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inflation. We show how to recover it from repeated cross-sectional data without making 
parametric assumptions about preferences. We do this by solving the following recursive 
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money metric utility, we construct compensated demand by matching households over time 
whose money metric utility value is the same. We illustrate our method using household 
consumption survey data from the United Kingdom from 1974 to 2017 and find that real 
consumption calculated using official aggregate inflation statistics overstates money metric utility 
for the poorest households by around half a percent per year and understates it by around a 
quarter of a percentage point per year for the richest households. We extend our method to allow 
for missing or mismeasured prices, assuming preferences are separable between goods with well-
measured prices and the rest. We discuss how our results change if the price of some service 
sectors is mismeasured.
David Baqaee
Department of Economics
University of California, Los Angeles
Bunche Hall
Los Angeles, CA 90095
and CEPR
and also NBER
baqaee@econ.ucla.edu

Ariel Burstein
Department of Economics
Bunche Hall 8365
Box 951477
UCLA
Los Angeles, CA 90095-1477
and NBER
arielb@econ.ucla.edu

Yasutaka Koike-Mori
University of California, Los Angeles
yasutaka.koike.mori@gmail.com



1 Introduction

Money metric utility functions are a backbone of welfare economics. They allow for the
comparison of incomes under different prices by converting them into equivalent incomes
using a common set of baseline prices. For example, what would be the income in 1975
that a consumer would need to be made indifferent with their income in other years?
Money metrics are specific cardinalizations of utility that have interpretable units. This
makes them the standard tool for measuring economic growth and inflation, and they
serve as fundamental inputs into a broad range of questions (e.g. policy evaluation and
indexation of social programs).

One can calculate a money metric by deflating nominal income using a weighted
average of changes in prices, where the weights are compensated (or Hicksian) budget
shares (see e.g. Hausman, 1981). Since compensated budget shares are not directly
observable, standard price deflators use uncompensated (or Marshallian) budget shares
instead. This shortcut leads to the correct answer if preferences are homothetic, but
fails when preferences are non-homothetic. This is because when preferences are non-
homothetic, compensated and uncompensated budget shares are different, and using one
in place of the other produces incorrect results.

In this paper, we show how to recover compensated budget shares and money metric
utility without imposing homotheticity or parametric assumptions about preferences,
and without estimating a demand system. To do this, consider repeated cross-sections
of households with identical preferences facing common prices. To construct the money
metric utility function, in t0 dollars, for a household with income I at time t, we must
know the compensated demand of this household for every s ∈ [t0, t]. This is revealed at
each point in time s by the budget shares of another household with a different income
level I′ who is on the same indifference curve as the household with income I at t.1

If we can find such households, then we can calculate the money metric utility function
by integration. That is, if we know how to match households over time, we can recover
money metric utility. Conversely, if we know money metric utility, then we can match
households through time, since households are on the same indifference curves if, and
only if, their money metric utility values coincide. The insight is that this is a fixed point
problem in terms of observables that can be solved.

1Even though we assume that households have common preferences that are unchanged over time (we
relax this assumption in Section 3.4), our matching approach is based on revealed preference theory and
is not based on interpersonal comparisons of “well-being”. That is, we match a household with income I
under t prices with a household with income I′ under s prices if the household at t is indifferent between
these two budget sets. We do not need to postulate that two households are “equally well-off” if their
utilities are the same.
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Our methodology endogenously identifies the set of households for which a money
metric value can be calculated reliably, without out-of-sample extrapolation. That is, our
approach does not necessarily recover the money metric for all households in the sample
because suitable matches may not exist. For example, if there is positive growth over
time, then the richest household at any point in time is on an indifference curve that no
other household was on in the previous periods. This means that for such a household,
we cannot calculate compensated demand in the past and hence the money metric, unless
we are prepared to extrapolate Engel curves out-of-sample.

Our method generalizes the standard practice of statistical agencies who weigh changes
in prices over time using aggregate budget shares. Conventional price deflators like the
CPI or the PCE recover money metric utility under the assumptions of homothetic and
stable preferences. However, when preferences are non-homothetic, we show that one
must use the budget shares of a unique corresponding income level in the past for each
income today instead of aggregate budget shares.2

Our paper also provides a contrast to the popular but ad hoc approach of constructing
price indices by household-income group using the budget shares of some fixed percentile
of the income distribution in each period. This method lacks a theoretical foundation if
percentiles of the income distribution do not remain on the same indifference curve over
time, and the shape of the indifference curve varies as a function of income.3

Our approach differs from alternatives that calculate compensated demand based
on estimated elasticities of substitution, as it does not require the estimation of non-
parametric elasticities of substitution.4 Intuitively, our method only recovers compensated
demand evaluated at observed prices, whereas the elasticities of substitution determine
how compensated demand will react to any price change, even those that have not been

2Chained-weighted indices measured by statistical agencies are generally uninterpretable when prefer-
ences are non-homothetic. However, under additional assumptions, chained indices do have meaningful
interpretations. For example, Feenstra and Reinsdorf (2000) show that when the path of prices is linear in
time, chained indices measure the cost-of-living price index for some intermediate utility level under AIDS
preferences. Caves et al. (1982) establish a similar result for Tornqvist price indices, up to a second-order
approximation. But these are not money metrics. In this paper, we focus on the money metric utility
function.

3National statistical agencies sometimes produce inflation statistics like this. For ex-
ample, the UK’s Office of National Statistics produces inflation indices by household
expenditure groups (see https://www.ons.gov.uk/economy/inflationandpriceindices/articles/

inflationandthecostoflivingforhouseholdgroups/october2022).
4In this respect, our approach resembles Oulton (2012), who demonstrates how to back out compensated

budget shares by adjusting uncompensated budget shares using a Taylor series in income. He applies this
methodology, using the Quadratic Almost Ideal Demand System of Banks et al. (1997), to estimate the cost-
of-living index without needing to estimate price elasticities. Instead of relying on a Taylor series under a
parametric functional form for demand, our approach purges income effects from substitution effects by
matching households over time who are on the same indifference curve but face different prices.
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observed. As a result, our procedure can measure changes in welfare for observed changes
in prices and income but is not suited for addressing counterfactual welfare questions,
such as those explored by Baqaee and Burstein (2021).

The paper is organized as follows. In Section 2, we define money metric utility and
its dual, the cost-of-living index, and explain their relationship to compensated demand.
In Section 3, we demonstrate how to recover the cost-of-living index and money metric
utility given cross-sectional data when all prices are fully observed over time. We present
two solution strategies, both of which exactly recover the money metric as long as the data
is continuous in both the time series and the cross-section. Using an artificial example, we
show that both methods quickly converge to the truth as the number of households and
the temporal frequency of observations increase.

We also discuss how our results change when there is preference heterogeneity in
either the cross-section or time series. To account for heterogeneity in preferences that
depend on observable characteristics across households, we split the sample by observed
characteristic and apply our method to each subsample separately. With unobservable
taste shocks, there are certain cases in which our methodology produces reliable results.
For example, our approach approximately recovers the true money metric as long as taste
shocks are small and uncorrelated with price changes.

In Section 4, we illustrate our method by applying it to household expenditure survey
data from the United Kingdom spanning from 1974 to 2017. We find that real consumption
calculated by deflating income with aggregate chain-weighted inflation (as measured by
official statistical agencies) overstates the money metric utility for all households below
the 60th percentile of the spending distribution in 2017 in our sample. In other words,
for expenditures below the 60th percentile, the 1974 equivalent income is less than real
consumption. The size of this gap is greatest for the poorest households, roughly 20
percentage points (0.5 percentage points per year on average), and gradually diminishes
until it reaches zero for households close to the 60th percentile.

Conversely, real consumption calculated using aggregate inflation statistics under-
states the money metric utility for households above the 60th percentile. For households
in the 97th percentile of our sample, who spend around £81, 000 per year, the size of this
gap is 13 percentage points over the whole sample (0.25 percentage points per year on
average).5 We are unable to compute the money metric for the richest households in 2017
(97th percentile and above). The reason is that for these households, there did not exist
consumers in the past whose money metric utilities are high enough and whose observed

5These results are consistent with Blundell et al. (2003), which report a relatively greater rise on the cost
of living for poorer households between 1975 and 1984 in the UK.
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demand can be used in place of the compensated budget shares.
Whereas real consumption calculated using the aggregate inflation rate has large errors

relative to our true estimated money metric, a decile-specific chained deflator produces
smaller errors in our UK dataset. Of course, one needs to compute the true money
metric first, before knowing whether or not the ad hoc approach is a good approximation.
Furthermore, computing quantile-specific chained deflators requires more information
than our method.

In Section 5, we extend our methodology to allow for missing prices. To do this,
we require the restriction that the expenditure function be separable between observed
and unobserved prices. Under this additional assumption, we show that money metric
utility can be recovered if we know the compensated elasticity of substitution between
observed and unobserved goods. This generalizes the influential Feenstra (1994) approach
to imputing missing prices beyond the homothetic CES case.

Specifically, we show how to back out the change in the relative price of observed and
unobserved goods using changes in the compensated budget share of the observed goods.
For example, if the compensated budget share on observed goods is rising, and observed
goods are net complements with unobserved goods, then this indicates that the relative
price of unobserved goods is falling. This can then be used to calculate money metric
utility. We also show that the elasticity of substitution between observed and unobserved
goods, which is required to infer missing prices, can be identified without knowledge of
those missing prices.

We provide an empirical illustration of this extension in Section 6. We assume that
some service prices are mismeasured, estimate elasticities of substitution between these
services and other goods, and apply our methodology. We find that the price of the
compensated bundle of services has been rising faster than official data for rich but not for
poor households. This implies that the money metric is overstated for rich but not poor
households.

We conclude in Section 7. Proofs are in the appendix and supplementary materials are
in an online appendix.

Related Literature. Our paper is closely related to Blundell et al. (2003) and Jaravel and
Lashkari (2022), both of which develop non-parametric approaches to measuring welfare
for non-homothetic preferences using cross-sectional household-level data. Although
inspired by them, our approach is different and builds on Lemma 1 from Baqaee and
Burstein (2021), which expresses the money metric as an integral of compensated demand
curves. We discuss the alternative approaches of Blundell et al. (2003) and Jaravel and
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Lashkari (2022).
Blundell et al. (2003) bound the money metric by using revealed choice arguments.

For each income level at time t, Blundell et al. (2003) construct a bundle that is strictly
better and a bundle that is strictly worse in time s , t. The price of these two bundles
then bound the true money metric value.6 Our approach has an advantage over Blundell
et al. (2003) in that it provides a point estimate, rather than only bounds, for the money
metric utility. On the other hand, in order for our methodology to recover point estimates
for the money metric utility without approximation errors, the data must be observed
continuously.7 We show in Appendix O.5 that our point estimates are always within their
bounds in real-world data.

Jaravel and Lashkari (2022) use a correction term to address non-homotheticity in
household-level chain-weighted indices. Whereas our approach endogenously delineates
a set of households for whom money metric utility can be calculated, without relying on
out-of-sample extrapolation, the Jaravel and Lashkari (2022) method aims to uncover
the money metric for all households observed at any point in time. That is, unlike our
methodology, their approach does not provide a boundary on the set of households whose
money metric values can be reliably computed. In Online Appendix O.6, we apply the
Jaravel and Lashkari (2022) method to artificial examples. If the support of the cross-
sectional distribution of utilities changes over time, then their algorithm can diverge or
result in large errors (and these errors persist even as we increase the sample size and
frequency of observation).

In contrast to both Jaravel and Lashkari (2022) and Blundell et al. (2003), we also extend
our methodology to situations where some prices and expenditures are unobserved. Since
our method can be extended to allow for unmeasured prices, our paper is also related
to the literature that measures welfare allowing for incomplete information about prices.
Most papers with non-homothetic preferences follow the approach of Costa (2001) and
Hamilton (2001). These papers take advantage of horizontal shifts in Engel curves to
identify money metric utility changes. The frontier in this literature is Atkin et al. (2020),
who show how to identify welfare changes assuming that preferences are quasi-separable
between the measured and unmeasured goods.

Our paper, instead, generalizes the Feenstra (1994) method beyond the homothetic CES

6We exposit and implement an amended version of their methodology in Online Appendix O.5, fixing
a typographical error in their algorithm for the lower-bound.

7We interpolate budget shares to turn discrete data continuous. If this interpolation is inaccurate, then
this introduces approximation errors into our method. Such errors are not specific to our method and
result from the fact that sums do not perfectly measure integrals. For example, even when preferences are
homothetic, interpolation error affects the accuracy of standard chained-weighted price deflators.
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case. One advantage of our approach is that we do not need to make strong parametric
assumptions within the set of observed prices. This is in contrast to Atkin et al. (2020)
who need to fully model the demand system for the subset of goods with observed prices.
This advantage of our approach comes at the cost that we require a stronger form of
separability between the observed and unobserved prices than Atkin et al. (2020). We
discuss these issues in more detail in Section 5.

Our approach can also be contrasted with more parametric approaches where wel-
fare measures are computed using a fully-specified demand system (e.g. Deaton and
Muellbauer 1980). Specific functional forms for non-homothetic preferences are used to
understand phenomena as diverse as structural transformation (e.g. Boppart 2014, Comin
et al. 2021, and Fan et al. 2022), international trade patterns (e.g. Matsuyama 2000, and
Fajgelbaum et al. 2011), and savings behavior and inequality (e.g. Straub 2019). Our
approach provides a non-parametric way to compute welfare measures from the data
without relying on low-dimensional functional forms.

2 Money Metrics and the Cost of Living

We start by defining the objects of interest: money metric utility and the closely related
cost-of-living function. Consider a rational preference relation ⪰ defined over consump-
tion bundles c in RN. Suppose that these preferences can be represented by a utility
function U(c) that maps consumption bundles to utility values. Given this utility func-
tion, we can define the indirect utility function

v(p, I) = max
c
{U(c) : p · c ≤ I},

mapping a vector of prices p and expenditures I to utility values. We interchangeably refer
to I as income, but in the data, we measure I using expenditures. Define the expenditure
function to be

e(p,U) = min
c
{p · c :U(c) ≥ U}.

We assume that the expenditure function is continuously differentiable in all its arguments.
The expenditure and indirect utility functions are used to define money metrics and

cost-of-living indices.

Definition 1 (Money Metric and Cost of Living). For a fixed reference vector of prices p̄,
the money metric function maps budget sets defined by (p, I) to

e(p̄, v(p, I)).
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For a fixed reference budget set defined by (p̄, Ī), the cost-of-living index maps prices, p, to

e(p, v(p̄, Ī)).

The money metric function, e(p̄, v(·)), converts the value of different budget sets (p, I)
into equivalent dollars under some baseline prices p̄. It is itself an indirect utility func-
tion because a budget set (p, I) is preferred to another budget set (p′, I′) if, and only if,
e(p̄, v(p, I)) > e(p̄, v(p′, I′)). Because the money metric ranks budget sets and assigns them
an interpretable value, it is useful for measuring growth.8

The cost-of-living function, e(·, v(p̄, Ī)), converts the value of some baseline budget
constraint (p̄, Ī) into equivalent income under different sets of prices.9 Because the cost-of-
living index converts a common utility level, v(p, I), into equivalent income under different
price systems, it is useful for measuring the cost-of-living adjustment to maintain a fixed
standard of living.

In sum, the function e(p′, v(p, I)), mapping (p′,p, I) into a scalar, is an object of paramount
interest. The money metric is the cross-section of this function that holds p′ constant and
the cost-of-living index is the cross-section that holds (p, I) constant. Our aim is to recover
this object from the data.

Denote the compensated budget share for good i by bi(p,U) where p is a vector of
prices and U is a utility level. The following lemma, which is a corollary of Lemma 1
from Baqaee and Burstein (2021), and follows from Shephard’s lemma and the gradient
theorem, provides a characterization of both the cost-of-living index and the money metric
using compensated budget shares.

Lemma 1 (Money Metric and Cost of Living). The money metric of a budget set (p, I) in terms
of p̄ prices can be expressed as

log e(p̄, v(p, I)) = log I −
∫
C

∑
i∈N

bi(ξ, v(p, I))d log ξi, (1)

where C is any absolutely continuous path connecting p̄ to p.10 The cost of living for a budget set

8The equivalent and compensating variation are related to the money metric. Specifically, to measure
the change in welfare from some initial budget set (p, I) to some other budget set (p′, I′), the equivalent
variation is e(p, v(p′, I′)) − I and the compensating variation is I′ − e(p′, v(p, I)).

9In index number theory, the cost-of-living index is also called the Konüs (1939) index.
10Formally, the path integral in (1) is defined by

∫ t1

t0

∑
i∈N bi(ξt, v(p, I)) d log ξit

dt dt where {ξt : t ∈ [t0, t1]}
parameterizes the path C from p̄ and p as a function of a scalar t. The integrals in (1) and (2) are both path
independent and only depend on the end points.
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(p̄, Ī) in terms of p prices can be expressed as

log e(p, v(p̄, Ī)) = log Ī +
∫
C

∑
i∈N

bi(ξ, v(p̄, Ī))d log ξi. (2)

According to Lemma 1, both the money metric and the cost-of-living index can be
expressed as integrals of compensated budget shares with respect to changes in prices.
However, compensated demand curves are not directly observable, so operationalizing
this result requires having a way to identify compensated budget shares. This is what we
focus on in the next section.

3 Recovering the Money Metric by Matching Households

In this section, we discuss how Lemma 1 can be deployed to recover money metric utility
functions and cost-of-living indices if one has access to repeated cross-sectional data of
consumers with common and stable preferences who all face common prices at each
point in time but have different incomes. We start this section by introducing our main
theoretical result. We then provide two solution methods, and test them with artificial
discrete data to assess their accuracy. We end the section by discussing how our results
are affected by taste shocks and mismeasurement.

3.1 Theoretical Result

Consider an absolutely continuous path of prices pt ∈ RN as a function of time t ∈ [t0,T].
Suppose we observe vectors of budget shares B(I, t) ∈ RN for consumers with preferences
⪰ and income levels I ∈ [It, It] for time t ∈ [t0,T].11 Our aim is to recover the money metric
utility function based on reference prices pt0 evaluated at budget set (pt, I) for t ∈ [t0,T]
and I ∈ [It, It]. We denote this function by u(I, t) ≡ e(pt0 , v(pt, I)).

The function u(I, t) converts the value of the budget constraint defined by prices pt and
income I into income under base prices pt0 . Once we are equipped with u(I, t), it is also
straightforward to compute the money metric for other base prices.12 By varying base
prices, for fixed (pt, I), we can also recover the cost-of-living index.

11We can always produce an absolutely continuous path of prices by linearly interpolating between
discrete-time observations. We can construct an associated budget share at each instant in time by linearly
interpolating budget shares over time. See Footnote 15 for more details about interpolation.

12Suppose we wish to obtain the money metric for some other base prices: ũ(I, t) = e(ps, v(pt, I)) for some
s ∈ [t0,T]. The solution is ũ(I, t) = I′ where I′ satisfies u(I′, s) = u(I, t). By construction, v(pt, I) = v(ps, I′),
hence ũ(I, t) = e(ps, v(pt, I)) = e(ps, v(ps, I′)) = I′.
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Denote the uncompensated budget share of good i by BM
i (the superscript M stands

for Marshallian). For every good i,

BM
i (pt, I) = Bi(I, t)

whenever t ∈ [t0,T] and I ∈ [It, It]. For any cardinalization of the indirect utility function
and its associated compensated demand curves, the following identity between compen-
sated and uncompensated budget shares also holds:

bi(pt, v(pt, I)) = BM
i (pt, I).

Using the money metric cardinalization of indirect utility, and slightly abusing notation,
we can combine the previous two identities to obtain:13

bi(pt,u(I, t)) = Bi(I, t).

Using this identity, Lemma 1 can be rewritten as the following recursive integral equation.

Proposition 1 (Money metric as Solution to Integral Equation). For t ∈ [t0,T], the money
metric u(I, t) ≡ e(pt0 , v(pt, I)) is a fixed point of the following integral equation

log u(I, t) = log I −
∫ t

t0

∑
i

Bi(u−1(u(I, t), s), s)
d log pis

ds
ds, (3)

with boundary condition u(I, t0) = I. Here, u−1(·, s) is the inverse of u with respect to its first
argument (income) given its second argument (time) is equal to s. That is, u−1(u(I, t), s) is a level
of nominal income I∗ in s such that u(I∗, s) = u(I, t).

Since the money metric exists, the integral equation (3) necessarily has a solution.
Proposition 7 in the online appendix uses the contraction mapping theorem to show that
the solution to this integral equation is also unique.

Proposition 1 follows immediately from Lemma 1 once we recognize that in the integral
equation above, Bi(u−1(·, s), s) : R+ → [0, 1] maps utility values to the budget share of good
i at time s. That is, it is the compensated budget share of i.

To better understand (3), observe the simplification that occurs when preferences are
homothetic. In this case, budget shares do not depend on income levels, only on time.

13Our “abuse of notation” is that we do not index compensated budget shares by the utility cardinal-
ization. This is to simplify notation, since we are interested in compensated budget shares only under the
money metric cardinalization.
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Therefore, when preferences are homothetic, (3) simplifies to

log u(I, t) = log I −
∫ t

t0

∑
i

Bi(s)
d log pis

ds
ds, (4)

which eliminates the need to find a fixed point. This equation, called a Divisia (1926)
index, justifies the standard chain-weighting practices adopted in the national accounts
for calculating price and quantity indices.

If we can solve (3), then we can compute the compensated budget shares b(ps, ū) for a
utility level ū at time t under prices ps at time s by using the budget shares of a different
household on the same indifference curve at time s. That is, we “match” households with
income I∗ at time s to households with income I at time t if u(I∗, s) = u(I, t). The budget
shares of this “matched” household, B(I∗, s), are equal to the compensated budget shares
b(ps, ū).

Proposition 1 provides a way to recover the money metric and cost-of-living functions
without needing direct knowledge of the potentially very high-dimensional demand sys-
tem BM

i (pt, I). Recall that the number of cross-price elasticities scales in the square of
the number goods, and generically depends on both income and relative prices. Propo-
sition 1 obviates the need to undertake this onerous estimation exercise by using the
demand from other households and time periods in place of a counterfactual model of
compensated demand.

In the next section, we provide two solution methods for solving the integral equation
in Proposition 1 with discrete data.

3.2 Two Solution Methods

The money metric is a fixed point of (3), which is a system of nonlinear equations, albeit
an infinite-dimensional one. We provide two solution methods. The first is a simple
iterative procedure that converges to the desired solution as we approach the continuous-
time limit. The second is a recursive solution that is equivalent to the iterative one in the
continuous-time limit but has better properties when the data is discrete.

For both methods, suppose that we have data on a grid of points {t0, . . . , tM} where
tn < tn+1, with tM = T. For each t, we observe budget shares B(I, t) for any income level
I ∈ [It, It].14

14In our empirical application, in Section 3.4, we fit a smooth curve through micro data to obtain B(I, t)
for I ∈ [It, It] since cross-sectional household-level data on expenditures is noisy.
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Iterative Solution. Use the following iterative procedure for each n ∈ {1, . . . ,M} starting
with n = 1:

log u(I, tn) ≈ log I −
n−1∑
m=0

B(I∗m, tm) · ∆ log ptm , (5)

where I∗m satisfies

u(I∗m, tm) = u(I, tn−1), (6)

with the boundary condition u(I, t0) = I. If for some I and tn−1, we cannot find I∗m satisfying
(6) for all m ≤ n − 1, then u(I, tn) cannot be calculated for that value of I (without out-
of-sample extrapolation). For a step-by-step spelling out of this iterative procedure, see
Appendix A.1.

This procedure endogenously delineates those values of (I, tn) for which u(I, tn) can be
computed without extrapolation. That is, we can only compute money metric utility u(I, tn)
if u(I, tn) is between the upper- and lower-bound of u(·, tm) for every m < n. Otherwise, we
cannot carry out the inversion in (6). Importantly, this does not mean that nominal income
I must be between the upper- and lower-bound of the nominal income distribution [Itm

, Itm]
for all m < n.

There are two approximation errors in the iterative solution. The first is that, in (5),
we are approximating an integral using a discrete Riemann sum. The second is that,
in (6), we are using u(I, tn−1) rather than u(I, tn) on the right-hand side (since we do not
know u(I, tn) in step n). However, as we approach the continuous-time limit, the estimates
produced by (5) converges to the exact solution in (3). This is because the summation in
(5) converges to an integral and u(I, tn−1) in (6) converges to u(I, tn). Since (3) has a unique
solution, the continuous-time limit of (5) converges to the money metric. To summarize,
if data is continuous, then the result is an exact solution to the money metric that requires
no estimation or interpolation.15

The iterative procedure that we describe is useful for building intuition. However,

15In practice, we use the trapezoid rule rather than the left-Riemann sum to approximate integrals. That
is, we use (B(I∗m, tm) + B(I∗m+1, tm+1))/2 in place of B(I∗m, tm) in (5). This numerical refinement is equivalent to
linearly interpolating prices (in logs) and budget shares over time between discrete time observations. If
the true budget shares corresponding to the linearly interpolated path of prices are not themselves linear,
then this will introduce an interpolation error into our results. This error disappears as the price shocks
between any two consecutive periods become small.
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one can also find a fixed point by solving the system of equations directly. This gives a
recursive variation of the iterative procedure described above. The two approaches are
equivalent in the continuous-time limit.

Recursive Solution. Apply the iterative solution in (5) and (6) and call the resulting
money metric u0(I, t). For each i ≥ 1, and each n ∈ {1, . . . ,M}, starting with n = 1, define

log ui+1(I, tn) ≈ log I −
n−1∑
m=0

B(I∗m, tm) · ∆ log ptm , (7)

where I∗m satisfies

ui+1(I∗m, tm) = ui(I, tn). (8)

If we cannot find I∗m satisfying (8) for all m ≤ n − 1, then u(I, tn) cannot be calculated for
that value of I (without out-of-sample extrapolation). Continue until ui+1(I, t) = ui(I, t) for
all feasible values of I and t. Then set u(I, t) = ui(I, t).

Once the recursive solution converges, it solves a fixed point problem. The difference
between the iterative and recursive solution is that we replace u(I, tn−1) on the right hand
side of equation (6) with u(I, tn) in (8). Proposition 7 in Online Appendix A.2 shows that
the continuous-time version of this recursive procedure is a contraction mapping and
must necessarily converge to the unique solution (which is the money metric).

In artificial examples with discrete data, the recursive solution has smaller errors than
the iterative solution, although, both methods work well. When we use real data from
the UK, in Section 4, the results are almost unchanged between the iterative and recursive
methods. Since the iterative procedure is simpler and faster to compute, we only show
results for the iterative method for our empirical results.

Figure 1 illustrates the outcome of our procedure. The left panel of Figure 1a shows
the budget share on some good against nominal income for three different points in time.
The fact that the lines are downward sloping means that this good is a necessity. In this
example, incomes grow over time, so the range of nominal income levels shifts up over
time.

In the data we observe budget shares as a function of income over time (uncompen-
sated budget shares), but to construct the money metric we require budget shares as a
function of utility (compensated budget shares). The right panel of Figure 1a displays
the compensated budget shares for the same good. The purple line in the right panel of
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Figure 1: Budget share for some good against nominal income and money metric utility
in different periods.
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Figure 1a shows for each period the compensated budget share for the good evaluated at
some fixed utility level ū. The change in budget shares, holding utility constant, are pure
substitution effects over time due to changes in relative prices. As implied by Lemma 1,
multiplying the compensated budget shares by log price changes and summing over time
gives the money metric utility for the household with utility ū at time t2.

But, we cannot directly observe the figure on the right. How do we infer compensated
budget shares? The purple line in the left panel of Figure 1a plots, for each period s,
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the income that gives the utility of ū, that is u−1(ū, s), and the associated budget share
for the good, Bi(u−1(ū, s), s). In other words, we can infer compensated budget shares for
ū by using the observed budget share along the purple line in the left panel. Then we
can construct the mapping between income and utility at each point (the purple line) by
iteratively applying the summation in (5).

To understand why Proposition 1 is unnecessary when preferences are homothetic,
Figure 1b plots the same information as Figure 1a but for homothetic preferences. Since
there are no income effects, budget shares at a point in time do not vary with household
income or utility. That is, uncompensated and compensated budget shares coincide.
Therefore, we can construct the money metric using a price index based on uncompensated
budget shares by good.

3.3 Example with Artificial Discrete Data.

To illustrate how our method fares when faced with discrete data, rather than continuous
data, we consider a simple artificial example. Suppose the expenditure function is non-
homothetic CES

e
(
p,U

)
=

∑
i

ωi
(
Uεipi

)1−γ


1

1−γ

. (9)

The money metric function for t0 reference prices is

u(I, t) =

∑
i

ωi
(
Vεipi,t0

)1−γ


1

1−γ

,

where V is the indirect utility function and solves I = e
(
pt,V

)
.16 We evaluate the accuracy

of our algorithm by comparing this exact expression for u(I,T) with the results of our
numerical procedure applied to artificial data generated using these preferences.

For illustration, we set γ = 0.25, ε1 = 0.2, ε2 = 1, ε3 = 1.65, which are values taken
from Comin et al. (2021). We generate repeated cross-sectional data on income and budget
shares over 3 goods for a finite number of households facing a common price vector over
forty years. The distribution of income in the first period is lognormal (parameterized
to match the distribution of household expenditures in the 1974 UK household survey,

16See Hanoch (1975), Matsuyama (2019), and Comin et al. (2021) for more information on these pref-
erences. Baqaee and Burstein (2021) show that the money metric for a non-homothetic CES has a
closed-form expression in terms of observable budget shares and the elasticity of substitution: u(I, t) =

I ×
(∑

i Bi (I, t)
( pi,t0

pi,t

)1−γ
) 1

1−γ

. Note that the budget shares depend on the difference in εi and not their overall

level. This implies that εi are identified, and matter, up to an additive constant.
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described in the next section). The share parameters are calibrated so that the budget
share of each good for the median household in the first period are uniform. All incomes
and prices grow exponentially, at different rates, over the sample period.17

Figure 2: Maximum error as function of frequency of observation and sample size
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Notes: Throughout, we hold the path of prices and incomes constant. Our baseline calibration is annual
frequency corresponding to a value of 100 = 1 observations per year on the x-axis. If we observe the data
once every decade, then the frequency is 1/10, and if we observe the data every month, then the frequency
is 12. The left panel uses the iterative and the right panel the recursive solution method in Section 3.2.

We apply both the iterative and recursive solution methods. We use linear interpolation
to evaluate budget shares for I between two observed income levels. To assess the accuracy
of our procedure, we use the infinity norm — the maximum absolute value of the log
difference between the true money metric function and our estimate in the final period.
The error is very small. For example, with 100 households and annual data, the maximum
error in the final period is 0.0078 for the iterative procedure and 2 × 10−5 for the recursive
procedure. So, the error is less than 1% of income for the iterative procedure and around
1/1000th of 1% for the recursive procedure. Figure 2 shows how this error varies as we
vary the number of households and the frequency of observations. As expected, the error
converges to zero as we approach the continuous-time limit. The error also falls as the
number of households in the sample increases.18

17The ratio of top to bottom nominal expenditures every period is around 18. The annual (log) growth
rate of nominal expenditures is 5.7%, and the annual growth rates of prices of each good are 5%, 4.25%, and
3.5%, respectively.

18In Online Appendix O.6, we apply the Jaravel and Lashkari (2022) algorithm to this example and find
similarly small errors. However, in the same appendix, we provide other examples where the Jaravel and
Lashkari (2022) approach yields large errors or diverges.
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3.4 Tastes Shocks and Mismeasured Expenditures

In practice, data is imperfect and noisy. There are two potential sources of error in the
data: (1) expenditures by good may be mismeasured or affected by taste shocks; (2) prices
may be missing or mismeasured. In this section, we focus on mismeasured expenditures
due to measurement error and or taste shocks. We address missing or mismeasured prices
in Section 5, where we impose stronger assumptions on preferences.

If there are arbitrary unobservable shocks to preferences or measurement error, then
our methodology cannot be used reliably. However, there are certain tractable cases with
shocks where we can still apply our methodology. In this section, we discuss these cases.
We begin by considering the straightforward scenario where preferences vary as a function
of observable characteristics — for instance, households with children have distinct tastes
compared to those without.19

Proposition 2 (Tastes Vary by Observed Characteristics). If there are differences in preferences
that are functions of observable characteristics, then split the sample by characteristic and apply
Proposition 1 to each subsample separately.20

Next, we consider the more difficult case where observed expenditures depend on
unobservable taste shocks or measurement error. Suppose that observed budget shares
are

B̃(I, t|κ) = B(I, t) + κϵ(I, t),

where B(I, t) are the true expenditure shares. That is, B(I, t) are expenditure shares gen-
erated by the preferences that we wish to construct the money metric for. However, we
cannot observe B(I, t) because the data feature either taste shocks or mismeasurement. The
term κϵ(I, t) is defined to be the difference between observed budget shares and budget
shares generated by the preferences that we are interested in.21 The scalar κ ≥ 0 controls
the magnitude of these errors.

Define ũ(I, t|κ) to be the solution to the integral equation

log ũ(I, t|κ) = log I −
∫ t

t0

∑
i

B̃i(ũ−1(ũ(I, t|κ), s|κ), s|κ)
d log pis

ds
ds. (10)

Proposition 1 assumes that κ = 0. That is, ũ(I, t|0) = u(I, t).
19This assumption is similar to that considered in Section 2.3 of Jaravel and Lashkari (2022).
20Similarly, if we observe two groups of households that face different prices at a point in time (e.g.

households living in different locations), then we can apply our method to each sample separately.
21See Baqaee and Burstein (2021) for a detailed analysis of how welfare should be defined when prefer-

ences are subject to taste shocks. In general, in the presence taste shocks, B(I, t) need not correspond to the
preferences of any individual in the cross-section.
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When there is idiosyncratic (mean-zero) noise at the level of individual households,
averaging over households ensures that κ = 0 as long as the law of large numbers
holds. In such situations, we can apply Proposition 1 without concerns about taste shocks
and recover the money metric for preferences in the absence of the idiosyncratic noise.
However, if the errors do not average out, they could potentially impact the results. To
analyze the extent of this influence, we derive a first-order approximation of ũ(I, t|κ) with
respect to the error term κ. The general form of this first-order approximation can be
found in Lemma 2 in the appendix. Within the main text, we highlight two tractable and
salient special cases.

Proposition 3 (Taste Shocks Uncorrelated with Price Shocks). Suppose that for all I and s ≤ t,
we have Cov(ϵ(I, s), d log p/ds) = 0. Then, to a first-order approximation around κ ≈ 0,

ũ(I, t|κ) ≈ u(I, t),

where the remainder term is order κ2.

In words, if the shocks are uncorrelated with price changes, then the money metric
we construct by solving the wrong integral equation is, to a first-order approximation,
correct. This approximation assumes that κ is small, but does not require that t be close
to t0.22

Next, we consider how taste shocks that are correlated with price changes affect our
results.

Proposition 4 (Engel Curve Slopes Uncorrelated with Price Shocks). Suppose that for all I
and s ≤ t, the slope of Engel curves is uncorrelated with price changes Cov(∂B(I, s)/∂I, d log p/ds) =
0. Then, to a first-order approximation around κ ≈ 0,

ũ(I, t|κ) − u(I, t) ≈ −κ
∫ t

t0

Cov(ϵ(u(I, t), s), d log p/ds),

where the remainder term is order κ2.

If the slope of Engel curves is uncorrelated with price shocks (necessarily the case when
preferences are homothetic), then the money metric we construct is biased according to

22This result bears a superficial resemblance to previous results, for example by Baqaee and Burstein
(2021), that Divisia indices approximately measure welfare correctly when taste shocks are uncorrelated with
price changes. However, Proposition 3 is different since it characterizes the solution to an integral equation
and not the Divisia index. The results about the Divisia index are based on a second-order approximation
that requires that t be close to the base year t0. On the other hand, Proposition 3 is based on a first-order
approximation in κ, and t can be far from t0.
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how the taste/measurement shocks ϵ(I, t) covary with price shocks. That is, although
our methodology will have errors, the sign and magnitude of these errors can be linked
to the underlying shocks in a straightforward way. In particular, if the mismeasured
expenditures are biased upwards for goods whose relative price rose, then the constructed
money metric will be biased downwards.

We need the requirement that the slope of Engel curves be uncorrelated with price
shocks because otherwise, as we solve the integral equation forward, errors in prior
values of ũ(I, s|κ), for s ≤ t, contaminate the matching process in a systematic way and
induce additional biases in ũ(I, t|κ).

4 Empirical Illustration

In this section, we apply our algorithm to long-run cross-sectional household data. Our
goal is to compare welfare as measured by the money metric with real consumption. We
define real consumption consistently with how it is constructed by statistical agencies in the
national accounts: nominal expenditures deflated by a chain-weighted price index that
reflects observed (either aggregate or decile-specific) budget shares.23 When preferences
are homothetic, then real consumption for every household coincides with money metric
utility.

We use the Family Expenditure Survey and Living Costs and Food Survey Derived Variables
for the UK (see Oldfield et al., 2020), which is a repeated cross-section of UK household
expenditures over different sub-categories of goods and services from 1974 to 2017.24 The
UK Family Expenditure Survey was also used in Blundell et al. (2003) and Blundell et al.
(2008) to estimate Engel curves, test for deviations from revealed preference theory, and
compute bounds for a true cost of living index.

Following the practice of the Office of National Statistics (ONS), we measure prices
using the retail price index (RPI) in the period 1974-1998 and the consumer price index
(CPI) in the period 1998-2017. To concord the RPI, CPI, and household expenditure
data, we assemble 17 aggregate product categories that can be used consistently over

23The analog to real consumption in our theoretical model is log RC(I, t) = log I −
∫ t

t0

∑N
i=1 B̄i(t)

d log pis

ds ds,
where B̄i(t) is some average budget share of good i in period t. If we use the aggregate budget shares, then
the price deflator is common for all households. Alternatively, we can group households by quantiles of
the spending distribution and use average budget shares by quantile. We compare our results with both
aggregate and decile-specific price deflators.

24Aggregate nominal consumption growth in our sample is lower than that in the UK national accounts.
According to the UK Office for National Statistics, this difference is due to differences in sample coverage.
While these sample coverage issues affect aggregate nominal growth rates, they do not affect our results,
which are at the household-level.
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the entire period of analysis.25 Between 1974 and 2017 prices rose relatively less for
product categories that are disproportionately consumed by richer households, such as
leisure goods and services. Even though we consider product categories that are more
aggregated than the official data, our data tracks the official inflation figures from the ONS
fairly well.26

We pool all households in our sample and assume that they have the same stable
preference relation over the 17 categories of goods and services for which we have price
data. To investigate the validity of this assumption, we can split the sample by observable
characteristics (following Proposition 2). We provide examples using marital status and
age in Online Appendix O.2. This added flexibility comes at the expense of shrinking
the boundaries over which the money metric can be computed, since households with
different characteristics (e.g. married and unmarried households) cannot be matched
to one another through time. We do not find marked differences in the money metric
function by age or marital status.

4.1 Mapping Data to the Model

Our procedure requires expenditures I and budget shares B (I, t) at time t across all goods.
To deal with idiosyncratic noise, we fit a smooth curve to the budget share of each good i
at time t as a function of I. We use these curves as B(I, t). More precisely, we estimate the
true Bi(I, t) function for each good i by fitting the following curve for each t using ordinary
least squares

Biht = α0it + α1it log Iht + α2it
(
log Iht

)2
+ εiht,

where h is the household and t is the time period. The estimated regression line gives us
B(I, t), which we then normalize to ensure that budget shares up to one across goods for
every income level and time period. Importantly, we only evaluate the estimated B(I, t) in-
sample to avoid out-of-sample extrapolation errors. As mentioned before this potentially
limits the set of values for which we can construct the money metric, but ensures that our
estimates are more reliable. Our results are virtually unchanged if we estimate the Engel

25See Online Appendix O.3 for details about our concordance table. We also calculate our results using
more disaggregated spending categories, using only CPI data, from 2001 to 2017. Figure O.3 compares these
results to what we get if we instead use the more aggregated 17 spending categories instead for the same
time period. The gaps relative to the chain-weighted inflation index are qualitatively similar but moderately
larger when we use more disaggregated spending categories. Unfortunately, the more disaggregated data
is not available for the full sample, so we use the more aggregated data for our benchmark. In principle, one
should apply our methodology to the most disaggregated spending categories possible in order to minimize
aggregation bias.

26See Figure O.5 and Table O.1 for comparisons of our data with aggregate inflation and inflation by
decile of expenditures as reported by the ONS.
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curves non-parametrically (i.e. using locally weighted scatterplot smoothing, LOWESS)
instead of quadratic functions (see Figure O.2 in Online Appendix O.2).

Since this regression is the only source of sampling uncertainty in our exercise, we
calculate standard errors for our estimates of the money metric by bootstrapping this
regression. To do this, we redraw repeated samples with replacement. Although the
Engel curves are estimated with considerable uncertainty, the standard errors for the
money metric are fairly tight. This is due to the law of large numbers, since the money
metric combines many Engel curve estimates. For this reason, and to make the figures
less cluttered, when we present our results, we do not report the bootstrapped standard
errors.

We calculate money metric utility using 1974 base prices by applying our procedure
sequentially from 1974 to 2017 to the UK data.27 Computing u(I, t) requires that for each
time s < t, we can estimate the compensated budget share b(ps,u(I, t)). That is, for each
expenditure level I at time t, we must be able to find consumers at s < t who were on the
same indifference curve as the one delivered by I at time t.

The left panel of Figure 3 illustrates how households in 2017 are matched with house-
holds in 1974 in order to estimate b(p1974,u(I, 2017)). For example, households in the 50th
percentile of expenditures in 2017 are matched with households in the 78th percentile
of expenditures in 1974. The dashed diagonal line is the 45-degree line and is what we
would get if we matched households by percentile of the distribution. This is how price
deflators by spending group are typically calculated by statistical agencies (we compare
our results with such a measure below).

The right panel of Figure 3 plots the distribution of log expenditures in our data and the
solid lines show the sample of households for which we can calculate u(I, t). Our algorithm
can recover the money metric up to about the 97th percentile of households in 2017. For
the richest households, we are unable to compute u(I, t) because there are no households
in our sample that were on the same indifference curve in the past. Nevertheless, our
algorithm covers a significant range of households. Our sample coverage is high because
the distribution of expenditures is highly fat-tailed, which means that in 1974, there
are households who are on the same indifference curve as the richest 97th percentile of
households in 2017.

27Given the money metric at some base prices, we can easily obtain the money metric at any other base
prices in tm ∈ [t0,T], as explained in Footnote 12.
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Figure 3: Results of matching process
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Notes: The figure on the left shows, for each expenditure percentile in 2017, the expenditure percentile in
1974 of the matched household that is on the same indifference curve as the 2017 household. The dashed
diagonal line is the 45 degree line. The vertical dotted lines are the boundaries for households that can be
matched. The figure on the right shows the sample distribution of (weekly) log expenditures from 1974
to 2017. The upper and lower blue boxes represent the 75th and 25th percentiles, respectively. The solid
lines indicate the upper and lower bounds of the sample for whom the compensated budget share can be
computed as a function of time. The lower and upper bounds in 2017 represent the 0.8th and 97th percentile,
respectively, of the spending distribution.

4.2 Results

The blue line in the left panel of Figure 4 plots the expenditure function e(p1974, v(p2017, I))
for different values of I. This expresses different income levels in 2017 (x-axis) in terms
of 1974 pounds (y-axis) — the money metric utility function with 1974 base prices. We
can also use this figure to convert different income levels in 1974 (y-axis) in terms of 2017
pounds (x-axis) — the cost-of-living function.28

For comparison, the red line shows the equivalent incomes in 1974 if all households
faced the same effective inflation rate, as given by the chain-weighted aggregate inflation
rate. When the red line is above the blue line, this means that real consumption based
on chain-weighted aggregate inflation is higher than equivalent income using the money
metric for households in the sample. Hence, the money metric is higher than real con-
sumption for richer households and lower for poorer households, and the size of the gap
is largest for the poorest households. That is, the poorest households are not as well-off

28That is, pick an I′ in the y-axis, and find the associated I in the x-axis. Then, since v(p1974, I′) = v(p2017, I),
it must be that e(p2017, v(p1974, I′)) = e(p2017, v(p2017, I)) = I. In words, I is the cost-of-living adjustment needed
to keep a household with budget set (p1974, I′) on the same indifference curve in 2017 as in 1974.
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as implied by using an aggregate price deflator calculated as in the official statistics. Con-
versely, the gap reverses around the 60th percentile of the distribution and then widens
suggesting that the richest households are better off in 1974 pounds than what is implied
by official statistics. Accordingly, the histograms in the right panel of Figure 4 show that
inequality across households is larger based on money metric values than based on real
consumption.

Figure 4: Comparison of money metric with chain-weighted real consumption.
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The left panel of Figure 5 displays the log difference between the red and blue lines in
Figure 4. As expected, the difference is positive for poor households, meaning that real
consumption calculated using aggregate inflation is upward biased, and negative for rich
households, meaning that real consumption is downward biased. The size of the bias is
20 log points for the poorest households. This means that over the 44 year sample, annual
inflation rates calculated as in the official statistics understate the true welfare-relevant
inflation (i.e. the deflator implied by the money metric and cost-of-living functions in
Lemma 1) for these households by around 0.5 percentage points per year. On the other
hand, for the richest households, the official inflation rate overstates the true inflation by
around 0.25 percentage points per year on average.

The right panel of Figure 5 shows the errors between the true inflation rate and chain-
weighted decile-specific inflation. The errors are much smaller, but not zero. We stress
that this does not guarantee that quantile-specific chained deflators always approximate
the true money metric well. We expect that in contexts where growth is more rapid,
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the differences can be larger. The data requirements for constructing the money metric,
following our method, are slightly less demanding than the ones required for constructing
quantile-specific chained deflators.29

Figure 5: Log difference between chain-weighted inflation and true cost-of-living inflation
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(a) Aggregate chain-weighted inflation and
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Notes: Results are reported in log points (i.e. 100 times the log difference). The sample is from 1974 to 2017.

5 Extension with Partially Observed Prices

In this section, we extend our methodology to allow for the possibility of missing or un-
reliably measured price changes. This may occur because the infrastructure for collecting
comprehensive price data is absent, as in developing country contexts, or because changes
in some prices are inherently difficult to measure, for example those of services and new
goods. The results in this section generalize Feenstra (1994) beyond the homothetic CES
case.

To compute welfare without data on some prices, we impose the following assumption
about preferences throughout this section.

Assumption 1 (Separability). Partition the set of goods into X and Y. Suppose that
preferences are separable in the sense that the expenditure function can be written as

e(p,U) = e(eX(pX,U), eY(pY,U),U), (11)
29Whereas quantile-specific chained deflators require a representative sampling of the entire distribution

of households, our methodology can recover the money metric for a subsample of observed households
even if that subsample does not sample incomes at the same frequency as the population, as explained in
Online Appendix O.3. Otherwise, the data requirements of the two methodologies are the same.
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where U is utils, pX and pY are vectors of prices in X and Y, and eX and eY are non-decreasing
in and homogeneous of degree one in prices.

We assume that prices and budget shares of goods in X are observed, but prices and
budget shares in Y are unobserved. Assumption 1 does not restrict cross-price elasticities
for goods within X or Y but does restrict cross-price effects between X and Y. CES
aggregators, used by Feenstra (1994), are separable in every partition of their arguments,
so our separability assumption is much weaker. Separability can be tested using the
Leontief-Sono conditions, see Blackorby et al. (1998).30 We provide a proof-of-concept
illustration for our empirical application below.

Denote the compensated budget share of X goods by

bX =
∑
i∈X

bi(p,U) = bX(eX(pX,U)/eY(pY,U),U),

where the second equality uses Assumption 1 and the fact that e is homogenous of degree
one in prices. Hence, the budget share on X goods is pinned down, for a fixed U, by a
single scalar, eX(pX,U)/eY(pY,U), which we can interpret as the relative price of the X and
Y bundles.

Define the compensated elasticity of substitution between X and Y goods to be

1 − σ(p,U) =
∑
i∈X

∂ log (bX/(1 − bX))
∂ log pi

.

That is, σ(p,U) captures how spending on X goods changes relative to Y goods if the price
of all X goods rises by the same amount, holding U constant.31

Denote the relative uncompensated and compensated budget share on i ∈ X by

BXi(I, t) =
Bi(I, t)
BX(I, t)

, and bXi(p,U) =
bi(p,U)
bX(p,U)

.

The following proposition extends Proposition 1 to account for unmeasured prices.

Proposition 5 (Money metric with Missing Prices). Suppose Assumption 1 holds. For t ∈
[t0,T], the money metric u(I, t) is a fixed point of the following integral equation as long as

30The Leontief-Sono conditions, which are necessary and sufficient for separability, imply that, for each
i, j ∈ X and k ∈ Y, we must have ∂ log(bi/b j)/∂ log pk = 0, where bi and b j are both compensated budget
shares. The same must hold if we swap X and Y.

31This elasticity of substitution is disciplined by the curvature of the upper-nest of the expenditure

function σ(p,U) = 1 − 1
(1−bX)bX

∂2 log e

(∂ log eX)2 .
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σ(ps,u(I, t)) , 1 almost everywhere for s ∈ [t0, t]:

log u(I, t) = log I −
∫ t

t0

∑
i∈X

bXi(ps,u(I, t))
d log pis

ds
ds −

∫ t

t0

d log bX(ps,u(I, t))/ds
σ(ps,u(I, t)) − 1

ds, (12)

where

bXi(ps,u(I, t)) = BXi(u−1(u(I, t), s), s), bX(ps,u(I, t)) = BX(u−1(u(I, t), s), s).

If we know the shape of the function σ(ps,u) for s ∈ [t0,T], Proposition 5 can be used to
obtain the money metric utility function using similar procedures to the ones in Section
3.2. Proposition 5 is a consequence of Proposition 1. To derive it, we use the rate of
change in the compensated budget share of X goods, d log bX(ps,u(I, t))/ds, to infer the
compensated-budget-share-weighted rate of change in prices for the unobserved goods∑

i∈Y bi(ps,u(I, t))d log pis/ds given the elasticity of substitution σ(ps,u(I, t)). We require that
σ(ps,u(I, t)) , 1 almost everywhere in order to do this, since when σ(ps,u(I, t)) = 1, the
compensated share of bX does not respond to the relative price of X and Y goods.

Compared to Proposition 1, the fixed point in Proposition 5 has some additional
terms. First, the compensated elasticity of substitution σ(ps,u(I, t)) on the right-hand side
depends on u(I, t), and since u(I, t) depends on the compensated elasticity of substitution,
there is a fixed point in this term. Second, the rate of change in the budget share of X
goods, d log bX(ps,u(I, t))/ds, are compensated. To compute these changes, we must use
the money metric utility function, u(I, t), to match households on the same indifference
curve through time and use changes in the budget shares of matched households over
time. Hence, there is also a fixed point in this term.

To better understand Proposition 5, it helps to consider the homothetic special case.

Example 1 (Homothetic preferences). Suppose that preferences are homothetic. In this
case, Proposition 5 simplifies to

log u(I, t) = log I −
∫ t

t0

∑
i∈X

BXi(ps)
d log pis

ds
ds −

∫ t

t0

d log BX/ds
σ(ps) − 1

ds. (13)

When preferences are homothetic, there is no longer a fixed point problem since budget
shares and elasticities of substitution do not depend on utility. If we also assume that the
upper-nest expenditure function is CES, then σ(ps) is a constant and we get

log u(I, t) = log I −
∫ t

t0

∑
i∈X

BXi(ps)
d log pis

ds
ds −

log BX(t) − log BX(t0)
σ − 1

. (14)
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Equation (14) is a version of the popular Feenstra (1994) formula.32 This formula is
commonly used in the macroeconomics and trade literatures for adjusting price indices to
account for missing price changes (typically those of new goods). Relative to this CES case,
Proposition 5 allows the elasticity of substitution to vary as a function of prices, allows for
non-homotheticities, and does not impose parametric assumptions on preferences among
the X goods and among the Y goods.

Relative to the homothetic special case in (13), the additional complication in (12) is
that changes in the budget share of X and the elasticity of substitution must both be
compensated. To see the issue, restate (12) using uncompensated budget shares as

log u(I, t) = log I −
∫ t

t0

∑
i∈X

BXi(I∗s, s)
d log pis

ds
ds −

∫ t

t0

d log BX(I∗s, s)/ds
σ(ps,u(I, t)) − 1

ds, (15)

where I∗s is implicitly defined by u(I∗s, s) = u(I, t).
With more structure on the demand system, this expression can be further simplified.

For example, suppose that the expenditure function in (11) can be written as

e(p,U) =
(
ωXUξXeX(pX,U)

1−γ(U)
+ ωYUξYeY(pY,U)

1−γ(U)) 1
1−γ(U) (16)

for any level of utility U. Let V(p, I) be the indirect utility function associated with (16).
In this example, the elasticity of substitution varies as a function of utility but not as a
function of relative prices, as in Fally (2022). With this restriction, the second integral in
equation (15) can be evaluated explicitly, and the expression simplifies to

log u(I, t) = log I −
∫ t

t0

∑
i∈X

BXi(I∗s, s)
d log pis

ds
ds −

log BX(I, t) − log BX(I∗t0
, t0)

σ(u(I, t)) − 1
,

where σ(u(I, t)) = γ(V(pt, I)). Of course, if the elasticity of substitution σ is also constant as
a function of utility, then the denominator becomes just σ.

We now show that the compensated elasticity of substitution σ, which is the unknown
term required to apply Proposition 5, can be expressed non-parametrically in terms of
elasticities that are estimable using only data on prices in X. This is an important result as
it demonstrates that, in general, recovering σ(ps,u) does not require data on unobserved
prices. Denote by ϵX(I, s) the uncompensated elasticity of the budget share of X with
respect to the price of the X bundle. That is, let ϵX(I, s) be the scalar that satisfies the

32The only (relatively inconsequential) difference between (14) and Feenstra (1994) is the assumption
that eX and eY also be homothetic CES aggregators.
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following equation for each level of income I at each time s:

∑
k∈X

∂ log BX(I, s)
∂ log pk

d log pk = ϵX(I, s)
∑
k∈X

BXk(I, s)d log pk.

Proposition 6 shows that the compensated elasticity of substitution between X and Y can
be deduced given knowledge of ϵX(I, s) and income elasticities.

Proposition 6 (Identifying Substitution Elasticity of X and Y). Suppose Assumption 1 holds.
Let ηi(I, t) − 1 = ∂ log Bi(I, t)/∂ log I be the income elasticity of demand for each i ∈ X at time t.
Then, we have

σ(ps,u(I, t)) = 1 −
ϵX(I∗s, s) + BX(I∗s, s)

∑
i∈X(ηi(I∗s, s) − 1)BXi(I∗s, s)

1 − BX(I∗s, s)
,

where I∗s is defined by u(I∗s, s) = u(I, t).

Proposition 6 shows that if we know income elasticities for all goods in X and can
estimate the uncompensated elasticity of BX with respect to prices in X, ϵX, then we can
recover the relevant elasticity of substitution and apply Proposition 5. Estimating the
income elasticities, ηi for i ∈ X, is relatively straightforward since we simply need to fit
a curve that relates the budget share of i to income in each period. Estimating the price
elasticity ϵX is more challenging, but we only require a single elasticity per income group
and period. That is, the number of elasticities that needs to be estimated does not depend
on the number of goods.

With more structure on the demand system, then even less information is required.
We provide one example below.

Example 2 (Generalized non-homothetic CES). Consider the case where the expenditure
function takes the form in (16). According to Proposition 6, the function σ(·) is determined
by the following expression

σ(I) = 1 −
ϵX(I, t0) + BX(I, t0)

∑
i∈X

(
ηi(I, t0) − 1

)
BXi(I, t0)

(1 − BX(I, t0))
, (17)

Since σ is not a function of relative prices, Proposition 6 needs to be applied only in the
initial period, t0, to recover the shape of the σ function.33 If σ also does not vary with

33In writing (17), we assume that ϵX(I, t0) and ηi(I, t0) are known at t0. This is without loss of generality
since Proposition 5 can be applied with time running forward t > t0 and backward t < t0. Furthermore,
once we apply Proposition 5 to obtain the money metric with t0 reference prices, we can easily obtain the
money metric at ts ∈ [t0,T] base prices, as described in Section 3.1.
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utility, as in the example in Section 3.3, then equation (17) can still be used but only needs
to be applied for one income group.

Relation to previous literature. When price data is unavailable or unreliable, a large
strand of the literature relies on Feenstra (1994), which our method generalizes. A differ-
ent strand, building on Hamilton (2001) and Costa (2001), estimates changes in welfare
by inverting Engel curves. This procedure requires that relative budget shares be strictly
monotone in income (i.e. homothetic preferences are ruled out). Atkin et al. (2020) provide
a recent micro-founded treatment of this idea. To apply their method, one needs to esti-
mate a compensated demand sub-system for the set of goods where prices are measured,
a task that can suffer from a curse of dimensionality if the number of goods with observed
prices is large. In their applications, they either rely on first-order approximations or use
a CES sub-system to keep the estimation challenges manageable.

In contrast, we make stronger assumptions about preferences (separability rather than
quasi-separability). In exchange, we do not require that budget shares be strictly mono-
tone in income. More importantly, without making further assumptions, our approach
only requires a single uncompensated price elasticity as a function of income in each
period (rather than a compensated system). Given estimates of this elasticity, we can
non-parametrically and non-linearly back out the elasticity of substitution between the
measured and unmeasured goods and use this to non-linearly solve for welfare changes.

6 Empirical Illustration with Partially Observed Prices

As an illustration, we apply Proposition 5 to the UK data that we used in Section 4. Since
service prices are difficult to measure, as a test case, we partition the consumption bundle
into a subset of luxury services and the rest. That is, we assume that prices for leisure
goods & services and catering are not reliably observed (see Table O.2 in Online Appendix
O.3 for a description of these categories). These are the Y goods, which in our data account
for roughly 30% percent of spending. We assume that prices for all other categories of
spending are measured accurately. These other categories are the X goods. We impose
Assumption 1 throughout this section.34

To apply Proposition 5, we must estimate the compensated elasticity of substitution
between X and Y. To do this, we group households into a thousand groups by quantiles

34As a proof-of-concept, we provide a test for separability between X and Y goods in Online Appendix
O.4. To do this, we estimate whether the relative compensated budget shares of i, j ∈ Y respond to changes
in the price of k ∈ X.
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Table 1: Elasticity of budget share of X with respect to price index of X

(1) (2) (3) (4)
OLS IV OLS IV∑

i∈X BXi(h, t)∆ log pit 0.144** 0.073*** 0.146** 0.061***
(0.069) (0.019) (0.069) (0.021)∑

i∈X BXi(h, t)∆ log pit × 1(h ≥ median) 0.005 0.025
(0.007) (0.039)

F-stat 403,945 177,760
Quantile FE Y Y Y Y
Year FE Y N Y N
Obs 41,000 41,000 41,000 41,000

Notes: Columns (2) and (4) use the log difference in world oil prices as an instrument. All lags are two-
year differences (results are similar for annual and triennial differences). The sample years are 1974-2017.
Standard errors are clustered at the household quantile level (we have 1000 quantiles). Two and three stars
indicate statistical significance at the 5% and 1% level.

of the spending distribution. We run the following regression

∆ log BX(h, t) = ϵX

∑
i∈X

BXi(h, t)∆ log pit + controls + error,

where t is time, h is the quantile of the spending distribution, and ϵX measures the
uncompensated elasticity of the budget share of X goods with respect to the price of X
goods. To check for heterogeneity, we allow this elasticity to depend on whether quantile
h is above or below the median.

We estimate this regression by OLS. Given that we include year fixed effects, iden-
tification comes from variation across households in the price change of the X bundle.
We also instrument the right-hand side variable using world oil prices (in which case we
cannot include year fixed effects). The identification strategy requires that oil price shocks
exogenously move the price of goods versus services. We view our exercises as a proof of
concept rather than a full-fledged elasticity estimation.

The results of this regression are reported in Table 1. The first two columns assume
that ϵX does not vary as a function of expenditures, and the last two columns allow
for the possibility that ϵX varies as a function of expenditures. Since the second row is
insignificant with small coefficients, we assume ϵX does not vary by quantile. We also
assume that ϵX does not vary as a function of time (we check for subsample stability by
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re-running the regression on the first and second half of the time period).
The OLS and IV point estimates are ϵX = 0.14 and ϵX = 0.07, though with overlapping

confidence intervals. For concreteness, we take ϵX = 0.14 and apply Proposition 6 to
recover an estimate of the compensated elasticity of substitution σ for each value of I
and in each time period.35 The results, for the 25th, 50th, and 75th percentile of the
expenditures distribution are plotted in Figure 6. The estimated elasticity is below one, so
X and Y are complements, and increasing in income. Richer households are more willing
to substitute between X and Y goods than poorer households.

Figure 7 uses these estimates of the compensated elasticity and computes the money
metric. The resulting money metric is plotted against the money metric from Section 4
when we assumed that all prices are perfectly observed. For low-income households,
the two money metrics are quite similar and both are below real consumption (computed
using an aggregate chain-weighted price deflator assuming that all prices are observed).
However, for households with high incomes, the money metric calculated using Proposi-
tion 5 is lower than the one calculated using Proposition 1. The fact that the blue line is
lower than the yellow line for rich households suggests that, for these households, prices
in Y have risen more than the official price data suggest.

Figure 6: Compensated elasticity of substi-
tution between X and Y.
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Figure 7: Money metric e(p1974, v(p2017, I))
and real consumption.
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Figure 8 shows the percent difference between the money metric with observed prices
and the money metric with unobserved prices for different deciles of expenditures as well

35See Figure O.4 in the online appendix for results using the IV point estimates instead. For illustration,
Figure O.4 also shows how the results change if we instead calibrate the compensated elasticity of substi-
tution between X and Y goods to be constant in both the time series and the cross-section and equal to 1/2.
When we use the IV point estimates, the results are qualitatively similar, but the adjustment to the money
metric values for rich households is larger than in Figure 7 because the implied elasticity of substitution σ
is closer to one for richer households.
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Figure 8: Log difference in estimated money metrics under observed and unobserved
prices by decile of the expenditures distribution.
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as the breakdown of the difference into two terms. The first is the difference between
overall inflation and inflation for X goods implied by the two methods:∫ 2017

1974

∑N
i=1 bi(ps,u)(d log pis/ds)ds −

∫ 2017

1974

∑
i∈X bXi(ps,u)(d log pis/ds)ds∫ 2017

1974

∑N
i=1 bi(ps,u)(d log pis/ds)ds

.

These are the blue bar graphs in Figure 8. The remainder is the adjustment due to changes
in the budget share of X goods, similar to the Feenstra (1994) adjustment:∫ 2017

1974
1

σ(ps,u)−1 (d log bX(ps,u)/ds)ds∫ 2017

1974

∑N
i=1 bi(ps,u)(d log pis/ds)ds

. (18)

These are the red bar graphs in Figure 8. This decomposition shows that inflation among X
goods has tended to be higher than among all goods by roughly the same amount (around
1 percentage point) for all deciles. However, the change in compensated expenditures
on X goods has been very different. Compensated expenditures on X goods have been
falling much more quickly for rich households than poor.

To better understand this, we investigate how compensated expenditures on X goods
have changed over time. Figure 9 shows the compensated budget share on X goods for
households at three different points in the distribution: the 10th, 50th and 90th percentiles
in 2017. For poor households, there was almost no change on expenditures on X goods.
This explains why the adjustment term in (18) is small for these households. For the
median household, there was a modest decrease in the share of spending on X goods.
Since X and Y are complements, this indicates that the relative price of Y goods rose
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Figure 9: Compensated changes in the bud-
get share BX for different I percentiles in
2017.
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Figure 10: Compensated and uncompen-
sated changes in the budget share BX for
the median household in 2017.
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relative to X goods for these households. Finally, for the richest households, there was a
fairly dramatic reduction in their spending on X goods from around 74% to around 63%.
This suggests that for these households, the relative price of Y goods rose fairly rapidly
compared to X goods. This explains why the adjustment term, (18), for these households
is large and negative. Furthermore, since the elasticity of substitution for rich households
is closer to one, the implied difference in the relative price of X and Y goods is larger. This
explains why the money metric according to Proposition 5 (the blue line in Figure 7) has a
flatter slope than the money metric calculated according to Proposition 1 (the yellow line
in Figure 7).

These difference in compensated expenditures are not mirrored in uncompensated ex-
penditures. Figure 10 compares the compensated and uncompensated changes in expen-
ditures for the median household. Whereas, for the median household, the compensated
expenditures on X goods declined somewhat over time, the uncompensated expenditures
on X goods increased very strongly. Intuitively, a household in 1974 with nominal expen-
ditures equal to the median of the expenditure distribution in 2017 is actually fairly rich.
Such a household spends relatively less on goods (X) and relatively more on services (Y).
As we roll time forward, such a household is effectively becoming poorer, due to inflation,
and this causes the expenditures on the X goods to rise due to income effects. That is, the
income effect overwhelms the substitution effect.
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7 Conclusion

In this paper, we propose a method to construct money metric representations of utility —
an essential input to measuring welfare-relevant growth — using repeated cross-sectional
data. Our method does not require any estimation when the data on prices is compre-
hensive, aside from interpolation of how budget shares vary with income and time. If the
data on prices is incomplete, the method can still be used under a separability assumption
on preferences and knowledge of one uncompensated elasticity of substitution.

Whether prices are fully or partially observed, the unifying idea in both cases is that
money metric utility can be calculated using observed demand of matched households in
the cross-sectional distribution over time. Doing so involves solving a simple fixed point
equation in terms of observable variables.

Despite its advantages, our approach does not allow for preferences to vary in arbi-
trary and unobserved ways in the cross-section or the time-series, and requires that all
consumers face common prices. Furthermore, we have abstracted from intertemporal
choice. Relaxing these assumptions is an interesting avenue for future work.
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A Appendix

The first subsection of this appendix spells out the iterative procedure in a step-by-step
manner. The second subsection contains formal proofs.

A.1 Step-by-Step Intuition for Iterative Procedure

To give more intuition, it helps to explicitly spell out the first few steps of the iterative pro-
cedure. For expositional simplicity, we abstract from the numerical refinements discussed
in Footnote 15.

Start with the boundary condition u(I, t0) = I since t0-equivalent income at t0 is just
initial income. Abusing notation, let bi(u, t) be the compensated budget share of good i at
prices pt for utility value u. For period t1, compute

log u(I, t1) ≈ log I − b(u(I, t0), t0) · ∆ log pt0 = log I − B(I, t0) · ∆ log pt0

where the last equation uses the boundary condition, which implies b(u(I, t0), t0) = B(I, t0).
For values of I outside of [I0, I0], we cannot compute u(I, t1).36

With u(I, t1) in hand, construct compensated budget shares for period t1:

b(u(I, t1), t1) = B(I, t1).

That is, to each budget share Bi(I, t1), assign a utility value based on u(I, t1). Intuitively,
we know budget shares as a function of income at t1, and we know utility as a function of
income at t1. Since utility is monotone in income, this means that we can associate with
each Bi(I, t1) a utility value, which is precisely the compensated budget share. We now
have compensated budget shares b(u, t0) and b(u, t1).

Next, calculate

log u(I, t2) ≈ log I − b(u(I, t1), t1) · ∆ log pt1 − b(u(I, t1), t0) · ∆ log pt0 ,

and using u(I, t2), construct compensated budget shares for period t2:

b(u(I, t2), t2) = B(I, t2).
36This requirement is not very binding if the support of the income distribution is wide or if it moves

slowly from period to period (the latter condition is satisfied if the data is smooth and the interval between
each period is relatively short).
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That is, for each budget share Bi(I, t2) in t2, assign a utility value based on u(I, t2). Note
that we can only calculate u(I, t2) for those I’s for which I∗t1

= u−1(u(I, t2), t1) and I∗t0
=

u−1(u(I, t2), t0) are observed. Continue this iterative process until tM.

A.2 Proofs

Proof of Lemma 1. By definition,

log e(p, v(p̄, Ī)) = log e(p̄, v(p̄, Ī)) + log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī))

= log Ī + log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī)).

Rewrite

log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī)) =
∫ t1

t0

∑
i∈N

∂ log e(ξt, v(p̄, Ī))
∂ log ξit

∂ log ξit

dt
dt,

where {ξt : t ∈ [t0, t1]} is a smooth path connecting p̄ and p as a function of a scalar t.
Finally, use Shephard’s lemma to express the price elasticity of the expenditure function
in terms of budget shares, and obtain (2). To obtain (1), switch p and p̄ as well as I and
Ī. ■

Proof of Proposition 1. This follows immediately from the definition of u−1(·, s) which maps
incomes at t0 to equivalent income at time s. Hence, for some amount of t0 income, say
u(I, t), the equivalent income at time s is u−1(u(I, t), s). The uncompensated budget share
B(u−1(u(I, t), s), s) is just b(u(I, t), s). ■

Proof of Proposition 2. Suppose that preferences ⪰x vary by some observable characteristic
x. For example, x could be marital status. In this case, we can split our sample by x and
apply Proposition 1 to each subsample separately resulting in u(I, t|x) — money metrics
for different levels of expenditures I, at different points in time t, for different values of
the characteristic x. ■

To prove Proposition 3 and Proposition 4, we make use of the following lemma.

Lemma 2. Define ũ(I, t|κ) to be the solution to the integral equation (10). Then

∂ log u(I, t)
∂κ

=
−

∫ t

t0
Cov(ϵ(u(I, t), s), d log p

ds ) +
∫ t

t0

∂u(I∗(I,t,s),s)
∂κ Covb(

∂ log b(u(I,t),s)
∂ log u(I,t) ,

d log p
ds )[

1 +
∫ t

t0
Covb(

∂ log b(u(I,t),s)
∂ log u(I,t) ,

d log p
ds )

] ,

where Covb is a covariance using b in place of the probability weights.
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Proof of Lemma 2. Define the integral equation

log u(I, t|κ) = log I −
∫ t

t0

∑
i

Bi(I∗(I, t, s|κ), s) + κϵi(I∗(I, t, s|κ), s)
d log pi

ds
ds

where
u(I∗(I, t, s|κ), s|κ) = u(I, t|κ).

Now differentiate this with respect to κ:

1
u(I, t|κ)

∂u(I, t|κ)
∂κ

= −

∫ t

t0

∑
i

[
∂Bi

∂I∗
∂I∗

∂κ
+ ϵi(I∗(I, t, s|κ), s) + κ

∂ϵi

∂I
∂I∗

∂κ

]
d log pi

ds
ds

where
∂I∗(I, t, s|κ)
∂κ

=

∂u(I,t|κ)
∂κ −

∂u(I∗(I,t,s|κ),s|κ)
∂κ

∂u(I∗(I,t,s|κ),s|κ)
∂I

.

At κ = 0, this is
∂I∗(I, t, s|κ)
∂κ

=

∂u(I,t)
∂κ −

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

At κ = 0,we have

1
u(I, t)

∂u(I, t)
∂κ

= −

∫ t

t0

∑
i

[
∂Bi

∂I∗
∂I∗

∂κ

]
d log pi

ds
ds −

∫ t

t0

∑
i

ϵi(I∗(I, t, s), s)
d log pi

ds
ds

= −

∫ t

t0

∑
i

∂Bi(I∗(I, t, s), s)
∂I∗(I, t, s)

∂u(I,t)
∂κ −

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

 d log pi

ds
ds

−

∫ t

t0

∑
i

ϵi(I∗(I, t, s), s)
d log pi

ds
ds.

Simplifying further gives

∂ log u(I, t)
∂κ

= −
∂u(I, t)
∂κ

∫ t

t0

∑
i

∂Bi

∂I∗
1

∂u(I∗(I,t,s),s)
∂I

 d log pi

ds
ds

+

∫ t

t0

∑
i

∂Bi

∂I∗

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

 d log pi

ds
ds −

∫ t

t0

∑
i

ϵi(I∗(I, t, s), s)
d log pi

ds
ds

∂ log u(I, t)
∂κ

=

∫ t

t0

∑
i

[
∂Bi
∂I∗

∂u(I∗(I,t,s),s)
∂κ

∂u(I∗(I,t,s),s)
∂I

]
d log pi

ds ds −
∫ t

t0

∑
i ϵi(I∗(I, t, s), s)d log pi

ds ds[
1 + u(I, t)

∫ t

t0

∑
i

[
∂Bi
∂I∗

1
∂u(I∗(I,t,s),s)

∂I

]
d log pi

ds ds
] .
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We know that
Bi(I∗(I, t, s), s) = bi(u(I, t), s)

Hence
∂Bi(I∗(I, t, s), s)

∂I∗
∂I∗

∂u(I, t)
=
∂bi(u(I, t), s)
∂u(I, t)

Therefore, we can write

∂ log u(I, t)
∂κ

=

∫ t

t0

∑
i

[
∂Bi(I∗(I,t,s),s)
∂(I∗(I,t,s))

[
∂u(I∗(I,t,s),s)

∂I

]−1 ∂u(I∗(I,t,s),s)
∂κ

]
d log pi

ds ds −
∫ t

t0

∑
i ϵi(I∗(I, t, s), s)d log pi

ds ds[
1 +

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂ log u(I,t)

]
d log pi

ds ds
]

=

∫ t

t0

∑
i

[
∂Bi(I∗(I,t,s),s)
∂(I∗(I,t,s))

[
∂I∗(I,t,s)
∂u

]
∂u(I∗(I,t,s),s)

∂κ

]
d log pi

ds ds −
∫ t

t0

∑
i ϵi(I∗(I, t, s), s)d log pi

ds ds[
1 +

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂ log u(I,t)

]
d log pi

ds ds
]

=

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂u(I,t)

∂u(I∗(I,t,s),s)
∂κ

]
d log pi

ds ds −
∫ t

t0

∑
i ϵi(I∗(I, t, s), s)d log pi

ds ds[
1 +

∫ t

t0

∑
i

[
∂bi(u(I,t),s)
∂ log u(I,t)

]
d log pi

ds ds
] .

The adding up constraint requires that
∑

i ϵi(I∗(I, t, s|κ), s) =
∑

i ∂bi/∂u = 0. Hence, we can
rewrite some of the inner products above as covariances as in the statement of Lemma
2 ■

Proof of Proposition 3. Assume that for all I and s, we have

Cov(ϵ(I, s),
d log p

ds
) = 0.

Assume that for all s < t,we have

∂ log u(I, s)
∂κ

= 0

Then, using Lemma 2, we know that

∂ log u(I, t)
∂κ

=

∫ t

t0

∑
i
∂u(I∗(I,t,s),s)

∂κ

[
∂bi(u(I,t),s)
∂u(I,t)

]
d log pi

ds ds[
1 +

∫ t

t0
Covb(

∂ log b(u(I,t),s)
∂ log u(I,t) ,

d log p
ds )

] .
This is equal to zero if ∂u(I∗(I,t,s),s)

∂κ is equal to zero for every s ≤ t. We also know that

∂ log u(I, t0)
∂κ

= 0.
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Hence
∂ log u(I, t)
∂κ

= 0

by transfinite induction. ■

Proof of Proposition 4. If, for every s and I, we have

Covb(
∂ log B(I, s)
∂ log I

,
d log p

ds
) = 0,

then we know that, for every s, we have

Covb(
∂ log b(u(I, t), s)
∂ log u(I, t)

,
d log p

ds
) = 0.

Substituting this into Lemma 2 yields

∂ log u(I, t)
∂κ

= −

∫ t

t0

Cov(ϵ(u(I, t), s),
d log p

ds
).

■

Proof of Proposition 5. By Euler’s theorem of homogeneous functions, we know that

∂ log e
∂ log eX +

∂ log e
∂ log eY = 1.

Differentiating this identity with respect to eX and eY yields the following equations

∂2 log e(
∂ log eX

)2 = −
∂2 log e

∂ log eX∂ log eY =
∂2 log e(
∂ log eY

)2 .

Next, we know that

bX =
∑
i∈X

bi =
∑
i∈X

∂ log e
∂ log eX

∂ log eX

∂ log pi
=
∂ log e
∂ log eX

∑
i∈X

∂ log eX

∂ log pi
=
∂ log e
∂ log eX .

Hence, fixing utility, the total derivative of bX with respect to prices is

bXd log bX =
∂2 log e

(∂ log eX)2

∑
i∈X

∂ log eX

∂ log pi
d log pi +

∂2 log e
∂ log eY∂ log eX

∑
i∈Y

∂ log eY

∂ log pi
d log pi

=
∂2 log e

(∂ log eX)2

∑
i∈X

∂ log eX

∂ log pi
d log pi −

∑
i∈Y

∂ log eY

∂ log pi
d log pi
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=
∂2 log e

(∂ log eX)2

∑
i∈X

bXid log pi −

∑
i∈Y

bYid log pi


Using the fact that

σ(p,u) = 1 −
1

(1 − bX)bX

∂2 log e(
∂ log eX

)2 ,

we can rewrite this as

d log bX = (1 − bX)(1 − σ)

∑
i∈X

bXid log pi −

∑
i∈Y

bYid log pi

 ,
where we suppress the fact that σ is a function of prices and utility. For the set of values
where σ , 1, rearrange this to get

−
d log bX

1 − σ
+ (1 − bX)

∑
i∈X

bXid log pi + bX

∑
i∈X

bXid log pi =
∑
i∈X

bid log pi +
∑
i∈Y

bid log pi,

or

−
d log bX

1 − σ
+

∑
i∈X

bXid log pi =
∑
i∈X

bid log pi +
∑
i∈Y

bid log pi.

Plug this back into Proposition 1 to get the desired result. Since the set of values where
σ = 1 is measure zero, we can ignore those points in the integral. It is important to note
that d log bX in the expression above is the compensated change in the budget share of X.

■

Proof of Proposition 6. Consider a perturbation to pk for k ∈ X holding fixed utils:

∂ log bX

∂ log pk
=

1
bX

∂
∂ log pk

∑
i∈X

∂ log e
∂ log eX

∂ log eX

∂ log pi


=

1
bX

∂
∂ log pk

∑
i∈X

∂ log e
∂ log eX bXi


=

1
bX

∑
i∈X

∂
∂ log pk

∂ log e
∂ log eX bXi +

∑
i∈X

∂ log e
∂ log eX

∂bXi

∂ log pk


=

1
bX

∑
i∈X

∂2 log e(
∂ log eX

)2 bXkbXi +
∑
i∈X

∂ log e
∂ log eX

∂bXi

∂ log pk


=

1
bX

∑
i∈X

∂2 log e(
∂ log eX

)2 bXkbXi +
∂ log e
∂ log eX

∂
∑

i∈X bXi

∂ log pk
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=
1
bX

∂2 log e(
∂ log eX

)2 bXk,

where the last line uses the fact that ∂
∑

i∈X bXi
∂ log pk

= 0. Using the following relationship

∂2 log e(
∂ log eX

)2 = bX
∂ log bX

∂ log eX = bX(1 − bX)(1 − σ(p,u)),

the compensated change in expenditures on X in response to a change in the price of k ∈ X
is given by

∂ log bX

∂ log pk
= (1 − bX)(1 − σ(p,u))bXk.

The following identity links the uncompensated and compensated budget share of X
goods:

BX(p, e(p,u)) = bX(p,u).

Differentiating both sides of this identity with respect to the price of some good k ∈ X
yields

∂ log BX

∂ log pk
=
∂ log bX

∂ log pk
−
∂ log BX

∂ log I
∂ log e
∂ log pk

,

=
∂ log bX

∂ log pk
−

∑
i∈X

bXi
∂ log bi

d log I
bK,

= (1 − bX)(1 − σ)bXk − bXbXk

∑
i∈X

bXi(ηi − 1),

where we use the fact that ∂ log e/∂ log pk = bk. Summing over all k ∈ X, we get

∑
k∈X

∂ log BX

∂ log pk
d log pk =

(1 − bX)(1 − σ) − bX

∑
i∈X

bXi(ηi − 1)


∑

k∈X

bXkd log pk

 .
Meanwhile, we also have

∑
k∈X

∂ log BX

∂ log pk
d log pk = ϵXd log pX, where d log pX =

∑
k∈X bXkd log pk

and ϵX = (1 − bX)(1 − σ(p,u)) − bX
∑

i∈X(ηi − 1)bXi. Rearranging this for σ(p,u) yields the
desired result

σ(p,u) = 1 −
ϵX + bX

∑
i∈X(ηi − 1)bXi

1 − bX
.

■
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David Baqaee, Ariel Burstein, Yasutaka Koike-Mori

O.1 Existence and Uniqueness

Proposition 7 (Uniqueness and Convergence). Consider the integral equation

u(I, t) = log I −
∫ t

t0

∑
i

bi(s,u(I, t))
d log pi

ds
ds.

Suppose that bi and ∂bi/∂u are smooth functions in all of their arguments and that p is absolutely
continuous in time. Then the integral equation has a unique solution in some closed interval
[t0, t0 + h] where h > 0. Furthermore, the iterations defined by

un+1(I, t) = log I −
∫ t

t0

∑
i

bi(s,un(I, t))
d log pi

ds
ds

produces a sequence that converges uniformly to this solution on [t0, t0 + h].

Before showing the proof, we note that local uniqueness implies global uniqueness.
Suppose there exist two solutions to the integral equation u(I, t) and v(I, t). Pick the largest
s such that u(I, s) = v(I, s) for some s. Such an s must exist since u(I, t0) = v(I, t0) = I. We
then apply Proposition 7 starting at s, and conclude that u(I, t + h) = v(I, s + h) for some
h > 0. By transfinite induction, u(I, t) = v(I, t) for all t and for every I.

Proof. To prove uniqueness, we use the contraction mapping theorem. We begin by
showing that there exists a sufficiently small compact set, around the boundary condition,
over which the integral equation is a continuous self-map. We then show that this self-
map is a contraction mapping if the compact set is sufficiently small. This shows local
uniqueness inside that set. Using the argument above, we can extend this to global
uniqueness.

Part (i): To begin, adopt the infinity norm, and define the operator:

T(v(I, t)) = log I −
∫ t

t0

∑
i

bi(s, v(I, t))
d log pi

ds
ds.

Choose h1 and α1 such that

R1 =
{
(t, y) : |t − t0| ≤ h1, |y − I| ≤ α1

}
.

O1



It follows that bi, ∂bi/∂u, and pi all attain their supremum on R1. It follows that there exist
M > 0 and L > 0 such that

∀(t, y) ∈ R1,
∑

i

|bi
d log pi

ds
| ≤M and

∣∣∣∣∣∂bi

∂u
d log pi

ds

∣∣∣∣∣ ≤ L.

Let g be a continuous function on R1 satisfying g(t, I) ≤ α1 for all (t, I) ∈ R1. Then

∣∣∣T(g(I, t)) − log I
∣∣∣ = ∣∣∣∣∣∣∣

∫ t

t0

∑
i

bi(s, g(I, t))
d log pi

ds
ds

∣∣∣∣∣∣∣
≤

∫ t

t0

∑
i

∣∣∣∣∣bi(s, g(I, t))
d log pi

ds
ds

∣∣∣∣∣
≤M|t − t0|.

Choose h such that 0 < h < min{h1,
α1
M ,

1
L }. Hence∣∣∣T(g(I, t)) − log I

∣∣∣ ≤ α1.

Hence, for the set
S = {g ∈ C([t0, t0 + h]) : ∥g − log I∥ ≤ α1},

the operator T is a self-map of continuous functions satisfying g(t, I) ≤ α1 over R1.
Part (ii): Now we show that T is a contraction mapping.

|T(v(I, t)) − T(u(I, t))| = |
∫ t

t0

∑
i

[bi(s, v(I, t)) − bi(s,u(I, t))]
d log pi

ds
ds|

≤

∫ t

t0

∑
i

∣∣∣∣∣[bi(s, v(I, t)) − bi(s,u(I, t))]
d log pi

ds
ds

∣∣∣∣∣ .
By the mean value theorem, there exists ũ(I, t) ∈ [v(I, t),u(I, t)] such that

|T(v(I, t)) − T(u(I, t))| ≤
∫ t

t0

∑
i

∣∣∣∣∣∂bi(s, ũ(I, t))
∂u

(u(I, t) − v(I, t))
d log pi

ds
ds

∣∣∣∣∣
≤

∫ t

t0

∑
i

L |(u(I, t) − v(I, t))| ds

≤

∑
i

L |(u(I, t) − v(I, t))| |t − t0|

= κ |(u(I, t) − v(I, t))|
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where κ =
∑

i L|t − t0|. This holds if we choose h < 1/LN, so we have
∑

i L|t − t0| < hNL < 1.
Hence, T is a contraction mapping and we can apply the contraction mapping theorem. ■

O.2 Additional Figures

Figure O.1: Money metric e(p1974, v(p2017, I2017)) by household characteristic (annualized
pounds, log scale) for the UK data in Section 4.
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(b) Above and below median age
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Figure O.2: Money metric e(p1974, v(p2017, I)) and real consumption as a function of I in 2017
using LOWESS
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Notes: This figure is calculated using the recursive solution method rather than the iterative one. The 95%
confidence intervals are bootstrapped using 500 draws with replacement.
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Figure O.3: Results using more disaggregated spending categories

(a) Comparison of e(p2001, v(p2017, I)) computed using 17
and 85 spending categories.
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(b) Log difference between chain-weighted in-
flation and true cost-of-living inflation using 85
spending categories.
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(c) Log difference between chain-weighted in-
flation and true cost-of-living inflation using 17
spending categories.
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Notes: Figure O.3 uses the restricted sample from 2001 − 2017 using CPI price data.
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Figure O.4: Replication of Section 5 using a constant σ and the IV estimates.

(a) Money metric e(p1974, v(p2017, I)) and real con-
sumption as a function of I in 2017 assuming
σ = 0.5.
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(b) Percent difference in money-metric values
with observed and unobserved prices for dif-
ferent percentiles of the I distribution assuming
σ = 0.5
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(c) Money metric e(p1974, v(p2017, I)) and real con-
sumption as a function of I in 2017 using IV esti-
mates.
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(d) Percent difference in money-metric values
with observed and unobserved prices for dif-
ferent percentiles of the I distribution using IV
estimates.
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O.3 Additional Details of the UK Data Used in Section 4

We use two different datasets. One is a household-level expenditure survey and the other
is data on prices of different categories of goods. The first data set is Family Expenditure
Survey and Living Costs and Food Survey Derived Variables, which is a dataset of annual
household expenditures with demographic information compiled from various household
surveys conducted in the UK. Each sample includes about 5,000-7,000 households. The
spending categories in the survey correspond to RPI (Retail Price Index) categories. We
have continuous data from 1974 to 2017. Starting in 1995, the data are split into separate
files for adults and children, so we merge them into households by adding up their
expenditures.

Our algorithm does not require a representative sampling of the entire distribution of
households, and can recover the money metric for a subsample of observed households,
even if that subsample does not sample incomes at the same frequency as the population.
The expenditure survey samples from the entire income distribution except for top earners
and some pensioners. In order to correct for possible nonresponse bias, household weights
are provided since 1997.37 We use these weights to calculate the chained aggregate price
index, which we use to calculate real consumption as in the official statistics. However,
our approach for the money metric does not use household weights.

For the prices, we use the underlying data for the consumer price index (CPI) and the
retail price index (RPI). To construct the consumption deflator in the national accounts, the
Office of National Statistics switched from the Retail Price Index (RPI) to the Consumer
Price Index (CPI).38 By comparing the RPI and CPI with the consumption deflator provided
by the Office of National Statistics, we identify the switching point as 1998 and do the
same for our price data.

Because the CPI and RPI consider different baskets of goods and services, we merged
various sub-categories to obtain a consistent set of categories over time. For example, “al-
cohol” in the RPI includes some items served outdoors, which is included in “restaurants”
in the CPI. In this case, we merged “Catering and Alcohol” in the RPI and matched it with
“Restaurant and Alcohol” in the CPI. We end up with 17 categories that are available for
the entire period for both RPI and CPI. Table O.2 summarizes how we integrated the CPI

37Prior to 1997, benefit unit weights are provided instead of household weights. Since a benefit unit is a
single person or a couple with any dependent children, there can be more than one benefit unit weight in
a household. For example, if a couple with their children and the father’s parents live together, then two
benefit unit weights are recorded. In this case, we use the simple average as the household weight.

38https://webarchive.nationalarchives.gov.uk/ukgwa/20151014001957mp_

/http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/cpi-and-rpi/

mini-triennial-review-of-the-consumer-prices-index-and-retail-prices-index.pdf.

O7

https://webarchive.nationalarchives.gov.uk/ukgwa/20151014001957mp_/http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/cpi-and-rpi/mini-triennial-review-of-the-consumer-prices-index-and-retail-prices-index.pdf
https://webarchive.nationalarchives.gov.uk/ukgwa/20151014001957mp_/http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/cpi-and-rpi/mini-triennial-review-of-the-consumer-prices-index-and-retail-prices-index.pdf
https://webarchive.nationalarchives.gov.uk/ukgwa/20151014001957mp_/http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/cpi-and-rpi/mini-triennial-review-of-the-consumer-prices-index-and-retail-prices-index.pdf


and RPI baskets.

Figure O.5: Comparison of aggregate annual inflation reported by the UK Office of
National Statistics and aggregate inflation calculated in our dataset following the same
methodology.
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Table O.1: Comparison of ONS and our microdata.

Decile Difference
2 3 4 5 6 7 8 9 D9-D2

ONS 2.8% 2.7% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% -0.5%
Microdata 2.6% 2.6% 2.5% 2.4% 2.4% 2.3% 2.2% 2.1% -0.5%

Notes: We report average annual inflation 2005-2017, in percentages. The ONS data is from Table 9 of “Data
tables for the CPI consistent inflation rate estimates for UK household groups” Release date: 15th February
2023. We do not compare the 1st and 10th decile since those deciles are sensitive to how the tails of the
distribution are treated. The last column is the difference between the ninth and second deciles.

Figure O.5 shows that our aggregated microdata closely matches the official consump-
tion price deflator series for the UK. Table O.1 compares average chain-weighted inflation
by expenditure decile reported by the ONS to similar statistics calculated using our micro-
data. We do not compare the 1st and 10th decile since those deciles are sensitive to how
the tails of the distribution are treated. Once again, our microdata matches the official
rates reasonably closely.
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Integrated Categories RPI CPI

Bread & Cereals Bread, Cereals and Biscuits Bread & cereals

Meat & Fish
Meat, Fish, Beef, Lamb and Pork Meat & fish

Poultry and Other meat -

Milk & Eggs
Butter, Cheese and Eggs Milk, cheese & eggs

Fresh milk and Milk products -

Oils & fats Oils & fats Oils & fats

Fruit Fruit Fruit

Vegetable Potatoes and Other vegetables
Vegetables including potatoes

& other tubers

Other food

Sweets & Chocolates Food Products

Other Foods Sugar, jam, honey, syrups,

chocolate & confectionery

Non-Alcoholic Beverages
Tea and Soft drinks

Non-Alcoholic Beverages
Coffee & other hot drinks

Tobacco Cigarettes & tobacco Tobacco

Catering
Catering Catering services

Alcoholic drink Alcoholic beverage

Household & Fuel

Housing except mortgage interest

Housing, water and fuelsFuel & light

(-)Dwelling insurance & ground rent

Clothing Clothing & footwear Clothing & footwear

Household Goods
Household goods Furniture and household equipment

domestic services & routine repair of house

Postage & Telecom
Postage

Communication
Telephones & Telemessages

Personal Goods

Personal goods & services Health

Fees & subscriptions Miscellaneous goods and service

Dwelling insurance & ground rent -

Transport
Motoring expenditure Transport

Fares & other travel costs -

Leisure Goods & Service

Leisure goods Recreation & culture

Leisure services Education

- Accommodation service

Table O.2: RPI and CPI Correspondence Table
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O.4 Testing for Separability Between X and Y goods

In this appendix, we sketch-out one way to test separability between X and Y goods,
expanding on Footnote 30. After running our method, we bin households by money
metric values. Then, for each money metric bin h, we run regressions of the form

∆ log bhit − ∆ log bhjt = βk∆ log pkt + controls + errorht,

where i, j ∈ Y and k ∈ X, and t is time. If this regression can be estimated without omitted
variable bias, then we expect that the estimates for β should be equal to zero for every
k. Intuitively, the relative compensated budget shares of i and j should not respond to
changes in the price of k. The same should hold if we swap the role of Y and X, although
the latter is not testable if prices in Y are missing.

Table O.3 provides an example, estimated using OLS in the UK data, where Y is
“Catering” and “Leisure Goods & Service” and X is the 15 remaining product categories
(see table O.2). We find that almost all coefficients are insignificant, except the one for the
category “personal goods” when we include the relative price within Y as a control, which
is significant at the 10 percent level. We view this as tentative evidence that separability
is not strongly violated in this example.
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Table O.3: Illustration of test of separability using UK data

(1) (2) (3) (4) (5) (6) (7) (8)
Bread & Cereals 0.034 0.030 0.044 0.047 0.073 0.069 0.091 0.093

(0.060) (0.061) (0.072) (0.072) (0.064) (0.064) (0.078) (0.078)

Meat & Fish −0.019 −0.021 −0.018 −0.014 0.006 0.004 0.009 0.013
(0.066) (0.067) (0.075) (0.075) (0.071) (0.071) (0.081) (0.081)

Milk & Eggs 0.039 0.035 0.052 0.054 0.069 0.065 0.090 0.091
(0.043) (0.044) (0.053) (0.054) (0.046) (0.047) (0.059) (0.059)

Oils & fats −0.012 −0.013 −0.010 −0.008 0.012 0.010 0.014 0.017
(0.056) (0.056) (0.060) (0.060) (0.059) (0.059) (0.064) (0.064)

Fruit 0.002 0.001 0.004 0.007 0.027 0.026 0.030 0.032
(0.083) (0.083) (0.088) (0.088) (0.088) (0.088) (0.093) (0.093)

Vegetables 0.011 0.010 0.013 0.014 0.038 0.037 0.040 0.042
(0.050) (0.050) (0.051) (0.051) (0.057) (0.057) (0.059) (0.059)

Otherfood 0.073 0.071 0.087 0.090 0.097 0.095 0.113 0.116
(0.069) (0.069) (0.077) (0.078) (0.072) (0.072) (0.082) (0.082)

Non-Alcoholic Beverages 0.052 0.050 0.064 0.066 0.072 0.071 0.088 0.090
(0.058) (0.059) (0.069) (0.069) (0.060) (0.060) (0.071) (0.072)

Tobacco −0.071 −0.074 −0.082 −0.077 −0.030 −0.033 −0.033 −0.028
(0.075) (0.076) (0.091) (0.092) (0.080) (0.081) (0.101) (0.102)

Household & Fuel −0.065 −0.070 −0.079 −0.078 −0.016 −0.021 −0.020 −0.018
(0.054) (0.054) (0.066) (0.066) (0.063) (0.064) (0.084) (0.084)

Clothing 0.054 0.050 0.101 0.107 0.047 0.044 0.087 0.093
(0.045) (0.045) (0.074) (0.075) (0.045) (0.045) (0.074) (0.074)

Household Goods 0.086 0.082 0.125 0.130 0.109 0.105 0.154 0.159
(0.071) (0.072) (0.094) (0.094) (0.072) (0.073) (0.097) (0.097)

Postage & telecom 0.022 0.021 0.028 0.030 0.065 0.064 0.077 0.080
(0.045) (0.045) (0.050) (0.050) (0.051) (0.051) (0.058) (0.058)

Personal Goods 0.064 0.059 0.105 0.108 0.096 0.090 0.154∗ 0.157∗

(0.055) (0.056) (0.082) (0.082) (0.059) (0.060) (0.091) (0.091)

Transport 0.046 0.043 0.061 0.065 0.076 0.073 0.097 0.101
(0.072) (0.073) (0.088) (0.089) (0.077) (0.078) (0.096) (0.096)

Quantile FE N Y Y N N Y Y N
Decade FE N N Y N N N Y N
Quantile×Decade FE N N N Y N N N Y
Relative price within Y N N N N Y Y Y Y
N 41, 459 41, 459 41, 459 41, 459 41, 459 41, 459 41, 459 41, 459

Notes: Standard errors are clustered at the household level. One star indicates 10 percent
significance.
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O.5 Comparison with Blundell et al. (2003)

In this appendix, we exposit and apply the welfare bounds in Blundell et al. (2003) to
artificial and real data. We start by discussing how we implement their methodology
since, due to a typographical error in the algorithm for the lower-bound in the published
paper, we do not exactly implement their procedure.

O.5.1 Description of Bounding Algorithm

To bound the cost-of-living, Blundell et al. (2003) provide an algorithm for an upper-bound
and a lower-bound. Following the notation in their paper, let qt(I) be bundle of goods
consumed by a household with income I in period t. Blundell et al. (2003) assume that
qt(I) is an injective function (each I maps to a unique bundle of quantities in each period).

Algorithm A (Upper-bound). To recover an upper-bound for e(ps, v(pt, It)), start by defin-
ing q∗ = qt(It) and let T be the set of periods for which we have data.

(1) Set i = 0 and F(i) = {qi
s = qs(ps · q∗)}s∈T.

(2) Set F(i+1) = {qi+1
s = qs(minq∈F(i) ps · q)}s∈T.

(3) If F(i+1) = F(i), then set QB(q∗) = F(i) and stop. Else set i = i + 1 and go to step (2).

We have that e(ps, v(pt, It)) ≤ minq{ps · q : q ∈ QB(q∗)}. For the income levels It for which F(0)

is empty for s , t (because there are no households at s whose spending at s is as high or
as low as ps · q∗), we cannot calculate an upper-bound.

Intuitively, the cost of living in period s associated with q∗, e(ps, v(pt, It)), is weakly less
than ps · q∗. Hence, for every s, we must have that q0

s = qs(ps · q∗) is weakly preferred to q∗.
This collection of bundles, {q0

s }s∈T, all of which are preferred to q∗, is F(0) defined in step (1).
In step (2), we search across all of these bundles to find the cheapest one in each period
s. We update each qi

s to be the bundle that households with that level of income actually
picked in each period (which is still better than q∗). We continue this indefinitely until this
procedure converges, at which point we have our upper-bound.

As mentioned above, the lower-bound algorithm provided by Blundell et al. (2003)
has a typographical error. We provide an amended version below.
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Amended Algorithm B (Lower-bound). To recover a lower-bound for e(ps, v(pt, It)), start
by defining q∗ = qt(It) and let T be the set of periods for which we have data.

(1) Set i = 0, and let F(i) = {Ii
s : pt · qs(Ii

s) = It}s∈T.

(2) Set F(i+1) = {maxIk∈F(i){Ii+1
s : Ik = pk · qs(Ii+1

s )}}s∈T.

(3) If F(i+1) = F(i), then set QW(q∗) = {qs(Ii
s)}s∈T and stop. Else set i = i+1 and go to step (2).

We have that maxqs∈QW(q∗) ps · qs ≤ e(ps, v(pt, It)). For the income levels It for which F(0) is
empty for s , t (because there are no households at s whose consumption bundle costs It

at t prices), we cannot calculate a lower-bound.
Intuitively, in step (1), for each period s, we find the income level I0

s such that pt ·qs(I0
s ) =

It. The bundle qs(I0
s ) was affordable at t but was not purchased. Hence, the true cost-of-

living in period s must be greater than I0
s . The collection of income levels constructed in

this step is F(0) and all are less than the true cost-of-living. In step (2), for each period s,
we search over Ii

k and find the maximum level of income Ii+1
s such that Ii

k = pk · qs(Ii+1
s ) is

satisfied. The new Ii+1
s is weakly greater than Ii

s but we still know that Ii+1
s is less than the

true cost-of-living. We continue this indefinitely until this procedure converges, at which
point we have our lower-bound.

O.5.2 Results with UK Data
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Figure O.6: Upper- and lower-bound using the amended Blundell et al. (2003) algorithm
for the UK data in Section 4. Our algorithm produces the blue line. We can obtain bounds
using the Blundell et al. (2003) algorithm for all households in the 2017 sample except for
the top 1 percentile and the bottom 0.1 percentile.
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O.6 Comparison with Jaravel & Lashkari (2022)

In this appendix, we apply the first-order and second-order algorithms described in Jaravel
and Lashkari (2022) (JL) to some artificial examples and compare the performance with
our method.39 We start with the example in Section 3.3, where both methods perform
well. We then provide other examples where the errors in their methodology are very
large. These examples are selected to contrast the mathematical properties of our two
methodologies when the support of the cross-sectional distribution of utilities changes
over time.

We compute the errors for each method relative to the truth for the entire range
over which each method produces estimates. We do this because identifying the set of
households over which the money metric can be reliably estimated (without extrapolation)
is a contribution of our methodology. The JL method purports to estimate the money
metric for all households in the sample and does not provide a way to know if they are
performing out-of-sample extrapolations, so we calculate the error accordingly.

Table O.4 shows that both methodologies perform very well for the simple example
in Section 3.3, even though the support of the cross-section distribution of utilities is not
constant over time. However, if we change parameter values, then the two methods can
perform very differently.

39By setting the base year in the Jaravel and Lashkari (2022) algorithm to t0, their definition of real
consumption (which differs from our definition of real consumption) matches our money metric. Our
method only requires repeated cross-sections. However, the second-order JL method requires a panel to
construct household-specific inflation indexes. Therefore, to apply their method we create panels by the
most disaggregated income quantile possible (i.e. if we have N households per period, then we form panels
based on income N-quantiles). Finally, for the polynomial fitting stage of the Jaravel and Lashkari (2022)
method, we use Matlab’s polyfit function because it gives lower errors than a naive OLS regression.
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Table O.4: Comparison of errors for simple example in Section 3.3

Jaravel and Lashkari (2022) method:
Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.03 0.03 8.7 × 10−3 8.2 × 10−3

2 0.02 0.02 1.6 × 10−3 1.4 × 10−3

4 0.01 0.01 1.2 × 10−3 9.7 × 10−4

6 7.8 × 10−4 4.5 × 10−4 6.4 × 10−4 6.3 × 10−5

8 3.6 × 10−3 3.8 × 10−3 6.6 × 10−4 1.8 × 10−4

12 1.1 × 10−3 6.7 × 10−4 6.4 × 10−4 6.2 × 10−5

Baqaee, Burstein, Koike-Mori method:
Infinity Norm Root Mean Square Error

Iterative Recursive Iterative Recursive

7.8 × 10−3 1.5 × 10−4 5.2 × 10−3 7.2 × 10−6

Notes: The Jaravel and Lashkari (2022) methodology is applied to the artificial example in Section 3.3. We
report two different norms (infinity norm and root mean square error) of the percentage difference between
the true money metric and the estimate in the final period (e.g. 0.03 stands for 3% difference). The first
column is their “first-order” algorithm and the second column is their “second-order” algorithm. The
parameter K is the order of the polynomial used. The sample has 1000 households and annual data.
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One example is provided in Table O.5. Our method, which tracks the boundary
of overlapping support, does not produce any numbers for this example because there
is no overlap in the support of the utility distribution between t0 and T. However,
the Jaravel and Lashkari (2022) algorithm does produce estimates and they are very
inaccurate. Furthermore, these estimates do not improve as we increase the sample size
or frequency of observation. Importantly, the Jaravel and Lashkari (2022) methodology
does not provide a way to know whether their estimates are reliable (like in Table O.4)
or unreliable like in (Table O.5). On the other hand, our methodology does not produce
estimates that are not guaranteed to be reliable (given our assumptions).

Table O.5: Errors in Jaravel and Lashkari (2022) method with different parameters

Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.27 0.26 0.25 0.23
2 0.47 0.41 0.44 0.37
4 0.38 0.35 0.34 0.31
6 1.5 × 10104 Polyfit error 4.6 × 10102 Polyfit error
8 1.08 1.09 0.97 0.99

12 Polyfit error Polyfit error Polyfit error Polyfit error

Notes: This table shows the accuracy of the Jaravel and Lashkari (2022) algorithm for different values
of K (polynomial degree), as defined in the notes for Table O.4. The expenditure function is e

(
p,U

)
=(∑

i ωiUεi(1−γ)p1−γ
i

)1/(1−γ)
where

(
γ, ε1, ε2, ε3

)
= (5, 0.3, 1, 2) andω is all 1. There are 1000 households uniformly

distributed in the income distribution over [1, 1.1]. Average nominal income is the numeraire and the income
distribution does not change over time. There are 40 periods and the price of the three goods rise (relative
to income) at a constant rate from (1, 1, 1) to (2, 3, 4). If Matlab fails to find a unique polynomial due to
(numerical) multi-collinearity, we write “Polyfit error.” Although we do not report the numbers, the errors
in these cases are large. Quadrupling the number of households and doubling the frequency of observation
does not appreciably change the results in this table.
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In Table O.5, there is no overlapping support, so our method produces no estimates.
In the next example, the distribution of money metric values in the final period is, by
construction, a subset of the one in the initial period. This means that our method produces
estimates for every household in the sample. That is, we compare the performance of our
method to JL for the same set of households (since all households in the final period are
in a region of overlapping support). The results are reported in Table O.6. Once again,
increasing the frequency of observation and number of households do not appreciably
change the estimates.

Table O.6: Comparison of errors for non-homothetic CES example with different param-
eters

Jaravel and Lashkari (2022) method:
Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.15 0.15 0.08 0.08
2 0.17 0.13 0.05 0.05
4 1.2 × 1091 Not converged 1.8 × 1089 Not converged
6 4.9 × 10124 Not converged 7.0 × 10122 Not converged
8 NaN NaN NaN NaN

12 Polyfit error Polyfit error Polyfit error Polyfit error

Baqaee, Burstein, Koike-Mori method:
Infinity Norm Root Mean Square Error

Iterative Recursive Iterative Recursive

1.4 × 10−3 2.5 × 10−6 1.3 × 10−3 1.7 × 10−6

Notes: This table shows the accuracy of the Jaravel and Lashkari (2022) algorithm for different values
of K (polynomial degree), as defined in the notes for Table O.4. The expenditure function is e

(
p,U

)
=(∑

i ωiU(1−γ)εi p1−γ
i

)1/(1−γ)
where

(
γ, ε1, ε2, ε3

)
= (5, 1.6, 2, 3.3) and ω = (1, 1, 1). There are 5000 households

equally distributed in the income distribution and 100 periods. The initial income distribution is [0.8, 1.4].
Between period 1 and 50, the income distribution uniformly and linearly changes to [0.003, 34.4]. Between
period 51 and 75, the income distribution uniformly and linearly changes to [0.5, 8.2]. Between period 76
and 100, the income distribution uniformly and linearly changes to [2.7, 2.9]. The price vector changes from
(1, 1, 1) to (2, 3, 4). If the second-order algorithm does not converge within 100 iterations, we write “Not
converged.” If the estimated values of the money metric explode, we write “NaN” for not a number. If we
fail to find a unique polynomial (due to numerical multi-collinearity), we write “Polyfit error.” Although
we do not report the numbers, the errors in these cases are large. Results are similar for higher order
polynomials, if we quadruple the number of households, or double the frequency of observations.
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Figure O.7: The elasticity of substitution as a function of utility for the example in Table
O.7
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Our final example uses a more nonlinear demand system. Let preferences be defined
by

e
(
p,U

)
=

∑
i

ωi
(
Uεipi

)1−γ(U)

1/(1−γ(U))
, (19)

where we allow the elasticity of substitution γ to depend on utility, as in Fally (2022).
To keep the preferences well behaved, we constrain the elasticity of substitution to be
between a lower- and upper-bound value. For example, the most straightforward way to
do this is to set

γ (U) = max
{
min

{
γ, γ0 − η log U

}
, γ̄

}
. (20)

The Jaravel and Lashkari (2022) propositions require smoothness, so we instead use the
following functional form

γ(U) =

γχ1−1
+

([
γ
χ2−1
χ2 + (γ0 − η log(U))

χ2−1
χ2

] χ2
χ2−1

)χ1−1
1
χ1−1

, (21)

where we set χ1 = 100 and χ2 = 0.01. This function is plotted in Figure O.7 and smoothly
approximates the maximum and minimum functions. In practice, the errors are similarly
large whether we use (20) or (21).

We simulate artificial data using this demand system and report the results in Table
O.7. The Jaravel and Lashkari (2022) methodology has substantially larger errors and
does not seem to converge as we increase the number of parameters in the polynomial

O19



approximation or the sample size. Our methodology, in contrast, produces very small
errors.

Table O.7: Comparison of Jaravel and Lashkari (2022) and Baqaee, Burstein, Koike-Mori
errors for more complex example

Jaravel and Lashkari (2022) method:
Infinity Norm Root Mean Square Error

K First Order Second Order First Order Second Order

1 0.17 0.17 0.11 0.10
2 0.25 0.25 0.16 0.15
4 14 Not converged 0.53 Not converged
6 1.3 × 10205 Not converged 4.1 × 10203 Not converged
8 2.2 × 1073 Polyfit error 7.0 × 1071 Polyfit error

12 Polyfit error Polyfit error Polyfit error Polyfit error

Baqaee, Burstein, Koike-Mori method:
Infinity Norm Root Mean Square Error

Iterative Recursive Iterative Recursive

7.1 × 10−4 1.4 × 10−5 6.5 × 10−4 1.1 × 10−5

Notes: This table shows the accuracy of the Jaravel and Lashkari (2022) algorithm for different values
of K (polynomial degree), as defined in the notes for Table O.4. The expenditure function is (19) with
ε = [0.2, 1, 1.65] and ωi calibrated so that the budget share of each good for the median household in the
first period is the same. The parameters in (21) are γ0 = 10, γ = 1.5 γ̄ = 5, η = 2, χ1 = 100 and χ2 = 0.01.
The income distribution starts as a uniform distribution between [2, 50] and grows uniformly by a factor of
14 over 40 periods. The price vector changes from (1, 1, 1) to (7, 5, 3). If the second-order algorithm does
not converge, we write “Not converged.” If Matlab fails to find a unique polynomial (due to numerical
multi-collinearity), we write “Polyfit error.” Although we do not report the numbers, the errors in these
cases are large. Results are similar for higher order polynomials, if we quadruple the number of households,
or double the frequency of observations.
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