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1 Introduction

Money-metric measures of welfare convert income under different sets of prices into
equivalent income under a common base price vector. That is, a money-metric assigns
cardinal values to budget constraints that are comparable to each other and have inter-
pretable units. For this reason, money-metric utility is a backbone of welfare economics
and a necessary ingredient for measuring welfare-relevant growth and inflation.

In general, money-metric utility can be calculated by integrating Hicksian or compen-
sated demand with respect to changes in prices (see e.g. Hausman, 1981). In practice,
compensated demand is not easily observed, so standard price deflators weigh changes
in prices using uncompensated demand instead. This shortcut is justified if preferences
are homothetic, as in this case, compensated and uncompensated expenditure shares co-
incide. However, in the more realistic case of non-homothetic preferences, money-metric
utility is more difficult to calculate since Hickisan budget shares are not easily obtained
(see Samuelson and Swamy, 1974).

We resolve this problem as follows. Suppose we observe repeated cross-sections of
households with identical preferences facing common prices.1 To construct the money-
metric utility function in t0 for a household with income I at time t, we must know the
compensated demand of this household when prices were different. This can be revealed
at each point in time s , t by finding another household with a different income level I′ , I
at time s who is on the same indifference curve as the household with income I at t.2 If
we can find such households, then we can calculate the money-metric utility function by
integration. Conversely, to match households through time, we must know the money-
metric utility function, since two households are on the same indifference curves if their
money-metric utility values coincide. The insight is that this is a fixed point problem,
and we propose a simple iterative algorithm that converges to the money-metric utility
function in continuous time.

Our approach generalizes the standard practice of statistical agencies who weigh
changes in prices over time using aggregate budget shares. When preferences are homo-
thetic and stable in both the cross-section and the time-series, aggregate budget shares
coincide with the compensated budget share of each individual in the sample. Hence,
under these assumptions, conventional price deflators like the CPI or the PCE recover
money-metric utility. However, when preferences are non-homothetic, the compensated

1In our baseline, we rule out demand/taste shocks in both the time-series and cross-section. We discuss
below how this assumption may be relaxed.

2Our approach is not based on interpersonal comparisons of utility. Instead, we match households that
have the same Hicksian demand.
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budget shares of each household are distinct. Thus, instead of relying on aggregate budget
shares to construct the price index, we need to use the budget shares of a unique corre-
sponding income level in the past for each income today. Our paper provides a method
for constructing this mapping.3

Our approach differs from an alternative that calculates Hicksian demand based on
the estimated elasticities of substitution. Unlike the latter, our procedure does not require
the estimation of non-parametric elasticities of substitution.4 Intuitively, our approach
only recovers Hicksian demand evaluated at observed prices, whereas the elasticities
of substitution determine how Hicksian demand will react to any price alteration, even
those that have not been observed. For this reason, our procedure can measure changes in
welfare for observed changes in prices and income, but it cannot address counterfactual
welfare questions as those explored by Baqaee and Burstein (2021).

Our paper is closely related to Blundell et al. (2003) and Jaravel and Lashkari (2022),
both of which develop non-parametric approaches to measuring welfare for non-homothetic
preferences using cross-sectional household-level data. Similar to these papers and con-
ventional practice in index number theory, the most important assumption we make is
that all households in the sample have the same preference relation and that these prefer-
ences are not changing through time. Although inspired by them, our approach, which
integrates Hicksian demand curves, is distinct from theirs. We discuss these papers in
turn.

Blundell et al. (2003) bound the money-metric by using revealed choice arguments.
For each income level at time t, Blundell et al. (2003) construct a bundle that is strictly
better and a bundle that is strictly worse in time s , t. The price of these two bundles then
bound the true money-metric value. We exposit and implement an amended version of
their methodology in Appendix C. We amend their algorithm for the lower-bound, since
the version in their paper appears to have an error. Our approach has an advantage over
Blundell et al. (2003) in that it provides a point estimate, rather than only bounds, for

3In general, chained-weighted indices as measured by statistical agencies are uninterpretable when pref-
erences are non-homothetic. However, under additional assumptions chained indices do have meaningful
interpretations. For example, Feenstra and Reinsdorf (2000) show that when the path of prices is linear in
time then chained indices measure the cost-of-living price index for some intermediate utility level (between
initial and final utility) under AIDS preferences. Caves et al. (1982) establish a similar result for Tornqvist
price indices, up to a second order approximation. In this paper, we are interested in the money-metric
utility function instead.

4In this sense, our approach is similar to Oulton (2012) who shows how to back out Hicksian budget
shares by adjusting Marshallian budget shares using a Taylor series in income. He applies this methodology
using the QAIDS demand system to estimate the cost-of-living index without needing to estimate price
elasticities. Instead of relying on a Taylor series under a parametric functional form for demand, our
approach purges income effects from substitution effects by matching households over time who are on the
same indifference curve but face different prices.
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the money-metric utility as long as the data is smooth and observed continuously. In the
same appendix, we show that our estimates are within their bounds for both artificial and
real-world data.

Jaravel and Lashkari (2022) use a correction term to address non-homotheticity in
household-level chain-weighted indices. Their approach requires that the support of the
cross-sectional distribution of (ex-ante unknown) utilities remain constant and unchang-
ing over time. In contrast, our approach does not make this assumption; instead, it
endogenously determines the region of the income distribution for which a money-metric
utility function can be constructed, given the available information. This is important
when economic growth shifts the support of utilities over time. In Appendix D, we apply
the Jaravel and Lashkari (2022) approach to our artificial and UK data and show that their
algorithm can result in larger approximation errors when there is economic growth.

In contrast to these papers, we also extend our method to situations where some
prices and expenditures are unobserved. This generalizes the influential Feenstra (1994)
approach to imputing missing prices beyond the homothetic CES case. To do this, we
require that preferences be indirectly separable between observed and unobserved goods.
Under this additional assumption, we show that the money-metric utility can be recovered
provided knowledge of the compensated elasticity of substitution between observed and
unobserved goods.

This is possible because we can back out the change in the relative price of observed
and unobserved goods using changes in the compensated expenditure share of the ob-
served goods. For example, if the compensated budget share on observed goods is rising,
and observed goods are net complements with unobserved goods, then this indicates
that the relative price of unobserved goods is falling. This can then be used to calculate
money-metric utility. However, knowing the change in the compensated budget share
of observed goods requires knowing the money-metric utility function, making this an-
other fixed-point problem. Importantly, we also show that the elasticity of substitution
between observed and unobserved goods, which is required to infer missing prices, can
be identified without knowledge of those missing prices.

Since our method can be extended to allow for unmeasured prices, our paper is
also related to a strand of the literature that measures welfare allowing for incomplete
information about prices. Notable examples include Costa (2001), Hamilton (2001) and,
more recently, Atkin et al. (2020). These papers take advantage of horizontal shifts in Engel
curves to identify money-metric utility changes. Our approach has distinct intuition,
assumptions, and data requirements; we discuss these in more detail in Section 5 when
we discuss the extension of our method to allow for missing prices.

4



Our approach can also be contrasted with more parametric approaches where wel-
fare measures are computed using a fully-specified demand system (e.g. Deaton and
Muellbauer 1980). Specific functional forms for non-homothetic preferences are used to
understand phenomena as diverse as structural transformation (e.g. Boppart 2014, Comin
et al. 2021, and Fan et al. 2022), international trade patterns (e.g. Matsuyama 2000, and
Fajgelbaum et al. 2011), and savings behavior and inequality (e.g. Straub 2019). In con-
trast, our approach provides a non-parametric way to compute welfare measures from
the data without relying on low-dimensional functional forms.

The outline of the paper is as follows. In Section 2, we define the cost-of-living index
and money-metric utility and show how they are related to Hicksian demand. Section 3
showcases how this can be applied to recover cost-of-living and money-metric utility with
the help of cross-sectional data. We apply our method to artificial data generated using
popular functional forms for non-homothetic preferences and show that our procedure
quickly converges to the truth as the number of households and frequency of observations
grow. Our numerical examples are calibrated to match real-world data in terms of the
frequency of observation and the rate at which prices and incomes are changing over time.

In this section, we also discuss several extensions and limitations of our approach,
including how to use our results when some of our baseline assumptions are not met.
For example, when sufficient data is available, we discuss how to deal with idiosyncratic
taste shocks that are unrelated to income. Similarly, we explain how our method can
be adapted to account for heterogeneity in preferences that are dependent on observable
characteristics.

In Section 4, we apply our method to construct the money-metric utility function using
household expenditure survey data from the United Kingdom from 1974 to 2017. We
find that real consumption calculated by deflating income by aggregate chain-weighted
inflation (as measured by official statistical agencies)overstates the money-metric utility
for all households below the 60th percentile of income in 2017 in our sample. In other
words, for any income level less than the 60th percentile, the 1974 equivalent income is
less than real consumption. The size of this gap is greatest for the poorest households,
roughly 20 percentage points (0.5 percentage points per year on average), and gradually
diminishes until it reaches zero for households close to the 60th percentile. Conversely,
real consumption calculated using aggregate inflation statistics understates the money-
metric utility for households above the 60th level. For households in the 97th percentile
of our sample, who spend around £81, 000 per year, the size of this gap is 13 percentage
points over the whole sample (0.25 percentage points per year on average).5 We are

5These results are consistent with Blundell et al. (2003), which report a relatively greater rise on the cost
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unable to compute the money-metric for the richest households in 2017 (97th percentile
and above). The reason is that for these households, there did not exist equally well-off
consumers in the past whose demand can be used in place of the compensated demand
curves.

In Section 5, we extend our methodology to allow for missing prices. To illustrate this
extension, we assume that some service prices are mismeasured in the UK data, calibrate
an elasticity, and apply our methodology. We find that the relative price of services has
been rising faster than official data for rich but not poor households. We conclude in
Section 6.

2 Money-Metrics and the Cost-of-Living

We start by defining the objects of interest: money-metric utility and the closely related
cost-of-living function. Consider a rational preference relation ⪰ defined over consump-
tion bundles c in RN. Suppose that these preferences can be represented by a smooth
utility function U(c) that maps consumption bundles to utility values. Given this utility
function, we can define the indirect utility function

v(p, I) = max
c
{U(c) : p · c ≤ I},

mapping a vector of prices p and expenditures I to utility values. Define the expenditure
function to be

e(p,u) = min
c
{p · c : U(c) ≥ u}.

The expenditure and indirect utility functions are useful because they can be used to
construct money-metrics and cost-of-living indices.

Definition 1 (Money-Metric and Cost-of-Living). Holding fixed some reference vector of
prices p̄, the money-metric function maps (p, I) to

e(p̄, v(p, I)),

Holding fixed some reference budget set (p̄, Ī), the cost-of-living index maps p to

e(p, v(p̄, Ī)).

The money-metric e(p̄, v(·)) is itself an indirect utility function because a budget set

of living for poorer households between 1975 and 1984 in the UK.
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(p, I) is preferred to another budget set (p′, I′) if, and only if, e(p̄, v(p, I)) > e(p̄, v(p′, I′)). We
use this money-metric cardinalization of utility throughout the rest of the paper. Whereas
the money-metric converts the value of different budget sets into equivalent value under
some baseline prices, the cost-of-living function, e(·, v(p̄, Ī)), converts the value of some
baseline budget constraint (p̄, Ī) into equivalent income under different sets of prices.6

To summarize, the function e(p′, v(p, I)), mapping (p′,p, I) into a scalar, is an object of
paramount interest. The “money-metric” is the cross-section of this function that holds
p′ constant and the cost-of-living index is the cross-section that holds (p, I) constant. The
money-metric is useful for ranking budget sets (i.e. measuring growth).7 The cost-
of-living index is useful for converting a common utility level, attained by v(p, I), into
equivalent income under different price systems (i.e. measuring the cost of maintaining a
fixed standard of living).

Denote the Hicksian budget share for good i to be bi(p,u) where p is a vector of prices
and u is a utility level. The following proposition, which is a corollary of Lemma 1 from
Baqaee and Burstein (2021), provides a characterization of both the cost-of-living index
and the money-metric using Hicksian budget shares.

Proposition 1 (Money-Metric and Cost-of-Living). The money-metric of a budget set (p, I) in
terms of p̄ prices can be expressed as

log e(p̄, v(p, I)) = log I −
∫ p

p̄

∑
i∈N

bi(ξ, v(p, I))d log ξi. (1)

The cost-of-living for a budget set (p̄, Ī) in terms of p prices can be expressed as

log e(p, v(p̄, Ī)) = log Ī +
∫ p

p̄

∑
i∈N

bi(ξ, v(p̄, Ī))d log ξi. (2)

Intuitively, both the money-metric and the cost-of-living index can be expressed as
integrals of Hicksian budget shares with respect to changes in prices. However, Hicksian
demand curves are not directly observable, so operationalizing this result requires having
a way to identify Hicksian budget shares. This is what we focus on in the next section.

6In index number theory, the cost-of-living index is also called the Konüs (1939) index.
7The equivalent and compensating variation are related to the money-metric and the cost-of-living

index. Specifically, to measure the change in welfare from some initial budget set (p, I) to some other budget
set (p′, I′), the equivalent variation (in logs) is log e(p, v(p′, I′)) − log I and the compensating variation is
log I′ − log e(p′, v(p, I)).
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3 Main Results

In this section, we discuss how Proposition 1 can be deployed to recover money-metric
utility functions and cost-of-living indices if one has access to repeated cross-sectional
data of consumers with common and stable preferences who all face common prices at
each point in time but have different incomes. We start this section by introducing our
main theoretical result. We then provide a simple numerical implementation. We end the
section by discussing some extensions and limitations.

3.1 Theoretical Result

Suppose we observe a smooth path of prices pt ∈ RN at each point in time t ∈ [t0,T].8 We
also observe vectors of expenditure shares B(I, t) ∈ RN for consumers with preferences ⪰
and income levels I ∈ [It, It] at time t. The expenditure shares B(I, t) can be thought of as
Marshallian budget shares evaluated at income level I and prices pt.

For any cardinalization of the indirect utility function and its associated Hicksian
demand curves, the following identity holds:

bi(pt, v(pt, I)) = Bi(I, t).

Denote the money-metric utility function using reference prices pt0 and evaluated at
budget set (pt, It) by u(I, t). Using this cardinalization of indirect utility, we can write

bi(pt,u(I, t)) = Bi(I, t).

Using this identity, Proposition 1 can be rewritten as the following recursive integral
equation.

Proposition 2 (Money-metric as Solution to Integral Equation). For t ∈ [t0,T], the money-
metric u(I, t) ≡ e(pt0 , v(pt, I)) is a fixed point of the following integral equation

log u(I, t) = log I −
∫ t

t0

∑
i

Bi(u−1(u(I, t), s), s)
d log pis

ds
ds (3)

with boundary condition u(I, t0) = I. Here, u−1(·, s) is the inverse of u with respect to its first
8Prices of sectoral aggregates tend to be smooth over time. This is the level of aggregation typically

considered in work that documents non-homotheticities (including our application in Section 4). If the
underlying prices within these aggregates contain jumps (due to, e.g. temporary sales or entry and exit of
goods) then this needs to be taken into account when constructing these sectoral price aggregates. Doing
so is beyond the scope of this paper.
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argument (income) given its second argument (time) is equal to s. That is, u−1(u(I, t), s) is a level
of nominal income I∗ in s such that u(I∗, s) = u(I, t).

In words, u(I, t) converts the value of the budget constraint defined by prices pt and
income I into income under pt0 . By varying initial prices pt0 , for fixed (pt, I), we can also
recover the cost-of-living index.9

Proposition 2 follows immediately from Proposition 1 once we recognize that in the
integral equation above, Bi(u−1(·, s), s) : R+ → [0, 1] maps utility values to the budget share
of good i at time s. That is, it is the Hicksian budget share of i.

To better understand (3), observe the simplification that occurs when preferences are
homothetic. In this case, budget shares do not depend on income levels, only on time.
Therefore, when preferences are homothetic, (3) simplifies to

log u(I, t) = log I −
∫ t

t0

∑
i

Bi(s)
d log pis

ds
ds, (4)

which eliminates the need to find a fixed point. This equation, called a Divisia index,
justifies the standard chain-weighting practices adopted in the national accounts for cal-
culating price and quantity indices.

If we can solve (3), then we can compute the Hicksian budget shares b(ps,ut) for a
utility level ut at time t under prices ps at time s by using the budget shares of a different
household on the same indifference curve at time s. The expenditures shares of this
“matched” household, B(u−1(ut, s), s), are equal to the Hicksian budget share b(ps,ut).

Proposition 2 provides a way to recover the money-metric and cost-of-living functions
without needing direct knowledge of the potentially very high-dimensional demand sys-
tem. Recall that the number of cross-price elasticities scales in the square of the number
goods, and generically depends on both income and relative prices. Proposition 2 obviates
the need to undertake this onerous estimation exercise by using the demand from other
households and time periods in place of a counterfactual model of compensated demand.

The integral equation in Proposition 2 may initially appear abstract, but its underlying
intuition is quite simple. We can better understand its meaning and how it can be used in
practice using the following step-by-step solution procedure.

9 Alternatively, suppose that we have calculated e(pt0 , v(pt, I)) and we wish to obtain e(ps, v(pt, I)) for
some s ∈ [t0,T]. Find I′ such that e(pt0 , v(pt, I)) = e(pt0 , v(ps, I′)). Then, v(pt, I) = v(ps, I′) and e(ps, v(pt, I)) =
e(ps, v(ps, I′)) = I′.
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3.2 A Step-by-Step Procedure and More Intuition

The money-metric is a fixed point of (3), which is a system of nonlinear equations, albeit
an infinite-dimensional one. There are established numerical procedures for solving such
equations. Here, we show a very simple iterative procedure that converges to the desired
solution as we approach the continuous-time limit.

For some interval of time [t0,T], suppose we have data on a grid of points {t0, . . . , tM}

where tn < tn+1, with tM = T. Use the following iterative procedure for each n ∈ {1, . . . ,M}
starting with n = 1:

log u(I, tn) ≈ log I −
n−1∑
s=0

B(I∗s, ts) · ∆ log pts , (5)

where I∗s satisfies

u(I∗s, ts) = u(I, tn−1), (6)

with the boundary condition u(I, t0) = I. The summation in (5) above approximates the
integral in (3) using a Riemann sum and becomes exact in the continuous-time limit
because the Riemann sum becomes an integral and u(I, tn−1), in (6), converges to u(I, tn).10

This procedure endogenously delineates those values of (I, t) for which u(I, t) can be
computed, and it does not require an assumption of full constant support over time on
either the set of observed incomes or unobserved utilities.

To give more intuition, it helps to explicitly spell out the first few steps of this iterative
procedure. Start with the boundary condition u(I, t0) = I since t0-equivalent income at t0

is just initial income. Abusing notation, let bi(u, t) be the Hicksian budget share of good i
at prices pt for utility value u. For period t1, compute

log u(I, t1) ≈ log I − b(u(I, t0), t0) · ∆ log pt1 = log I − B(I, t0) · ∆ log pt1

where the last equation uses the boundary condition, which implies b(u(I, t0), t0) = B(I, t0).
For values of I outside of [I0, I0], we cannot compute u(I, t1).

10By uniqueness of limits, if (5) and (6) converge as the time interval shrinks to zero, this limit point is
unique and must be the money-metric utility function. In our computations, we use the trapezoid rule rather
than the left Riemann sum in equation (5) to approximate the integral in (3) since it is a better numerical
approximation. Moreover, when computing equations (5) and (6) requires evaluating a function between
two grid points, we use linear interpolation. We do not extrapolate.
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With u(I, t1) in hand, construct Hicksian budget shares for period t1:

b(u(I, t1), t1) = B(I, t1).

That is, to each budget share Bi(I, t1), assign a utility value based on u(I, t1). Intuitively,
we know budget shares as a function of income at t1, and we know utility as a function of
income at t1. Since utility is monotone in income, this means that we can associate with
each Bi(I, t1) a utility value, which is precisely the Hicksian budget share. We now have
Hicksian budget shares b(u, t0) and b(u, t1).

Next, calculate

log u(I, t2) ≈ log I − b(u(I, t1), t1) · ∆ log pt2 − b(u(I, t1), t0) · ∆ log pt1 ,

and using u(I, t2), construct Hicksian budget shares for period t2:

b(u(I, t2), t2) = B(I, t2).

That is, for each budget share Bi(I, t2) in t2, assign a utility value based on u(I, t2). Continue
this iterative process until tM. Note that we can only calculate u(I, t) for those I’s for which
B(u−1(u(I, t), s), s) is observed for all s ≤ t.

To see this procedure graphically, consider the left panel of Figure 1a showing the
expenditure share on some good against nominal income for three different points in time.
The fact that the lines are downward sloping means that higher incomes are associated
with lower expenditure shares on the good. In this example, incomes grow over time, so
the range of nominal income levels shifts up over time.

In the data we observe budget shares as a function of income over time (Marshallian
budget shares), but to construct the money-metric we require budget shares as a function
of utility (Hicksian budget shares). The right panel of Figure 1a displays the Hicksian
budget shares for the same good. The purple line in the right panel of Figure 1a shows for
each period the Hicksian expenditure share for the good evaluated at some fixed utility
level ū. The change in expenditures, holding utility constant, are pure substitution effects
over time due to changes in relative prices. As implied by Proposition 1, multiplying the
Hicksian budget shares by log price changes and summing over time gives the money-
metric utility for the household with utility ū at time t2.

But, we cannot directly observe the figure on the right. How do we infer Hicksian
budget shares? The purple line in the left panel of Figure 1a plots, for each period s, the
income that gives the utility of ū, that is u−1(ū, s), and the associated budget share for the
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Figure 1: Expenditure share for some good against log nominal income and log money-
metric utility at three points in time.

good, Bi(u−1(ū, s), s). In other words, we can infer Hicksian budget shares for ū by using
the observed budget share along the purple line in the left panel. Then we can construct
the mapping between income and utility at each point (the purple line) by iteratively
applying the summation in (5).

To understand why Proposition 2 is unnecessary when preferences are homothetic,
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Figure 1b plots the same information as Figure 1a but for homothetic preferences. Since
there are no income effects, budget shares at a point in time do not vary with household
income or utility. That is, Marshallian and Hicksian budget shares coincide. Therefore, we
can construct the money-metric using a price index based on Marshallian budget shares
by good.

The iterative procedure that we describe is useful for building intuition. However, one
can also find a fixed point by solving directly the system of equations. That is, we replace
u(I, tn−1) on the right hand side of equation (6) with u(I, tn). A simple way to find such a
fixed point is to start with (5) and (6) and call the resulting money-metric utility u0(I, t).
Then apply (5) and (6) again but this time use u0(I, tn) in place of u(I, tn−1) in (6) and call
the resulting money-metric utility u1(I, t). Iterate on this until convergence. When we use
this refined algorithm in our artificial data in Section 3.3, we obtain even smaller errors
(by three orders of magnitude). The empirical results in Section 4 using real-world are
roughly unchanged. Since the iterative procedure already has quite small errors, we do
not always show these alternative results.

3.3 Quantitative Illustration with Artificial Data

In this section, we illustrate and evaluate our algorithm using artificial data from fully
parameterized preferences. We consider generalized non-homothetic CES preferences
from Fally (2022).11 The expenditure function is

e
(
p,u

)
=

∑
i

ωi
(
uεipi

)1−γ(u)


1

1−γ(u)

. (7)

By Shephard’s lemma, Hicksian budget shares b(p,u) are

bi
(
p,u

)
=
ωi

(
uεipi

)1−γ(u)∑
jω j

(
uε jp j

)1−γ(u)
,

and Marshallian budget shares are B(I, t) = b(pt,u) where u solves I = e
(
pt,u

)
. Income

elasticities can vary across goods and the elasticity of substitution can vary across indif-
ference curves (but is constant along any indifference curve, as under standard CES). As

11See also Hanoch (1975), Comin et al. (2021), and Matsuyama (2019) for more information on these
preferences. In Appendix E we consider another example with the Almost Ideal Demand System (AIDS) of
Deaton and Muellbauer (1980).
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shown by Baqaee and Burstein (2021), the money-metric function for t0 reference prices is

u(I, t) =

∑
i

ωi
(
vεipi,t0

)1−γ(v)


1

1−γ(v)

where v is the solution to I = e
(
pt, v

)
. To evaluate the accuracy of our algorithm, we

compare this exact expression for u(I,T) with the results of our numerical procedure
applied to artificial data generated using these preferences.

We generate repeated cross-sectional data on income and expenditure shares over 3
goods for households facing a common price vector over forty years. The distribution
of income in the first period is lognormal (parameterized to match the distribution of
household expenditures in the 1974 UK household survey, described in the next section).
All incomes grow by a factor of ten over the sample period at a constant annual growth
rate. Good 1 has the lowest income elasticity and the highest inflation rate. Figure 2 plots
the paths of prices and incomes in our numerical example.
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Figure 2: Exogenous price and income paths for the artificial examples.

We consider two parameterizations. The first case allows for income effects but the
elasticity of substitution does not depend on u. We follow Comin et al. (2021), and set
ε1 = 0.2, ε2 = 1, ε3 = 1.65, and γ = 0.25. The second case assumes the elasticity of
substitution is a log-linear decreasing function of u, consistent with estimates in Auer
et al. (2021). We set γ(u) = 10 − 2 log u, with the intercept value ensuring that elasticities
of substitution remain higher than unity. The share parameter ω is calibrated separately
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Figure 3: Maximum error as a function of the frequency of observation and number of
households in the sample, holding the path of price and income changes constant. This
figure uses non-homothetic CES preferences with variable γ. Our baseline calibration
is annual frequency corresponding to a value of 100 = 1 observations per year on the
x-axis. If we observe the data once every decade, then the frequency is 1/10, and if we
observe the data every month, then the frequency is 12. The left panel uses the iterative
procedure outlined in Section 3.2 and the right panel iterates on the iterative procedure
until convergence to a fixed point.

in each case so that the budget shares of each good for the median household in the first
period are all the same (equal to one third for each good).

Since this data is artificial, we are only interested in the errors in our procedure com-
pared to the exact solution. However, for completeness, Figure A.1 in Appendix A shows
the difference between the money-metric and real consumption calculated using aggregate
inflation (as defined in Section 4) for different income levels in this artificial economy.

To assess the accuracy of our procedure, we use the infinity norm — that is, the
maximum absolute value of the log difference between the true money-metric function and
our estimate in the final period. Under both parameterizations, constant and variable γ,
the error is very small. For example, with 100 households and annual data, the maximum
error in the final period is 0.0078 and 0.0044 for variable and constant γ preferences. This
is equivalent to roughly two thirds of 1% of income. If instead of using the iterative
procedure in Section 3.2, we solve the fixed point problem, then the error is three orders
of magnitude smaller. That is, 2 × 10−5 and 9 × 10−5 instead of 0.0078 and 0.0044. Figure
3 shows how this error varies as we vary the number of households and the frequency
of observations using the variable γ non-homothetic specification. As expected, the error
converges to zero as we approach the continuous-time limit. The error also falls as the
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number of households in the sample increases.

3.4 Discussion

In practice, data is imperfect and noisy. For example, recorded expenditure shares can
change through time for reasons other than changes in observed prices and income. Under
some additional assumptions, our procedure can be modified to account for some of these
issues.

For example, if there is classical measurement error or idiosyncratic taste shocks at the
individual consumer level, uncorrelated with any observable, then we can eliminate this
noise by averaging over multiple households with the same (or similar) income level. If
the noise is caused by idiosyncratic taste shocks, then our money-metric utility function
will apply to preferences in the absence of the taste shocks.

At the opposite extreme, suppose that there are persistent differences in preferences
that are functions of observable characteristics, for example households with children
have different preferences to those without.12 In this case, we can handle this by splitting
the sample in two and applying our method to each sample separately.13

If there are unobservable demand shifters that affect the entire distribution of house-
holds, then we cannot deal with that by averaging or conditioning on observable charac-
teristics. This happens if there are aggregate taste shocks that affect the entire distribution
of households, or if there are changes in quality over time that are not reflected in prices.
In Section 5, we extend our method to allow for unobserved changes in quality of some
goods under stronger assumptions. However, if there are unobservable shocks to pref-
erences themselves that are not idiosyncratic (i.e. taste shocks that cannot be eliminated
by averaging), then our methodology cannot be used. An example is if household prefer-
ences over time are systematically different to preferences in the past in ways we cannot
model.

4 UK Application

In this section, we apply our algorithm to long-run cross-sectional household data. Our
goal is to compare welfare as measured by the money-metric with real consumption. We
define real consumption consistently with how it is constructed by statistical agencies in the

12This assumption is related to the assumption considered in Section 2.3 of Jaravel and Lashkari (2022).
13Similarly, if we observe two groups of households that face different prices at a point in time (e.g.

households living in different locations), then we can apply our method to each sample separately.
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national accounts: nominal expenditures deflated by a chain-weighted price index that
reflects observed aggregate budget shares.14

We use the Family Expenditure Survey and Living Costs and Food Survey Derived Variables
for the UK (see Oldfield et al., 2020), which is a repeated cross-section of UK household
expenditures over different sub-categories of goods and services from 1974 to 2017.15 The
UK Family Expenditure Survey was also used in Blundell et al. (2003) and Blundell et al.
(2008) to estimate Engel curves, test for deviations from revealed preference theory, and
compute bounds for a true cost of living index.

Following the practice of the Office of National Statistics, we measure prices using
the retail price index (RPI) in the period 1974-1998 and the consumer price index (CPI)
in the period 1998-2017. To concord the RPI, CPI, and household expenditure data, we
assemble 17 aggregate product categories that can be used consistently over the entire
period of analysis. See Appendix B for additional details. Between 1974 and 2017 prices
rose relatively less for product categories such as leisure goods and services, that are
disproportionately consumed by richer households and experienced a rise in expenditure
shares over time.

We pool all households in our sample and assume that they have the same stable pref-
erence relation over the 17 categories of goods and services for which we have price data.
To investigate the validity of this assumption, we can split the sample by observable char-
acteristics as discussed in Section 3.4. We provide examples using marital status and age
in Appendix A. This added flexibility comes at the expense of shrinking the boundaries
over which the money-metric can be computed, since households with different char-
acteristics (e.g. married and unmarried households) cannot be matched to one another
through time. We do not find marked differences in the money-metric function by age or
marital status, so these results are relegated to the appendix.

4.1 Mapping Data to the Model

Our procedure requires the expenditures I and the budget shares B (I, t) at time t across
all goods. To deal with measurement error and idiosyncratic noise, we fit a smooth curve

14The analog to real consumption in our theoretical model is log RC(I, t) = log I −
∫ t

t0

∑N
i=1 B̄i(t)

d log pis

ds ds,
where B̄i(t) is the income-weighted average budget share of good i in period t. Note that the price deflator
is common for all households. If preferences are homothetic, then real consumption for every household
coincides with money-metric utility since budget shares are the same for all income levels at each point in
time.

15Aggregate nominal consumption growth in our sample is lower than that in the UK national accounts.
According to the UK Office for National Statistics, this difference is due to differences in sample coverage.
While these sample coverage issues affect aggregate nominal growth rates, they do not affect our results,
which are at the household-level.
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to the budget share of each good i at time t as a function of income. We use these curves
as B(I, t). More precisely, we estimate the true Bi(I, t) function for some good i by fitting
the following curve for each t using ordinary least squares

Biht = αit + βit log Iht + κit
(
log Iht

)2
+ εiht,

where i is the good, h is the household, and t is the time period. The estimated regression
line gives us B(I, t).16 This regression is the only source of sampling uncertainty in our
exercise. We can calculate standard errors for our estimates of the money-metric by
bootstrapping this regression. To do this, we redraw repeated samples with replacement.
Although the Engel curves are estimated with considerable uncertainty, the standard
errors for the money-metric are fairly tight. This is due to the law of large numbers, since
the money-metric combines many Engel curve estimates. For this reason, and to make
the figures less cluttered, when we present our results, we do not report the bootstrapped
standard errors.

We calculate the money-money utility for 1974 base prices by applying our procedure
sequentially from 1974 to 2017 using the UK cross-sectional data constructed in the manner
described above. Computing u(I, t) requires that for each time s < t, we can estimate the
Hicksian budget share b(ps,u(I, t)). That is, for each income level I at time t, we must
be able to find consumers at s < t who were on the same indifference curve as the one
delivered by I at time t. The left panel of Figure 4 illustrates how households in 2017 are
matched with households in 1974 in order to estimate b(p1974,u(I, 2017)). For example,
households in the 50th percentile of income in 2017 are matched with households in the
78th percentile of income in 1974.

Our algorithm naturally implies that we can only compute u(I, t) if u(I, t) is less than
the upper-bound and more than the lower-bound of utility levels at all past times s < t.
Otherwise, we cannot carry out the inversion in (6). The right panel of Figure 4 plots
the distribution of log expenditures in our data and the solid lines show the sample of
households for which we can calculate u(I, t). Our algorithm can recover the money-metric
up to about the 97th percentile of households in 2017. For the richest households, we are
unable to compute u(I, t) because there are no households in our sample that were on
the same indifference curve in the past. Nevertheless, our algorithm covers a significant
range of households. Our sample coverage is high because the distribution of spending
is highly fat-tailed, which means that in 1974, there are households who are on the same

16We also estimated Bi(I, t) using locally weighted scatterplot smoothing (LOWESS) and obtained very
similar results.
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indifference curve as the richest 97th percentile of households in 2017.
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Figure 4: The figure on the left shows, for each income percentile in 2017, the income
percentile in 1974 of the matched household that is on the same indifference curve as the
2017 household. The dashed diagonal line is the 45 degree line. The vertical dotted lines
are the boundaries for households that can be matched. The figure on the right shows the
sample distribution of (weekly) log expenditures from 1974 to 2017. The upper and lower
blue boxes represent the 75th and 25th percentiles, respectively. The solid lines indicate
the upper and lower bounds of the sample for whom the Hicksian budget share can be
computed as a function of time. The lower and upper bounds in 2017 represent the 0.8th
and 97th percentile, respectively, of the income distribution.

4.2 Empirical Results

The blue line in Figure 5 plots the expenditure function e(p1974, v(p2017, I)) for different
values of income. This expresses different incomes in 2017 in terms of 1974 pounds. For
comparison, the red line shows the equivalent income in 1974 if all households faced
the same effective inflation rate, as given by the chain-weighted aggregate inflation rate.
When the red line is above the blue line, this means that real consumption based on chain-
weighted aggregate inflation is higher than equivalent income using the money-metric
for households in the sample. Hence, the money-metric is higher than real consumption
for richer households and lower for poorer households, and the size of the gap is largest
for the poorest households. That is, the poorest households are not as well-off as implied
by using an aggregate price deflator calculated as in the official statistics. Conversely, the
gap reverses around the 60th percentile of income and then widens suggesting that the
richest households are better off in 1974 pounds than what is implied by official statistics.
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Figure 5: This figure plots e(p1974, v(p2017, I2017)) and real consumption using aggregate
chain-weighted inflation between 1974 to 2017 (annualized pounds, log scale). This figure
converts income in 1974 into equivalent income in 2017 and vice versa.
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Figure 6: The left panel shows the log difference between real consumption and money-
metric in 1974 for different percentiles of the income distribution in 2017. Highest and
lowest correspond to the utilities and their percentiles in Figure 4. The right panel is
a histogram (using household weights) of money-metric e(p1974, v(p2017, I2017)) and real
consumption using aggregate chain-weighted inflation (annualized pounds, log scale).
The distributions are truncated at the upper and lower bounds of Figure 4.

Figure 6 displays the log difference between the red and blue lines in Figure 5. As
expected, the difference is positive for poor households, meaning that real consumption
calculated using aggregate inflation is upward biased, and negative for rich households,
meaning that real consumption is downward biased. The size of the bias is around 20% for
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the poorest households. This means that over the 43 year sample, annual inflation rates
calculated as in the official statistics understate the welfare-relevant inflation implied by
the money-metric for these households by around 0.5 percentage points per year. On the
other hand, for the richest households, the official inflation rate is overstated by around
0.25 percentage points per year on average. This implies, as revealed by the histograms
in Figure 6, that inequality across households is larger based on the money-metric than
based on real consumption.

The reason for the patterns we document is the following. For a given relatively poor
household in 2017, consumers with the same utility level who lived in earlier years spent on
average relatively more on sectors with higher inflation rates than consumers as a whole.
Therefore, the inflation rate for these consumers is higher than the aggregate inflation
rate. Since the aggregate inflation rate is expenditure- rather than population-weighted,
the average inflation rate tends to put more weight on the expenditures of relatively rich
households and hence performs better for them than relatively poor households.

5 Incorporating Unobserved Price Changes

In this section, we extend our methodology to allow for the possibility of missing or
unreliably measured price changes. This may occur because the infrastructure for col-
lecting comprehensive price data is absent, as in developing country contexts, or because
changes in some prices are inherently difficult to measure, for example those of services
and new goods. We present our theoretical results in Section 5.1 and provide an empirical
illustration in Section 5.2.

5.1 Theoretical Results

To compute welfare without data on some prices, we must make stronger assumptions
about preferences.

Assumption 1 (Indirect Separability). Partition the set of goods into X and Y. Suppose
that preferences are indirectly separable in the sense that the expenditure function can be
written as

e(p,u) = e(eX(pX,u), eY(pY,u),u), (8)

where pX and pY are vectors of prices in X and Y, and eX and eY are non-decreasing in and
homogeneous of degree one in prices.
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We assume that prices and expenditure shares of goods in X are observed, but prices
and expenditure shares in Y are unobserved. Assumption 1 does not restrict cross-price
elasticities for goods in X or Y but does restrict cross-price effects between X and Y. Let
σi j be the Hicksian cross-price elasticity of demand between i , j. When Assumption 1
holds, then for any i ∈ X and j, k ∈ Y, we have

σi j

σik
=

b j

bk
.

That is, the ratio of the cross-price elasticity of i with respect to j and k depends only the
budget share of j and k. By symmetry, the same holds if we swap the role of X and Y. As
an example, a CES aggregator is (additively) separable in every partition of its arguments.

Denote the Hicksian budget share of X goods by

bX =
∑
i∈X

bi(p,u) = bX(eX(pX,u)/eY(pY,u),u),

where the second equality uses Assumption 1 and the fact that e is homogenous of degree
one in prices. Hence, the budget share on X goods is pinned down, for a fixed u, by a
single relative price of the X and Y bundles eX(pX,u)/eY(pY,u). This implies that raising all
prices in X by the same amount, holding utility constant, changes the share of spending
on X by ∑

i∈X

∂ log bX

∂ log pi
= (1 − bX)(1 − σ(p,u)),

for some scalar-valued function σ(p,u). We can think of σ(p,u) as the (compensated)
elasticity of substitution between X and Y goods. By Shephard’s lemma, we can also
consider how the compensated budget share on X changes if a single price i ∈ X changes:

∂bX

∂ log pi
= (1 − bX)bi(1 − σ(p,u)), (i ∈ X).

This elasticity of substitution is disciplined by the curvature of the upper-nest of the
expenditure function

σ(p,u) = 1 −
1

(1 − bX)bX

∂2 log e(
∂ log eX

)2 .

In general, σ(p,u) depends on the entire vector of prices, some of which are unobserved.
The following assumption ensures that σ can be expressed as a function of bX and u, rather
than as a function of all prices.
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Assumption 2 (Monotone Budget Share). Suppose that bX(p,u) is strictly monotone in the
price of some i ∈ X.

This assumption is different to the monotonicity assumption of budget shares in u
required in Atkin et al. (2020). They require that some budget share be strictly monotone
in income (since they infer money-metric utility by inverting budget shares). Assumption
2 allows every budget share to be non-monotone (or even invariant) in income, but
it requires that the compensated budget share of X be monotone in at least one price
(unitary price elasticities for all goods is not allowed).

Lemma 1. Assumption 2 implies that we can write σ(p,u) as σ(bX(p,u),u). By abusing notation,
we denote this function by σ(bX,u).

Lemma 1 allows us to express the elasticity of substitution σ as a function of two
scalars: utility and the compensated budget share of X goods.

Denote the relative Marshallian and Hicksian expenditure share on i ∈ X by

BXi(I, t) =
Bi(I, t)
BX(I, t)

, and bXi(p,u) =
bi(p,u)
bX(p,u)

.

The following proposition extends Proposition 2 to account for unmeasured prices.

Proposition 3 (Money-Metric with Missing Prices). Under Assumptions 1 and 2, the money-
metric u(I, t) solves the following integral equation

log u(I, t) = log I −
∫ t

t0

∑
i∈X

bXi(ps,u(I, t))
d log pis

ds
ds −

∫ t

t0

d log bX(ps,u(I, t))/ds
σ(bX(ps,u(I, t)),u(I, t)) − 1

ds, (9)

where

bXi(ps,u(I, t)) = BXi(u−1(u(I, t), s), s), bX(ps,u(I, t)) = BX(u−1(u(I, t), s), s).

If we know the shape of the function σ(bX,u), Proposition 3 can be used to obtain
the money-metric utility function using a similar algorithm to the one in Section 3.2.
Proposition 3 is a consequence of Proposition 2. To derive it, we use changes in the
compensated budget share of X goods, d log bX(ps,u(I, t))/ds, to infer the Hicksian-budget-
share-weighted changes in prices for the unobserved goods

∑
i∈Y bi(ps,u(I, t))d log pis/ds

given the elasticity of substitution σ(bX,u). Plugging this into (3) yields Proposition 3.
Compared to Proposition 2, the fixed point in Proposition 3 has some additional

terms. First, the compensated elasticity of substitution σ(bX,u(I, t)) on the right-hand side
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depends on u(I, t), and since u(I, t) depends on the compensated elasticity of substitution,
there is a fixed-point in this term. Second, the changes in the expenditure share on X
goods, d log bX(ps,u(I, t))/ds, are compensated. To compute these changes, we must use
the money-metric utility function, u(I, t), to match households on the same indifference
curve through time and use changes in the expenditure shares of matched households
over time. Hence, there is also fixed-point in this term.

To better understand Proposition 3, it helps to consider the homothetic special case.

Example 1 (Homothetic preferences). Suppose that preferences are homothetic. In this
case, Proposition 3 simplifies to

log u(I, t) = log I −
∫ t

t0

∑
i∈X

BXi(ps)
d log pis

ds
ds −

∫ t

t0

d log BX/ds
σ(BX(s)) − 1

. (10)

When preferences are homothetic, there is no longer a fixed-point problem since budget
shares and elasticities of substitution do not depend on utility. If we also assume that the
upper-nest e(x, y,u) is CES, then σ(bX(ps)) is a constant and we get

log u(I, t) = log I −
∫ t

t0

∑
i∈X

bXi(ps)
d log pis

ds
ds −

log bX(pt) − log bX(pt0)
σ − 1

. (11)

Equation (11) is a version of the popular Feenstra (1994) formula.17 This formula is
near-ubiquitous in the macroeconomics and trade literatures for adjusting price indices
to account for missing price changes (typically those of new goods). Relative to Feenstra
(1994), Proposition 3 allows the elasticity of substitution to vary as a function of prices, al-
lows for non-homotheticities, and allows unrestricted non-parametric preferences among
the X and Y goods.

Relative to the homothetic special case in (10), the additional complication in (9) is
that changes in the budget share of X and the elasticity of substitution must both be
compensated. To see the issue, restate (9) using Marshallian budget shares as

log u(I, t) = log I −
∫ t

t0

∑
i∈X

BXi(I∗s, s)
d log pis

ds
ds −

∫ t

t0

d log BX(I∗s, s)/ds
σ(BX(I∗s, s),u(I, t)) − 1

ds,

17The only (relatively inconsequential) difference between (11) and Feenstra (1994) is the assumption
that eX and eY also be homothetic CES aggregators.
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where I∗s is implictly defined by u(I∗s, s) = u(I, t). The necessary compensation satisfies

d log BX(I∗s, s)
ds︸          ︷︷          ︸

∆ budget share due to prices
holding fixed utility

=
∂ log BX(I∗s, s)

∂s︸          ︷︷          ︸
∆ budget share due to prices

holding fixed income

+
∂ log BX(I∗s, s)

∂I
dI∗s
ds︸               ︷︷               ︸

∆ budget share
due to compensating income

.

When preferences are homothetic, the second term disappears and there is no fixed point
problem.

We provide an example of non-homothetic separable preferences that satisfy Assump-
tions 1 and 2 below.

Example 2 (Indirect Addilog). Suppose that the expenditure function e(p,u) is indirectly
separable and is implicitly defined as

f (u) =
ωX

σX − 1

(
e(p,u)

eX(pX,u)

)σX−1

+
ωY

σY − 1

(
e(p,u)

eY(pY,u)

)σY−1

, (12)

where f (·) is an increasing function. CES is the special case where σX = σY. For this
demand system, the compensated elasticity of substitution between X and Y is

σ(bX(p,u),u) = bX(p,u)σY + (1 − bX(p,u))σX,

which varies both as a function of utility and as a function of prices.

We now show that σ(bX(ps,u),u), the unknown term required to apply Proposition
3, can be expressed non-parametrically in terms of elasticities that are estimable using
only data on prices in X. This is an important result as it demonstrates that, in general,
recovering σ(bX(ps,u),u) does not require data on unobserved prices.

Proposition 4 (Identifying Substitution Elasticity of X and Y). Letηi(I, t)−1 = ∂ log Bi(I, t)/∂ log I
be the income elasticity of demand for each i ∈ X at time t. Let 1−ϵXk(I, t) = ∂ log BX(I, t)/∂ log pk

be the uncompensated elasticity of the budget share of X with respect to the price of any good k ∈ X
at time t. Then, we have

σ(bX(ps,u(I, t)),u(I, t)) = 1 −
1 − ϵXk(I∗s, s) + Bk(I∗s, s)

∑
i∈X(ηi(I∗s, s) − 1)BXi(I∗s, s)

(1 − BX(I∗s, s))BXk(I∗s, s)
,

where I∗s is implictly defined by u(I∗s, s) = u(I, t).

Proposition 4 shows that if we know income elasticities for all goods in X and the
uncompensated price elasticity ϵXk for one good k ∈ X in each period, then we can recover
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the relevant elasticity of substitution and apply Proposition 3. Estimating the income
elasticities, ηi for i ∈ X, is relatively straightforward since we simply need to fit a curve
that relates the budget share of i to income in each period. Estimating the price elasticity
ϵXk is more challenging, but we only require a single elasticity per income group and
period. This is reasonably straightforward to estimate if one of the observed prices is
exogenous. Of course, if one puts more structure on the demand system, then even less
information is required. We provide one example below.

Example 3 (Non-homothetic CES). Suppose that e(eX(pX,u), eY(pY,u),u) in (8) takes the
form

e(x, y,u) =
(
ωXuξXx1−γ(u) + ωYuξY y1−γ(u)

) 1
1−γ(u) .

In this case, σ(bX,u) = γ(u). That is, σ(bX,u) varies as a function of utility but not as a
function of relative prices. According to Proposition 4, the function σ(·) is determined by
the following expression:

σ(I) = 1 −
1 − ϵk(I, t0) + Bk(I, t0)

∑
i∈X

(
ηi(I, t0) − 1

)
BXi(I, t0)

(1 − BX(I, t0))BXk(I, t0)
, (13)

where 1 − ϵk(I, t0) is the uncompensated elasticity of BX with respect to the price of k and
ηk(I, t0) is the income elasticity for k ∈ X at time t0 for households with income I. Since
σ is not a function of relative prices, Proposition 4 needs to be applied only in the initial
period, t0, to recover the shape of the σ function.

In writing (13), we assume that ϵk(I, t0) and ηi(I, t0) are known at t0. This is without
loss of generality since Proposition 3 can be applied with time running forward t > t0 and
backward t < t0. Furthermore, once we apply Proposition 3 to obtain the money metric
with t0 reference prices, we can easily obtain the money-metric at ts ∈ [t0,T] base prices,
as described in footnote 9.

Relation to previous literature. When price data is unavailable or unreliable, a strand of
the literature, building on Hamilton (2001) and Costa (2001), estimates changes in welfare
by inverting Engel curves. The frontier in this literature is Atkin et al. (2020), who show
how to identify welfare changes assuming that preferences are quasi-separable between
the measured and unmeasured goods. Their procedure requires that some expenditure
share be strictly monotone in income (i.e. homothetic preferences are ruled out). To apply
their method, one also needs to estimate a Hicksian demand sub-system for the set of
goods where prices are measured. In their applications, they either rely on first-order
approximations or use a CES sub-system.
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In contrast, we make stronger assumptions about preferences (separability rather than
quasi-separability). In exchange, we do not require that expenditure shares be strictly
monotone in income (i.e. homothetic preferences are allowed). More importantly, our
approach only requires a single Marshallian price elasticity as a function of income in
each period (rather than a Hicksian system). Given estimates of this elasticity, we can
non-parametrically and non-linearly back out the elasticity of substitution between the
measured and unmeasured goods and use this to non-linearly solve for welfare changes.

5.2 Empirical Illustration

As an illustration, we apply Proposition 3 to the UK data that we used in Section 4. Since
service prices are difficult to measure, as a test case, we partition the consumption bundle
and assume that prices for “recreation & culture”, “education”, “accommodation”, and
“leisure goods & services” are not reliably observed. These are the Y goods, which in our
data account for roughly 10−30% percent of spending. We assume that prices for all other
categories of spending are measured accurately. These other categories are the X goods.
We impose Assumptions 1 and 2 and apply Proposition 3.

To apply Proposition 3, we calibrate the elasticity of substitution σ(bX,u) between X
and Y. For simplicity, as in Comin et al. (2021), we assume that σ is constant in both the
time-series and the cross-section. Following their estimates, we set σ = 0.25. As explained
above, Proposition 3 can also be applied when σ varies in both the time series (i.e. prices)
and the cross-section (i.e. income). However, estimating the σ(bX,u) function is beyond
the scope of this paper. Our more limited goal is to show how knowledge of this elasticity
can be used to back-out the money-metric utility function in the absence of comprehensive
price information.

Figure 7 compares the results from using Propositions 2 and 3. The left panel displays
the resulting money-metric functions as well as real consumption. For low-income house-
holds, the two money-metrics are quite similar and both are below real consumption.
However, for households with high incomes, the money-metric calculated using Proposi-
tion 3 is lower than the one calculated using Proposition 2. For high-income households,
the money-metric implied by Proposition 3 is closer to real consumption instead. The fact
that the blue line is lower than the yellow line for rich households suggests that, for these
households, prices in Y have risen more than the official price data suggest

The right panel of Figure 7 shows the percent difference between the two money-
metrics for different income deciles as well as the breakdown of the difference into two
terms. The first is the difference between overall inflation and inflation for X goods
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Figure 7: These figures compare money-metric values when using Propositions 2 and 3.
The left panel plots the money-metric and real consumption values in annualized pounds
on a log scale. The right panel shows the percent difference in money-metric values
using Propositions 2 and 3. This difference is decomposed into (i) the difference between
overall inflation and inflation for X goods and (ii) the adjustment due to changes in the
compensated expenditures on X goods.

implied by the two methods:∫ 2017

1974

∑N
i=1 bi(ps,u)(d log pis/ds)ds −

∫ 2017

1974

∑
i∈X bXi(ps,u)(d log pis/ds)ds∫ 2017

1974

∑N
i=1 bi(ps,u)(d log pis/ds)ds

.

These are the blue bar graphs in the right panel of Figure 7. The remainder is the
adjustment due to changes in the expenditure share of X goods, similar to the Feenstra
(1994) adjustment:

1
σ−1

∫ 2017

1974
(d log bX(ps,u)/ds)ds∫ 2017

1974

∑N
i=1 bi(ps,u)(d log pis/ds)ds

. (14)

These are the orange bar graphs in the right panel of Figure 7. This decomposition
shows that inflation among X goods has tended to be higher than among all goods
by roughly the same amount (around 2% points) for all income deciles. However, the
change in compensated expenditures on X goods has been very different. Compensated
expenditures on X goods have been falling much more quickly for rich households than
poor.

To better understand why the money-metric utility is different for rich households,
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Figure 8: Compensated and uncompensated budget share of X for households of differing
income levels plotted against time.

we investigate how compensated expenditures on X goods have been changing. Figure
8 plots changes in expenditures on X over time for different households. The left panel
displays how compensated and uncompensated expenditures on X goods have changed
as a function of time for a household with the median level of 2017 income. The blue line
shows how compensated expenditures have changed according to Proposition 3 and the
dotted red line shows how they have changed according to Proposition 2. Compensated
expenditure have changed by roughly the same amount in both cases, falling slightly from
around 88% to around 85%. Compensated expenditures capture pure substitution effects
over time — changes in expenditures due to changes in relative prices. The yellow line in
the left panel shows how uncompensated, or Marshallian, expenditures on X goods have
changed for a household with the median level of income in 2017. These expenditures have
been rising rapidly from around 70% to around 85%. That is, over time, the household
whose nominal income is equal to the median in 2017 has spent significantly more on X
goods over time. This is because inflation makes this household poorer over time and
poor households tend to spend more of their income on X goods (which exclude services
like recreation and education).

The right panel of Figure 8 shows the compensated budget share on X goods for
households at three different points in the income distribution: the 10th, 50th and 90th
percentiles in 2017. For poor households, there has been almost no change on expenditures
on X goods. This explains why the adjustment term in (14) is small for these households.
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For the median household, there has been a modest decrease in the share of spending on
X goods. Since X and Y are complements (σ < 1), this indicates that the relative price of
Y goods has been rising relative to X goods for these households. Finally, for the richest
households, there has been a fairly dramatic reduction in their spending on X goods from
around 83% to around 76%. This suggests that for these households, the relative price
of Y goods has been rising fairly rapidly compared to X goods. This explains why the
adjustment term, (14), for these households is large and negative. It also explains why
the money-metric according to Proposition 3 (the blue line in Figure 7) has a flatter slope
than the money-metric calculated according to Proposition 2 (the yellow line in Figure 7).

6 Conclusion

In this paper, we propose a straightforward and intuitive approach to construct money-
metric representations of utility using repeated cross-sectional data. Our method does
not require any estimation when the data on prices is comprehensive, aside from cross-
sectional interpolation of how budget shares vary with income.

If the data on prices is incomplete, the method can still be used, but stronger assump-
tions on preferences and knowledge of one Marshallian elasticity for each income level in
each period is required. In both cases, the unifying idea is that money-metric utility must
satisfy a fixed point equation in terms of observable variables.

Despite its advantages, our approach relies on the assumption that preferences are not
systematically and unobservably heterogeneous in either the cross-section or the time-
series and that all consumers face common prices. Relaxing these assumptions is an
interesting avenue for future work.

References

Atkin, D., B. Faber, T. Fally, and M. Gonzalez-Navarro (2020, March). Measuring Wel-
fare and Inequality with Incomplete Price Information. NBER Working Papers 26890,
National Bureau of Economic Research, Inc.

Auer, R., A. Burstein, S. Lein, and J. Vogel (2021). Unequal expenditure switching: Evi-
dence from switzerland.

Baqaee, D. and A. Burstein (2021). Welfare and output with income effects and taste
shocks. Technical report, National Bureau of Economic Research.

30



Blundell, R., M. Browning, and I. Crawford (2008). Best nonparametric bounds on demand
responses. Econometrica 76(6), 1227–1262.

Blundell, R. W., M. Browning, and I. A. Crawford (2003). Nonparametric engel curves
and revealed preference. Econometrica 71(1), 205–240.

Boppart, T. (2014). Structural change and the kaldor facts in a growth model with relative
price effects and non-gorman preferences. Econometrica 82(6), 2167–2196.

Caves, D. W., L. R. Christensen, and W. E. Diewert (1982). The economic theory of index
numbers and the measurement of input, output, and productivity. Econometrica: Journal
of the Econometric Society, 1393–1414.

Comin, D., D. Lashkari, and M. Mestieri (2021). Structural change with long-run income
and price effects. Econometrica 89(1), 311–374.

Costa, D. L. (2001). Estimating real income in the united states from 1888 to 1994: Cor-
recting cpi bias using engel curves. Journal of political economy 109(6), 1288–1310.

Deaton, A. and J. Muellbauer (1980). An almost ideal demand system. The American
economic review 70(3), 312–326.

Fajgelbaum, P., G. M. Grossman, and E. Helpman (2011). Income distribution, product
quality, and international trade. Journal of political Economy 119(4), 721–765.

Fally, T. (2022). Generalized separability and integrability: Consumer demand with a
price aggregator. Journal of Economic Theory 203, 105471.

Fan, T., M. Peters, and F. Zilibotti (2022). Growing like india: The unequal effects of
service-led growth. Technical report, Technical report, National Bureau of Economic
Research.

Feenstra, R. C. (1994). New product varieties and the measurement of international prices.
The American Economic Review, 157–177.

Feenstra, R. C. and M. B. Reinsdorf (2000). An exact price index for the almost ideal
demand system. Economics Letters 66(2), 159–162.

Hamilton, B. W. (2001, June). Using engel’s law to estimate cpi bias. American Economic
Review 91(3), 619–630.

Hanoch, G. (1975). Production and demand models with direct or indirect implicit addi-
tivity. Econometrica: Journal of the Econometric Society, 395–419.

Hausman, J. (1981). Exact consumer’s surplus and deadweight loss. American Economic
Review 71(4), 662–76.

Jaravel, X. and D. Lashkari (2022). Nonparametric measurement of long-run growth in
consumer welfare.
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Online Appendix

A Additional Figures
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Figure A.1: Non-homotheticity bias: log difference between real consumption and the
money-metric for artificial examples in Section 3.3. For poor households, the money
metric is lower than real consumption calculated using aggregate inflation because the
inflation rate is lower for income elastic goods.
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Figure A.2: Money-metric e(p1974, v(p2017, I2017)) by household characteristic (annualized
pounds, log scale) for the UK data in Section 4.
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B Additional details of the UK data used in Section 4

We use two different datasets. One is a household-level expenditure survey and the other
is data on prices of different categories of goods. The first data set is Family Expenditure
Survey and Living Costs and Food Survey Derived Variables, which is a dataset of annual
household expenditures with demographic information compiled from various household
surveys conducted in the UK. Each sample includes about 5,000-7,000 households. The
spending categories in the survey correspond to RPI (Retail Price Index) categories. We
have continuous data from 1974 to 2017. Starting in 1995, the data are split into separate
files for adults and children, so we merge them into households by adding up their
expenditures.

Our algorithm does not require a representative sampling of the entire distribution of
households, and can recover the money-metric for a subsample of observed households,
even if that subsample does not sample incomes at the same frequency as the population.
The expenditure survey samples from the entire income distribution except for top earners
and some pensioners. In order to correct for possible nonresponse bias, household weights
are provided since 1997.18 We use these weights to calculate the chained aggregate price
index, which we use to calculate real consumption as in the official statistics. However,
our approach for the money-metric does not use household weights.19

For the prices, we use the underlying data for the consumer price index (CPI) and the
retail price index (RPI). To construct the consumption deflator in the national accounts, the
Office of National Statistics switched from the Retail Price Index (RPI) to the Consumer
Price Index (CPI).20 By comparing the RPI and CPI with the consumption deflator provided
by the Office of National Statistics, we identify the switching point as 1998 and do the
same for our price data.

Because the CPI and RPI consider different baskets of goods and services, we merged
various sub-categories to obtain a consistent set of categories over time. For example, “al-
cohol” in the RPI includes some items served outdoors, which is included in “restaurants”
in the CPI. In this case, we merged “Catering and Alcohol” in the RPI and matched it with
“Restaurant and Alcohol” in the CPI. We end up with 17 categories that are available for

18Prior to 1997, benefit unit weights are provided instead of household weights. Since a benefit unit is a
single person or a couple with any dependent children, there can be more than one benefit unit weight in
a household. For example, if a couple with their children and the father’s parents live together, then two
benefit unit weights are recorded. In this case, we use the simple average as the household weight.

19We also use weights to calculate the percentiles in the left panel of Figure 4, the histograms in Figure
6, and the quintiles for Figure A.5 in the Appendix.

20https://webarchive.nationalarchives.gov.uk/ukgwa/20151014001957mp_

/http://www.ons.gov.uk/ons/guide-method/user-guidance/prices/cpi-and-rpi/

mini-triennial-review-of-the-consumer-prices-index-and-retail-prices-index.pdf.
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the entire period for both RPI and CPI. Table A.1 summarizes how we integrated the CPI
and RPI baskets.

Integrated Categories RPI CPI

Bread & Cereals Bread, Cereals and Biscits Bread & cereals

Meat & Fish
Meat, Fish, Beef, Lamb and Pork Meat & fish

Poultry and Other meat -

Milk & Eggs
Butter, Cheese and Eggs Milk, cheese & eggs

Fresh milk and Milk products -
Oils & fats Oils & fats Oils & fats

Fruit Fruit Fruit

Vegetable Potatoes and Other vegerables
Vegetables including potatoes

& other tubers

Other food
Sweets & Chocolates Food Products

Other Foods Suger, jam, honey, syrups,
chocolate & confectonery

Non-Alcoholic Beverages
Tea and Soft drinks

Non-Alcoholic Beverages
Coffee & other hot drinks

Tobacco Cigarettes & tobacco Tobacco

Catering
Catering Catering services

Alcoholic drink Alcoholic beverage

Household & Fuel
Housing except morgage interest

Housing, water and fuelsFuel & light
(-)Dwelling insurance & ground rent

Clothing Clothing & footwear Clothing & footwear

Household Goods & Service
Household goods Furniture and household equipment
domestic services & routine repair of house

Postage & Telecom
Postage

Communicaion
Telephones & Telemessages

Personal Goods & Service
Personal goods & services Health

Fees & subscriptions Miscellaneous goods and service
Dwelling insurance & ground rent -

Transport
Motoring expenditure Transport

Fares & other travel costs -

Leisure Goods & Service
Leisure goods Recreation & culture

Leisure services Education
- Accomodation service

Table A.1: RPI and CPI Correspondence Table

A3



C Comparison with Blundell et al. (2003)

In this appendix, we exposit and apply the welfare bounds in Blundell et al. (2003) to
artificial and real data. We start by discussing how we implement their methodology,
since, due to an inconsistency in their equations, we do not exactly implement their
procedure.

C.1 Description of Bounding Algorithm

To bound the cost-of-living, Blundell et al. (2003) provide an algorithm for an upper-bound
and a lower-bound. Following the notation in their paper, let qt(I) be bundle of goods
consumed by a household with income I in period t. Blundell et al. (2003) assume that
qt(I) is an injective function (each I maps to a unique bundle of quantities in each period).

Algorithm A (Upper-bound). To recover an upper-bound for e(ps, v(pt, It)), start by defin-
ing q∗ = qt(It) and let T be the set of periods for which we have data.

(1) Set i = 0 and F(i) = {qi
s = qs(ps · q∗)}s∈T.

(2) Set F(i+1) = {qi+1
s = qs(minq∈F(i) ps · q)}s∈T.

(3) If F(i+1) = F(i), then set QB(q∗) = F(i) and stop. Else set i = i + 1 and go to step (2).

We have that e(ps, v(pt, It)) ≤ minq{ps · q : q ∈ QB(q∗)}.
Intuitively, the cost of living in period s associated with q∗, e(ps, v(pt, It)), is weakly less

than ps · q∗. Hence, for every s, we must have that q0
s = qs(ps · q∗) is weakly preferred to q∗.

This collection of bundles, {q0
s }s∈T, all of which are preferred to q∗, is F(0) defined in step (1).

In step (2), we search across all of these bundles to find the cheapest one in each period
s. We update each qi

s to be the bundle that households with that level of income actually
picked in each period (which is still better than q∗). We continue this indefinitely until this
procedure converges, at which point we have our upper-bound.

As mentioned in the text, the lower-bound algorithm provided by Blundell et al. (2003)
is not correct. We provide an amended version below.

Amended Algorithm B (Lower-bound). To recover a lower-bound for e(ps, v(pt, It)), start
by defining q∗ = qt(It) and let T be the set of periods for which we have data.

(1) Set i = 0, and let F(i) = {Ii
s : pt · qs(Ii

s) = It}s∈T.
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(2) Set F(i+1) = {maxIk∈F(i){Ii+1
s : Ik = pk · qs(Ii+1

s )}}s∈T.

(3) If F(i+1) = F(i), then set QW(q∗) = {qs(Ii
s)}s∈T and stop. Else set i = i+1 and go to step (2).

We have that maxqs∈QW(q∗) ps · qs ≤ e(ps, v(pt, It)).
Intuitively, in step (1), for each period s, we find the income level I0

s such that pt ·qs(I0
s ) =

It. The bundle qs(I0
s ) was affordable at t but was not purchased. Hence, the true cost-of-

living in period s must be greater than I0
s . The collection of income levels constructed in

this step is F(0) and all are less than the true cost-of-living. In step (2), for each period s,
we search over Ii

k and find the maximum level of income Ii+1
s such that Ii

k = pk · qs(Ii+1
s ) is

satisfied. The new Ii+1
s is weakly greater than Ii

s but we still know that Ii+1
s is less than the

true cost-of-living. We continue this indefinitely until this procedure converges, at which
point we have our lower-bound.

C.2 Results with Artificial & UK Data
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Figure A.3: Upper- and lower-bound using the amended Blundell et al. (2003) algorithm
for the artificial economies in Section 3.3. Our algorithm results are indistinguishable
from the blue line.
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Figure A.4: Upper- and lower-bound using the amended Blundell et al. (2003) algorithm
for the UK data in Section 4. Our algorithm produced the blue line.

D Comparison with Jaravel & Lashkari (2022)

In this appendix, we apply the first-order and second-order algorithms described in
Jaravel and Lashkari (2022) on our artificial and real data. By setting the base year in the
Jaravel and Lashkari (2022) algorithm to t0, their definition of real consumption matches
our money-metric. Note that the definition of real consumption in our paper is not the
same as theirs. For brevity, we do not include in this appendix a description of these
algorithms.

D.1 Results with Artificial Data

We first calculate the approximation error when applying the Jaravel and Lashkari (2022)
algorithms to the artificial data that we use in Section 3.3. Table A.2 shows that the error is
very low for non-homothetic CES (with constant elasticity of substitution). On the other
hand, the approximation error is larger for non-homothetic CES with variable elasticity
of substitution.

D.2 Results with UK Household Data

We next apply the Jaravel and Lashkari (2022) algorithms to the UK household data. In the
main application in Jaravel and Lashkari (2022), the algorithms are applied to households
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 Nh-CES(Constant) Nh-CES(Variable)
First Order 0.0491 0.1422

Second Order 0.0028 0.1130


Table A.2: maxh

∣∣∣log u(I,T) − log u(I,T)TRUE
∣∣∣: results of the first/second order algorithm of

Jaravel and Lashkari (2022) with their K parameter set to two applied to the artificial data
in Section 3.3.

in the US CEX by quintile group. Following this, we first apply their algorithms to the
quintile data; results are displayed in Figure A.5. We next apply their algorithms to the
underlying disaggregated data that we use in our empirical results; results are displayed
in Figure A.6.
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Figure A.5: Results of the first/second order algorithm of Jaravel and Lashkari (2022) with
K = 1 to the aggregated (by quintile) UK household data: Log difference between real
consumption and the money-metric
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Figure A.6: Results of the first/second order algorithm of Jaravel and Lashkari (2022) with
K = 1 to the disaggregated UK household data: Log difference between real consumption
and the money-metric

E Using artificial data from Almost Ideal Demand System

In this appendix, we redo our analysis of Section 3.3 using another popular form of non-
homothetic preferences: the Almost Ideal Demand System (AIDS) due to Deaton and
Muellbauer (1980). The expenditure function is

e
(
p,u

)
= c

(
p
)

ud(p)

where c
(
p
)

and d
(
p
)

are given by:

c
(
p
)
= exp

α0 +

I∑
i=1

αi log pi +
1
2

I∑
i=1

I∑
j=1

γi j log pi log p j


d
(
p
)
= exp

 I∑
i=1

βi log pi


where

∑
αi = 1,

∑
βi =

∑
γi j = 0 and γi j = γ ji for all i and j.

By Shephard’s lemma, Hicksian budget shares b(p,u) are

bi
(
p,u

)
= αi +

I∑
j=1

γi j log p j + βid
(
p
)

log u.
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The money-metric function for t0 reference prices is21

e(p0, v(p, I)) = c
(
p0

) ( I
c(p)

) d(p0)
d(p)

.

In assigning parameter values, we assume that the expenditure share is decreasing in
utility for good 1 and increasing for good 3, as in the non-homothetic CES example in
Section 3.3. Specifically, we consider the following parameter values, that also ensure that
the expenditure share on all goods is positive in all periods in the artificial dataset. α0 α1 α2 α3 β1 β2 β3 γ11 γ22 γ33 γ12 γ13 γ23

2 1/3 1/3 1/3 −0.15 −0.05 0.2 −1/4 −1/4 −1/4 1/8 1/8 1/8


The approximation error, maxh

∣∣∣log u(I,T) − log u(I,T)TRUE
∣∣∣, is 0.0011 when we use the iter-

ative procedure and 7.0× 10−7 when we use the fixed point procedure. For completeness,
Figure A.7 presents the non-homotheticity bias in our artificial AIDS example.
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Figure A.7: Log difference between real consumption and the money-metric using our
algorithm and the Almost Ideal Demand System.

21To obtain the expression for the money-metric, we use e(p0, v(p, I)) = e(p0,u), where I = c
(
p
)

ud(p).
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F Proofs

Proof of Proposition 1. By definition,

log e(p, v(p̄, Ī)) = log e(p̄, v(p̄, Ī)) + log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī))

= log Ī + log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī)).

To finish, rewrite

log e(p, v(p̄, Ī)) − log e(p̄, v(p̄, Ī)) =
∫ p

p̄

∑
i∈N

∂ log e(ξ, v(p̄, Ī))
∂ log ξi

d log ξi,

and use Shephard’s lemma to express the price elasticity of the expenditure function in
terms of budget shares, and obtain (1). To obtain (2), switch p and p̄ as well as I and Ī. ■

Proof of Proposition 2. This follows immediately from the definition of u−1(·, s) which maps
incomes at t0 to equivalent income at time s. Hence, for some amount of t0 income,
say u(I, t), the equivalent income at time s is u−1(u(I, t), s). The Marshallian budget share
B(u−1(u(I, t), s), s) is just b(u(I, t), s). ■

Proof of Lemma 1. Start by assuming that bX is increasing in pk for some k ∈ X. Then,
we have that ∂ log bX

∂ log pk
= (1 − bX)(1 − σ)bXk > 0. That is, σ(p,u) < 1. This implies that

bX(eX(pX,u)/eY(pY,u),u) is increasing in its first argument. In other words, we can write
eX(pX,u)/eY(pY,u) = f (bX,u). Hence, we can write σ(p,u) = σ(eX(pX,u)/eY(pY,u),u) =
σ( f (bX,u),u) as needed. A symmetric argument applies when bX is decreasing in pk for
some k ∈ X. ■

Proof of Proposition 3. By Euler’s theorem of homogeneous functions, we know that

∂ log e
∂ log eX +

∂ log e
∂ log eY = 1.

Differentiating this identity with respect to eX and eY yields the following equations

∂2 log e(
∂ log eX

)2 = −
∂2 log e

∂ log eX∂ log eY =
∂2 log e(
∂ log eY

)2 .

Next, we know that

bX =
∑
i∈X

bi =
∑
i∈X

∂ log e
∂ log eX

∂ log eX

∂ log pi
=
∂ log e
∂ log eX

∑
i∈X

∂ log eX

∂ log pi
=
∂ log e
∂ log eX
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Hence, fixing utility, the total derivative of bX with respect to prices is

bXd log bX =
∂2 log e

(∂ log eX)2

∑
i∈X

∂ log eX

∂ log pi
d log pi +

∂2 log e
∂ log eY∂ log eX

∑
i∈Y

∂ log eY

∂ log pi
d log pi

=
∂2 log e

(∂ log eX)2

∑
i∈X

∂ log eX

∂ log pi
d log pi −

∑
i∈Y

∂ log eY

∂ log pi
d log pi


=
∂2 log e

(∂ log eX)2

∑
i∈X

bXid log pi −

∑
i∈Y

bYid log pi


Using the fact that

σ(p,u) = 1 −
1

(1 − bX)bX

∂2 log e(
∂ log eX

)2 ,

we can rewrite this as

d log bX = (1 − bX)(1 − σ)

∑
i∈X

bXid log pi −

∑
i∈Y

bYid log pi

 ,
where we suppress the fact that σ is a function of prices and utility. Rearranging this gives

−
d log bX

1 − σ
+ (1 − bX)

∑
i∈X

bXid log pi + bX

∑
i∈X

bXid log pi =
∑
i∈X

bid log pi +
∑
i∈Y

bid log pi,

or

−
d log bX

1 − σ
+

∑
i∈X

bXid log pi =
∑
i∈X

bid log pi +
∑
i∈Y

bid log pi.

Plug this back into Proposition 2 to get the desired result. It is important to note however
that d log bX in the expression above is the compensated change in the budget share of
X. ■

Proof of Proposition 4. Consider a perturbation to pk for k ∈ X holding fixed utils:

∂ log bX

∂ log pk
=

1
bX

∂
∂ log pk

∑
i∈X

∂ log e
∂ log eX

∂ log eX

∂ log pi


=

1
bX

∂
∂ log pk

∑
i∈X

∂ log e
∂ log eX bXi


=

1
bX

∑
i∈X

∂
∂ log pk

∂ log e
∂ log eX bXi +

∑
i∈X

∂ log e
∂ log eX

∂bXi

∂ log pk
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=
1
bX

∑
i∈X

∂2 log e(
∂ log eX

)2 bXkbXi +
∑
i∈X

∂ log e
∂ log eX

∂bXi

∂ log pk


=

1
bX

∑
i∈X

∂2 log e(
∂ log eX

)2 bXkbXi +
∂ log e
∂ log eX

∂
∑

i∈X bXi

∂ log pk


=

1
bX

∂2 log e(
∂ log eX

)2 bXk,

where the last line uses the fact that ∂
∑

i∈X bXi
∂ log pk

= 0. Using the following relationship

∂2 log e(
∂ log eX

)2 = bX
∂ log bX

∂ log eX = bX(1 − bX)(1 − σ(p,u)),

the compensated change in expenditures on X in response to a change in the price of k ∈ X
is given by

∂ log bX

∂ log pk
= (1 − bX)(1 − σ(p,u))bXk.

On the other hand, the uncompensated (Marshallian) response is

∂ log BX

∂ log pk
= 1 − ϵXk = (1 − bX)(1 − σ(p,u))bX

k −

∑
i∈X

(ηi − 1)bkbXi,

where the second equation is analogous to the Slutsky equation. Rearranging this for
σ(p,u) yields the desired result

1 −
(1 − ϵXk) +

∑
i∈X(ηi − 1)bkbi/bX

(1 − bX)bk/bX
= σ(p,u).

■
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