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1 Introduction

Since the pioneering work of Fisher (1935), it has been well established in the scientific

community that experimentation through randomized controlled trials is the gold standard

through which it is possible to learn about cause and effect. However, the large subsequent

literature on the nuances of experimental methodology illustrates that randomization is

merely the beginning, not the end, of the experimental process. After leveraging advantages

of controlling the assignment mechanism, many decisions remain: the population of people

and situations to examine, how many units to include, what outcomes and observables to

collect, and how to best examine and model the collected data, to name a few.

In this paper, we focus on the problem of how to make use of pre-exposure covariates

to reduce variance optimally when estimating parameters in an i.i.d. sampled experimental

dataset. In particular, we derive the efficient regression adjustment over a large class of

estimators in this setting. This class is sufficiently broad to subsume all common variance

reduction strategies of which we are aware.1 We show that this efficient regression adjustment

can be feasibly estimated in a data driven way using non-parametric regression, including

by making use of machine learning methods. Moreover, we find that it is possible to obtain

asymptotic standard errors equal to what would be obtained if the optimal adjustment was

ex-ante known, even though in general, the adjustment must be estimated. This property

of our proposed estimators also makes the construction of asymptotically correct standard

errors robust and computationally straightforward. We demonstrate that this asymptotic

result is a good approximation in finite samples by conducting a number of simulation

exercises and additionally demonstrate the application of our proposed estimator in four real

world examples. Our results can also be used to critique certain practices in the experimental

literature and show how they can cause researchers to conduct inefficient experiments.

The methods proposed in this paper extend and unify a number of literatures. Most

directly, our paper expands upon the recent work of Negi and Wooldridge (2020) and Negi

and Wooldridge (2021) (henceforth NW), who derive a number of results about better and

worse ways to use linear regression to reduce variance in experimental settings. Our effi-

ciency results also subsume those of Frison and Pocock (1992), who show the efficiency of

regression adjustment over difference-in-differences (DiD) in settings where the researcher

has access to pre-intervention outcomes. Indeed, the approach taken in our study unifies

these previous developments under a single framework and allows us to show what NW de-

note “full regression adjustment” is efficient in a certain class of estimators which includes

1More precisely, this statement ignores attempts to reduce variance by changing the randomization ap-
proach, instead focusing on strategies to reduce variance via the choice of estimator given a fixed data
generating process.
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all of the estimators considered in the above three papers.2

Our paper also contributes to a broader literature on using covariates as a tool for variance

reduction in settings with randomization. Here, we briefly review a number of recent papers

which address settings different than ours. Roth and Sant’Anna (2021) (henceforth RS)

consider a setting where researchers have access to a panel dataset and treatment timing is

assigned at random. While we consider the case of i.i.d. sampling from an infinite population,

the asymptotics in RS are with respect to a sequence of finite populations. Aside from this

distinction, our recommendation to use pre-treatment observations as covariates rather than

estimating a two-way fixed effects can be thought of as a special case of results in RS (for their

example when there is only a single treatment timing group in addition to the control group).

Our framework, however, is flexible enough to allow for the presence of other covariates. A

related recent paper is due to Cohen and Fogarty (2021), which like RS considers asymptotics

with respect to a sequence of finite populations. Their proposed estimator can be shown to

be contained within the class considered in this paper, so at least under an i.i.d. sampling

assumption, is no more efficient than ours.

Relative to the above two papers, an additional important difference is that our results

apply to any function of potential outcome means, and therefore continue to apply even if

the researcher is interested in estimating parameters other than average treatment effects.

Finally, Carneiro et al. (2020) considers the optimal tradeoff between spending a limited

budget on collecting more covariates compared to collecting more observations. As in their

paper, we find that the expected benefits from regression adjustment can be approximately

measured by the mean squared error in using the covariates to predict the outcome of interest.

Our results are also related to a recent literature describing the approaches to variance

reduction in “big data” settings. In particular, Deng et al. (2013) propose an estimator for

the treatment effect which is asymptotically equivalent to the “full regression adjustment” of

NW.3 Another approach to regression adjustment in big data settings is given by Poyarkov

et al. (2016). The authors consider fitting a Machine Learning (ML) model of the conditional

expectation function, but explicitly advocate against sample splitting. Our simulation results

show that not sample splitting when the regression adjustment function is complex can

produce a sizable bias against finding a treatment effect, even in fairly large samples.

Our advice is therefore in the spirit of Wager et al. (2016), who propose using ML

methods and sample splitting to reduce variance in estimating average treatment effects.

2More specifically, NW also study the asymptotic properties of an estimator which is not contained in
our class. However, this estimator is infeasible, relying on a priori knowledge of population quantities that
the researcher is unlikely to know, and is therefore of little practical interest for our purposes.

3Specifically, the Deng et al. (2013) proposal is to do optimal regression adjustment with a single covariate
that is easy to compute in the typical setting faced by a some firms.
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Yet, it is important to point out that our results generalize their non-parametric results along

two dimensions. First, following Negi and Wooldridge (2020), we compute the asymptotic

standard errors from estimating the vector of treatment group mean outcomes, not just the

average treatment effect. Via the delta method, this allows us to characterize the asymptotic

sampling distribution when estimating any differentiable function of treatment group means,

which includes the average treatment effect as a special case. Relatedly, while the claimed

efficiency of regression adjustment in Wager et al. (2016) is based on the efficiency results of

Hahn (1998) in the context of average treatment effects, we show that this efficiency extends

to the joint estimation of the entire vector of potential outcome means, and hence to any

function of these means. This generalization is especially valuable to economists who plan to

use the experimental variation to learn about quantities beyond average treatment effects.

Examples include Goldszmidt et al. (2021), who use treatment assignment as an instrument

for measuring sensitivities to more fundamental quantities like price and time, DellaVigna

et al. (2012), who use experimental variation to estimate parameters in a structural model,

and Cotton et al. (2020), who use a structurally motivated field experiment to estimate a

model of human capital production in adolescents.

An aspect of regression adjustment which to our knowledge has not been previously

emphasized, but which we view as the key point underlying why regression adjustment works

with relatively few assumptions, is that it satisfies an orthogonality property with respect

to the adjustment term. This observation allows us to connect regression adjustment to a

large literature in semiparametric statistics on estimating parameters in the presence of a

high dimensional, but orthogonal nuisance parameter (e.g. Andrews (1994); Newey (1994);

Chernozhukov et al. (2018)). This perspective allows us to give considerably shorter and

conceptually more transparent proofs of key results about regression adjustments.

The plan for the rest of this paper is as follows. In Section 2, we develop our theory of

regression adjustment. In Section 3, we use a number of empirical evaluations leveraging

data from the ridesharing firm, Lyft, to show that the asymptotic theory provides a good

guide for conducting inference and to show that the optimal choice of estimator can make a

difference in practical settings. Section 4 concludes.

2 Theory

In this section, we develop the theory for our generalized regression adjustment. We take

as our point of departure the potential outcomes model. Specifically, we assume that our

data are generated from an experiment with treatment groups {1, . . . , G}. Let the potential

outcomes in group g be denoted by Y (g) so that the objects of interest are the average
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potential outcome within each group:

µg = E[Y (g)]

We assume that treatment is assigned via simple random sampling and define Wg to be

an indicator that equals 1 if and only if an individual was randomized into group g and 0

otherwise. Let bolded versions of letters be the vector obtained by stacking the versions

with g subscripts so that, for example, W = (W1, . . . ,WG)′ is the vector of treatments, and

µ = (µ1, . . . , µG)′ is the vector of mean potential outcomes. We additionally assume that

the researcher has access to a vector of pre-treatment covariates, X, which are potentially

informative about the outcome Y . Our goal is to characterize the extent to which X can be

used to reduce variance when estimating µ. Because we are working with an experiment,

we assume the usual orthogonality condition arising from statistical independence:

{Y (g)}Gg=1, X ⊥W

We model the data as comprising an i.i.d. sample of size n from the experiment, denoted

{Yi, Xi,Wi}ni=1, where Yi = Yi(gi) for the unique gi satisfying Wi,gi = 1. Finally, let ρg =

Pr(Wg = 1) be the probability that an individual is in treatment group g, thus ρ is the vector

of treatment probabilities. Because we are discussing asymptotic variances, we maintain the

following mild regularity condition throughout.

Assumption 1. E[Y (g)2] <∞ for all g = 1, . . . , G.

With the notation in hand, we can describe our theory in 4 sections. In Section 2.1,

we highlight the key intuition behind our approach by simplifying the asymptotic variance

derivation relative to NW for the case of linear regression adjustment. The ideas used to

obtain this simplification reveal how their efficiency results might be generalized. In Section

2.2, we show how to embed the linear regression adjustment into a more general class of

regression adjustment estimators and derive the optimal adjustment within this class. In

Section 2.3, we discuss how to implement feasibly the efficient estimator implied by Section

2.2 and derive the asymptotic distribution of this estimator, which we refer to as “flexible

regression adjustment” (FRA). Finally, Section 2.4 provides practical guidance for how a

researcher should do power calculations when they use FRA.

2.1 Revisiting Linear Regression Adjustment

In this section, we simplify the derivation of the asymptotic variance of the optimal linear

regression adjustment (LRA) discussed in NW. Their derivations involve working through
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a number of tedious matrix computations which our simplification obviates. In doing so,

we provide an alternative perspective on why regression adjustment works, which in turn

motivates our subsequent generalizations. NW write their LRA as

µ̂g = α̂g + β̂′gX̄, (1)

where α̂g, β̂g are the OLS coefficients from the regression, Y = αg + β′gX + ε, fit using only

the observations from treatment group g, and X̄ = 1
n

∑n
i=1Xi is the mean value of X across

the entire sample. Let ng be the number of observations in treatment group g and define

Ȳg = 1
ng

∑
i:Wi,g=1 Yi and X̄g = 1

ng

∑
i:Wi,g=1Xi, so respectively, they are the mean values of

Y and X among the observations in treatment group g. A basic fact about OLS is that

Ȳg = α̂g + β̂′gX̄g. Using this fact, we can rearrange the LRA as

µ̂g = Ȳg + β̂′g
(
X̄ − X̄g

)
.

The consistency of the full regression adjustment follows from several observations. First,

randomization implies that E[X̄ − X̄g] = 0, while β̂g converges in probability to a fixed

vector, so the law of large numbers and the continuous mapping theorem imply that the

second term in µ̂g converges in probability to 0. The first term, on the other hand, is the

sample mean of the outcome in group g and converges to µg by the law of large numbers.

Second, the fact that E[X̄ − X̄g] = 0 also greatly simplifies the calculation of the

asymptotic variance of the estimator. To see why, consider the family of estimators µ̂βg =

Ȳg + β′(X̄ − X̄g) which fixes the slope of the regression adjustment at some β. Then

∂

∂β
E[µ̂βg ] =

∂

∂β
E[Ȳg + β′(X̄ − X̄g)] = E[X̄ − X̄g] = 0.

In other words, the class of estimators µ̂βg is orthogonal to the adjustment β, which implies

that the asymptotic variance of µ̂g is equivalent to the asymptotic variance of µ̂
βg
g where

βg = plimn→∞β̂g is the limiting value of β̂g.
4 Similarly, letting ρ̂g be the proportion of

individuals in treatment g, we can write

µ̂g = Ȳg + β̂′g(ρ̂gX̄g + (1− ρ̂g)(X̄−g − X̄g)) = Ȳg + β̂′g(1− ρ̂g)(X̄−g − X̄g),

and µ̂g is also orthogonal to ρg, so replacing ρ̂g with ρg, the probability that a given individual

ends up in treatment g, will also not affect asymptotic variance computations. As a result,

4See, for example, Theorem 6.1 of Newey and McFadden (1994)
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we can easily compute that

lim
n→∞

nVar(µ̂g) =
Var(Y (g))

ρg
+

1− ρg
ρg

(
β′gVar(X)βg − 2β′gCov(Y (g), X)

)
. (2)

The choice of βg only affects the limiting variance of µ̂g via the second term, and its effect

on the asymptotic variance is given by a quadratic form, which can thus be minimized by

setting its first derivative equal to 0, i.e.

β∗g = Var(X)−1Cov(Y (g), X).

This is precisely the population OLS slope for observations in treatment group g, provided

β̂g
p→ β∗g .

5 In this case, the second term of Equation (2) will be minimized and becomes

−1− ρg
ρg

(β∗g)
′Var[X]β∗g .

Moreover, if we let U(g) be the OLS error in treatment group g, then we have Var(Y (g)) =

Var(U(g) + (β∗g)
′X) = Var(U(g)) + (β∗g )

′Var(X)β∗g . Note that by construction, U(g) is

uncorrelated with X. Putting everything together, we have that

lim
n→∞

nVar(µ̂g) = Var(U(g))/ρg + (β∗g)
′Var(X)β∗g .

This takes on the same form as in NW, and extending the above argument to also account

for correlations across different groups g allows us to replicate their asymptotic variance

computations. Rather than doing this, in the next subsection, we present a more general

argument that allows us to arrive at our main efficiency results.

2.2 Efficiency Theory

The regression adjusted estimator for µg is composed of a number of sample means (whose

asymptotic variances are easy to deal with) and the OLS slope β̂g (whose asymptotic variance

is more difficult to deal with). The key simplification made in the above derivation is to

notice that orthogonality with respect to βg allowed us to avoid discussing the asymptotic

influence that the estimation of βg had on the final estimator. We now generalize this idea

5Which it does under our i.i.d. sampling assumption and Assumption 1
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by relaxing the restriction that our regression adjustment is linear in X. To do so, we write

β′gX̄ =
1

n

n∑
i=1

β′gXi =
1

n

n∑
i=1

hg(Xi) ≡ h̄g,all,

β′gX̄g =
1

ng

∑
i:Wg,i=1

β′gXi =
1

ng

∑
i:Wg,i=1

hg(Xi) ≡ h̄g,g.

In other words, we have that these two quantities can be written as sample means of some

function hg of Xi where hg is implicitly parameterized by βg. Systematizing the above

notational convention, in what follows, for any function fg(x), we introduce the following

notation

f̄g,all =
1

n

n∑
i=1

fg(Xi), f̄g,g =
1

ng

∑
i:Wi,g=1

fg(Xi),

so that the first subscript indicates the g in the subscript in fg while the second subscript

indicates the dataset for which the sample mean is taken. Given this notation, we now

re-write the form of the regression adjustment estimators we consider as

µ̂hgg = Ȳg + h̄g,all − h̄g,g. (3)

For any fixed, square-integrable hg, randomization implies that the second two terms in µ̂
hg
g

as defined in Equation (3) cancel one another, i.e. E[h̄g,all − h̄g,g] = 0. Orthogonality of the

estimator with respect to β in the linear case then generalizes to the following

∂

∂r
E
[
µ̂
hg+rh′g
g

]
= 0, ∀hg, h′g ∈ L2(X).

Standard results about the asymptotic distribution of semi-parametric estimators (Newey

(1994); Chernozhukov et al. (2018)) suggest that even if we must estimate hg using data, this

estimation will have asymptotically negligible effects on the standard errors of the resulting

estimator. Before formalizing this statement, we first pin down the optimal value of hg that

minimizes asymptotic variance. To do so, define

mg(x) ≡ E[Y |X = x,G = g] so that Yi(g) = mg(Xi) + εi(g), E[εi(g)|Xi] = 0. (4)

Then denoting dg(x) = hg(x)−mg(x), we can rearrange µ̂
hg
g as

µ̂hgg = ε̄g + m̄g,g + h̄g,all − h̄g,g = ε̄g︸︷︷︸
Ag

+ m̄g,all︸ ︷︷ ︸
Bg

+ (d̄g,all − d̄g,g)︸ ︷︷ ︸
Ch

g

, (5)
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where ε̄g = 1
ng

∑
i:Wi,g=1 εi(g) is the mean value of εi(g) among individuals in treatment g.

Since εi(g) is mean independent of Xi, Ag is uncorrelated with Bg′ and Chg′ for any g, g′ and for

all choices of dg. To see why, note that mean independence implies that Cov(εi(g), f(Xi)) = 0

for any function f of Xi and for any i 6= j, our i.i.d. sampling assumption implies that

Cov(εi(g), f(Xj)) = 0. But because the summands comprising Bg and Chg are all functions

of Xi, this shows that all summands comprising Ag are uncorrelated with all summands

comprising Bg and Chg .

Additionally, Bg is uncorrelated with Chg′ , again for all g, g′ and for any fixed choice of h.

To see why, note that because E[d̄g′,all − d̄g′,g′ ] = 0,

Cov
(
Bg, C

h
g′

)
= E[m̄g,all(d̄g′,all − d̄g′,g′)]

=
1

n2


n∑
i=1

E[mg(Xi)dg′(Xi)]︸ ︷︷ ︸
S1

+
∑
i6=j

E[mg(Xj)dg′(Xi)]︸ ︷︷ ︸
S2



− 1

nng


∑

i:Wi,g=1

E[mg(Xi)dg′(Xi)︸ ︷︷ ︸
S3

+
∑

i:Wi,g=1

∑
j 6=i

E[mg(Xj)dg′(Xi)]︸ ︷︷ ︸
S4

 .

As is clear, the summands in S1 and S3 are identical, as are the summands of S2 and S4.

Moreover, S1 has n elements, S2 has n(n − 1) elements, S3 has ng elements, and S4 has

ng(n− 1) elements. It is then straightforward to see that everything in the above expression

cancels, so the covariance vanishes, as desired.

This reveals that the three terms in (5) are all uncorrelated with each other. Stacking

Equation (5) for all of the g into a single equation and using the fact that the variance of

the sum of uncorrelated random vectors is the sum of the variances, we obtain the following

variance decomposition

Var
(
µ̂h
)

= Var (A) + Var (B) + Var
(
Ch
)
. (6)

Note that h does not affect A or B and therefore only affects the asymptotic variance of the

regression adjusted estimator by affecting Ch. Moreover, it must contribute a positive semi-

definite matrix, which is minimized if we can choose a value of h making Var(Ch) = 0. This is

exactly what happens when we set hg = mg.
6 We thus arrive at the intuitive conclusion that

6Such a choice makes Ch deterministically 0.
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the conditional expectation function is the optimal function to use for regression adjustments.

Summarizing, we have just shown the following result

Proposition 1. Consider the class of regression adjustment estimators for µ, where µg =

E[Y (g)], of the form

µ̂h = Ȳg + h̄all − h̄g, (7)

where Ȳg is the vector of sample means of Y partitioned by g and h̄g is the vector of sample

means of hg(X) partitioned by g. Then, for any fixed h, µ̂h is a consistent estimator for µ.

Moreover the (asymptotic) variance minimizing choice of h is given by hg = mg.
7

Remark 1. The argument leading to the variance decomposition (6) continues to hold if Y is

vector valued, so in that case, the variance minimizing choice of h would be the conditional

expectation of each component of Y for each group g.

Remark 2. Another way to think about our result is to consider what moment conditions are

implied by the fact that we have an experiment. In particular, we note that randomization

implies an infinite family of moment conditions of the form

E
[

W(Y − h(X))

ρ
+ h(X)− µ

]
= 0 (8)

for fixed function h making the above expectation well defined. In the above, both the

multiplication and division of vectors in the first term are pointwise. This family of moment

conditions is closed under linear transformations, so WLOG, we can build a Generalized

Method of Moments (GMM) estimator by picking any single value of h. Because we allow h

to be any function in a linear space L2(X), it actually suffices to pick just a single optimal

choice, which we just showed is m. Viewed in this light, the results of Proposition 1 show

that the conditional expectation functions of the outcome conditional on X in each treatment

group g are the efficient choice of h within the GMM efficiency framework of Newey and

McFadden (1994). Specializing to an average treatment effect, µg − µg′ , (6) yields the

efficiency bounds of Hahn (1998).

We can modify the argument leading to Proposition 1 to show that NW’s optimal LRA is

in fact optimal with respect to the family of linear in X regression adjustments. The idea is

to derive a variance decomposition analogous to Equation (6), but with minor modifications

to account for the linearity in X restriction. First, we define the best linear predictor of Y

7Where due to the multi-dimensional nature of the object being estimated, “variance minimizing” is with
respect to the matrix partial order defined by positive semi-definiteness.
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given X in treatment group g as

BLPg(Y |x) = α∗ + (β∗)′x, α∗, β∗ = argmin
α,β

E
[
(Y (g)− α− β′X)2

]
.

The error term δi(g) ≡ Yi(g) − BLPg(Y |Xi) is uncorrelated with X. Denoting `g(x) ≡
BLPg(Y |x), we have a decomposition similar to (5)

µ̂βgg = ε̄g + ¯̀
g,g + h̄g,all − h̄g,g ≡ δ̄g︸︷︷︸

Ag

+ ¯̀
g,all︸︷︷︸
Bg

+ (d̄g,all − d̄g,g)︸ ︷︷ ︸
Cβ

g

, (9)

where now, we define dg(x) = β′gx−`g(x). It is still the case that Ag is uncorrelated with Bg′

and Cβg′ for any choice of β and any choice of g, g′.8 Similarly, the argument for why Bg is

uncorrelated with Cβg remains unchanged as well. We thus arrive at the following analogue

of Equation (6)

Var
(
µ̂β
)

= Var (A) + Var (B) + Var
(
Cβ
)
. (10)

Again, the choice of regression adjustment only affects the third term, so the variance of

the above expression can be minimized if the third term can be set to 0, which is exactly

what happens when βg is set as the OLS slope within group g. This analysis yields a next

proposition

Proposition 2. Consider the class of regression adjustment estimators for µ, where µg =

E[Y (g)], of the form

µ̂β = Ȳg + ¯̀β
all − ¯̀β

g , (11)

where Ȳg is the vector of sample means of Y partitioned by g, ¯̀β
all is the vector whose gth

component is 1
n

∑n
i=1 β

′
gXi, and ¯̀β

g is the vector whose gth component is 1
ng

∑
i:Wi,g=1 β

′
gXi.

Then for any fixed β, µ̂β is a consistent estimator for µ. Moreover the variance minimizing

choice of β is given by the group g specific OLS slope βg = Var(X)−1Cov(Y (g), X).

Remark 3. This proposition generalizes NW’s efficiency results. Specifically, their subsample

means estimator is simply linear regression adjustment taking β = 0 and their pooled

regression adjustment is asymptotically also equivalent to a linear regression adjustment.

Remark 4. The above proposition also expands the scope of NW’s conclusions beyond sim-

ply comparing estimators that are traditionally understood to be regression adjustments.

Consider, for example, a field experiment where the researcher has access to pre-treatment

8Note a subtle difference in the justification for this fact. In this case, Ag is uncorrelated only with linear
functions of X, but because we are restricting ourselves to the class of linear in X regression adjustments,
the summands of Bg and Cβ

g are all restricted to be linear as well
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analogues of the outcome of interest. This setting appears to be quite common in applied

work (Brandon et al. (2021); Fowlie et al. (2020); Gosnell et al. (2020); Kaplan et al. (2013);

Todd and Wolpin (2006)). All of these papers use a two-way fixed effect (TWFE) panel

estimator at least once in estimating treatment effects. Why is the use of such an estima-

tor so common in these experimental settings? If randomization is done properly, simply

comparing the raw means post-treatment would suffice to unbiasedly estimate the treatment

effect.

One important explanation comes from Burlig et al. (2019), who frame the question in

terms of the potential of using the panel structure of the data to reduce the variance of

treatment effect estimates and hence to improve power. Our efficiency results imply that

focusing on asymptotic variances, this strategy is always (weakly) dominated by a regression

adjustment. To see why, consider a field experiment setting where T periods of pre-exposure

data are recorded, indexed by t = 0, . . . , T − 1, and in period T , some proportion p of

individuals are assigned to a treatment group with the remainder being assigned to control.

The TWFE estimator of the average treatment effect would then be the β from the OLS

regression corresponding to the model

Yit = βDit + αi + γt + εit, t = 0, . . . , T,

where Dit is an indicator for whether unit i is treated in period t (so Dit = 1 if and only

if i is treated and t = T ), and αi, γt are respectively individual and time fixed effects. A

special case of Theorem 1 of Goodman-Bacon (2021) implies that β̂ = ȲT,1− ȲT,0− (Ȳ−T,1−
Ȳ−T,0) where ȲT,1, ȲT,0, Ȳ−T,1, Ȳ−T,0 are respectively the average outcomes in treatment post

exposure, control post exposure, treatment pre exposure, and control pre exposure.

Yet, if we consider our panel dataset as a cross-sectional dataset and view the pre-

exposure values of Y as the covariates instead of outcomes from separate observations, the

above expression for β̂ is of the form µ̂
1/T
1 − µ̂1/T

0 (here, we are using the notation of Equation

(9) and 1 is a vector of 1s). This shows that the TWFE estimator belongs to the class of

linear regression adjustments and in particular uses a vector of values 1/T as the slope instead

of an OLS fit. But, then Proposition 2 implies that the TWFE estimator is always (weakly)

dominated by instead treating the pre-experiment outcomes as covariates and running a

regression adjustment.

2.3 Sample Splitting and Inference

In this subsection, we discuss how to estimate the optimal regression adjustment derived

above. In particular, we show that it is possible to tractably conduct inference while using
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a flexible non-parametric model for fitting the conditional expectation functions mg(X). In

particular, one could even make use of machine learning methods, which have demonstrated

a remarkable ability to solve prediction problems in real world datasets. A potential pitfall

of estimating mg(X) too flexibly, which we deal with, is that it is possible that this flexibility

can introduce substantial finite-sample bias in the estimates for µ. To motivate how one

should deal with this concern, we first consider why this is often thought to not be a concern

in the linear case. Recall that LRA is given by

µ̂g = Ȳg + β̂′g(X̄ − X̄g).

The first term in LRA is an unbiased estimate for µg. When the conditional expectation

function E[Y |X = x,G = g] is not linear in X, however, the second term is not necessarily

unbiased. The intuition is that a given observation i in group g affects the second term both

through its influence on the X̄ − X̄g and through its influence on β̂g. This leads to a form of

“overfitting” bias. In the classical linear regression adjustment, we typically think of β̂g as

being a fixed length parameter; thus, as the sample size increases, this overfitting becomes

negligible, and hence can be ignored in asymptotic analysis.9 Nonetheless, once this source

of bias is identified, it is straightforward to handle. In particular, we can use a “jackknife”

idea similar in spirit to the jackknife instrumental variables approach of Angrist et al. (1999).

Specifically, define

µ̂JKg = Ȳg +
n∑
i=1

β̂(−i)′
g

(
1

n
Xi −

Wi,g

ρ̂g
Xi

)
, (12)

where β̂
(−i)
g is the OLS estimate of the regression Yg = αg + βgXg + ε using all observations

in group g except for the ith observation. It is clear that as the sample size goes to infinity,

we have µ̂JKg
p→ µ̂g, so this modification has the same asymptotic properties as the usual

estimator.

Despite the fact that it does not make a difference asymptotically, the jackknife approach

is useful at removing much of the finite sample bias. In particular, β̂
(−i)
g is uncorrelated with

Xi. Unfortunately, as pointed out in Wager et al. (2016), if β̂
(−i)
g is not an unbiased estimator

for βg in finite samples, which will in general not be the case if E[Y |X = x,G = g] is not linear

in X, then β̂
(−i)
g will be estimated using ng observations if Wi,g = 0 and ng − 1 observations

otherwise. In general, the bias will be different for these two sample sizes, which causes a

small amount of correlation between β̂
(−i)
g and Wi,g. This introduces a small amount of bias

to the estimator in Equation (12), but the bias will generally be of lower order than the

overfitting bias.

9Recent literature relaxes this assumption; see, for instance, Belloni et al. (2013).
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Returning to our initial suggestion to estimate mg(X) non-parametrically, we now show

how the same de-biasing idea plays an important role in making regression adjustment work

in finite samples. An issue with the above jackknife approach is that it may be prohibitively

computationally expensive to perform as n grows large, as it requires fitting one ML model

per observation. Fortunately, recent advances in semi-parametric estimation as summarized,

for instance, in Chernozhukov et al. (2018) (henceforth CCDDHNR) provides an approach

to avoid this issue. Specifically, the results from CCDDHNR imply that an estimator with a

much coarser sample splitting scheme, which the authors call “k-fold cross fitting,” maintains

the same favorable asymptotic properties as the jackknife estimator. We therefore use this

form of sample splitting throughout our empirical examples.

To apply the insights in CCDDHNR to our setting, we note that the influence function

corresponding to µ̂m
g has the property that its derivatives to all orders with respect to

m vanish and in particular, all second order Gateaux derivatives vanish. Then, checking

Assumptions 1 and 2 and appealing to Theorems 3.1 and 3.2 of CCDDHNR provides our

third Proposition,

Proposition 3. Suppose that E[|Y |q] <∞ for some q > 2. Assume we have some procedure

for generating ĥ which is consistent in the sense that ||m̂g −m(·; g)||2
p→ 0. Suppose that we

estimate m̂ using a cross fitting procedure as described in CCDDHNR and plug in the fitted

values of ĥ into our estimates µ̂m. Then we have

√
n
(
µ̂ĥ − µ

)
d→ N (0, V ), V = Var(A) + Var(B).10 (13)

Moreover, V can be consistently estimated using sample variances and covariances as de-

scribed below.

It is worth emphasizing that the conditions imposed in Proposition 3 are fairly weak. In

particular, because of the higher order orthogonality of the class of regression adjustments to

m, we merely require that m̂ is consistent and do not require any conditions on how quickly

the convergence occurs.11 Many non-parametric estimators are known to be strongly consis-

tent for fairly general classes of m (see, for instance, Györfi et al. (2002)). We, therefore, find

that asymptotically, not much is lost by switching from using linear regression adjustment

to a more flexible non-parametric regression adjustment with appropriate sample splitting.12

10Where here, A and B are as in the previous section.
11As we will see in our simulations, we still prefer m̂ to be high quality, as the ability of m̂ to fit the data

affects the sampling variability of the resulting estimator.
12This point can be overstated. Nonparametric estimators typically suffer from slower rates of convergence

than parametric estimators, so in a finite sample, one may still prefer linear regression adjustment. The
results from our empirical examples suggest that, in general, one should pick the method that produces the
highest quality out-of-sample predictions of the outcome as measured by mean squared error.
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For completeness, we provide an explicit algorithm using Proposition 3 to estimate effi-

ciently a regression adjustment and to obtain correct asymptotic standard errors. We use

the sample splitting procedure suggested by CCDDHNR and randomly split the data into

K roughly equal size folds.13 We then fit m̂ in the following way:

1. For each fold k ∈ 1, . . . , K, and for each g, fit m̂
(−k)
g (X) using a non-parametric method

for estimating a conditional expectation function on data not in fold k, but in treatment

group g.

2. For each index i in fold k, let m̂g,i = m̂
(−k)
g (Xi)

Finally, we form the point estimate

µ̂FRAg =
1

ng

∑
i:Wi,g=1

(Yi − m̂g,i)︸ ︷︷ ︸
ai

+
1

n

n∑
i=1

m̂g,i︸︷︷︸
bg,i

, (14)

where ng is the number of observations in group g. We have now written each individual treat-

ment group mean estimator in terms of two sample averages: one in the treatment sample

and one in the full sample. Additionally, from the efficiency proof, we have Cov(ag,i, bg′,j) = 0

for both i = j and i 6= j. Computing the full covariance matrix between all of the groups

is now simply an accounting exercise, where only covariances between terms from the same

group need to be accounted for in the computation. Separately doing this for diagonal (Vg,g)

and off diagonal (Vg,g′) terms gives us:

V̂g,g =
1

ng
V̂ar(ag) +

1

n
V̂ar(bg)

V̂g,g′ =
1

n
Ĉov(bg, bg′),

(15)

where V̂ar, Ĉov are respectively the sample variance and sample covariance. If multiple

means are estimated per treatment group, then V̂g,g and V̂g,g′ will be k× k matrices instead,

but the basic form of (15) remains the same. For parameters that depend on a large number

of subsample means, the formula given in (15) may be cumbersome to work with, so a

bootstrap approach for standard errors is potentially easier computationally.

13Note that if the sample size is not sufficiently large, some care should be taken to ensure that each fold
gets observations from each of the treatment groups g.

14



2.4 Power Calculations

We conclude our theoretical discussion by using our results to provide practical advice for

power analyses when using a flexible regression adjustment, as described in this paper. We

assume that the researcher has access to pre-exposure analogues of the X’s and Y ’s. In

particular, we focus our attention on Equation (5). Recall that for the optimal choice of

h = m, the third term vanishes. Consider now, an estimator of the average treatment effect

between two groups g, g′. The variance of the average treatment effect constructed using

FRA is given by
1

ng
Var(ag) +

1

ng′
Var(ag′) +

1

n
Var(mg −mg′). (16)

Since power calculations are typically conducted to ensure the ability to detect small treat-

ment effects, we make the assumption that treatment effects are “negligible” in the sense

that mg −mg′ ≈ 0 and Var(ag) ≈ Var(ag′) = Var(a). We can therefore take the third term

in Equation (16) to be approximately 0. Under these conditions, Equation (16) simplifies to

approximately
(

1
ng

+ 1
ng′

)
Var(a).

Assume that we have a sample containing pre-exposure analogues of the Y ’s and X’s

available to perform power calculations. We now show that we can obtain reasonable esti-

mates of Var(a) using these data. In particular, we observe that by definition

Var(a) = E [Var(Y |X)] = E
[
(Y −m(X))2

]
, m(x) = E[Y |X = x].

We can then take Var(a) to be the low dimensional parameter in a semi-parametric estimation

problem with nuisance parameter m. We note, furthermore, that set up in this way, this

problem satisfies Neyman’s orthogonality.

∂

∂r
E
[
(Y − (m(X) + r(h(X)−m(X))))2

]
= 0

Given this observation, we can estimate Var(a) using a cross-fitting procedure. Examining

the estimator, we can see that the cross-fitting procedure is equivalent to computing the mean

squared error (MSE) of the non-parametric model evaluated on a test set. Orthogonality

implies that even if m is difficult to estimate, we expect that the test set MSE converges to

the Var(a) at about twice the rate as m converges to its true value. Thus, for the purposes

of performing a power calculation, we can plug in the test set MSE when predicting Y using

X on the available data where we would ordinarily plug in the variance of Y to obtain

an approximately valid estimate of power. An analogue of this result in the linear case

is that we can take 1 − R2 of an OLS regression of Y on X to estimate the factor by

15



which a regression adjustment can be expected to reduce variance under the assumption of

homogeneous treatment effects.

3 Empirical Examples

We now take the theory for flexible regression adjustment derived in the previous section

to both simulated and naturally-occurring data. We begin with a number of simulation

exercises. First, we construct a synthetic dataset by adding a simulated treatment effect on

top of the naturally-occurring data. We then use these simulations to show that the asymp-

totic theory in Proposition 3 is reliable, but only if proper sample-splitting procedures are

followed. This exercise shows that our proposed estimator has good asymptotic properties,

but it does not provide much guidance for when one might wish to use a linear regression

adjustment over a more sophisticated ML-based approach. We thus turn to a number of

theory-driven simulation exercises that showcase the salient features of the data that cause

ML methods to substantially outperform linear methods.

After showcasing our methods using synthetic datasets, we show that our estimators

perform well in naturally-occurring datasets as well. We first turn our attention back to Lyft

data and analyze a natural field experiment (see Harrison and List (2004) we conducted at

Lyft to show how using regression adjustment reduces variance in a non-negligible manner.

In the Lyft setting, we find that although regression adjustments in general make a large

difference, the additional flexibility from using an ML model does not substantially improve

precision. To explore if ML-based models can yield statistical improvements, we analyze

three additional field experimental datasets where we do find improvements from using a

more flexible form of regression adjustment.14 The four real world applications we consider

have substantially varying sample sizes and demonstrate that the flexibility from ML-based

approaches can be helpful for various populations of people and situations.

3.1 Simulation Study: Augmented Lyft Data

As a baseline, we first check that the asymptotic distribution implied by Proposition 3

approximates the actual sampling distribution of FRA estimators well. To do this, we take

a dataset containing one row per registered Lyft passenger. Throughout the exercises in this

subsection, we only report the distribution of estimated z-scores using the theory derived in

the previous section. Because the z-scores are normalized, they reveal no information about

14R Code implementing our flexible regression adjustment along with the analyses of the three non-Lyft
settings can be found at the following link: https://github.com/gsun593/FlexibleRA. We have also included
a copy of the code in Appendix A
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Lyft’s underlying data. However, by comparing their distributions to a standard normal

distribution, we can verify that the asymptotic theory we derived in the previous section

works well in finite samples.

For each passenger in the dataset, we record as our outcome variable the count of rides

that that passenger consumed in a fixed two month window. As covariates, we use a number

of summary statistics of past behavior computed on the day before our two month window

begins. As one would expect, past behavior tends to be predictive of future behavior, so using

these summary statistics as covariates for regression adjustment is a reasonable approach to

reduce variance. We split this dataset randomly into 10,000 smaller datasets and construct

“placebo” experiments on these smaller datasets by randomly assigning each individual into

“treatment” and “control” with 50/50 probability. For each experiment, we use the sample

splitting procedure (with five folds) described in Section 2.3 to estimate the mean potential

outcomes in treatment and control. We consider both a “null” case where there is uniformly

no treatment effect and an alternative case where we synthetically induce a treatment effect.

To simulate treatment, for each observation i assigned to “treatment,” we add a random

number of rides drawn from Poisson(0.1 · ri), where ri is the number of rides actually at-

tributed to observation i. By construction, the average treatment effect (ATE) from this

data generating process is a 10% increase in the number of rides. We construct a point

estimate of the ATE by taking the difference of the FRA-adjusted group means. We then

use V̂ as defined in Equation (15) to compute a standard error estimate. The asymptotics

stated in Proposition 3 imply that subtracting the actual treatment effect (0 in the “null”

case and 0.1 ∗mean(rides) in the “alternative” case) from the point estimate of the treat-

ment and dividing this difference by the estimated standard error gives us a random variable

distributed approximately according to N (0, 1), so we call these values “z-scores”.

In Panels A and B of Figure 1, we plot a histogram of the 10,000 z-scores as well as a

qq-plot comparing the empirical quantiles of the z-scores to the normal theoretical quantiles

for the dataset with a treatment effect.15 In Panels A and B of Figure 2, we do the same

for the null dataset. In Table 1, we report the mean and variance of the z-scores along with

the coverage of 95% and 99% confidence intervals. We find that the z-scores fit the standard

normal distribution remarkably well and the coverage of the resulting confidence intervals

are statistically indistinguishable from their theoretical values.

We next show the importance of sample splitting. In Panels C and D of Figures 1 and

2, we replicate Panels A and B respectively, except we do not use sample splitting when

15Specifically, the x axis in these qq-plots is defined by the theoretical quantiles of a standard normal
distribution while the y axis corresponds to the empirical quantiles. If the asymptotic theory is correct, the
points in these plots should lie close to the 45 degree line, and deviations from this prediction allow us to
more precisely visualize deviations from asymptotic normality.
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Table 1: Summmary Statistics of Normalized Treatment Effect Estimates

Simulation Mean Std. Dev. 95% CI Coverage 99% CI Coverage
TE, Moderate, Cross -0.012 1.00 0.9521 0.9887
TE, Moderate, No Cross -1.33 1.06 0.8792 0.7256
Null, Moderate, Cross 0.005 1.00 0.9509 0.9904
Null, Moderate, No Cross -0.001 0.99 0.9507 0.9906
TE, Large, Cross 0.017 1.02 0.946 0.989
TE, Large, No Cross -1.16 1.07 0.764 0.894
Null, Large, Cross -0.04 0.96 0.959 0.990
Null, Large, No Cross -0.02 1.03 0.947 0.989
TE, Small, Cross -0.019 1.00 0.95191 0.99181
TE, Small, No Cross -1.06 1.10 0.91515 0.78837
Null, Small, Cross 0.004 1.00 0.95264 0.99242
Null, Small, No Cross -0.001 1.01 0.9495 0.9885
Ratio, Moderate, Cross -0.01 1.00 0.95264 0.99242
Ratio, Moderate, No Cross -0.005 1.20 0.8983 0.9675

Notes: This table contains summary statistics for the normalized treatment value estimates. If the asymp-
totic theory is valid, these normalized estimates should be mean zero with a standard deviation of 1, and the
95% and 99% CIs should cover 95% and 99% of the values respectively. Each simulation is indexed by (TE,
Sample Size, Cross) where TE and Cross denote respectively whether or not the dataset has a treatment
effect and whether or not cross fitting was used. We refer to the simulations obtained by splitting the original
dataset into 1,000, 10,000, and 100,000 pieces respectively as “Large”, “Moderate”, and “Small” samples.
The last two rows contain results from doing inference for a ratio metric.

constructing our estimators. Summary statistics are again in Table 1. Interestingly, when

the treatment has a null effect, we find that even without sample splitting, our standard

errors provide a reliable approximation to the true sampling distribution of the estimator.

However, the situation changes dramatically in the presence of a treatment effect.

For example, examining Figure 1, we see that without sample splitting, the estimates for

the average treatment effect with regression adjustment are biased downwards considerably.

Intuition about the role of regression adjustment provides a key reason why this bias arises.

Recall that FRA estimates treatment group means by adding h̄g,all − h̄g,g to the raw group

mean. When h̄g is estimated in sample, the value of Yi influences both h̄g,all and h̄g,g, but its

weight in h̄g,g will be larger. The influence of Yi on h̄g tends to push in the opposite direction

as its influence in computing Ȳg. This will tend to bias the estimated group means µ̂g towards

homogeneity, which in turn biases the average treatment effect estimates towards zero. The

negative bias we observe in our simulations thus reflects the fact that we constructed a

positive treatment effect, so that a bias towards 0 is a negative bias.

Thus far, we have found that not using sample splitting leads to biased estimators, where

the bias tends to make group means more similar. One might wonder to what extent a larger
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Figure 1: Distribution of Normalized Estimates (TE, Moderate)

(a) Histogram with Cross Fitting (b) QQ-Plot With Cross Fitting

(c) Histogram without Cross Fitting (d) QQ-Plot without Cross Fitting

Notes: This figure plots the distribution of normalized estimates of the treatment effect, which subtract off
the population average treatment effect and divide by the sample standard deviation. Panels (a) and (b)
show the distribution from a procedure where sample splitting is used while Panels (c) and (d) show the
distribution from a procedure where sample splitting is not used.

sample mitigates this issue. To investigate this question, we repeat the exercises above, but

split the data evenly into 1,000 evenly sized datasets, thus increasing the sample size by a

factor of 10. We replicate the results of Figures 1 2 in Figures 3 and 4. Summary statistics

can again be found in Table 1.

These results make it evident that a large bias continues to exist, even on these larger

datasets. Nonetheless, increasing the sample size does appear to attenuate the bias some-

what: while in the moderate sized sample the bias is -1.33 standard errors, in the large

sized sample the bias decreases to -1.16.16 This result suggests that asymptotic unbiased-

ness might hold, even for the non sample-split estimator, but the asymptote may not be

a good approximation, even for large sample sizes. Since cross-fitting does not negatively

affect asymptotic efficiency and is usually computationally simple,17 the evidence presented

16This reduction is not just due to noise: the difference would be statistically significant if subjected to
formal hypothesis testing.

17If the non-parametric method being used has algorithmic complexity growing faster than linearly in
dataset size (which is common), two-fold cross-fitting would be even faster than not using a split sample for
sufficiently large datasets.
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Figure 2: Distribution of Normalized Estimates (Null, Moderate)

(a) Histogram with Cross Fitting (b) QQ-Plot With Cross Fitting

(c) Histogram without Cross Fitting (d) QQ-Plot without Cross Fitting

Notes: This figure plots the distribution of normalized estimates of the treatment effect, which subtract off
the population average treatment effect and divide by the sample standard deviation. The dataset being used
here by construction has no treatment effects. Panels (a) and (b) show the distribution from a procedure
where sample splitting is used while Panels (c) and (d) show the distribution from a procedure where sample
splitting is not used.

here supports the conclusion that a practitioner using a flexible regression adjustment should

leverage sample splitting for reliable inference.

Proceeding in the opposite direction in terms of sample sizes, one might wonder if flexible

regression adjustment can be fruitfully applied on relatively small datasets, which may be

the relevant case for many experimental researchers. To address this question, we split

our dataset into roughly 100,000 evenly sized smaller datasets, which therefore only have

hundreds of observations. We again construct a set of “z-scores” and compare them to

the standard normal distribution. We plot the results of this exercise in Figure 5 for the

non-null case and 6 for the null case and report summary statistics in Table 1. In this

small data regime, a number of additional interesting features are present. First, even the

estimator with sample splitting displays a slight amount of bias, although the size of this

bias is only about 2% of a standard error. As a result, 95% and 99% confidence intervals

still have excellent coverage properties. Second, examining the null case, both estimators,

but especially the non-sample split estimator, display slight deviations from normality, even
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Figure 3: Distribution of Normalized Estimates (TE, Large)

(a) Histogram with Cross Fitting (b) QQ-Plot With Cross Fitting

(c) Histogram without Cross Fitting (d) QQ-Plot without Cross Fitting

Notes: This figure plots the distribution of normalized estimates of the treatment effect, which subtract off
the population average treatment effect and divide by the sample standard deviation. Compared to Figure
1, we use sample sizes that are 10 times as large. Panels (a) and (b) show the distribution from a procedure
where sample splitting is used while Panels (c) and (d) show the distribution from a procedure where sample
splitting is not used.

while the first and second moments appear to closely match their theoretical values. In

particular, both estimators display slightly thinned tails (as evidenced by the over -coverage

of the 95% and 99% confidence intervals), and slightly less mass around values very close to

0 relative to a Gaussian distribution. The thinned tails are likely due to a similar mechanism

to the one driving bias in the non-null case: the overfitting from not sample splitting creates

a tendency towards mean-reversion, which may be especially effective at correcting extreme

cases of imbalance arising due to sampling variability.

Finally, we consider an example where we estimate a quantity that is not an average

treatment effect. Consider, for instance, metrics of the form

E[Y1|Wi,g = 1]/E[Y2|Wi,g = 1].

Two examples of this metric type in a rideshare context are “conversion” (i.e. the probability

of taking a ride conditional on opening the app and receiving a price quote and time estimate)
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Figure 4: Distribution of Normalized Estimates (Null, Large)

(a) Histogram with Cross Fitting (b) QQ-Plot With Cross Fitting

(c) Histogram without Cross Fitting (d) QQ-Plot without Cross Fitting

Notes: This figure plots the distribution of normalized estimates of the treatment effect, which subtract
off the population average treatment effect and divide by the sample standard deviation. The dataset being
used here by construction has no treatment effects. Compared to Figure 1, we use sample sizes that are 10
times as large. Panels (a) and (b) show the distribution from a procedure where sample splitting is used
while Panels (c) and (d) show the distribution from a procedure where sample splitting is not used.

and intensive margin labor supply outcomes (i.e. the number of hours a Lyft driver works

conditional on working within a given time period). Firms are often interested in learning

how this ratio varies in response to different interventions: E[Y1|Wi,g = 1]/E[Y2|Wi,g =

1] − E[Y1|Wi,g′ = 1]/E[Y2|Wi,g′ = 1]. We therefore replicate the exercise in Figure 1 in

the context of a ratio metric. Again, we only report z-scores here, which allows us to test

the validity of the asymptotic theory while normalizing so as to obscure any identifiable

information about Lyft’s underlying (confidential) data.

In what follows, for each individual, in addition to examining the number of rides an

individual consumes, we also include data on the number of times passengers checked the

app, which we call “sessions”. The probability of taking a ride conditional on opening the

app is therefore given by the average number of rides divided by the average number of

sessions, which takes the form of a ratio metric. We add a treatment effect to this dataset

by first adding sessions to each treated individual according to Poisson(si), where si is 0.05

times the number of sessions taken by individual i. For each added session, we add a ride for
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Figure 5: Distribution of Normalized Estimates (TE, Small)

(a) Histogram with Cross Fitting (b) QQ-Plot With Cross Fitting

(c) Histogram without Cross Fitting (d) QQ-Plot without Cross Fitting

Notes: This figure plots the distribution of normalized estimates of the treatment effect, which subtract off
the population average treatment effect and divide by the sample standard deviation. Compared to Figure
1, we use sample sizes that are 10 times as small. Panels (a) and (b) show the distribution from a procedure
where sample splitting is used while Panels (c) and (d) show the distribution from a procedure where sample
splitting is not used.

that session according to Bernoulli(pi), where pi is the proportion of sessions for individual

i that resulted in a ride. Finally, for all sessions still not associated with a ride, we add

additional rides according to Bernoulli(0.02). The change in conversion in the simulation is

therefore 0.02(1− p̄), where p̄ is the population level of conversion in control. We construct

point estimates for this quantity by plugging in the regression adjusted means in place of

the population means in the formula defining conversion and compute standard errors using

Equation (15) and the delta method.

Empirical results are found in Figure 7, and summary statistics can be found in Table

1. For this particular simulation, we are unable to detect bias in our estimator, but the

standard errors are misleadingly small when we do not use sample splitting. As before, the

results suggest that sample splitting allows us to do valid inference.

Before closing this subsection, we report the average estimated standard errors from the

various simulations performed in Table 2 as a proportion of the standard errors from taking

the raw difference in means. There are a number of interesting patterns in this table. In the
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Figure 6: Distribution of Normalized Estimates (Null, Small)

(a) Histogram with Cross Fitting (b) QQ-Plot With Cross Fitting

(c) Histogram without Cross Fitting (d) QQ-Plot without Cross Fitting

Notes: This figure plots the distribution of normalized estimates of the treatment effect, which subtract
off the population average treatment effect and divide by the sample standard deviation. The dataset being
used here by construction has no treatment effects. Compared to Figure 2, we use sample sizes that are 10
times as small. Panels (a) and (b) show the distribution from a procedure where sample splitting is used
while Panels (c) and (d) show the distribution from a procedure where sample splitting is not used.

non sample-split estimators, we find that the within-sample standard errors are considerably

smaller than the sample split estimators and become larger as a fraction of the difference in

means standard error as sample size increases. This fact on its own is unsurprising: for small

samples, there is more overfitting while in larger samples, there is less. What is surprising is

that the sampling distribution of the “z-scores” suggest that these smaller standard errors

end up still being reasonable estimates of the true sampling variability of the estimator. As

seen in the non-null data, however, when a treatment effect is present, this reduced sampling

variability comes at the cost of large amounts of bias against finding a treatment effect.

A second notable fact is that flexible regression adjustment absorbs a larger proportion

of the variability in the data with larger samples. This is a reflection of the fact that non-

parametric estimators typically need at least a moderate amount of data to deliver valid

results. Interestingly, while we find that in small samples, the non-parametric estimator can

deviate considerably from the asymptotic efficiency bound, the plotted distributions of nor-

malized estimates suggest that inference based on such an estimator remains valid. In small
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Figure 7: Distribution of Normalized Estimates (Ratio)

(a) Histogram with Cross Fitting (b) QQ-Plot With Cross Fitting

(c) Histogram without Cross Fitting (d) QQ-Plot without Cross Fitting

Notes: This figure plots the distribution of normalized estimates of the difference in ratios, which subtract
off the population average difference and divide by the sample standard deviation. Panels (a) and (b)
show the distribution from a procedure where sample splitting is used while Panels (c) and (d) show the
distribution from a procedure where sample splitting is not used.

data settings, we may therefore prefer to use linear regression adjustment, provided we are

confident that a linear functional form is a decent approximation to the conditional expecta-

tion function. As discussed in Section 2.4, when data are available ex-ante for doing power

calculations, comparing the R2 from a linear regression to the R2 from a non-parametric

model is a practical way to decide if there is enough data to use a non-parametric method.

Moreover, this can be completed prior to examining the experimental results themselves,

thus mitigating concerns about specification search or p-hacking.

3.2 Simulation Example: When Does ML Outperform OLS?

While the theoretical results in this paper show that FRA asymptotically can do no worse

(and often does better) than LRA, in practice, one may still not always wish to use ML

techniques when performing regression adjustment. For example, one reason to prefer LRA

is that ML methods can be unstable in small samples and thus deliver less variance reduction

than OLS in practice. Another reason to prefer LRA is that ML methods are computationally
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Table 2: Shrinkage Factor for Confidence Intervals

Simulation Ratio
Small, Cross 0.85
Small, No Cross 0.24
Moderate, Cross 0.75
Moderate, No Cross 0.27
Large, Cross 0.67
Large, No Cross 0.38
Ratio, Cross 0.96
Ratio, No Cross 0.80

Notes: This table shows the factor by which the estimated confidence intervals shrink depending on whether
or not sample splitting is used, what data is being used, and whether an average treatment effect or a
difference in ratios is being estimated.

expensive to use. Fortunately, by examining the proof of the efficiency of FRA, we can gain

an intuition for when it is likely to deliver substantial statistical gains relative to LRA.

Specifically, the main use of ML techniques in the FRA procedure is in estimating the

conditional expectation function (CEF) of the outcome given the covariates. The LRA, on

the other hand, takes the same form as the FRA except that the CEF is approximated to

be linear in covariates. Thus, FRA outperforms LRA when the linear approximation is of

low quality. At a high level, we expect a linear model to poorly approximate the CEF either

when the CEF is highly non-linear with respect to each covariate individually or when the

CEF contains important interaction effects.

In this section, we conduct a simple family of simulation studies to demonstrate the

importance of these two features. Specifically, we simulate treatments W ∼ Bernoulli(0.5)

as well as three latent variables L1, L2, L3 with L1, L2, L3 ∼ Unif(0, 1) which are unobserved

to the econometrician. We also simulate an unobserved “error term” U ∼ N (0, 1). Our

outcome Y is then given by

Y = W + L1 + L2 + L3 + U

In three of our simulations, we derive our covariates X1, X2, X3 from L1, L2, L3 according

to Xi = Lpi for p = 1, 5, 10. In addition, we consider three additional specifications where

X1 = (U1U2)
p, X2 = (U2U3)

p and X3 = (U3U1)
p for p = 1, 5, 10 to generate non-trivial

interaction terms. For each simulation, we draw B=100 samples of size N=1, 000.

We specified our simulations so that the true signal/noise ratio is identical across spec-

ifications, but as p increases further from 1, the true CEF becomes increasingly non-linear.

In Table 3, we report the ratio of the standard errors from FRA compared to LRA in the
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6 specifications (3 values of p times 2 specifications varying whether or not there are in-

teractions amongst covariates). As expected, as p increases away from 1 or as we add an

interaction amongst covariates, the gains from FRA over LRA increase. Note however, that

when there is no interaction and p=1, FRA performs slightly worse than LRA. Asymptoti-

cally, because the CEF is linear, we expect FRA and LRA to attain the same sized standard

errors. However, in finite sample sizes, we expect FRA in this case to perform worse due to

the fact that machine learning techniques tend to require more data to achieve a good fit.

This shows that when the true CEF is known to be linear (or approximately linear), LRA

may still be preferable over FRA in practice, even ignoring computational considerations.

Table 3: Variance Reduction for Average Treatment Effects

p=1 p=5 p=10
Interaction 1.03 0.94 0.72
No Interaction 0.93 0.81 0.68

Notes: This table displays the ratio between the standard deviation of the FRA estimator relative to the
standard deviation of the LRA estimator. The columns vary non-linearity, as parameterized by p while the
rows vary whether or not there are interactions between covariates.

3.3 Application I: Natural Field Experiment on Lyft Cancellations

Having shown that cross-fitting allows us to robustly quantify uncertainty in a simulation

setting, we apply the FRA to a natural field experiment. The premise behind our field

experiment is that, ceteris paribus, Lyft prefers to minimize the number of cases wherein a

driver agrees to pick up a passenger, but then cancels the ride before pickup occurs. Formally,

Lyft would like to design a policy to minimize the cancellation rate,
1
n

∑n
i=1 # rides canceled

1
n

∑n
i=1 # rides accepted

.

When considering a new intervention, Lyft would therefore like to track how this metric

varies across different treatment conditions.

Here, we focus on a field experiment we helped to conduct at Lyft in 2018. To ensure that

drivers do not waste time waiting for passengers who never show up, Lyft allows drivers the

option to mark a passenger as a “no show” if sufficient time elapses after the driver arrives

at the pickup location (this is considered a special type of cancellation). Passengers who are

marked as “no-show” are charged a fee which is passed on to the driver to compensate for

lost passenger time. When Lyft introduced its Shared rides (a product whereby a passenger

receives a discount in return for allowing Lyft to match them with another passenger taking

a similar route at the same time), it had to rethink its original no-show policy. Specifically,

because of the fact that multiple passengers potentially shared the same driver, a passen-

ger not promptly arriving to their pickup location would impose a negative externality on
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passengers already in the car. As a result, Lyft decided that the window of time passengers

received before the driver was allowed to mark them as a “no show” for Shared rides should

be less generous. This led to the rate of no-show cancels to be higher on Shared rides relative

to Standard rides.

Before our field experiment, the status quo policy was that all Shared rides had a shorter

no-show window. However, such a uniform policy was irrational if a passenger requesting a

Shared ride was matched to a driver without other passengers already in the car, since the

negative externality is not present. This reasoning represents the genesis of our experiment.

In our field experiment, drivers were assigned to treatment or control. Control drivers

received the status quo policy whereas if a passenger was matched to a treated driver and

was the first passenger in the car, they would receive the more generous no-show window

that Standard passengers received.

Our two key outcome metrics are the cancellation rate, as defined above, and the no show

rate, defined as
1
n

∑n
i=1 # rides canceled because no show

1
n

∑n
i=1 # rides accepted

. We fit three models. First, we consider

simply plugging the subsample means (SM) within each variant into the formulae defining

the cancellation and no show rates. Second, we consider plugging in the linear regression

adjusted estimates (LRA).18 Finally, we apply the fully flexible regression adjustment (FRA).

Standard errors are constructed using the delta method. For each metric, we report the point

estimate of the effect as a percent of the baseline in control and the standard errors.

A summary of our empirical results are reported in Table 4. A number of notable facts

stand out. First, the experiment was a success when considering the no-show rate, which

decreased by roughly 4.5% across estimators; the null hypothesis of no effect is easily rejected.

Second, despite this, when examining the treatment effect on the overall cancellation rate,

we have difficulty detecting a significant effect with the non-regression adjusted estimate.

Yet, reducing variance using a regression adjustment (either LRA or FRA) makes the effect

considerably easier to detect. Third, while it is true that, as the theory predicts, a fully

flexible regression adjustment delivers slight efficiency gains over a linear adjustment, these

gains appear to be modest in practice.

In Table 5, we investigate this further by reporting the R2 (defined as one minus the

out-of-sample mean squared prediction error divided by total variance) of the linear model

compared to the non-parametric model in explaining variation in the number of accepts,

number of cancels, and number of no shows. Indeed, for most of the outcomes of interest

studied here, the non-parametric models appear to explain only slightly more of the variation

than a linear model, and even provides a slightly worse fit for predicting the number of

18Specifically, we implemented our point estimates according to 14 and our standard errors according to
15, but using an OLS fit for m̂g,i in place of a fitted machine learning model.
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cancels. The limited additional gains from using the flexible regression adjustment in our

setting likely implies that the conditional expectation functions for the outcomes we are

examining are reasonably well approximated by linear functions.

Table 4: Variance Reduction for Average Treatment Effects

SM LRA FRA
Cancel Rate -0.60%

(0.52)
-1.26%
(0.35)

-1.32%
(0.34)

No Show Rate -4.4%
(0.51)

-4.2%
(0.40)

-4.3%
(0.40)

Notes: This table shows point estimates and standard errors in parentheses for the percent difference in
cancel rate and no show rate between treatment and control. The first column looks at the estimator obtained
by plugging in the subsample means. The second column considers a linear regression adjustment. The third
column uses a nonparamteric regression adjustment. We are unable to report sample sizes for this analysis.

Table 5: R2 in predicting outcomes

# Accepts # Cancels # No Shows
Linear R2 0.687 0.587 0.514
Flexible R2 0.712 0.580 0.525

Notes: This table shows the R2 in predicting various metrics necessary to compute cancellation and no
show rates. The first row considers R2 from fitting an OLS model while the second row considers the R2

from fitting a flexible non-parametric model.

We conclude this section by also comparing regression adjustments to the TWFE model.

For each individual, in addition to the number of acceptances, cancels, and no shows during

the experimental period, we also obtain data about the number of acceptances, cancels, and

no shows in the period before the experiment started. In Table 6, we report the degree

to which differences-in-differences reduces variance compared to a regression adjustment

estimator that simply takes these pre-experimental outcomes as covariates.

Depending on the outcome we are examining, we find that regression adjustment results

in a 1-10% reduction in the size of the standard errors. Moreover, the square of the ratios

reported in Table 6 represent how much smaller the sample size needs to be holding statistical

power fixed if one uses regression adjustment instead of differences-in-differences. Across our

three outcomes, we find that regression adjustment allows an experimenter to garner the same

power for a sample with only 84% to 97% of the number of observations, suggesting that the

current practice among experimental economists of estimating TWFE models may be causing

researchers to “overpay” for their experiments by a non-trivial amount, leading to a greater

number of Type 2 errors. This result suggests that experimental economists commitment
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to focusing solely on sample size or sample allocation across cells when considering power is

unduly restrictive, and indeed quite inefficient.

Table 6: Reduction in Standard Errors

# Accepts # Cancels # No Shows
Diff-in-diff 0.622 0.667 0.786
Regression Adjustment 0.596 0.658 0.721

Notes: This table shows the reduction in standard errors from using different variance reduction techniques.
The columns index the outcome measure while the rows index the estimator considered. For a given outcome
Y and for a given estimator β̂, each entry in the table displays the ratio between the standard errors from
fitting β̂ on outcome Y relative to the standard errors from taking a simple difference in means.

3.4 Application II: Oregon Health Insurance Experiment

We next turn our attention to an analysis of the data from the Oregon Health Insurance

Experiment (OHIE). We focus in particular on replicating the results of Finkelstein et al.

(2016), which measures the impact of Medicaid on emergency room visits. We take our

covariates to be gender, age, prior health, and education along with a detailed vector of

counts for various types of ER visits prior to randomization. Our outcome of interest is

whether or not an individual visited an emergency department during the experiment. We

additionally estimate the impact of treatment status on medicaid take-up, and by dividing

the reduced form effect of treatment on outcome by the effect of treatment on take-up, we

can estimate the LATE of Medicaid take-up on ER visits.

Empirical results of this exercise are summarized in Table 7, which has a similar form as

Table 4 and compares the subsample means estimator which does not use any covariates to

the linear and flexible adjustments. Across specifications, we find that the flexible regression

improves standard errors by about 2-3% relative to the next best alternative. While these

gains are modest fixing sample size, they imply that for a similar level of statistical power,

researchers could reduce sample sizes by about 5-6%, thus reducing variable experimental

costs by a similar quantity. We suspect that with a richer covariate set the gains would have

been even greater.

3.5 Application III: Water Conservation Nudges

We next re-analyze data from a natural field experiment conducted by Ferraro and Price

(2013), which studies the effect of a number of nudges on water conservation. The inter-

vention was designed to reduce water consumption during the summer months of 2007. In
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Table 7: Variance Reduction for OHIE

SM LRA FRA
ER Visits 0.0132

(0.0085)
0.0143
(0.0079)

0.0139
(0.0077)

Medicaid Take-Up 0.172
(0.0063)

0.159
(0.0062)

0.150
(0.0062)

LATE 0.0892
(0.0496)

0.0902
(0.0498)

0.0870
(0.0482)

Notes: This table shows point estimates and standard errors in parentheses for a number of causal param-
eters from the OHIE across a number of regression adjustment specifications. In the first row, we measure
the reduced form impact of treatment assignment on ER visits. In the second row, we measure the first
stage impact of treatment assignment on Medicaid take-up. In the third row, we divide the first row by the
second row to obtain an estimate of the LATE of Medicaid uptake. The sample size is N=13, 051.

addition to collecting data on summer consumption, the authors also collect month-by-month

water consumption for each individual in the experiment in the year prior to experimentation.

For simplicity, we only consider the effect of their strongest nudge treatment relative to

the control group. We consider three sets of analyses, with results displayed in Table 8. First,

we replicate the basic specification of Ferraro and Price (2013), with the small difference that

we further disaggregate their pre-intervention measures of water use and include a separate

covariate for each month. Our outcome Y , measures levels of water consumption in June,

July, August, and September of 2007. With this specification, ML delivers similarly levels

of precision improvements as in the OHIE, reducing standard errors by 3% and implying

that the sample size could be reduced by 6% while holding statistical power fixed. When

replicating their results, we noticed that the distribution of outcomes is fairly skewed, so we

next considered a specification where we instead took our outcome to be log(Y + 1). In this

specification, we found substantial gains to using an ML technique. Relative to the linear

specification, ML reduced standard errors by 13%, which equivalently can be thought of as

implying that a sample size reduction of 24% would leave statistical power unchanged.

An important reason for this discrepancy is that while outcomes are measured in logs, the

covariates in the second specification continued to be expressed as levels. We thus consider

a third specification where we measure covariates X in logs as well, log(X + 1). Under this

specification, the gains to using an ML technique once again look modest relative to the

linear specification. Standard errors are smaller by roughly 2%, or equivalently, sample size

could be reduced by roughly 4% holding power fixed. We view this example as demonstrating

an important methodological point. If the researcher has good intuition about the functional

relation between outcomes and covariates, there are limited gains to using ML techniques over

a well-specified linear regression. In this particular case, it is fairly intuitive that if outcomes
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are logged, then corresponding covariates should be measured in logs as well. However, our

example shows that that ML-based regression adjustments are considerably more robust to

pre-analysis transformations that the researcher might make to covariates and thus may be

especially helpful when the researcher does not have strong prior information about which

functional form specifications are most likely to be accurate.

Table 8: Variance Reduction for Water Conservation

SM LRA FRA
Un-Logged Outcomes and Covariates -1.44

(0.155)
-1.84
(0.160)

-1.85
(0.354)

Logged Outcomes, Unlogged Covariates -0.0293
(0.00860)

-0.0365
(0.00463)

-0.0368
(0.00402)

Logged Outcomes and Covariates -0.0293
(0.00860)

-0.0374
(0.00415)

-0.0377
(0.00406)

Notes: This table shows point estimates and standard errors in parentheses for a number of causal parame-
ters from the OHIE across a number of regression adjustment specifications. In the first row, we measure raw
outcomes and take raw pre-exposure outcomes as covariates. In the second row, we measure log outcomes.
In the third row, we also apply the log transformation to covariates. The sample size is N=100, 026

3.6 Application IV: CogX, An Early Education Program

Our final empirical example is the evaluation of data from the CogX program described in

Fryer et al. (2020). The experiment studies the effect of an early childhood intervention,

CogX, on cognitive and non-cognitive test scores. Following the authors, we focus in partic-

ular on the effect of CogX on an index of cognitive test scores. For controls, we include a

number of demographic variables (birth weight, mother’s education, mother’s age, household

income, race, and gender) as well as pre-intervention test scores.

We include a summary of empirical results in Table 9. We find that ML techniques are

able to reduce standard errors by roughly 4% in this setting, which alternatively implies that

sample size could have been reduced by roughly 8% while maintaining statistical power. In

this setting, this would have amounted to hundreds of thousands of dollars.

4 Conclusion

In this paper, we synthesize and generalize a number of approaches to reducing variance when

analyzing experimental data. We expand on prior theory along a number of dimensions.

We consider a broad class of regression adjustment estimators and identify the conditional

expectation function as the minimum variance function to use for the adjustment. We

32



Table 9: Variance Reduction for CogX

SM LRA FRA
Cog Test Scores 7.13

(2.69)
10.75
(2.59)

8.97
(2.49)

Notes: This table shows point estimates and standard errors in parentheses for the effect of the CogX
program on cognitive test scores across a number of regression adjustment specifications. The sample size is
N=395.

then show that regression adjustment estimators can be written in a way that satisfies

an orthogonality property, which in turn makes it possible to use non-parametric/machine

learning estimators to implement feasibly the optimal adjustment under mild regularity

assumptions.

These efficiency and feasibility results have important implications for researchers de-

signing and analyzing experiments. They suggest that provided a good approximation to

the conditional expectation function is being used for variance reduction, there are limited

gains to using additional clever econometrics to enhance precision in experimental data. Im-

portantly, regardless of the parameter being estimated, our results suggest that a researcher

seeking a greater level of experimental power should focus more on finding better covariates

than on finding better estimators.

We also showcase the practical implications of our theoretical results in a number of

synthetic and naturally-occurring datasets. We begin by performing a number of simulation

studies by augmenting naturally-occurring Lyft data on outcomes and covariates with syn-

thetic treatments. We show that across a range of sample sizes from hundreds to hundreds

of thousands, our asymptotic results provide a reliable guide to inference. We then construct

a set of additional simulations to show when researchers may wish to use ML vs linear re-

gression adjustment techniques. After running these simulation studies, we turn towards the

analysis of a number of real-world datasets where we are able to quantify the performance

various regression adjustment techniques.

Our empirical examples provide a number of key takeaways. First, flexible regression ad-

justment is not solely a technique for the big data world. Even with relatively small datasets

with only hundreds of observations, FRA can improve precision meaningfully. Second, our

simulations suggest that sample splitting is crucial for ensuring that the standard errors from

the regression adjustment are valid, but once sample splitting is used, inference is reliable

and tractable. Third, our example using Lyft data gives a real-world example where a cur-

rently popular applied practice of analyzing field experiments with pre-treatment outcomes

using two-way fixed effects estimators can lead to substantial losses in statistical precision
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relative to regression adjustment. This empirically supports our theoretical result that the

two-way fixed effects estimators are statistically inefficient. They should therefore typically

be replaced with some form of regression adjustment, linear or otherwise. Fourth, in a num-

ber of non-Lyft datasets, we find that the additional gains to using ML techniques over linear

regression adjustment can allow researchers to attain similar levels of statistical power with

4-8% fewer observations.

While the results we present are able to generalize the existing literature in a number of

ways, they are suggestive of some avenues for future work, which we briefly discuss. First,

our efficiency results only apply to the case of i.i.d. sampling. Future work should explore

whether the efficiency of our proposed estimator is robust to alternative experiment designs

such as blocking or stratification. Second, our results only apply to the cases where the

parameters of interest can be expressed as functions of a finite set of sample means. As

aforementioned, in some settings, researchers are interested in using experimental variation

to estimate a structural parameter. When the estimator of the structural parameter of

interest is obtained by optimizing a criterion function, our results may not directly apply.

We are currently exploring the possibility of generalizing the ideas behind this present work

to that setting.
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A Code for Non-Lyft Analyses

l i b r a r y ( dplyr )

l i b r a r y (gbm)

l i b r a r y ( randomForest )

l i b r a r y ( numDeriv )

l i b r a r y ( ggp lot2 )

# Perform F l ex i b l e Regress ion Adjustment Pre−Proces s ing

# FRA( dat , outcome cols , t r e a t c o l , c o v a r i a t e c o l s , n f o ld s , method )

# Inputs :

# dat : data frame with outcomes , treatments , and cova r i a t e s

# outcome co ls : column names f o r outcomes o f i n t e r e s t

# t r e a t c o l : column name o f treatment

# c o v a r i a t e c o l s : column names o f c ova r i a t e s

# n f o l d s : number o f f o l d s f o r sample s p l i t t i n g

# method : r e g r e s s i o n method used f o r r e g r e s s i o n adjustment

# ML func : Custom ML model supp l i ed by user . Should be o f the form ML func ( formula , data ) .

# Output should have a p r ed i c t func t i on .

#

# Output :

# dat with FRA : o r i g i n a l dataframe with extra columns o f the form

# ’m {otcuome name} { treatment name} ’ : f i t t e d value o f c ond i t i ona l expectat ion ,

# E[ outcome | X, treatment ] f o r the outcome and treatment named

# ’ u {outcome name} { treatment name} ’ : ” i n f l u e n c e func t i on ” f o r mean po t en t i a l outcome ,

# E[ outcome ( treatment ) ] . Mean o f t h i s column i s the r e g r e s s i o n adjusted es t imator f o r

# E[ outcome ( treatment ) ] and var iance−covar iance matrix o f these columns i s a symptot i ca l l y

# va l i d es t imator o f covar iance matrix o f the r e g r e s s i o n adjusted point e s t imate s

#####

FRA <− f unc t i on ( dat , outcome co ls = c ( ’Y’ ) ,

t r e a t c o l = ’W’ ,

c o v a r i a t e c o l s = c ( ’X1 ’ , ’X2 ’ , ’X3 ’ ) ,

n f o l d s = 2 ,

method = ’ ’ ,

ML func = NULL, num trees = 300) {
# Sp l i t sample to ensure balance in treatment s ta tu s ac ro s s samples

dat <− dat %>% as . data . frame

dat$order <− sample ( 1 : nrow ( dat ) , nrow ( dat ) )

dat <− dat %>% arrange ( ! ! sym( t r e a t c o l ) , order )

f o l d c o l <− rep ( 1 : n f o ld s , c e i l i n g ( nrow ( dat ) / n f o l d s ) )

f o l d c o l <− f o l d c o l [ 1 : nrow ( dat ) ]

da t$ f o ld <− f o l d c o l

# Get unique treatment l e v e l s

t r e a t l e v e l s <− unique ( dat [ , t r e a t c o l ] ) %>% as . vec tor

# Perform Cr o s s f i t t i n g

# Sp l i t out by method

# For each outcome/ treatment pair , c r e a t e column c a l l e d ’m {outcome name} { treatment name} ’

# which i s the best p r ed i c t o r o f outcome given cova r i a t e s with in treatment group

i f (method == ’ l i n ea r ’ ) {
f o r ( y in outcome co ls ) {

f o r ( t r e a t in t r e a t l e v e l s ) {
# Create new column f o r m {outcome name} { treatment name}
dat [ , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− 0

f o r ( f in 1 : n f o l d s ) {
# Fit OLS model us ing data from f o l d s except cur rent f o l d

lmod <− lm( formula ( paste (y , ’ ˜ ’ , paste ( c o v a r i a t e c o l s , c o l l a p s e = ’+ ’ ) ) ) ,

dat %>% f i l t e r ( f != fo ld , ! ! sym( t r e a t c o l ) == t r e a t ) )

# Pro j ec t f i t t e d va lues based on cova r i a t e s o f cur rent f o l d
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dat [ da t$ f o ld == f , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− pr ed i c t ( lmod , dat %>%

f i l t e r ( f o l d == f ) )

}
}

}
}
e l s e i f (method == ’ r f ’ ) {

f o r ( y in outcome co ls ) {
f o r ( t r e a t in t r e a t l e v e l s ) {

# Create new column f o r m {outcome name} { treatment name}
dat [ , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− 0

f o r ( f in 1 : n f o l d s ) {
# Fit random f o r e s t model us ing data from f o l d s except cur rent f o l d

rfMod <− randomForest ( formula ( paste (y , ’ ˜ ’ , paste ( c o v a r i a t e c o l s , c o l l a p s e = ’+ ’ ) ) ) ,

dat %>% f i l t e r ( f != fo ld , ! ! sym( t r e a t c o l ) == t r e a t ) )

# Pro j ec t f i t t e d va lues based on cova r i a t e s o f cur rent f o l d

dat [ da t$ f o ld == f , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− pr ed i c t ( rfMod , dat %>%

f i l t e r ( f o l d == f ) )

}
}

}
}
e l s e i f (method == ’gbm ’ ) {

f o r ( y in outcome co ls ) {
f o r ( t r e a t in t r e a t l e v e l s ) {

# Create new column f o r m {outcome name} { treatment name}
dat [ , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− 0

f o r ( f in 1 : n f o l d s ) {
# Fit grad i ent boost ing machine model us ing data from f o l d s except cur rent f o l d

gbmMod <− gbm( formula ( paste (y , ’ ˜ ’ , paste ( c o v a r i a t e c o l s , c o l l a p s e = ’+ ’ ) ) ) ,

dat %>% f i l t e r ( f != fo ld , ! ! sym( t r e a t c o l ) == t r e a t ) ,

i n t e r a c t i o n . depth = 2 , n . t r e e s = num trees , shr inkage = 0 .05 ,

d i s t r i b u t i o n = ’ gauss ian ’ , verbose = F)

# Pro j ec t f i t t e d va lues based on cova r i a t e s o f cur rent f o l d

dat [ da t$ f o ld == f , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− pr ed i c t (gbmMod, dat %>%

f i l t e r ( f o l d == f ) )

}
}

}
}
e l s e i f ( ! i s . nu l l (ML func ) ) {

f o r ( y in outcome co ls ) {
f o r ( t r e a t in t r e a t l e v e l s ) {

# Create new column f o r m {outcome name} { treatment name}
dat [ , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− 0

f o r ( f in 1 : n f o l d s ) {
# Fit OLS model us ing data from f o l d s except cur rent f o l d

ML mod <− ML func ( formula ( paste (y , ’ ˜ ’ , paste ( c o v a r i a t e c o l s , c o l l a p s e = ’+ ’ ) ) ) ,

dat %>% f i l t e r ( f != fo ld , ! ! sym( t r e a t c o l ) == t r e a t ) )

# Pro j ec t f i t t e d va lues based on cova r i a t e s o f cur rent f o l d

dat [ da t$ f o ld == f , paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ] <− pr ed i c t (ML mod, dat %>%

f i l t e r ( f o l d == f ) )

}
}

}
}
e l s e {

stop (”Method most be in c ( ’ l i n e a r ’ , ’ r f ’ , ’gbm ’ ) or custom method must be supp l i ed ”)

}

# For each outcome/ treatment pair , c r e a t e column f o r i n f l u e n c e func t i on o f the form

# 1 / prob ( treatment ) ∗ (Y − E[Y|X, treatment ] ) ∗ 1{ treatment} + E[Y|X, treatment ]

f o r ( t r e a t in t r e a t l e v e l s ) {
prop t r ea t <− mean( dat [ , t r e a t c o l ] == t r e a t )

f o r (y in outcome co ls ) {
dat <− dat %>% mutate (

! ! sym( paste ( ’ u ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ) :=

case when ( ! ! sym( t r e a t c o l ) == t r e a t ˜ 1/ prop t r ea t ∗
( ! ! sym(y ) − ! ! sym( paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) ) ) ,

TRUE ˜ 0) + ! ! sym( paste ( ’m ’ , y , ’ ’ , t r eat , sep = ’ ’ ) )

)

}
}
dat with FRA <− dat
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dat with FRA

}
#####

# Estimate Average Treatment E f f e c t a f t e r Fu l l Regress ion Adjustment Pre−proc e s s i ng

# FRA ATE( dat with FRA , outcome col , t r e a t l v l , c t r l l v l )

# Inputs :

# dat with FRA : dataframe with r e g r e s s i o n adjusted columns

# outcome col : name o f outcome whose ATE i s being est imated

# t r e a t l v l : va lue o f W corresponding to ” treatment ”

# c t r l l v l : va lue o f W corresponding to ” con t r o l ”

#

# Output :

# Vector with point es t imate and standard e r r o r

#####

FRA ATE <− f unc t i on ( dat with FRA , outcome col = ’Y’ , t r e a t l v l , c t r l l v l ) {
tmp <− dat with FRA %>%

mutate (u = ! ! sym( paste ( ’ u ’ , outcome col , ’ ’ , t r e a t l v l , sep = ’ ’ ) ) −
! ! sym( paste ( ’ u ’ , outcome col , ’ ’ , c t r l l v l , sep = ’ ’ ) ) )

c (tmp %>% . $u %>% mean , (tmp %>% . $u %>% sd ) / sq r t ( nrow (tmp ) ) )

}
#####

# Estimate l o c a l average treatment e f f e c t when experiment assignment W i s instrument f o r treatment

# FRA LATE( dat with FRA , outcome col , endog col , t r e a t l v l , c t r l l v l )

# us ing r eg r e s s i on −adjusted Wald−s t y l e e s t imator

# Inputs :

# dat with FRA : dataframe with r e g r e s s i o n adjusted columns

# outcome col : name o f outcome whose LATE i s being est imated

# endog co l : treatment , which experiment assignment instruments f o r

# t r e a t l v l : va lue o f W corresponding to ” treatment ”

# c t r l l v l : va lue o f W corresponding to ” con t r o l ”

#

# Output :

# Vector with point es t imate and standard e r r o r

#####

FRA LATE <− f unc t i on ( dat with FRA , outcome col = ’Y’ , endog co l = ’D’ , t r e a t l v l , c t r l l v l ) {
tmp <− dat with FRA %>%

mutate (u num = ! ! sym( paste ( ’ u ’ , outcome col , ’ ’ , t r e a t l v l , sep = ’ ’ ) ) −
! ! sym( paste ( ’ u ’ , outcome col , ’ ’ , c t r l l v l , sep = ’ ’ ) ) ,

u denom = ! ! sym( paste ( ’ u ’ , endog col , ’ ’ , t r e a t l v l , sep = ’ ’ ) ) −
! ! sym( paste ( ’ u ’ , endog col , ’ ’ , c t r l l v l , sep = ’ ’ ) ) )

pe <− mean( tmp$u num) / mean( tmp$u denom)

VCV <− 1/nrow ( dat with FRA ) ∗ matrix ( c ( var ( tmp$u num) , cov ( tmp$u num , tmp$u denom ) ,

cov ( tmp$u num , tmp$u denom ) , var ( tmp$u denom ) ) , nrow = 2)

D <− c (1 / mean( tmp$u denom ) , − mean( tmp$u num) / mean( tmp$u denom )ˆ2)

c ( pe , s q r t (D %∗% VCV %∗% D))

}
#####

# Estimate func t i on o f p o t en t i a l outcome means a f t e r r e g r e s s i o n adjustment

# FRA theta ( para func , dat with FRA , outcome treats )

# Inputs :

# param func : func t i on o f p o t en t i a l outcome means being est imated

# dat with FRA : dataframe with r e g r e s s i o n adjusted columns

# outcome treats : vec tor o f s t r i n g s o f the form ’{ outcome name} { treatment name} ’ which

# are the inputs in to param func

# Output :

# Vector with point es t imate and standard e r r o r

#####

FRA theta <− f unc t i on ( param func , dat with FRA , outcome treats ) {
i n pu t c o l s = sapply ( outcome treats , f unc t i on (x ) paste ( ’ u ’ , x , sep = ’ ’ ) )

VCV = matrix ( sapply ( i npu t co l s , f unc t i on (x ) sapply ( i nput co l s , f unc t i on (y )

cov ( dat with FRA [ , x ] , dat with FRA [ , y ] ) ) ) ,

nrow = length ( outcome treats ) )

m = as . vec tor ( sapply ( i npu t co l s , f unc t i on (x ) mean( dat with FRA [ , x ] ) ) )

D <− grad ( param func , m)
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pe = param func (m)

se = sq r t (1/nrow ( dat with FRA ) ∗ D %∗% VCV %∗% D)

c ( pe , se )

}
#####

# GOTV

#####

data ( GerberGreenImai )

dat <− GerberGreenImai

rm( GerberGreenImai )

dat <− dat %>% mutate (Y = VOTED98, W = APPEAL) %>%

s e l e c t (Y,W,WARD, AGE, MAJORPTY, VOTE96. 0 , VOTE96. 1 , NEW)

dat$WARD <− as . f a c t o r (dat$WARD)

se t . seed (6124)

c o v a r i a t e c o l s <− dat %>% colnames %>% t a i l ( nco l ( dat ) − 2)

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ r f ’ , n f o l d s = 10)

dat with LRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ l i n ea r ’ , n f o l d s = 10)

FRA ATE( dat with FRA , t r e a t l v l = 3 , c t r l l v l = 1)

FRA ATE( dat with LRA , t r e a t l v l = 3 , c t r l l v l = 1)

dat %>% group by (W) %>% summarise (m = mean(Y) , v = var (Y) / n ( ) ) %>%

summarise ( pe = mean(m[W==3]) − mean(m[W==1]) , se = sq r t (mean(v [W==3]) + mean(v [W==1])))

#####

# Ferraro Pr i ce

#####

se t . seed (326)

# Unlogged Everything

dat <− r ead csv ( ’ d a t f o r RA f e r r a r op r i c e . csv ’ ) %>% na . omit %>% f i l t e r (Y < 200)

dat$Y %>% h i s t

h i s t ( dat$Y)

c o v a r i a t e c o l s <− dat %>% colnames %>% t a i l ( nco l ( dat ) − 2)

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’gbm’ , n f o l d s = 3 ,

num trees = 600)

dat with LRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ l i n ea r ’ , n f o l d s = 10)

FRA ATE( dat with FRA , outcome col = ’Y’ , t r e a t l v l = 3 , c t r l l v l = 4)

FRA ATE( dat with LRA , outcome col = ’Y’ , t r e a t l v l = 3 , c t r l l v l = 4)

dat %>% summarise (

pe = mean(Y[W==3]) − mean(Y[W==4]) ,

se = sq r t ( var (Y[W==3]) / sum(W==3) + var (Y[W==3])/sum(W==3)))

# Logged Outcome Only

dat <− r ead csv ( ’ d a t f o r RA f e r r a r op r i c e . csv ’ ) %>% na . omit %>% f i l t e r (Y < 200)

dat$Y %>% h i s t

dat$Y <− l og ( dat$Y + 1)

h i s t ( dat$Y)

c o v a r i a t e c o l s <− dat %>% colnames %>% t a i l ( nco l ( dat ) − 2)

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’gbm’ , n f o l d s = 3 ,

num trees = 600)

dat with LRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ l i n ea r ’ , n f o l d s = 10)

FRA ATE( dat with FRA , outcome col = ’Y’ , t r e a t l v l = 3 , c t r l l v l = 4)

FRA ATE( dat with LRA , outcome col = ’Y’ , t r e a t l v l = 3 , c t r l l v l = 4)

dat %>% summarise (

pe = mean(Y[W==3]) − mean(Y[W==4]) ,
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se = sq r t ( var (Y[W==3]) / sum(W==3) + var (Y[W==3])/sum(W==3)))

# Logged Everything

dat <− r ead csv ( ’ d a t f o r RA f e r r a r op r i c e l o g g ed . csv ’ ) %>% na . omit %>% f i l t e r (Y < 200)

dat$Y %>% h i s t

dat$Y <− l og ( dat$Y + 1)

h i s t ( dat$Y)

c o v a r i a t e c o l s <− dat %>% colnames %>% t a i l ( nco l ( dat ) − 2)

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’gbm’ , n f o l d s = 3 ,

num trees = 600)

dat with LRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ l i n ea r ’ , n f o l d s = 10)

FRA ATE( dat with FRA , outcome col = ’Y’ , t r e a t l v l = 3 , c t r l l v l = 4)

FRA ATE( dat with LRA , outcome col = ’Y’ , t r e a t l v l = 3 , c t r l l v l = 4)

dat %>% summarise (

pe = mean(Y[W==3]) − mean(Y[W==4]) ,

se = sq r t ( var (Y[W==3]) / sum(W==3) + var (Y[W==3])/sum(W==3)))

#####

# CHECC

#####

dat <− r ead csv ( ’ dat for RA CHECC . csv ’ )

dat$hl <− as . f a c t o r ( dat$hl )

s e t . seed (161)

c o v a r i a t e c o l s <− dat %>% colnames %>% t a i l ( nco l ( dat ) − 2)

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ r f ’ , n f o l d s = 10)

dat with LRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ l i n ea r ’ , n f o l d s = 10)

dat with FRA %>% f i l t e r (W == 0) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 0 )ˆ2 ) ) )

dat with FRA %>% f i l t e r (W == 1) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 1 )ˆ2 ) ) )

dat with LRA %>% f i l t e r (W == 0) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 0 )ˆ2 ) ) )

dat with LRA %>% f i l t e r (W == 1) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 1 )ˆ2 ) ) )

FRA ATE( dat with FRA , t r e a t l v l = 1 , c t r l l v l = 0)

FRA ATE( dat with LRA , t r e a t l v l = 1 , c t r l l v l = 0)

dat %>% group by (W) %>% summarise (m = mean(Y) , v = var (Y) / n ( ) ) %>%

summarise ( pe = mean(m[W==1]) − mean(m[W==0]) ,

se = sq r t (mean(v [W==1]) + mean(v [W==0])))

#####

# OHIE

#####

dat <− r ead csv ( ’ dat for RA OHIE . csv ’ ) %>% na . omit

c o v a r i a t e c o l s <− dat %>% colnames %>% t a i l ( nco l ( dat ) − 3)

s e t . seed (623)

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ , ’D’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ r f ’ , n f o l d s = 3)

dat with LRA <− FRA( dat , outcome co ls = c ( ’Y’ , ’D’ ) ,

c o v a r i a t e c o l s = cova r i a t e c o l s , method = ’ l i n ea r ’ , n f o l d s = 10)

dat with FRA %>% f i l t e r (W == 0) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 0 )ˆ2 ) ) )

dat with FRA %>% f i l t e r (W == 1) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 1 )ˆ2 ) ) )
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dat with LRA %>% f i l t e r (W == 0) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 0 )ˆ2 ) ) )

dat with LRA %>% f i l t e r (W == 1) %>%

summarise ( Y sd 0 = sd (Y) , rmse 0 = sq r t (mean ( (Y−m Y 1 )ˆ2 ) ) )

FRA ATE( dat with FRA , t r e a t l v l = 1 , c t r l l v l = 0)

FRA ATE( dat with LRA , t r e a t l v l = 1 , c t r l l v l = 0)

(FRA ATE( dat with FRA , t r e a t l v l = 1 , c t r l l v l = 0 ) [ 2 ] /

FRA ATE( dat with LRA , t r e a t l v l = 1 , c t r l l v l = 0 ) [ 2 ] ) ˆ 2

FRA ATE( dat with FRA , outcome col = ’D’ , t r e a t l v l = 1 , c t r l l v l = 0)

FRA ATE( dat with LRA , outcome col = ’D’ , t r e a t l v l = 1 , c t r l l v l = 0)

dat %>% summarise (

p e r f = mean(Y[W==1]) − mean(Y[W==0]) ,

s e r f = sq r t ( var (Y[W==1]) / sum(W==1) + var (Y[W==0])/sum(W==0)) ,

p e f s = mean(D[W==1]) − mean(D[W==0]) ,

s e f s = sq r t ( var (D[W==1]) / sum(W==1) + var (D[W==0])/sum(W==0)))

FRA LATE( dat with FRA , t r e a t l v l = 1 , c t r l l v l = 0)

FRA LATE( dat with LRA , t r e a t l v l = 1 , c t r l l v l = 0)

dat %>% felm (Y˜1 | 0 | (D˜W) , data = . ) %>%

summary

(FRA LATE( dat with FRA , t r e a t l v l = 1 , c t r l l v l = 0 ) [ 2 ] /

FRA LATE( dat with LRA , t r e a t l v l = 1 , c t r l l v l = 0 ) [ 2 ] ) ˆ 2

dat %>%

felm ( formula ( paste ( ’Y˜ ’ , paste ( c o v a r i a t e c o l s , c o l l a p s e = ’+ ’) , ’ |0 | (D˜W) ’ ) ) ,

data = . ) %>%

summary

#####

# Simulat ion example

#####

# Latent v a r i a b l e s L1 , L2 , L3

get pe <− f unc t i on (p , i n t e r a c t i on ,N = 1000 , method = ’ r f ’ ) {
W <− sample ( c ( 0 , 1 ) , N, r ep l a c e = T)

L1 <− r un i f (N, 0 , 1)

L2 <− r un i f (N, 0 , 1)

L3 <− r un i f (N, 0 , 1)

i f ( i n t e r a c t i o n == 1) {
X1 <− (L1 ∗ L2)ˆp

X2 <− (L2 ∗ L3)ˆp

X3 <− (L3 ∗ L1)ˆp

} e l s e {
X1 <− L1ˆp

X2 <− L2ˆp

X3 <− L3ˆp

}
U <− rnorm (N, 0 , 0 . 5 )

Y <− L1 + L2 + L3 + W + U

dat <− data . frame (W = W, X1 = X1 , X2 = X2 , X3 = X3 , Y = Y)

# Apply r e g r e s s i o n adjustment pre−proc e s s i ng

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ ) , method = method , n f o l d s = 5)
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# Compare FRA theta with FRA ATE est imate s o f average e f f e c t

FRA ATE( dat with FRA , t r e a t l v l = 1 , c t r l l v l = 0 ) [ 1 ]

}

s e t . seed (216)

f o r (p in c (1 , 5 ,10) ) {
f o r ( i n t e r a c t i o n in c ( 0 , 1 ) ) {

f i t s m l <− sapply (1 : 100 , func t i on (x ) ge t pe (p , i n t e r a c t i on , method = ’ r f ’ ) )

f i t s l i n e a r <− sapply (1 : 100 , func t i on (x ) ge t pe (p , i n t e r a c t i on , method = ’ l i n ea r ’ ) )

p r in t ( c (p , i n t e r a c t i on , sd ( f i t s m l ) / sd ( f i t s l i n e a r ) ) )

}
}

N <− 1000

p <− 1

i n t e r a c t i o n = 1

W <− sample ( c ( 0 , 1 ) , N, r ep l a c e = T)

L1 <− r un i f (N, 0 , 1)

L2 <− r un i f (N, 0 , 1)

L3 <− r un i f (N, 0 , 1)

i f ( i n t e r a c t i o n == 1) {
X1 <− (L1 ∗ L2)ˆp

X2 <− (L2 ∗ L3)ˆp

X3 <− (L3 ∗ L1)ˆp

} e l s e {
X1 <− L1ˆp

X2 <− L2ˆp

X3 <− L3ˆp

}
U <− rnorm (N, 0 , 0 . 5 )

Y <− L1 + L2 + L3 + W + U

dat <− data . frame (W = W, X1 = X1 , X2 = X2 , X3 = X3 , L1 = L1 , L2 = L2 , L3 = L3 , Y = Y)

# Apply r e g r e s s i o n adjustment pre−proc e s s i ng

dat with FRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = c ( ’X1 ’ , ’X2 ’ , ’X3 ’ ) , method = ’ r f ’ , n f o l d s = 5)

dat with LRA <− FRA( dat , outcome co ls = c ( ’Y’ ) ,

c o v a r i a t e c o l s = c ( ’X1 ’ , ’X2 ’ , ’X3 ’ ) , method = ’ l i n ea r ’ , n f o l d s =5)

# Produce p l o t s to show model f i t

dat with FRA %>% f i l t e r (W == 0) %>% mutate ( truth = L1 + L2 + L3) %>% ggplot +

geom point ( aes (x=truth , y=m Y 0 , co l = ’CEF’ ) ) +

geom point ( aes (x=truth , y = Y, co l = ’ Actual Data ’ ) ) +

geom abl ine ( aes ( s l ope = 1 , i n t e r c e p t =0)) + labs (x = ’E[Y|X] ’ , y = ’ Fit ’ , t i t l e = ’ F l e x i b l e RA’ ) +

s c a l e c o l o r d i s c r e t e (name = ’Type ’ )

dat with LRA %>% f i l t e r (W == 0) %>% mutate ( truth = L1 + L2 + L3) %>% ggplot +

geom point ( aes (x=truth , y=m Y 0 , co l = ’CEF’ ) ) +

geom point ( aes (x=truth , y = Y, co l = ’ Actual ’ ) ) +

geom abl ine ( aes ( s l ope = 1 , i n t e r c e p t =0)) + labs (x = ’E[Y|X] ’ , y = ’ Fit ’ , t i t l e = ’ Linear RA’ ) +

s c a l e c o l o r d i s c r e t e (name = ’Type ’ )

# Compare FRA theta with FRA ATE est imate s o f average e f f e c t

FRA ATE( dat with FRA , t r e a t l v l = 1 , c t r l l v l = 0)

FRA ATE( dat with LRA , t r e a t l v l = 1 , c t r l l v l = 0)

#####
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