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What is the maximum amount (possibly zero) of bonds that a government can rollover

forever without running primary budget surpluses? If the government can rollover a positive

amount of bonds forever, what is the optimal amount of bonds to rollover? Blanchard’s pres-

idential address to the American Economic Association spurred renewed scholarly interest in

these questions. Only a year later, global events brought these issues into the public realm

as governments around the world ran huge deficits to deal with the catastrophic economic

consequences of the covid-19 pandemic.

In the absence of uncertainty, the ability of the government to rollover bonds forever is

determined by the “r vs g” comparison, as it is colloquially known, where r is the net rate of

return on all assets, including government bonds, and g is the growth rate of the capital stock.

Specifically, if and only if r < g along a balanced growth path in a competitive economy,

government bonds can be rolled over forever and will shrink as a share of the economy

over time. Also, if and only if r < g, the economy suffers from a dynamically inefficient

overaccumulation of capital. That is, government bonds can be rolled over forever if and

only if the economy is dynamically inefficient.

In the presence of uncertainty, the link between dynamic inefficiency and the feasibility

of rolling over government bonds forever is more nuanced. Put simply, the rate of return on

capital is the rate of return relevant for assessing dynamic efficiency, but the riskfree interest

rate is the rate of return relevant for assessing whether the government can rollover its bonds

forever. Uncertainty breaks the equality of these two rates of return. As we will show, in

some dynamically efficient competitive economies with a constant growth rate g ≥ 0, it is

possible for the riskfree interest rate, rf , to be less than g, which makes permanent rollover of

government bonds feasible. This possibility of permanently rolling over debt in an efficient

economy does not exist in deterministic, dynamically efficient, competitive economies.

Our principal findings in this paper result from both positive and normative analyses of

sustainable levels of the ratio of government bonds to the capital stock, which we define as

levels of this ratio that permit government bonds to be rolled over forever without any primary

surpluses. In our positive analysis, we find that if rf < g along a balanced growth path

without government bonds (which can be the case in some dynamically efficient economies,
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and must be the case in all dynamically inefficient economies), the maximum sustainable

level of the bond-capital ratio is strictly positive. Starting from zero government bonds,

increasing the amount of bonds crowds out capital, thereby driving up the marginal product

of capital and the constellation of rates of return until, at the maximum sustainable bond-

capital ratio, rf = g. Provided that uncertainty about the rate of return on capital, r, is

not degenerate, rf = g implies that E{ln(1 + r)} > ln(1 + g) (Proposition 2), and hence,

the economy is dynamically efficient.

Our normative analysis examines the optimal sustainable level of the bond-capital ratio,

specifically the sustainable level of this ratio that maximizes welfare, measured as the utility

of consumers in the steady state. We find that the marginal impact on welfare of an

increase in this ratio is positive along balanced growth paths with rf < g and is non-negative

along balanced growth paths with rf = g. Therefore, since the bond-capital ratio is not

sustainable for rf > g, the optimal sustainable level of government bonds is a corner solution

where the bond-capital ratio equals its maximum sustainable value and rf = g. As noted

above, the equality of rf and g implies E{ln(1 + r)} > ln(1 + g), and hence the economy

is dynamically efficient. Thus, the optimal bond-capital ratio eliminates any dynamically

inefficient overaccumulation of capital that may exist at lower levels of this ratio. But

even if the economy without government bonds is dynamically efficient, it is possible that

rf < g, which indicates the consumers have such strong desire for safety in their portfolios

that they are willing to hold government bonds that offer a riskfree rate of return below g.

To summarize, government bonds play the dual role of eliminating any overaccumulation

of capital and reducing risk in the portfolios of consumers. As long as rf < g, the second

role implies that welfare is increased by an increase in the bond-capital ratio, even in a

dynamically efficient economy. The optimal value of the bond-capital ratio, which equals

the maximum sustainable value of this ratio, is attained when rf = g.

The model in this paper is crafted so that along a balanced growth path, the capital stock

per unit of effective labor is constant but the rate of return on capital is stochastic. To

illustrate the mechanism in its simplest form, we preview the model in the case in which (1)

there is no labor-augmenting technical progress, so g = 0, and (2) the government wastes any
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funds collected when it issues new bonds in excess of contemporaneous interest payments on

existing government bonds. The model has overlapping generations of a constant number

of people who live for two periods, earn labor income only in the first period of life, and

save some of their wage income to provide for consumption in the second period of life.

Output in each period is produced with labor and capital according to a Cobb-Douglas

production function without a productivity shock, which implies that wage income is non-

stochastic. Consumers save a constant fraction of their wage income because they earn

non-asset income only in the first period and they have Epstein-Zin-Weil (Epstein and Zin

(1989) and Weil (1990)) preferences with an intertemporal elasticity of substitution equal to

one. Therefore, aggregate saving of the young consumers is non-stochastic, which makes

total assets, the sum of capital and government bonds non-stochastic.

The uncertainty in our model economy enters through a stochastic shock to the durability

of capital that makes the rate of capital depreciation, and hence the rate of return on

capital, stochastic. Bulow and Summers (1984), p. 25, argue that “capital risk,” which

they associate with the stochastic nature of depreciation, is far larger than “income risk,”

which they associate with the stochastic nature of the marginal product of capital. The

uncertainty about the rate of capital depreciation drives a wedge between the expected rate

of return on capital and the riskfree interest rate. However, in this simple form of the model,

the evolution of the capital stock, wage income, as well as the consumption and saving of the

young generation, are all invariant to the distribution and realizations of the durability shock.

Thus, there is a useful dichotomy in the equilibrium of the economy. We can determine

the equilibrium values of aggregate saving and the capital stock, without any consideration

of financial values and without any consideration of the realizations or the distribution of

the durability shocks.1 Despite the deterministic evolution of the capital stock, we show

that the rate of return on capital, and hence the consumption of the old generation are risky

because the depreciation rate of capital is stochastic. The stochastic nature of consumption

when old implies that the pricing kernel is stochastic.

1This dichotomy holds if we relax the assumption (1) that g = 0, but it does not hold if we relax
assumption (2) that the government wastes any funds it receives when it issues new bonds in excess of
interest payments on existing government bonds.
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The simplicity of the model in the case described above has several useful features. Be-

cause wage income per unit of effective labor, and hence aggregate saving of young consumers

per unit of effective labor, are constant along a balanced growth path, there is no chance that

adverse shocks will reduce aggregate saving below the amount needed to absorb the equilib-

rium amount of government bonds. Thus, government bonds are riskfree and the riskfree

interest rate is the appropriate market interest rate on these bonds.2 In the simple case of

the model described above, the equilibrium size of the capital stock is invariant to the distri-

bution of durability shocks. We illustrate that an increase in the variance of this shock can

change an economy from dynamically efficient to dynamically inefficient, without changing

the capital stock. In our quantitative analysis, we illustrate that the maximum sustainable

bond-capital ratio, which is the optimal value of this ratio, is an increasing function of the

variance of the durability shock. We also illustrate that the maximum sustainable amount

of government bonds is an increasing function of the coefficient of relative risk aversion.

1 Literature Review

The celebrated Golden Rule of capital accumulation derived by Phelps (1961) characterizes

the capital stock per capita that maximizes consumption per capita along a deterministic

balanced growth path. If the rate of return on capital, r, equals the growth rate of the

economy, g, then consumption per capita is at the highest feasible level in the long run.

If the saving rate exceeds the rate consistent with the Golden Rule, then the capital stock

per capita exceeds the Golden Rule level so r < g and consumption per capita is less than

in the Golden Rule; that is, there is a dynamically inefficient overaccumulation of capital.

Diamond (1965) develops and analyzes an overlapping generations economy with optimizing

consumers and competitive firms and finds that if the optimal saving of young consumers is

sufficiently high, either because consumers are very patient or the wage share of total income

is very high, then capital per capita can exceed the Golden Rule level along a balanced growth

2Bertocchi (1994) and Binswanger (2005) discuss the unsustainability of government bonds in economies
in which the capital stock evolves stochastically. Our model features a non-stochastic capital stock and
avoids the unsustainability problem in Bertochhi and Binswanger.
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path and there is a dynamically inefficient overaccumulation of capital. However, if young

consumers use some of their saving to hold government bonds, they will end up holding

a smaller amount of capital in their portfolios, driving down the aggregate capital stock,

possibly by enough to eliminate any dynamically inefficient overaccumulation of capital.

Cass (1972) provides a complete characterization of dynamic inefficiency that does not

depend on consumers’ preferences. The Cass criterion simply asks whether it is feasible

to increase aggregate consumption at some date without having to reduce aggregate con-

sumption at some later date(s). In a deterministic steady state, the Cass condition is the

same as in Phelps and Diamond, that is, an economy is dynamically inefficient if and only if

r < g. However, the general version of the Cass criterion also applies to economies outside

the steady state.

A government bond that is rolled over forever is often regarded as a bubble, which is

an asset with zero fundamental value that nevertheless has a positive market value. Tirole

(1985) develops a tight link between dynamic inefficiency and the feasibility of bubbles, in his

words “the existence of bubbles is conditioned by the efficiency of the bubbleless equilibrium.”

(Tirole (1985), p. 1076) In our context, a “bubbleless equilibrium” has zero government

bonds. Part (a) of Proposition 1 in Tirole (1985) states that if the economy without any

government bonds is dynamically efficient, then equilibrium in the economy cannot contain

bubbles. Tirole’s statement holds in deterministic economies where the rates of return on

capital and government bonds are equal. The introduction of government bonds crowds

out capital, thereby increasing the common rate rates of return on government bonds and

capital. If the economy was dynamically efficient without government bonds, then r > g

initially and this increase in r induced by government bonds increases the excess of r over

g, which implies that government bonds cannot be rolled over forever.

In order for bubbles to be feasible in a deterministic dynamically efficient economy, there

must be a wedge between the rates of return on government bonds, rf , and on capital,

r. Specifically, r must exceed rf and the growth rate g must lie between rf and r. In

deterministic models, Farhi and Tirole (2011) and Martin and Ventura (2012) provide this

wedge by introducing a wedge between borrowing and lending rates for firms. Also in

5



a deterministic framework, Ball and Mankiw (2021) introduces monopoly power by firms,

which drives a wedge between the marginal product of capital, r, and the user cost of capital,

which is based on the interest rate on government bonds, rf .

Uncertainty also drives a wedge between the riskfree rate, rf , and the rate of return

on capital, r. Abel, Mankiw, Summers, and Zeckhauser (1989), hereafter AMSZ, proves

that if the rate of return on capital is greater than the growth rate in all states and at all

times, then the economy is dynamically efficient; and since the rate of return on capital is

always greater than the growth rate, the riskfree rate is greater than the growth rate and

hence it is not feasible to rollover government bonds forever. Alternatively, AMSZ proves

that if the rate of return on capital is less than the growth rate in all states and at all

times, then the economy is dynamically inefficient; and since the rate of return on capital

is always lower than the growth rate of capital, the riskfree rate is less than the growth

rate and it is feasible to rollover government bonds forever. Thus, in the situations that

can be declared dynamically efficient or dynamically inefficient by the sufficient conditions

in AMSZ, the link between dynamic inefficiency and the feasibility of bubbles continues to

hold. However, the AMSZ conditions are not applicable in economies where the rate of return

on capital is sometimes greater than the growth rate and sometimes less than the growth

rate. Zilcha (1990, 1991) steps into the gap left by AMSZ and derives a characterization of

dynamic efficiency in stochastic economies in which the rate of return on capital sometimes

exceeds and sometimes falls short of the growth rate, g, of the economy. Zilcha adapts

Cass’s definition of dynamic efficiency in a natural way to stochastic economies and derives

a remarkable sufficient condition for dynamic inefficiency when the economy grows at a

constant rate, g: E {ln (1 + r)} < ln (1 + g).

Blanchard and Weil (2001) presents four simple example economies that debunk various

simplistic views about the relation between dynamic inefficiency and the feasibility of rolling

over government bonds forever. In particular, the third and fourth examples in that paper

illustrate that government bonds can be rolled over forever in some dynamically efficient

economies. Interestingly, in all of the examples in that paper, dynamic efficiency or ineffi-

ciency does not depend on the variance of the shocks, since the shocks are additive shocks

6



to the logarithm of the rate of return on capital, and thus do not affect E {ln (1 + r)}. By

contrast, in the current paper, we illustrate how an increase in the variance of shocks can

push an economy from dynamic efficiency to dynamic inefficiency, even without affecting the

capital stock.

Blanchard’s presidential address (Blanchard (2019)) is a far-ranging analysis of both

empirical and theoretical issues related to the rollover of government bonds. It carefully

documents that the recent situation with safe interest rates below growth rates is not unusual

in historical data. In simulations reminiscent of the eponymous deficit gamble in Ball,

Elmendorf, and Mankiw (1998), Blanchard finds that even if government bonds cannot be

rolled over forever, it is likely that they can be rolled over for many decades before investors

become unable, or unwilling, to buy newly issued government bonds.

Since Blanchard’s presidential address, at least three papers have appeared with simple

titles that involve comparisons of the rate of return and the growth rate. Cochrane (2021b),

simply titled “r < g,” is a forceful warning against the notion that when the riskfree interest

rate is lower than the growth rate, the government can rely on growing itself out of debt. An

attempted permanent rollover of bonds is bound to fail eventually, especially if government

deficits are large. “The constraint on public debt when r < g but g < m” (Reis (2021))

develops a model in which the interest rate on government bonds (r) is less than the growth

rate of the economy (g), opening the possibility that government bonds can be rolled over,

and yet the marginal product of capital (m) is greater than g so the economy is dynamically

efficient. That paper derives the fiscal capacity of the economy, which is a limit on the

ratio of government spending to the amount of bonds outstanding. Barro (2020), simply

titled “r Minus g,” provides data on (arithmetic) averages in each of 14 OECD countries of

rates of return on bonds and equities and growth rates of GDP per capita and consumption

per capita. However, the Zilcha criterion directly implies that for the purpose of assessing

dynamic efficiency, one must use the geometric means of rates of return and growth rates

rather than arithmetic means.

Two interesting questions – one positive and one normative – remain unanswered in the

papers described above. First, what is the maximum amount of government bonds that can
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be rolled over forever? The fiscal capacity in Reis (2021), mentioned above, is related to

this question but does not quite answer it. Second, what is the optimal amount of bonds

to rollover along a balanced growth path? Blanchard (2019), Ball and Mankiw (2021), and

Kocherlakota (2021) provide interesting analyses and discussions of the marginal impact of

government bonds on welfare, where, as in our paper, welfare is defined to be the level of

utility of consumers along a balanced growth path.3 However, none of these three papers

derives the optimal sustainable amount of government bonds, though Kocherlakota (2021)

concludes that “as long as there is a public debt bubble (in this class of models), agents are

better off in the long run if the government changes its policy choices so as to increase the

debt and deficit” (p. 20). Our paper addresses both of these questions. In our overlapping

generations model with aggregate uncertainty about the durability of capital, the answers

to the positive and normative questions are related in a perhaps surprising way. As we

demonstrate in Section 5, the optimal sustainable bond-capital ratio equals the maximum

sustainable value of this ratio.

Finally, in addition to the positive and normative questions that share a common answer,

our paper also offers fresh insights about the intertemporal government budget constraint.

It is typical in discussions of the sustainability of fiscal policy (O’Connell and Zeldes (1988),

Wilcox (1989), and Bohn (1995)), the pricing of government bonds (Jiang et al. (2019)), and

the fiscal theory of the price level (Cochrane (2021a)) to assume that the value of government

debt equals the expected present value of the sum of primary government surpluses over the

infinite future, for an appropriate path of discount rates over time. This budget constraint is

often described as a transversality condition or, more accurately, as a No Ponzi Game (NPG)

condition. In our paper, the NPG condition is violated by design.4 The NPG condition is

often invoked to rule out the possibility of rolling over debt forever. While the NPG arises

3Aoki et al. (2014) show that in situations in which bubbles exist in equilibrium, welfare in the bubbly
equilibrium is higher than in the equilibrium without bubbles. However, it does not examine the marginal
impact on welfare of an increase in the size of the bubble.

4As shown in Santos and Woodford (1997), in an economy in which the present value of the stream of
present and future aggregate consumption is infinite, there is room for the NPG condition to fail. Neverthe-
less, even though the NPG condition fails in our model when rf < g, thereby enabling permanent rollover
of government debt, the market value of the existing capital stock is finite, because it is the valuation of the
stream of profits to the remaining portion of a depreciating capital stock that approaches zero over time.
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naturally in some contexts, we examine situations in which permanent rollover of debt is

both feasible and optimal, and the NPG condition need not, and does not, hold. Contrary

to the literature in which the value of government debt equals the sum of present values of

future primary surpluses, in our model, the value of government debt is positive even though

all future primary government surpluses are non-positive.

2 Deterministic Capital Stock with Risky Returns

Aggregate output at time t, Yt, is produced by competitive firms using capital, Kt, and

effective labor, GtN , where G ≡ 1 +g ≥ 1 is an index of labor-augmenting productivity that

grows at rate g ≥ 0 and N is the constant number of young consumers in each time period.

The production function is Yt = F (Kt, G
tN) = (GtN)

1−α
Kα
t , where 0 < α < 1, and it is

convenient to write the production function in intensive form as

yt = kαt , (1)

where yt ≡ Yt
GtN

and kt ≡ Kt
GtN

. Capital depreciates at the rate 0 ≤ δ − εt ≤ 1 per period,

where the durability shock εt is an i.i.d., non-degenerate random variable with mean zero,

so δ > 0 is the expected depreciation rate in each period.5

The economy is populated by people who live for two periods. In period t, N people are

born and each of these people inelastically supplies Gt units of effective labor, earns wage

income Wt = (1− α) (Gt)
1−α

Kα
t N

−α = (1− α)Gtkαt and receives a lump-sum transfer, τt.

To focus on the impact of government borrowing, we simplify other aspects of fiscal

policy. Specifically, we assume that the government does not purchase goods or services and

that all taxes and transfers are lump-sum. Let Bt be the amount of one-period government

5Blanchard and Weil (2001) uses models of stochastic storage in its third and fourth examples so that
output is linear in the capital stock. In their footnote 11, they point out that these models could be extended
to incorporate concavity in the capital stock by specifying output to be Yt = Kα

t − δKt, where δ is a random
variable, but they do not work out the implications of this model. Barro (2020) uses a model with stochastic
depreciation as in our model, but specifies Yt = AKt, so that, as in Blanchard and Weil’s specification with
simply stochastic storage, there is no concavity in the capital stock. Without concavity in the capital stock,
the issue of capital overaccumulation is moot.
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bonds outstanding at the beginning of period t, which are held by the old generation of

consumers at time t. These bonds were bought at the end of the preceding period, when

the currently-old consumers were young. Government budget accounting implies

Bt+1 = (1 + rf,t)Bt +Dt, (2)

where Dt is the primary government budget deficit during period t and rf,t is the riskfree

interest rate on government bonds bought at the end of period t− 1 and maturing in period

t. Define gB,t to be the growth rate of government bonds from the end of period t − 1,

when the amount of government bonds equals Bt, to the end of period t, when the amount

of government bonds equals Bt+1, so Bt+1 = (1 + gB,t)Bt and equation (2) can be rewritten

as

(gB,t − rf,t)Bt = Dt. (3)

When the primary deficit, Dt, is positive, the government acquires funds to pay for the

primary deficit by issuing additional bonds in excess of the interest payments on existing

bonds. The government uses these funds to pay for lump-sum transfer payments to young

consumers or to pay for wasteful government purchases, or some mix of the two. In period t,

total transfers to the N young consumers are Nτt = ζDt, where 0 ≤ ζ ≤ 1 is the share of the

primary deficit that is used to make transfer payments to young consumers and (1− ζ)Dt

is spent wastefully.6 Therefore, the lump-sum transfer received by each young consumer in

period t, is τt = ζ Dt
N

, where Dt is given by equation (3), so

τt = ζ (gB,t − rf,t)
Bt

N
. (4)

Young consumers in period t each consume cyt and save st = Wt + τt− cyt . The aggregate

6If, instead of wasting (1− ζ)Dt, the government purchased public goods that entered utility functions
additively separably from consumption when young and when old, such purchases would not affect the
equilibrium values of consumption, saving, or rates of return. However, any utility associated with public
goods would need to be considered when analyzing the impact of government bonds on welfare in Section 5.
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saving of the young generation, St ≡ Nst, is used to purchase assets, At+1 = Kt+1 + Bt+1,

consisting of capital, Kt+1, and one-period riskfree government bonds, Bt+1. Thus the

aggregate capital stock in period t+ 1 is

Kt+1 = At+1 −Bt+1 = St −Bt+1. (5)

The rate of return on capital purchased at the end of period t and used in period t+ 1 is

rt+1 = αkα−1
t+1 − δ + εt+1, (6)

which is the marginal product of capital in the production function in equation (1), α (Gt+1N)
1−α×

Kα−1
t+1 = αkα−1

t+1 , less the depreciation rate, δ − εt+1.

At the end of period t, young consumers hold a fraction, λt+1, of their portfolios in riskfree

government bonds with interest rate, rf,t+1, and the remaining fraction, 1 − λt+1, in risky

capital with rate of return rt+1. In the following period, when these consumers are old, they

do not work. The generation of old consumers in period t+ 1 uses the gross return on total

assets, (1 + ra,t+1)At+1, to pay for its consumption, Ncot+1, where

ra,t+1 ≡ λt+1rf,t+1 + (1− λt+1) rt+1 (7)

is the rate of return on total assets.

Each person born in period t has an Epstein-Zin-Weil (Epstein and Zin (1989) and Weil

(1990)) utility function with intertemporal elasticity of substitution (IES) equal to one.

We use the specification for a consumer who lives for two periods that is used in the second

example in Blanchard and Weil (2001)7

Ut = (1− β) ln cyt + β ln

([
Et

{(
cot+1

)1−γ
}] 1

1−γ
)
. (8)

We assume that γ ≥ 1, and to ensure a non-negative rate of time preference, we assume

7If γ = 1, we treat the utility function in equation (8) as Ut = (1− β) ln cyt + βEt
{

ln cot+1

}
.
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that β ≤ 1
2
.

To solve the consumption/saving problem, use st = Wt + τt− cyt and cot+1 = (1 + ra,t+1) st

in equation (8) to write the consumption/saving problem as

max
st

(1− β) ln (Wt + τt − st) + β ln st +
β

1− γ
ln
(
Et
{

(1 + ra,t+1)1−γ}) . (9)

The joint impact of IES = 1 and the assumption that consumers do not earn wage income

or receive transfers in the second period of life is that the optimal value of st is independent

of ra,t+1. The solution to the maximization problem in equation (9) is

st = β (Wt + τt) , (10)

which implies

cyt = (1− β) (Wt + τt) (11)

and

cot+1 = (1 + ra,t+1) β (Wt + τt) . (12)

Aggregate saving in period t is St = Nst = Nβ (Wt + τt) = β (NWt +Nτt) = β[(1− α)Yt+

ζ (gB,t − rf,t)Bt]. Therefore, equation (5) implies that the aggregate capital stock in period

t+ 1 is

Kt+1 = St −Bt+1 = β [(1− α)Yt + ζ (gB,t − rf,t)Bt]−Bt+1. (13)

Divide both sides of equation (13) by Gt+1N , define the bond-capital ratio, Bt ≡ Bt
Kt

, and

rearrange the resulting equation to obtain

kt+1 = G−1β [(1− α) kαt + ζ (gB,t − rf,t)Btkt]− Bt+1kt+1. (14)
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From this point onward, we focus on balanced growth paths along which Kt, Yt, and Bt

all grow at rate g ≥ 0, so that gB,t, kt ≡ Kt
GtN

, yt ≡ Yt
GtN

, bt ≡ Bt
GtN

and Bt ≡ Bt
Kt

are all

constant, with values g, k, y, b, and B, respectively. Also, since the durability shock is i.i.d.,

the riskfree interest rate is constant and equal to rf . Throughout, we use the notational

convention that variables without time subscripts represent constant values along balanced

growth paths.

Equation (14) implies that along a balanced growth path, the marginal product of capital

is

αkα−1 =
α

(1− α) β
[(1 + B)G− βζ (g − rf )B] . (15)

Remarkably, the ratio of capital to effective labor, k, in equation (15) is constant despite

the shocks to the durability of capital. In the case with ζ = 0, the marginal product

of capital along a balanced growth path is invariant to the distribution of the durability

shock. However, if ζ 6= 0, then the marginal product of capital in equation (15) depends

on the riskfree interest rate, which, as we will see below, depends on the distribution of

the durability shock. Equation (15) also illustrates the crowding out effect of government

debt; specifically, since the right hand side of equation (15) is an increasing function of B,8

the marginal product of capital is an increasing function of B and hence k is a decreasing

function of B.

Despite the fact that kt is constant along a balanced growth path, the rate of return on

capital is stochastic, even along a balanced growth path. Use equation (6), which implies

that the rate of return on capital along a balanced growth path is r = αkα−1− δ + ε̃ (where

ε̃ is the random durability shock), and equation (15) to obtain

r =
α

(1− α) β
[(1 + B)G− βζ (g − rf )B]− δ + ε̃. (16)

It will be convenient to use the ratios of the gross rates of return to the gross growth

8The derivative of the right hand side of equation (15) with respect to B is α
(1−α)β [G − βζg + βζrf ] =

α
(1−α)β [(1− βζ)g + 1 + βζrf ] > 0, since 0 ≤ βζ < 1 and rf > −1.
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rate, G. Specifically, along a balanced growth path, R ≡ 1+r
G

is the “adjusted gross rate

of return” on capital, Rf ≡ 1+rf
G

is the “adjusted gross riskfree interest rate” and Ra ≡
1+ra
G

= λRf + (1− λ)R. For R and Rf , a value equal to one has special significance

along deterministic balanced growth paths: the government can rollover debt forever at the

riskfree interest rate if and only if Rf ≤ 1; and the economy is dynamically inefficient if

and only if R < 1, or equivalently, lnR < 0. In stochastic economies with deterministic

growth, Rf = 1 is still the crucial value of the riskfree interest rate that determines whether

the government can rollover its debt forever; and, as we discuss in detail in Section 4, the

economy is dynamically inefficient if and only if E {lnR} < 0.

Use G−1 (g − rf ) = G−1 (1 + g − (1 + rf )) = 1−Rf and equation (16) to obtain

R ≡ 1 + r

G
= R +G−1ε̃, (17)

where

R = R (B, ζ, Rf ) ≡
α

(1− α) β
[1 + B − βζ (1−Rf )B] + (1− δ)G−1, (18)

is the expected “adjusted gross rate of return on capital” along a balanced growth path.

Note that
∂R(B,ζ,Rf)

∂B = α
(1−α)β

[1− βζ + βζRf ] > 0 and
∂R(B,ζ,Rf)

∂Rf
= α

(1−α)β
βζB ≥ 0 because

0 < β ≤ 1
2

and 0 ≤ ζ ≤ 1.

2.1 Isomorphic Formulation with Stochastic Output

The model used throughout paper–which we will call the baseline model–was designed so

that the aggregate capital stock, Kt, evolves deterministically and grows at a constant rate,

g, along any balanced growth path. As we show in Section 3, the riskfree interest rate, rf , is

also constant along any balanced growth path, so the feasibility of rolling over government

debt depends only on the sign of rf − g. In addition, aggregate output, Yt, evolves non-

stochastically in the baseline model. In this subsection, we develop a class of models that

are isomorphic to the baseline model in the sense that the evolution of Kt, as well as the

14



evolution of rates of return, including the riskfree interest rate, are identical to those in the

baseline model. Nevertheless, Yt, evolves stochastically for all models, except for the baseline

model, in this isomorphic class. We choose to use the baseline model throughout the rest

of the paper for expositional simplicity, recognizing that the non-stochastic evolution of Yt

is not at all essential to our findings.

Consider a class of models in which the production function is

Yt =
(
GtN

)1−α
Kα
t + η1,tKt =

(
kα−1
t + η1,t

)
Kt, (19)

where η1,t is an i.i.d. random productivity shock with a mean that can be positive, zero, or

negative. Because aggregate wage income, (1− α) (GtN)
1−α

Kα
t , is deterministic, aggregate

saving of the young and the evolution of Kt are deterministic and identical to those in the

baseline model.

In this class of models, the depreciation rate of capital is δ − η2,t, where η2,t is an i.i.d

random variable with arbitrary correlation with η1,t, and 0 ≤ δ − η2,t ≤ 1. In addition,

assume that E {η1,t + η2,t} = 0. The (net) rate of return on capital is the marginal product

of capital, αkα−1
t + η1,t, minus the depreciation rate, δ − η2,t,

rt = αkα−1
t − δ + (η1,t + η2,t) . (20)

This class of isomorphic models is defined by η1,t + η2,t = εt. Therefore, equation (20)

can be rewritten as

rt = αkα−1
t − δ + εt, (21)

which is identical to equation (6) with E {εt} = 0. As a consequence, the riskfree rate, rf,t,

is identical to that in the baseline model. Thus, all of the models in this class of models are

isomorphic to the baseline model in the sense that Kt and all rates of return in all periods are

identical to their values in the baseline model. Therefore, our major findings about rolling

over government debt are not dependent on deterministic output.
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2.2 Deterministic Version of the Model

In this subsection, and only in this subsection, we consider a deterministic version of the

model. The following nonlinear combination of parameters, θ, allows us to easily assess

whether a balanced growth path in a deterministic economy with ζ = 0 is dynamically

efficient.

Definition 1 θ ≡ (1−α)β
α

[1− (1− δ)G−1]− 1.

Lemma 1 Along a balanced growth path in a deterministic economy with ζ = 0, the ratio

of gross investment to gross capital income is 1+θ
1+B .

According to the criteria in AMSZ Proposition 1, if the ratio of gross investment to gross

capital income is always greater than one, then the economy is dynamically inefficient; and

if the ratio of gross investment to gross capital income is always less than (or equal to)9

one, the economy is dynamically efficient. Thus, Lemma 1 implies that if ζ = 0, then a

balanced growth path in a deterministic economy is dynamically inefficient if and only if

1+θ
1+B > 1. Therefore, if θ is positive, it equals the value of the bond-capital ratio, B, in

a deterministic economy for which the balanced growth path is on the boundary between

dynamic efficiency and dynamic inefficiency. The deterministic balanced growth path will

be dynamically inefficient if and only if B < θ. Consistent with this result, note from the

definition of R(B, ζ, Rf ) in equation (18) that

R (θ, 0, ·) = 1. (22)

Since R(B, 0, Rf ) is increasing in B, the balanced growth path will be inefficient if and only

if B < θ. In a deterministic economy, the riskfree interest rate, Rf , is identically equal to

R. Therefore, in a deterministic economy, we get the familiar result that if Rf = R < 1,

9AMSZ Proposition 1 does not address the case in which the ratio of gross investment to gross capital
income is equal to one. However, in a deterministic economy, if the ratio of gross investment to gross capital
income is always equal to one, the economy is at the Golden Rule, which is the boundary between dynamic
efficiency and dynamic inefficiency.
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then the economy is dynamically inefficient (R < 1) and government debt can be rolled over

forever because Rf < 1, which is equivalent to rf < g.

Four parameters each independently increase the value of θ and push the deterministic

balanced growth path toward dynamically inefficient overaccumulation of capital: (1) since

aggregate saving is proportional to β, an increase in β, which increases θ, increases aggregate

capital accumulation; (2) a decrease in α increases θ through two channels: (i) a decrease

in α increases the labor share of income 1 − α, which increases saving and investment,

β (1− α)Yt; and (ii) a decrease in α reduces capital income, αYt, making any given amount

of capital less attractive; (3) an increase in δ, which increases θ, makes capital less attractive

because it depreciates more quickly; and (4) an increase in G, which increases θ, pushes the

economy closer to the situation in which r < g, which characterizes dynamic inefficiency.

3 Portfolio Allocation and Asset Pricing

Young consumers choose portfolios consisting of riskfree government bonds and risky capital.

Formally, the optimal share of riskfree government bonds in a young consumer’s portfolio is

λt+1 = arg max
λt+1

β

1− γ
lnEt

{
(Ra,t+1)1−γ} , (23)

where, as discussed earlier, Ra,t+1 = λt+1Rf,t+1 + (1 − λt+1)Rt+1. The first-order condition

associated with this maximization problem along a balanced growth path is

E
{

(λRf + (1− λ)R)−γ (Rf −R)
}

= 0. (24)

The first-order condition in equation (24) is an implicit function of λ, Rf , and R. Viewing

Rf and the distribution of R as given, the implicit function determines the optimal value of

λ. Alternatively, equation (24) can be viewed as a financial market equilibrium condition

that determines Rf as a function of the equilibrium value of λ and the distribution of R.

In financial market equilibrium with a given value of B ≡ B
K

, the share of the aggregate

portfolio that is held in riskfree government bonds is λ = B
K+B

= B
1+B .
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Lemma 2 For any distribution of R > 0, Rf =
Et{R1−γ

a }
Et{R−γa } .

Let Rf (B) denote the equilibrium value of Rf as a function of the bond-capital ratio B,

along a balanced growth path. Where convenient, we omit the argument of this function

and write simply Rf . Before analyzing the impact of B on Rf , we introduce the following

definition and proposition.

Definition 2 Rmin ≡ α
(1−α)β

+ (1− δ + inf ε̃)G−1 > 0, which from equations (17) and (18),

is less than or equal to the rate of return on capital for any B ≥ 0 and ε̃ ≥ inf ε̃min. If Rf ≤ 1,

and the distribution of ε̃ is non-degenerate, then, by the absence of arbitrage, Rmin < 1.

Along a balanced growth path, government bonds can be rolled over forever if and only if

Rf ≤ 1, so we focus our attention only on situations with Rf ≤ 1. The following proposition

presents a sufficient condition for the riskfree interest rate to be an increasing function of B

along balanced growth paths for which rollover is feasible.

Proposition 1 If 1 ≤ γ < Λ ≡ 1− ζβ
1−βζ (1−Rmin)

1+ α
1−α ζ

1
1−Rmin

, then R′f (B) > 0 for Rf (B) ≤ 1.

Proposition 1 presents an interval of values of the risk aversion parameter γ for which

R′f (B) > 0. Two comments are in order. First, the condition in Proposition 1 is a sufficient,

but not necessary, condition, so that R′f (B) > 0 for a larger set of values of γ than specified

in this proposition. Second, the upper bound Λ in this proposition is a function only of the

parameters of the model. In the case in which ζ = 0, Proposition 1 simplifies to

Corollary 1 If ζ = 0 and 1 ≤ γ < 1
1−Rmin

, then R′f (B) > 0 for Rf (B) ≤ 1.

Recall from the definition of Rmin that the no-arbitrage condition implies that Rmin < 1

when Rf (B) ≤ 1, so the condition in Corollary 1 is non-vacuous.10

10For the general case in which 0 ≤ ζ ≤ 1, the proof of Proposition 1 in Appendix A demonstrates that
the condition in that proposition is non-vacuous when 0.6 < Rmin < 1.
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4 Dynamic Efficiency and the Feasibility of Rollover

A deterministic economy along a balanced growth path is dynamically efficient if and only

if R ≥ 1, equivalently, r ≥ g. In the presence of uncertainty, it might be tempting to

assess dynamic efficiency simply by comparing the expected value of r to the expected value

of g. However, that approach can lead to incorrect conclusions about dynamic efficiency

in situations that are neither extraordinary nor pathological. Specifically, there is a set of

situations in which E {R} ≥ 1 and yet the economy is dynamically inefficient.11

As shown by Zilcha (1991), the correct sufficient statistic for assessing dynamic efficiency

in an economy that grows at constant rate g is E {lnR}, which equals E {ln (1 + r)} −

ln (1 + g). An economy is dynamically inefficient if and only if E {lnR} < 0, which, in

the case of certainty is the familiar condition R < 1, equivalently, r < g. Zilcha (1990,

1991) extends to stochastic economies an ingenious argument developed in Cass (1972) for

assessing dynamic efficiency. Here is a greatly simplified sketch of the rigorous Cass-Zilcha

analysis. Consider whether it is possible to increase aggregate consumption at time t while

maintaining aggregate consumption unchanged at all times after t. The increase in aggregate

consumption at time t reduces the capital stock at time t + 1 by one unit—in Cass-Zilcha

terminology, a capital decrement of one unit—which, ignoring for the moment any impact of

the capital decrement on the rate of return on capital, reduces output at time t+ 1 by rt+1

units, leading to a capital decrement at time t+ 2 of 1 + rt+1 units, which leads to a capital

decrement at time t+3 of (1 + rt+1) (1 + rt+2), and so on. Thus, continuing for a moment to

ignore the impact of capital decrements on the rate of rate of return on capital, the capital

decrement at time t+n ≥ t+2 is Πn−1
j=1 (1 + rt+j). Relative to the path of the capital stock in

the absence of a change in consumption at time t, that is, relative to Kt+n = (1 + g)n−1Kt+1,

the capital decrement at time t+ n is 1
Kt+1

Πn−1
j=1

1+rt+j
1+g

= 1
Kt+1

Πn−1
j=1Rt+j, where Rt+j ≡ 1+rt+j

1+g

is the “adjusted gross rate of return on capital.” If E {lnR} > 0, the size of the expected

capital decrement grows relative to the capital stock until the decrement at some future

time eliminates the entire capital stock, thereby rendering impossible the attempt to achieve

an increase in aggregate consumption at time t without decreasing consumption at any

11Since lnE {R} > E {lnR} when R is stochastic, it is possible for E {R} > 1 even though E {lnR} < 1.
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time following t. That is, the original allocation of consumption and capital over time

is dynamically efficient. Strengthening this argument is the fact that capital decrements

themselves increase the marginal product of capital and increase lnR.

Alternatively, if E {lnR} < 0, the capital decrement relative to the capital stock shrinks

over time toward zero, making it feasible to increase aggregate consumption at time t without

driving the capital stock to zero eventually. Thus, the original allocation of consumption

and investment over time is dynamically inefficient. Finally, if E {lnR} = 0, the capital

decrement at time t + 1 increases future marginal products of capital, thereby increasing

future capital decrements above what they would be if we ignore this impact. Thus, it is

infeasible to increase aggregate consumption at time t, without driving the capital stock to

zero eventually. Hence, the economy is dynamically efficient if E {lnR} = 0.

We apply the Zilcha criterion to examine, in economies with a constant growth rate, the

relationship between dynamic inefficiency and the feasibility of rolling over a small amount

of government bonds. The link between dynamic inefficiency and the feasibility of rollover is

particularly stark in deterministic economies because Rf , the adjusted gross riskfree interest

rate equals R, the adjusted gross rate of return on capital. If Rf = R < 1, then the

economy is dynamically inefficient and, since Rf < 1, government bonds can be rolled over

forever; alternatively, if Rf = R > 1, then the economy is dynamically efficient and, since

Rf > 1, government bonds cannot be rolled over forever. However, in stochastic economies,

Rf and R generally differ since R is stochastic. In such economies, there are parameter

configurations for which E {lnR} > 0, indicating that the economy is dynamically efficient

and nevertheless, Rf < 1 so that at least a small amount of government bonds can be rolled

over forever.

Lemma 3 Assume that Ra > 0 is a non-degenerate random variable with E {lnRa} ≤ 0.

If γ ≥ 1, then
E{R1−γ

a }
E{R−γa } < 1.

When there are no government bonds, that is, when λ = 0, we have Ra = R, so Lemma

2 implies that Rf =
Et{R1−γ}
Et{R−γ} . Therefore, Lemma 3 implies the following proposition.
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Proposition 2 Assume that γ ≥ 1, B = 0, and the adjusted gross rate return on capital,

R ≡ 1+r
1+g

> 0, is a non-degenerate random variable.

1. If E {lnR} ≤ 0, then Rf < 1.

2. If Rf ≥ 1, then E {lnR} ≥ 0 and the economy is dynamically efficient.

Proposition 2 implies that in the absence of government bonds, if the economy is dynam-

ically inefficient, i.e., E {lnR} < 0, then Rf ≡ 1+rf
1+g

< 1 so the net riskfree rate, rf , is less

than the growth rate, g, and hence a small amount of government bonds can be rolled over

forever. More interestingly, in the absence of government bonds, if the adjusted gross rate

of return on capital, R, is stochastic with E {lnR} = 0, then the economy is dynamically

efficient and Rf < 1 so that rf < g and a small amount of government bonds can be rolled

over forever. Thus, contrary to dynamically efficient deterministic economies, it is possible

to roll over government bonds forever in some dynamically efficient stochastic economies.

Proposition 2 leaves open the possibility that in some dynamically efficient economies

that have E{lnR} > 0, the riskfree interest rate, Rf < 1, so government bonds can be rolled

over forever. We illustrate such economies in Figures 1 and 2 in Section 6.

5 Maximum and Optimal Amounts of Sustainable Gov-

ernment Debt

In this section, we analyze two questions about sustainable levels of government debt. First

we address a positive question: what is the maximum sustainable value of B along a balanced

growth path? Then we address a normative question: what is the sustainable value of B

that maximizes utility along a balanced growth path? Remarkably, we find that utility

along a balanced growth path is maximized by the maximum sustainable value of B.

Definition 3 A constant value of B along a balanced growth path is sustainable if govern-

ment debt can be rolled over forever at the riskfree interest rate without any primary budget

surpluses in the future. Define Bmax as the maximum sustainable value of B.
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Remark 1 Along a balanced growth path with constant Rf , a constant value of B is sus-

tainable if and only if Rf ≤ 1.

Proposition 3 If R′f (B) > 0 whenever Rf (B) ≤ 1, then

1. if Rf (0) ≥ 1, then Bmax = 0

2. if Rf (0) < 1, then

(a) Bmax is the unique root of Rf (B) = 1

(b) Bmax is finite

(c) B is sustainable if and only if 0 ≤ B ≤ Bmax

Proposition 3, as well as later Propositions 4 and 5, assume that R′f (B) > 0 whenever

Rf ≤ 1. Proposition 1 provides a sufficient condition for this assumption to be true, namely,

γ < Λ. Since this condition is sufficient, but not necessary for the results of Propositions

3, 4, and 5, these propositions potentially apply to a larger set of economies than the set of

economies for which γ < Λ.

Corollary 2 If R′f (B) > 0 whenever Rf (B) ≤ 1, then Bmax is invariant to ζ.

The parameter ζ appears only in the transfers to young consumers, which, along a bal-

anced growth path, equal τ = ζ (g − rf ) B
N

= ζ (g − rf )Bk. Transfers are equal to zero,

regardless of the value of ζ, when B = 0 so Rf (0) is invariant to ζ and hence the determi-

nation of whether Bmax is zero or positive is invariant to ζ. Similarly, transfers are equal to

zero, regardless of the value of ζ, when Rf (B) = 1, so the root of Rf (B) = 1 is invariant to

ζ. Therefore, the value Bmax is invariant to ζ.12

As in Blanchard (2019) and Ball and Mankiw (2021), our measure of welfare is the utility

of consumers along a balanced growth path.

12Setting Rf = 1 and λ = B
1+B in Lemma 2 and using equations (17) and (18) implies

that when Bmax > 0, it is a root of ν (B) ≡ E

{(
B

1+B + α
(1−α)β + 1

1+BG
−1 (1− δ + ε̃)

)−γ}
−

E

{(
B

1+B + α
(1−α)β + 1

1+BG
−1 (1− δ + ε̃)

)1−γ}
= 0, which is invariant to ζ.

22



Definition 4 Define ut ≡ Ut − t lnG, which is constant along a balanced growth path. The

optimal sustainable value of B along any balanced growth path is arg max
B∈[0,Bmax]

u(B) .

To evaluate utility along a balanced growth path for a given value of B, define w ≡ Wt

Gt
=

(1− α) kα and use the expression for Ut in equation (8) along a balanced growth path to

obtain13

u(B) = lnw + ln

(
1 +

τt
Wt

)
+

β

1− γ
lnEt

{
R1−γ
a

}
+ constant. (25)

Proposition 4 If R′f (B) > 0 whenever Rf ≤ 1, then du
dB > 0 for any B ∈ [0,Bmax].

As shown in Lemma 8 in the Appendix, an increase in B has opposing effects on lnw

and β
1−γ lnEt {R1−γ

a }. An increase in B crowds out the capital stock, thereby reducing lnw

but increasing the marginal product of capital, which increases rates of return and hence

increases β
1−γ lnEt {R1−γ

a }. Despite these opposing effects, the impact of an increase in B

on utility is unambiguously positive whenever Rf ≤ 1, as stated in Proposition 4. Corollary

3 provides a simple expression for du
dB in the case with ζ = 0. This expression allows us to

show how the two opposing effects are related through the factor price frontier in a way that

the utility-increasing effect dominates the utility-decreasing effect.

Corollary 3 If ζ = 0, then du
dB = 1

1+B
1
Rf

[
(1−Rf )

α
1−α + βB dRf

dB

]
.

Corollary 3 is proved formally in Appendix A. Here we provide a heuristic derivation of du
dB

to illustrate how the welfare-decreasing impact of the decrease in wage income is dominated

by the welfare-increasing impact of the increase in rates of return on capital and bonds, when

Rf ≤ 1. To demonstrate that the main features of du
dB do not depend on Epstein-Zin-Weil

utility with IES equal to one, we consider an additively separable two-period utility function

u = uy (cy) + E {uo (co)}, where, for i = y, o, the utility function ui (ci) is strictly increasing

13Substitute cyt = (1− β) (Wt + τt) and cot+1 = (1 + ra,t+1)β (Wt + τt) into equation (8) to obtain Ut =

lnWt+ln
(

1 + τt
Wt

)
+ β

1−γ lnEt

{
(1 + ra,t+1)

1−γ
}

+constant. Subtract lnGt from both sides of the resulting

equation and use u = Ut − lnGt and lnw = lnWt − lnGt to obtain equation (25).
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and strictly concave with limci→0 u
i′ (ci) = ∞ and limci→∞ u

i′ (ci) = 0. For simplicity, we

also assume for the purposes of this heuristic derivation that G = 1.

The heuristic proof proceeds in the three steps. First, for an individual consumer who has

optimally chosen to consume cy when young and co when old, the envelope theorem implies

that the impact on utility of a change in B equals the change in utility if the consumer

reduces cy by the amount of lost wage income in the first period and increases co by the

additional return on the K
N

units of capital and B
N

units of bonds held in the second period.

That is, du
dB = uy′ (cy) dW

dB + E {uo′ (co)}
(
K
N
dR
dB + B

N

dRf
dB

)
, where, in addition to the envelope

theorem, we have used the fact that K
N
dR
dB + B

N

dRf
dB is non-stochastic in our model. Using the

chain rule we obtain

du

dB
= uy′ (cy)

dW

dK

dK

dB
+ E {uo′ (co)}

(
K

N

dR

dK

dK

dB
+
B

N

dRf

dB

)
. (26)

Second, use the factor-price frontier,14 N dFN
dK

+ K dFK
dK

= 0, which implies dW
dK

= −K
N
dR
dK

,

to obtain

du

dB
= [−uy′ (cy) + E {uo′ (co)}] K

N

dR

dK

dK

dB
+ E {uo′ (co)} B

N

dRf

dB
. (27)

Third, use the first-order condition for the optimal intertemporal allocation of consump-

tion along with the fact that Rf is not stochastic to obtain uy′ (cy) = RfE {uo′ (co)}, which

implies15

du

dB
= uy′ (cy)

[(
1

Rf

− 1

)
K

N

dR

dK

dK

dB
+

1

Rf

B

N

dRf

dB

]
. (28)

14Since F (K,N) is homogeneous of degree one in K and N , Euler’s theorem implies NFN +KFK = F .
Differentiating this equation with respect to K yields N dFN

dK +K dFK

dK = 0.
15To see that equation (28) with ζ = 0 is identical to Corollary 3, multiply and divide the right hand side

of (28) by K+B
NRf

and use the chain rule to replace dR
dK

dK
dB by dR

dB = α
(1−α)β (from equations (17) and (18)

with ζ = 0) to obtain du
dB = uy′ (cy) K+B

N
1
Rf

[
(1−Rf ) K

K+B
α

(1−α)β + B
K+B

dRf

dB

]
. If uy (cy) = (1− β) ln cy,

uo (co) = β ln co, and ζ = 0, then cy = (1− β)W , uy
′
(cy) = 1−β

cy = 1
W and use K

K+B = 1
1+B and B

K+B = B
1+B

to rewrite this expression as du
dB = K+B

WN
1
Rf

1
1+B

[
(1−Rf ) α

(1−α)β + B dRf

dB

]
. Finally, use βWN = K + B to

obtain du
dB = 1

1+B
1
Rf

[
(1−Rf ) α

1−α + βB dRf

dB

]
, which is identical to Corollary 3.
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The interpretation of du
dB is simplest in the situation with B = 0, so16

du

dB
= uy′ (cy)

(+)

(
1

Rf

− 1

)
sign(1−Rf)

K

N
(+)

dR

dK
(−)

dK

dB
(−)

, if B = 0, (29)

which is the product of five terms (reading from right to left): (1) an increase in B crowds

out capital (dK
dB < 0); (2) the reduction in the capital stock increases the expected rate of

return on capital ( dR
dK

< 0); (3) the increase in the rate of return capital can be used to

increase expected co by K
N
dR
dK

dK
dB , and along the factor-price frontier the increase in the rate

of return on capital reduces the wage per capita by K
N
dR
dK

dK
dB , which be used to decrease cy; (4)

the sign of the net impact of the decrease in cy and the equal-sized increase in co is the same

as the sign of 1
Rf
− 1, where 1

Rf
= E{uo′(co)}

uy′(cy)
is the intertemporal price of consumption; and

(5) the marginal utility of consumption when young, uy′ (cy), which converts the calculation

from goods to units of utility. Thus, if B = 0 and Rf − 1 ≤ 0, then du
dB ≥ 0, with strict

inequality if Rf < 1; and when B > 0, this positive effect on welfare is reinforced by the

final term in equation (28), uy′ (cy) 1
Rf

B
N

dRf
dB , which is positive when Rf ≤ 1.

Proposition 5 If R′f (B) > 0 whenever Rf (B) ≤ 1, then arg max[0,Bmax] u(B) equals Bmax,

that is, utility per effective unit of labor along a balanced growth path is maximized by the

maximum sustainable value of B.

Since the proof of Proposition 5 is both simple and instructive, we present it here. If

Rf (0) ≥ 1, then Bmax = 0 and the closed interval [0,Bmax] is a singleton so arg max[0,Bmax] u(B)

equals Bmax = 0. Alternatively, if Rf (0) < 1, then Bmax > 0 and Statement 2c of Propo-

sition 3 implies all B in [0,Bmax] are sustainable. Proposition 4 implies that du
dB > 0 for

all B ∈ [0,Bmax], so arg maxB∈[0,Bmax] u(B) is a corner solution with B = Bmax. Corollary 2,

which states that Bmax is invariant to ζ, implies that the main result of the paper does not

16Equation (29) states that the sign of du
dB depends only on the sign of 1 − Rf . In contrast, Blanchard

(2019) shows that the sign of the impact of an increase in debt on welfare depends on both the riskfree rate
and the risky rate of return on capital. This difference arises because in our model, the effect of a change in
the capital stock on the marginal product of capital (the second derivative of the production function with
respect to K) is non-stochastic. In addition to making the sign of du

dB depend only on the sign of 1−Rf , this
feature allows us to derive exact expressions for the marginal impact on welfare of an increase in B, without
relying on approximations.
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depend on whether the government uses its net resources from rollover to make transfers to

the young consumers or simply wastes these resources.

6 A Graphical Illustration of Dynamic Efficiency and

Feasibility of Debt Rollover in a Simple Case

The model developed and analyzed in this paper has the convenient property that the capital

stock per unit of effective labor is constant along a balanced growth path, which implies that

the expected rate of return on capital, R, is also constant along a balanced growth path.

In this section, we assume that the durability shock, εt, has a two-point distribution with

Pr {εt = σ} = 1
2

= Pr {εt = −σ}, where 0 ≤ σ < min {δ, 1− δ}. Therefore, along a balanced

growth path, the adjusted gross rate of return on capital, R, has a two-point conditional

distribution, Pr
{
R = RH ≡ R +G−1σ

}
= 1

2
= Pr

{
R = RL ≡ R−G−1σ

}
, where R is given

by equation (18). We further simply the presentation in this section by setting γ = 1 and

ζ = 0.17

Figure 1 shows the possible adjusted gross rates of return on capital along a balanced

growth path, with RH on the horizontal axis and RL on the vertical axis. In the absence

of durability shocks, RH = RL so the locus of possible pairs (RH , RL) is the 45-degree line

labeled “Certainty: RH = RL,” which passes through the origin. Point F on this line

represents the Golden Rule under certainty, 1+r
1+g

= RH = RL = 1, so that r = g. The area

above and to the left of the 45-degree line is grayed out because RH ≥ RL by definition.

Now consider the situation in which the durability shock, εt, has a positive variance,

σ2 > 0, so that (RH , RL) lies in one of the five regions below the 45-degree line. In

two of these regions, the AMSZ criterion that compares the rate of return on capital with

the growth rate gives a decisive assessment of dynamic efficiency. In Region A, labelled

17When ζ = 0, the mapping from the pair (RH , RL) and a given value of B back to the fundamental
parameter values is straightforward. Given RH , RL, σ = 1

2 (RH − RL), and B, use equation (18) to obtain
1
2 (RH +RL) = R = α

(1−α)β (1 + B) + (1− δ)G−1, which characterizes, for given bond-capital ratio B, the

values of α, β, δ,G, and σ that lead to a balanced growth path along which the two possible adjusted gross
rates of return on capital are the given values of RH and RL.
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Figure 1: A Graphical Summary of Dynamic Efficiency and Feasibility of Debt Rollover
when ζ = 0, γ = 1, and B = 0.

“AMSZ-inefficient,” both RH and RL are less than one so r < g for both possible values

of R. Therefore, the AMSZ criterion implies that the economy is dynamically inefficient.

Furthermore, since RL < RH < 1, the adjusted gross riskfree interest rate, which satisfies

RL ≤ Rf ≤ RH , is always less than one. In this case, rf < g, so that a dollar of government

debt that is rolled over at the riskfree interest rate will shrink over time toward zero.

In Region B, labelled “AMSZ-efficient,” both RH and RL are greater than one so the

net rate of return on capital is always greater than the growth rate. Therefore, the AMSZ

criterion implies that the economy is dynamically efficient. Furthermore, since 1 < RL <

RH , the adjusted gross riskfree interest rate, which satisfies RL ≤ Rf ≤ RH , is always greater
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than one. Therefore, the amount of government bonds grows at rate rf , which is higher than

the growth rate of the capital stock, g. There is no possibility of rolling over government

bonds, without primary surpluses, at the riskfree rate forever.

The downward-sloping curve originating at Point F and labelled E {lnR} = 0 is a rect-

angular hyperbola, RL = 1
RH

. This curve is the boundary between dynamically inefficient

(RH , RL) pairs in Region C below the curve and dynamically efficient (RH , RL) pairs in Re-

gions D and E above the curve. Regions C, D, and E are all characterized by RL < 1 < RH ,

so that sometimes the net rate of return on capital is less than growth rate, g, and sometimes

the net rate of the return on capital is greater than g. Because the net rate of return on

capital fluctuates around g, the AMSZ criteria are not decisive about dynamic efficiency.

However, in Region C, RLRH < 1 and hence E {lnR} < 0 so the economy is dynami-

cally inefficient according to the Zilcha criterion; thus, we label Region C as “Z-inefficient.”

By contrast, in Regions D and E, RLRH > 1 and hence E {lnR} > 0 so the economy is

dynamically efficient according to the Zilcha criterion; thus, we label Regions D and E as “Z-

efficient.” The dashed line segment FH is a locus of (RH , RL) pairs for which RH +RL = 2

so that the expected return on capital, R ≡ RH+RL
2

= 1. Points between this line segment

and the E {lnR} = 0 curve are dynamically inefficient even though R > 1 (equivalently,

E {r} > g), thereby illustrating that the expected value of the risky return on capital is

not the correct statistic to compare to the growth rate for the purpose of assessing dynamic

efficiency.

The government can rollover its bonds forever if rf ≤ g, equivalently, if Rf ≤ 1. The

higher of the two downward-sloping curves through Point F is the locus of (RH , RL) for which

Rf = 1 in the case with B = 0 and γ = 1. For points above this curve (Regions B and D),

Rf > 1 and permanent rollover of government bonds is not feasible. For points below the

Rf = 1 curve (Regions A, C, and E), Rf < 1 and permanent rollover of government bonds,

without any primary surpluses, is feasible. Region E is of particular interest because it

has a different relationship between dynamic efficiency and feasibility of permanent rollover

than in deterministic economies. In Region E, which lies above the E {lnR} = 0 curve, the

economy is dynamically efficient, but since Region E is below the Rf = 1 curve, permanent
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rollover of government bonds is feasible.

Lemma 4 With a symmetric, two-point distribution for the durability shock, εt, if ζ = 0, a

balanced growth path is dynamically efficient if and only if RHRL ≥ 1, equivalently, if and

only if G−2σ2 ≤
[
R (B, ζ, Rf )

]2 − 1.

If ζ = 0, then the capital stock along a balanced growth path is independent of both

the variance and the realizations of the durability shock, εt. Thus, holding α, β, δ, and G

fixed, an increase in the variance σ2 of the durability shocks has no impact on the capital

stock along a balanced growth path. Nevertheless, Lemma 4 implies that an increase in the

variance σ2 can change the efficiency status of a given capital stock along a balanced growth

path from dynamically efficient to dynamically inefficient. With a capital stock invariant

to the durability shock along a balanced growth path, the arithmetic mean of the rate of

return on capital is unchanged by an increase in σ2, but the geometric mean, which is the

concept relevant for dynamic efficiency, falls when σ2 increases.

Lemma 5 With a symmetric, two-point distribution for the durability shock, εt, if γ = 1, ζ =

0, and B ∈ [0, 1] then along a balanced growth path, Rf Q 1 as G−2σ2 R
[
R (B, 0, ·) + B

]
×[

R (B, 0, ·)− 1
]
.18

Lemma 5 implies that starting from a situation in which Rf > 1, an increase in the

variance σ2 can push Rf below one as investors seeking safety accept a lower riskfree interest

rate on government bonds.

Proposition 6 With a symmetric, two-point distribution for the durability shock, εt, if γ =

1, ζ = 0, and B ∈ [0, 1], then along a balanced growth path in a dynamically efficient economy,

the ratio of government debt to the capital stock, B, is sustainable if and only if

h (B) ≡
[
R (B, 0, ·) + B

] [
R (B, 0, ·)− 1

]︸ ︷︷ ︸
Rf≤1

≤ G−2σ2 ≤ g (B) ≡
[
R (B, 0, ·)

]2 − 1︸ ︷︷ ︸
dynamic efficiency

. (30)

18We confine attention to B ≤ 1 in this case because the interval of values of G−2σ2 in equation (30) below
is vacuous if B > 1.
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0 1

Figure 2: The boundaries of dynamic efficiency, g(B), and sustainability of rollover, h(B),
for ζ = 0 and γ = 1. The economy is dynamically efficient below g(B), and Rf < 1 above
h(B).

Since R (B, 0, ·) is linear in B, the functions g (B) and h (B) in Proposition 6 are quadratic

in B. There are two values of B for which g (B) = h (B). Since, from equation (22),

R (θ, 0, ·) = 1, the definitions of g (B) and h (B) imply that g (θ) = 0 = h (θ). Also, the defi-

nitions of g (B) and h (B) imply that h (1) =
[
R (1, 0, ·) + 1

] [
R (1, 0, ·)− 1

]
=
[
R (1, 0, ·)

]2−
1 = g (1). More generally, for other values of B, g (B)− h (B) = (1− B)

[
R (B, 0, ·)− 1

]
, so

for θ < B < 1, R (B, 0, ·)− 1 > 0 and hence g (B) > h (B). For values of B > 1, g(B) < h(B)

and the set of values of G−2σ2 in Proposition 6 is vacuous.

Figure 2 shows the long-run bond-to-capital ratio, B, on the horizontal axis and the

adjusted variance G−2σ2 on the vertical axis. In this figure, α = 0.3, β = 0.5, δ = 0.8,

γ = 1, ζ = 0, and G = 1 so θ = −0.067 < 0. Since g(θ) = 0 = h(θ), the horizontal

intercepts of g (B) and h (B) are both equal to θ, which is negative in this case. Thus, the
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horizontal intercepts do not appear in this figure since it is confined to the positive quadrant.

As discussed above, θ < 0 implies that the deterministic version of this economy with zero

government bonds (B = 0 and σ2 = 0, which is the origin in Figure 2) is dynamically efficient.

More generally, for any points below the g (B) (dashed) curve, G−2σ2 < g (B) so the economy

is dynamically efficient; for points above the g (B) curve, G−2σ2 > g (B) so the economy is

dynamically inefficient. For any points below the h (B) (solid) curve, G−2σ2 < h(B) so

Rf > 1, which implies rf > g, and hence it is not feasible to rollover government bonds

forever; for points above the h (B) curve, G−2σ2 > h (B) so Rf < 1, which implies rf < g,

and hence it is feasible to rollover government bonds forever. Thus, points between the

two curves are dynamically efficient economies in which it is feasible to rollover government

bonds forever.

Consider the origin in Figure 2, where B = 0 and σ2 = 0, which represents the version of

the economy with no uncertainty and no government bonds. As discussed above, since this

point lies below the g (B) curve, the economy is dynamically efficient, and since this point

lies below the h (B) curve, we have Rf > 1. Now consider increasing σ2 while maintaining

B = 0, which is a movement upward along the vertical axis. As σ2 increases, consumers

are willing to pay increasing amounts for the increased safety offered by riskless government

bonds, thereby decreasing Rf . When G−2σ2 reaches the vertical intercept of the h (B) curve,

which is Point A, Rf = 1, which means that rf = g and government bonds can be rolled

over forever, even though the economy at Point A is dynamically efficient because Point A

lies below the g (B) curve.

Now we examine the impact of increasing the bond-capital ratio, B, for a given value

of G−2σ2. We will use Figure 2 to illustrate that if Rf < 1 in a steady state without any

government bonds, the maximum sustainable amount of government bonds is positive; in

addition, we will illustrate the determination of this maximum level in this figure. Consider

Point B on the vertical axis, where B equals zero. At Point B, the economy without

government bonds is dynamically inefficient because it lies above the g (B) curve and Rf < 1

because the Point B is above the h (B) curve. Holding G−2σ2 unchanged, increase B, until

we reach Point C on the g (B) curve. The increase in B from Point B to Point C crowds
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out capital and eliminates the overaccumulation of capital. At Point C the economy is

dynamically efficient, and because Point C is above the h (B) curve, Rf remains less than

one, so it is feasible to roll over government bonds forever. Increase B further to Point D

on the h (B) curve. At Point D, the economy remains dynamically efficient, and Rf = 1

so that it remains feasible to roll over government bonds forever. Indeed, the value of the

bond-capital ratio, B, at Point D is the highest sustainable value of B for the given value of

G−2σ2 at points B, C, and D.

7 Quantitative Application

In this section, we provide a quantitative illustration of (a) Bmax, which is the maximum

sustainable value of B as well as the welfare-maximizing value of B, and (b) the value

of B on the boundary between dynamic efficiency and inefficiency for given values of the

fundamental parameters α, β, δ, γ, σ, and G.

We set the capital share α equal to 0.33. We interpret a “period” as 30 years and set

β = 0.353, so that the annualized discount factor,
(

β
1−β

)1/30

, is 0.98 per year, which implies

an annual discount rate of 2% per year. We assume that labor-augmenting productivity

grows at the rate of 1% per year, so G = 1.35. For risk aversion we consider γ = 1, 3, 8, and

10. Finally, we model the durability shock, ε, as a lognormal variable minus a constant, and

choose the parameters so that when the ratio of government bonds to the capital stock, B,

equals 0.5, E {(1 + r)} = E {GR} matches a target value of (1 +m)30, where m = 0.03 is an

annualized rate of return on unlevered equity and sd {(1 + r)} = sd {GR} matches a target

value of s
√

30, where s is an annualized standard deviation of the rate of return on unlevered

equity. Further details of the calibration, including a discussion of the implied mean and

standard deviation of the rate of return on levered equity, are contained in Appendix C.

Tables 1 and 2 report for ζ = 0 and ζ = 1, respectively, Bmax and the value of B on

the dynamic efficiency boundary (i.e., the value of B such that E{ln(R)} = 0). In both

tables, some of the cells for low values of s are blank. In the section of each table that

reports Bmax, a blank indicates that Rf > 1 for all nonnegative values of B; thus, there
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is no positive value of B that can be rolled over forever. In the section of each table that

reports the dynamic efficiency boundary, a blank indicates that the economy is dynamically

efficient for all non-negative values of B. Both tables show that as risk aversion increases,

there is a significant gap between Bmax and the dynamic efficiency boundary, so there is a

non-trivial set of parameter values for which government bonds can be rolled over forever in

dynamically efficient economies. For instance, in Table 1 when γ = 10 and s = 0.22, the

dynamic efficiency boundary is attained at B = 0.083, while Bmax = 0.478.

To interpret the magnitude of the values of B in Tables 1 and 2, recall that empirically

the level of government debt is often expressed as a multiple of GDP, while the values of B

are expressed as multiples of the capital stock. For an economy in which the capital-output

ratio is 2, the debt-GDP ratio is twice as high as the debt-capital ratio, B. In such an

economy, the values of B in Tables 1 and 2, which range from 0 to 0.478, correspond to

debt-GDP ratios ranging from 0 to 0.956.

Comparison of Tables 1 and 2 shows the impact of ζ. Overall, the tables show that the

impact of ζ is quantitatively small for the dynamic efficiency boundary and, as stated in

Corollary 2, ζ is completely irrelevant for the determination of Bmax, which is the welfare-

maximizing sustainable value of B.

Now we look at the tables in more detail. First consider Bmax, which is both the

maximum and the optimal sustainable value of B. Since Rf = 1 when B = Bmax, the transfer

to young consumers, ζ (g − rf )Bk = ζ (1−Rf )GBk, equals zero and hence the expected

adjusted gross rate of return on capital in equation (18) becomes R = α
(1−α)β

(1 + B) +

(1− δ)G−1, which is independent of risk aversion, γ, and the volatility parameter, s. An

increase in γ or an increase in s increases the risk premium on capital relative to the riskfree

rate. With an unchanged R, the increased risk premium implies that Rf falls. To maintain

Rf = 1, the value of B must increase to crowd out capital, thereby increasing R and Rf .

Therefore, moving rightward in each row in the “maximum sustainable B” section of each

table, γ increases and hence the maximum sustainable B increases; similarly, moving down

each column in this section of these tables, s increases and the maximum sustainable B

increases. As implied by Corollary 2, the sections of Tables 1 and 2 that present the
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maximum sustainable B are identical to each other.

Now, consider the dynamic efficiency boundary, which is characterized by E
{

ln(R + ε̃)
}

=

0. In Table 1, ζ = 0, so that the transfer to young consumers, ζ (g − rf )Bk, is zero. Hence,

as discussed above, equation (18) implies that R = α
(1−α)β

(1 + B) + (1− δ)G−1, which is

independent of γ and s. Therefore, E
{

ln(R + ε̃)
}

is independent of γ, so the value B on

the dynamic efficiency boundary is independent of γ for given s. By contrast, although an

increase in s also has no effect on R, it reduces E
{

ln(R + ε̃)
}

because ln (·) is a strictly

concave function. In order to restore E
{

ln(R + ε̃)
}

= 0 when s is increased, and thus

remain on the dynamic efficiency boundary, R must increase, so B must increase to crowd

out additional capital and increase the marginal product of capital. This effect is illustrated

in Table 1 by the increasing values of B as one goes down each column in the section of the

table devoted to the dynamic efficiency boundary.

In Table 2, where ζ = 1, equation (18) implies that R = α
(1−α)β

[1 + B + β (Rf − 1)B] +

(1− δ)G−1. Thus, with ζ = 1, R is an increasing function of Rf , which is a decreasing

function of γ and s, since both a higher coefficient of relative risk aversion, γ, and higher

volatility, s, lead consumers to seek safety in riskless government bonds, thereby driving Rf

downward. Thus, for a given value of s, an increase in γ reduces Rf and hence reduces R,

so to remain on the dynamic efficiency boundary where E
{

ln(R + ε̃)
}

= 0, B must increase

to increase R. Alternatively, for given values of γ, an increase in s reduces E
{

ln(R + ε̃)
}

through two channels. First, the concavity of ln (·) implies that for given R, an increase in s

reduces E
{

ln(R + ε̃)
}

. Second, as discussed above, an increase in s reduces Rf and hence

reduces R. To remain on the dynamic efficiency boundary where, E
{

ln(R + ε̃)
}

= 0, B

must increase to increase R. Finally, note that the nonzero entries for the dynamic efficiency

boundary in Table 2 are higher than in Table 1 because the positive transfers to consumers

when ζ = 1 in Table 2 increase saving thereby increasing the capacity of saving to absorb

bonds without driving the capital stock low enough to increase E
{

ln(R + ε̃)
}

above zero.
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ζ = 0

Maximum sustainable B Dynamic efficiency boundary
γ = 1 γ = 3 γ = 8 γ = 10 γ = 1 γ = 3 γ = 8 γ = 10

s = 0.02
s = 0.04 0.042 0.062
s = 0.06 0.026 0.122 0.150
s = 0.08 0.075 0.193 0.224
s = 0.10 0.017 0.120 0.252 0.285
s = 0.12 0.043 0.162 0.301 0.334
s = 0.14 0.068 0.199 0.342 0.374 0.013 0.013 0.013 0.013
s = 0.16 0.091 0.232 0.376 0.408 0.031 0.031 0.031 0.031
s = 0.18 0.113 0.261 0.405 0.435 0.049 0.049 0.049 0.049
s = 0.20 0.133 0.286 0.429 0.459 0.066 0.066 0.066 0.066
s = 0.22 0.152 0.309 0.450 0.478 0.083 0.083 0.083 0.083

Table 1: Maximum sustainable B and the value of B delineating the boundary of dynamic
efficiency. γ denotes risk aversion, and s is the annualized standard deviation of the return
on capital in an economy with B = 0.5. ζ is set to zero.

ζ = 1

Maximum sustainable B Dynamic efficiency boundary
γ = 1 γ = 3 γ = 8 γ = 10 γ = 1 γ = 3 γ = 8 γ = 10

s = 0.02
s = 0.04 0.042 0.062
s = 0.06 0.026 0.122 0.150
s = 0.08 0.075 0.193 0.224
s = 0.10 0.017 0.120 0.252 0.285
s = 0.12 0.043 0.162 0.301 0.334
s = 0.14 0.068 0.199 0.342 0.374 0.013 0.015 0.018 0.018
s = 0.16 0.091 0.232 0.376 0.408 0.032 0.037 0.043 0.044
s = 0.18 0.113 0.261 0.405 0.435 0.051 0.059 0.068 0.069
s = 0.20 0.133 0.286 0.429 0.459 0.069 0.080 0.091 0.092
s = 0.22 0.152 0.309 0.450 0.478 0.087 0.100 0.112 0.114

Table 2: Maximum sustainable B and the value of B delineating the boundary of dynamic
efficiency. γ denotes risk aversion, and s is the annualized standard deviation of the return
on capital in an economy with B = 0.5. ζ is set to one.
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8 Concluding Remarks

In this paper, we develop an overlapping-generations model to analyze sustainable levels of

the ratio of government bonds to the capital stock that can be maintained forever without

any future primary government surpluses. To make the analysis easily tractable, the baseline

model confines exogenous shocks to the depreciation rate of capital, which is additively

separable from the production function so the labor income of young consumers is non-

stochastic. In addition, since (1) consumers have Epstein-Zin-Weil utility functions over

their two-period lifetimes with the intertemporal elasticity of substitution set equal to one,

and (2) consumers earn labor income (and possibly receive transfers) only in the first period

of life, aggregate saving of young consumers is a constant fraction of their income in the first

period of life, and hence the evolution of aggregate asset holdings, comprising capital and

government bonds, is non-stochastic. Nevertheless, the rate of return on capital is stochastic

because it includes the stochastic depreciation rate. Along a balanced growth path, aggregate

wage income, the aggregate capital stock, and the aggregate amount of government bonds

outstanding all grow at rate g, which is the constant rate of labor-augmenting productivity

growth. Therefore, the balanced growth path features constant values of aggregate capital

per unit of effective labor, the bond-capital ratio, the riskfree interest rate, and the expected

rate of return on capital. Provided that the net riskfree interest rate, rf , is less than or equal

to g along a balanced growth path, the bond-capital ratio is sustainable.

Our model is designed so that both rf and g are constant along a balanced growth path.

Because we are interested in sustainable bond-capital ratios along a balanced growth path,

we confine attention to balanced growth paths that feature rf ≤ g. Along such paths, the

government can roll over its bonds forever without primary budget surpluses and without

the bond-capital ratio increasing. There is no chance that young consumers will be unwilling

or unable to purchase the bonds that the government issues to rollover its debt, so there is no

chance of default on government bonds. Therefore, the market interest rate on government

bonds equals the riskfree interest rate. In addition, when rf ≤ g, the value of government

bonds at a given point in time is not the expected present value of future primary surpluses;
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along balanced growth paths with rf ≤ g, the value of outstanding government bonds is

positive and yet all future primary deficits, which equal (g−rf )Bt at time t, are non-negative

and hence all future primary surpluses are non-positive.

This paper has two major findings—one positive and one normative. We focus on levels

of the bond-capital ratio that can be sustained forever without any future primary surpluses.

The positive finding is that the maximum sustainable bond-capital ratio along a balanced

growth path is attained when rf = g. Given that both rf and g are constant along balanced

growth paths, this finding is not surprising. However, the normative finding is surprising

(to us, at least). The sustainable bond-capital ratio that maximizes utility along a balanced

growth path is the maximum sustainable value of this ratio, that is, the ratio that attains

rf = g. Briefly, an increase in the amount of bonds outstanding crowds out private capital,

which reduces aggregate wage income and increases the marginal product of capital and

hence increases the rate of return on capital. The reduction in wage income reduces welfare

and the increase in the rate of return on capital increases welfare. It follows from the factor-

price frontier that the reduction in wage income per person equals the increase in capital

income per person. Whenever rf ≤ g, the welfare-increasing impact of the increased rate of

return on capital, which occurs in the second period of life, dominates the welfare-decreasing

impact of the reduction in wage income, which occurs during the first period of life. Thus,

starting from a balanced growth path with rf < g, an increase in the bond-capital ratio

leads to a different balanced growth path with a higher level of welfare. Focusing on long-

run welfare along balanced growth paths, it is optimal to increase the bond-capital ratio, and

thereby increase rf , until rf = g, at which point the bond-capital ratio equals its maximal

sustainable level. The optimal value of the bond-capital ratio is a corner solution where the

sustainability constraint prevents a further increase in the bond-capital ratio and yet welfare

is increasing the level of the bond-capital ratio.

We designed the model to have both constant rf and g along balanced growth paths so

that the assessment of the sustainability of a given bond-capital ratio would be as straightfor-

ward as possible. But what if, for instance, the growth rate of labor-augmenting productivity,

g, were random. In particular, what if Rf ≡ 1+rf
1+g

were random, sometimes greater than one
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and sometimes less than one? Then there might be some realization paths with Rf persis-

tently greater than one, so that eventually the stock of government bonds eventually exceeds

the amount that young households would or could purchase. In such a framework, the notion

of sustainability is more nuanced (which is why we designed the model to include constant

g). We leave it as an open question how to characterize sustainability in that framework,

and, in particular, how to characterize an appropriate notion of maximal borrowing. If there

is some suitable notion of maximal borrowing, does the normative result, that the optimal

government borrowing policy is the same as the maximal borrowing policy, generalize beyond

the model in this paper? This generalization of the primary normative result would hold if,

as in the current paper, the welfare-increasing effect of an increased rate of return to capital

exceeds the welfare-reducing effect of a reduced wage income for any sustainable borrowing

policy.
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A Proofs

Proof. of Lemma 1: In this economy, Kt+1 = (1− α) βYt − Bt+1, since young con-

sumers in period t use their saving, (1− α) βYt, to purchase capital, Kt+1, and bonds, Bt+1.

Along a balanced growth path, Kt = G−1Kt+1, so gross investment in period t is It ≡

Kt+1 − (1− δ)Kt = [1− (1− δ)G−1]Kt+1 = [1− (1− δ)G−1] [(1− α) βYt −Bt+1]. Gross

capital income in period t is αYt, so the ratio of gross investment to gross capital income is

[1−(1−δ)G−1][(1−α)βYt−Bt+1]

αYt
= [1− (1− δ)G−1]

[
(1−α)β

α
− Bt+1

αYt

]
= [1− (1− δ)G−1]

[
(1−α)β

α
− Bt+1

Kt+1

GKt
αYt

]
= [1− (1− δ)G−1]

[
(1−α)β

α
− Bt+1

GKt
αYt

]
= [1− (1− δ)G−1]

[
(1−α)β

α
−GBt+1

1
αkα−1

t

]
. Use αkα−1

= α
(1−α)β

[(1 + B)G− βζ (g − rf )B] from equation (15), so that when ζ = 0, αkα−1 =

α
(1−α)β

(1 + B)G along a balanced growth path. Therefore, along a balanced growth path,

(1−α)β
α
−GBt+1

1
αkα−1

t

= (1−α)β
α

[
1−GB 1

(1+B)G

]
= (1−α)β

α
1

1+B , so the ratio of gross investment to

gross capital income along a deterministic balanced growth path is [1− (1− δ)G−1] (1−α)β
α

1
1+B

= 1+θ
1+B .

Proof of Lemma 2. The first-order condition for λ in equation (24) implies 0 =Et

{
(1−λ)(R−Rf)

(λRf+(1−λ)R)
γ

}
= Et

{
λRf+(1−λ)R−Rf
(λRf+(1−λ)R)

γ

}
= Et

{
Ra−Rf
Rγa

}
= Et {R1−γ

a } − RfEt {R−γa }, which implies Rf =

Et{R1−γ
a }

Et{R−γa } .

Proof of Proposition 1. In preparation for the proof of the proposition we establish two

Lemmas and a corollary.

Lemma 6 If Rf ≤ 1, then λ
1−λ

(
Rf

E{R−γ−1
a }

E{R−γa } − 1

)
≤ 1−Rmin.

Proof of Lemma 6. Assume that Rf ≤ 1. Use Rf =
E{R1−γ

a }
E{R−γa } from Lemma 2 to ob-

tain Rf
E{R−γ−1

a }
E{R−γa } = Rf

[
E{R−γa }
E{R−γ−1

a }

]−1

= Rf

[
E

{
R−γ−1
a

E{R−γ−1
a }Ra

}]−1

. Since E

{
R−γ−1
a

E{R−γ−1
a }Ra

}
is a weighted average of Ra, it is greater than or equal to the minimum possible realiza-

tion of Ra, and since 0 ≤ λ ≤ 1, E

{
R−γ−1
a

E{R−γ−1
a }Ra

}
≥ λRf + (1− λ)Rmin. Therefore,

since Rf ≤ 1, we have Rf
E{R−γ−1

a }
E{R−γa } ≤ Rf

1
λRf+(1−λ)Rmin

≤ 1
λ+(1−λ)Rmin

. (Note that since

Rmin ≤ 1, the bound 1
λ+(1−λ)Rmin

is greater than one.) Therefore, λ
1−λ

(
Rf

E{R−γ−1
a }

E{R−γa } − 1

)
≤
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λ
1−λ

(
1

λ+(1−λ)Rmin
− 1
)

= λ
1−λ

(
1−λ−(1−λ)Rmin

λ+(1−λ)Rmin

)
= λ

λ+(1−λ)Rmin
(1−Rmin) = 1

1+ 1−λ
λ
Rmin

(1−Rmin)

= 1
1+B−1Rmin

(1−Rmin) < 1−Rmin. Hence, λ
1−λ

(
Rf

E{R−γ−1
a }

E{R−γa } − 1

)
< 1−Rmin, since B ≥ 0

and Rmin ≥ 0.

Lemma 7 Suppose x > 0 is a non-degenerate random variable with finite moments. Define

Z ≡ [E {x−γ}]2 − E {x−γ−1}E {x1−γ}. Then Z < 0.

Proof of Lemma 7. Rewrite Z as Z = E {x−γ}E {x−γ−1}
(

E{x−γ}
E{x−γ−1} −

E{x1−γ}
E{x−γ}

)
Observe

that Z has the same sign as
E{x−γ−1x}
E{x−γ−1} −

E{x−γx}
E{x−γ} , which we write as E {g (x)x}−E {h (x)x},

where g (x) ≡ x−γ−1

E{x−γ−1} and h (x) ≡ x−γ

E{x−γ} . Observe that E {g (x)} = 1 = E {h (x)}

and g(x)
h(x)

=
E{x−γ}
E{x−γ−1}

1
x

= A 1
x
, so g (x) = A 1

x
h (x) where A ≡ E{x−γ}

E{x−γ−1} > 0, which implies

g (x) R h (x) as x S A. Therefore, E {g (x)x} − E {h (x)x} =
∫∞

0
[g (x)− h (x)]xdF (x)

=
∫∞

0
[g (x)− h (x)] (x− A) dF (x) =

∫ A
0

[g (x)− h (x)] (x− A) dF (x) +
∫∞
A

[g (x)− h (x)]×

(x− A) dF (x) < 0.

We present, without proof, the following corollary to Lemma 2, which follows immediately

from Lemma 7 .

Corollary 4 E {R−γa } −RfE {R−γ−1
a } = 1

E{R−γa }
[
(E {R−γa })

2 − E {R1−γ
a } {R−γ−1

a }
]
< 0.

Having presented Lemmas 6 and 7 and Corollary 4, we now proceed with the proof of

Proposition 1.

The portfolio allocation problem of individual consumers is maxλ
1

1−γE {R
1−γ
a }, where

Ra ≡ λRf + (1− λ)
(
R + ε

)
. The first-order condition is

f
(
λ,Rf , R

)
≡ E

{
R−γa

[
Rf −

(
R + ε

)]}
= 0. (A.1)

The optimization problem is concave in λ so fλ < 0. Formally,

fλ
(
λ,Rf , R

)
= −γE

{
R−γ−1
a

[
Rf −

(
R + ε

)]2}
< 0. (A.2)

Differentiate f
(
λ,Rf , R

)
with respect toR to obtain fR

(
λ,Rf , R

)
=−γE {R−γ−1

a (1− λ)×(
Rf −

(
R + ε

))}
−E {R−γa } = γE

{
R−γ−1
a (1− λ)

(
R + ε−Rf

)}
−E {R−γa } = γE {R−γ−1

a ×
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[
λRf + (1− λ)

(
R + ε

)
−Rf

]}
−E {R−γa } = γE {R−γ−1

a (Ra −Rf )}−E {R−γa }. Therefore,

fR
(
λ,Rf , R

)
= γ

[
E
{
R−γa

}
−RfE

{
R−γ−1
a

}]
− E

{
R−γa

}
< 0, (A.3)

where the inequality follows from Corollary 4.

Now differentiate f
(
λ,Rf , R

)
with respect to Rf to obtain

fRf
(
λ,Rf , R

)
= −γE

{
R−γ−1
a λ

[
Rf −

(
R + ε

)]}
+ E

{
R−γa

}
. (A.4)

Observe that λ
[
Rf −

(
R + ε

)]
= λ

λ−1

[
(λ− 1)Rf − (λ− 1)

(
R + ε

)]
= λ

λ−1
(Ra −Rf ),

so that equation (A.4) can be written as fRf
(
λ,Rf , R

)
= −γE

{
R−γ−1
a

λ
λ−1

(Ra −Rf )
}

+

E {R−γa }, so

fRf
(
λ,Rf , R

)
= γ

λ

1− λ
E
{
R−γa −RfR

−γ−1
a

}
+ E

{
R−γa

}
. (A.5)

Now multiply the right hand side of equation (A.5) by E {R−γa } and divide each term by

E {R−γa } to obtain fRf
(
λ,Rf , R

)
= E {R−γa }

[
γ λ

1−λ
E{R−γa }−RfE{R−γ−1

a }
E{R−γa } + 1

]
, which implies

fRf
(
λ,Rf , R

)
= E

{
R−γa

}[
1− γ λ

1− λ

(
Rf

E {R−γ−1
a }

E
{
R−γa

} − 1

)]
. (A.6)

Lemma 6 implies that

fRf
(
λ,Rf , R

)
≥ E

{
R−γa

}
[1− γ (1−Rmin)] , if Rf ≤ 1. (A.7)

Therefore,

fRf
(
λ,Rf , R

)
≥ 0 if γ ≤ 1

1−Rmin

and Rf ≤ 1. (A.8)

Now totally differentiate f
(
λ,Rf , R

)
= 0 in equation (A.1) with respect to B to obtain

fλ
(
λ,Rf , R

)
dλ
dB + fRf

(
λ,Rf , R

) dRf
dB + fR

(
λ,Rf , R

) [
dR
dB + dR

dRf

dRf
dB

]
= 0, which can rear-
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ranged as

fλ
(
λ,Rf , R

) dλ
dB

+

[
fRf

(
λ,Rf , R

)
+ fR

(
λ,Rf , R

) dR
dRf

]
dRf

dB
+fR

(
λ,Rf , R

) dR
dB

= 0 (A.9)

Since, in equilibrium, λ = B
K+B

= B
1+B , we have dλ

dB = 1
(1+B)2 > 0 and since fλ

(
λ,Rf , R

)
<

0 from equation (A.2), the first of the three terms in equation (A.9), fλ
(
λ,Rf , R

)
dλ
dB ,

is negative. Equation (18) implies that dR
dB = α

(1−α)β
[1− βζ (1−Rf )] > 0 and since

fR
(
λ,Rf , R

)
< 0 from equation (A.3), the third of the three terms in equation (A.9),

fR
(
λ,Rf , R

)
dR
dB , is also negative. Therefore, the second of the three terms in this equa-

tion,
[
fRf

(
λ,Rf , R

)
+ fR

(
λ,Rf , R

)
dR
dRf

]
dRf
dB , is positive. Thus, to derive sufficient con-

ditions for
dRf
dB > 0, it suffices to derive sufficient conditions under which fRf

(
λ,Rf , R

)
+

fR
(
λ,Rf , R

)
dR
dRf

> 0.

Use equations (A.3) and (A.5), along with equation (18), which implies dR
dRf

= α
1−αζB, to

obtain

fRf
(
λ,Rf , R

)
+ fR

(
λ,Rf , R

) dR
dRf

= γ
λ

1− λ
E
{
R−γa −RfR

−γ−1
a

}
+ E

{
R−γa

}
(A.10)

+
[
γE
{
R−γa −RfR

−γ−1
a

}
− E

{
R−γa

}] α

1− α
ζB.

Rearrange equation (A.10) and use B = λ
1−λ to obtain

fRf
(
λ,Rf , R

)
+ fR

(
λ,Rf , R

) dR
dRf

= γ

(
1 +

α

1− α
ζ

)
BE

{
R−γa −RfR

−γ−1
a

}
(A.11)

+

(
1− α

1− α
ζB
)
E
{
R−γa

}
,

and rearrange further to obtain

fRf
(
λ,Rf , R

)
+fR

(
λ,Rf , R

) dR
dRf

= E
{
R−γa

}γ (1 +
α

1− α
ζ

)
B

1−Rf
E
{
R−γ−1
a

}
E
{
R−γa

}
+ 1− α

1− α
ζB

 .
(A.12)
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Equation (A.12) implies fRf
(
λ,Rf , R

)
+ fR

(
λ,Rf , R

)
dR
dRf

> 0 if and only if

γ

(
1 +

α

1− α
ζ

)
B

(
Rf

E {R−γ−1
a }

E
{
R−γa

} − 1

)
< 1− α

1− α
ζB. (A.13)

Since B = λ
1−λ , Lemma 6 implies that the condition in equation (A.13) will be satisfied if

Rf ≤ 1 and γ
(
1 + α

1−αζ
)

(1−Rmin) < 1− α
1−αζB, or equivalently,

γ <
1− α

1−αζB
1 + α

1−αζ

1

1−Rmin

(A.14)

If Rf ≤ 1, then 1 ≥ α
(1−α)β

[1 + B − βζ (1−Rf )B] + (1− δ + ε̃min)G−1 = Rmin + α
(1−α)β

×

[1− βζ (1−Rf )]B ≥ Rmin + α
(1−α)β

(1− βζ)B, so α
(1−α)β

(1− βζ)B ≤ 1 − Rmin, or, equiv-

alently, α
1−αζB ≤

βζ
1−βζ (1−Rmin). Therefore, 1 − α

1−αζB ≥ 1 − βζ
1−βζ (1−Rmin), so the

condition in equation (A.14) will be satisfied if

γ <
1− βζ

1−βζ (1−Rmin)

1 + α
1−αζ

1

1−Rmin

. (A.15)

The upper bound on γ on the right hand side of equation (A.15) is greater than 1 if

1 − βζ
1−βζ (1−Rmin) >

(
1 + α

1−αζ
)

(1−Rmin), that is, if 1 >
[
1 + α

1−αζ + βζ
1−βζ

]
(1−Rmin).

The most unfavorable values of β and ζ for this condition are β = 0.5 (which is the maximum

value of β consistent with non-negative time preference) and ζ = 1, in which case the

condition becomes 1 >
(
2 + α

1−α

)
(1−Rmin), which for α = 1

3
becomes 1 > 5

2
(1−Rmin) or

equivalently, 1−Rmin < 0.4, or Rmin > 0.6.

Proof of Lemma 3. It suffices to show that E
{
Rφ
a

}
is decreasing in φ for φ < 0.

dE{Rφa}
dφ

=
dE{expφ lnRa}

dφ
= E

{
(lnRa)R

φ
a

}
= E {lnRa}E

{
Rφ
a

}
+ cov

(
lnRa, R

φ
a

)
≤ cov

(
lnRa, R

φ
a

)
< 0,

since E{lnRa} ≤ 0 by assumption.

Proof of Proposition 2. Since B = 0, R ≡ Ra, and so Statement 1 follows directly from

Lemmas 2 and 3. Statement 2 follows directly from Statement 1.

Proof of Proposition 3. Let B1 be an arbitrary non-negative value of B for which

Rf (B) > 1 and let B2 be the smallest value of B greater than B1 for which Rf (B) = 1.
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Therefore, R′f (B2) ≤ 0 and Rf (B2) ≤ 1, which contradicts the assumption that R′f (B) > 0

whenever Rf (B) ≤ 1. Therefore, Rf (B) > 1 for all B ≥ B1. We will use this result to prove

the statements in this proposition. Statement 1: First, if Rf (0) > 1, then Rf (B) > 1 for

all positive B, so all positive values of B are unsustainable. If Rf (0) = 1, then Rf (ε) > 1

in a positive neighborhood of ε = 0, and therefore, Rf > 1 for all positive B, so all positive

values of B are unsustainable. Therefore, if Rf (0) ≥ 1, then Bmax = 0. Statement 2:

Assume that Rf (0) < 1. Let B0 > 0 be the smallest positive B for which Rf (B) = 1, so B0

is sustainable. Using the result above in this proof for all values of B > B0, Rf (B) > 1, and

hence these values of B are unsustainable. Therefore, Bmax is the unique root of Rf (B) =

1. To show that Bmax is finite, suppose that B > 1−Rmin
α

(1−α)β
(1−βζ) > 0. Then the smallest

risky rate of return minε̃R ≥ Rmin + α
(1−α)β

[1− βζ + βζRf ]B ≥ Rmin + α
(1−α)β

[1− βζ]B >

Rmin + α
(1−α)β

(1− βζ) 1−Rmin
α

(1−α)β
(1−βζ) = 1. Therefore, if the distribution of the durability shock,

ε̃, is non-degenerate, Rf must exceed one because of the absence of arbitrage opportunities.

Therefore, Rf can be less than or equal to one only if B ≤ 1−Rmin
α

(1−α)β
(1−βζ) , which is finite, so

Bmax is finite. Finally, since there is a unique value of B for which Rf (B) = 1, we have

Rf (B) < 1 for 0 ≤ B ≤ Bmax and all of these values of B are sustainable; Rf (B) > 1 for all

B > Bmax and these values are unsustainable, so B is sustainable if and only if 0 ≤ B ≤ Bmax.

Lemma 8 Define Γ ≡ G− βζ (g − rf ). If
dRf
dB > 0, then

1. Γ > 0 and dΓ
dB = Gβζ

dRf
dB

2. d lnw
dB = − α

1−α
Γ+GβζB

dRf
dB

G+ΓB < 0

3. d
dB

(
β

1−γ lnEt {R1−γ
a }

)
= 1

Rf

(
β B

1+B
dRf
dB + 1

1+B
α

1−αG
−1
[
Γ +GβζB dRf

dB

])
> 0

4. d
dB ln

(
1 + τt

Wt

)
= βζ

G+ΓB

[
g−rf
1+B −GB

dRf
dB

]
Proof of Lemma 8. Proof of Statement 1: Γ ≡ G− βζ (g − rf ) = 1 + g − βζg + βζrf =

(1 + βζrf ) + (1− βζ) g. Since 0 < β < 1, 0 ≤ ζ ≤ 1, and rf > −1, we have 1 + βζrf > 0,

and since, in addition, g ≥ 0, (1− βζ) g ≥ 0. Therefore, Γ > 0. Differentiate Γ with

respect to B to obtain dΓ
dB = βζ

drf
dB = Gβζ

dRf
dB .
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Proof of Statement 2: (1) Since w = (1− α) kα, we have dw
dk

= αw
k

and hence 1
w
dw
dk

= α 1
k
;

(2) equation (15) implies ka−1 = 1
(1−α)β

[(1 + B)G− βζ (g − rf )B] = 1
(1−α)β

(G+ ΓB), so

k =
[

1
(1−α)β

(G+ ΓB)
] 1
α−1

and hence dk
dB = 1

α−1
k

Γ+B dΓ
dB

G+ΓB = 1
α−1

k
Γ+GβζB

dRf
dB

G+ΓB . Therefore, d lnw
dB

= 1
w
dw
dk

dk
dB = − α

1−α
Γ+GβζB

dRf
dB

G+ΓB .

Proof of Statement 3: Use Ra ≡ λRf + (1− λ)R to obtain d
dB

(
β

1−γ lnEt {R1−γ
a }

)
=

β
1−γ

1

Et{R1−γ
a } (1− γ)Et

{
R−γa

(
λ
dRf
dB + (1− λ) dR

dB

)}
, where we have used the envelope theo-

rem to ignore Et
{
R−γa

(
dλ
dBRf − dλ

dBR
)}

= 0. Use the following: (1)
dRf
dB is non-random;

(2) equations (17) and (18) imply dR
dB = α

(1−α)β
G−1

[
G− βζ (g − rf ) +GβζB dRf

dB

]
, which

is non-random; (3) Lemma 2, which implies
E{R−γa }
E{R1−γ

a } = 1
Rf

; and (4) λ = B
1+B to obtain

d
dB

(
β

1−γ lnEt {R1−γ
a }

)
= 1

Rf

(
β B

1+B
dRf
dB + 1

1+B
α

1−αG
−1
[
Γ +GβζB dRf

dB

])
.

Proof of Statement 4: Along a balanced growth path, τt
Wt

= βNτt
βNWt

=
βζ(g−rf)Bt

βNWt
=

βζ(g−rf)Bt
βN(Wt+τt)

βN(Wt+τt)
βNWt

=
βζ(g−rf)Bt
Kt+1+Bt+1

(
1 + τt

Wt

)
= βζ (g − rf )G−1 B

1+B

(
1 + τt

Wt

)
, where the final

equality uses the fact that along a balanced growth path, Bt = G−1Bt+1, so Bt
Kt+1+Bt+1

= G−1Bt+1

Kt+1+Bt+1
= G−1 B

1+B . Define Xt ≡ 1 + τt
Wt

, so along a balanced growth path we

have X − 1 = βζ (g − rf )G−1 B
1+BX, which implies X =

(
1− βζ (g − rf )G−1 B

1+B

)−1
=(

G−1 1
1+B (G (1 + B)− βζ (g − rf )B)

)−1
= G (1 + B) (G+ ΓB)−1. Therefore, lnX = lnG+

ln (1 + B) − ln (G+ ΓB). Now differentiate lnX with respect to B to obtain d lnX
dB =

1
1+B −

1
G+ΓB

(
Γ+B dΓ

dB

)
= 1

G+ΓB

[
G+ΓB
1+B −

(
Γ +GBβζ dRf

dB

)]
= 1

G+ΓB

[
G−Γ
1+B −GBβζ

dRf
dB

]
. Use

Γ ≡ G− βζ (g − rf ) to obtain G− Γ = βζ (g − rf ), so d lnX
dB = 1

G+ΓB

[
βζ(g−rf)

1+B −GBβζ dRf
dB

]
= βζ

G+ΓB

[
g−rf
1+B −GB

dRf
dB

]
.

Proof of Proposition 4. Assume that
dRf
dB > 0. Differentiate equation (25) with respect

to B and use Statements 2, 3, and 4 of Lemma 8 to obtain du
dB = D1 + D2 + D3, where

D1 ≡ − α
1−α

Γ+GβζB
dRf
dB

G+ΓB + 1
Rf

1
1+B

α
1−αG

−1
[
Γ +GβζB dRf

dB

]
and D2 ≡ 1

Rf
β B

1+B
dRf
dB −

Gβζ
G+ΓBB

dRf
dB

and D3 ≡ βζ
G+ΓB

g−rf
1+B . First calculate D1 =

(
− 1
G+ΓB + 1

Rf

1
1+BG

−1
)

α
1−α

[
Γ +GβζB dRf

dB

]
.

Now we will rearrange − 1
G+ΓB + 1

Rf

1
1+BG

−1 = 1
Rf

1
G+ΓBG

−1
(
−GRf + G+ΓB

1+B

)
= 1

Rf

1
G+ΓBG

−1×(
(1−Rf )G−

βζ(g−rf)B
1+B

)
= 1

Rf

1
G+ΓBG

−1×
(
1− βζ B

1+B

)
(g − rf ), where the penultimate

equality uses the definition Γ ≡ G − βζ (g − rf ) and the final equality uses the definition

Rf ≡ 1+rf
G

. Therefore, D1 = 1
Rf

1
G+ΓBG

−1
(
1− βζ B

1+B

)
α

1−α×
[
Γ +GβζB dRf

dB

]
(g − rf ), which
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has the same sign as g−rf , so D1 ≥ 0, if g ≥ rf . Now consider D2 ≡ 1
Rf
β B

1+B
dRf
dB −

Gβζ
G+ΓBB

dRf
dB

=
[

1
Rf

1
1+B −

Gζ
G+ΓB

]
βB dRf

dB = 1
Rf

1
G+ΓB

[
G+ΓB
1+B −GζRf

]
βB dRf

dB and use Γ ≡ G−βζ (g − rf ) to

obtain

D2 =
1

Rf

1

G+ ΓB

[
G−GζRf −

βζ (g − rf )B
1 + B

]
βBdRf

dB

=
1

Rf

1

G+ ΓB

[
G+GRf −GRf −GζRf −

βζ (g − rf )B
1 + B

]
βBdRf

dB

=
1

Rf

1

G+ ΓB

[
G−GRf + (1− ζ)GRf −

βζ (g − rf )B
1 + B

]
βBdRf

dB
.

Now use G − GRf = 1 + g − (1 + rf ) = g − rf to obtain D2 = 1
Rf

1
G+ΓB [(1− ζ)GRf+(

1− βζ B
1+B

)
(g − rf )

]
βB dRf

dB , so D2 > 0, if g ≥ rf . By inspection, D3 ≡ βζ
G+ΓB

g−rf
1+B ≥ 0, if

if g ≥ rf . Therefore, du
dB = D1 +D2 +D3 > 0, if g ≥ rf .

Proof of Corollary 3. Assume that ζ = 0, which implies that Γ ≡ G− βζ (g − rf ) = G.

Therefore, Statements 2, 3, and 4 of Lemma 8 imply du
dB = − α

1−α
1

1+B+ 1
Rf

[
β B

1+B
dRf
dB + 1

1+B
α

1−α

]
= 1

1+B
1
Rf

[
(1−Rf )

α
1−α + βB dRf

dB

]
> 0.

Proof of Proposition 5. See the discussion in the text.

Proof of Lemma 4. An economy is dynamically efficient if and only if RHRL ≥ 1,

equivalently,
(
R(B, ζ, Rf ) +G−1σ

) (
R(B, ζ, Rf )−G−1σ

)
≥ 1, equivalently,

[
R(B, ζ, Rf )

]2−
G−2σ2 ≥ 1, equivalently, G−2σ2 ≤

[
R(B, ζ, Rf )

]2 − 1.

Proof of Lemma 5. Assume that γ = 1. Lemma 2 implies Rf =
[
E
{

1
Ra

}]−1

=[
E
{

1
λRf+(1−λ)R

}]−1

, soRfE
{

1
λRf+(1−λ)R

}
= 1. With Pr

{
R = R +G−1σ

}
= Pr

{
R = R−G−1σ

}
=

1
2
, 1 = 1

2
Rf

[
1

λRf+(1−λ)(R+G−1σ)
+ 1

λRf+(1−λ)(R−G−1σ)

]
=Rf

1

λRf+(1−λ)(R+G−1σ)
1

λRf+(1−λ)(R−G−1σ)
×[

λRf + (1− λ)R
]
, which implies Rf

[
λRf + (1− λ)R

]
=
[
λRf + (1− λ)

(
R +G−1σ

)]
×[

λRf + (1− λ)
(
R−G−1σ

)]
=
[
λRf + (1− λ)R + (1− λ)G−1σ

] [
λRf + (1− λ)R− (1− λ)G−1σ

]
=
[
λRf + (1− λ)R

]2 − (1− λ)2G−2σ2. In equilibrium, λ = B
1+B and 1 − λ = 1

1+B , so

Rf

( B
1+BRf + 1

1+BR
)

=
( B

1+BRf + 1
1+BR

)2 −
(

1
1+B

)2
G−2σ2. Multiply both sides of this

equation by (1 + B)2 to obtain (1 + B)Rf

(
BRf +R

)
=
(
BRf +R

)2 −G−2σ2, which, since

ζ = 0, can be rearranged to obtain φ (B, Rf , G
−2σ2) ≡

[
BRf +R (B, 0, ·)

] [
R (B, 0, ·)−Rf

]
−

G−2σ2 = 0. The equation φ (B, Rf , G
−2σ2) = 0 implicitly defines the combinations of B and
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G−2σ2 consistent with any given Rf , so φ (B, 1, G−2σ2) =
[
B +R (B, 0, ·)

] [
R (B, 0, ·)− 1

]
−

G−2σ2 = 0 implicitly defines the combinations of B and G−2σ2 consistent with Rf = 1.

Observe from equation (18) that R (B, 0, ·) ≡ α
(1−α)β

(1 + B) + (1− δ)G−1 so ∂R(B,0,·)
∂B =

α
(1−α)β

> 0. Therefore,
∂φ(B,Rf ,G−2σ2)

∂B =
[
Rf + ∂R(B,0,·)

∂B

] [
R (B, 0, ·)−Rf

]
+
[
BRf +R (B, 0, ·)

]
×

∂R(B,0,·)
∂B > 0, since risk aversion impliesR (B, 0, ·) ≥ Rf ; also,

∂φ(B,Rf ,G−2σ2)
∂Rf

= B
[
R (B, 0, ·)−Rf

]
−[

BRf +R (B, 0, ·)
]

= − (1− B)R (B, 0, ·)−2BRf < 0 if 0 ≤ B ≤ 1; and
∂φ(B,Rf ,G−2σ2)

∂(G−2σ2)
= −1.

Since
∂φ(B,Rf ,G−2σ2)

∂B > 0 and
∂φ(B,Rf ,G−2σ2)

∂(G−2σ2)
< 0, the locus of B and G−2σ2 for which Rf = 1,

φ (B, 1, G−2σ2) = 0 is upward sloping. For any value of B in the interval [0, 1], an increase

in G−2σ2 reduces φ (B, Rf , G
−2σ2) so Rf must fall to increase φ (B, Rf , G

−2σ2) back to zero.

Thus, Rf Q 1 as G−2σ2 R
[
B +R (B, 0, ·)

] [
R (B, 0, ·)− 1

]
.

Proof of Proposition 6. Lemma 5 implies that Rf Q 1 as G−2σ2 R h (B). Lemma 4

implies that the steady state is dynamically efficient if and only if G−2σ2 ≤ g (B).

B Properties of Figure 2

Figure 2 illustrates the case in which γ = 1,B = 0, and the durability shock is drawn

from a symmetric 2-point distribution. Lemma 2 implies that for any distribution of the

durability shock, γ = 1 implies Rf = 1
E{R−1

a }
. When B = 0, we have Ra = R, and hence

Rf = 1
E{R−1} , which is the harmonic mean of R. With a symmetric 2-point distribution,

Rf = 1
2

(
1
RH

+ 1
RL

)
.

Lemma 9 If RH ≥ 1, then 1
2

(
1
RH

+RH

)
≥ 1, with strict inequality if RH > 1.

Proof of Lemma 9. Observe that 1
2

(
1
RH

+RH

)
≥ 1 if and only if 1

RH
+ RH − 2 ≥ 0.

Note that 1
RH

+ RH − 2 = 1
RH

(1 +R2
H − 2RH) = 1

RH
(RH − 1)2 ≥ 0 if RH > 0, with strict

inequality if 0 < RH 6= 1, which is sufficient to prove the lemma.

Lemma 10 Assume that RH ≥ 1 and RL > 0. The function Rf (RH , RL) ≡ 1
1
2

(
1
RH

+ 1
RL

)
has the following properties

1. Rf (1, 1) = 1.
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2. Rf

(
RH ,

1
RH

)
= 1

1
2

(
1
RH

+RH

) ≤ 1, with strict inequality if RH > 1

3. dRL
dRH
|Rf (RH ,RL)=1 = −

(
RL
RH

)2

< 0

4. the locus Rf (RH , RL) = 1 is convex

5. for RH > 1, the locus Rf (RH , RL) =1 lies above the E {lnR} = 0 locus.

Proof of Lemma 10. Statement 1 follows from inspection of the definition of Rf (RH , RL).

Statement 2: Inspection of the definition of Rf (RH , RL) reveals that Rf

(
RH ,

1
RH

)
=

1
1
2

(
1
RH

+RH

) and Lemma 9 states that 1
2

(
1
RH

+RH

)
≥ 1, with strict inequality if RH > 1,

which suffices to prove Statement 2. Statement 3: To calculate the slope of the locus

Rf (RH , RL) = 1 for RH ≥ RL, rewrite Rf (RH , RL) as Rf (RH , RL) = 2RHRL
RH+RL

and cal-

culate
∂Rf (RH ,RL)

∂RH
=

Rf
RH
− Rf

RH+RL
= RL

RH

1
RH+RL

Rf > 0 and
∂Rf (RH ,RL)

∂RL
=

Rf
RL
− Rf

RH+RL
=

RH
RL

1
RH+RL

Rf > 0. Therefore, the slope of the locus Rf (RH , RL) = 1 is dRL
dRH
|Rf (RH ,RL)=1

= −∂Rf (RH ,RL)

∂RH

[
∂Rf (RH ,RL)

∂RL

]−1

= −
RL
RH

1
RH+RL

RH
RL

1
RH+RL

= −
(
RL
RH

)2

< 0. Statement 4: Starting at

any point on the locus Rf (RH , RL) = 1, and moving down and to the right along the lo-

cus, RL
RH

decreases, so the absolute value of the slope of this locus decreases. That is, the

Rf (RH , RL) = 1 locus is convex. Statement 5: For a given value of RH > 1, the value of

RL on the locus E {lnR} = 0 is RL = 1
RH

. Thus, Statement 2 implies that Rf (RH , RL) < 1

for any point on the E {lnR} = 0 locus with RH > 1. From the proof of Statement 3,

Rf (RH , RL) is increasing in RL. Therefore, to move from the E {lnR} = 0 locus for a

given RH > 1 to the Rf (RH , RL) = 1 locus with the same value of RH , RL must increase.

Therefore, the Rf (RH , RL) = 1 lies above the E {lnR} = 0 locus for any RH > 1.

C Calibration

Assume that a period equals 30 years. Since R(B) ≡ 1+r(B)
G

is the adjusted gross rate of

return on capital, 1+r (B) = G×R (B) is the gross rate of return on capital (not adjusted for

growth). Calibrate the distribution of the durability shock so that along a balanced growth

path with a bond-capital ratio equal to B, E {(1 + r (B))} = G × E {R (B)} = (1 +m)30
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where m is the target annual net rate of return on capital; the standard deviation of r (B),

which is equal to the standard deviation of G×R (B), is set equal to its target s
√

30, where

s is the target annual standard deviation of the rate of return on capital.

We specify the distribution of the durability shock so that

G−1ε̃ = exp (z)−R (0) (C.1)

where z is N (µ, σ2), and R (0) is obtained by setting B = 0 in equation (18). Our focus

is on the quantitative value of Bmax. Corollary 2 states that Bmax is invariant to ζ, so,

without loss of generality, we set ζ = 0. From equations (17) and (18), the risky rate

of return on capital along a balanced growth path with a given value of B is R (B) =

α
(1−α)β

(1 + B) + (1− δ)G−1 +G−1ε̃ =
[
R (0) + α

(1−α)β
B
]

+
[
exp (z)−R (0)

]
, so

R (B) =
α

(1− α) β
B + exp (z) . (C.2)

We choose the parameters µ and σ2 so that the mean of the risky rate equals the target

rate rate, which is m on an annual basis, so

E {1 + r (B)} = G×E {R (B)} = G×E
{

α

(1− α) β
B + exp (z)

}
= (1 +m)30 . (C.3)

Setting the standard deviation of the risky rate, 1 + r (B), which is G
√
V ar {exp (z)}, equal

to the target standard deviation, s
√

30, implies

G
√
V ar {exp (z)} = s

√
30. (C.4)

Use V ar {(exp(z)} = (exp(σ2)−1) exp(2µ+σ2) = (exp(σ2)−1)
[
exp(µ+ 1

2
σ2)
]2

= (exp(σ2)−

1) [E {exp (z)}]2 to rewrite equation (C.4) as

G× E {exp (z)}
√

(exp(σ2)− 1) = s
√

30. (C.5)
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From equation (C.3)

G× E {exp (z)} = (1 +m)30 −G α

(1− α) β
B, (C.6)

so equation (C.5) implies

√
(exp(σ2)− 1) =

s
√

30

(1 +m)30 −G α
(1−α)β

B
, (C.7)

which can be rewritten as

exp(
1

2
σ2) =

√√√√1 + 30

(
s

(1 +m)30 −G α
(1−α)β

B

)2

. (C.8)

Substitute exp (µ)× exp(1
2
σ2) for E {exp (z)} in equation (C.6) to obtain

G× exp (µ)× exp(
1

2
σ2) = (1 +m)30 −G α

(1− α) β
B, (C.9)

so

exp (µ) =
G−1 (1 +m)30 − α

(1−α)β
B

exp(1
2
σ2)

=
G−1 (1 +m)30 − α

(1−α)β
B√

1 + 30

(
s

(1+m)30−G α
(1−α)β

B

)2
. (C.10)

The mean, m, and standard deviation, s, of the rate of return on capital are expressed

on an annual basis. To compare these values to familiar values for the mean and standard

deviation of annual stock returns, we must take account of the fact that m and s are moments

of unlevered rates of return, and the moments of stock returns are levered returns. Let rA,

rAL , and rAf be rates of return on unlevered equity, levered equity and riskfree assets, all

expressed at annual rates (hence the superscript A). They are related to each other by

rA = D
D+E

rAf + E
D+E

rAL = D/E
1+D/E

rAf + 1
1+D/E

rAL , where D is the debt owed by the private

owners of capital and E is the equity of these owners. Assume that D equals 45% of D+E.
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Therefore, rA = 0.45rAf + 0.55rAL . Hence, if E
{
rA
}

= 3% per year and rAf = 0.6% per year,

then E
{
rAL
}

= 4.96% per year. Also, sd
{
rA
}

= 1
1+D/E

sd
{
rAL
}

, sd
{
rAL
}

= 1
0.55

sd
{
rA
}

, so

if sd
{
rA
}

= 0.12, then sd
{
rAL
}

= 0.218.

Remark 2 If the value of µ in equation (C.10) positive, then the economy with B = 0 is

dynamically efficient and hence the economy is dynamically efficient for any positive B also.

To prove this remark, note that equation (C.2) implies that R (0) = exp (z). Since

R′ (B) > 0, we have R (B) ≥ R (0) = exp (z) and hence E {lnR (B)} ≥ E {lnR (0)} =

E {z} = µ > 0 for any B ≥ 0.
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