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1 Introduction

There is growing empirical evidence for the existence of monopsony power across various indus-

tries, countries, and types of factor markets.1 An increasingly large literature has examined the ag-

gregate welfare consequences of monopsony and oligopsony power (Berger et al., 2022; Lamadon

et al., 2022). This literature has typically assumed firms’ technology choices and investments to be

exogenous to the degree of buyer power. However, buyer power could increase investment in either

human or physical capital by mitigating investment holdup problems (Williamson, 1971; Joskow,

1987). This trade-off between anticompetitive distortions and endogenous investment plays an

important role in various debates around labor-market power, such as regulation of noncompete

agreements (Starr, Prescott, & Bishara, 2021; Shi, 2023), and the role of buyer power in horizontal

merger control (Hemphill & Rose, 2018; Loertscher & Marx, 2019).

In this paper, I theoretically and empirically examine the welfare effects of employer power

while allowing for these two countervailing forces. I construct a model in which employer power

both leads to monopsony-induced deadweight loss, as employers cut back on input usage in order

to push down input prices, but also incentivizes the adoption of new productivity-enhancing tech-

nologies, as it lets employers appropriate more of the rents from innovation. Although the model

is written in terms of employers and employees, it applies more generally to vertical relationships

between buyers and sellers.

I construct a bargaining model of wage negotiations between workers and employers with

upward-sloping labor supply that nests the classical monopsony wage-posting model as a limit

case in which all bargaining power is on the employer side. I conduct comparative statics in terms

of ‘”employer power,” which I define as the employer’s bargaining ability. Employers combine

different labor types to produce output using a constant elasticity of substitution (CES) production

function. Employers choose whether to adopt a new technology, which increases both Hicks-

neutral and factor-specific productivity levels but requires incurring a fixed cost. Using the model,

I show that the net effect of employer power on output, consumer surplus, and total welfare is

ambiguous, as the output-employer power relationship assumes an inverted U-shape. The output-

1See literature reviews by Ashenfelter et al. (2010) and Manning (2011), and recent papers by, among many others,
Naidu et al. (2016); Berger et al. (2022); Morlacco (2017); Lamadon et al. (2022); Kroft et al. (2020); Rubens (2023);
Chambolle et al. (2023).
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maximizing level of employer power depends on the relative size of (i) the elasticity of labor supply

and (ii) the productivity effects of the technology.

Given that the net effect of employer power on output is theoretically ambiguous, I empirically

implement the model in the context of the Illinois coal mining industry between 1884 and 1902.

There are three main reasons why this provides a unique and interesting setting to study the rela-

tionship between buyer power and innovation. First, the introduction of coal-cutting machines in

the United States in 1882 provides a large technological shock, and I observe the gradual mecha-

nization of this industry. Second, 19th-century Illinois coal mining towns are textbook examples

of monopsonistic labor markets, with geographically isolated local labor markets. Prior work has

found evidence for substantial monopsony power during the second industrial revolution (Boal,

1995; Naidu & Yuchtman, 2017; Delabastita & Rubens, 2024). Third, a series of large strikes by

nascent miner unions in 1898 provides in-sample variation in employer bargaining power, which I

use to validate the model predictions.

I estimate the model using a novel, uniquely rich archival dataset on mine-level production,

coal prices, input quantities and prices, technology usage, and geological data. I rely on observed

variation in the thickness of coal veins as cost shifters to estimate coal demand, and on inter-

national coal-price shocks to estimate labor supply. Identifying the production function relies,

as usual, on timing assumptions on input choices as a function of both Hicks-neutral and labor-

augmenting productivity shocks. In line with anecdotal historical evidence, I find that cutting

machines were unskill-biased, similarly to many other technologies developed throughout the 19th

century (Mokyr, 1990; Goldin & Katz, 2009).

Using the estimated production, labor supply, and coal demand models, I estimate the relative

bargaining weights of the employers and the coal miner unions. I find that employers and unions

had roughly equal bargaining weights on average, although their relative bargaining power fluctu-

ated over time. I find that a series of large strikes in 1898 led to a relative increase of union bargain-

ing power at striking mines. This led to increased output but decreased machine adoption, which

validates the model’s predictions. There is also substantially higher observed cutting-machine in-

vestment at mines for which I estimate higher employer power, which is again in line with the

theoretical model. Finally, I estimate the fixed costs of cutting-machine usage by comparing the

variable profit gains from machine adoption to the observed machine-usage rates.
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I use the estimated model for two counterfactual exercises. First, I assess the effects of a 5% in-

crease in employer power for the observed technology, cutting machines. I compute how quantities,

prices, investment, and welfare would have changed under two scenarios: keeping machine usage

fixed, and allowing machine usage to be endogenous to the degree of employer power. I find that

the increase in employer power would have increased cutting-machine usage by 45%. However,

output would have decreased on average by 14%, as the deadweight losses from employer power

dominate the holdup reduction effect. Consequently, increased employer power would induce a

reduction in consumer and labor surplus by 11% and 22%, respectively. Assuming exogenous

capital investment leads to overestimating these losses to consumer and labor surplus by 13% and

7%. Employer power increases producer surplus by 62%, and this compensates the consumer and

worker losses, as total surplus increases by 0.7%. In contrast, a model with exogenous capital

investment would predict a total welfare reduction of 1.7%.

In a second counterfactual exercise, I examine the same increase in employer power for a coun-

terfactual technology that has larger productivity effects. I find that in this case, labor surplus

decreases by 17%, whereas consumer welfare barely changes, by 1.5%. The directedness of the

technology implies that employer power strongly decreases employment, thereby harming work-

ers, but only has limited effects on output. These asymmetric effects of employer power on out-

put and employment stand in contrast to the usual monopsony model, in which employer power

decreases both output and employment at similar levels, thereby harming both workers and con-

sumers.

This paper contributes to four distinct literatures. First, it contributes to prior work on the welfare

consequences of monopsony power. Existing work on ”neoclassical” monopsony and oligopsony

power usually focuses on deadweight loss and/or on misallocation (Morlacco, 2017; Berger et al.,

2022; Lamadon et al., 2022; Rubens, 2023). Whereas this literature keeps technology choices fixed

when conducting welfare counterfactuals, I show that endogenous technology choices present an

additional channel through which input market power affects welfare. I contribute to this literature

by examining the welfare effects of monopsony power in the presence of both deadweight loss and

investment holdup.2 In a contemporaneous and complementary paper, Azar, Chugunova, Keller,

2Although there is work on holdup in a different class of monopsony models in the labor-search literature (Acemoglu
& Shimer, 1999; Shi, 2023), these models do not feature monopsony-induced deadweight loss.
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and Samila (2023) also show that automation incentives increase with the extent of labor market

power, albeit using a very different model and mechanism.3

Second, this paper contributes to the empirical literature on technology adoption and market

power. Most of this literature has focused on product market power while assuming competitive

input markets (Collard-Wexler & De Loecker, 2015; Miller, Osborne, Sheu, & Sileo, 2023). Two

notable exceptions stand out. One, Goolsbee and Syverson (2023) show that monopsony power of

higher education institutions leads to substitution from tenure-track toward adjunct faculty, which

is a technological change. My model differs by allowing monopsony to induce not only movements

along the production isoquant but also shifts of the isoquant itself. Two, Lindner, Muraközy,

Reizer, and Schreiner (2022) study the effects of directed technological change in monopsonistic

markets. In contrast, I examine the effects of monopsony power on those technological changes.

Third, this paper builds on the vertical relations literature. Relative to existing work on holdup

(Williamson, 1971; Joskow, 1987; Zahur, 2022), I incorporate monopsony distortions and upward-

sloping marginal-cost curves, and I also use a model with multiple substitutable inputs. In contrast

to the literature that studies the effects of buyer power on technology choices of suppliers (Just &

Chern, 1980; Huang & Sexton, 1996; Köhler & Rammer, 2012; Parra & Marshall, 2024), I focus

on its effects on the technology choices of the buyers.

Finally, this paper relates to the literature on the effects of labor unions. One one hand, labor

unions can countervail monopsony power (Azkarate-Askasua & Zerecero, 2024; Dodini, Salvanes,

& Willén, 2022; Angerhofer, Collard-Wexler, & Weinberg, 2025; Demirer & Rubens, 2025); on

the other hand, they can decrease innovation incentives by capturing innovation rents (Grout, 1984;

Menezes-Filho & Van Reenen, 2003). I contribute by constructing and estimating a model that

contains both of these counteracting effects of unionization.

The rest of this paper is structured as follows. Section 2 contains the theoretical model. Section

3 discusses the data, the industry background, and the empirical model. Section 4 covers the

estimation of the model. Section 5 contains the counterfactual simulations. Section 6 concludes.
3Among the differences are that Azar et al. (2023) use a unilateral monopsony model, whereas I use a bargaining
model, and that the automation effect in Azar et al. (2023) comes from substitution from labor to other inputs due to
increased marginal costs, whereas the mechanism in this paper relates to investment holdup.
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2 Theory: Buyer Power and Investment

I start with a theoretical framework to examine the welfare effects of buyer power while allowing

for both deadweight losses and endogenous investment.

2.1 Primitives

Firms f produce output Qf using two variable inputs. The model can be applied to any buyer

of multiple factors, but given the empirical application I consider the firm to be an employer of

high- and low-skilled labor Hf and Lf . I rely on the CES production function (1), in which both

inputs are substitutable at a constant elasticity σ. To keep the model tractable, I assume constant

returns to scale, but the results are robust to relaxing this assumption.4 Skill-augmenting produc-

tivity is denoted as Af , Hicks-neutral productivity as Ωf , and the low-skilled-labor coefficient as

βl. The capital stock K enters the production function in two ways: it changes skill-augmenting

productivity Af (Kf ) and Hicks-neutral productivity Ωf (Kf ).

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f

) σ
σ−1

Ωf (Kf ) (1)

Firms sell their output at a price Pf . Consumer demand for the good is given by a standard hor-

izontal differentiation demand system, with an average industry-level price P0, unobserved firm

characteristics ξf , and a constant demand elasticity η:

Qf =
(Pf
P0

)η
ξf (2)

High-skilled workers have an outside option Zf , which they can earn when choosing not to be

employed at firm f . I allow this outside option Zf to be an upward-sloping curve, with constant

inverse elasticity ψ, as shown in Equation (3). Firms are differentiated from the worker’s per-

spective through an amenity term ζf . The average industry wage is equal to W0. In contrast to

models with a constant outside-option value, such as in Abowd and Lemieux (1993), an increasing

outside option generates an upward-sloping labor supply curve, which allows for the possibility

4See Appendix C.2.1.
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of monopsonistic behavior by employers. An increasing outside-option curve can be rationalized

by the fact that workers are heterogeneous in terms of their outside options, and that firms cannot

wage-discriminate as a function of these worker-specific outside options. Hence, the labor supply

curve to each firm is upward-sloping: hiring an extra worker requires a higher wage to compensate

for the higher outside option of the marginal worker:

Zf =
W0

1 + ψ

(Hf

ζf

)ψ
(3)

In contrast, the outside option of low-skilled labor is assumed a constant, V . This implies that

firms pay low-skilled workers a uniform wage V and that low-skilled labor supply is perfectly

elastic.

High-skilled workers are unionized at the firm level. The utility of the labor union at firm f is

denoted as Πu
f , which is defined as the integral of all differences between wages and the outside

options for the high-skilled workers. Hence, I assume that the labor union aims to maximize total

labor surplus:

Πu
f =

∫ H

0

(Wf − Zif )di = (Wf −
Zf

1 + ψ
)Hf

Employer variable profits are denoted as Πd
f :

Πd
f = PfQf −WfHf − V Lf

Investing in capital induces a fixed cost ϕKf on the employers, with ϕ denoting the cost per unit

of capital. Therefore, total employer profits Π
d

f are given by Π
d

f ≡ Πd
f − ϕKf .

2.2 Behavior

Decisions take place in three stages. First, employers choose their level of capital investment.

Second, workers and employers bargain over a linear wage contract. Third, workers decide how

much labor to supply.5 I discuss these decisions in reverse chronological order.

In the third stage of the model, the labor union decides how much labor it is willing to supply

5The linear wage contract assumption will be motivated in the empirical application in Section 3. An alternative model
that features efficient bargaining is in Appendix B.2.
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given the negotiated wage level, in order to maximize union profits Πu, which leads to the following

upward-sloping high-skilled labor supply curve:

Wf =
W0

1 + ψ

(Hf

ζf

)ψ
(4)

At the same time, low-skilled workers are chosen by the employers to maximize their profits,

max
Lf

(Πd
f ). Taking the first-order condition leads to the following low-skilled-labor demand curve:

P0

(1 + η

η

)
Q

1
η

f

(Qf

Lf

) 1
σ
(Ωf )

σ−1
σ βl = V (5)

In the second stage of the model, wages are bargained over between the labor union and the em-

ployers, with γf ∈ [0, 1] denoting the relative bargaining ability of the union. Crucially, workers

and employers cannot contract directly on machine adoption, and they bargain over joint variable

profits, rather than total profits. Capital is chosen by the employers prior to the wage-bargaining

process, so unless the wage-bargaining phase includes negotiations about capital investment as

well, unions will appropriate a part of the rents generated by capital investment during the wage-

bargaining phase without internalizing the effects of this rent-sharing on employer investment in-

centives. The inability to contract on capital investment is the source of the investment-holdup

problem; this occurs in reality, as it is hard to write complete contracts on investment decisions, as

opposed to wage contracts. The Hollywood writers strikes are an example of the tension between

salary negotiations and negotiations about technology adoption (Kinder, 2024).

max
Wf

(Πu
f )
γf (Πd

f )
1−γf

Taking first-order conditions for the bargaining problem results in Equation (6). Workers and firms

anticipate labor supply that will form in the second stage, and therefore internalize the partial
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derivative ∂Hf
∂Wf

:

γf

(
(1− 1

1 + ψ

∂Zf
∂Wf

)Hf +
∂Hf

∂Wf

(Wf −
Zf

1 + ψ
)
)
(PfQf −WfHf − V Lf )

+ (1 − γf )(Wf −
Zf

1 + ψ
)Hf (Pf

∂Qf

∂Hf

∂Hf

∂Wf

−Hf −Wf
∂Hf

∂Wf

) = 0 (6)

By attributing the ”right to manage” to the workers rather than to the employers, I assume that

the equilibrium lies on the labor supply curve, rather than on the labor demand curve. I motivate

this assumption in the context of the empirical application in Section 4.5. This model collapses to

the classical monopsony model in the case of perfect buyer power (γ = 0).6

Optimal quantities and prices (Q∗
f , P

∗
f ,W

∗
f , H

∗
f , L

∗
f ) are the solution of Equations (1), (2), (4),

(5), and (6), which are the production, goods demand, high-skilled labor supply, low-skilled labor

demand, and wage-bargaining equations.

2.3 Effects of Employer Power: Investment Holdup vs. Deadweight Loss

I define ”employer power” as the employer’s bargaining weight (1−γf ). Employer power has two

countervailing effects on output. First, holding capital Kf fixed, an increase in employer power

leads to decreased output:

Proposition 1. Holding capital Kf constant, output Qf decreases in employer power (1− γf ).

As employer power increases, the equilibrium moves along the labor supply curve further toward

the monopsonistic equilibrium, resulting in a lower level of output. This is the classical deadweight

loss from monopsony power: employers push down wages by buying fewer inputs, which in turn

decreases output as well.

However, capital investment is not invariant to employer power: employer power increases the

share of the rents from capital investment that accrue to the employer. As employers weigh these

rents against the fixed costs of capital investment, which are borne by the employers, higher rents

imply higher capital investment.

6I refer to Demirer and Rubens (2025), who present a model in which vertical conduct is endogeneous, rather than
imposed by assumption.
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Proposition 2. Let production be increasing and strictly concave in capital, product demand be

strictly concave and marginal labor costs be strictly convex. Under these assumptions, capital

usage Kf increases in employer power (1− γf ).

The functional form assumptions of concave demand, convex labor costs, and concavity of pro-

duction in capital are satisfied for specific functional forms imposed in the model. The formal

proof of Proposition 2 is in Appendix B.1.

Net Effect of Employer Power on Output

Combining Propositions 1 and 2 reveals that the net effect of employer power on output is am-

biguous. On one hand, employer power decreases output through the monopsony distortion. On

the other hand, it can increase technology usage, thereby reducing marginal costs and increasing

output. Which of these effects dominates depends on the relative magnitude of the deadweight loss

and the endogenous investment mechanism. In the empirical application, I will quantify the rela-

tive size of these effects to examine how counterfactual changes in employer power affect output,

producer surplus, consumer surplus, and worker welfare.

Simulation

To illustrate the theoretical ambiguity of how labor-market power affects output, I simulate the

model by calibrate the goods demand elasticity at η = −7 and the inverse labor supply elasticity at

ψ = 0.25, following the estimates for U.S. construction workers in Kroft et al. (2020).7 I consider

a new technology that increases H-augmenting productivity (A) by 5% and increases TFP (Ω) by

20%.8

Figure 1a plots optimal technology usage K against employer power (1 − γf ). The solid red

line depicts the model in which technology usage is allowed to change as a function of employee

bargaining power. In line with the theoretical model, technology usage increases with the level

of employer power. By comparison, the dashed blue line depicts the model in which technology

usage is exogenous to the degree of employer power. In this model, technology usage is fixed equal

to average technology usage in the endogenous adoption model.

Figure 1b shows output Q as a function of employer power (1 − γf ). Under the assumption of

7The parametrization is specified in Appendix B.3.
8In Appendix B.3.2, I show that this pattern is robust to various alternative parametrizations.
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exogenous technology usage, the blue solid line, output monotonically decreases with employer

power. This is due to deadweight loss induced by the employer’s monopsony power. The wage

markdown set by the employer shrinks to zero as employer bargaining power goes to zero, reduc-

ing deadweight loss to zero. However, allowing for endogenous capital usage turns the output–

bargaining power relationship into an inverted-U shape. At low levels of employer power, the

output decrease due to monopsony power is countered by the reduction in marginal costs due to

increased technology usage. Under the parametrization of the model, the positive output effect of

increased technology usage outweighs deadweight loss until the bargaining weight of the employer

is around one-third. Hence, output is maximized at this level of employer power.

Figure 1: Bargaining Power, Capital Investment, and Output

(a) Capital Investment (b) Output

Notes: Panel (a) shows how capital investment changes with the degree of employer power in the simulated model.
Panel (b) shows output as a function of the employer’s bargaining parameter, both when assuming exogenous
investment and when letting investment vary with employer power.

3 Empirical Application: Coal Mining in Illinois

The model in Section 2 reveals that the relationship between employer power and output is ambiguous—

it depends on the relative magnitude of the monopsony-induced deadweight loss and endogenous

technology-adoption mechanisms. Therefore, empirical analysis is needed to quantify the relative

magnitude of these two counteracting effects. I empirically implement the model to study the net

welfare effects of employer power in the context of the 19th-century Illinois coal mining indus-

try. I observe the gradual mechanization of this industry through the introduction of coal-cutting
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machines, which provides an interesting case to study investment holdup.

3.1 Data

The main dataset is derived from the Biennial Report of the Inspector of Mines of Illinois. I observe

every bituminous coal mine in Illinois between 1884 and 1902 at two-year intervals, resulting in

7,996 observations. The dataset contains the name of the mine, the mine owner’s name, yearly

coal extraction, average employee counts for both skilled and unskilled workers, days worked,

and a dummy for cutting-machine usage per year. Materials are measured as the total number of

powder kegs used in a given year. Other technical characteristics are observed for a subset of years,

such as dummies for the usage of various other technologies (locomotives, ventilators, longwall

machines), and technical characteristics such as mine depth and the mine entrance type (shaft,

drift, slope, surface). Not all these variables are used in the analysis, given that some are observed

in a small subset of years.9

I observe the average piece rate for skilled labor throughout the year and the daily wage for

unskilled labor from 1888 to 1896. At some of the mines, “wage screens” were used, meaning that

skilled workers were paid only for their output of large coal pieces, rather than for their total output.

This introduces some measurement error in labor costs.10 However, according to the dataset, wage

screens were used for merely 2% of total employment in 1898. Skilled wages and employment

are separately reported for the summer and winter months from 1884 to 1894. For some years,

I observe additional variables such as mine capacities, the value of the total capital stock, and a

breakdown of coal sales by destination. Wages and employee skill types are not observed in 1896.

I deflate all monetary variables using historical CPI estimates from Hoover (1960). The reported

monetary values are all in 1884 U.S. dollars.

In addition to the main biennial dataset, I utilize other datasets. First, the Inspection Report

of 1890, which contains monthly data on wages and employment for both types of workers,

and monthly production quantities for a sample of 11 mines covering 15% of skilled and 9%

9Appendix Table A7 contains a full list of observed variables and the years in which they are observed.
10Another source of measurement error is that absenteeism was common; a study of 11 mines by the Illinois Bureau

of Labor Statistics showed that miners worked an average of 17.7 days per month while mines were operated an
average of 20.1 days per month (Illinois Bureau of Labor Statistics, 1890), an attendance rate of 88 percent. This
induces a downward bias in the earnings data.
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of unskilled workers. Second, town- and county-level information are derived from the 1880 and

1900 population censuses and the censuses of agriculture and manufacturing. Third coal-cutting-

machine costs are obtained from Brown (1889). Appendix A contains more details on my data

sources and cleaning procedures.

3.2 Industry Background

The Illinois coal mining industry grew rapidly throughout the sample period: annual output tripled

from 8.7 to 28.1 megatons from 1884 to 1902. This was due to both an increase in the average

mine size and because the number of mines grew from 643 to 859 units.

Coal-Extraction Process

The coal-extraction process consisted of three main steps. First, the coal vein had to be accessed,

as it lay below the surface for 98.75% of the mines and 99.3% of output. Second, after miners

reached the vein, the coal wall was “undercut,” traditionally by hand, but from 1882 onward also

with coal-cutting machines. Mechanization of the cutting process is considered to be the most

significant technological advancement during this period (Fishback, 1992). Third, the coal had to

be transported to the surface and separated from impurities. The hauling was done using mules or

underground locomotives.

Mines used two types of intermediate inputs. First, black powder was used to blast the coal

wall. This powder and other materials, such as picks, were purchased and brought to the mine by

the miners. Second, coal itself was used to power steam engines, electricity generators, and air

compressors.

Figure 2(b) plots the ratio of total output over total days worked at mines that used cutting

machines (“machine mines”) and mines that did not (“hand mines”). Daily output per worker

increased from 2.0 to 3.4 tons for hand mines, and from 2.2 to 4.0 tons for machine mines.11

Although different coal types exist, the mines in the dataset all extracted bituminous coal. There

might have been minor quality differences even within this coal type due to variation in sulfur

content, ash yield, and calorific value (Affolter & Hatch, 2002). Most of this variation is, how-

ever, dependent on the mine’s geographical location and, hence, not a choice variable of the firms

11This series is adjusted for the reduction of hours per working day in 1898, as explained in Appendix A.
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Figure 2: Output, Inputs, and Prices

(a) Cutting-Machine Usage (b) Output per Worker

(c) Wages and Prices (d) Skilled-to-Unskilled Labor Ratio

Notes: Panel (a) plots the evolution of cutting-machine usage, both as a share of firms and weighted by output. Panel
(b) documents the evolution of output per worker at mines where coal was cut manually, and at mines where cutting
machines were used. Panel (c) shows the evolution of daily skilled wages and of the coal price per ton in Illinois,
weighted by employment and output, respectively. Panel (d) shows the evolution of the aggregate ratio of skilled to
unskilled workers in Illinois for both hand and machine mines.

conditional on operating in a certain location.

Occupations

Coal mining involved numerous occupational tasks. The Inspector Report from 1890 reports wages

at the occupation level; I report this subdivision in Appendix Table A2 for the 20 occupations with

the highest employment shares, together covering 97% of employment. Three of five workers were

miners; they did the actual coal cutting. This required significant skill: to determine the thickness

of the pillars, miners faced a trade-off, lower output vs. risk of collapse. The other 40% of workers

did various tasks such as clearing the mine of debris (“laborers”), hauling coal to the surface using
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locomotives or mules (“drivers” and “mule tenders”), loading coal onto the mine carts (“loaders”),

and opening doors and elevators (“trappers”). The skills required to carry out these tasks were

usually less complex than those of the miners; moreover they were not specific to coal mining:

tending mules and loading carts were general-purpose tasks, in contrast to mining-specific tasks

such as undercutting coal walls.

The difference in industry-specific skills is reflected in daily wages: miners earned higher daily

wages than almost all other mining employee types.12 The higher wages of miners cannot be

explained as a risk premium—most of the other occupations were performed below the surface

as well, and were hence subject to the same risks from mine collapse or flooding. From this

point onward, I follow the skill categorization in the Inspector Reports by classifying workers into

two types: miners, which I denote as “skilled labor,” and all other employees, which I denote as

“unskilled labor.”

Technological Change

The first prototype of a mechanical coal cutter in the United States was invented by J.W. Harrison in

1877.13 The Harrison patent was acquired and adapted by Chicago industrialist George Whitcomb,

whose “Improved Harrison Cutting Machine” was released on the market in 1882.14 As shown in

Figure 2a, the share of Illinois coal mines using a cutting machine increased from 1% to 9%

between 1884 and 1902. Mechanized mines were larger: their share of output increased from 7%

to 30% over the same time period. Mechanization of the hauling process, which replaced mules

with underground locomotives, was another source of technical advancement that started during

the 1870s. By the start of the panel, in 1884, mining locomotives were already widely used in

Illinois: the share of output of mines that operated locomotives was around 80% in 1884 and 90%

in 1886.

As shown in Figure 2(b), output per worker was higher in cutting machine mines. The composi-

tion of labor was also different: in Figure 2(d), I plot the ratio of the total number of skilled-labor

days over the number of unskilled-labor days.15 Mines without cutting machines used between

12The only exception being “pit bosses” (middle managers), and “roadmen,” who maintained and repaired mine tracks.
These two categories of workers made up barely 2% of the workforce.

13Simultaneously, prototypes of mechanical coal-cutting machines were invented in Northern England in the late 1870s
(Reid, 1876; Ackermann, 1902).

14Appendix Figure A5 depicts the patent. The spatial diffusion of cutting machines is shown in Appendix Figure A3.
151890 is omitted for machine mines due to employment being unobserved for most machine mines in that year.
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three and four skilled labor-days per unskilled labor-day throughout the sample period, compared

to two to three skilled labor-days per unskilled labor-day for machine mines. In every year ex-

cept 1894, machine mines had a lower skilled-to-unskilled labor ratio than the other mines. On

average, the skilled-to-unskilled labor ratio was 16% lower for machine mines compared to hand

mines, and this difference is statistically significant.16 However, this difference is not necessarily a

causal effect of cutting machines on skill-augmenting productivity: mines with higher productivity

levels were probably more likely to adopt cutting machines. For estimates of the causal effect of

cutting machines on TFP and factor-augmenting productivity levels, I refer to the empirical model

in Section 4. Anecdotal evidence suggests that cutting machines led to the substitution of unskilled

for skilled workers. In his 1888 report, the Illinois Coal Mines Inspector asserts:

“Herein lies the chief value of the [cutting] machine to the mine owner. It relieves

him for the most part of skilled labor [...] it opens to him the whole labor market from

which to recruit his forces [...] The mining machine is in fact the natural enemy of the

coal miner; it destroys the value of his skill and experience, and reduces him to the

rank of a common laborer” (Lord, 1892).

Labor Markets

Skilled workers received a piece rate per ton of coal mined, which is a classical linear price con-

tract, whereas unskilled workers were paid a daily wage.17 Converting the piece rates to daily

wages, the net salary of skilled labor was on average 16% higher compared to unskilled labor. “Net

salary” means net of material costs and other work-related expenses. Rural Illinois was sparsely

populated: the median and average populations of the towns in the dataset were 872 and 1,697

inhabitants. In the average town, 13.6% of the population was employed in a coal mine. Women

and children under the age of 12 did not work in the mines, which implies that a large share of the

local working population was employed in coal mining. Of all the towns, 43% had just one coal

firm, and 75% had three or fewer. Towns with three or fewer coal firms accounted for 62% of total

mining employment. Although most of the towns in the dataset were connected by railroad, these

16Regressing the log skilled-to-total labor ratio on a cutting-machine usage indicator results in a coefficient of -0.170
with a standard error of 0.037.

17Piece rates were an incentive scheme in a setting with moral hazard, as permanent miner supervision would have
been very costly.
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were exclusively used for freight: passenger lines operated only between major cities (Fishback,

1992). Given that the average village was 6.6 miles from the next village, and that skilled workers

had to bring their own supplies to the mine, commuting between towns was not an option and the

mining towns can be considered as isolated local labor markets. Most roads were unpaved and

automobiles had not yet been introduced. To switch employers, miners had to migrate to another

town.

The first attempts to unionize the Illinois coal miners started around 1860, but without much

success (Boal, 2017). Although Illinois coal miners were unionized, for instance through the

United Mine Workers of America and the Knights of Labor, union power was constrained by

the use of “yellow-dog” labor contracts, which forced employees not to join a trade union.18 A

major strike in 1897–1898 led to a modest increase in wages, to a reduction of working hours,

and to the introduction of annual wage negotiations, which took place each January (Bloch, 1922).

Nevertheless, industrial relations remained tense for the ensuing years (Bloch, 1922).

Wages were bargained over in a tiered negotiation procedure: first, a general agreement was

made at the state-industry level; afterwards, mine owners individually negotiated wages with miner

representatives (Bloch, 1922). There was no minimum wage law. In contrast to other states, the

mines in the dataset did not pay for company housing of the miners (Lord, 1883, p. 75), which

would otherwise have been a labor cost in addition to miner wages.

Figure 2(c) reports the aggregate skilled-labor daily wage, defined as the total wage bill spent

on skilled labor over the total number of skilled labor-days. The fast growth in labor productivity

did not translate into higher wages until 1898; daily miner wages remained around $1.80. After

the strikes, wages rose sharply to around $2.50 per day.

Coal Markets

Coal was sold at the mine gate, and there was no vertical integration with postsales coal treatment,

such as coking. On average, 92% of the mines’ coal output was either sold to railroad firms or

transported by train or barge to final markets. The importance of waterways decreased sharply in

the favor of railroads during the early 1880s (of Natural Resources, 2025) The remaining 8% was

sold to local consumers. The main coal-destination markets for Illinois mines were St. Louis and
18These contracts were criminalized in Illinois in 1893, with fines of $100, which on average was equivalent to six

months of a miner’s wage. (Fishback, Holmes, & Allen, 2009).
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Chicago. Railway firms acted as an intermediary between coal firms and consumers; they were

also major coal consumers themselves.

Historical evidence points to intense competition in coal markets during the last two decades

of the 19th century, before the large consolidation wave in the early 1900s (Graebner, 1974).

Nevertheless, coal was still costly to transport, which means that coal markets were likely not

perfectly integrated: coal prices varied considerably across Illinois. In 1886, for instance, the coal

price varied between 91 cents per short ton at the 10th percentile of the price distribution to 1.75

dollars per short ton at the 90th percentile, and this price dispersion slightly increased over time.

Figure 2(c) shows that the mine-gate coal price per ton, weighted by output shares, fell from $1.25

to $0.84 between 1884 and 1898, after which it increased again.

Descriptive Evidence for Upward-Sloping Labor Supply

Coal demand was seasonal: demand for energy was higher in winter than in summer. Coal storage

costs meant that firms could not fully arbitrage between winters and summers, and, hence, needed

to hire more workers during the winter. Joyce (2009) mentions that miners were (partially) un-

employed during the summer months. This cyclical pattern provides useful variation to compare

wage responses of skilled and unskilled workers to coal demand shocks. In Figure 3(a), I show

that skilled wages followed this coal demand cycle: they were higher during winters than during

summers. However, this pattern held only for skilled wages, not for unskilled wages. Although the

seasonal demand shocks increased demand for both skilled and unskilled labor, only skilled wages

increased during winter. This is also shown in Figure 3(b), which plots how average daily wages

for both skilled and unskilled workers in 1890 changed with the monthly number of worker-days

of each type at the mine-month level throughout 1890.19 Skilled wages were positively correlated

with monthly skilled employment, whereas the unskilled worker wage-employment schedule was

flat. Moreover, skilled wages varied greatly across mines and months, but there was very little

cross-sectional and intertemporal variation in unskilled wages.

The fact that skilled wages increased in response to coal demand shocks whereas unskilled

wages did not, and the fact that unskilled wages were nearly uniform across Illinois whereas skilled

19Unlike skilled wages and employment, unskilled wages and employment are not broken down by season in the entire
dataset. However, monthly wage and employment data are available for a sample of mines selected by the Illinois
Bureau of Labor Statistics across five counties in 1890, which cover 16% of skilled employment and 9% of unskilled
employment.
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wages were not, suggests an inelastic high-skilled labor supply curve and a fully elastic low-skilled

labor supply curve. This implies that firms had the potential to exert monopsony power on the high-

skilled labor market, but not on the low-skilled labor market. However, it could be that seasonal

employment movements reflected not only labor demand variation but also labor supply shocks,

for instance due to the harvesting season. Moreover, within-year demand shocks trace out a short-

run supply curve, whereas labor supply could be more elastic in the longer run. Hence, in the

structural model, I will instead rely on an instrumental-variable strategy that relies on international

coal-price shocks to identify the high-skilled labor supply elasticity.

Figure 3: Wage-Employment Profile by Skill Type

(a) Wages (b) Wage-Employment Profile

Notes: Panel (a) shows how the wages of skilled miners and other mine employees evolved monthly during 1890
from the 1890 Inspector Report (Illinois Bureau of Labor Statistics, 1890). Panel (b) plots mine-month-level wages
for both types of workers against monthly employment from the same source, again for both types of workers.

3.3 Empirical Model

Production Function

I implement an empirical model of the Illinois coal industry based on the general model outlined

in Section 2. Let f index coal firms per town and let t index all even years between 1884 and

1902. The model is set up at the firm-town-year level: it is plausible that employers optimize at

the firm level, rather than at each mine independently. However, I let firms optimize on a labor-

market-by-labor-market basis: firms with mines in different labor markets do not internalize the

cross-labor-market effects of their decisions. This is consistent with the model, given that it does
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not feature strategic interaction between firms on the labor market. Annual coal extraction in short

tons is denoted as Qft, the number of days worked by high-skilled labor is denoted as Hft, and the

number of low-skilled labor-days is denoted as Lft. In contrast to the theoretical model, capital

investment is modeled as a binary variable: firms choose whether to use cutting machines or not,

with usage being denoted as Kft ∈ {0, 1}. I abstract from other technologies, such as mining

locomotives, because they were already widely adopted by the start of the panel, and because they

are not observed in all years of the sample.

I maintain the CES production function from Equation (1), with an elasticity of input substitution

σ and low-skilled-labor coefficient βl. Firms differ in terms of their skill-augmenting productivity

Aft and in their Hicks-neutral productivity Ωft. In Appendix C.2, I estimate various extensions

of the production model to allow for nonconstant returns to scale, the existence of intermediate

inputs, and the possibility that cutting machines change scale returns. All these extensions lead to

very similar production-function estimates. Taking the logs of Equation (1) and adding the time

index leads to Equation (7), which is the production function I will estimate:

qft =
( σ

σ − 1

)
log
((
HftAft(Kft)

)σ−1
σ + βlL

σ−1
σ

ft

)
+ ωft(Kft) (7)

Cutting-machine usage Kft is allowed to affect both productivity terms Ωft and Aft. The loga-

rithms of both these productivity terms, aft and ωft, are assumed to evolve as AR(1) processes, as

specified in Equations (8) and (9). The productivity terms have serial correlations ρa and ρω and

are assumed to be affected linearly by cutting-machine usage, as parametrized by the coefficients

αk and βk for labor-augmenting and Hicks-neutral productivity, respectively.20 Skill-augmenting

and Hicks-neutral productivity shocks are denoted as eaft and eωft:

aft = αkKft + ρaaft−1 + eaft (8)

ωft = βkKft + ρωωft−1 + eωft (9)

20Although these AR(1) specifications do not allow for richer models of cost dynamics in which current productivity is
a function of the total amount of output produced in the past, they do have the benefit of not requiring inversion of the
production function, thereby allowing for rich heterogeneity in both productivity terms, markdowns, and markups.
See Appendix C.2.4 for a motivation and discussion of this assumption.
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I assume that mines do not face a binding capacity constraint. This is consistent with the data:

in 1898, the only year for which capacities are observed, merely 1.9% of the mines operated at

full capacity, and they were responsible for just 2.7% of industry sales.21 I also abstract from

stockpiling of coal, and I assume that coal must be sold immediately after extraction: coal storage

usualy led to deteriorating coal quality; moreover it was expensive and dangerous (Stoek, Hippard,

& Langtry, 1920). As Williams (1901) asserted:

“The product of a mine can be stored with economy only in the mine itself [...]

Coal must be sold, therefore, as fast as it is mined.”

Labor Supply

Adding time subscripts to the inverse labor supply function (Equation 4), then inverting it, results in

the labor supply equation (Equation 10a). The daily wage of high-skilled workersWft is computed

as the piece rate multiplied by daily tonnage per worker. I measure W0t as the average daily wage

in year t.

I include observed firm characteristics Xh
ft next to the latent amenity term ζft. Specifically, I

include a linear time trend, county fixed effects, and the logarithm of the minimal distance of the

firm to Chicago and St. Louis as observed characteristics, to account for proximity to the large

regional population centers.

Hft =
(Wft

W0t

) 1
ψ
exp(Xh

ft)
ψxζft (10a)

I estimate the inverse labor supply equation in logs, which is given by Equation (10b). I estimate

inverse labor supply, rather than labor supply, because this makes it easier to test whether firms are

wage-takers, in which case ψ = 0, or have some market power over wages.

wft − w0t = ψhft +
ψ

ψx
xhft − ψ log(ζft)− ln(1 + ψ) (10b)

The amenity term ζft captures firm differentiation from the miner’s perspective. In contrast to

Delabastita and Rubens (2024), who rely on a homogeneous employers model, I do allow for firm

differentiation because skilled wages varied substantially across mines, even within the same labor
21Figure A4 depicts the entire distribution of capacity utilization rates.
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markets.22

Similarly to the theoretical model, the market for low-skilled labor is assumed to be perfectly

competitive, and low-skilled workers are paid a uniform wage V , which is equal to their outside

option. The main reason for this assumption lies in the fact that unskilled wages barely varied

across Illinois, nor did they react to seasonal weather shocks, as shown in Figure 3.

Coal Demand

Coal produced in Illinois mines was a nearly homogeneous product. However, coal firms were

differentiated by their locations, which resulted in price differences between coal firms. I again

include the shortest distance to either Chicago or St. Louis, county fixed effects, and a linear time

trend, because these variables likely affected coal demand:

Qft =
(Pft
P0t

)η
exp(xqft)

ηxξft (11)

Taking logarithms and inverting Equation (11) results in Equation (12), which is the demand

model I estimate. I again estimate inverse demand, rather than demand for coal, to test whether

firms are price setters or price takers on coal markets.

pft − p0t =
1

η
qft −

ηx

η
Xq
ft −

1

η
ln(ξft) (12)

Vertical Conduct

I make two ”vertical conduct” assumptions. First, I assume that unions and firms bargain over

linear wage contracts, rather than over nonlinear contracts or over wages and quantities, as they

would under efficient bargaining. This is motivated by the observed nature of linear (piece-rate)

wage contracts, and by the fact that employers and unions bargained over wages, not employ-

ment (Bloch, 1922). Second, I assume that employment is chosen by the union rather than by

the employers, meaning that the equilibrium lies on the labor supply curve. This assumption is

motivated by the fact that the 1898 coal strikes, which are a negative shock to employer power, led

22In Appendix Table A6, I report the R2 of regressing log daily miner wages on (subsequently) year, county, town,
and firm dummies. Town and year dummies explain only 29% of the variation in skilled miner wages.
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to increased output, as shown in Section 4.5. If employment would be chosen by the employer in-

stead (being on the labor demand curve), output should increase instead, as employer power would

decrease double marginalization.

Variable Input Decisions

I assume that firms make decisions in two stages. First, they choose whether or not to use cut-

ting machines. Second, conditional on this choice, they bargain over high-skilled wages and they

choose low-skilled employment. I describe the model in reverse chronological order, given that

estimation proceeds in this order.

In year t, employers negotiate a high-skilled wage rate with the union according to the bargaining

protocol specified in Equation (13), following the bargaining model that was described in Equation

(6). Given the institutional background, I assume that employers and miner representatives bargain

over wages at the firm level—this implies a passive-beliefs assumption that employers and unions

take the bargaining outcomes and actions at all other firms as given (Horn & Wolinsky, 1988).

γft

(
(1− 1

1 + ψ

∂Zft
∂Wft

)Hft +
∂Hft

∂Wft

(Wft −
Zft
1 + ψ

)
)
(PftQft −WftHft − V Lft)

+ (1− γft)(Wft −
Zft
1 + ψ

)Hft(Pft
∂Qft

∂Hft

∂Hft

∂Wft

−Hft −Wft
∂Hft

∂Wft

) = 0 (13)

Following the labor supply curve, Equation (10b), this negotiated wage rate results in a certain

amount of high-skilled labor being supplied at each coal firm. Coal firms simultaneously choose

low-skilled labor, as specified in Equation (14). Although the miner unions also represented non-

miner workers, I do not model the wage-formation process for low-skilled labor as a bargaining

model, given that the wage-negotiation documents show only wage bargaining over skilled wages

(Bloch, 1922) and that there was little variation in low-skilled wages to begin with, suggesting a

competitive labor market. I assume that these variable input decisions happen after the productivity

shocks eω and ea are observed by the firm. The combination of low-skilled and high-skilled labor

and capital (the decisions are specified below) results in coal outputQf according to the production

function, Equation (7). The coal demand curve, Equation (12), determines the price every firm can
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charge at that level of coal output.

P0t

(1 + η

η

)
Q

1
η

ft

(Qft

Lft

) 1
σ
(Ωft)

σ−1
σ βl = V (14)

Fixed Input Choices

Cutting machines are chosen unilaterally by the employers rather than negotiated, given the evi-

dence of the wage-bargaining process (Bloch, 1922). Employers trade off the variable profit gains

form cutting machines with their fixed costs.

To compute the variable profit gains from capital investment, I obtain the optimal quantities and

prices at every firm in every year by solving the system of Equations (7), (10a), (11), (13), and

(14): the production function, high-skilled labor supply, coal demand, high-skilled labor demand,

and low-skilled labor demand. This delivers certain outcomes (Q1
ft, P

1
ft, H

1
ft, L

1
ft,W

1
ft) if the firm

uses cutting machines, and different outcomes (Q0
ft, P

0
ft, H

0
ft, L

0
ft,W

0
ft) if the firm does not use

cutting machines. The variable profit gain of the employer from using cutting machines is denoted

as ∆Πd
ft:

∆Πd
ft ≡ (P 1

ftQ
1
ft −W 1

ftH
1
ft − VtL

1
ft)− (P 0

ftQ
0
ft −W 0

ftH
0
ft − VtL

0
ft) (15)

The costs of technology usage are denoted ϕt, so total employer profits are equal to Πd
ft − ϕtKft.

As in Peters, Roberts, Vuong, and Fryges (2017), I parametrize technology costs as an exponen-

tial distribution. I let the rate parameters (ϕ0, ϕ1, ϕ2) evolve over time, with ϕ0 measuring the

time-invariant fixed cost of technology usage, ϕ1 measuring the time-varying component of fixed

machine costs, and ϕ2 measuring the variable cost of using cutting machines. I allow machine

costs to have a variable component, in addition to a fixed-cost component, because larger mines

might require more cutting machines.

ϕ ∼ exp(ϕ0 + ϕ1t+ ϕ2qft)

I assume that prior to observing the productivity shocks eω and ea, firms independently and si-

multaneously choose whether or not they will use cutting machines. They make this decision by
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trading off the costs of machine adoption ϕt with the expected variable profit return ∆Πd. I assume

that firms do not choose their cutting machines in a dynamic manner, but rather that they optimize

their technology mix period by period. The main reason for this assumption is that observed en-

try and exit of machine usage is frequent: 106 cutting-machine installations, 60 of which were

scrapped. This suggests the existence of an aftermarket for capital.

Using the exponential form of fixed costs, the probability that a firm uses cutting machines

pkft(ϕ) is equal to

pkft(ϕ
0, ϕ1, ϕ2) = 1− exp

( −∆Πd
ft

ϕ0 + ϕ1t+ ϕ2qft

)
(16)

4 Identification and Estimation

In this section, I turn to the identification and estimation of the model. I consecutively estimate

miner supply, coal demand, the coal production function, relative bargaining ability of unions and

coal firms, and cutting-machine costs. Table 1 summarizes the sources of identification in the

model, which are explained in detail in the next subsections.

Table 1: Identification: Summary

Equation Parameters Identification

Miner supply (10b) ψ International coal-price shocks

Coal demand (12) η Coal vein thickness

Production function (7) β, α, ρ Input timing assumptions

Bargaining weights (22) γ Bargaining first-order conditions

Machine costs (16) ϕ Comparing variable profit gains
to observed cutting-machine usage

4.1 Labor Supply Estimation

Although the model is specified at the firm level, the dataset is observed at the mine level. Given

that firms are assumed to have optimized at the firm-town level, I aggregate all the relevant vari-

ables to the firm-town-year level, as detailed in Appendix A.2.
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I start with the identification of the inverse skilled labor supply curve, Equation (10b). The

inverse labor supply elasticity ψ cannot be recovered by simply regressing high-skilled-labor wages

on employment, because of the latent firm characteristics ζft. Firms with a high ζft knew they

were attractive to miners, which permitted them to offer a lower wage to attract the same number

of miners. To identify the slope of the skilled labor supply curve, a shock to labor demand that is

excluded from skilled-labor utility is necessary.

I rely on international coal-market price shocks for identification. I obtain the average annual

coal price on international coal markets in Europe from Degrève (1982). I use as instruments both

this coal price and its interaction term with an indicator for whether or not a mine shipped coal

over the railroad network. These instruments imply three assumptions. One, individual Illinois

coal mines were too small to affect coal prices on the European market. This makes sense given

that Illinois produced only around 10% of the total U.S. output, and that U.S. bituminous coal

mines exported only around 1.2% of their coal in 1898 (Graebner, 1974). Two, international coal-

price shocks affected the demand for Illinois coal. Given that Chicago was one of the destination

markets for Illinois coal, and that Chicago also sourced coal from both the East Coast and other

coal fields by lake steamers, changes in nonlocal coal prices affected demand for Illinois coal.

Three, international coal-price shocks affected coal demand more if coal mines were shipping

their coal over the railroad network compared to coal mines that sold their coal only locally. This

third assumption makes sense given that mines that sold only locally did not compete with coal

fields outside of Illinois; neither these mines not their consumers were connected to the railroad

network.

I compute the baseline wage level w0i(f)t as the average miner wage in Illinois. I estimate

Equation (10b) with a two-stage least squares estimator using the European coal price and an

interaction term of the European coal price and a shipping dummy as instruments for the log

relative wage at each firm. I control for whether the firm was a shipping mine or a mine that sold

only locally, and I include county fixed effects and a linear time trend.

For unskilled wages, I rely on the average daily wage for unskilled labor in the Illinois coal

industry in every year. Given that I observe this wage from only 1884 through 1894, I linearly

interpolate for the 1896–1902 period using a loglinear time trend.

The inverse skilled labor supply elasticity is estimated to be 0.258 with a standard error of
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0.126, as reported in Table 2(a). This means that in the monopsony case, which corresponds to full

employer power γft = 0, the marginal product of skilled labor would surpass their wages by 26

%.23

4.2 Coal Demand Estimation

I estimate the coal demand function in logarithms, Equation (12), using firm-level quantities and

prices. I rely on the thickness of the coal vein as a cost shifter: whereas the vein thickness affects

the marginal cost of mining, it does not enter consumer utility conditional on the coal price, because

vein thickness does not affect coal quality (Affolter & Hatch, 2002). The thickness of the coal vein

was the result of geological variation, and hence not a choice variable.

I estimate Equation (12) using a two-stage least squares estimator, with the log average vein

thickness in the town as the instrument for coal output. In the observed covariates vector Xq
ft, I

include the following coal demand shifters: the logarithm of the minimal distance to either Chicago

or St. Louis, the number of railroads passing through the mine’s town, whether or not the mine

was a shipping mine, and a linear time trend. I compute p0t as the average coal price in each year.

Table 2(b) contains the coal demand estimates. The number of observations, 3,127, is lower

than when estimating labor supply because the thickness of the coal veins is not observed in 1888

and 1890. The coal demand elasticity is estimated at -0.187 with a standard error of 0.017. This

corresponds to a coal demand elasticity of η = −5.347, and implies that firms set coal prices at a

markup of 23% above marginal costs.24 The minimal distance from either Chicago or St. Louis had

a negative but statistically insignificant effect on demand. A more important demand shifter seems

to be the number of railroad lines passing through the mine’s town. Coal demand was roughly

stable throughout the sample period.

The finding that coal firms were not price takers on coal markets is somewhat surprising, given

that coal is a homogeneous good and that there were many firms in this market. Prior work on coal

mining in the same period describes the firms as price takers on their product markets (Fishback,

1992). In Appendix Table A4, I examine whether the demand estimates are driven by the large

number of small mines that only sell coal locally, rather than exporting coal over the railroad

23The wage markdown is equal to MRPL−w
w = ψ.

24The coal-price markup above marginal costs is Pft

mcft
= η

η+1 .
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Table 2: Model Estimates

(a) Labor Supply Est. S.E.

Inverse labor supply elasticity ψ 0.258 0.126

1(Shipping mine) -0.395 0.283

Year 0.009 0.005

First-stage F-stat 12.4
Observations 6315

(b) Coal Demand

Inverse coal demand elasticity 1
η

-0.187 0.017

Log(min. distance to big city) -0.029 0.022

No. railroads 0.025 0.016

Year -0.000 0.001

First-stage F-stat 773.1
Observations 3127

(c) Production Function

Input substitution elasticity σ 0.359 0.057

Skill-augmenting technology effect αk 0.192 0.095

Hicks-neutral technology effect βk 0.100 0.153

Low-skilled labor coefficient βl 0.006 0.003

Serial correlation Hicks-neutral productivity ρω 0.287 0.117

Serial correlation skill-augmenting productivity ρω 0.830 0.076
Observations 1626

(d) Fixed Machine Costs

Fixed machine cost in 1882 (’000 USD) ϕ0 9.230 2.909

Fixed machine cost time trend (’000 USD) ϕ1 -0.928 0.326

Variable machine cost (USD) ϕ2 0.108 0.169

Notes: Panel (a) reports the skilled labor supply estimates, Panel (b) reports the estimates of the coal demand
function, Panel (c) contains the estimates of the production function, with block-bootstrapped standard errors over
200 iterations, and Panel (d) reports the cutting-machine fixed-cost estimates.

network. I estimate the inverse coal demand equation separately for shipping and local mines.

However, the inverse price elasticity is even higher (more negative) for shipping mines than for

local mines, so even mines that sold their coal over the railroad network had price-setting power.
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4.3 Production Function and Bargaining Weights Estimation

I estimate the production function in two steps. First, I estimate the elasticity of input substitution σ

and the skill-augmenting effects of cutting machines, αk. Second, I estimate all other production-

function coefficients, βl and βk.

Elasticity of Substitution

The elasticity of substitution is usually estimated by taking the ratio of the input demand functions

from the employer’s profit-maximization first-order conditions, e.g., in Doraszelski and Jauman-

dreu (2018). In the bargaining model, however, the marginal-revenue product of high-skilled labor

is not equal to its wage as long as γ < 1. Setting γ to zero in Equation (6), which implies perfect

monopsony power, gives:

∂Rft

∂Hft

= Wft(1 + ψ)

Conversely, if γ becomes one, which implies that the labor union had all the bargaining power,

the wage of high-skilled workers is equated to their marginal revenue product:

∂Rft

∂Hft

= Wft

These two first-order conditions for extremes of the bargaining parameter γf can be linearly

interpolated using the bargaining parameter γft, which results in a linear approximation of the

first-order conditions:

∂Rft

∂Hft

= Wft(1 + (1− γft)ψ) (17)

Working out the first-order conditions (5) and (17), then dividing (5) by (17), results in Equation

(18). This equation is a variant of the first-stage regression from Doraszelski and Jaumandreu

(2018), except that the labor supply elasticity enters into the first-order conditions, as in Rubens,
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Wu, and Xu (2024):

lft − hft = σ(wft − v + ln(1 + (1− γft)ψ)) + σ ln(βl) + (1− σ)aft︸ ︷︷ ︸
≡ãft

(18)

Given that Equation (8) specifies an AR(1) process for the factor-augmenting productivity term

aft, the residual ãft also evolves as an AR(1). Hence, taking ρa differences of Equation (18) iso-

lates the productivity shock eaft as a function of the coefficients ρa, σ, and αk. Using the previously

stated assumptions that capital is chosen prior to observing the skill-augmenting productivity shock

eaft, but that variable inputs are chosen afterwards, the moment conditions, Equation (19), can be

specified to estimate the elasticity of input substitution σ, the skill-augmenting productivity effect

of cutting machines αk, and the serial correlation in skill-augmenting productivity ρa:

E
[
eaft(ρ

a, αk, σ)|


Kft−r

Lft−r−1

Hft−r−1

]T−1

r=0
= 0 (19)

Second-Stage Production-Function Coefficients

From Equation (18), the log factor-augmenting productivity residual aft can be written as a func-

tion of the estimated parameters σ and ψ, and the yet-to-be-estimated parameters βl and βk:

aft =
( lft − hft

1− σ

)
− σ

1− σ

(
ln(βl)

)
− σ

1− σ

(
wft − vt + ln(1 + (1− γft)ψ)

)
Substituting this factor-augmenting productivity term into the log production function gives:

qft =
σ

σ − 1
ln

((
Hft exp

( lft − hft
1− σ

− σ

1− σ
ln(βl)− σ

1− σ
(wft−vt+ln(1+(1−γft)ψ)))

)σ−1
σ

+ βlL
σ−1
σ

ft

)
+ ωft (20)

I define the first linear term in the log production function as Bft(.):
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Bft ≡
σ

σ − 1
ln

((
Hft exp

( lft − hft
1− σ

− σ

1− σ
ln(βl)− σ

1− σ
(wft − vt + ln(1 + (1− γft)ψ)))

)σ−1
σ

+βlL
σ−1
σ

ft

)

Using the productivity transition in Equation (9), taking ρω differences isolates the Hicks-neutral

productivity shock eωft as a function of the parameters (ρω, βk, βl):

eωft = qft − ρωqft−1 − βk(kft − ρωkft−1)− (Bft − ρωBft−1)

Using the timing assumption that employers chose capital prior to the realization of the Hicks-

neutral productivity shock but chose low-skilled labor and bargained over wages after the realiza-

tion of this shock leads to the moment conditions in Equation (21). I estimate this model using

lags of up to one time period.

E
[
eωft(ρ

ω, βk, βl)|


Kft−r

Lft−r−1

Hft−r−1

]T−1

r=0
= 0 (21)

Estimating Bargaining Weights

Adding time subscripts to the wage-bargaining first-order condition, Equation (13), and rearrang-

ing terms as a function of the union bargaining weights γft leads to Equation (22). I estimate the

bargaining parameters using this equation, whose variables are all either observed or have been

estimated in the production, labor supply, and goods demand models.

γft =
(Wft − Zft)(

∂Rft
∂Hft

∂Hft
∂Wft

−Hft −Wft
∂Hft
∂Wft

)

(Wft − Zft)(
∂Rft
∂Hft

∂Hft
∂Wft

−Hft −Wft
∂Hft
∂Wft

)− (
ψHft
1+ψ

+
∂Hft
∂Wft

(Wft − Zft))
Πdft
Hft

(22)

To estimate both the first and second stages of the production-function estimation, Equations

(18) and (20), the bargaining parameters γft need to be known, as they enter into the first-order
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condition for high-skilled labor demand. However, estimating the bargaining parameters γft re-

quires knowing the production-function coefficients, as is clear from Equation (22). I proceed by

estimating the production function and the bargaining parameter using a fixed-point algorithm. I

start with an initial value of γft = 0.5 to estimate the production function and the bargaining pa-

rameter. Then, I use the resulting bargaining parameter to reestimate the production function and

the bargaining parameter. I continue this estimation loop until the production-function coefficients

converge, up to a sensitivity level of 0.001. I find that the estimates quickly converge to a fixed

point.

Results: Production

Table 2(c) reports the production-function estimates. The elasticity of substitution between skilled

and unskilled miners is estimated at 0.359, which implies that these two types of workers are gross

complements. It is not surprising that this elasticity is relatively low, given that skilled miners were

employed for cutting coal whereas unskilled miners were employed mainly for hauling coal, two

tasks that are complementary. Cutting machines are estimated to increase skill-augmenting pro-

ductivity by 21%,25 so cutting machines are a skill-augmenting technology. Given that skilled and

unskilled labor are gross complements, this makes cutting machines an unskill-biased technology

(Acemoglu, 2002), similarly to many other technologies developed throughout the 19th century

that were also unskill-biased (Mokyr, 1990; Goldin & Katz, 2009). The finding that cutting ma-

chines were unskill-biased is consistent with the fact that cutting machines automated the cutting

process, which was reliant on skilled miners, in contrast to the hauling process, which was mainly

reliant on unskilled workers. Besides increasing skill-augmenting productivity, cutting machines

also increased Hicks-neutral productivity by 11%, although this effect is not statistically signifi-

cant. The low-skilled labor parameter βl is estimated, imprecisely, at 0.006. Easier to interpret

are the corresponding output elasticities of low- and high-skilled labor, which are estimated at

0.683 and 0.317, respectively. Finally, skill-augmenting and Hicks-neutral productivity have serial

correlations of 0.287 and 0.830.
25exp(0.192)− 1
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Results: Bargaining Weights

The average and median employer’s bargaining weight are both 0.39, so bargaining power was

balanced between mine owners and the miners’ union, slightly favoring the union. I keep only the

bargaining parameter values that range between zero and one, as values outside of this range are

meaningless in the context of the bargaining model. This reduces the number of observations by

11%. Figure 4a shows the entire distribution of employer power.

Table 3 regresses the logarithm of the employer bargaining parameter over high-skilled workers

(ln(1 − γf )) on firm and market characteristics. The first two columns do not include firm fixed

effects, the last two do. In both specifications, employers with higher market shares on the high-

skilled-worker market had more bargaining power. Moreover, employer power was increasing

at a rate of 0.7% to 1.1% per year. Employers in markets with more immigrants and a higher

population share of African Americans had more bargaining power. This is consistent with the

lower bargaining ability of immigrants, who often did not speak much English, and with the use

of African American“strike-breakers” who migrated from the southern U.S. states as a means to

decrease the unions’ bargaining ability. Finally, firms in counties with higher manufacturing wages

had less bargaining power, due to the miners’ more favorable negotiating position. As I document

in Section 4.5, the 1897–1898 strikes led to a relative decrease in employer power at striking mines

compared to nonstriking mines, although this did not reverse the overall rise in employer power.

4.4 Fixed Costs Estimation

Solving the Model Conditional on Machine Usage

Using the estimated model, I solve the system of Equations (7), (10a), (11), (13), and (14) for every

firm in every year, both if using cutting machines and if not using cutting machines. Given that

this system of equations is nonlinear and cannot be solved analytically, I solve for it numerically.26

For every outcome variable Y ∈ {Q,P,H, L,W}, this yields an optimal outcome if the firms used

cutting machines, denoted as Y 1
ft, and if not, denoted as Y 0

ft.

26I use the Matlab optimizer fsolve with function tolerance 10−3, 105 maximum iterations, and 600 maximum
function evaluations.
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Figure 4: Employer Power Estimates

(a) Distribution of Employer Power (b) Machine Usage and Employer Power

Notes: Panel (a) shows a histogram of the employer power estimates. The average is 0.39 and the median is 0.40.
Panel (b) compares observed cutting-machine usage and estimated employer power, plotting average machine usage
by ventiles of the employer power distribution.

Table 3: Covariates of Employer Power Over Skilled Labor

Log(Employer Bargaining Power)
Est. S.E. Est. S.E.

High-skilled-employment market share 0.280 0.022 0.186 0.039

Low-skilled-employment market share -0.311 0.022 -0.173 0.045

Year 0.011 0.002 0.007 0.003

Pop. share foreigners 0.925 0.298

Pop. share Afro-Americans 2.650 0.702

Log(manufacturing wage) -0.192 0.070

Firm FE: No Yes
R-squared .069 .673
Observations 3466 3466

Notes: In this table, I regress ln(1− γf ) on firm and market characteristics.

Estimation of Cutting-Machine Costs

Using the estimated model, the cutting-machine probabilities at each firm in each year, pkft(ϕ), can

be computed using Equation (16), up to the unknown fixed-cost parameters (ϕ0, ϕ1, ϕ2). I estimate

these fixed-cost parameters using a maximum-likelihood estimator. Using Equation (16), the log
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likelihood function of using cutting machines ln(Lft(ϕ) can be written as:

ln(Lft(ϕ)) =
∑
f,t

[Kft ln(p
k(ϕ)) + (1−Kft) ln(1− pkft(ϕ))]

I estimate the machine cost parameters (ϕ0, ϕ1, ϕ2) by maximizing the log likelihood function

ln(Lft(ϕ)). Because the number of observed capital-usage decisions is sparse, I do not rely on

the observed capital usages Kft in the raw data; I rather estimate a conditional choice probability

K̃ft first by running a probit model of cutting-machine usage on log Hicks-neutral and labor-

augmenting productivity, the labor supply shifter, and the coal demand shifter. I estimate this

model on the entire sample and obtain predicted usage rates of cutting machines for every firm

in every year. Next, I use these predicted usage rates in the log likelihood function to estimate

cutting-machine fixed and variable costs. The resulting estimates are in Table 2(d). The fixed cost

of using a cutting machine is estimated to be $9,230 in 1882, and is estimated to fall by $928 every

two years throughout the sample period. This decline in machine fixed cost is in line with the

falling costs of many new technologies. Variable machine costs are estimated to be 0.108 USD per

ton of coal extracted. External cost information for cutting machines in 1889 from Brown (1889),

reported a total purchasing cost of $8,000 for eight cutting machines, which is the average number

of cutting machines used in the dataset. The estimated average machine cost in the data 1888 is of

a similar magnitude, at $6,446.

Solving for Optimal Machine Usage

Using Equation (16), I estimate optimal cutting-machine usage for every firm in every year. I

compute the optimal values Ŷft for variables Y ∈ {Q,P,H, L,W} as the weighted average of the

value when the firm used cutting machines and when if did not, weighted by the probability of

using cutting machines:

Ŷft = Y 0
ftPr(Kft = 0) + Y 1

ftPr(Kft = 1) (23)
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4.5 Model Validation

Evidence for Investment Holdup

Figure 4b shows average observed cutting-machine usage for each 5th percentile of the employer-

bargaining-parameter distribution. Firms with higher levels of employer power are on average

more likely to adopt cutting machines. This correlation is consistent with the investment-holdup

channel in the model.

Although this correlation is suggestive of investment holdup, it does not establish causality as it

does not rely on an exogenous shock in employer power. Therefore, I complement this evidence

with documenting how capital investment and output evolved in response to a large miners’ strike

in Illinois in 1897–1898, which became known as the “Illinois coal war.” Miners went on strike

at one-quarter of the coal mines in Illinois; wages subsequently increased at 92% of these striking

coal mines. Although the strike itself was likely endogenous, the fact that the strike was successful

at increasing wages provides in-sample variation in union bargaining power that is useful to test

the model predictions.

I estimate a difference-in-differences model comparing striking mines to nonstriking mines for

an outcome variable yft. I start by estimating how the miner union’s bargaining ability changed

in response to the strike, by including log(γft) as the left-hand-side variable yft in Equation (24).

I compare its evolution between striking mines for which I(strike)f = 1 and nonstriking mines

before and after 1898, when the strike occurred. I include a linear time trend.

yft = a0 + a1I(strike)f + a2I(strike)fI(t ≥ 1898) + a3I(t ≥ 1898) + a4t+ eft (24)

The estimates are in panel (c) of Table 4. When comparing mines at which the strike was

successful (defined as a wage increase in response to the strike) to mines that did not strike and

mines that did but were not granted a wage increase, union power increased by 20.3% on average.

When comparing all mines that went on strike, successfully or not, to nonstriking mines, union

power increased on average by 14.9%.

Next, we look how the output changed differentially at striking and nonstriking mines after the

1898 miners strike, excluding the strike year of 1898, as output mechanically decreased that year.
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Table 4: Effects of the 1898 Miners Strike

(I) Succesful strikes: (II) All strikes:
(a) Output Log(Output)

Est. S.E. Est. S.E.

1(Strike)*1(year≥ 1898) 0.342 0.101 0.288 0.096

Firm fixed effects Yes Yes
R-squared .945 .944
Observations 7154 7154

(b) Capital Investment 1(Acquired Machine)
Est. S.E. Est. S.E.

1(Strike)*1(year≥ 1898) -0.020 0.021 -0.036 0.019

Firm fixed effects No No
R-squared .006 .008
Observations 3358 3358

(c) Union Power Log(Union Bargaining Power)
Est. S.E. Est. S.E.

1(Strike)*1(year ≥ 1898) 0.185 0.067 0.139 0.067

R-squared .712 .710
Observations .710 3787

Notes: Panel (a) reports the difference-in-difference estimates of how output changed at striking mines relatively to
non-striking mines, excluding the strike year. Panel (b) reports the same effects for an indicator variable of whether
the mine acquired a cutting machine or not, using a linear probability model. Panel (c) reports the same effects for
our estimated level of employer power.

The first column of Panel (a) in Table 4 shows that output increased on average by 40.8% at mines

that went on strike and obtained a wage increase compared to nonstriking and unsuccessfully strik-

ing mines. When comparing all striking mines, independently of the strike outcome, the increase

is smaller, at 33.4%. This output expansion is important because it confirms the model assumption

that the equilibrium lies on the labor supply curve, which is implied by the assumption that the

union chooses employment. If the employers would choose employment, the equilibrium would

lie on the labor demand curve and the wage increase due to the strike should lead to lower rather

than higher employment and output.

Panel (b) in Table 4 regresses capital investment, measured as an indicator of whether or not the
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mine acquired a cutting machine, on the difference-in-differences regressors using a linear proba-

bility model. I do not include mine fixed effects, as there is almost no within-mine variation over

time in the adoption variable. The estimates reveal that capital investment decreases by 0.20 points

for succesfully-striking mines and by 0.36 points for all striking mines, which are large changes

given the average investment rate of 0.49. The investment decrease is statistically significant when

using all striking mines as the treatment group. This reduction in capital investment as a result of

increased union bargaining power again confirms the investment-holdup mechanism.

Model Fit

Figure A2 shows average observed and predicted cutting-machine usage by year. The model-

predicted machine usage rates fit both the level and the time trend in observed mechanization rates

reasonably well. In Appendix Table A1, I also compare the model-predicted quantities and prices

to their observed values, and I find a reasonable model fit despite not explicitly targeting any of

these moments in our estimation procedure, except for the average cutting-machine usage rate.

5 Welfare Effects of Employer Power

To examine the effects of changes in employer power, I compute how all quantities, prices, and

welfare change for counterfactual values of employer bargaining power γ̃ft. I examine a 5% in-

crease in the level of employer power and compare its effects both when assuming that capital

investment is exogenous and endogenous to employer power.

5.1 Welfare Computation

In both the actual and the counterfactuals, I compute consumer surplus CSft as the area in between

the demand curve and the optimal price:

CSft ≡
∫ Q̂ft

0

(P0

(Qft

ξft

) 1
η − P̂ft)dQft =

( −1

η + 1

)P0

ξ
1
η

(Q̂ft)
η+1
η

Similarly, I compute labor surplus LSft as the area between the labor supply curve and the
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optimal wage Ŵft:

LSft ≡
∫ Ĥft

0

(Ŵft −
W0,i(f)t

1 + ψ

(Hft

ζft

)ψ
)dHft =

ψ

(ψ + 1)2
W0

ζψft
(Ĥft)

ψ+1

Finally, producer surplus is equal to variable employer profits:

PSft ≡ P̂ftQ̂ft − ĤftŴft − L̂ftVt

5.2 Counterfactual: Increased Employer Power

I conduct a counterfactual exercise in which employer power (1− γ) increases by 5% at all firms.

I resolve all equilibrium values Ŷ for the higher values of employer power. The results are in

Panel (a) of Table 5. The first column reports the average changes in the selected variables if

capital investment is assumed to be exogenous to employer power, whereas the second column

allows cutting-machine usage to adjust. Without adjustment in capital investment, output would

fall by by 15.7%, because the exertion of monopsony power induces deadweight loss. However,

capital investment does not remain fixed: the increase in employer power results in an increase in

the cutting-machine usage rate from 2.1% to 3.1%, a relative increase of 45%. This indicates that

investment holdup is substantial. As a result, the output reduction is 12% smaller when taking into

account endogenous cutting-machine usage: increased investment lowers marginal costs, which

leads to output expansion.

Given that output falls, employer power reduces both consumer and labor welfare, by 11.2% and

22.1%, respectively. These losses would be overestimated by 13% and 7%, respectively, if capital

investment were assumed to be exogenous. In contrast, producer surplus increases by 62.2%, as

increased employer power allows them to capture a larger share of the rents. Adding up consumer,

labor, and employer surplus, increased employer power leads to a total welfare gain of 0.7%,

whereas assuming exogenous capital investment would predict a welfare loss of 1.7%.
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5.3 Increased Employer Power for Counterfactual Technology

I reconsider the effects of employer power for a counterfactual technology that has larger produc-

tivity effects. I set both βk and αk to three times their estimated value and again compute the

effects of a 5% increase in employer power. The results are in Panel (b) of Table 5. The increase

in employer power now still decreases output, but by only 3%, which indicates that the holdup-

reduction effect nearly outweighs the deadweight-loss channel. As a result, increased employer

power now barely changes consumer surplus, whereas labor surplus still falls by 17.3%. Hence,

this simulation shows that technologies exist under which employer power has very different ef-

fects on consumer and labor surplus. This stands in contrast with the usual monopsony models,

in which both consumer and labor surplus suffer to similar extents as monopsony depresses both

output and input quantities (Hemphill & Rose, 2018).27 The cutting machines, because they are a

(skilled) labor-saving technology, reduce miner employment relative to other inputs and produc-

tion, despite increasing output through reduced marginal costs. This explains why output barely

falls, and could even increase for technologies with even stronger effects, whereas wages—and

possibly also employment—fall sharply, thereby harming workers.

6 Conclusion

In this paper, I investigate the welfare effects of employer power by studying the trade-off between

monopsony distortions and endogenous investment. Using a model of production and labor supply

that allows for monopsony power, wage bargaining, and imperfectly competitive goods markets, I

find that an increase in employer power could either increase or decrease output and total welfare,

depending on the relative size of the monopsony distortion, on the marginal-cost reduction due to

endogenous investment, and on the initial level of employer power.

In the empirical context of the mechanization of the late-19th-century Illinois coal mining in-

dustry, I find that an increase in employer power lowered output, because the monopsony distortion

dominated the marginal-cost reduction that was due to the adoption of additional coal-cutting ma-

27One exception is models of double marginalization, under which employer power also benefits consumers but harms
workers; however, these models are not ”monopsonistic,” as equilibrium lies on the labor demand, rather the labor
supply, curve.
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Table 5: Effects of a 5% Increase in Employer Power

(a) Observed Technology % Changes:
Endogenous Investment? No Yes

Output -15.741 -13.814

Cutting machine usage 0.000 44.832

Consumer surplus -12.857 -11.214

Producer surplus 56.508 62.158

Worker surplus -23.656 -22.074

Total surplus -1.709 0.710

(b) Technology with Larger Productivity Effects % Changes:
Endogenous Investment? No Yes

Output -20.745 -2.829

Cutting machine usage 0.000 77.535

Consumer surplus -16.738 -1.531

Producer surplus 91.492 147.219

Worker surplus -31.178 -17.261

Total surplus 3.867 27.682

Notes: Panel (a) reports average percentage changes for output, machine usage, and the different welfare metrics if
employer power increases by 5%. The first column assumes cutting machine usage remains constant, the second
column allows for endogenous cutting machine usage. Panel (a) reports the counterfactuals for the observed
technology, Panel (b) for a technology with higher productivity effects.

chines. Although consumer and labor welfare declined in response to increased employer power,

this decline is 7% to 13% smaller than one would find when holding capital investment fixed. The

total welfare effects of employer power are underestimated to an even larger extent. Therefore, the

results indicate that taking into account endogenous capital quantitatively matters for assessing the

welfare effects of labor market power.
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Online Appendix

A Data Appendix

A.1 Sources

Mine Inspector Reports

My main data source is the biennial report of the Bureau of Labor Statistics of Illinois; I collected

the volumes issued from 1884 to 1902. Each report contains a list of all mines in each county

and contains the name of the mine owner, the town in which the mine is located, and a selection

of variables that varies across the volumes. An overview of all the variables (including unused

ones), and the years in which they are observed, appears in Tables A7 and A8. Output quantities,

the number of miners and other employees, mine-gate coal prices, and information on the usage

of cutting machines are reported in every volume. Miner wages and the number of days worked

are reported in every volume except 1896. The other variables—which include mine type, hauling

technology, other technical characteristics, and other inputs—are reported in a subset of years.

Censuses of Population, Agriculture, and Manufacturing

I rely on three 1880 Illinois censuses—population, manufacturing, and agriculture—by digitizing

copies of the original prints, which I accessed from the HathiTrust Digital Library28. The popula-

tion census yields information on county population sizes, demographic compositions, and areas;

the manufacturing census allows me to observe county-level capital stock and employment in man-

ufacturing industries; and the agriculture census contains the number of farms and the amount of

improved farmland area.

Monthly Data

The 1888 report contains monthly production data for a selection of 11 mines in Illinois, across six

counties. I observe the monthly number of days worked and the number of skilled and unskilled

workers. I also observe the net earnings for all skilled and unskilled workers per mine per month,

28https://www.hathitrust.org/.
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and the number of tons mined per worker per month. This allows me to compute the daily earnings

of skilled and unskilled workers per month.

A.2 Data Cleaning

Employment

In every year except 1896, workers are divided into two categories: “miners” and “other employ-

ees.” In 1896, a different distinction is made: “underground workers” and “above-ground workers.”

This does not correspond to the miner-others categorization, because all miners were underground

workers but some underground workers were not miners (e.g., doorboys, mule drivers). Hence, I

do not use the 1896 data.

From 1888 to 1896, boys are reported as a separate working category. Given that miners (cutters)

were adults, I include these boys in the “other employees” category. The number of days worked

is observed for all years. The average number of other employees per mine throughout the year is

observed in every year except 1896; in 1898, it is subdivided into underground other workers and

above-ground other workers, which I add up into a single category.

The quantity of skilled and unskilled labor is calculated by multiplying the number of days

worked with the average number of workers in each category throughout the year. Up to and

including 1890, the average number of miners is reported separately for winters and summers. I

calculate the average number of workers during the year by taking the simple average of summers

and winters. If mines closed down during winters or, more likely, summers, I calculate the annual

amount of labor-days by multiplying the average number of workers during the observed season

with the total number of days worked during the year.

Wages

Miner wages are the only ones consistently reported over time at the mine level. The piece rate for

miners is reported. Up to 1894, miner wages per ton of coal are reported separately for summers

and winters. I weight these seasonal piece-rate wages using the number of workers employed in

each season for the years 1884 to 1890. In 1892 and 1894, seasonal employment is not reported,

so I take simple averages of the seasonal wage rates. In 1896, wages are unobserved. From 1898

onward, wages are no longer reported seasonally, because wages were negotiated biennially from
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that year onward. For these years, wages are reported separately for hand and machine miners.

In the mines that employed both hand and machine miners, I take the average of these two piece

rates, weighted by the amount of coal cut by hand and cutting machines.

Output Quantity and Price

The total amount of coal mined is reported in every year, in short tons (2,000 lbs). Up to and

including 1890, the total quantity of coal extraction is reported, without distinguishing different

sizes of coal pieces. After 1890, coal output is reported separately between “lump” coal (large

pieces) and smaller pieces, which I sum in order to ensure consistency in the output definition.

Mine-gate prices are normally given on average for all coal sizes, except in 1894 and 1896, where

they are only given for lump coal (the larger chunks of coal). I take the lump price to be the average

coal price for all coal sizes in these two years. There does not seem to be any discontinuity in the

time series of average or median prices between 1892 and 1894 or 1896 and 1898 after doing this,

which I see as motivating evidence for this assumption.

Cutting-Machine Usage

Between 1884 and 1890, the number of cutting machines used in each mine is observed. Between

1892 and 1896, a dummy is observed for whether coal was mined by hand, using cutting machines,

or both. I categorize mines using both hand mining and cutting machines as mines using cutting

machines. In 1898, I infer cutting-machine usage by looking at which mines paid “machine wages”

and “hand wages” (or both). In 1888, the number of cutting machines is reported by type of cutting

machine as well. Finally, in 1900 and 1902, the output cut by machines and by hand is reported

separately for each mine, on the basis of which I again know which mines used cutting machines,

and which did not.

Deflators

I deflate all monetary variables using the Consumer Price Index from the Handbook of Labor

Statistics of the U.S. Department of Labor, as reported by the Minneapolis Federal Reserve Bank

website.29

29https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator/consumer-price-index-1800.
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Hours Worked

In 1898, eight-hour days were enforced by law for the first time, which means that the “number of

days” measure changes in unit between 1898 and 1900. Because the Inspector Report from 1886

shows that ten-hour days were the standard, I multiply the number of working days after 1898

by 80% to ensure consistency in the meaning of a “workday,” i.e., to ensure that in terms of the

total number of hours worked, the labor-quantity definition does not change after 1898. Given that

the model is estimated on the pre-1898 period, this does not affect the model estimates, only the

descriptive evidence.

Mine and Firm Identifiers

The raw dataset reports mine names, which are not necessarily consistent over time. Based on the

mine names, it is often possible to infer the firm name as well, in the case of multimine firms. For

instance, the Illinois Valley Coal Company No. 1 and Illinois Valley Coal Company No. 2 mines

clearly belong to the same company. For single-mine firms, the operator is usually mentioned as

the mine name, (e.g. “Floyd Bussard”). For the multimine firms, I made mine names consistent

over time as much as possible.

Town Identifiers and Labor-Market Definitions

The dataset contains town names. I link these names to geographical coordinates using Google

Maps. I calculate the shortest distance between every town in the data. For towns that are located

less than two miles from each other, I merge them and assign them randomly the coordinates of

either of the two mines. This reduces the number of towns in the dataset from 480 to 391. The

resulting labor markets lie at least two miles from the nearest labor market.

Coal-Market Definitions

Using the 1883 Inspector Report, I link every coal-mining town to a railroad line, if any. Some

towns are located at the intersection of multiple lines, in which case I assign the town to the first line

mentioned. I make a dummy variable that indicates whether a railroad is located at the crossroads

of multiple railroad lines. Given that data from 1883 is used, expansion of the railroad network

after 1883 is not taken into account. However, the Illinois railroad network was already very dense

by 1883.
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Aggregation From Mine to Firm Level

I aggregate labor from the mine-bi-year to the firm-bi-year level by taking sums of the total days

worked and labor expenses for both types of workers, both per year and per season. I calculate

the wage rates for both types per worker by dividing firm-level labor expenditure by the firm-level

number of labor-days. I also sum powder usage, coal output, and revenue to the firm level and

calculate the firm-level coal price by dividing total firm revenue by total firm output. I aggregate

mine depth and vein thickness by taking averages across the different mines of the same firm. I

define the cutting-machine dummy at the firm level as the presence of at least one cutting machine

in one of the mines owned by the firm. I define a “firm” as the combination of the firm name in the

dataset and its town (the merged towns that are used to define labor markets), as firms are assumed

to optimize input usage on a town-by-town basis.
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B Theory Appendix

B.1 Proofs

B.1.1 Proof of Proposition 1

This proposition is equivalent to Lemma 1 in Demirer and Rubens (2025), and proven in their

Appendix B.5.

B.1.2 Proof of Proposition 2

Proof. The downstream profit returns to capital are B(γf , Kf ) ≡
dΠdf
dKf

. We prove that these returns

decrease with union power, dB(γf ,Kf )

dγf
< 0.. Given that the per-unit costs of capital are invariant to

union power, decreasing capital returns imply decreased capital usage.

We start by writing downstream profits as a share γ̃ of total profits Πtot
f = PfQf −VfLf − ZfHf

1+ψ
:

Πd
f = (1− γ̃f )Π

tot
f

In contrast to models of efficient bargaining, in which γ̃ = γ, the upstream profit share is not

necessarily identical to the bargaining weight γ̃ in models with linear price contracts. However,
∂γ̃
∂γ
> 0: a higher bargaining weight on upstream profits results in a higher share of total profits that

accrue to the upstream party.

Denote the marginal return to capital as MRKf ≡ dQf
dKf

. Taking the derivative of downstream

profits to union power γf results in:

dB(γf , Kf )

dγf
= −

dΠtot
f

dKf︸ ︷︷ ︸
(I)

dγ̃

dγ︸︷︷︸
>0

+(1− γ̃f )(
d(

dΠtotf
dKf

)

dγf︸ ︷︷ ︸
(II)

)
dγ̃

dγ︸︷︷︸
>0

The term dΠtot

dKf
is strictly positive, as capital would otherwise never be adopted, even with full

employer power. Therefore, term (I) is negative. Higher union power reduces the downstream’s

share of total profits, so keeping total profits fixed, the profit return to employers decreases with
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union power.

The employer’s profit weight (1− γ̃f ) > 0 is positive by construction. We now prove that term

(II) is negative. First, write out the total profit returns to capital using the chain rule:

d

dγf

[dΠtot
f

dKf

]
=

d

dQf

[dΠtot
f

dKf

]dQf

dγf

=
d

dQf

[dΠtot
f

dQf

dQf

dKf

]dQf

dγf

=
[ ∂

∂Qf

(
∂Qf

∂Kf

)︸ ︷︷ ︸
<0

∂Πtot
f

∂Qf︸ ︷︷ ︸
>0

+
∂

∂Qf

(
∂Πf

∂Qf

)︸ ︷︷ ︸
<0

∂Qf

∂Kf︸︷︷︸
>0

] dQf

dγf︸︷︷︸
>0

< 0

Proposition 1 states that dQf
dγf

> 0. Given that the production function is increasing and concave

in K, this means that dQf
dKf

> 0 and d
dQf

(
dQf
dKf

) < 0. The term
∂Πtotf
∂Qf

> 0 because the monopsonistic

equilibrium results in an output level below joint profit maximization. Hence, increasing output

locally results in increased total profits. Finally, total profits are concave, meaning that ∂
∂Qf

(
∂Πf
∂Qf

) <

0. To see this, denote marginal costs of low- and high-skilled labor as MCLf ≡ d
dQf

(VfLf ) and

MCHf ≡ d
dQf

(
ZfHf
1+ψ

):

∂

∂Qf

(
∂Πf

∂Qf

) =
d

dQf

(MRf )︸ ︷︷ ︸
<0

− d

dQf

(MCHf )︸ ︷︷ ︸
>0

− d

dQf

(MCLf )︸ ︷︷ ︸
>0

< 0

The concavity of the product demand curve and convexity of the marginal cost curves for both

labor types imply that total profits are concave in output.

Bringing these different terms together, it becomes clear that both (I) < 0 and (II) < 0.

Therefore, dB(γf ,Kf )

dγf
< 0, which concludes the proof.
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B.2 Efficient Bargaining

B.2.1 Behavior

In the main text, it is assumed that firms and unions bargain over linear wage contracts. In this

Section, I discuss an alternative model of vertical conduct: efficient bargaining between unions

and firms over both wages and employment. This provides a useful benchmark against which to

compare the results from the full model, because the strongly efficient model does not feature any

monopsony distortions, only endogenous technology choices.

In the efficient bargaining model, employers and unions bargain over both employment and

wages in a Nash bargaining protocol, with γf still indicating union bargaining power. Crucially,

the unions and employers still do not bargain over technology adoption.

max
Hf ,Lf ,Wf

(Πu
f )
γf (Πd

f )
1−γf

The model implies that the union and employers jointly optimize joint profits and split the surplus

according to the bargaining parameters γf . Taking the first-order condition for the high-skilled

wage results in:

Wf = (1− γf )
Zf

1 + ψ
+ γf

(PfQf − V Lf
Hf

)
(25)

The first-order conditions for the labor inputs are given by:

P0

(1 + η

η

)
Q

1
η

f

(Qf

Hf

) 1
σ
(ΩfAf )

σ−1
σ =

W0

1 + ψ

(Hf

ζf

)ψ
(26)

P0

(1 + η

η

)
Q

1
η

f

(Qf

Lf

) 1
σ
(Ωf )

σ−1
σ βl = V (27)

Optimal quantities and prices (P ∗
f , Q

∗
f , H

∗
f , L

∗
f ) is the solution to the system of equations (1),

(2), (26), and (5): the production function, the goods demand curve, and the two input demand

equations. Wages are determined as a function of the bargaining parameter, as described in Equa-

tion (25); they do not have any effect on output, inputs, and goods prices as long as capital is held

fixed.
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An important difference between the model highlighted above and the model of Abowd and

Lemieux (1993) is that the latter assume the outside option of workers to be a scalar, whereas I

allow the outside option to be increasing. The analog of this feature in models of vertical relations

would be that sellers face increasing marginal costs.

B.2.2 Effects of Employer Power: Endogenous Investment

Although employer power (1−γf ) does not affect output when holding the capital stock Kf fixed,

employer power increases investment, which in turn affects marginal costs and, hence, output.

Suppose firms need to pay a capital cost ϕ per unit of capital Kf , which is a fixed cost because it

does not vary with production. I maintain the assumption that the technology increases variable

profits. Proposition 3 says that under strongly efficient bargaining, employer power increases firms’

technology adoption.

Proposition 3. Under strongly efficient bargaining, buyer power increases capital investment:

∂Kf

∂(1− γf )
> 0

The proof of this theorem is straightforward. Denoting joint variable profits as Πj ≡ Πd + Πu,

the effect of capital on total employer profits Π
d
= Πd − ϕK is given by:

∂Π
d

f

∂Kf

=
∂Πd

f

∂Af

∂Af
∂Kf

− ϕ = (1− γf )
∂Πj

f

∂Af

∂Af
∂Kf

− ϕ

Taking the derivative with respect to employer power (1− γ) gives:

∂

∂(1− γf )

(∂Πd
f

∂Kf

)
=
∂Πj

f

∂Af

∂Af
∂Kf

This last term is positive under the assumption that the technology is variable enhancing variable

profits.

The intuition behind Proposition 3 is that buyer power increases the share of the rents created

by capital investment that flows to the buyer. Hence, this increases the incentive for the buyer to

invest. This a reformulation of the well-known holdup mechanism from Williamson (1971), which

hinges on the assumption that workers and firms can only write incomplete contracts that do not
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condition on investments by the employer. The wage contracts used in the Illinois coal mining

industry are an example of such an incomplete contract.

Corrolary 1. Under strongly efficient bargaining, buyer power increases output.

It follows immediately from Proposition 3 that employer power increases output in the strongly

efficient bargaining model. Given the strong efficiency assumption, employer power does not affect

output conditional on technology adoption Kf . However, employer power increases technology

adoption, hence, decreases marginal costs. This marginal-cost reduction results in increased out-

put.

B.3 Simulating the Theoretical Model

B.3.1 Baseline Parametrization

In Section 2.3, I simulate the theoretical model with the following parameter values. I use the

estimates from Kroft et al. (2020) for the U.S. construction industry to set the product-demand

elasticity to η = −7 and the inverse labor-supply elasticity to ψ = 0.25. I calibrate the elasticity of

substitution between high- and low-skilled labor at σ = 0.7. I normalize most parameters at one:

ξ = 1, ζ = 1, w0 = p0 = v = 1, ω = 1, a = 1. I set the low-skilled production coefficient at

0.2: βl = 0.1. I simulate a dataset with 50 observations, in which the bargaining parameter γf is

distributed uniformly between 0 and 1. I let fixed technology costs be distributed as an exponential

distribution with a mean of 0.05.

Under these parametrizations, I solve the system of equations (1), (2), (5), (4), (6) for (Q,P,W,H,L).

B.3.2 Alternative Parametrizations

In Figure A1, I compare the baseline calibration of the structural model to various alternative

parametrizations. First, I let labor supply be more inelastic. Second, I increase the productivity

effects of the new technology.
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C Extensions and Robustness Checks

C.1 Model Fit

Table A1 compares the model-predicted outcomes against the observed outcomes in the data. I

use medians for all variables except for cutting-machine usage, for which I report the average (as

median machine usage is zero). Cutting-machine usage is almost identical in the model and the

data. The model generates coal quantities and prices that are very similar to those observed in the

data. Both unskiled and skilled labor days worked are overestimated, and skilled wages are overes-

timated compared to their true values. However, the estimation of the model does not target any of

these moments, except for the capital-investment rate through the maximum-likelihood estimation

of fixed costs. Considering that these moments are untargeted, the model fits the data reasonably,

especially for the variables that are relevant to compute consumer surplus (output quantities and

prices).
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C.2 Alternative Production-Function Specifications

C.2.1 Nonconstant Returns to Scale

In the main text, the production function (1) relied on constant returns to scale. In contrast, Equa-

tion (30) allows for nonconstant returns to scale, as parametrized by ν:

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f

) νσ
σ−1

Ωf (Kf ) (28)

The first step of the production-function estimation procedure, the estimation of Equation (18),

remains the same. However, the second step of the estimation procedure needs to estimate the

scale parameter ν in addition to the other production-function coefficients ρω, βl, and βk. Given

that we have four instruments (lagged employment for both labor types, and current and lagged

capital), the model is still identified.

qft =
νσ

σ − 1
ln

((
exp

(
(
lft − hft
1− σ

)− σ

1− σ
(ln(βl)

)
− σ

1− σ
(wft − vt + ln(1 + (1− γft)ψ))

)
Hft

)σ−1
σ

+βlL
σ
σ−1

ft

)
+ ωft

The results are in the first column of Table A5. The scale parameter is estimated at 1.032, which

indicates modestly increasing returns to scale, but is not significantly different from 1. Hence, the

assumption of constant returns to scale cannot be rejected. The other production coefficients look

very similar to the estimates in the main model, which assumes constant returns to scale.

C.2.2 Adding Materials

As a second robustness check, I add the materials to the production function as a third production

input. I use the number of kegs of black powder to measure materials, as this is the main inter-

mediate input that is measured in the dataset. This implies that a fifth coefficient, βm, needs to

be estimated. I assume that changing the stock of black powder requires adjustment costs: black

powder is a durable good but needs to be safely stored. Hence, it is conceivable that there was

an adjustment cost when increasing the stock of black powder, as additional storage space was

needed. Conforming with this assumption, I include current and lagged materials as an additional
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instrument when estimating the production function:

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f + βmM
σ−1
σ

f

) νσ
σ−1

Ωf (Kf ) (29)

The estimates are in the second column of Table A5. The material coefficient is estimated to

be very close to zero, which means that ignoring materials in the main production model does not

matter much. The remaining production coefficient looks very similar to the previous ones, with

the exception of the serial correlation in TFP, which increases to 0.516.

C.2.3 Capital and Returns to Scale

The degree of returns to scale may have changed when firms adopted cutting machines. To test

this, I interact the returns-to-scale parameter with the cutting-machine indicator variable, thereby

allowing returns to scale to differ between firms that do and do not use cutting machines. Now,

an additional instrument is needed to identify all six parameters in the production function. I rely

on nonfatal accident rates as shifters of labor supply, which should directly affect input usage but

not productivity. I measure the probability of nonfatal accidents as the ratio of the number of such

accidents over total employment at the mine, in days worked:

Qf =
(
(Af (Kf )Hf )

σ−1
σ + βlL

σ−1
σ

f + βmM
σ−1
σ

f

) (ν0+ν1Kf )σ

σ−1
Ωf (Kf ) (30)

The estimates are in the third column of Table A5. The interaction effect between returns to scale

and cutting machines is close to zero and not statistically significant. Hence, the null hypothesis

that returns to scale are invariant to cutting-machine usage cannot be rejected.

C.2.4 Cost Dynamics

In Table A3, in the spirit of Benkard (2000), I test for cost dynamics by regressing labor productiv-

ity, measured as output per labor-day, on log cumulative output. I find that when not taking mine

fixed effects, cumulative past output correlates with higher productivity. However, this is likely due

to a selection effect: more-productive mines exist longer and produce more. As soon as I include

mine fixed effects and look at time-series variation in productivity within mines, the relationship
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between log cumulative output and labor productivity vanishes. This suggests that cost dynamics

are not a key feature to be included in the model.
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C.3 Appendix Tables and Figures

Figure A1: Simulations: Alternative Parametrization

(a) Baseline: ψ = 0.25, βk = 0.2

(b) ψ = 0.5, βk = 0.2

(c) ψ = 0.25, βk = 0.05
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Figure A2: Predicted and Observed Evolution of Machine Usage

Notes: This figure compares annual average observed and model-predicted cutting-machine usage.
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Figure A3: Geographical Spread of Cutting Machines

Notes: The dots indicate mining towns, each of which can contain multiple mines. Towns with squares contain at
least one machine mine.
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Figure A4: Capacity Utilization

Notes: This graph plots the distribution of capacity utilization, defined as annual mine output over annual mine
capacity, across mines in Illinois in 1898. I distinguish hand mines, which did not use cutting machines, from
machine mines, which did.
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Figure A5: Patent for the Harrison Coal Mining Machine

Notes: U.S. patent for the 1882 Harrison Coal Mining Machine (Whitcomb, 1882). This was the most frequently
used coal-cutting machine in the dataset.
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Table A1: Model Fit

Observed Model

Cutting machine usage (share of firms) 0.040 0.037

Output (tons) 1170.832 855.928

Coal price (USD/ton) 1.426 2.219

Unskilled labor (days) 172.949 185.388

Skilled labor (days) 524.921 484.025

Skilled wage (USD/day) 1.943 1.065

Notes: This table compare median values for quantities and prices between the observed data and the predicted
values in the model. For cutting-machine usage, averages are compared because the median usage is zero. None of
the variables are targeted moments in the model estimation, except for cutting-machine usage.
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Table A2: Occupations and Wages

Daily wage (USD) Employment share (%)

Miner 2.267 61.5
Laborers 1.76 14.30
Drivers 1.83 5.91
Loaders 1.74 3.63
Trappers 0.80 1.86
Timbermen 2.02 1.68
Roadmen 2.36 1.46
Helpers 1.70 0.92
Brusher 2.06 0.75
Cagers 1.87 0.70
Engineer 2.11 0.61
Firemen 1.60 0.57
Entrymen 2.01 0.56
Pit boss 2.70 0.56
Carpenter 2.09 0.53
Blacksmith 2.08 0.46
Trimmers 1.50 0.36
Dumper 1.68 0.36
Mule tender 1.65 0.31
Weighmen 1.95 0.29

Notes: Occupation-level data for the top-20 occupations by employment share in the 1890 sample of 11 mines in
Illinois from the 1890 Inspector Report (Illinois Bureau of Labor Statistics, 1890). The 20 occupations with the
highest employment shares together cover 97% of coal-mining workers in the sample.
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Table A3: Cost Dynamics

Log(Output/(Labor-Days))
Est. S.E. Est. S.E.

Log(Cumulative Output) 0.126 0.004 -0.010 0.017

Mine FE No Yes
R-squared .336 .818
Observations 3614 3614

Notes: Regression of log output per worker-day against log cumulative output (lagged by one time period) at the
mine-year level. Sample includes only mines for which lagged output is observed.
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Table A4: Inverse Coal Demand: Local vs. Shipping Mines

Log(Price) Log(Price)
Est SE Est SE

log(Output) -0.169 0.016 -0.449 0.155

Shipping Mine? No Yes
Observations 2748 379

Notes: I estimate inverse coal demand on a split sample of mines that do and do not sell locally.

68



Table A5: Production Function: Extensions

Nonconstant RTS Adding Materials Capital and RTS
Est. S.E. Est. S.E. Est. S.E.

Returns to scale 1.032 0.041 1.051 0.088 0.981 0.118

Labor coefficient 0.009 0.011 0.013 0.029 0.003 1.303

Capital coefficient 0.029 0.162 -0.053 0.191 0.861 1.436

Serial corr. TFP 0.347 0.119 0.515 0.160 0.372 0.260

Materials coefficient . 0.000 0.042 0.000 0.014

Returns to scale * K . . -0.011 0.022

Observations 668 298 298

Notes: This table reports the estimates for the various extensions of the production function. Standard errors are
block-bootstrapped with 200 iterations.
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Table A6: Wage Variation

R2 R2 R2 R2

Log(Daily Skilled Miner Wage) 0.099 0.186 0.285 0.734

Year FE X X X X
County FE X X X
Town FE X X
Firm FE X

Notes: The four columns report the R2 of regressing log wages on, alternatively, year, county, town, and firm fixed
effects.
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Table A7: All Variables per Year

Year 1884 ’86 ’88 ’90 ’92 ’94 ’96 ’98 1900 ’02

Output Quantities
Total X X X X X X X X X X
Lump X X X X X X
Mine run X X
Egg X X
Pea X X
Slack X X
Shipping or local mine X X X
Shipping quantities X

Input Quantities
Miners, winter X X X X
Miners, summer X X X X
Miners, avg entire year X X X X X
Miners, max entire year X X
Other employees X X X X X X X X X
Other employees, underground X
Other employees, above ground X
Other employees winter X
Other employees summer X
Boys employed underground X X X X X
Mules X
Days worked X X X X X X X X X
Kegs powder X X X X X X X X
Men killed X X X X X X X X
Men injured X X X X X X X X
Capital (in dollars) X
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Table A8: All Variables per Year (cont.)

Year 1884 ’86 ’88 ’90 ’92 ’94 ’96 ’98 1900 ’02

Output Price
Price/ton at mine X X X X X X X X
Price/ton at mine, lump X X X

Input Prices
Miner piece rate (summer) X X X X X X
Miner piece rate (winter) X X X X X X
Miner piece rate (hand) X X X
Miner piece rate (machines) X X
Piece rate dummy X
Payment frequency X X X X
Net/gross wage X
Oil price X

Mine Characteristics
Type (drift, shaft, slope) X X X X X X
Hauling technology X X X X X
Depth X X X X X X X
Thickness X X X X X X X
Geological vein type X X X X X
Longwall or PR method X X X X X X
Number of egress places X X
Ventilation type X X
New/old mine X X
# Acres X X X
Mine capacity X
Mined or blasted X

Cutting Machines
Cutting machine dummy X X X X
# Cutting machines X X X X
# Tons cut by machines X X
# Cutting machines, by type X
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