPE -.272 $856 $534
Use FORIEGN
Drop AERO -.405 $1363 $998
Use SHORT






