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Over the past two decades, popular interest in climate change has increased dramatically as

scientific forecasts have become more dire. One consequence of a warming climate is sea level rise

(SLR). Since the Intergovernmental Panel on Climate Change (IPCC) report in 2007, improvements

in scientific methods for forecasting SLR have led to larger and more variable projections, with

current upper-bound projections of 2.5 meters (8.2 feet) by 2100 (e.g., Stocker et al. (2013), DeConto

and Pollard (2016), Sweet et al. (2017), Garner et al. (2018)). In addition, scientific reports (e.g.,

Webster et al. (2005), Holland and Bruyère (2014), Hayhoe et al. (2018)) have drawn attention to

more immediate risks for coastal communities, such as increasingly severe tropical storms and the

potential for SLR to amplify storm-related flooding. In light of these hazards, policymakers in the

U.S. and abroad have begun to invest in relocation programs, raising questions about whether at-

risk coastal communities should continue to be redeveloped. Estimating the economic impact of

SLR exposure and when it will manifest is important for assessing the potential benefits of climate

remediation, which can be weighed against the costs of interventions.

In this paper, we examine how exposure to SLR risk is priced in the municipal bond mar-

ket and quantify the real economic impact implied by the pricing of SLR risk. Municipal bonds

provide a useful setting for assessing investors’ expectations of the local impact of climate risk be-

cause the sources of repayment are tied to local economic conditions. This is especially so for the

school district bonds that comprise our sample, which are commonly backed by local real estate

taxes. Since the prices of municipal bonds reflect the likelihood that local government cash flows

will be sufficient to make debt payments, this market provides an opportunity to translate effects

on asset prices into more general economic effects of SLR exposure on coastal communities.

However, estimating the effect of SLR exposure on the value of municipal bonds and their

underlying cash flows is challenging for two reasons. The first challenge is an econometric one:

factors correlated with SLR exposure (e.g., proximity to the coast, current flood risks) are also

correlated with time-invariant and time-varying economic risks. Solving this issue requires an

empirical approach such that these factors can be held fixed while varying SLR risk. Our approach

uses detailed local variation in school districts’ SLR exposure to compare bonds from issuers in

the same U.S. county that trade in the same time period, but vary in their exposure to SLR risk,

while holding fixed things like current flood risk. The second challenge is theoretical: how to

translate estimated changes in credit spreads into changes in the local government’s cash flow
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stream backing the bonds. We tackle this problem by adapting a structural model of credit risk

from the corporate finance literature to the municipal bond market and using it to distinguish the

effects of SLR risk on underlying asset values and uncertainty.

We document a trend toward pricing SLR exposure in the municipal bond market that begins

around 2011. By 2013, there is a statistically significant SLR exposure premium in municipal bond

yields. The emergence of this premium closely tracks the evolution of worst-case scientific SLR

projections as well as uncertainty in these SLR projections and popular interest in SLR. We esti-

mate that a one standard deviation (approximately ten percentage point) increase in the fraction

of properties exposed to six feet of sea level rise is accompanied by a 5.3 basis point (bp) increase

in municipal bond credit spreads in 2015, equivalent to 9% of the average spread in our sample.

The 95% confidence interval associated with this estimate can rule out effects smaller than 2.7 bp

or larger than 7.9 bp, and the estimates from 2014 to 2017 all fall within these bounds. To provide

some context, this effect is similar in magnitude to the difference in municipal bond yields be-

tween states that allow municipal bankruptcy relative to states that do not (Gao, Lee, and Murphy

(2019)).

To the extent that climate change is a salient risk to bondholders, the effect should be largest

in longer-maturity bonds. This is true regardless of the precise nature of the risk (e.g., migration

due to expected inundation, worsening storm intensity). Consistent with this, the within-district

effect of SLR on credit spreads is significantly larger for long-maturity bonds. However, at the dis-

trict level, long-run SLR exposure is also highly correlated with storm surge risk. If SLR exposure

proxies for hurricane risk, then our results are also consistent with investors pricing a near-term

increase in storm frequency and intensity instead of exposure to long-run sea level rise and inun-

dation. Controlling for storm surge risk helps to disentangle these explanations. We find that the

credit spread premium after 2012 is primarily attributable to SLR exposure, and not our measure

of storm surge risk.

To interpret the economic magnitude of our findings, we adapt the Merton (1974) model of

credit risk to the municipal bond market. We use the model to translate the estimated effects of

SLR exposure on bond yields into implied changes in the future distribution of local government

cash flows. After calibrating the model to match the average yield of municipal bonds in our

sample, we find that the estimated 5.3 bp SLR exposure premium (and the confidence interval
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surrounding it) is consistent with a reduction of 2.4% to 5.6% (1.3% to 8.1%) in the present value

of the underlying cash flow stream, a proportional increase of 1.6% to 2.9% (0.8% to 4.2%) in the

volatility of cash flows, or some combination of these effects, depending on the issuer’s financial

leverage. We consider a wide range of leverage ratios in the calibration to ensure our inability to

observe issuer leverage ratios does not affect our conclusions. The estimated effects of SLR ex-

posure on bond yields do not imply the expectation of catastrophic losses from climate-induced

default in the municipal bond market, but they do suggest that investors anticipate a material eco-

nomic impact of SLR risk on exposed municipalities. Moreover, the model implies that there are

two distinct channels through which SLR could affect municipal debt pricing: either the present

value of municipal cash flows or the riskiness of the cash flows.

To assess the relative importance of these two channels, we incorporate two additional sources

of data: data on house prices as a proxy for underlying asset values, and data on scientific uncer-

tainty about SLR forecasts to construct proxies for uncertainty about SLR’s future impact on mu-

nicipal cash flows. First, we find that including house prices as flexible controls does not change

our main regression estimate, despite house prices correlating with municipal credit spreads in

an intuitive way and SLR predicting lower average house prices towards the end of our sample

(consistent with Bernstein, Gustafson, and Lewis (2019), Baldauf, Garlappi, and Yannelis (2020)).

Assuming house prices are a good control for the present value of municipal cash flows, this sug-

gests that the impact of SLR exposure on asset values is not the primary driver of municipal bond

yields during this sample, though we cannot rule out that it has some effect.1

Rather, our body of evidence suggests that uncertainty about future municipal cash flows

is the most likely driver of the SLR exposure premium. Further bolstering this interpretation,

we show that dispersion in scientific projections of SLR is a stronger predictor of increases in

the SLR premium than the median projection over the sample period.2 Much of the previous

work has emphasized the role of SLR exposure in changing contemporaneous asset prices (such

as house prices), while being agnostic on the mechanism. Our results suggest that holding fixed

the current discounted value of the assets, the heightened level of uncertainty has increased yields

1This also casts doubt on explanations that current costs from SLR exposure (e.g. flood insurance) are driving
municipal bond yields, since these costs would also change contemporaneous house prices.

2We cannot rule out that rising attention to climate risk also plays a role in the price effects we observe. For
survey evidence on household attention, see https://www.pewresearch.org/fact-tank/2020/04/21/how-
americans-see-climate-change-and-the-environment-in-7-charts/.
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on municipal bonds (consistent with work by Barnett, Brock, and Hansen (2020)).

In a set of auxiliary tests, we explore how state-level differences in local taxation, concern

about climate change, and support for distressed municipalities influence the estimated SLR ex-

posure premium. Intuitively, the SLR exposure premium is larger for bonds whose school districts

rely more on local property taxes for budgetary needs and smaller for bonds whose districts rely

more on state-level funding. We also find that the premium is larger in states where residents

report higher levels of concern about climate change. This finding is consistent with existing lit-

erature showing that an area’s beliefs about climate change affect how SLR exposure is priced in

real estate markets (e.g., Bernstein, Gustafson, and Lewis (2019), Baldauf, Garlappi, and Yannelis

(2020)). Finally, we show that our estimates are not driven by state-level policies on municipal dis-

tress (Gao, Lee, and Murphy (2019)); in fact, the estimated SLR premium would likely be larger in

the absence of state support for distressed municipalities. Taken together, these findings suggest

a role for statewide risk-sharing to support areas exposed to climate change, especially in states

where residents are concerned about this risk.

This paper contributes to the emerging literature on the financial implications of climate risk.

Environmental risks have been linked to the valuation of firms (e.g., Bansal, Kiku, and Ochoa

(2016), Berkman, Jona, and Soderstrom (2021), Hong, Li, and Xu (2019)) and their cost of capital

(e.g., Sharfman and Fernando (2008), Chava (2014), Delis, de Greiff, and Ongena (2021)), as well

as their operating performance (e.g., Barrot and Sauvagnat (2016), Addoum, Ng, and Ortiz Bobea

(2020)) and financial policies (e.g., Dessaint and Matray (2017)). With respect to capital supply, re-

search has shown that climate risk affects the allocation of credit by banks (e.g., Cortés and Strahan

(2017), Brown, Gustafson, and Ivanov (2021)) and the beliefs of institutional investors (Krueger,

Sautner, and Starks (2020)). Baker et al. (2018), Flammer (2021, Forthcoming), and Larcker and

Watts (2020) study the pricing of “green” bonds issued to fund environmentally friendly projects.

Giglio, Maggiori, and Stroebel (2014) and Giglio et al. (2021) show that low discount rates should

be used to discount the long-run risks of climate change. We contribute to this body of work by

showing that the cost of debt financing depends on location-specific exposure to climate risk. This

dependence is growing over time and implies that climate risk is expected to incur real economic

costs on exposed issuers at both short and long horizons.

Our findings build on prior work, including Bernstein, Gustafson, and Lewis (2019) and Bal-
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dauf, Garlappi, and Yannelis (2020), that shows a negative effect of SLR exposure on residential

real estate prices. These studies identify the effect of SLR exposure by comparing observably sim-

ilar properties in close proximity to each other, so they do not address the question of how SLR

risk affects the broader economy in coastal areas. Our evidence suggests that uncertainty about

SLR’s future impact and associated downside risks, rather than reductions in asset values, is af-

fecting local economies today.3 Our empirical evidence on the importance of uncertainty in SLR

projections supports the arguments in Hansen (2022) on the policy challenges presented by the

highly uncertain nature of climate risks. Our findings also build on theoretical work by Barnett,

Brock, and Hansen (2020), in which the “risk” and “amibiguity” components of uncertainty both

relate to our empirical measurement of scientific uncertainty in SLR forecasts. The extent to which

uncertainty about future climate risk propagates into current price movements is a novel empir-

ical finding in the climate finance literature, highlighting a benefit of studying the value of debt

claims like municipal bonds, which have option-like payoffs that depend on downside risk in lo-

cal economies, rather than the value of underlying assets such as houses, which are exposed to

both downside risk and upside potential.

Another contribution of this paper is to adapt a structural model of credit risk from the corpo-

rate finance literature to the municipal bond market. The model highlights the joint roles of asset

values and cash flow volatility in affecting bond prices and allows us to quantify the economic im-

pact implied by our bond pricing estimates. Our calibration approach is straightforward to apply

in other non-standard settings where it may be difficult to observe the issuer’s capital structure

and the market value of its assets. We argue that theoretical models are a valuable source of disci-

pline in the interpretation of reduced-form estimates, especially in settings where the underlying

shock is difficult to quantify in dollar terms.4

This structured approach to interpreting the evidence, along with our novel evidence on the

uncertainty channel and the use of reduced-form empirical methods that account for time-varying

3Another distinguishing factor is that the pricing of real estate may be affected by the risk aversion of buyers who
account for idiosyncratic risks when valuing an asset that accounts for a large fraction of their wealth. Our examination
of municipal bonds sheds light on the expected economic impact of SLR exposure as perceived by financial market
participants who can diversify away from location-specific flood risk.

4In a recent working paper, Boyer (2020) adapts the Merton (1974) model to the municipal bond market. Our ap-
plications differ in two ways. First, we use the model to quantify the effect of economic shocks on bond yields, while
Boyer (2020) uses the model to generate qualitative predictions regarding the effect of pension liabilities on debt prices.
Second, we show how to apply the model to issuers without balance sheet information, whereas Boyer (2020) focuses
on state-level issuers for which balance sheet data are available.
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county-level economic conditions, all differentiate our work from Painter (2020), who studies a

similar research question using data on new bond issues and a different measure of flood risk.

Our study, however, is better able to address the challenge posed by Dell, Jones, and Olken (2014)

to use present day events and information to construct a convincing case for the effects of long-

run climate change risks. The first important difference between our findings and those in Painter

(2020) is with respect to magnitude. Painter (2020) estimates a 23.4 bp increase in long-maturity

bond yields in response to a one percent increase in flood risk, measured by Hallegatte et al. (2013)

as the annual GDP loss due to 40 centimeters (1.3 feet) of sea level rise.5 Our structural model

suggests that this 23.4 bp estimate implies substantially more economic damage than implied by

Hallegatte et al. (2013), on the order of a 25% reduction in the present value of the cash flows

backing bond repayment.

The timing of our estimated effects also differs from Painter (2020). We find an insignificant

effect of SLR exposure on municipal bond spreads through 2012 and a positive effect afterwards.

This pattern aligns with rising SLR projections and awareness. Painter (2020) finds that municipal

bond markets began pricing flood risk in 2007, but does not provide year-by-year estimates. In

Internet Appendix Section A5, we present a replication analysis using the sample from Painter

(2020) that reveals his estimates are largest in 2009, immediately after the financial crisis. After

the end of the Great Recession, the effect of flood risk on borrowing costs declines in magnitude

and becomes statistically insignificant. This suggests that the yield premium in Painter (2020)

may be driven by exposure to the Great Recession instead of changes in investor perceptions of

climate risk. Together, the differences between our work and Painter (2020) help establish a link

between long-run climate risks and municipal bond yields, which was previously not separable

from current flood risks.

From a policy standpoint, the implications of our estimates are materially different from those

in Painter (2020). Our results suggest that interventions to remediate SLR risk can create value

for investors and lower borrowing costs for municipalities today, and that these efforts would

lead to meaningful economic benefits for exposed communities in both the near- and long-term.

Most notably, however, our results suggest that general uncertainty about SLR is an important

5In contrast to our measurement of SLR exposure at the school district level, Painter (2020) uses a measure of flood
risk for 17 major metropolitan areas that does not differentiate among coastal and inland municipalities in the same
region (e.g., Galveston, TX is grouped with the Houston metropolitan area).
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driver of increased yields. Improvements in SLR forecasting may thus have consequences for

financial markets – on one hand, it may be that improvements lead to reduced uncertainty as

better data, measurement, and modeling improve the precision of estimates. On the other hand,

new techniques may lead to greater uncertainty, similar to the increase in uncertainty due to the

change in SLR modeling techniques in the 2010s. In either case, residual uncertainty about climate

risk will likely remain an important concern for policymakers even as more efficient reflections of

the true climate risk and ambiguity emerge.

The remainder of the paper is organized as follows. Section 1 surveys the scientific debate on

sea level rise and outlines a conceptual framework for our analysis. Section 2 describes the sample

of municipal bonds and our identification strategy. Section 3 presents estimates of the effect of

sea level rise on bond credit spreads. Section 4 interprets the estimates using a structural model

of credit risk and supplementary analyses of real estate values, local tax regimes, and investor

beliefs. Section 5 concludes.

1 Background on Sea Level Rise and Municipal Bonds

Sea level rise exposure is a geographic phenomenon, with coastal areas at the highest risk. Whether

this exposure translates into inundation and creates a material threat to U.S. coastal communities

depends on the realized level of future global SLR, a hotly debated question among policymakers

and politicians. While it is widely recognized the oceans rose by 1-2 millimeters per year in the

20th century, disagreement and uncertainty arise when translating these past trends into future

projections and when mapping sea level rise into economic damages. We discuss the scientific

background on sea level rise projections and the challenges of mapping this to economic conse-

quences below.

1.1 The Evolution of Sea Level Rise Projections

Scientific studies projecting global sea level rise have existed since the 1980s but have proliferated

since the end of the 2000s. The IPCC has issued periodic reports on climate change, synthesizing

and forecasting beliefs about future sea level rise, and in 2007, their report concluded that seas

were likely to rise by between 0.18 and 0.59 meters by 2100. These projections were similar to

the conclusions reached by Church and White (2006) when extrapolating the current rate of SLR
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acceleration through the year 2100, but lower than estimates from the IPCC’s last report in 2001

and prior periods (Garner et al. (2018)).

Following this 2007 report, there was substantial disagreement in the scientific community

surrounding the 2007 estimates, which led to an influx of studies attempting to more accurately

project sea level rise.6 One important part of the scientific disagreement stemmed from differences

in how to model the factors contributing to SLR. For example, many scientists believed that the

2007 projections were too low because they did not account for factors such as contributions from

Greenland glaciers and West Antarctic ice streams (Meehl et al., 2007). Rahmstorf (2007) and others

began to replace models that attempt to fully predict the climate (physical climate models) with

statistical models of key outcomes (semi-empirical strategies). This new approach substantially

increased the range of year 2100 SLR projections; between 2007 and 2013, the range of projections

from semi-empirical models was 0.17 to 2.05 meters (Garner et al. (2018)). Notably, some scientists

continue to predict negligible SLR this century (e.g., Hansen, Aagaard, and Kuijpers (2015)).

Another important aspect of the disagreement comes from differences in views on the long-

term path of global carbon emissions. These paths have become standardized in the scientific

literature following the 2012 IPCC report with the development of representative concentration

pathways (RCP) scenarios (Van Vuuren et al. (2011)), which the climate modeling community now

frequently uses for long-term and near-term modeling experiments. The pathways take on four

levels – RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5 – which relate to greenhouse gas concentration and

in turn predicted temperature. RCP 8.5 reflects a high emissions scenario, which represents what

could reasonably be expected to happen if current high emissions trends persist without mitiga-

tion. The other RCP scenarios reflect mitigation efforts that stabilize greenhouse concentrations

below certain levels.7 Views on these different scenarios can also drive differences in expected

SLR, even if the underlying model for each given scenario were identical.

In Figure 1, we use information provided in the Garner et al. (2018) survey to quantify the

evolution of SLR projections, both in terms of the level of predicted sea level rise, as well as the

uncertainty surrounding these estimates. This uncertainty around the estimates reflects researchers’

6There were no scientific studies projecting future global SLR between the 2001 and 2007 IPCC reports (Garner et al.,
2018), leading to a gap in scientific projections from 2001-2007.

7Prior to this standardization, Special Report on Emissions Scenarios (SRES) were used, but those explicitly account
for carbon emissions controls and were therefore not as uniformly applied across the scientific community.
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level of confidence in their projections, and not just the variation across different studies. We

present both the level and uncertainty across three RCP scenarios – High Emissions (8.5), Reduced

Emissions (4.5) and Low Emissions (2.6).8 To provide the broadest possible picture, we use all

studies in the survey, but are limited by the fact that emission categories were not uniform until

2012. In Internet Appendix Section A1 and Internet Appendix Figure A1, we replicate Figure 1

using the subset of studies from Garner et al. (2018) that are most comparable across time.

Figure 1 plots the time series of three measures of 2100 SLR projections across different scenar-

ios, each of which are two-year averages that equal-weight each study in the Garner et al. (2018)

survey. The three measures we estimate are:

1. Mean by computing the average 2100 SLR estimate for every scenario considered in a study,

then averaging these within-scenario means across scenarios. These reflect the level predic-

tion of SLR.

2. Worst as the maximum upper-bound estimate across all scenarios used in a study.

3. Standard Deviation by taking the standard deviation of estimated 2100 SLR for each scenario

considered in a study, then averaging these within-scenario standard deviations across all

studies that consider the scenario.

Panel A of Figure 1 plots the evolution of Mean and Worst over our sample period, which

reflect views on the expected level for the three scenarios as well as the worst forecast projection

of SLR in 2100.9 The projected means across scenarios rise from 2007 to 2009, and then stays

relatively flat for the remainder of our sample. There is a larger and longer increase in the worst-

case projections, which rise by about 65% from around 3 to 5 feet between 2007 and 2010. This

timing corresponds to the influx of semi-empirical studies and the adoption of RCP scenarios.

These worst-case projections stabilize between 4 and 5 feet through the end of our sample in 2017.

While there is a significant increase across all scenarios and measures by 2010 relative to the 2007

and 2001 IPCC reports, there is little change in the projections afterwards.

8Aggregation of these three scenarios depends on one’s beliefs over the different scenarios. Panel A of Figure 1
presents the simple average across these scenarios; we present an alternative way to aggregate these beliefs in Panel
C by identifying the relative prominence of different scenarios in the academic literature. We use this measure to
aggregate across High and Reduced Emissions in Section 4.2.2.

9There is only 1 low emission cases pre-2011, in 2007, and so we omit it to for presentation purposes.
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Panel B of Figure 1 plots Standard Deviation over our sample period for the three scenarios.

Standard Deviation, which measures typical within-scenario uncertainty, more than triples between

2007 and 2015 for the status quo scenario and then declines from 2015 to 2017. The standard devia-

tion also nearly doubles for the reduced and low emissions scenarios as well, suggesting increased

uncertainty despite relatively flat level projections. This contrast of relatively flat mean projections

but rising scientific uncertainty (both in worst case and standard deviations of projections), which

Garner et al. (2018) discuss in their abstract, is less widely known by non-climate scientists, but

reflects an important feature of current projections – the level prediction has not changed tremen-

dously, but the range of outcomes has continued to grow, implying significant downside risk.

One limitation of the scientific literature is that it cannot identify which emissions scenario

will manifest, primarily because the future path is determined by ongoing and future emissions

decisions. Nevertheless, the path of emissions is critical to projecting year 2100 SLR. In Panel C of

Figure 1, we more explicitly model attention to SLR academic literature. Specifically, we measure

the total number of papers that reference high emissions scenario and medium emissions scenario

by searching Google Scholar for the terms “RCP 8.5 climate” or “SRES A1 climate” and “RCP

4.5 climate” or “SRES B1 climate” respectively.10 We construct a measure that is the ratio of total

results using the high emissions scenario divided by the total results using high emission scenario

plus the total results using the medium emissions scenario. (Note: for brevity, we will refer to

high emissions as RCP 8.5 and medium emissions as RCP 4.5.) Our measure mimics a revealed

preference approach: if scholars are more focused on higher emissions scenarios, it means that

they think the insights around those scenarios are more useful than the lower emissions scenarios.

Panel C of Figure 1 shows that the relative amount of attention paid to the most extreme

scenario, RCP 8.5, has increased over the past decade. Between 2007 and 2011 this ratio was ap-

proximately 0.5, suggesting there were twice as many references to the RCP 4.5 scenario. Between

2014 and the end of our sample this ratio was over 0.6. More generally, this increased interest

in more dire scenarios reflects a growth in overall discussion of various emissions scenarios, as

reflected in Panel D of Figure 1.

10Prior to the 2012 IPCC report, high emissions scenarios were classified as SRES A1, while medium emissions fell
under SRES B1. After the IPCC report SRES was largely phased out, replaced by the more commonly known RCP
scenarios.
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1.2 Risks to Municipal Bond Investors

Municipal bond investors care about how SLR impacts the cash flows of their investment. The

payoff structure of municipal bond investments suggests that investors will primarily care about

how expected SLR projections or the uncertainty around those projections generates downside

risk for coastal communities. Several layers of uncertainty are at play when factoring SLR expo-

sure into municipal bond pricing. The first is that scientists do not know for certain how much

temperatures will rise in the coming decades or how a given temperature rise will affect sea levels.

This type of uncertainty is what the studies surveyed in Garner et al. (2018) grapple with directly.

Barnett, Brock, and Hansen (2021) also point out that there is uncertainty in the economic

damage function. In the context of SLR and municipal bond investors this is uncertainty about

how a given amount of SLR affects municipal bond payouts. This damage function is quite com-

plex since SLR exposure creates multiple types of short- and long-run risks for exposed areas.

In the long-run, SLR may inundate coastal properties, a major risk for the health of coastal

economies. In the near-term, the warming climate has increased the projected severity of tropical

storms and hurricanes. For instance, the fourth National Climate Assessment remarks that “the

frequency, depth, and extent of tidal flooding are expected to continue to increase in the future,

as is the more severe flooding associated with coastal storms, such as hurricanes and nor’easters”

(Hayhoe et al. (2018), pg. 74-75). Importantly, regardless of whether long- or short-run inundation

risk is being priced, the forward-looking nature of markets and local residents means that the

effect of SLR on municipal bond prices may be felt long before severe inundation manifests.

Short-term economic risks can be realized in a number of ways. The municipal bonds we

examine are supported primarily by local property tax revenues. Not only does recent evidence

suggest that local property prices have begun to reflect the long-run risks associated with SLR ex-

posure (e.g., Bernstein, Gustafson, and Lewis (2019), Baldauf, Garlappi, and Yannelis (2020)), but

there is also downside risk to local economic activity more generally. Consistent with anticipatory

behavior on the part of local communities and exposed individuals, a growing body of anecdo-

tal evidence shows that economic activity is moving away from SLR exposed areas in advance of

flooding that is predicted to worsen over the coming decades. For example, Indonesia, the world’s

fourth most populous country, plans to spend $33 billion to move its capital from Jakarta to the
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less exposed island of Borneo.11 In the U.S., the Federal Emergency Management Agency (FEMA)

and the Department of Housing and Urban Development (HUD) have set aside billions of dollars

for community relocation programs. There are already examples of residents being encouraged to

relocate after storms due to the futility of reconstruction in the face of growing flood risks.12 With

exposed areas increasingly subjected to tidal flooding, municipal bondholders face the risk that

the cash flows backing repayment will evaporate if residents of an exposed municipality decide

to relocate.

We take a markets-based approach to analyzing the effect of SLR exposure on municipal credit

spreads, and in turn coastal economies. All else equal, we expect higher SLR exposure to lead

to higher municipal credit spreads due to a heightened risk of value-destructive flooding and

associated reductions in property tax revenues and local economic activity. Combined with the

increasing projections of scientists and accompanying popular interest, we arrive at our main

prediction: SLR exposure has a positive effect on municipal bond credit spreads that is increasing

in the downside risk reflected in scientific SLR projections. Empirically, we test this prediction

against the null hypothesis that SLR exposure does not significantly impact municipal bond prices.

Our main empirical prediction is agnostic as to what type of inundation risk affects munici-

pal bond yields and through what channels. The forward-looking nature of bond investors and

the potential for economic damages to precede inundation raises the possibility that bonds of all

maturities will be impacted. However, we expect longer maturity bonds to be more impacted

because both short- and long-run risks are expected to increase as global temperatures rise over

the coming decades. If investors are concerned about more severe storms, then measures of short-

term flood risk should have more predictive power. If instead they are concerned about long-run

inundation by rising oceans, then measures of long-run SLR exposure should matter more. We

distinguish these risks empirically by including measures of SLR and storm surge exposure in the

same regression and comparing the coefficient estimates across the maturity spectrum.

We also investigate the extent to which our main empirical prediction relates to existing ev-

idence that SLR affects house prices (e.g., Bernstein, Gustafson, and Lewis (2019), Baldauf, Gar-

lappi, and Yannelis (2020)). Property taxes are an important source of repayment for municipal

11“Indonesia will relocate capital from sinking Jakarta to Borneo,” CBS News, August 27, 2019 (Link).
12“U.S. flood strategy shifts to ‘unavoidable’ relocation of entire neighborhoods,” New York Times, August 26, 2020

(Link). See also “Climate Change is Bankrupting America’s Small Towns,” New York Times, September 2, 2021 (Link).
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https://www.nytimes.com/2020/08/26/climate/flooding-relocation-managed-retreat.html
https://www.nytimes.com/2021/09/02/climate/climate-towns-bankruptcy.html


bonds, but since only a small percentage of properties in a given school district are exposed to sig-

nificant SLR risk, existing evidence says little about whether SLR has a substantial impact on the

total valuation of real estate when aggregated to the school district level. If any observed relation

between SLR exposure and municipal bonds is due to investors’ beliefs regarding expected SLR,

then the relation will likely be subsumed by sufficient controls for contemporaneous house price

movements. On the other hand, if uncertainty or downside risk in SLR projections drive a rela-

tion between SLR exposure and municipal bond yields, then the relation is more likely to persist

even after accounting for any effect of SLR exposure on property values, as municipal debt is a

contingent claim on the stream of tax revenues emanating from these values. Moreover, if down-

side risk or uncertainty about the future impacts of SLR is the key channel, as opposed to SLR’s

impact on current asset values, then we expect the positive relation between SLR exposure and

municipal yield spreads to more closely track worst-case or uncertainty in scientific SLR projec-

tions compared to the median level of SLR projections. In Section 4 we dive more deeply into how

to interpret the overall estimates of the SLR exposure premium using a model-based approach

that incorporates both the asset value and uncertainty channels.

2 Data

Our empirical analysis studies the effect of SLR exposure on school district bond credit spreads.

We focus on bonds issued by school districts for three reasons. First, public education is a com-

mon use of municipal bond proceeds, amounting to 30% of new bond issues and 18% of the dollar

amount issued by issuers below the state level of government from 2001 to 2017, so we are able to

construct a large sample of school district bonds. Second, much of the funding for public schools

in the U.S. comes from taxes on local real estate, so there is a direct link between school districts’

ability to repay debts and the anticipated effects of SLR on local economies. Third, school districts

comprise the smallest, most clearly defined geographic areas among the various types of munici-

pality. This allows us to measure SLR exposure precisely and identify the effect on credit spreads

while controlling for time-varying local economic conditions at the county level. We explain why

this level of granularity is critical to our identification strategy in Section 3.1.

Municipal bond yields are drawn from the intersection of the Mergent Municipal Bond Terms

and Conditions database and historical transaction price data from the Municipal Securities Rule-
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making Board (MSRB). We select school district bonds from these data by screening on primary

and secondary education as the use of proceeds. Following past literature (Schwert (2017)), we

restrict attention to fixed-coupon tax-exempt bonds that trade at least ten times, to ensure unifor-

mity and a minimum level of liquidity. We exclude trades after a bond’s advance refunding date,

if applicable, because the bond is risk-free after that point (Chalmers (1998)). Additionally, we

exclude the first three months after issuance and the last year before maturity because these are

times when transaction yields are especially noisy (Green, Hollifield, and Schurhoff (2007)).13 We

do not impose any restriction on the type of bond issued, as the vast majority of school districts

issue general obligation bonds.

We use the Municipal Market Advisors AAA-rated curve (“MMA curve”) as a tax-exempt

benchmark for the municipal bond credit spread calculation. This curve is reported daily on

Bloomberg from 2001 onward. Using the transaction-level data from the MSRB, we construct a

monthly panel of volume-weighted yields at the bond level. We compute a bond’s credit spread

as the difference between its yield-to-maturity and the maturity-matched par yield from the MMA

curve on the last date with a trade in each bond-month.

We restrict the sample to coastal watershed counties, as defined by the National Oceanic and

Atmospheric Administration (NOAA), in states with an ocean shoreline.14 Our process to de-

termine the SLR exposure for each school district bond issuer in coastal counties closely follows

Bernstein, Gustafson, and Lewis (2019). First, we identify the location of each residential dwelling

in the school district using the real estate assessor and transaction files in the Zillow Transaction

and Assessment Dataset (ZTRAX). We then determine each property’s SLR exposure using the

NOAA SLR viewer (Marcy et al. (2011)). Importantly, the NOAA’s calculations account for tidal

variation and other geographic factors that affect the impact of global oceanic volume increases

on local SLR.15

13Internet Appendix Table A3 shows that our main results are robust to including the initial months of trading. The
regression coefficients are quantitatively similar and statistically significant, but less precisely estimated.

14See https://coast.noaa.gov/htdata/SocioEconomic/NOAA_CoastalCountyDefinitions.pdf.
15Murfin and Spiegel (2020) argue that this exposure measure does not account for subsidence, so it does not accu-

rately capture SLR risk. NOAA acknowledges this in the SLR methodology: “[subsidence] effects are still sufficiently
unknown that they may compound or offset each other in unpredictable ways, such that including only some processes
may cause greater error than ignoring them” (https://coast.noaa.gov/data/digitalcoast/pdf/slr-faq.
pdf). In other words, the NOAA measure is based on more predictable and better understood factors, but may miss
some less predictable aspects of SLR exposure. The relative sea level rise (RSLR) measure proposed by Murfin and
Spiegel (2020) could capture missing factors and represent SLR risk more accurately. Alternatively, it could introduce
noise, as suggested by the NOAA, and may not represent investors’ information sets because it is not easily accessible

14
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Figure 2 illustrates our methodology for a portion of Fairfield County in Connecticut. The

black dots denote individual residential properties. The green area represents the extent of chronic

tidal flooding after three feet of global average sea level rise as predicted by NOAA SLR viewer,

while the light blue area represents the exposure to six feet of SLR. Naturally, the region with

six-foot exposure is larger and encompasses the three-foot exposure region. Finally, the red lines

delineate school district boundaries.

To calculate our measure of SLR exposure at the school district level, we identify the number

of properties exposed within each bucket of NOAA SLR risk and divide this by the total number

of properties in the school district. For example, to calculate the district-level exposure to six feet

of SLR, we count all dots within the blue and green areas and divide by the total number of dots

in a district to obtain the fraction of exposed properties. We use the state and name of each school

district to link the geographic exposure information to municipal bond issuers.16 After merging

the panel of bond yields with measures of SLR exposure, the sample consists of 564,095 bond-

month observations of 59,380 bonds issued by 1,508 school districts.

To ensure uniformity over the sample period and to facilitate the estimation of panel regres-

sions with county-time fixed effects, we impose a “balanced panel” restriction on our data. Specif-

ically, we require that each county has more than one school district bond issuer and that each

district has at least one secondary market bond price observation per year. This restriction ex-

cludes Florida because its school bonds are issued at the county level, so we are unable to identify

within-county effects of SLR exposure. In the next section, we describe our regression framework

and provide out-of-sample evidence highlighting the importance of within-county variation for

our identification strategy. The “balanced panel” restriction reduces the sample to 321,735 bond-

month observations of 31,352 bonds issued by 373 districts.17

through public means. To address this issue, we construct a measure of RSLR exposure and present quantitatively sim-
ilar bond pricing results in Internet Appendix Table A2 and Figure A2. The similarity is due to the high correlation be-
tween RSLR and SLR exposure at the district level (ρ = 0.97), despite an imperfect correlation between RSLR and SLR
at the house level (ρ = 0.77). We observe a small decrease in the coefficient estimate, consistent with RSLR introducing
measurement error and attenuation bias, but the difference is statistically insignificant.

16The name matching proceeds in multiple steps. First, we clean and standardize the format of state names and
common abbreviations. We then accept all exact matches between district and issuer names. For the remaining issuers,
we remove stop words (e.g. “vocational”, “technical” and “elementary”) and repeat the matching using the shortened
names. We match remaining issuers by hand when we deem the names a close enough match and exclude observations
we cannot match.

17Internet Appendix Table A4 shows that our main results are robust to using the full “unbalanced” panel of bond-
month observations. Those results still do not incorporate variation from Florida because our main regression specifi-
cation includes county-year-month fixed effects.
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Finally, given that the link between local property values and the cash flows supporting repay-

ment of school bonds is central to our predictions, we exclude California from our main sample

and analyze it separately because its school districts are insulated from this economic mechanism.

Specifically, the impact of SLR on the creditworthiness of California school districts is dampened

by Proposition 13, which caps property tax rates as a percentage of assessed value and the rate

of assessment changes.18 As a result, California property taxes are inflexible in both directions,

with reductions only possible after a house is enrolled in Proposition 8 reform, which subjects it

to market value adjustments.19

After applying these restrictions, the sample consists of 175,415 bond-month observations of

18,366 bonds issued by 238 school districts. There are 18 states in the unrestricted sample but

only 11 in the restricted sample. To ensure that the distribution of observations across states is

not driving our results, we replicate our main results in Column 1 of Internet Appendix Table A5

using weighted regressions in which each state is equally represented.

Table 1 summarizes the variables used in our main analysis. About 46% of our observations

are from districts that would experience at least some chronic inundation after six feet of global

average SLR. On average, 7% of properties are exposed at the six-foot level in these districts. The

average municipal bond-month observation in our sample has a yield of 3.24%, which is 57 bp

over the AAA-rated benchmark curve. It has ten years to maturity, has aged four years since

issuance, and has $543,000 of monthly trading volume (conditional on non-zero trade). We find

little unconditional difference in these characteristics between the exposed and full sample. After

winsorizing at the 1% level, municipal bond credit spreads range from -19 bp to 261 bp relative to

the MMA benchmark. The dispersion in spreads is narrow relative to other credit markets (e.g.,

corporate bonds) because of the low historical default rate in the municipal bond market.

18Wasi and White (2005) show that assessed property values in California have not kept pace with market prices,
resulting in subsidies of thousands of dollars per year for coastal homeowners.

19In addition, California has a state-level organization, the California School Finance Authority (CSFA), that pro-
vides access to bond financing through a statewide conduit facility, the Qualified Public Educational Facility Bond
Pool (QPEFBP), as well as short-term financing for distressed districts through the Tax and Revenue Anticipation Note
(TRAN) program. These risk-sharing mechanisms are similar in spirit to the proactive policies for distressed munici-
palities pursued by other states (Gao, Lee, and Murphy (2019)), which we examine in Section 4.3.3.
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3 Effect of SLR Exposure on Municipal Bond Yields

3.1 Identification Strategy

Our central hypothesis is that SLR exposure has a positive effect on credit spreads that is increasing

along with the rising scientific projections and uncertainty in these projections of SLR over our

sample period. An important consideration when interpreting our results is that our empirical

proxy for an area’s SLR exposure is based on the percentage of properties in a school district that

are exposed to six feet of SLR. We are agnostic regarding the extent to which investors, who are

often retail investors in the municipal bond market, actually compute this exact measure of SLR

exposure. We view our measure as representative of other SLR exposure measures, whether they

are computed formally or informally. If our measure is not representative of the measures used

by municipal bond investors, then the estimated relation between our proxy for a district’s SLR

exposure and municipal yield spreads will attenuate toward zero.

For our primary analysis, we estimate the following regression:

Spreadbijt = cjt + ci +
2017

∑
y=2002

1 (Year = y)
[
αySLR Exposurei + θyZbijt

]
+ γXbijt + ϵbijt, (1)

for bond b issued by school district i, located in county j, trading in year-month t. The coefficients

of interest are αy, which reflect the yearly sensitivity of municipal bond spreads to a one standard

deviation change in the fraction of SLR exposed properties in district i. These coefficients are

estimated relative to the baseline effect in 2007, which we omit from the yearly coefficients.

Following Bernstein, Gustafson, and Lewis (2019) and Baldauf, Garlappi, and Yannelis (2020),

we use six-foot SLR exposure as our primary measure of SLR risk. By the end of our sample

period, most high-emissions scenarios project a 99th percentile of SLR exceeding six feet by the

end of the century. Figure 3 displays the aggregated exposure measure for each school district

in the municipal bond sample. SLR exposure is highly skewed, even in our sample, which is

restricted to coastal counties. Most school districts in our sample do not have any SLR exposed

properties. The 75th, 90th, and 95th percentiles of exposure to six feet of SLR are approximately

1%, 10%, and 20%, respectively.

We mitigate the possibility that SLR exposure relates to unobserved aspects of the area’s econ-
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omy in two ways. First, we include county-year-month fixed effects so that we identify the effect

of SLR exposure on yields by comparing bonds issued by school districts located in the same

county and traded in the same month. Under the sample restrictions described above, the mean

(median) number of districts with bonds trading in a county-year-month is 3.6 (2).

Second, we exploit the fact that SLR projections and awareness have significantly increased

over the 2001 to 2017 sample period by focusing on intertemporal variation in the relation between

SLR exposure and municipal bond credit spreads. This allows us to control for school district fixed

effects that absorb any time-invariant differences across the issuers in our sample. To the extent

that a relation between SLR exposure and municipal credit spreads emerges or increases as SLR

projections worsen, it is unlikely that the relation we observe is driven by omitted factors.

In addition to issuer and county-year-month fixed effects, our regression analysis controls for

the term structure, illiquidity, and other features of municipal bonds.20 The yearly coefficients on

Zbijt control for time-varying factors including the term structure of credit spreads, the issuer’s

option to call bonds before maturity, and the value of bond insurance (Cornaggia, Hund, and

Nguyen (2021)). Other control variables Xbijt include the district-level average income, the number

of years since issuance, the ratio of trading volume to amount outstanding, the standard deviation

of transaction prices by bond-month, and an indicator for general obligation issues.

3.2 Main Estimate of the SLR Exposure Premium

Table 2 presents estimates of how SLR exposure relates to municipal bond credit spreads over our

2001 to 2017 sample period. Figure 1, which shows how SLR scientific projections and uncertainty

around those projections evolve over our sample period, provides context for interpreting these

estimates. Between 2010 and 2017, worst-case projections range from four to five feet of end-of-

century SLR, compared to less than three feet in 2001. Uncertainty and attention with respect

to high-emission scenario forecasts begin a steep increase between 2011 and 2015 before falling

slightly through the end of our sample.

Our main prediction is that municipal bond markets price the risk of SLR exposure, resulting

in higher yields for exposed districts relative to unexposed districts, especially during the latter

part of our sample period. We include county-year-month fixed effects to control for time-varying

20We do not control for the tax status of the bond because our sample only includes tax-exempt bonds and the
location-time fixed effects in our regressions account for time-varying state income tax rates.
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local economic conditions, meaning that the SLR exposure coefficients are identified from differ-

ences in the credit spreads of bonds issued by districts in the same county, trading in the same

month. The baseline value of SLR exposure estimates the effect in 2007 in column (1), so the other

yearly coefficients reflect the effect of SLR exposure relative to 2007. We incrementally add issuer

fixed effects in column (2) and bond-level controls in column (3). Notably, in column (1) we see

that SLR Exposure has a baseline negative effect on spreads, consistent with issuers nearer to the

coast having confounding features (e.g., higher real estate values) that could lower credit spreads.

We find little evidence that the relation between SLR exposure and municipal bond credit

spreads changed between 2001 and 2010. After 2010, the coefficients become consistently positive,

indicating that municipal bond credit spreads are higher in exposed relative to unexposed areas in

the latter part of our sample, compared to the base year of 2007. From 2011 to 2013 the coefficients

are all positive and mostly between 1.8 and 2.3. Between 2014 and the end of the sample in 2017,

the coefficients become more statistically significant and range from 3.9 to 5.9 across the three

columns, implying that a one standard deviation increase in SLR exposure corresponds to a 3.9

bp to 5.9 bp increase in municipal credit spreads. Compared to the average spread of 57 bp, these

estimates suggest that a one standard deviation in SLR exposure results in a 7% to 10% increase in

municipal bond spreads by the end of our sample period.

Figure 4 provides a visual depiction of the specification in column (3). The figure reveals a

generally increasing trend in the SLR exposure premium since 2010, with the premium becoming

statistically significant in 2013 and more significant in 2014, after which the coefficient estimates

are statistically indistinguishable from each other. This rise in the SLR exposure premium around

2014 coincides with the evidence in Figure 1. The figure also reveals no significant SLR exposure

premium earlier in our sample. This result differs from the claim in Painter (2020) that the mu-

nicipal bond market was pricing SLR risk beginning in the second half of 2007.21 The figure also

offers no direct evidence that our findings operate primarily through a salience channel. The rise

in spreads over our sample period does not coincide directly with Hurricane Sandy, which made

landfall in October 2012, or developments surrounding the Paris Climate Accord. An important

21Although we use different data and a different measure of exposure in our analysis, we provide evidence in the
Internet Appendix based on the sample of new issues from Painter (2020). We show that the yield effects estimated by
Painter (2020) are concentrated around the financial crisis and either negative or statistically insignificant in each year
from 2010 to 2016.
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caveat, however, is that it is not possible to rule out salience as a factor in explaining our results

since salience may be a leading or lagging contributor to municipal bond yield spreads.

Internet Appendix Table A5 provides a number of robustness checks for our main regression.

First, we confirm that the representation of states in our sample does not drive the results. Our

regression coefficients are qualitatively similar after weighting the regression so that each of the

11 coastal states in our sample are equally represented. Second, we show that the estimates are

qualitatively similar if we measure SLR exposure as the fraction of exposed property value (as

opposed to the number of exposed properties) or if we measure exposure to four feet instead of

six feet of global sea level rise.

3.3 Long- versus Short-Run Risks

We now consider whether the long- or short- run risk channels discussed in Section 1.2 are likely

drivers of the SLR exposure premium. We begin by examining how the SLR exposure premium

is affected by controlling for storm surge exposure and its interaction with the latter part of our

sample period. Storm surge exposure will more directly capture short-term storm and flood risks.

The district fixed effects in our model absorb any time-invariant effect of SLR or storm surge

on municipal yield spreads. These controls do not account for any time series variation in the pric-

ing of current storm risk. Indeed, the shock of events like Hurricane Sandy may have prompted

municipal bond purchasers to re-evaluate the true risk of storm-surge related flooding in a way

that coincidentally mimics worst-case scientific projections of long-run climate risks. While ex-

post analysis of these events reveals little, if any, long term municipal bond price effects, we in-

clude a post-by-storm surge control to mitigate the possibility that we conflate future SLR risk

with present day storm surge risk.

To construct a storm surge exposure measure, we collect property-level data on storm surge

exposure using the NOAA Sea, Lake and Overland Surges from Hurricanes (SLOSH) model. To

develop this model, the NOAA simulates 100,000 Category 3 hurricanes for each coastal water

basin and estimates the maximum storm surge height for every point along the coast in a high

resolution spatial image file (raster).22

22The process of mapping NOAA storm surge exposure to school districts mirrors that for SLR. We first measure
the property-level storm surge using the raster based files available at NOAA. See https://www.nhc.noaa.gov/
nationalsurge/. We run a non-interpolated raster sample at the property centroid to estimate property-level storm
surge values. We then average this property-level measure across all properties in each school district to get the aver-
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Before turning to our empirical analysis, it is important to consider the extent to which storm

surge exposure and SLR exposure differ. The two measures are positively correlated, but there are

clear differences that are exemplified by considering the example of a peninsula. One side of the

peninsula will on average be more subject to winds and tides that accompany large storms, while

the two sides will be more equally affected by a general rise in sea levels. Similar variation can be

obtained due to consistent weather patterns, such as wind or water currents. Thus, with sufficient

cross-sectional variation, it is possible to separately identify SLR and storm surge risks. We also

confirm that the storm surge data are precise enough to identify property-level price effects. We

replicate tests from Bernstein, Gustafson, and Lewis (2019) in Appendix Table A8, but add in

measures of storm surge risk to determine if they are similarly relevant to house prices. Across

multiple models used in that paper, we find a significant and sensible discount for homes exposed

to storm surge risk. We also find almost no difference in the SLR discount whether or not we

control for storm urge in that setting.

To parsimoniously examine how the evolution of the SLR and storm surge exposure premi-

ums vary over our sample period, we create a Post indicator that equals one for observations after

2012 and interact that with SLR exposure and storm surge exposure. Appendix Tables A6 and

A7 show that the results are qualitatively similar, but attenuate somewhat using other definitions

of the post period. In column (1) of Table 3, we establish the baseline estimate of Post × SLR in

our sample. The positive and significant coefficient of 3.34 indicates that a one standard deviation

increase in a school district’s SLR exposure leads to a 3.34 larger increase in municipal bond yield

spreads after 2012 compared to the early part of our sample.

In column (2) we add a control for the post period interaction with storm surge exposure.

The coefficient on the Post × SLR interaction remains highly significant with a slightly larger,

but statistically indistinguishable, coefficient compared to column (1). Conversely, we find little

evidence that municipal bond investors have changed the pricing of storm surge risk over the

same window.

Although bonds of all maturities may be influenced by SLR exposure, we expect long-maturity

age number of feet of inundation if a Category 3 hurricane were to hit the district. Storm surge and SLR exposure are
strongly positively correlated (ρ = 0.83). Differences between the measures depend on local geography. For instance,
areas on either side of a peninsula could have similar SLR exposure but different storm surge exposure due to differ-
ences in exposure to hurricane-force winds.
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bonds to be impacted at least as much by climate risks as short-maturity bonds. Column (3) ex-

amines this prediction by adding district-year-month fixed effects so that we compare bonds with

different maturities, issued by the same school district and traded in the same month. The ex-

planatory variable of interest is the triple interaction between SLR exposure, the post-2012 period,

and the logarithm of time to maturity. We find a positive and significant triple interaction, sug-

gesting that the yield spread on long-maturity bonds is more positively related to SLR exposure

later in our sample period.

The main takeaway from Table 3 is that SLR exposure, a proxy for long-run flood risk, appears

to be a more important driver of the municipal bond yield premium that has emerged since 2012

than exposure to storm surge, a specific type of short- and long-run risk.

4 Interpreting the SLR Exposure Premium

This section provides a theoretical framework and additional empirical evidence to provide an

economic interpretation of the SLR exposure premium. First, we present a structural model of

municipal credit risk based on Merton (1974), which shows that higher municipal bond spreads

could be due to reduced underlying asset values (e.g., real estate prices) or an increase in the

volatility of future cash flows (i.e., downside risk). The model allows us to quantify the economic

impact implied by the estimated SLR premium in terms of these parameters. Next, we present

evidence on residential real estate prices and dispersion in SLR forecasts that suggests the pricing

of SLR risk reflects heightened uncertainty rather than reduced asset values. Finally, we consider

several economic mechanisms that could mediate the effect of SLR exposure on bond spreads,

including investor beliefs, the local tax regime, and state-level policies on municipal distress.

4.1 Structural Model of Municipal Credit Risk

In the Merton (1974) model, the market value of a firm follows a geometric Brownian motion

under the risk-neutral measure,

d ln Vt =

(
r − 1

2
σ2

)
dt + σdWQ

t . (2)

In the municipal context, the bond issuer is a local government with the power to tax rather than

a firm with productive assets, but the interpretation of the model is the same as in the corporate
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context. The source of debt repayment is a cash flow stream that depends on tax revenues, expen-

ditures, and intergovernmental transfers. The present value of cash flows, which we call the asset

value, is equivalent to the market value of a firm in the discounted cash flow framework.23

Suppose the municipality has a zero-coupon bond issue outstanding with face value K that

matures at time T. The payoff to the bond is equivalent to a portfolio containing the underlying

assets and a short call option on the assets struck at the bond’s face value. Under this basic setup,

the value of the bond is

D = V −
[
VΦ(d1)− Ke−rTΦ(d2)

]
, (3)

where

d1 =
ln (V/K) +

(
r + 1

2 σ2) T

σ
√

T
, d2 = d1 − σ

√
T. (4)

We compute a bond’s credit spread as the difference between its yield-to-maturity, which can be

expressed as y = 1
T ln (K/D), and the risk-free rate. Most municipal bonds pay coupons that are

exempt from income taxation, so we use a tax-exempt risk-free rate for our calibration.24

The option-pricing intuition behind the model implies that the higher yields of SLR exposed

bonds at the end of the sample are either due to lower V, the present value of cash flows (e.g.,

due to lower property taxes), or higher σ, reflecting uncertainty about future cash flows. The lat-

ter channel distinguishes this paper from studies of climate risk and home prices (e.g., Bernstein,

Gustafson, and Lewis (2019), Baldauf, Garlappi, and Yannelis (2020)), which focus on the former

channel at a finer level of granularity (individual houses). However, we require additional ev-

idence to disentangle these channels, which we present in Section 4.2. In the remainder of this

section, we use the model to quantify the changes in V or σ that could explain the SLR premium.

Before proceeding, we should provide some context for this exercise. With few exceptions

(e.g., Gray, Merton, and Bodie (2007), Boyer (2020)), structural models of credit risk have not been

23If the issuer were to default, bondholders would have a claim on the future stream of revenues and would recover
an amount determined in a Chapter 9 bankruptcy proceeding. From the perspective of creditors, the main difference
between municipal and corporate bankruptcy is that asset liquidation cannot be forced by creditors under Chapter 9.
However, the assets of a firm derive their value from the ability to generate cash flows, so this distinction is really about
managerial agency and corporate control, which are outside of the model. We discuss state-level policies regarding the
resolution of municipal distress in Section 4.3.3.

24The Merton (1974) framework is usually applied to taxable corporate bond yields. Our calculation of the model
parameters implied by municipal bond yields accounts for the tax exemption’s effect on the pricing of credit risk.
In Internet Appendix Section A4.1, we obtain quantitatively similar estimates performing the model analysis on tax-
adjusted yields as in Schwert (2017), with the interest rate swap curve as the risk-free benchmark.
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applied to government debt markets. However, the intuition of the model is the same as in the

corporate setting. Following Schaefer and Strebulaev (2008), we can think of a bond’s value as

consisting of credit and non-credit components:

D = DC + DNC. (5)

Merton (1974) models the credit component, DC, as dependent on the distribution of the present

value of cash flows and the face value of debt that must be repaid in the future. The cash flow

stream in the municipal context depends on local government tax revenues and expenditures, as

well as conditional (e.g., bailouts) and unconditional transfer payments, which differentiates it

from the usual notion of profits for a firm. Nevertheless, the default risk of a local government

depends on the ability of these cash flows to sustain the repayment of debt, just as a firm relies on

its current and future profits to repay its creditors.

The failure of structural models to match the observed yields of corporate bonds has been well

documented (e.g., Huang and Huang (2012)). This is due to the existence of non-credit factors,

DNC, such as liquidity, that have a non-trivial effect on the pricing of debt. We anticipate that the

Merton (1974) model would exhibit the same shortcomings in the municipal setting.

However, our objective is not to match the level of municipal bond yields, but rather to predict

changes in yields with respect to changes in the fundamentals governing repayment of the bond

(i.e., the level and volatility of cash flows). In other words, we use the model to generate hedge

ratios, which reflect the sensitivity of the bond value to the underlying asset value. This is equiv-

alent to the hedge ratio of the credit component, DC, because the non-credit component, DNC is

unrelated to credit risk, and therefore, to the asset value. Confirming this intuition, Schaefer and

Strebulaev (2008) show that the Merton (1974) model provides accurate predictions of the empiri-

cal hedge ratios of corporate bonds, including high-investment-grade (e.g., AA-rated) bonds that

have similar historical default rates to municipal bonds.25

In contrast to Schaefer and Strebulaev (2008), who study the relation between bond and eq-

uity returns, we use the model to interpret difference-in-differences regression estimates. Never-

theless, our approach is conceptually similar because we focus on the relation between changes in

25It is not possible to replicate the results in Schaefer and Strebulaev (2008) for municipal bonds because the estima-
tion of empirical hedge ratios requires equity return data.
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bond values and changes in fundamentals, as opposed to the mapping between the level of fun-

damentals and the level of yields. Our regression isolates the credit component of yield changes

by controlling for liquidity proxies and time-varying county-level economic conditions.26

For empirical application of the model, we calibrate the yield change for a typical municipal

bond following a change in the underlying asset value or cash flow volatility. Table 1 indicates

that the mean bond in our sample has a yield-to-maturity of 3.24%, which corresponds to a credit

spread of 56 bp over the maturity-matched AAA-rated tax-exempt benchmark rate of 2.68%. The

average bond has ten years to maturity, which corresponds to a duration of 7.5 years that we use

to calibrate the maturity of the zero-coupon bond in the model. Thus, we set T = 7.5, r = 2.68%,

and y = 3.24% for our calibration.27

Data on the capital structure and cash flows of municipal issuers are difficult to obtain and it

is impossible to observe the market value of the expected cash flow stream. Therefore, we take a

flexible approach, calibrating the model to a wide range of leverage ratios (K/V in the model) and

asset volatilities (σ) to match the calibrated bond yield. To obtain an appropriate set of leverage

and volatility pairs, we back out the model-implied asset volatility for leverage ratios ranging

from 1% to 99%. Figure 5 shows that the implied volatility is decreasing in leverage.

We use these parameter values to compute the model-implied effects of changes in the present

value of cash flows or their volatility on the yield-to-maturity of a municipal bond. Panels A and

B of Figure 6 presents the results of this exercise for proportional changes ranging from 0% to

25%. Overall, the predictions are intuitive and indicate that yield changes are increasing in the

magnitude of shocks. In general, large shocks to the underlying cash flow stream are necessary to

generate non-trivial increases in yield, given the low level of credit risk in this market.28

Based on a leverage ratio of 10%, which corresponds to strong current financial standing but a

26Although we examine the term structure of municipal bond spreads in our regression analysis, we avoid this issue
in the structural model because prior research (e.g., Eom, Helwege, and Huang (2004)) suggests it performs poorly at
capturing term structure effects. This is in part due to the model’s parsimonious specification of interest rate dynamics.

27In Internet Appendix Sections A4.2 and A4.3, we report model-implied changes in yield based on alternative spec-
ifications with bankruptcy costs and senior debt, respectively. These results suggest that our conclusions are robust to
model specification and the possible presence of bank loans on the issuer’s balance sheet (Ivanov and Zimmermann,
2021).

28If the estimated SLR premium is due to a reduction in the present value of cash flows, this could be due to changes
in expected cash flows or by movements in discount rates. Although the model does not distinguish between these
channels, we argue that changes in expected cash flows would be more plausible than changes in discount rates. Recall
that our empirical estimates are from a difference-in-differences regression framework that compares the credit spreads
of exposed and unexposed issuers in the same county. Thus, systematic risk needs to have increased differentially for
exposed issuers relative to the start of the sample period for discount rates to explain our findings.
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high implied volatility of cash flows, a 1% drop in asset value corresponds to an increase in yield

of 1.0 bp, while a 10% drop in asset value raises yields by 10.8 bp. Under the same specification,

increases in volatility of 1% and 10% correspond to yield increases of 3.6 bp and 41 bp, respectively.

Based on a leverage ratio of 70%, which represents impending financial distress and is associated

with the largest yield effects, reductions in asset value of 1% and 10% correspond to yield increases

of 2.3 bp and 27 bp, respectively, while increases in volatility of 1% and 10% correspond to yield

increases of 2.0 bp and 21 bp.

Panel C of Figure 6 presents the combination of asset value and volatility shocks that cor-

respond to the estimated 5.3 bp increase in municipal bond yields associated with one standard

deviation higher SLR exposure in 2015 (Table 2, column (3)). This estimate is in line with a re-

duction of 2.4% to 5.6% in the present value of the underlying cash flow stream or a proportional

increase of 1.6% to 2.9% in the volatility of cash flows, depending on the issuer’s leverage and

corresponding implied volatility. Naturally, a larger shock to asset value implies a smaller shock

to volatility, and vice versa, holding the change in yield fixed. Taking statistical uncertainty in our

estimate into account, the 95% confidence interval (2.7 bp to 7.9 bp) corresponds to asset value

reductions from 1.3% to 8.1% or proportional volatility increases from 0.8% to 4.2%.

We can also use the model to shed light on the effects reported by Painter (2020), who finds

that a one percent increase in climate risk, measured by Hallegatte et al. (2013) as the annual loss

of GDP from sea level rise, corresponds to a 23.4 bp increase in annualized issuance costs for bond

issues with a maximum maturity of 25 years or longer. To calibrate the model, we use a sample

of new issue municipal bonds from Mergent following the criteria in Painter (2020). The average

yield-to-maturity of bonds with 25 years or more to maturity is 4.70% in that sample, not far from

the 4.58% average issuance yield reported in Table 2 of Painter (2020). The average maturity of

these bonds is 30 years, which corresponds to duration of 22.5 years, and the maturity-matched

AAA-rated tax-exempt benchmark rate is 4.00%.

Panel D of Figure 6 depicts the combination of shocks to the asset value and volatility nec-

essary to produce the Painter (2020) result. Without a shock to the volatility of cash flows, this

change in yield corresponds to a reduction of 25% to 30% in the present value of cash flows. On

the other hand, if the reduction in cash flows is on the order of 1%, then the implied increase in

volatility is between 5% and 20%. The estimates in Painter (2020) imply an economic impact that

26



is an order of magnitude larger than the reduction in annual GDP used as his measure of climate

risk, consistent with exposure to the Great Recession affecting the estimates.

While the estimates in Figure 6 are informative about the economic impact of SLR risk on

exposed issuers, there is a wide range of possible effects that depend on whether SLR risk is

primarily impacting current asset values or the volatility of future cash flows. In the next section,

we provide auxiliary evidence to distinguish among these channels.

4.2 Asset Values or Uncertainty?

The model makes clear that the estimated relation between SLR exposure and municipal bond

spreads could be driven by a decrease in the present value of municipal cash flows or an increase

in uncertainty regarding those cash flows. Empirically, disentangling these two channels is dif-

ficult, since we only have one source of cross-sectional variation in SLR. We also only have an

imperfect proxy for cash flow levels V and no direct empirical measure of cash flow uncertainty

σ. Consequentially, we separate the effects of V and σ by first running direct tests on proxies for

V and then indirect tests using uncertainty in scientific projections of SLR.

4.2.1 Evidence on the Asset Value Channel

To proxy for V, we use contemporaneous residential real estate prices since the school district

bonds in our sample are primarily backed by local property taxes. We view current house prices

as the best available proxy for future house prices (and therefore future tax revenues) because

forward looking agents should account for future growth in current prices unless that expected

house price growth is connected to market level risks. We then use this house price proxy to

assess whether reduced asset values can explain the SLR premium in municipal bonds. Indeed,

Bernstein, Gustafson, and Lewis (2019) and Baldauf, Garlappi, and Yannelis (2020) find that SLR

exposure has a negative impact on coastal home values in the second half of our sample period

(and we replicate this result in Appendix Table A8). However, our research design differs from

the highly localized identification strategies employed by these studies, which compare individual

properties in the same geographic area that are observably similar. Those designs preclude iden-

tification of the overall effect of SLR exposure on aggregate real estate values at the school-district

level because they estimate the relative effect of SLR within a narrow geographic area. Without ad-
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ditional assumptions about economic spillovers, these previous local estimates do not identify the

impact of SLR across districts on V. Our identification approach captures the relative differences

across districts within a county, including any anticipatory effects related to beliefs about how the

aggregate SLR exposure in a district will impact future local economic activity.

We first examine whether SLR exposure moves overall house prices for a school district in

the same way as municipal bond yields. We consider the logarithm of three different house price

measures as outcomes: 1) the annual median realized house price in a district based on transac-

tions in ZTRAX, a general measure of house prices;29 2) the annual median realized house price

for homes that are exposed and unexposed to six foot sea level rise, which lets us identify whether

house prices are moving mainly amongst exposed homes, or across all properties; 3) and the av-

erage annual Zillow house price index to capture the estimated prices of all homes (both sold and

unsold) in a given year.

In Table 4, we replicate the estimation strategy from Equation 1, replacing the year indicators

with a single post-2012 dummy. In column (1), we estimate that a one standard deviation increase

in SLR exposure leads to a 1.4 p.p. decline in house prices in the post period. In columns (2) and

(3), we split by exposed and unexposed properties, and find a 10.3 p.p. decline in house prices

amongst exposed properties, and a drop of 0.3 p.p. amongst unexposed properties. These results

are consistent with a large decline in house prices amongst exposed properties, but much smaller

(and noisier) amongst unexposed properties. In column (4), we combine the median unexposed

and exposed house price measures by weighting by the share of exposed houses and find a 1.1

p.p. decline in house prices. Finally, we find a drop of 1.5 p.p. in the Zillow house price index,

consistent with the effects in the realized house prices. We then look at the graphical version of

our column (1) result in Panel A of Appendix Figure A5, which presents estimates of our main

regression with the logarithm of annual median house prices as the dependent variable. After the

first few years of the sample period, which show a negative effect of SLR exposure on district-level

house prices, the yearly SLR exposure coefficients are statistically insignificant, but trend negative

for part of the period in which we observe larger bond yields. We also repeat this exercise in the

remaining panels of Appendix Figure A5 for the other house price measures.

29We restrict attention to school district-year observations with at least 50 house transactions recorded in ZTRAX to
ensure a minimum level of data quality.
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This evidence is consistent with district-level SLR exposure leading to declines in house prices

across the entire school district and it suggests that declines in cash flow levels V may be an

important channel for the estimated SLR yield premium. However, given the differences between

the time-series patterns in Appendix Figure A5 and Figure 4, it seems possible that the changes in

house prices we identify are a result of measurement error or do not reflect the same underlying

economic forces as the SLR yield premium. Moreover, from a magnitude perspective, even if

we assume that house prices are a perfect proxy for the present value of cash flows V backing

the municipal bonds, the model from Section 4.1 suggests that the observed declines in yields

correspond to movements in V that are likely larger than 1.4 p.p.

We thus push the analysis of house prices further, noting that if the effect of SLR exposure on

bond spreads is due to lower house prices in exposed districts, then we should observe changes in

our main coefficient as we include local house price controls in the regression (VanderWeele, 2016).

We test this approach in Table 5, which reports four specifications based on different methods

of measuring house prices. We also address concerns about functional form by controlling for

various points in the distribution of house transaction prices to fully capture the change in district

house prices.

Column (1) of Table 5 reports our main specification (without house price controls) as a base-

line measure of the SLR premium, with a one standard deviation increase in SLR exposure raising

municipal bond yields by about 4 bp after 2012. Column (2) adds the logarithm of the annual

median house price at the district level, using realized housing transactions, interacted with year

fixed effects. We see a negligible change in the SLR effect on bond yields. Column (3) partitions

each district’s housing transactions into SLR exposed and unexposed properties and reveals sim-

ilar patterns. To account for the fact that columns (2) and (3) are based on transaction prices,

column (4) uses the Zillow House Price index, aggregating the zip-code-level index to the school-

district level. Finally, column (5) controls for the distribution of realized house prices using the

10th, 25th, 50th, 75th and 90th percentiles. Even after this flexible control for house prices, the SLR

exposure coefficient is quantitatively similar to the baseline estimate.

The takeaway from Table 5 is that controlling for district-level house prices, which should be

highly correlated with the present value of local property tax revenues, has a negligible effect on

the SLR exposure premium. As before, we find that a one standard deviation increase in SLR ex-
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posure after 2012 results in an approximately 4 bp increase in bond spreads. In Internet Appendix

Figure A3, we report the year-by-year effect for the different specifications, and see two important

facts: first, we see the same time-series pattern as Figure 4 across all specifications – regardless of

the house price controls, we see a strong positive SLR yield premium.30 In fact, consistent with

the intuition from the structural model, the unreported relationship between house prices and

municipal bond spreads is negative and statistically significant, even after controlling for district

fixed effects. However, this channel appears distinct from the correlation of SLR exposure on bond

spreads. Second, we see that part of what drives the small differences across columns in Table 5

are due to an increase in the SLR premium in the initial part of the sample (2001 to 2004).31 We

subsample our data into 2007 and onwards and report the same models in Appendix Table A11.

Here, we see even less movement in our results across different house price controls.

Overall, the evidence in Table 4 indicates that SLR does predict declines in housing values,

and hence that the estimated SLR premium is potentially driven in part by reductions in V. But,

this evidence is mixed, since directly controlling for this channel in Table 5 has almost no impact

on the estimated SLR effect on municipal bond spreads. This suggests that uncertainty regarding

future cash flows, σ, explains an important share of the SLR exposure premium in exposed school

districts, especially since the magnitudes of the estimated effects in Table 4 would imply asset

declines V that are too small to explain the change in bond spreads. Specifically, if we take the

1.4% reduction in house prices from Table 4 at face value as a reduction in V, then our calibrated

model still implies a 1.4% increase in σ (Panel C of Figure 6). We next examine evidence on the

cash flow volatility channel.

4.2.2 Evidence on the Uncertainty Channel

Providing direct evidence on the role of cash flow volatility, σ, is challenging because we lack a

good empirical proxy. To provide an indirect test of the impact of SLR uncertainty and volatility

on bond spreads, we next examine the role of scientific uncertainty regarding SLR. Climate sci-

ence analyses embed these uncertainties, both across models and within any given model (e.g.,

30In Appendix Figure A3, we omit 95% confidence intervals to ease comparisons, but include them in Appendix
Figure A4 where we control for Log(Median HP) interacted with year fixed effects.

31This mechanically would induce a smaller effect in the post period since the post effect is compared relative to the
2001-2011 period.
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Meinshausen et al. (2009), Barnett, Brock, and Hansen (2020)). As we discussed in Section 1, Gar-

ner et al. (2018) surveys the scientific literature on SLR projections and based on this survey, we

construct time-series measures of the average SLR projection, the worst case or range of SLR pro-

jections, and the average within-scenario standard deviation of SLR projections. We construct

these averages by first computing a study-level statistic and then averaging across all studies over

a two year period.

In Panel A of Table 6 we integrate these measures into the regression outlined in equation (1).

To do so, we interact the annual value for each of these measures with an area’s SLR exposure.

This provides a time-varying measure of SLR risk for each region, where the time-variation varies

according to different components of the forecast. The first column presents these coefficients

when estimated separately in equation (1). Columns 2 through 5 include each dispersion measure

along with the mean. Across all columns in the first row of Table 6, we find little evidence that

the average SLR projections from scientific studies during a year predicts higher municipal bond

spreads in exposed areas. This corroborates the takeaway from Table 5 that the documented re-

lation between SLR projections and municipal yield spreads is not primarily due to the effect of

expected future SLR.

The remainder of Panel A of Table 6 examines how the combined measures of SLR uncertainty

and projected SLR levels relate to municipal bond yield spreads. Whether included alongside

the average SLR projections or not, we consistently find a positive relation between measures of

uncertainty or downside risk and yield spreads. This result holds using measures of the standard

deviation, range, or worst-case forecasts. Appendix Table A9 shows that the estimates are similar

whether or not we use the procedure in Appendix Section A1 to select the most relevant studies

or whether a one- or two-year window is used for a study’s inclusion.

The results relating to our standard deviation measures are consistent with investors paying

most attention to worst-case scenarios and the information in these worst-case scenarios being

highly correlated with information contained in less extreme scenarios. The time series of within-

scenario forecast uncertainty with respect to mid-level scenarios positively predicts municipal

bond yield spreads, but this effect is subsumed if included alongside a measure of forecast un-

certainty for high-level scenarios. The concentration on worst-case scenarios is consistent with

uncertainty being relevant to bond investors to the extent that it reflects downside risk.
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The findings in Table 6 suggest that uncertainty in SLR projections, and in particular down-

side risk or worst-case scenarios, are a very relevant component of SLR projections for municipal

yield spreads. The similarity between the time series of the SLR exposure yield spread premium

(see Figure 4) and the evolution of uncertainty and worst-case scenarios in the scientific literature

(see Figure 1) further illustrates this takeaway.32 Our findings offer suggestive evidence that un-

certainty regarding SLR, rather than the level of SLR forecasts, is driving municipal bond yields

higher toward the end of our sample period. The correlation between the mean SLR prediction

across all models and the average within-model standard deviation in our sample is 0.39, low

enough to assuage fears of multicollinearity in our independent variables. Thus, the findings in

Table 6 indicate that within-model uncertainty plays a role in the recent rise in municipal credit

spreads for SLR exposed areas.

We next consider whether the results above are driven by within-scenario uncertainty in scien-

tific projections or the attention paid to the different emission scenarios. We consider the evidence

in Panel C of Figure 1, which indicates that scholars began discussing more dire scenarios around

the same time that scientists’ within-scenario uncertainty was increasing. The intuition in Barnett,

Brock, and Hansen (2021) would suggest that as more attention is paid to more severe scenarios,

investors’ expected loss will increase even if the mean SLR projections remain unchanged.

In our next set of tests, we incorporate the attention being paid to various scenarios into the

time-series measures of SLR projections. Specifically, we reconstruct our “mean” and “standard

deviation” measures to account for the ratio of attention between the RCP 4.5 and 8.5 scenarios.

Our attention weighted measures are calculated as follows:

Attention-Weighted Mean = r × Mean(High Risk) + (1 − r)× Mean(Med. Risk)

Attention-Weighted StDev = r × StDev(High Risk) + (1 − r)× StDev(Med. Risk)

where r is the ratio of RCP 8.5 scenario mentions to the total mentions of the RCP 4.5 and 8.5

scenarios.

In Panel B of Table 6, we run a similar analysis as in Panel A using the attention-weighted

32It is in fact notable that there is a slight dip in the effect of SLR in our sample, consistent with a small decline in the
standard deviation of projections in the last two years of the sample.
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measures. In column (1) we find that the attention-weighted mean emissions do not interact with

SLR risk to drive credit spreads. Directly accounting for a shift in attention to more severe climate

scenarios does not change our finding that mean predictions appear unrelated to increasing SLR

related spreads. Column (2) further indicates that incorporating attention into the standard devia-

tion measure also results in a similar interaction coefficient to that in Panel A. Lastly, a comparison

of both measures results in a positive weight on the standard deviation term. Thus, accounting for

the shift in attention across scenarios does not meaningfully change any of our conclusions from

Panel A.

Both panels of Table 6 bolster the narrative that uncertainty around SLR is the primary driver

of increased spreads for SLR exposed districts in the later part of our sample. Pinpointing whether

the effect is driven more by attention to more risky or uncertain scenarios or by widening risk

within scenario is not possible given the correlation between attention and within-scenario risk.

In unreported analysis, we find that both channels seem to be at play with neither dominating.

The role of σ as a channel for SLR’s impacts on bond spreads is a unique finding for our

paper in the climate finance literature, as prior studies have focused on the impact of expected

SLR on asset values. Due to the structure of municipal bonds, the growth in uncertainty about

climate change and SLR may trigger much sharper reactions in municipal bond pricing than in

the pricing of other assets (e.g., house prices). This suggests an important role of using a variety

of asset classes, and especially contingent claims on other assets, to study markets’ views on sea

level rise.

4.3 Mediating Channels: Local Beliefs, Tax Reliance, and Distress Policies

Our estimates thus far suggest that uncertainty regarding the future economic impact of SLR is the

most likely driver of the recent rise in municipal yield spreads for exposed areas. In this section,

we consider cross-sectional heterogeneity in this effect. First, we use state-level segmentation in

the municipal bond market to explore the role of heterogeneous investors’ beliefs in the pricing

of climate risk. Second, we examine the local tax regime, which determines how real economic

shocks affect school district budgets. Finally, we discuss the role of state-level policies on munici-

pal distress, which affect how local government funding shortfalls translate into creditor losses.

The factors discussed in this section are not mutually exclusive. On the contrary, we observe
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a positive correlation between state-level beliefs about climate change, local tax regimes, and poli-

cies on municipal distress. Therefore, we encourage a cautious interpretation of our results and

the following discussion. Moreover, any heterogeneous effects that do exist raise the potential

for the estimated effect of SLR exposure that we have discussed in previous sections to change if

certain segments of the market change their beliefs or the composition of the sample changes.

4.3.1 Heterogeneous Investor Beliefs

The relation between SLR exposure and municipal yield spreads that we document is driven by

investors’ beliefs regarding the future economic impact of climate change. We argue above that

investors’ beliefs about the relative municipal bond payoffs in SLR exposed areas are related to

uncertainty in scientific SLR projections. Here, we examine the extent to which heterogeneity

in investors’ beliefs about climate change risks play a role in how SLR exposure is priced in the

municipal bond markets.

Bernstein, Gustafson, and Lewis (2019) and Baldauf, Garlappi, and Yannelis (2020) find that

climate change beliefs affect how real estate markets price SLR exposure. The municipal bond

setting lends itself to examining how heterogeneous state-level climate change beliefs relate to

municipal bond pricing because buyers are often local retail investors due to the tax advantages

of in-state ownership (Schultz (2012)).

To measure an area’s beliefs about climate change, we merge our data with the Yale Climate

Opinion Maps (Howe et al. (2015)). Specifically, we aggregate 2014 county-level survey data on re-

sponses to the question “worried about global warming” to the state level, weighting each county

by the number of school districts it contains. We aggregate to the state level instead of using

the county-level data directly because the segmentation of municipal bond investors is driven by

state-level tax policy. To form our State Worry measure, we then subtract the average state’s level

of worry and divide by the standard deviation, resulting in a standardized measure that ranges

from -2.39 to 0.87.

In columns (1) and (2) of Table 7 we partition the sample based on whether a state’s worry

about climate change is above or below the median. Above-median states include (from most

to least worried) New York, Massachusetts, New Jersey, Rhode Island, Connecticut, and Maine,

while below-median states include Texas, North Carolina, South Carolina, Mississippi, and Louisiana.
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The SLR exposure premium since 2013 is positive and statistically significant in states with an

above-median level of worry. In less worried states, the SLR exposure premium is statistically

insignificant and in the opposite direction in the later part of our sample.

In column (3) of Table 7 we examine whether the differential effect of SLR exposure is signifi-

cantly different in worried states in the latter part of our sample by augmenting the specification

from equation (1) to include a triple interaction between SLR exposure, the post-2012 period, and

the state’s level of worry about climate change. Consistent with columns (1) and (2), we find that

the post-2012 SLR exposure premium is significantly larger in worried states relative to less wor-

ried states. The evidence in Table 7 suggests a similar role for climate beliefs that prior researchers

have observed in housing markets.

4.3.2 Local Tax Regimes

As discussed in Section 2, local property taxes are the primary source of school funding in most

places. This creates a direct link between future changes in real estate values and the cash flows

available to repay school district bonds. Where districts are more dependent on property tax

revenues, we expect to find a larger effect of district-level SLR exposure on bond yields.

Table 8 presents a test of this channel. In column (1) we interact SLR exposure with the post-

2012 indicator and the average property tax rates for the state. We find that states with higher

property tax rates exhibit larger credit spread increases in SLR-exposed districts. To address the

concern that differences in tax rates do not reflect differences in dependence on property tax rev-

enue, column (2) replaces property tax rates with the proportion of school funding coming from

local sources. We find that school districts which are more reliant on local revenue streams have

experienced larger increases in credit spreads associated with SLR exposure.33

A limitation of the preceding proxies for local revenue dependence is that even if property

taxes make up the majority of the revenue base, school district budgets may be insensitive to

local economic shocks. To examine this possibility we introduce data from California, which until

this point we have excluded from our sample because of its low expected elasticity between local

property values and municipal credit spreads. As noted previously, California is unique with

33Property tax rates are from the Tax Foundation (https://files.taxfoundation.org/20200225111115/
Facts-Figures-2020-How-Does-Your-State-Compare.pdf). Sources of school funding are from the Congres-
sional Research Service (https://www.everycrsreport.com/reports/R45827.html).
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respect to school funding because it has inelastic property tax revenues due to Proposition 13.

Column (3) replicates our main analysis using California school districts and finds a statistically

insignificant coefficient on SLR exposure after 2012. Thus, where there is a weak link between local

property values and the cash flows backing bond repayment, we find no effect of SLR exposure

on municipal bond spreads.

4.3.3 State Policies on Municipal Distress

Our findings suggest that SLR risk increases default risk, with investors pricing higher expected

losses (i.e., higher default probability or lower expected recovery) for SLR exposed issuers toward

the end of our sample period. Each state has its own policies on the ability of its municipalities

to default on their debt, which could have implications for the relation between SLR risk and

municipal default risk. Gao, Lee, and Murphy (2019) categorize states by whether they allow

municipalities to file for Chapter 9 bankruptcy (South Carolina and Texas, in our sample), have

“proactive” policies that offer assistance to distressed municipalities while discouraging Chapter

9 bankruptcy (Maine, New Jersey, New York, and North Carolina), or lack policies regarding fi-

nancial distress (Connecticut, Louisiana, Massachusetts, Mississippi, and Rhode Island).34 These

authors show that proactive policies are associated with lower default rates, higher creditor re-

coveries, and lower credit spreads relative to the Chapter 9 approach. Thus, it is important to

understand how these policies affect the pricing of SLR risk.

Table 9 partitions the sample according to the classification in Gao, Lee, and Murphy (2019) to

assess how these policies correlate with the SLR exposure premium. Column (1) shows a slightly

larger SLR premium in states with proactive distress policies relative to the full sample, while

column (2) shows a statistically insignificant effect in Chapter 9 states. Column (3) shows a highly

significant negative SLR premium in states with no explicit distress policies, though we should

note that this group comprises only 3% of the sample observations. The final column includes an

interaction effect confirming that the SLR premium is significantly larger in proactive states.

34While proactive states provide support, they neither explicitly nor implicitly guarantee local government debt.
There are prominent examples of issuers from proactive states defaulting and imposing large losses on bondholders in
recent history, including Harrisburg, Pennsylvania in 2009 with an out-of-court restructuring, and Detroit, Michigan in
2013 with the largest Chapter 9 filing to date. State intervention in the case of municipal distress is also distinct from
the the situation in California, which is excluded from our sample because Proposition 13 weakens the link between
property values and tax revenues.
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Considering the effect of proactive distress policies in isolation, it is surprising to see that

the SLR exposure premium is concentrated in states with proactive policies. However, the same

states – New Jersey and New York, in particular – are more concerned about climate change and

rely more on local property taxes to fund schools. The results in Table 9 suggest that these other

mediating channels outweigh the effect of more supportive distress policies.

In the absence of state support, we would expect to see even larger effects of SLR exposure

on municipal bond spreads because bondholder losses in default would be greater in the areas

where we see price effects. To quantify this counterfactual, we extend the structural model of

credit risk to include bankruptcy costs in Internet Appendix Section A4.2. When bankruptcy costs

are higher, as in a Chapter 9 state relative to a proactive state, a reduction in asset values or an

increase in volatility has a larger impact on credit spreads. However, this is a second-order effect:

a 10% increase in bankruptcy cost, analogous to the difference in recoveries between Chapter 9 and

proactive states documented by Gao, Lee, and Murphy (2019), leads to a proportional increase of

approximately 3% in the effect of fundamental shocks.

In a related vein, the financial health of state governments could affect the likelihood of condi-

tional transfers to exposed school districts. Particularly relevant are the unfunded public pension

liabilities that Rauh (2016) estimates are worth $3.8 trillion. However, most states fund teachers’

retirement plans at the state level, so it is unlikely that pension funding has a differential effect

on SLR exposed and unexposed school districts in the same county. If pension funding were

directly affecting our estimates, then we would expect to see large price effects when portfolio

values collapsed during the financial crisis, as in Novy-Marx and Rauh (2012), which we do not.

Nevertheless, there is a risk that underfunded pensions reduce the likelihood of intergovernmen-

tal transfers conditional on a local shock, which would offset the slight attenuation of the SLR

premium from state-level support for distressed municipalities.

5 Conclusion

This paper uses the municipal bond market to study the extent to which the risk of sea level rise is

priced in financial markets. In line with the evolution of scientific consensus and popular concern

about this risk, we find that the market begins to price SLR exposure in 2013, after which we

observe that exposed issuers have significantly higher borrowing costs than unexposed issuers.
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In 2015, a one standard deviation increase in SLR exposure corresponds to a 5.3 bp increase in

credit spreads. We observe significant effects at both short and long maturities, with stronger

effects for long-maturity bonds. The lack of similar effects based on measures of short-term flood

risk suggests that long-run SLR risk is the primary driver of our results.

In addition to addressing the question of how SLR risk impacts municipal borrowing costs, a

contribution of this paper is to adapt a structural model of credit risk from the corporate finance

literature to interpret the SLR exposure premium and quantify the economic fundamentals that

could explain it. Our methodology can be applied in other situations to interpret the effects of

economic shocks on risky debt prices, even in settings where it is difficult to observe the issuer’s

capital structure and the market value of its assets.

We find that the increase in expected default losses attributable to SLR risk is low, but that the

economic impact is non-trivial, equivalent to a reduction of 2.4% to 5.6% in the present value of

local government cash flows or a proportional increase of 1.6% to 2.9% in the volatility of these

cash flows. We conclude that municipal bond investors are mainly pricing the uncertainty and

downside risks associated with SLR’s future impact rather than the effects of reduced asset values

today. These estimates shed light on the importance of downside uncertainty in SLR risk, and the

extent to which better information and modeling can work alongside climate remediation efforts

in coastal communities.
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Figure 1: Time Series of Sea Level Rise Projections and Climate Scenarios

Panel A: Scientific Projections of Sea Level Rise Panel B: Scientific Uncertainty of SLR Projections

Panel C: Relative Prominence of Emissions Scenarios Panel D: Overall Academic Prominence
in Academic Studies of Emissions Scenarios

Note: This figure plots the different summary statistics of studies surveyed in Garner et al. (2018). Panels A and B plot
the annual values for mean (dashed line in Panel A), worst-case (solid line in Panel A). All measures are computed by
first calculating the statistic for each study and then averaging across all studies in the rolling two-year window. Mean
(Standard Deviation) is computed by taking the average 2100 SLR estimate (standard deviation for 2100 SLR estimate)
for every scenario considered in a study, then averaging these within-scenario means (standard deviations) across all
scenarios considered in the study, and finally averaging across all studies in the rolling two-year window. Worst is the
maximum upper-bound estimate across all scenarios used in a study, averaged across all studies in a two-year rolling
window. We omit measures between 2001 and 2007 because there were no new projections of global SLR between 2002
and 2006. Panel C plots the ratio of total obtained from Google Scholar of the number of studies which discuss high
forecast models (RCP8.5 or SRES A) divided by the total number of studies which cite medium or high scenarios (e.g.
RCP 8.5, RCP 4.5, SRES A, and SRES B). Panel D plots the total combined counts of the results of the two searches.
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Figure 2: Sea Level Rise Exposure in Fairfield County, Connecticut

Note: This figure maps housing locations and exposure to sea level rise for a portion of Fairfield County, Connecticut.
Black dots are residential dwelling units, the green area is the three-foot NOAA SLR scenario, the light blue area is the
six-foot scenario, and the red lines delineate school districts.
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Figure 3: School District Exposure to Six Feet of Global Average Sea Level Rise

Panel A: Northeast

Panel B: Southeast and Gulf Coast

Note: This figure maps the fraction of properties in each coastal school district that is exposed to chronic tidal flooding
after six feet of global average sea level rise. Gray areas represent districts that do not appear in the sample of municipal
bonds described in Section 2. For ease of presentation, we break the states into regions, with Panel A focusing on the
Northeast and Panel B on the Southeast and Gulf Coast.
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Figure 4: Effect of Sea Level Rise Exposure on Bond Credit Spreads

Note: This figure plots the annual effect of SLR exposure on municipal bond credit spreads. Each point is a coefficient
from the regression specified in equation (1), while the vertical bars represent 95% confidence bands based on standard
errors clustered by county and year-month. The dependent variable is the volume-weighted average credit spread
of a municipal bond, defined as the difference between yield-to-maturity and the maturity-matched yield from the
Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of
residential properties that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard
deviation. The regression includes county-year-month and school district fixed effects; the logarithm of the bond’s time
to maturity, callability, and insured status interacted with year indicators; and district-level average income, the number
of years since issuance, the ratio of trading volume to amount outstanding, the standard deviation of transaction prices
by bond-month, and an indicator for general obligation issues. The baseline period for the district fixed effects is 2007.
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Figure 5: Model-Implied Asset Volatility as a Function of Leverage

Note: This figure plots the model-implied volatility (σ) from equation (3) as a function of the leverage ratio (K/V). The
other model parameters are: y = 3.24%, r = 2.68%, and T = 7.5.
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Figure 6: Effects of Asset Value and Volatility Shocks on Municipal Bond Yields

Panel A: Decrease in Asset Value

Panel B: Increase in Asset Volatility
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Panel C: Calibration of Shocks to Our Estimates

Panel D: Calibration of Shocks to Painter (2020)

Note: This figure plots the change in yield associated with changes in the distribution of cash flows backing municipal
bond repayment. Panel A considers reductions in the present value of cash flows, while Panel B considers proportional
increases in the volatility of the underlying asset value. Panel C considers the combination of asset value and volatility
shocks that match our main reduced-form estimate of a 5.3 bp increase in yield. Panel D considers the combination
of shocks that matches the 23.4 bp increase in yield estimated by Painter (2020). Each panel considers four parameter
specifications based on leverage ratios (K/V) of 10%, 30%, 50%, and 70%, along with the associated model-implied
volatilities from Figure 5. The other model parameters for Panels A, B and C are: y = 3.24%, r = 2.68%, and T = 7.5.
The parameters for Panel D, which match the typical long-maturity bond in Painter (2020), are: y = 4.70%, r = 4.00%,
and T = 22.5.
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Table 1: Summary Statistics

(1) (2)
Full Coastal Sample SLR Exposed Districts

Mean Std.Dev. Obs. Mean Std.Dev. Obs.

Fraction of Properties Exposed (6 foot SLR) 0.03 0.09 175,415 0.07 0.13 80,406
Storm Surge Exposure 0.61 1.47 175,415 1.26 1.93 80,406
Yield-to-Maturity (%) 3.24 1.24 175,415 3.23 1.21 80,406
MMA AAA-Rated Tax-Exempt Rate (%) 2.68 1.29 175,415 2.65 1.27 80,406
Spread over MMA Curve (bps) 56.54 54.34 175,415 58.07 55.32 80,406
Time to Maturity 9.54 6.12 175,415 9.26 5.86 80,406
Bond Age 4.02 2.70 175,415 3.95 2.67 80,406
Monthly Trading Volume ($000s) 543.03 2797.48 175,415 529.05 2783.86 80,406
Monthly Turnover 0.18 0.37 174,893 0.18 0.37 80,126
Monthly S.D. of Price (per $100) 0.88 0.69 155,689 0.89 0.69 71,115
1(Callable) 0.61 0.49 175,415 0.61 0.49 80,406
1(Insured) 0.41 0.49 175,415 0.46 0.50 80,406
1(General Obligation) 1.00 0.07 175,415 0.99 0.07 80,406
Residents’ Average Income ($000s) 37.92 25.05 175,415 36.36 23.18 80,406
Property Tax Rate 0.02 0.00 175,415 0.02 0.00 80,406
School Local Funding 0.51 0.03 175,415 0.51 0.03 80,406
State Worry 55.42 4.30 175,415 55.88 4.53 80,406

Note: This table reports the summary statistics for the variables used in our regression analysis. Observations are at the
bond-year-month level. SLR Exposed Districts are school districts with non-zero exposure to six feet of sea level rise.
Fraction of Properties Exposed and Storm Surge Exposure are equal to the number of properties exposed to six feet of
global SLR and the storm surge associated with a Category 3 hurricane, respectively, divided by the total number of
properties in a school district. Yield-to-Maturity is the discount rate that equates the volume-weighted average price
in the bond-year-month to the present value of its promised cash flows. MMA AAA-Rated Tax-Exempt Rate is the
maturity-matched yield from the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, available on
Bloomberg. Spread over MMA Curve is the difference between yield-to-maturity and the tax-exempt benchmark rate.
Time to Maturity is the number of years between the last transaction date in the bond-year-month and the bond’s
maturity date. Bond Age is the number of years between the bond’s offering date and the last transaction date in the
bond-year-month. Monthly Trading Volume is the par value traded in the bond-year-month. Monthly Turnover is the
ratio of trading volume to the bond’s principal amount. Month S.D. of Price is the standard deviation of transaction
prices in the bond-year-month. 1(Callable), 1(Insured), and 1(General Obligation) are indicators for callable, insured,
and general obligation bonds, respectively. Residents’ Average Income is the average income by district-year using
data from the Internal Revenue Service (IRS) Statistics of Income program. Property Tax Rate is the effective property
tax rate at the state-year level from the Tax Foundation. School Local Funding is the fraction of school funding drawn
from within the school district at the state-year level. State Worry is a state-level measure of global warming concerns
from the Yale Climate Opinion Map (Howe et al. (2015)).
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Table 2: Effect of Sea Level Rise Exposure on Bond Spreads

Panel A: Year-by-Year (1) (2) (3)

SLR Exposure -1.275**
(-2.05)

SLR Exposure × 1(Year 2001) 0.061 0.313 1.238
(0.05) (0.36) (0.92)

SLR Exposure × 1(Year 2002) 0.475 0.455 1.100
(0.48) (0.62) (0.96)

SLR Exposure × 1(Year 2003) -0.146 -0.203 1.435
(-0.19) (-0.22) (1.10)

SLR Exposure × 1(Year 2004) -2.343** -2.018* 1.400**
(-2.60) (-1.77) (2.08)

SLR Exposure × 1(Year 2005) -0.655 -0.386 0.398
(-1.24) (-0.70) (1.21)

SLR Exposure × 1(Year 2006) -0.245 -0.424 -0.117
(-0.38) (-0.73) (-0.22)

SLR Exposure × 1(Year 2008) 0.868 0.610 0.055
(1.02) (0.84) (0.13)

SLR Exposure × 1(Year 2009) 1.911** 1.277* 0.548
(2.26) (1.93) (0.62)

SLR Exposure × 1(Year 2010) 0.915 0.041 -0.068
(0.69) (0.03) (-0.07)

SLR Exposure × 1(Year 2011) 2.357* 1.332 1.875
(1.89) (1.20) (1.30)

SLR Exposure × 1(Year 2012) 1.956 0.930 1.911
(0.94) (0.43) (1.64)

SLR Exposure × 1(Year 2013) 2.964 1.844 2.305**
(1.34) (0.80) (2.03)

SLR Exposure × 1(Year 2014) 5.839* 4.852 4.747***
(1.90) (1.41) (5.26)

SLR Exposure × 1(Year 2015) 5.310* 4.618 5.277***
(1.84) (1.40) (4.03)

SLR Exposure × 1(Year 2016) 5.234* 4.770* 4.977***
(2.00) (1.76) (2.78)

SLR Exposure × 1(Year 2017) 5.336** 4.973** 3.886**
(2.29) (2.23) (2.27)

Panel B: Pooled

SLR Exposure -0.471*
(-1.80)

SLR Exposure × 1(Post) 4.055** 3.713* 3.340***
(2.06) (1.78) (3.01)

Controls N N Y
County-Year-Month FE Y Y Y
District FE N Y Y
Outcome Mean 56.541 56.541 57.399
Outcome SD 54.304 54.304 54.594
Observations 175,415 175,415 155,212
R2 0.3281 0.3500 0.6739
Within-R2 0.0014 0.0010 0.1699

Note: This table reports estimates of equation (1) in the full sample of bonds issued by school districts in coastal
states.Observations are at the bond-year-month level. The dependent variable is the volume-weighted average credit
spread of a municipal bond, defined as the difference between yield-to-maturity and the maturity-matched yield from
the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. Controls include the loga-
rithm of the bond’s time to maturity, callability, and insured status interacted with year indicators; and district-level
average income, the number of years since issuance, the ratio of trading volume to amount outstanding, the standard
deviation of transaction prices by bond-month, and an indicator for general obligation issues. The baseline period for
the district fixed effects is 2007. t-statistics are reported in parentheses, with standard errors clustered by county and
year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table 3: Effect of SLR Exposure on Bond Spreads: Long- versus Short-Run Risk

(1) (2) (3)

SLR Exposure × 1(Post) 3.340*** 3.667**
(3.01) (2.06)

Storm Surge Exposure × 1(Post) -0.507
(-0.21)

SLR Exposure × 1(Post) × Log(Maturity) 0.968**
(2.36)

Maturity Range All All All
Controls Y Y Y
District FE Y Y N
County-Year-Month FE Y Y Y
District-Year-Month FE N N Y
Outcome Mean 57.399 57.399 57.598
Outcome SD 54.594 54.594 54.470
Observations 155,212 155,212 155,212

Note: This table reports estimates of equation (1) with the yearly coefficients collapsed into pre-2013 and post-2012
periods. Observations are at the bond-year-month level. The dependent variable is the volume-weighted average credit
spread of a municipal bond, defined as the difference between yield-to-maturity and the maturity-matched yield from
the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction
of residential properties that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard
deviation. Storm Surge Exposure is the average number of feet of inundation for residential properties due to the storm
surge from a Category 3 hurricane, normalized to zero mean and unit standard deviation. 1(Post) is an indicator equal
to one for observations occurring after 2012 and zero otherwise. Controls include the logarithm of the bond’s time to
maturity, callability, and insured status interacted with year indicators; and district-level average income, the number
of years since issuance, the ratio of trading volume to amount outstanding, the standard deviation of transaction prices
by bond-month, and an indicator for general obligation issues. t-statistics are reported in parentheses, with standard
errors clustered by county and year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.

52



Table 4: Effect of SLR Exposure on District House Prices

(1) (2) (3) (4) (5)

SLR Exposure × 1(Post) -0.014*** -0.103 -0.003 -0.011** -0.015*
(-3.06) (-1.58) (-0.88) (-2.28) (-1.89)

House Price Measure Median Exposed Unexposed Weighted Zillow
Controls Y Y Y Y Y
District FE Y Y Y Y Y
County-Year-Month FE Y Y Y Y Y
Outcome Mean 12.272 3.496 12.178 12.183 12.428
Outcome SD 0.651 5.663 0.671 0.675 0.773
Observations 127,208 155,212 149,671 149,671 149,265
R2 0.9920 0.9011 0.9894 0.9895 0.9970
Within-R2 0.0249 0.0013 0.0128 0.0147 0.0542

Note: This table reports estimates of equation (1) with school district-level house prices as outcomes and the yearly
coefficients collapsed into pre-2013 and post-2012 periods. Observations are at the school district-year-month level.
Each district-year must have at least 50 annual house transactions recorded in ZTRAX to be included in the sample.
The dependent variable is log house price measured in different ways. In Column 1, Median HP is the logarithm of the
annual realized median transaction price for single-family residences in the school district. In Column 2 and 3, Exposed
and Unexposed Median HP is the logarithms of the annual median transaction prices for properties with nonzero and
zero exposure to SLR. In Column 4, Weighted Exposure HP is the logarithm of the weighted average of unexposed
and epxosed HP, weighted by the local share of homes exposed to SLR. In Column 5, Zillow HP is the logarithm of
the average of the median zip code house price index by Zillow in a district-year (Zillow Home Value Index available
here: https://www.zillow.com/research/data/). SLR Exposure is the fraction of residential properties that
would be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation. 1(Post) is an
indicator equal to one for observations occurring after 2012 and zero otherwise. Controls include the logarithm of the a
school district’s bond’s time to maturity, callability, and insured status interacted with year indicators; and district-level
average income, the number of years since issuance, the ratio of trading volume to amount outstanding, the standard
deviation of transaction prices by bond-month, and an indicator for general obligation issues. t-statistics are reported
in parentheses, with standard errors clustered by county and year-month. *, **, and *** denote p-values less than 0.10,
0.05, and 0.01, respectively.
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Table 5: Effect of SLR Exposure on Bond Spreads Controlling for House Prices

(1) (2) (3) (4) (5)

SLR Exposure × 1(Post) 4.181*** 4.072*** 4.214*** 4.392*** 3.715**
(5.09) (3.63) (3.91) (4.74) (2.62)

House Price Control Measure None Median HP MHP by Exposure Zillow HP HP Dist.
Controls Y Y Y Y Y
District FE Y Y Y Y Y
County-Year-Month FE Y Y Y Y Y
Outcome Mean 57.334 57.334 57.334 57.334 57.335
Outcome SD 55.285 55.285 55.285 55.285 55.287
Observations 127,208 127,208 127,208 127,208 127,197
R2 0.6787 0.6801 0.6806 0.6796 0.6820
Within-R2 0.1564 0.1602 0.1615 0.1590 0.1651

Note: This table reports estimates of equation (1), with the yearly coefficients collapsed into pre-2013 and post-2012
periods, with various additional controls for district-level house prices interacted with year fixed effects. Observa-
tions are at the bond-year-month level. Each district-year must have at least 50 annual house transactions recorded
in ZTRAX to be included in the sample. The dependent variable is the volume-weighted average credit spread of a
municipal bond, defined as the difference between yield-to-maturity and the maturity-matched yield from the Mu-
nicipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of
residential properties that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard
deviation. 1(Post) is an indicator equal to one for observations occurring after 2012 and zero otherwise. Median HP
indicates a control for the logarithm of the annual realized median transaction price for single-family residences in
the school district. MHP by exposure indicates controls for the logarithms of the annual median transaction prices
for properties with zero and nonzero exposure to SLR. Zillow HP indicates a control for the logarithm of the aver-
age of the median zip code house price index by Zillow in a district-year (Zillow Home Value Index available here:
https://www.zillow.com/research/data/). HP Dist. indicates controls for the 10th, 25th, 50th, 75th and 90th
percentiles of the log of realized transaction prices in a district-year. Controls include the logarithm of the bond’s time to
maturity, callability, and insured status interacted with year indicators; and district-level average income, the number
of years since issuance, the ratio of trading volume to amount outstanding, the standard deviation of transaction prices
by bond-month, and an indicator for general obligation issues. t-statistics are reported in parentheses, with standard
errors clustered by county and year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table 6: Effect of SLR Exposure Based on Time Variation in Academic Forecasts

Panel A: Mean vs Variance in SLR Forecasts

Univariate Bivariate

(1) (2) (3) (4) (5)

Frac Exposed X Mean Forecast (All Risk, 2yr) -0.338 -0.686* -1.054* -2.340** -0.361**
(-0.85) (-1.84) (-1.98) (-2.28) (-2.28)

Frac Exposed X St. Dev. of Forecasts (All Risk, 2yr) 1.806*** 1.880***
(4.42) (4.38)

Frac Exposed X Range of Forecasts (All Risk, 2yr) 0.943*** 1.311***
(3.44) (3.22)

Frac Exposed X Worst Forecast (2yr) 0.862*** 2.458***
(3.28) (2.72)

Frac Exposed X St. Dev. of Forecasts (Med Risk, 2yr) 1.262*** -0.872
(5.49) (-1.30)

Frac Exposed X St. Dev. of Forecasts (High Risk, 2yr) 1.896*** 2.658***
(4.26) (2.76)

Articles for Projection All All All All All
Controls Y Y Y Y Y
County-Year-Month FE Y Y Y Y Y
District FE Y Y Y Y Y
Outcome Mean 66.381 66.381 66.381 66.381 66.381
Outcome SD 56.894 56.894 56.894 56.894 56.894
Observations 118,694 118,694 118,694 118,694 118,694
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Panel B: Attention Weighted Uncertainty

(1) (2) (3)

Frac Exposed X Attention Weighted Mean (2yr) 0.078 -0.629*
(0.33) (-1.84)

Frac Exposed X Attention Weighted St. Dev. (2yr) 1.847*** 2.058***
(4.37) (4.15)

Controls Y Y Y
County-Year-Month FE Y Y Y
District FE Y Y Y
Outcome Mean 66.381 66.381 66.381
Outcome SD 56.894 56.894 56.894
Observations 118,694 118,694 118,694

Note: This table reports estimates of equation (1) where, instead of collapsing the yearly coefficients into a pre/post
indicator, we interact school district SLR exposure with measures of SLR expectations derived from scientific forecasts.
Observations are at the bond-year-month level and the sample begins in 2007 due to a lack of SLR projections prior
to that time. The measures of SLR projections are generated from the studies in Garner et. al (2018). Mean Forecast
takes the mean SLR projection for every scenario in a study and computes the study-level average. Then it takes the
average of those study-level averages across all studies in a two-year period. St. Dev of Forecasts performs a similar
two-year aggregation for the mean standard deviation of SLR projections across all scenarios in a study. We similarly
construct standard deviation measures using only medium and high emissions scenarios, respectively. Worst Forecast
is the highest projection from each study, averaged across all studies for a two-year period. Range of Forecasts is Worst
Forecast minus a similar computation using the lowest SLR projection in each study. Attention-weighted mean and
standard deviation are calculated as described in Section 4.2.2. First we obtain from Google Scholar the ratio (r) of the
number of studies which discuss high forecast models (RCP8.5 or SRES A) divided by the total number of studies which
cite medium or high scenarios (e.g. RCP 8.5, RCP 4.5, SRES A, and SRES B). We then calculate the attention-weighted
variables as follows:

Attention Weighted Mean = r ∗ Mean(High Risk) + (1 − r) ∗ Mean(Med Risk)

Attention Weighted StDev = r ∗ StDev(High Risk) + (1 − r) ∗ StDev(Med Risk)
The dependent variable is the volume-weighted average credit spread of a municipal bond, defined as the difference be-
tween yield-to-maturity and the maturity-matched yield from the Municipal Market Advisors AAA-rated tax-exempt
benchmark curve, in basis points. SLR Exposure is the fraction of residential properties that would be inundated by six
feet of sea level rise, normalized to zero mean and unit standard deviation. Controls include the logarithm of the bond’s
time to maturity, callability, and insured status interacted with year indicators; and district-level average income, the
number of years since issuance, the ratio of trading volume to amount outstanding, the standard deviation of trans-
action prices by bond-month, and an indicator for general obligation issues. t-statistics are reported in parentheses,
with standard errors clustered by county and year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01,
respectively.
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Table 7: Effect of SLR Exposure on Bond Spreads by Local Beliefs

(1) (2) (3)

SLR Exposure × 1(Post) 5.159*** -0.883 4.210***
(6.48) (-0.61) (5.04)

SLR Exposure × 1(Post) × State Worry 2.961***
(3.02)

Level of Concern Worried Not Worried All
Controls Y Y Y
District FE Y Y Y
County-Year-Month FE Y Y Y
Outcome Mean 66.416 66.353 66.381
Outcome SD 56.505 57.209 56.894
Observations 53,398 65,296 118,694
R2 0.6846 0.6566 0.6640
Within-R2 0.1324 0.2117 0.1802

Note: This table reports estimates of equation (1) with the yearly coefficients collapsed into pre-2013 and post-2012
periods, and an added interaction with state residents’ level of concern about global warming. Observations are at
the bond-year-month level. Worried states in column (1) include (in order of concern) New York, Massachusetts, New
Jersey, Rhode Island, Connecticut, and Maine, while Not Worried states in column (2) include Texas, North Carolina,
South Carolina, Mississippi, and Louisiana. The dependent variable is the volume-weighted average credit spread
of a municipal bond, defined as the difference between yield-to-maturity and the maturity-matched yield from the
Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of
residential properties that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard
deviation. 1(Post) is an indicator equal to one for observations occurring after 2012 and zero otherwise. State Worry is a
measure of global warming concerns from the Yale Climate Opinion Map, normalized to zero mean and unit standard
deviation. Controls include the logarithm of the bond’s time to maturity, callability, and insured status interacted with
year indicators; and district-level average income, the number of years since issuance, the ratio of trading volume to
amount outstanding, the standard deviation of transaction prices by bond-month, and an indicator for general obliga-
tion issues. t-statistics are reported in parentheses, with standard errors clustered by county and year-month. *, **, and
*** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table 8: Effect of SLR Exposure on Bond Spreads by Tax Regime

(1) (2) (3)

SLR Exposure × 1(Post) 2.409* -2.315 -0.290
(1.83) (-1.06) (-0.43)

SLR Exposure × 1(Post) × Property Tax Rate 1.042**
(2.13)

SLR Exposure × 1(Post) × School Local Funding 6.095***
(2.93)

Sample Main Main CA
Controls Y Y Y
District FE Y Y Y
County-Year-Month FE Y Y Y
Outcome Mean 66.381 66.381 83.533
Outcome SD 56.894 56.894 63.107
Observations 118,694 118,694 101,071
R2 0.6637 0.6639 0.6946
Within-R2 0.1797 0.1800 0.1755

Note: This table reports estimates of equation (1), with the yearly coefficients collapsed into pre-2013 and post-2012
periods, and an added interaction with measures of school districts’ reliance on property taxes. Observations are at the
bond-year-month level. The dependent variable is the volume-weighted average credit spread of a municipal bond,
defined as the difference between yield-to-maturity and the maturity-matched yield from the Municipal Market Ad-
visors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of residential properties
that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation. 1(Post) is
an indicator equal to one for observations occurring after 2012 and zero otherwise. Property Tax Rate is the effective
property tax rate at the state level, normalized to zero mean and unit standard deviation. School Local Funding is the
fraction of school funding drawn from within the school district, normalized to zero mean and unit standard deviation.
Controls include the logarithm of the bond’s time to maturity, callability, and insured status interacted with year indi-
cators; and district-level average income, the number of years since issuance, the ratio of trading volume to amount
outstanding, the standard deviation of transaction prices by bond-month, and an indicator for general obligation is-
sues. t-statistics are reported in parentheses, with standard errors clustered by county and year-month. *, **, and ***
denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table 9: Effect of SLR Exposure on Bond Spreads by State Distress Policy

(1) (2) (3) (4)

SLR Exposure × 1(Post) 5.282*** -0.886 -14.657*** -1.496
(6.52) (-0.61) (-3.98) (-1.13)

SLR Exposure × 1(Post) × 1(Proactive) 6.524***
(4.58)

Distress Policy Proactive Chapter 9 Neither All
Controls Y Y Y Y
District FE Y Y Y Y
County-Year-Month FE Y Y Y Y
Outcome Mean 66.017 66.205 76.085 66.381
Outcome SD 56.103 57.292 60.687 56.894
Observations 51,247 64,008 3,439 118,694
R2 0.6781 0.6569 0.7862 0.6640
Within-R2 0.1333 0.2127 0.1858 0.1804

Note: This table reports estimates of equation (1), with the yearly coefficients collapsed into pre-2013 and post-2012
periods, and an added interaction with indicators for state-level policies regarding municipal distress. Observations
are at the bond-year-month level. The dependent variable is the volume-weighted average credit spread of a municipal
bond, defined as the difference between yield-to-maturity and the maturity-matched yield from the Municipal Market
Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of residential proper-
ties that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation. 1(Post)
is an indicator equal to one for observations occurring after 2012 and zero otherwise. State distress policies are coded
according to Gao, Lee, and Murphy (2019): Proactive states include Maine, New Jersey, New York, and North Carolina;
Chapter 9 states include South Carolina and Texas; and Neither states include Connecticut, Louisiana, Massachusetts,
Mississippi, and Rhode Island. Controls include the logarithm of the bond’s time to maturity, callability, and insured
status interacted with year indicators; and district-level average income, the number of years since issuance, the ratio
of trading volume to amount outstanding, the standard deviation of transaction prices by bond-month, and an indica-
tor for general obligation issues. t-statistics are reported in parentheses, with standard errors clustered by county and
year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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A1 Selection of Sea Level Rise Studies

This section describes the process by which we construct the panel dataset used to measure
the variation in global sea level rise projections for the year 2100 over our sample period.

To quantify the evolution of SLR projections, we use information provided in Garner et
al. (2018) to construct a panel of scientific papers that project global average SLR through
2100. Garner et al. (2018) highlight a total of 73 different reports from which we select a
sample of comparable studies. We construct one set of measures based on this full set of
studies and denote this sample “All” articles. This is what is presented in Figure 1 in the
main text.

We also construct our projection measures using a filtered sample, which we denote the
“select” articles. Most studies model their SLR projections based on agreed-upon emissions
scenarios, which change in 2012 with the release of Representative Carbon Pathways (RCP).
To standardize our analysis, before 2012 we examine A2 (high) and B1 (medium) emissions
scenarios and, after 2012 we focus on the RCP8.5 (high) and RCP4.5 (medium) scenarios.
Since the emissions pathways of A2 are similar to that of RCP8.5, and the emissions pathways
of B1 are similar to RCP4.5, focusing on these models provides continuity from before to
after the RCP standardization.

We narrow the universe of reports by imposing the following criteria:

1. We require that the study be semi-empirical, probabilistic, or part of the IPCC or
NOAA analysis papers. These methods have become the state-of-the-art in the 21st
century and allow for a consistent comparison group.

2. We require that the study explores both medium and high emissions scenarios (e.g.,
A2 and B1 or RCP8.5 and RCP 4.5)

3. The study must have sufficient information to calculate the mean and variance of global
average SLR at the end of the century.

4. We exclude any studies that impose explicit constraints on projection variables or use
non-standard temperature projections.

We are left with 22 studies released between 2001 and 2017 in our select sample, listed in
Appendix Table A1. We make Panel A and Panel B from Figure 1 again using this selected
sample in Appendix Figure A1.
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Table A1: List of Sea Level Rise Studies

Mid Scenario High Scenario

Author Type Year Scenario Mean S.D. Scenario Mean S.D.

Church et al., 2001 IPCC Assessment Report 2001 SRES B1 0.33 0.12 SRES A2 0.45 0.15
Meehl et al., 2007 IPCC Assessment Report 2007 SRES B1 0.28 0.05 SRES A2 0.43 0.11
R. Horton et al., 2008 Semi-empirical 2008 SRES B1 0.65 0.05 SRES A2 0.79 0.05
Vermeer & Rahmstorf, 2009 Semi-empirical 2009 SRES B1 0.9 0.21 SRES A2 1.07 0.25
Grinsted et al., 2010 Semi-empirical 2010 SRES B1 0.9 0.09 SRES A2 0.95 0.21
Hunter, 2010 Semi-empirical 2010 SRES B1 0.34 0.08 SRES A2 0.46 0.12
Jevrejeva et al., 2010 Semi-empirical 2010 SRES B1 0.85 0.13 SRES A2 0.9 0.31
Jevrejeva et al., 2012 Semi-empirical 2012 RCP4.5 0.81 0.15 RCP8.5 1.23 0.21
Parris et al., 2012 Literature Synthesis 2012 NOAA 0.45 0.13 NOAA 1.25 0.38 *
Rahmstorf et al., 2012 Semi-empirical 2012 RCP4.5 0.92 0.24 RCP8.5 1.29 0.38
Church et al., 2013 IPCC Assessment Report 2013 RCP4.5 0.54 0.18 RCP8.5 0.82 0.27 **
Perrette et al., 2013 Semi-empirical 2013 RCP4.5 0.89 0.22 RCP8.5 1.15 0.33 **
Jevrejeva et al., 2014 Probabilistic 2014 RCP4.5 0.55 0.08 RCP8.5 1.15 0.33 **
Kopp et al., 2014 Probabilistic 2014 RCP4.5 0.65 0.15 RCP8.5 0.87 0.18 **
Grinsted et al., 2015 Probabilistic 2015 RCP4.5 0.56 0.09 RCP8.5 1.14 0.35 **
Jevrejeva et al., 2016 Probabilistic 2016 RCP4.5 0.55 0.08 RCP8.5 1.16 0.32 **
Kopp et al., 2016 Semi-empirical 2016 RCP4.5 0.59 0.13 RCP8.5 0.92 0.2 **
Bakker et al., 2017 Probabilistic 2017 RCP4.5 0.76 0.11 RCP8.5 2 0.19
Kopp et al., 2017 Probabilistic 2017 RCP4.5 1.04 0.28 RCP8.5 1.68 0.38 **
Le Bars et al., 2017 Probabilistic 2017 RCP4.5 1.04 0.28 RCP8.5 1.84 0.32 **
Nauels, Rogelj, et al., 2017 Probabilistic 2017 RCP4.5 0.64 0.31 RCP8.5 0.94 0.34 **
Wong et al., 2017 Probabilistic 2017 RCP4.5 0.93 0.19 RCP8.5 1.58 0.25 **
* NOAA report, distribution assumed across scenarios.
** Asymmetric distribution around mean

Note: This table reports a list of studies considered in creating the time-varying expectations of SLR risk described
in Section 2.1 of the paper. Studies themselves report portions of the distribution (most commonly 5th and 95th
percentile) or direct distributional information. In order to aggregate across studies, we assume normality to calculate
the mean and standard deviation (in meters of SLR) from the distributional information supplied by each study. In
some cases the distributions are right-skewed, so our assumption of normality induces a downward bias in our estimate
of right-tail events. For a comprehensive overview of sea level rise research, see Garner et al. (2018).
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Figure A1: Time Series of Sea Level Rise Projections using Subset of Projections

Panel A: Scientific Projections of Sea Level Rise Panel B: Standard Deviation of Projections

Note: This figure plots the different summary statistics of studies surveyed in Garner et al. (2018). Panels
A and B plot the annual values for mean (dashed line in Panel A), worst-case (solid line in Panel A). All
measures are computed by first calculating the statistic for each study and then averaging across all studies
in the rolling two-year window. Mean (Standard Deviation) is computed by taking the average 2100 SLR
estimate (standard deviation for 2100 SLR estimate) for every scenario considered in a study, then averaging
these within-scenario means (standard deviations) across all scenarios considered in the study, and finally
averaging across all studies in the rolling two-year window. Worst is the maximum upper-bound estimate
across all scenarios used in a study, averaged across all studies in a two-year rolling window. We omit
measures between 2001 and 2007 because there were no new projections of global SLR between 2002 and
2006.
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A2 Measurement of Relative Sea Level Rise
As discussed in Section 2 of the paper, Murfin and Spiegel (2020) argue that the main
SLR exposure measure does not account for subsidence, so it does not accurately capture
SLR risk. NOAA acknowledges this in the SLR methodology: “[subsidence] effects are
still sufficiently unknown that they may compound or offset each other in unpredictable
ways, such that including only some processes may cause greater error than ignoring them”
(https://coast.noaa.gov/data/digitalcoast/pdf/slr-faq.pdf). In other words, the
NOAA measure is based on more predictable and better understood factors, but may miss
some less predictable aspects of SLR exposure.

The relative sea level rise (RSLR) measure proposed by Murfin and Spiegel (2020) could
capture missing factors and represent SLR risk more accurately. Alternatively, it could
introduce noise, as suggested by the NOAA, and may not represent investors’ information
sets because it is not easily accessible through public means. To address this issue, we
construct a measure of RSLR exposure to compare results.

Our measure of RSLR exposure is based on Sweet et al. (2017), who forecast regional
SLR by extrapolating the observed historical subsidence at tidal monitor stations into the
future. They do so for several time periods, including an end-of-century estimate.

We begin by locating the nearest station reported in Sweet et al. (2017) for each resi-
dential property in our sample. We then calculate the RSLR adjustment as the difference
between the end-of-century global mean sea level (GMSL) under the extreme (2.5 meter)
scenario and the local scenario that incorporates the median predicted regional variation.
Finally, we obtain the property-level RSLR exposure by subtracting the RSLR adjustment
from the NOAA SLR exposure level.

At the house level, indicators for six-foot inundation based on SLR and RSLR have a
correlation coefficient of 0.77 – a high degree of correlation, but with meaningful independent
variation. However, when we aggregate these measures to the district level, taking the
fraction of inundated homes, the correlation between the two measures is 0.97. This strong
degree of correlation is because most of the within-district variation is averaged out, resulting
in similar variation across districts.

In Table A2 and Figure A1 below, we estimate our main regression specification using
both the SLR and RSLR measures and obtain very similar results. The coefficients on the
RSLR measure are slightly smaller relative to our SLR measure, but the differences are not
statistically significant. The reduced coefficient estimates suggest that the RSLR measure
potentially introduces measurement error and attenuation bias.
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Table A2: Effects of SLR and RSLR Exposure on Bond Spreads

(1) (2) (3) (4)

SLR Exposure × 1(Post) 3.340*** 2.798**
(3.01) (2.08)

SLR Exposure × 1(Year 2001) 1.238 1.228
(0.92) (0.83)

SLR Exposure × 1(Year 2002) 1.100 1.043
(0.96) (0.93)

SLR Exposure × 1(Year 2003) 1.435 1.502
(1.10) (1.18)

SLR Exposure × 1(Year 2004) 1.400** 1.283*
(2.08) (1.96)

SLR Exposure × 1(Year 2005) 0.398 0.424
(1.21) (1.18)

SLR Exposure × 1(Year 2006) -0.117 0.073
(-0.22) (0.14)

SLR Exposure × 1(Year 2008) 0.055 0.065
(0.13) (0.15)

SLR Exposure × 1(Year 2009) 0.548 0.446
(0.62) (0.48)

SLR Exposure × 1(Year 2010) -0.068 0.028
(-0.07) (0.03)

SLR Exposure × 1(Year 2011) 1.875 1.785
(1.30) (1.19)

SLR Exposure × 1(Year 2012) 1.911 2.090
(1.64) (1.59)

SLR Exposure × 1(Year 2013) 2.305** 2.243**
(2.03) (2.11)

SLR Exposure × 1(Year 2014) 4.747*** 4.462***
(5.26) (4.39)

SLR Exposure × 1(Year 2015) 5.277*** 4.724***
(4.03) (3.10)

SLR Exposure × 1(Year 2016) 4.977*** 4.017**
(2.78) (2.05)

SLR Exposure × 1(Year 2017) 3.886** 2.863
(2.27) (1.64)

SLR Measure SLR RSLR SLR RSLR
Controls Y Y Y Y
District FE Y Y Y Y
County-Year-Month FE Y Y Y Y
Outcome Mean 57.399 57.399 57.399 57.399
Outcome SD 54.594 54.594 54.594 54.594
Observations 155,212 155,212 155,212 155,212

Note: This table reports estimates of Table 2 using measures of SLR and relative sea level rise (RSLR) exposure. Observations
are at the bond-year-month level. The dependent variable is the volume-weighted average credit spread of a municipal bond,
defined as the difference between yield-to-maturity and the maturity-matched yield from the Municipal Market Advisors AAA-
rated tax-exempt benchmark curve, in basis points. SLR Exposure in Column 1 and 3 is the fraction of residential properties
that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation. SLR Exposure
in Column 2 and 4 is the fraction of residential properties that would be inundated by six feet of sea level rise, adjusting for
local differences in land subsidence and land rebound, as in Murfin and Spiegel (2020). 1(Post) is an indicator equal to one
for observations occurring after 2012 and zero otherwise. Log(Median House Price) is the annual median transaction price for
single-family residences in the school district. The additional percentiles reflect other parts of the price distribution in that
school district-year. Log(MHP) Exposed and Unexposed are the annual median transaction prices for single-family residences in
the school district for properties with zero and nonzero exposure to SLR, respectively. Zillow House Price Index is a district-year
index estimated by averaging the Zillow House Price Measure across zip codes. See Table 5 for additional details on controls.
The baseline period for the district fixed effects is 2007. t-statistics are reported in parentheses, with standard errors clustered
by county and year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Figure A2: Effect of RSLR Exposure on Bond Spreads

Note: This figure plots the annual effect of relative sea level rise (RSLR) exposure on municipal bond credit
spreads, using the same specification as in Figure 5. Each point is a yearly coefficient from the regression
specified in equation (1), while the vertical bars represent 95% confidence bands based on standard errors
clustered by county and year-month. The dependent variable is the volume-weighted average credit spread of
a municipal bond, defined as the difference between yield-to-maturity and the maturity-matched yield from
the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure
is the fraction of residential properties that would be inundated by six feet of sea level rise, adjusting for
local differences in land subsidence and rebound as in Murfin and Spiegel (2020), and normalized to zero
mean and unit standard deviation. The regression includes county-year-month and school district fixed
effects; the logarithm of the bond’s time to maturity, callability, and insured status interacted with year
indicators; and district-level average income, the number of years since issuance, the ratio of trading volume
to amount outstanding, the standard deviation of transaction prices by bond-month, and an indicator for
general obligation issues. The baseline period for the district fixed effects is 2007.
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A3 Supplementary Evidence on the Main Sample

Table A3: Effect of SLR Exposure on Bond Spreads – Including the Initial Months of Trading

(1) (2) (3)

SLR Exposure -0.826*
(-1.76)

SLR Exposure × 1(Year 2001) -0.317 -0.320 1.158
(-0.54) (-0.52) (1.23)

SLR Exposure × 1(Year 2002) -0.021 -0.013 0.227
(-0.02) (-0.02) (0.28)

SLR Exposure × 1(Year 2003) -2.007* -1.543 0.771
(-1.68) (-1.08) (0.77)

SLR Exposure × 1(Year 2004) -1.720*** -1.071 0.851
(-3.59) (-1.27) (1.37)

SLR Exposure × 1(Year 2005) -0.634 -0.552 0.130
(-1.12) (-1.03) (0.42)

SLR Exposure × 1(Year 2006) -0.228 -0.372 -0.190
(-0.43) (-0.64) (-0.34)

SLR Exposure × 1(Year 2008) 0.638 0.301 0.300
(0.89) (0.46) (0.66)

SLR Exposure × 1(Year 2009) 0.053 -0.500 -0.065
(0.05) (-0.54) (-0.08)

SLR Exposure × 1(Year 2010) 1.176 0.288 -0.329
(1.06) (0.24) (-0.40)

SLR Exposure × 1(Year 2011) 2.291** 1.332 2.048*
(2.28) (1.17) (1.81)

SLR Exposure × 1(Year 2012) 1.133 0.085 1.525*
(0.71) (0.05) (1.80)

SLR Exposure × 1(Year 2013) 2.540 1.476 2.076***
(1.34) (0.68) (3.21)

SLR Exposure × 1(Year 2014) 3.704 2.926 3.718***
(1.60) (1.10) (3.40)

SLR Exposure × 1(Year 2015) 3.018* 2.466 3.863***
(1.67) (1.21) (3.05)

SLR Exposure × 1(Year 2016) 4.251* 3.892 3.386***
(1.79) (1.67) (2.84)

SLR Exposure × 1(Year 2017) 4.143** 3.829* 3.163**
(2.10) (1.97) (2.30)

Controls N N Y
District FE N Y Y
County-Year-Month FE Y Y Y
Outcome Mean 50.907 50.907 51.665
Outcome SD 52.576 52.576 52.910
Observations 218,021 218,021 192,835

Note: In this table we replicate Table 2 of the paper after dropping the restriction that trades must occur
more than three months after the bond is issued. The dependent variable is the volume-weighted average
credit spread of a municipal bond, defined as the difference between yield-to-maturity and the maturity-
matched yield from the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points.
SLR Exposure is defined as the fraction of residential properties that would be inundated by six feet of sea
level rise.
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Table A4: Effect of SLR Exposure on Bond Spreads – Unbalanced Panel

(1) (2) (3)

SLR Exposure -0.253
(-0.62)

SLR Exposure × 1(Year 2001) -0.309 -0.551 -0.048
(-0.31) (-0.52) (-0.05)

SLR Exposure × 1(Year 2002) -0.235 -0.181 0.444
(-0.29) (-0.23) (0.92)

SLR Exposure × 1(Year 2003) -0.306 -0.666 0.678
(-0.38) (-0.84) (0.97)

SLR Exposure × 1(Year 2004) -1.518*** -1.276* 0.399
(-2.82) (-1.83) (0.73)

SLR Exposure × 1(Year 2005) -0.249 0.095 0.099
(-0.63) (0.22) (0.23)

SLR Exposure × 1(Year 2006) -0.820** -0.754** -0.247
(-2.01) (-2.03) (-0.53)

SLR Exposure × 1(Year 2008) 0.612 0.614 0.026
(1.25) (1.31) (0.12)

SLR Exposure × 1(Year 2009) -0.020 -0.287 -0.437
(-0.02) (-0.40) (-0.78)

SLR Exposure × 1(Year 2010) -0.417 -0.396 -0.234
(-0.53) (-0.44) (-0.37)

SLR Exposure × 1(Year 2011) -0.254 -0.285 0.167
(-0.26) (-0.31) (0.17)

SLR Exposure × 1(Year 2012) -1.559 -1.437 0.132
(-1.45) (-1.14) (0.11)

SLR Exposure × 1(Year 2013) 1.279 0.996 0.745
(1.02) (0.63) (0.79)

SLR Exposure × 1(Year 2014) 1.940 1.993 1.657
(1.34) (1.03) (1.63)

SLR Exposure × 1(Year 2015) 2.596* 2.799 2.190*
(1.97) (1.54) (1.79)

SLR Exposure × 1(Year 2016) 3.411** 3.738** 2.513**
(2.44) (2.38) (2.01)

SLR Exposure × 1(Year 2017) 4.278*** 4.667*** 2.338**
(4.21) (4.07) (2.40)

Controls N N Y
District FE N Y Y
County-Year-Month FE Y Y Y
Outcome Mean 55.700 55.700 56.592
Outcome SD 53.138 53.139 53.446
Observations 285,412 285,412 250,882

Note: In this table we replicate Table 2 in the paper after relaxing the “balanced panel” restriction. Specif-
ically, we drop the requirement that each county have more than one district and that each district have
at least one secondary market bond price observation per year. Observations are at the bond-year-month
level. The dependent variable is the volume-weighted average credit spread of a municipal bond, defined as
the difference between yield-to-maturity and the maturity-matched yield from the Municipal Market Advi-
sors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is defined as the fraction of
residential properties that would be inundated by six feet of sea level rise.
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Table A5: Effect of SLR Exposure on Bond Spreads – Robustness Specifications

(1) (2) (3)

SLR Exposure × 1(Year 2001) 1.903 0.787 2.885*
(1.37) (0.70) (1.82)

SLR Exposure × 1(Year 2002) 2.140 0.850 1.256
(1.33) (0.87) (1.17)

SLR Exposure × 1(Year 2003) 2.391 1.102 1.812
(1.55) (1.08) (1.59)

SLR Exposure × 1(Year 2004) 1.164 1.159 1.387***
(1.64) (1.62) (2.76)

SLR Exposure × 1(Year 2005) 0.093 0.234 0.151
(0.28) (0.72) (0.51)

SLR Exposure × 1(Year 2006) 0.517 -0.169 -0.075
(0.82) (-0.39) (-0.14)

SLR Exposure × 1(Year 2008) 1.058 -0.085 0.055
(0.92) (-0.30) (0.11)

SLR Exposure × 1(Year 2009) 1.611 0.528 0.455
(1.05) (0.73) (0.41)

SLR Exposure × 1(Year 2010) 2.476 -0.188 0.403
(1.27) (-0.23) (0.35)

SLR Exposure × 1(Year 2011) 3.927** 1.302 2.159
(2.20) (0.99) (1.47)

SLR Exposure × 1(Year 2012) 4.315** 1.120 2.467*
(2.01) (1.06) (1.96)

SLR Exposure × 1(Year 2013) 4.437** 1.390 2.657***
(2.60) (1.23) (2.78)

SLR Exposure × 1(Year 2014) 5.263*** 4.079*** 4.650***
(5.31) (5.49) (4.32)

SLR Exposure × 1(Year 2015) 5.534*** 4.529*** 5.020***
(4.42) (3.50) (3.00)

SLR Exposure × 1(Year 2016) 5.013*** 4.477*** 4.900**
(3.08) (2.85) (2.51)

SLR Exposure × 1(Year 2017) 4.158** 3.654** 4.196**
(2.06) (2.57) (2.47)

Exposure Measure 4-foot, Frac. 6-foot, Value
State Equal-Weighted Y N N
Controls Y Y Y
District FE Y Y Y
County-Year-Month FE Y Y Y
Observations 155,212 155,212 155,212

Note: This table reports regression estimates for the full sample of bonds issued by school districts in coastal
states. Observations are at the bond-year-month level. The dependent variable is the volume-weighted
average credit spread of a municipal bond. Spread is defined as the difference between yield-to-maturity and
the maturity-matched yield from the Municipal Market Advisors AAA-rated tax-exempt benchmark curve,
in basis points. SLR Exposure is defined differently across the columns. In column (1) SLR exposure is
measured as the fraction of properties exposed to a 6-foot SLR, as is our main analyses in the paper. The
difference between column (1) and the analysis in the paper is that column (1) weights each observation by
one over the number of observations in the state, thus assigning equal weight to each state in the sample.
In column (2) SLR exposure is measured as the fraction of properties exposed to four feet of SLR, while in
column (3) it is measured as the percentage of property value that is exposed to six feet of SLR. 2007 is the
omitted year for the interaction coefficients. Standard errors are clustered by school district and year-month.
*, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table A6: Effect of SLR Exposure on Bond Spreads by Maturity – Alternative Post Measures

(1) (2) (3) (4) (5) (6)

SLR Exposure × 1(Post) × Log(Maturity) 1.284* 1.214** 1.040*** 1.270** 1.034 0.726
(1.91) (2.10) (2.79) (2.36) (1.23) (0.74)

Maturity Range All All All All All All
Post = Year > x 2009 2010 2011 2012 2013 2014
Controls Y Y Y Y Y Y
District FE N N N N N N
County-Year-Month FE N N N N N N
District-Year-Month FE Y Y Y Y Y Y
Outcome Mean 57.598 57.598 57.598 57.598 57.598 57.598
Outcome SD 54 54 54 54 54 54
Observations 155,212 155,212 155,212 155,212 155,212 155,212

Note: This table reports estimates re-estimating Column 1 from Table 3 using alternative cutoff periods. Each column reflects
an alternative cutoff period. Observations are at the bond-year-month level. Panel A reflects all maturities pooled together.
Panel B is bonds with maturity greater than 10 years. Panel C is bonds with maturity less than 10 years. The dependent
variable is the volume-weighted average credit spread of a municipal bond, defined as the difference between yield-to-maturity
and the maturity-matched yield from the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points.
SLR Exposure is the fraction of residential properties that would be inundated by six feet of sea level rise, normalized to zero
mean and unit standard deviation. 1(Post) is an indicator equal to one for observations occurring after the indicated year and
zero otherwise. Controls include the logarithm of the bond’s time to maturity, callability, and insured status interacted with
year indicators; and district-level average income, the number of years since issuance, the ratio of trading volume to amount
outstanding, the standard deviation of transaction prices by bond-month, and an indicator for general obligation issues. t-
statistics are reported in parentheses, with standard errors clustered by county and year-month. *, **, and *** denote p-values
less than 0.10, 0.05, and 0.01, respectively.
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Table A7: Effect of SLR Exposure versus Storm Surge Exposure – Alternative Post Measures

(1) (2) (3) (4) (5) (6)

SLR Exposure × 1(Post) 1.751 2.913* 2.811* 3.667** 3.805* 4.283*
(1.12) (1.71) (1.93) (2.06) (1.80) (1.96)

Storm Surge Exposure × 1(Post) 0.845 0.095 0.373 -0.507 -0.063 -1.298
(0.57) (0.06) (0.19) (-0.21) (-0.02) (-0.41)

Maturity Range All All All All All All
Post = Year > x 2009 2010 2011 2012 2013 2014
Controls Y Y Y Y Y Y
District FE Y Y Y Y Y Y
County-Year-Month FE Y Y Y Y Y Y
District-Year-Month FE N N N N N N
Outcome Mean 57.399 57.399 57.399 57.399 57.399 57.399
Outcome SD 55 55 55 55 55 55
Observations 155,212 155,212 155,212 155,212 155,212 155,212

Note: This table reports estimates re-estimating Column 1 from Table 3 using alternative cutoff periods.
Each column in this table reflects a different year for the post period. Observations are at the bond-year-
month level. The dependent variable is the volume-weighted average credit spread of a municipal bond,
defined as the difference between yield-to-maturity and the maturity-matched yield from the Municipal
Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of
residential properties that would be inundated by six feet of sea level rise, normalized to zero mean and unit
standard deviation. Storm Surge Exposure is the fraction of residential properties that would be inundated
by six feet of storm surge from a Category 3 hurricane, normalized to zero mean and unit standard deviation.
1(Post) is an indicator equal to one for observations occurring after the indicated period and zero otherwise.
Controls include the logarithm of the bond’s time to maturity, callability, and insured status interacted with
year indicators; and district-level average income, the number of years since issuance, the ratio of trading
volume to amount outstanding, the standard deviation of transaction prices by bond-month, and an indicator
for general obligation issues. The baseline period for the district fixed effects is 2007. t-statistics are reported
in parentheses, with standard errors clustered by county and year-month. *, **, and *** denote p-values
less than 0.10, 0.05, and 0.01, respectively.
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Table A8: SLR versus Storm Surge and House Prices

(1) (2) (3) (4)

Storm Surge Exposure -0.030*** -0.033*** -0.022***
(-3.32) (-3.26) (-2.70)

SLR Exposure -0.082***
(-4.14)

Continuous Storm Surge Exposure -0.007**
(-2.23)

Sample East & Gulf East & Gulf East & Gulf East & Gulf
Distance and Age Deciles Y Y Y Y
Z x D x C FE Y N N N
Z x D x C x Qtr FE N Y Y Y
Outcome Mean 12.454 12.434 12.434 12.446
Outcome SD 0.839 0.816 0.816 0.807
Observations 2,514,794 2,514,794 2,514,794 1,240,445

Note: This table estimates a regression where log house prices are the dependent variable and storm
surge and sea level rise exposure are the independent variables of interest. The specifications parallel those
from Bernstein et al. (2019) where we control for distance to coast buckets interacted with zip, number
of bedrooms, and condo status (column 1) and additionally interacted with year quarter (column 2). All
specifications control for deciles of age and distance to coast as additional controls. Our sample includes
properties in coastal counties within 1/4 mile of the current highest high tide, and only includes properties
that trade between $50k and $5mm. We include trades of all document types. t-statistics are reported in
parentheses, with standard errors clustered by zip code and year-quarter. *, **, and *** denote p-values less
than 0.10, 0.05, and 0.01, respectively.
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Table A9: Effect of SLR Exposure Based on Time Variation in Academic Forecasts: Robust-
ness

Std. Dev. Range Highest Estimate

Frac Exposed X 2 Years, All Studies 1.806*** 0.943*** 0.862***
(4.42) (3.44) (3.28)

Frac Exposed X 2 Years, Select Studies 1.879*** 0.997*** 1.181***
(3.63) (4.17) (3.89)

Frac Exposed X 1 Year, All Studies 1.514*** 1.001*** 0.864***
(4.41) (4.12) (3.83)

Frac Exposed X 1 Year, Select Studies 1.617*** 1.063*** 1.233***
(3.97) (4.09) (3.60)

Controls Y Y Y
County-Year-Month FE Y Y Y
District FE Y Y Y
Outcome Mean 66.381 66.381 66.381
Outcome SD 56.894 56.894 56.894
Observations 118,694 118,694 118,694

Note: This table reports estimates of equation (1) where, instead of collapsing the yearly coefficients into
a pre/post indicator, we interact school district SLR exposure with measures of SLR expectations derived
from scientific forecasts.Observations are at the bond-year-month level. The measures of SLR projections are
generated from the studies in Garner et. al (2018). Mean Forecast is the average forecasted SLR for studies
in a given year, St. Dev of Forecasts is the standard deviation reported in each scenario and study, averaged
across all scenarios and studies for the year, and Range of Forecasts and Worst Forecast are the highest minus
the lowest or highest projection from each study, averaged across all studies for the year. The dependent
variable is the volume-weighted average credit spread of a municipal bond, defined as the difference between
yield-to-maturity and the maturity-matched yield from the Municipal Market Advisors AAA-rated tax-
exempt benchmark curve, in basis points. SLR Exposure is the fraction of residential properties that would
be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation. Controls
include the logarithm of the bond’s time to maturity, callability, and insured status interacted with year
indicators; and district-level average income, the number of years since issuance, the ratio of trading volume
to amount outstanding, the standard deviation of transaction prices by bond-month, and an indicator for
general obligation issues.t-statistics are reported in parentheses, with standard errors clustered by county
and year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table A10: Effect of SLR Exposure on Bond Spreads, Controlling for House Prices

(1) (2) (3) (4) (5)

SLR Exposure × 1(Year 2001) -0.118 -0.422 -0.522 -0.278 -0.060
(-0.10) (-0.34) (-0.44) (-0.22) (-0.04)

SLR Exposure × 1(Year 2002) 0.472 0.294 0.298 0.310 0.566
(0.39) (0.24) (0.25) (0.25) (0.42)

SLR Exposure × 1(Year 2003) 0.632 0.586 0.559 0.479 0.838
(0.44) (0.41) (0.39) (0.32) (0.53)

SLR Exposure × 1(Year 2004) 0.759 0.702 0.732 0.642 0.806
(1.29) (1.20) (1.25) (0.88) (1.13)

SLR Exposure × 1(Year 2005) 0.251 0.240 0.294 0.187 0.417
(0.77) (0.64) (0.82) (0.52) (1.15)

SLR Exposure × 1(Year 2006) -0.723 -0.775* -0.827* -0.752* -0.617
(-1.66) (-1.84) (-1.87) (-1.69) (-1.45)

SLR Exposure × 1(Year 2008) -0.330 -0.269 -0.336 -0.298 -0.114
(-1.35) (-1.09) (-1.54) (-1.11) (-0.34)

SLR Exposure × 1(Year 2009) 0.214 0.396 0.369 0.254 0.668
(0.24) (0.48) (0.47) (0.30) (0.73)

SLR Exposure × 1(Year 2010) -0.753 -0.745 -0.684 -0.741 -0.393
(-0.96) (-1.05) (-0.98) (-1.01) (-0.47)

SLR Exposure × 1(Year 2011) 1.349 1.447 1.422 1.311 0.725
(0.87) (0.97) (0.97) (0.87) (0.64)

SLR Exposure × 1(Year 2012) 1.281 1.277 1.368 1.233 1.686
(1.13) (1.19) (1.24) (1.11) (1.37)

SLR Exposure × 1(Year 2013) 1.697 1.600 1.620 1.606 1.459
(1.38) (1.35) (1.43) (1.35) (1.35)

SLR Exposure × 1(Year 2014) 4.607*** 4.427*** 4.995*** 4.447*** 3.994***
(4.59) (4.33) (4.07) (4.50) (4.30)

SLR Exposure × 1(Year 2015) 5.908*** 5.722*** 5.934*** 5.715*** 6.086***
(5.38) (4.82) (4.91) (5.52) (5.37)

SLR Exposure × 1(Year 2016) 5.563*** 5.353*** 5.216*** 5.367*** 5.633***
(3.61) (3.51) (3.70) (3.79) (3.47)

SLR Exposure × 1(Year 2017) 5.712*** 5.627*** 5.611*** 5.518*** 5.930***
(3.82) (3.84) (3.96) (3.92) (3.63)

House Price None Median HP Unexp. + Exposed HP Zillow HP Full Dist.
Controls Y Y Y Y Y
District FE Y Y Y Y Y
County-Year-Month FE Y Y Y Y Y
Outcome Mean 57.334 57.334 57.334 57.334 57.335
Outcome SD 55.285 55.285 55.285 55.285 55.287
Observations 127,208 127,208 127,208 127,208 127,197

Note: This table reports estimates of Table 5 with the yearly coefficients and various controls for district-level house prices.
Observations are at the bond-year-month level. Each district-year must have at least 50 annual house transactions recorded in
ZTRAXX to be included in the sample. The dependent variable is the volume-weighted average credit spread of a municipal
bond, defined as the difference between yield-to-maturity and the maturity-matched yield from the Municipal Market Advisors
AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of residential properties that would
be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation. 1(Post) is an indicator equal
to one for observations occurring after 2012 and zero otherwise. Median HP is the annual median transaction price for single-
family residences in the school district. Exposed and Unexposed HP are the annual median transaction prices for single-family
residences in the school district for properties with zero and nonzero exposure to SLR, respectively. Zillow House Price Index
is a district-year index estimated by averaging the Zillow House Price Measure across zip codes. Full Dist controls for the
full transaction price distribution for single-family residences in that school district-year. See Table 5 for additional details on
controls. The baseline period for the district fixed effects is 2007. t-statistics are reported in parentheses, with standard errors
clustered by county and year-month. *, **, and *** denote p-values less than 0.10, 0.05, and 0.01, respectively.
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Table A11: Effect of SLR Exposure on Bond Spreads, Controlling for House Prices, 2007
and Onwards Subsample

(1) (2) (3) (4) (5)

SLR Exposure × 1(Post) 4.318*** 4.303*** 4.558*** 4.410*** 4.134***
(5.09) (4.00) (4.41) (4.40) (2.92)

House Price Control Measure None Median HP MHP by Exposure Zillow HP HP Dist.
Controls Y Y Y Y Y
District FE Y Y Y Y Y
County-Year-Month FE Y Y Y Y Y
Outcome Mean 66.611 66.611 66.611 66.611 66.613
Outcome SD 57.500 57.500 57.500 57.500 57.501
Observations 97,950 97,950 97,950 97,950 97,939
R2 0.6663 0.6672 0.6676 0.6671 0.6689
Within-R2 0.1643 0.1667 0.1677 0.1663 0.1708

Note: This table reports estimates of Table 5 with the yearly coefficients and various controls for district-level house prices. We
only include observations from the year 2007 and onward. Observations are at the bond-year-month level. Each district-year
must have at least 50 annual house transactions recorded in ZTRAXX to be included in the sample. The dependent variable
is the volume-weighted average credit spread of a municipal bond, defined as the difference between yield-to-maturity and the
maturity-matched yield from the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR
Exposure is the fraction of residential properties that would be inundated by six feet of sea level rise, normalized to zero mean
and unit standard deviation. 1(Post) is an indicator equal to one for observations occurring after 2012 and zero otherwise.
Median HP is the annual median transaction price for single-family residences in the school district. Exposed and Unexposed
HP are the annual median transaction prices for single-family residences in the school district for properties with zero and
nonzero exposure to SLR, respectively. Zillow House Price Index is a district-year index estimated by averaging the Zillow
House Price Measure across zip codes. Full Dist controls for the full transaction price distribution for single-family residences
in that school district-year. See Table 5 for additional details on controls. The baseline period for the district fixed effects is
2007. t-statistics are reported in parentheses, with standard errors clustered by county and year-month. *, **, and *** denote
p-values less than 0.10, 0.05, and 0.01, respectively.
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Figure A3: Effect of SLR Exposure on Bond Credit Spreads, Controlling for Different House
Prices

Note: This figure plots the annual effect of SLR exposure on municipal bond credit spreads, repeating the
house price controls from Column 4 of Table 5. Each point is a yearly coefficient from the regression specified
in equation (1), with each color reflecting a different set of house price controls, analagous to Table 5. The
dependent variable is the volume-weighted average credit spread of a municipal bond, defined as the difference
between yield-to-maturity and the maturity-matched yield from the Municipal Market Advisors AAA-rated
tax-exempt benchmark curve, in basis points. SLR Exposure is the fraction of residential properties that
would be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation. The
regression includes county-year-month and school district fixed effects; the logarithm of the bond’s time to
maturity, callability, and insured status interacted with year indicators; and district-level average income, the
number of years since issuance, the ratio of trading volume to amount outstanding, the standard deviation
of transaction prices by bond-month, and an indicator for general obligation issues. We also include differnet
house price controls interacted with year fixed effects. The baseline period for the district fixed effects is
2007.
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Figure A4: Effect of SLR Exposure on Bond Credit Spreads, Controlling for House Prices

Note: This figure plots the annual effect of SLR exposure on municipal bond credit spreads, repeating
the house price controls from Column 4 of Table 5. Each point is a yearly coefficient from the regression
specified in equation (1), while the vertical bars represent 95% confidence bands based on standard errors
clustered by county and year-month. The dependent variable is the volume-weighted average credit spread of
a municipal bond, defined as the difference between yield-to-maturity and the maturity-matched yield from
the Municipal Market Advisors AAA-rated tax-exempt benchmark curve, in basis points. SLR Exposure
is the fraction of residential properties that would be inundated by six feet of sea level rise, normalized to
zero mean and unit standard deviation. The regression includes county-year-month and school district fixed
effects; the logarithm of the bond’s time to maturity, callability, and insured status interacted with year
indicators; and district-level average income, the number of years since issuance, the ratio of trading volume
to amount outstanding, the standard deviation of transaction prices by bond-month, and an indicator for
general obligation issues. The baseline period for the district fixed effects is 2007.
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Figure A5: Effect of SLR Exposure on Additional House Price Measures

Panel A: Log(Median House Price) Panel B: Log(Zillow House Price)

Panel C: Log(Median House Price Exposed) Panel D: Log(Median House Price Unexposed)

Note: This figure plots the annual effect of SLR exposure on different house prices measures at the school
district level. Panel A reports the log of the median of realized house prices. Panel B reports the log of
Zillow house price index. Panel C reports the median of the realized house prices among houses exposed to
SLR. Panel D reports the median of the realized house prices among houses unexposed to SLR. Each point
is a coefficient from the regression specified in equation (1), while the vertical bars represent 95% confidence
bands based on standard errors clustered by county and year-month. District-year observations must have
at least 50 transactions to be included in the sample. SLR Exposure is the fraction of residential properties
that would be inundated by six feet of sea level rise, normalized to zero mean and unit standard deviation.
The regression includes county-year-month and school district fixed effects; controls for bond characteristics
including the logarithm of the bond’s time to maturity, callability, and insured status interacted with year
indicators; and district-level average income, the number of years since issuance, the ratio of trading volume
to amount outstanding, the standard deviation of transaction prices by bond-month, and an indicator for
general obligation issues.The baseline period for the district fixed effects is 2007.
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A4 Extensions to the Structural Model

A4.1 Tax-Adjusted Municipal Bond Yields

The structural model of credit risk in the paper, based on Merton (1974), is usually applied

to taxable corporate bond yields. In the paper, our calculation of the model parameters

uses tax-exempt municipal bond yields and the Municipal Market Advisors AAA-rated tax-

exempt curve as the risk-free benchmark. Under that approach, the parameters implied by

municipal bond spreads account for the tax exemption’s effect on the pricing of credit risk.

This section considers an alternative approach under which the model parameters are

calibrated to tax-adjusted credit spreads as in Schwert (2017), using the LIBOR interest

rate swap curve as the risk-free benchmark. Specifically, we take the yield of the typical tax-

exempt municipal bond in our sample and adjust it upwards to its taxable-equivalent yield

for the model calibration. Then we take the counterfactual yields from the model and adjust

them back downwards by the same tax adjustment factor to obtain changes in tax-exempt

yields implied by the model.

Under the assumption that the marginal tax rate impounded in tax-exempt bond yields

is the top statutory income tax rate in each state, the tax adjustment factor is

(1− τs,t) = (1− τ fedt )(1− τ states,t ), (A1)

where τ fedt is the top federal income tax rate and τ states,t is the top income tax rate in state s

in year t. This formula accounts for the fact that state income tax payments are deductible

from an individual’s taxable income for federal taxes. Applying the tax adjustment and

subtracting the risk-free rate, the tax-adjusted spread on a tax-exempt municipal bond is

yTA
i,t − rt =

yi,t
1− τs,t

− rt. (A2)

For simplicity, we use the top federal tax rate of 35% that prevailed for most of our sample

period and the average top state tax rate of 5%. Figure A6 presents estimates based on

tax-adjusted yields that are quantitatively similar to those reported in the paper.
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Figure A6: Effects of Asset Value and Volatility Shocks – Tax-Adjusted Yields

Panel A: Decrease in Asset Value

Panel B: Increase in Asset Volatility

Note: This figure plots the change in yield associated with changes in the distribution of cash
flows backing municipal bond repayment. Panel A considers reductions in the present value of
cash flows, while Panel B considers proportional increases in the volatility of the underlying
asset value. Each panel considers four parameter specifications based on leverage ratios
(K/V ) of 10%, 30%, 50%, and 70%, along with the associated model-implied volatilities.
The other model parameters are: yTA = 5.25% r = 3.10%, and T = 7.5.
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A4.2 Bankruptcy Costs and the Role of State Distress Policies

To assess the importance of state-level policies on municipal distress in mediating the effect of

fundamental shocks on municipal bond yields, we extend the structural model to incorporate

costs of financial distress. Specifically, we add a bankruptcy cost that reduces the asset value

proportionally by a factor α in the event of default.

Suppose the municipality has a zero-coupon bond issue outstanding with face value K

that matures at time T . The payoff to the bond is equivalent to a portfolio containing a

risk-free bond and a short put option on the value of assets struck at the bond’s face value.

Under the setup with a proportional bankruptcy cost α, the value of the bond is

Dα = Ke−rT − (1 + α)
[
Ke−rTΦ(−d2)− V Φ(−d1)

]
, (A3)

where

d1 =
ln (V/K) +

(
r + 1

2
σ2
)
T

σ
√
T

, d2 = d1 − σ
√
T . (A4)

We use evidence on creditor recoveries in municipal defaults from Gao, Lee, and Murphy

(2019) to calibrate an appropriate range of bankruptcy costs. These authors report average

(median) recovery rates in default of 79% (89%) in states with proactive policies on municipal

distress, 67% (72%) in states that allow municipalities to file for Chapter 9 bankruptcy, and

73% (77%) in states with no distress policy.

Figure A7 shows the effect of shocks to the underlying asset value and volatility when

the bankruptcy cost is between zero and 30%, a range that encapsulates the dispersion in

recovery rates documented by Gao, Lee, and Murphy (2019). The effects are larger when

the bankruptcy cost is higher, but the differences are small: raising α from zero to 10%

increases the effect of a 3% drop in asset values from 4.39 bps to 4.57 bps and the effect of

a proportional 2% increase in volatility from 4.89 bps to 5.03 bps.
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Figure A7: Effects of Asset Value and Volatility Shocks – Bankruptcy Costs

Panel A: Decrease in Asset Value

Panel B: Increase in Asset Volatility

Note: This figure plots the change in yield associated with changes in the distribution of cash
flows backing municipal bond repayment. Panel A considers reductions in the present value
of cash flows, while Panel B considers proportional increases in the volatility of the underlying
asset value. Each panel considers four parameter specifications based on bankruptcy costs
(α) of 0, 10%, 20%, and 30%, along with the associated model-implied volatilities. The other
model parameters are: y = 3.24%, r = 2.68%, K/V = 0.40, and T = 7.5.
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A4.3 Tiered Debt Structure with Senior Bank Loans

Ivanov and Zimmermann (2021) use regulatory data to document an upward trend in bank

borrowing by municipal bond issuers. Bank loans are typically senior to municipal bonds

but cannot be observed on public financial statements. In this section, we show that our

conclusions are robust to the presence of senior loans on school district balance sheets.

The extended model with bankruptcy costs and two classes of debt follows Schwert (2020).

The municipality has a senior loan with face value KS and a junior bond with face value KJ ,

both maturing at time T . The payoff to the bond is equivalent to a portfolio containing a

long call option struck at the face value of senior debt and a short call option struck at the

sum of total face value of debt. Under this setup, the value of the bond is

Bα = (1− α)
[
V (Φ(d1,S)− Φ(d1))−KSe

−rT (Φ(d2,S)− Φ(d2))
]
+KJe

−rTΦ(d2), (A5)

where

d1,S =
ln
(

V
min{KS/(1−α),KS+KJ}

)
+
(
r + 1

2
σ2
)
T

σ
√
T

, d2,S = d1,S − σ
√
T (A6)

and d1 and d2 are defined as in equation (A4).

Figure A8 shows the effect of shocks to the underlying asset value and volatility when

the ratio of senior debt to total debt is equal to zero, 0.25, or 0.50. The effects are larger

when the issuer has more senior debt due to the leverage effect on junior debt, but overall

the estimates are qualitatively similar to those obtained from our baseline model.
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Figure A8: Effects of Asset Value and Volatility Shocks – Tiered Debt Structure

Panel A: Decrease in Asset Value

Panel B: Increase in Asset Volatility

Note: This figure plots the change in yield associated with changes in the distribution of
cash flows backing municipal bond repayment. Panel A considers reductions in the present
value of cash flows, while Panel B considers proportional increases in the volatility of the
underlying asset value. Each panel considers four parameter specifications based on ratios of
senior debt to total debt equal to 0, 0.25, and 0.50, along with the associated model-implied
volatilities. The other model parameters are: y = 3.24%, r = 2.68%, K/V = 0.40, T = 7.5,
and α = 0.

25



A5 Replication of Painter (2020)

Painter (2020) finds that exposure to climate risk is associated with higher offering yields

and gross spreads in the primary market for municipal bonds. His measure of climate risk

exposure is based on Hallegatte et al. (2013), who estimate the expected annual loss from

40 cm (about 1.33 feet) of sea level rise as a percentage of GDP for a sample of coastal

cities. He finds that a 1% increase in climate risk (i.e., loss of annual GDP) is associated

with an increase in annualized issuance costs of 23.4 bps and an increase in offering yields of

16.1 bps. The effects are concentrated in long-maturity bond issues, with a maximum bond

maturity of over 25 years, consistent with the idea that sea level rise will have larger effects

in the future than in the near-term.

We replicate the analysis in Painter (2020) to understand the seemingly large effect of

climate risk on bond yields and assess whether omitted factors contribute to the estimates.

Marcus Painter generously provided the data from his paper to facilitate our replication.

We estimate the regression from Table 3 of Painter (2020), using annualized issuance costs

and the level of climate risk from Hallegatte et al. (2013) and interacting the climate risk

coefficient with dummies for each calendar year, as in the regression setup from our paper.

We find similar results if we use offering yield as the dependent variable or the logarithm of

climate risk as the independent variable.

Figure A9 reveals that climate risk has the strongest effect in 2009, the last year of the

recession that followed the financial crisis, for both long-maturity and short-maturity bonds.

For long-maturity bonds, the climate risk coefficient is significantly negative in 2011 and

positive in 2017. None of the other years exhibit a significant correlation between climate risk

and borrowing costs. These patterns suggest that bond issuers in climate-exposed counties

were differentially affected by the sharp economic downturn in 2009 but otherwise have

similar borrowing costs to non-climate-exposed issuers.
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Figure A9: Effect of Climate Risk on Municipal Borrowing Costs by Year

Panel A: Maximum Maturity over 25 Years

Panel B: Maximum Maturity under 25 Years

Note: This figure plots the year-by-year effect of climate risk exposure on the total annu-
alized cost of new issue municipal bonds, using data from Painter (2020). The coefficients
come from the same regression as in Table 3 of Painter (2020), with the climate risk measure
interacted with dummies for each calendar year to obtain yearly coefficient estimates. 95%
confidence bands are based on standard errors clustered by county. For ease of presentation,
we exclude 2004 from the plot because of its wide confidence band.
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