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ABSTRACT
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1930s on old-age longevity. Specifically, we employ Social Security Administration death 
records linked with the full-count 1940 census and implement event studies and difference-in-
difference designs to compare the longevity of individuals in high/medium versus low top-soil 
erosion counties post-1930 versus pre-1930. We find intent-to-treat reductions in longevity of 
about 0.9 months for those born in high erosion counties post-1930. We show that these effects 
are not an artifact of preexisting trends in longevity. Additional analyses suggest the effects are 
more pronounced among children raised in farm households, females, and those with lower 
maternal education. We also provide suggestive evidence that reductions in adulthood income are 
a likely mechanism channel.
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1. Introduction 

Several recent and growing strands of research in various settings emphasize the relevance 

of prenatal development and early-life periods for a battery of outcomes later in life (Almond et 

al., 2018; Almond & Currie, 2011; Barker, 1990; Barker et al., 2002). Health endowment at birth 

and the gradual accumulation of health capital in the early years of life sets out a trajectory for the 

physical, cognitive, and socio-emotional aspects of infants and children. Therefore, disturbances 

in the initial health capital during this critical period could lead to disruptions in the pathways of 

later-life outcomes. For instance, studies document negative short-term and long-term 

consequences of in-utero and early-life exposures to income shocks, agricultural crop failure, 

pollution, natural disasters, stress, toxic chemicals, and nutritional shocks (Baird et al., 2016; 

Billings & Schnepel, 2018; Currie & Schmieder, 2009; Lindeboom et al., 2010; Sanders, 2012; 

Scholte et al., 2015; Torche, 2018; van den Berg et al., 2011). These prenatal and early life shocks 

can be translated into adverse health outcomes during infancy and early childhood, which in turn 

appear in a wide array of medium-run and long-run outcomes, including cognitive development 

(Aizer et al., 2016; Berthelon et al., 2021), test scores (Sanders, 2012; Shah & Steinberg, 2017), 

educational attainments (Almond et al., 2009; Fuller, 2014), adulthood earnings (Behrman & 

Rosenzweig, 2004; Black et al., 2007), health during adulthood (Maruyama & Heinesen, 2020), 

hospitalization during adulthood (Miller & Wherry, 2019), and later-life old-age mortality 

outcomes (Goodman-Bacon, 2021; van den Berg et al., 2011).  

During the late nineteenth and early twentieth centuries, American Great Plains farmers 

expanded agricultural production and implemented deep plowing of the virgin top-soil. The ever-

growing practice eliminated native grasslands required to cover and retain ground soil. The loss of 

top-soil coverage combined with severe droughts during the 1930s caused a series of self-
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perpetuating wind erosions through the Aeolian processes. The erosion of unprotected land also 

facilitated overland flows and surface runoffs caused by rainwater and storm-water. Top-soil 

erosions resulted in inevitable agricultural crop failures, negative shocks to local economies, and 

pushing up agricultural product prices (Hansen & Libecap, 2015; Hornbeck, 2012). The resulting 

adversities of the infamous Dirty Thirties or the Dust Bowl era could be translated into adverse 

health outcomes among the vulnerable population and specifically infants, with potentially long-

run consequences. This is expected as several studies that explore similar shocks to agricultural 

failures, and other environmental impacts find significant effects that can be detected in long-run 

outcomes (Barreca et al., 2021; Le & Nguyen, 2021, 2022; Lindeboom et al., 2010). However, the 

literature on the later-life health effects of the Dust Bowl is mixed and provides inconclusive 

evidence. Cutler et al. (2007) explore in-utero Dust Bowl exposure and finds no meaningful effects 

on adulthood height, BMI, disability, diseases, and mortality. In a similar study, Atherwood (2022) 

also finds no impact of childhood exposure to the Dust Bowl on old-age longevity. However, Arthi 

(2018) documents sizeable increases in disability rates for adults with childhood exposure to the 

Dust Bowl. Our paper enters at this point of the literature and aims to re-evaluate the later-life 

health effects of in-utero and early-life exposure to severe top-soil erosions of the 1930s on old-

age longevity.  

The top-soil erosions of the 1930s combined with extreme droughts and dust clouds 

affected agricultural production, income, food accessibility, and air quality. These shocks may 

have impacted infants’ and children’s initial health capital, which could be unearthed in their old-

age health and mortality outcomes. We ask whether in-utero exposure to the top-soil erosions 

during the 1930s can be detected in old-age mortality outcomes. We employ data from Social 

Security Administration Death records over the years 1988-2005 linked with the full-count 1940 
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census. We compare longevity outcomes of people born in high and medium erosion counties 

versus low erosion counties over the 1930 years versus before. We implement a series of balancing 

tests to examine the changes in the demographic composition of births as a result of exposure to 

higher levels of soil erosion. Comparing treated and control counties pre-1930, we do not observe 

a discernible difference in demographic and socioeconomic characteristics. Post-1930, we find 

some evidence of increases in the share of females, those with lower father education, and with 

lower socioeconomic status. This implies a change in the composition of births and early-life 

mortality selection of the Dust Bowl era. A higher sex ratio at birth suggests higher fetal and infant 

mortality rates among males, consistent with the fragile male hypothesis. In addition, we posit that 

part of the pathway between early-life top-soil erosion and later-life mortality can be explained by 

the selection of births from lower socioeconomic status families. Our main results point to 

significant and negative intent-to-treat effects. Relative to counties categorized as low erosion 

farmlands, individuals born in high erosion and medium erosion counties post-1930s live 0.9 and 

0.2 months shorter lives, respectively. These effects are equivalent to 24 and 14 percent of the 

white-black gap in longevity in our regressions, respectively. Although the effects of medium 

erosion counties are noisy, they become larger in magnitude and statistically significant when we 

exclude the sample of counties located in the South.  

We implement event studies and show that there are no preexisting trends in the longevity 

of more affected counties versus less affected counties up to ten years before the start of the 1930s. 

We carry out a wide array of robustness checks and extensive sets of controls and fixed effects to 

test the sensitivity of the results. Moreover, we show that the effects are not driven by seasonality 

in births and deaths. We also show that the effects are robust to alternative functional forms and 

longevity measures. A series of heterogeneity analyses suggest relatively larger effects among 
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females and those with low-educated mothers. The effects also reveal heterogeneity by region and 

suggest larger effects of soil erosion on counties located in the West and Midwest, which 

experienced much of the direct effects, while other regions experienced smaller levels of erosion 

(and not dust).  

To search for mechanism paths, we employ 1960 census data and implement a similar 

identification strategy to explore the effects on education and labor market outcomes. We find 

suggestive evidence of increases in high school completion. This is also similar to the effects found 

by Arthi (2018) and suggests some degrees of substitutability between working on farms and 

attending school during childhood. However, the education effects are not translated into high 

school completion, college attendance, and income. During adulthood, those born in high erosion 

areas experience large and significant reductions in their income.  

The policy implications of these results lie in two aspects of the event that could relate to 

other types of environmental catastrophes and natural disasters. First, mortality is an extreme and 

precise measure of health. The fact that we could detect negative effects more than half a century 

later on the longevity of affected cohorts denotes considerable negative life-cycle impacts and 

likely deteriorated old-age health and well-being. Therefore, policymakers that aim at promoting 

lifelong health outcomes may focus on early-life events as an effective tool for the prevention of 

adverse later-life outcomes. Second, in cases related to climate change and environmental 

phenomena, individual efforts are suboptimal, private solutions do not account for the externalities 

associated with intensive and uncontrolled farming, and more collective decision-making is 

required (Hansen & Libecap, 2015). These situations call for government interventions and more 

collective actions. Our results add to the negative externalities of such events for health outcomes 

and highlight the role of policy interventions. 
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The contributions of this paper to the literature are twofold. First, we re-evaluate the 

literature on the later-life health impacts of the Dust Bowl. Contrary to previous findings of Cutler 

et al. (2007) and Atherwood (2022), we find negative, sizeable, and significant effects on longevity 

outcomes. Second, we contribute to the literature on in-utero and early-life exposures and later-

life health outcomes. Specifically, we add to the small but growing literature on long-term health 

effects of environmental events and disasters (Barreca et al., 2021; Currie et al., 2015; De Rubeis 

et al., 2021; Rosales-Rueda, 2018).  

The rest of the paper is organized as follows. Section 2 provides a literature review. Section 

3 discusses data sources. Section 4 introduces the empirical method. Section 5 overviews the 

results. In section 6, we explore mechanism channels. We depart some concluding remarks in 

section 7. 

2. Literature Review 

Soil erosion and the resulting crop failure could influence old-age mortality of affected 

infants through several channels. In this section, we explore these potential channels and the 

relevant literature.  

The primary channel through which climatic shocks during early life may affect future 

health and life-cycle outcomes is reductions in agricultural income. Hyland & Russ (2019) explore 

the long-run effects of exposure to drought during infancy and childhood on adult outcomes using 

data from several sub-Saharan African countries. They find suggestive evidence for reductions in 

wealth, education, height, and intergenerational effects on the next generations’ birth outcomes. 

Since the effects are exclusively driven by rural residents, they argue that the findings operate 

through distortions in agricultural outputs. Le & Nguyen (2021) explore the impact of extreme 

rainfall variability during fetal growth on childhood health outcomes. They find significant 
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reductions in anthropometric outcomes between ages 1-5 as a result of in-utero exposure to floods 

and droughts. Molina & Saldarriaga (2017) explore the effects of temperature fluctuation on birth 

outcomes in several Andean countries. They find that temperature deviation from the location-

specific long-term path is associated with increased food insecurity and adverse birth outcomes. 

Feeny et al. (2021) explore the long-run gender gap consequences of early-life exposure to rainfall 

shocks in Vietnam. They find that women are less likely to be employed relative to males if they 

were exposed to rainfall anomalies during their first two years of life. Shah & Steinberg (2017) 

show that higher local wages induced by higher rainfall in rural India are associated with 

differential impacts on human capital formation. The rainfall-induced increases in wages are 

associated with increases in human capital investments during early life but negatively impact 

investments of children aged 5-16. They argue that substitutability of schooling with labor wage 

is a channel to reduce the human capital formation of children. Maccini & Yang (2009) investigate 

the effects of early-life income shocks on adulthood schooling and health in Indonesia. They find 

that among women, exposure to higher rainfall in the year of birth is associated with higher 

schooling and improved measures of self-reported health. Banerjee et al. (2010) identify the later-

life health impacts of shocks to agricultural income induced by phylloxera pests in French 

vineyards during the late nineteenth century. They find significant and relatively large intent-to-

treat effects on height but fail to detect any impact on life expectancy. Duque et al. (2020) explore 

the effects of macroeconomic conditions during early-life and childhood on old-age well-being. 

They use state-year variations in economic conditions during the Great Depression as the proxy 

for economic conditions and show that macroeconomic indicators in early childhood are strongly 

associated with a range of health outcomes during old-age, including metabolic syndrome and 

mortality.  
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One specific effect of changes in income and agricultural output can be detected in 

children’s food insecurity and prenatal maternal nutritional intake. Studies that explore famine 

exposure impacts and later-life effects of governmental social programs usually find relatively 

large impacts operating through changes in food access (Abiona, 2022; Almond et al., 2011; 

Almond & Mazumder, 2011; East, 2018, 2020; Hernández-Julián et al., 2014; Hoynes et al., 2016; 

Karimia & Basu, 2018; Majid, 2015; Neelsen & Stratmann, 2011; Painter et al., 2005). For 

instance, Haeck & Lefebvre (2016) examine the effect of a nutritional assistance program for 

pregnant mothers in Canada on birth outcomes and find improvements in birth weight of about 70 

grams. Lindeboom, Portrait, & van den Berg (2010) explore the impacts of in-utero and early-life 

nutritional shocks induced by the Dutch Potato Famine (1846-1847) on later-life and old-age 

longevity. They exploit the regional and temporal variations in potato and rye prices to proxy for 

early-life food availability. They find that cohorts exposed to the potato famine in their early-life 

reveal 2.5-4 years lower longevity. Roseboom et al. (2006) investigate the later-life health impacts 

of fetal exposure to the Dutch famine of 1944-1945. They find that in-utero famine exposure is 

associated with adulthood glucose intolerance, coronary heart diseases, and disturbed blood 

coagulation. In a similar study, Van Abeelen et al. (2012) find higher risks of mortality among 

women exposed to the Dutch famine during their prenatal development. Rosales-Rueda (2018) 

explore the health effects of early-life exposure to El Nino floods in Ecuador. She finds sizable 

reductions in household income, food consumption, and maternal breastfeeding. For health 

outcomes and fetal exposure to flood, she documents significant increases in low birth weight, 

reductions in childhood test scores, and lower height among children of 5-7 years old.  

Another channel of impact between the Dust Bowl and long-run health outcomes is fetal 

exposure to pollution. A relatively large literature documents the short-run and long-run health 
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impacts of pollution specifically among infants and children (Bharadwaj et al., 2017; Chay & 

Greenstone, 2003; Currie et al., 2009, 2014; Currie & Neidell, 2005; Currie & Schmieder, 2009; 

Currie & Walker, 2011; Sanders, 2012; Simeonova et al., 2021). For instance, Moreira et al. (2020) 

show that Saharan dust intrusion across municipalities in Spain is associated with a higher share 

of low birth weight infants. Altindag et al. (2017) explore the environment and health impacts of 

Yellow Dust outbreaks in South Korea, dust clouds carried by high-speed surface winds from 

China and the deserts of Mongolia into East Asian countries. They find that the occurrence of 

Yellow Dust rises air pollution and subsequently decreases the birth weight and gestational age of 

affected infants. In a similar review study, Hasunuma et al. (2019) show that exposure to the Asian 

dust event results in higher mortality and hospitalization. Currie & Schwandt (2016) explore the 

effect of the dust cloud created by the 9/11 terrorist attacks on infants’ health outcomes. They find 

that fetal exposure to the pollution of toxic materials created by the aftermath dust is associated 

with significant negative effects on birth outcomes. Jones (2020) examines the pollution and infant 

health effects of a series of dust storms in the US over the years 2010-2017. He finds sizeable 

increases in incidences of low birth weight and preterm birth as a result of increases in dust-driven 

pollution.  

Some studies suggest that natural disasters and climatic catastrophes may impact health 

endowment at birth through less direct channels such as prenatal maternal stress (Álvarez-Aranda 

et al., 2020; Caruso & Miller, 2015; Glynn et al., 2001; Hetherington et al., 2021; Kim et al., 2017; 

Nandi et al., 2018; Torche, 2011). For instance, Currie & Rossin-Slater (2013) explore the impact 

of stress-induced by hurricanes on birth outcomes. They show that fetal exposure to hurricanes is 

associated with increases in infants’ abnormal conditions and meconium aspiration syndrome. 
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Noghanibehambari (2022) explores the effects of in-utero exposure to earthquakes on old-age 

longevity. He finds negative and significant effects for exposure during the first trimester.  

While the bulk of evidence weighs on the potential negative effects of dust clouds and 

agricultural disasters on short-run and long-run health outcomes, the Dust Bowl literature offers 

mixed evidence. Hornbeck (2012) examines the impacts on high and medium erosion counties 

versus low erosion counties and documents long-run effects on agricultural production, 

agricultural income, and agricultural land value. Arthi (2018) explores in-utero and childhood 

exposure using cross-state variation and finds significant increases in disability during adulthood. 

She also finds negative impacts on college completion and fertility. However, she finds positive 

effects on high school completion rates and argues that children, who would substitute schooling 

with farm work, are more likely to continue schooling with the scarcity of job prospects. Cutler et 

al. (2007) exploit cross-census-region variations in exposure to the Dust Bowl and examine later-

life health and mortality outcomes. They fail to find significant impacts on height, measures of 

chronic conditions, and disability. These two studies rely on variations across region and state, 

large geographic areas with potentially wide heterogeneity of exposure and the effects of exposure 

on health outcomes. A more precise framework is to look at sub-state exposures to obtain a more 

accurate measure and account for within-state variations. Atherwood (2022) explores county 

exposures to the Dust Bowl and later-life longevity. He employs Death Master Files (DMF) data 

and a subsample of Great Plain counties to compare the longevity outcomes of those who resided 

during their childhood in high versus low erosion counties. He fails to find a significant impact of 

Dust Bowl exposure on longevity. The important drawback of his research design is that it fails to 

account for unobserved heterogeneity in treated versus control counties. His research design is 

basically comparing the longevity of those born in high and medium erosion counties to those born 
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in low erosion counties within the same state, conditional on a limited set of county controls. We 

overcome this important limitation by introducing an empirical model that accounts for time-

invariant unobserved features of counties.  

3. Data Sources and Sample Construction 

The primary data source used in this study is the Numerical Identification System death 

records reported by Social Security Administration (SSA), the so-called Numident database, 

extracted from the Censoc Project outlined in Goldstein et al. (2021). The Numident data covers 

deaths that occurred to both females and males over the years 1988-2005 and were recorded by 

SSA. The primary advantage of Censoc-Numident data is that it is linked at the individual level to 

the full-count 1940 census. Therefore, it makes a longitudinal panel of unprecedented size with a 

wide array of information on family characteristics as well as granular geographic detail of place 

of residence in 1940. The lowest geographic area that the public-use full-count 1940 census 

provides is the county. The census provides information on the county of residence in 1940 and 

asks the respondent to report their county of residence in 1935 (if different than that of 1940). 

Since the primary purpose of this study is to explore in-utero and early-life effects, we need to 

infer the county of birth based on the given information. In so doing, we start by assuming that the 

county of residence in 1935 is the county of birth. If the information of the place of residence in 

1935 is not available and the respondent reported that they have migrated during the last five years, 

we exclude the person from the sample. Similarly, if the 1935 county information is missing and 

the respondent’s state-of-birth is different than state-of-residence in 1940, we also exclude the 

observation from the sample. If the state-of-birth is the same as the 1940 state-of-residence, the 

1935 county is missing, and the respondent has not migrated in the last five years, it is safe to 

assume that the 1940 county-of-residence is the same as county-of-birth. To further mitigate the 
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issue regarding migration and the resulting measurement issue in our county-of-birth variable, we 

limit the sample to cohorts born after 1920.  

The data for soil erosion and Dust Bowl is extracted from Hornbeck (2011). He uses data 

from the Soil Conservation Service and constructs county-level data of the share of farmlands’ 

top-soil that is eroded. He categorizes these fraction measures into three variables based on the 

cumulative severity of erosion over the 1930s: high fraction erosion, medium fraction erosion, and 

low fraction erosion. The first measure is the fraction of a county’s farmland’s top-soil that is 

highly eroded, and so on for the other two measures. We build dummy variables to indicate 

whether a county is considered high/medium/low erosion using these three measures. In so doing, 

our high erosion dummy variable equals one if the share of high fraction erosion is above 75 

percent. Equivalently, only 25 percent of the farmland is considered medium and low erosion. 

Similarly, the medium erosion indicator equals one if the fraction of high erosion is between 50 

and 75 or the fraction of medium erosion is more than 50 percent. All other counties are considered 

low erosion. Figure 1 shows the geographic distribution of high, medium, and low erosion counties 

across counties. Due to the scarcity of related agricultural and soil erosion data for the 1930s, our 

data do not provide over-time variation in the county soil-erosion data though we are able to 

examine potential variation indirectly by estimating effects separately by each birth year. This is a 

common limitation in studies of short-term and long-term effects of the Dust Bowl.  

We merge the county-level soil-erosion data with Numident-census data based on the 

county of birth of individuals. While previous studies focus on a subset of counties that are 

specifically affected by the wind erosions and historically recognized as the Dust Bowl counties, 

we focus on all US counties while showing the heterogeneity by different regions. There are two 

main reasons not to limit the geographic coverage of the sample. First, while the erosion hit the 
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Great Plains more severely than others, the effects were detectable in many areas as far as the 

prairies of Canada (McLeman et al., 2014; Schubert et al., 2004). Second, the drought-driven 

erosions were a more universal phenomenon that could impact agricultural products elsewhere in 

the country.  

For further analyses related to endogenous fertility, we use data from Bailey et al. (2016). 

This data covers births and deaths data for a subsample of more-populated counties. For analysis 

of mechanism channels, we employ the 1960 census data extracted from Ruggles et al. (2020). We 

also construct a series of county covariates extracted from decennial censuses 1920-1940 and 

interpolate them for inter-decennial years. These data are also extracted from Ruggles et al. (2020). 

Summary statistics of the final sample are provided in Table 1. The age at death varies 

between 47.6 and 85.6 years with an average of approximately 71.2 years. About 8 and 32 percent 

of observations live in high and medium erosion counties, respectively. The sample 

underrepresents females and overrepresents white people. This is because the Numident-census 

linking is primarily based on name commonalities and information on place of birth and age. Since 

females usually change their names after marriage, they are less likely to be linkable. Although 

nonwhites are underrepresented in the sample, they represent their respective populations with 

regard to other sociodemographic features (Breen & Osborne, 2022). 

4. Econometric Method 

The identification strategy exploits the spatial variations in county-specific cumulative top-

soil erosions combined with rises in dust clouds and droughts of the 1930s versus a decade earlier. 

We implement difference-in-difference analyses using ordinary least square regressions of the 

following forms: 
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 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖 × 𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑛𝑛𝑖𝑖𝑖𝑖 + 𝛼𝛼2𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑖𝑖 × 𝑀𝑀𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑛𝑛𝑖𝑖𝑖𝑖 + 𝛼𝛼3𝑋𝑋𝑖𝑖

+ 𝛼𝛼4𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜉𝜉𝑖𝑖 + 𝜁𝜁𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

(1) 

Where 𝑦𝑦 is the outcome (ag at death) of individual 𝐻𝐻 in county 𝑐𝑐 in state 𝑃𝑃 and born in year 

𝑏𝑏. The variable 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 is a dummy that equals one for post-1930 years and zero otherwise. The 

variable 𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑛𝑛 (𝑀𝑀𝐻𝐻𝐻𝐻𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑛𝑛) is a dummy variable indicating high (medium) erosion of top-soil 

in each county over the 1930 decade (see section 3). The matrix 𝑋𝑋 contains individual and family 

controls including dummies for race, gender, maternal education, and paternal socioeconomic 

status. In 𝑍𝑍, we include several county controls that are constructed using county values in full-

count decennial censuses and interpolated for inter-decennial years. These controls include the 

share of homeowners, share of children less than 5 years old, share of literate people, share of 

married, and average occupational score. The parameters 𝜉𝜉 and 𝜁𝜁 represent county and state-by-

birth-year fixed effects. Finally, 𝜀𝜀 is a disturbance term. Standard errors are clustered at the county 

level. Following Hornbeck (2012), we weight the regressions using the farmland area of the county 

in 1930.4 

5. Results 

5.1. Concerns over Endogeneity 

The estimated coefficients of equation 1 could potentially provide biased estimates of the 

true impacts for several reasons which we discuss below. The first concern is regarding likely 

changes in the composition of cohorts in the treated and control subsamples. These treated-control 

cohort differences could bias the estimates if there are other dimensions associated with each group 

that is also correlated with our soil erosion exposure measures. For instance, if people of lower 

 
4 In Appendix B, we show the results of unweighted regressions and examine the sensitivity of the results to alternative 
weights. The estimated coefficients suggest stability to alternative weights and unweighted regressions. 
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socioeconomic status are more likely to be exposed to the erosion shocks, the estimated 

coefficients overestimate the true effects since these people have lower age at death due to 

unobserved factors. The differential exposure or the differential cohort composition of the final 

sample could be the result of several sources, including endogenous post-event migration, 

endogenous birth composition, endogenous fetal and infant deaths, and endogenous survival into 

adulthood. We argue against these sources of endogeneity by providing two pieces of empirical 

evidence. First, we directly test for changes in differences in the composition of the final sample 

by implementing a series of balancing-test-type event studies. In these event studies, we assume 

that the event occurs at the onset of the 1930s. We compare the characteristics of people in high 

and medium erosion counties with low erosion counties in different years relative to the years 

1929-1930. We group event-times into two-year bins. To explore the pre-post-trends in 

sociodemographic characteristics, we use individual and family characteristics as the outcomes. In 

all regressions, we include state-year and county fixed effects. These results are reported in Figure 

2 through Figure 5. In each figure, the results of two top (and similarly two bottom) panels come 

from the same regressions in which the high erosion (left panel) and medium erosion (right panel) 

measures are interacted with event-time dummies. For comparison purposes, we standardized all 

outcomes.  

We observe small decreases in the share of whites for the years 1934-1935 in high erosion 

counties (top-left panel of Figure 2). Since there are very few people of other races, the results on 

black (two bottom panels of Figure 2) are a reflection of the effects on white. There is also a slight 

increase in the share of females for high erosion measures in the 1932-1933 group (top left panel 

of Figure 3). This fact suggest there is a change in the composition of births, for example, due to 

a higher male fetal death selection. It also points to potential raises in male infant mortality rate 
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which led a higher female survival into adulthood, consistent with fragile male hypothesis (Clark 

et al., 2021; Drevenstedt et al., 2008; James & Grech, 2017; Rosa et al., 2019; Weinberg et al., 

2008).  

In addition, we observe small decreases in fathers’ education for 1932-1933 cohorts in high 

erosion counties (bottom-left panel of Figure 4). Although post-1930 coefficients of father’s 

socioeconomic score suggest slight decreases in the outcome, they are statistically insignificant 

(top-left panel of Figure 5). In addition, the share of fathers with missing information on the 

socioeconomic index rises for 1934-1935 cohorts in high erosion counties (bottom-left panel of 

Figure 5). Overall, these results offer some evidence of selection of births based on father 

education and socioeconomic status. Since lower socioeconomic status families, on average, have 

children with lower health endowment and potentially lower longevity, part of the results in the 

reduced-form analysis (section 5.2) could operate through this selection channel.  

Besides these exceptions, almost all other pre-and-post-1930 coefficients in both groups 

are statistically insignificant. Moreover, the effects do not reveal a consistent pattern of 

rising/falling during the 1920s and 1930s. We complement the analyses of these event studies by 

employing the difference-in-difference estimations of 1 with sociodemographic characteristics as 

outcomes. The estimated results, reported and discussed in Appendix A, provide a similar story as 

the event studies discussed in this section.  

Second, we have limited natality information for a subset of US counties over the years 

1920-1940. We employ this county-year panel dataset and merge it with the top-soil erosion 

database and implement regressions similar to equation 1. The results are reported in Table 2. We 

do not observe any change in infant mortality rates and birth rates. Moreover, there is no change 

in the composition of births to whites and blacks.  
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The second concern is that the difference-in-difference coefficients of equation 1 pick up 

the pre-1930 differences across high-medium versus low erosion counties. Such differences 

introduce preexisting trends in longevity if the structural differences also appear in other health 

dimensions of high-medium versus low erosion counties that persist in the long-run outcomes. For 

instance, deep plowing and intensive agriculture could have triggered soil erosion in the years prior 

to the 1930s specifically in counties with higher cumulative erosion recorded in the 1930s. These 

potential pre-1930 soil erosions could have affected land values and employment in those counties 

(Hornbeck, 2012). To explore the concern of preexisting trends in longevity due to the differential 

trajectory of treated and control cohort-counties, we implement an event study analysis in which 

we assume the event occurs at the onset of the 1930s and the event time is the birth year relative 

to the event date. We aggregate event time coefficients into two-year bins. We implement the full 

specifications of equation 1 and replace the erosion measures with our event study coefficients. 

The results are reported in Figure 6 for high erosion and medium erosion exposures in the top and 

bottom panels, respectively. Almost all of the pre-trend coefficients are statistically and 

economically insignificant in both panels. In the top panel of high erosion measures, the effects 

start to rise in magnitude for post-1930 years. However, in the bottom panel, we do not observe a 

discernible post-trend.  

The third concern is the potential endogenous linking between the 1940 census and 

Numident data. If observations in Numident with a higher likelihood of merging with the 1940 

census have some characteristics that are correlated with both their erosion exposure and their 

health outcomes that can be detected in old-age mortality outcomes, then the estimates of equation 

1 likely weigh toward those endogenously-determined features rather than the effects of erosion. 

To investigate this source of bias, we start with the full sample of cohorts born in 1920-1940 and 
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implement similar sample selections as our Numident-census sample. We then merge it with the 

soil erosion database. Next, we merge it with the final sample of Numident data and create a 

dummy variable to indicate successful merging. We regress this variable on measures of soil 

erosion conditional on county and state-by-birth-year fixed effects. The results are reported in 

Table 3 for the full sample and several subsamples across columns. The estimated coefficients fail 

to provide any evidence of endogenous merging. The effects are statistically insignificant and 

economically small in magnitude.  

5.2. Main Results 

The main results of the paper are reported in Table 4. We start with regressions that include 

only county and birth year fixed effects and add more covariates across consecutive columns. 

When we add state-by-birth-year fixed effects, the marginal effects slightly rise in magnitude 

(column 2). However, in columns 2-5, the effects are quite robust and similar as we add more 

controls. The full specification of column 5 suggests that cohorts in high and medium erosion 

counties versus low erosion counties post-1930 versus pre-1930 have 0.9 and 0.2 months shorter 

lives, respectively. However, the coefficients of medium erosion counties are statistically 

insignificant.  

To put the effect of high erosion into perspective, we compare the number with the 

coefficients of other individual covariates in the same regressions. Specifically, we use the female-

male gap in longevity (implied by the coefficient of female, not reported in this table) and the 

black-white gap in longevity (implied by the coefficient of black, not reported in this table). The 

effects of high erosion represent a 12.5 percent of female-male gap and 18 percent of the black-

white gap in longevity.  
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Hornbeck (2012) finds that high erosion counties experienced a 12 percent reduction in 

retail sales per capita, equivalent to about 0.11 standard-deviations change in retail sales per capita 

in their sample. Noghanibehambari et al. (2022) explore the effects of in-utero and early-life 

economic conditions on old-age mortality. They proxy local economic conditions with bank 

deposits per capita and find significant associations between deposits per capita and old-age 

longevity. Furthermore, they attempt to validate their proxy by showing that bank deposits are 

correlated with alternative measures of local economic conditions including retail sales per capita. 

They find that a one-standard-deviation decrease in bank deposits per capita is associated with 

0.21 standard-deviations drop in retail sales per capita and roughly 2.7 months lower age at death. 

Using the cumulative effects reported by Hornbeck (2012) and these effects, we reach a back-of-

an-envelope effect of 1.4 months due to worsening economic conditions as a result of high erosion. 

This is slightly larger than the marginal effect of 0.9 months in Table 4.  

The average life expectancy at birth in the US increased by about 8 years between the years 

1920-1940. The intent-to-treat effect of 0.9 months on longevity represents about a 1 percent 

change in longevity across cohorts in our final sample. Another way to gauge the economic 

significance of the results is to compare them with other studies that explore the determinants of 

longevity. For instance, Chetty et al. (2016) explore the income-longevity relationship across 

income percentiles and find that for each additional income percentile longevity increases by about 

1.9 months, a relatively constant factor across different baseline percentiles. Fletcher & 

Noghanibehambari (2021) explore the effects of college opening on college education and 

mortality. They find intent-to-treat effects of 0.13 months additional longevity for each additional 

4-year college opening as a result of increases in college education. In comparison with our 
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estimated intent-to-treat effects, the negative effects of high top-soil erosion offset the positive 

effects of roughly 7 new 4-year college openings in the local area.  

5.3. Robustness Checks 

We explore the sensitivity of our results across alternative models in Table 5. To have a 

benchmark comparison, we replicate the full specification of column 5 of Table 4 in column 1. In 

column 2, we add additional family controls including the father’s wage income in 1940, number 

of siblings, father’s employment status, and a dummy for ownership of the dwelling. Although we 

lose some of the observations due to missing values, the effects are very similar in magnitude to 

those of column 1. In columns 3 and 4, we add to the full model of column 1 a series of county-

by-individual-characteristics dummies and county-by-parental-characteristics dummies, 

respectively. Therefore, we allow for time-invariant features of counties to have differential effects 

among households and individuals with different sociodemographic characteristics. The estimated 

marginal effects are quite similar to those of column 1. 

We control for seasonality in birth and death by including birth-month and death-month 

fixed effects in column 5. The effects are quite comparable to the baseline estimates. In column 6, 

we add a battery of additional county-by-year controls including population, share of females, 

share of whites, share of blacks, share of other races, share of Hispanics, share of immigrants, 

share of children less than 5, share of literate people, and share of married people. The estimated 

coefficients are slightly smaller than those of column 1 but remain statistically significant. 

In column 7, we check the sensitivity to the functional form by replacing the outcome with 

log of age at death. The marginal effect of high erosion suggests a 0.11 percent reduction in 

longevity. In column 8, we replace the outcome with a dummy indicating age at death greater than 
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70 years. The estimated effect of high erosion suggests 63 basis-points reductions in the likelihood 

of living beyond age 70, off a mean of 0.52.  

Furthermore, we explore the sensitivity of the difference-in-difference model to 

heterogeneity in treatment effect by replicating the main results using methods developed by Sun 

& Abraham (2021). The marginal effect of high erosion rises by about 5 percent.  

In column 10, we show the robustness of statistical significance by employing a two-way 

cluster technique and clustering the standard errors at the county and state-by-birth-year levels. 

This clustering level account for both serial and spatial correlations in the error term. Standard 

errors are quite similar to the main results.  

In columns 11 and 12, we use more restricted subsamples of cohorts, specifically, cohorts 

of 1925-1935 and 1925-1940, respectively. In both subsamples, the marginal effects are 

comparable to those of column 1 and remain statistically significant at conventional levels for high 

erosion exposure measure.  

5.4. Heterogeneity across Subsamples 

We explore the heterogeneity of results across subsamples based on sociodemographic 

characteristics in Table 6. Column 1 replicates the main results of column 5 of Table 4. Column 2 

focuses on the subsample of white individuals. The marginal effect of medium erosion rises in 

magnitude by about 35 percent while that of high erosion drops by about 13 percent. In column 3, 

we restrict the sample to females. The estimated effect of high erosion rises by about 12 percent 

although becomes statistically insignificant. This differential impact across gender has also been 

shown by other studies. Several studies find larger health shock impacts and more persistent 

impacts among females (Ae-Ngibise et al., 2019; Bharadwaj & Lakdawala, 2013; Chen et al., 

2020; Muchomba & Chatterji, 2020; Wang et al., 2017).  
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In column 4, we focus on those whose fathers work in farm-related occupations. The effect 

size of high erosion suggests considerably larger impacts. The coefficient of high erosion becomes 

roughly 2.4 times that of the main results. This fact suggest that a large portion of effects operate 

through income channels as the top-soil erosions had a large income shock among farmers. 

Nonetheless, the effect of medium erosion flips sign and remain statistically insignificant.  

In column 5, we focus on individuals with low-educated mothers. The marginal effect of 

high erosion rises in magnitude and remain statistically significant. The big picture of this table 

suggests lower heterogeneity by race but considerable differences in effects by gender and 

maternal education. The effects are more pronounced for females and for those with lower 

maternal education.  

In Table 7, we also examine the heterogeneity of the results across different census regions. 

The effects of high erosion are primarily concentrated in counties located in South, Midwest and 

West regions. In the South and Midwest, high erosion is associated with 4.4 and 2.9 months lower 

longevity, about 3-5 times the effect of the full sample. On the other hand, the effect of medium 

erosion is more pronounced in Southern counties, suggesting about 3 months lower longevity. 

However, the effects become positive for counties in Northeast and are statistically insignificant 

for both medium and high erosion measures. However, only about 15 percent of treated counties 

are located in this region.  

The Dust Bowl and its long-lasting legacies for local economies could force out-of-state 

migration. The Numident data also provides information on state-of-death, which we use to build 

a measure of migration. We define a migrant as a person whose state-of-birth is different than 
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state-of-death5. We then explore whether our top-soil erosion measures are correlated with long-

term cross-state migration. The results are reported in column 1 of Table 8. Both measures suggest 

positive correlations. Relative to the mean of the outcome, medium and high erosion counties are 

associated with a 1.5 and 1.8 percent increase in cross-state migrants. These positive effects raise 

an important source of heterogeneity regarding the mitigating impacts of individuals’ migration 

status. Thus, we examine whether the negative effects have differential impacts among migrants 

and stayers. In so doing, we replicate the main results for the subsample of migrants and stayers in 

columns 2 and 3 of Table 8, respectively. The marginal effects suggest that the results are primarily 

confined to the non-migrant subsample. The effects on the migrant population are smaller in 

magnitude than the main results and statistically insignificant.   

5.5. Comparison with Alternative Data Sources 

Our data source covers deaths that occurred between the years 1988-2005. One concern is 

the left and right truncation of data. These types of sample selection bias the results if the early-

life exposure effects appear in younger ages which makes them hard to detect in older ages. 

Similarly, the effects could have a latent aspect and are concentrated in older ages. We explore 

these potential age-specific concentration of the effects using an alternative data source that covers 

earlier death records. In so doing, we use DMF data from Goldstein et al. (2021) that covers death 

occurred between the years 1975-2005. We implement the same sample selection criteria and 

employ the same regressions as in equation 1. We report our comparisons in Table 9. We replicate 

the full-sample of Numident from column 5 of Table 4 in column 1. Columns 2 and 3 report the 

effects among females and males of Numident data, respectively.  

 
5 Nearly half of our observations die in a state other than their birth state.  This is higher than more recent data, for 
example, Fletcher et al. (2022) note that approximately 1/3 of decedents in the Mortality Disparities in American 
Communities (MDAC) die in a state other than their birth state.   
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In columns 4 and 5, we replicate the results for the DMF data that covers only males. In 

column 4, we restrict the DMF data to cover deaths that occur between the years 1988-2005, 

similar to the death window of Numident. In column 5, we show the effects of the full death 

window of DMF.  

The comparison between columns 3 and 4 (same-gender and death window samples) 

suggests that DMF offers larger coefficients for both medium and high erosion. Moreover, the full 

sample DMF suggests slightly smaller coefficients when we include earlier years of death records 

(comparing columns 4 and 5). For instance, the high erosion coefficient drops by about 9 percent 

from the death window of 1988-2005 to the death window of 1975-2005. If we extrapolate this 

drop for both genders, we can deduce a reduction in longevity of about 0.85 months for exposure 

to high erosion. Therefore, the inclusion of the earlier death window only slightly reduces the 

magnitude of the effects.  

Another concern is the exclusion of post-2005 deaths in the death window of Numident 

data. In order to explore the sensitivity of the results to later deaths, we use Vital Statistics death 

records that cover the universe of deaths up to 2020. The disadvantage of this data is that it does 

not contain county of birth and reports only state of birth for post-1979 death years. We use an 

aggregated version of top-soil erosion data and implement regressions with a comparable 

identification strategy as in equation 1. We report and discuss the results in Appendix C. Our back-

of-an-envelop calculation suggests that high erosion is associated with roughly 3 months lower 

longevity (if we were able to expand the death window to pre-1988 and post-2005 deaths). 

6. Potential Mechanisms 

Several studies suggest that, in addition to biological mechanisms, changes in education 

and income are potential pathways between early-life shocks and old-age health (Adhvaryu et al., 
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2019; Almond et al., 2018; Currie & Vogl, 2013; Kesternich et al., 2015). However, the 

information on education-income is not available in Numident data. Moreover, the 1940 census 

information on education and income is also unreliable as cohorts have not completed their 

education or have yet to enter the labor market. Another barrier to exploring education-income 

channels is that the public-use censuses do not report county of residence for 1950-onward 

samples. Although the IPUMS-extracts of Ruggles et al. (2020) de-identify some counties based 

on population and other geographic identifiers, they are far from universal and usually identify 

less than 17 percent of counties.  

Starting in 1960, the census provides a below-state and universal-coverage geographic 

identifier, Public-Use Microdata Area (PUMA). The PUMA boundaries vary over time and are 

defined based on population and population densities. In rural areas with low population densities, 

PUMA covers several counties while in urban areas several PUMAs constitute one county. We 

employ PUMA and the IPUMS-extract’s de-identified counties to construct a new geographic 

boundary that is the greater of county and PUMA. We name this geographic variable PUMA-

county. We build a crosswalk between counties and PUMA-counties and aggregate the soil erosion 

database into PUMA-county level. We then merge it with the 1960 census based on individuals’ 

PUMA-county and birth year. We implement similar sample selections as in the main results and 

focus on cohorts of 1920-1940 with full information on education and income, regardless of their 

labor force status. We then implement regressions similar to equation 1 in which the outcomes are 

measures of education and income.  

The results are reported in Table 10. In column 1 through 9, we use a series of dummy 

variables indicating the individual’s years of schooling more than 4 to 12 years, respectively. The 

main purpose of this set of definitions is to explore at which levels of education the effects are 



26 
 

concentrated. We observe increases in those who finish their elementary and secondary schools. 

However, the effects become insignificant for schooling beyond 9 years, i.e., high school education 

and above. Specifically, we do not observe any statistical change for high school graduate and 

college education (columns 8 and 9). Arthi (2018) also finds increases in education that are more 

concentrated in high school completion. However, our results suggest that children are more likely 

to enter high school as a result of higher erosion exposure. In line with Arthi (2018), we argue that 

these children would choose to work on the farm in the absence of the Dust Bowl and the 

reductions in agricultural employment push them towards entering high school.  

In columns 10 and 11, we explore the effects on log total income and log wage income, 

respectively. High erosion coefficients suggest 28 and 38 percent reductions in total and wage 

income, respectively. These are also in line with the effects found by Arthi (2018) on later-life 

disability. In contrast, the effects seem to contradict those of education in column 1. However, the 

effects of education only appear to push those with elementary schooling to attend secondary 

schooling. These improvements do not translate into high school graduation or college attendance. 

The literature on education-income usually suggests larger improvements for high school 

graduation and college education (Murnane, 2013). Overall, the relatively large effects on income 

signify worse socioeconomic outcomes during adulthood. The adverse socioeconomic effects and 

the observed reductions in income could persist through old age and appear in old-age health and 

mortality outcomes (Biggs et al., 2010; Chetty et al., 2016; Cristia, 2009; Demakakos et al., 2015; 

Gong et al., 2019; Hajat et al., 2011). 

7. Conclusion 

Throughout the world, people are facing ever-increasing natural disasters and 

environmental catastrophes, partly due to climate change (Banholzer et al., 2014; Cappelli et al., 
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2021). However, media attention and government interventions are usually short-lived. While a 

recently developed literature provides evidence of the medium-run outcomes and specifically for 

early-life and childhood exposures, little is known about the long-run outcomes (Almond et al., 

2018; Bailey, Bleakley, et al., 2016). Understanding the full costs of exposed populations is 

important in cost-benefit calculations and relief policy designs. This paper attempted to 

complement this literature and contribute to our growing understanding of this topic by evaluating 

the long-run longevity effects of in-utero and early-life exposure to soil erosion driven by the Dust 

Bowl.  

We employed death records from the Social Security Administration linked to the full-

count 1940 census. We implemented difference-in-difference designs to compare the longevity 

outcomes of individuals who were born in high/medium top-soil erosion counties versus those in 

low erosion counties during the 1930s (Dust Bowl era) versus before. Our results suggested 

statistically significant reductions of 0.9 months in longevity for those born in high erosion 

counties. We use the universe of cohorts born in the 1930s and observed in 1940 to extract the 

potential total life-years lost due to early-life exposure to the Dust Bowl. We implement the same 

inference method as described in section 3 to assign their county of birth. A simple back-of-an-

envelop calculation suggests 202,106 life-years lost for cohorts born in high erosion counties.6  

We implemented event studies to examine the concerns over preexisting trends in health 

and longevity. A series of event studies suggest small increases in the share of females, suggesting 

a higher fetal and infant deaths to males for those in high erosion counties post-1930s. We also 

observe some reductions in father education and father socioeconomic index among exposed 

 
6 Total number of children born during the 1930s (observed in the full-count 1940 census) in high erosion counties is 
2,694,248. Multiplying this with the marginal effect of high erosion in column 5 of Table 4 (0.9 months) and dividing 
by 12 leads to roughly 202K years.   
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cohorts, implying selection of births based on family socioeconomic index that could partly lead 

to the observed effects on longevity. However, these selection effects are relatively small and the 

coefficients are in most cases insignificant.   

We carry out a wide range of robustness checks to show that our results are not sensitive 

to additional covariates and fixed effects, alternative outcomes, functional forms, alternative 

difference-in-difference estimations, alternative clustering levels, and alternative subsamples. We 

also apply a series of heterogeneity analyses and find larger effects among females and those with 

lower maternal education.  

We use the 1960 census to explore potential mechanisms. Regression results suggest that 

exposed individuals are more likely to go from elementary schools to secondary and high schools. 

However, we do not find improvements in high school graduation and college attendance. On the 

contrary, we find relatively large effects on income. We argue that while the scarcity of 

agricultural-related jobs pushes children to attend secondary schooling, the negative health effects 

overcome the potentially small effects of education in a way that the net effects on income are 

negative, statistically significant, and relatively large in magnitude. We posit the reductions in 

income and wages signify worse socioeconomic status that could persist over the life-cycle and 

appear in old-age health and longevity.  
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Tables 
 

Table 1 - Summary Statistics 

Variable Mean SD Min Max 
Numident-1940-Census Data:     
Death Age (Month) 854.47565 69.10555 572 1028 
Birth Year 1927.1297 3.83597 1920 1940 
Death Year 1998.3376 4.75345 1988 2005 
Medium Erosion  .32078 .46678 0 1 
High Erosion  .07662 .26598 0 1 
Medium Erosion × Post-1930 .08789 .28313 0 1 
High Erosion × Post-1930 .02159 .14533 0 1 
Female .42877 .4949 0 1 
White .92604 .2617 0 1 
Black .07054 .25606 0 1 
Other Races .00341 .0583 0 1 
Hispanic .01385 .11685 0 1 
Father Socioeconomic Score 1st Quartile .20628 .40463 0 1 
Father Socioeconomic Score 2nd Quartile .23355 .42309 0 1 
Father Socioeconomic Score 3rd Quartile .19965 .39973 0 1 
Father Socioeconomic Score 4th Quartile .23699 .42524 0 1 
Father Socioeconomic Score Missing .04353 .20405 0 1 
Mother Education < High School .58219 .4932 0 1 
Mother Education = High School .2696 .44375 0 1 
Mother Education > High School .06158 .2404 0 1 
Mother Education Missing .08663 .28129 0 1 
County Covariates:     
Share of Homeowners .51516 .13121 .01811 .90763 
Share of Children < 5-years-old .40899 .12508 .13409 1.09902 
Share of Literate  .8862 .15143 0 1 
Share of Married .60847 .03182 .26571 .77807 
Average Occupational Score 23.42786 4.08945 11.78472 32.76429 
Observations 1819066 
1960-Census Data:     
Years of Schooling 7.9491 2.89429 0 15 
Years of Schooling>4 .92799 .2585 0 1 
Years of Schooling>5 .88956 .31343 0 1 
Years of Schooling>6 .79513 .40361 0 1 
Years of Schooling>7 .72758 .4452 0 1 
Years of Schooling>8 .64402 .47881 0 1 
Years of Schooling>9 .57231 .49474 0 1 
Years of Schooling>10 .18027 .38441 0 1 
Years of Schooling>11 .13116 .33758 0 1 
Years of Schooling>12 .08944 .28538 0 1 
Log Total Personal Income 5.3709 3.53372 0 9.89684 
Log Wage Income 4.82951 3.84557 0 10.12667 
Female .50815 .49993 0 1 
Black .09593 .29449 0 1 
White .89788 .3028 0 1 
Observations 645778 
Birth-Infant-Death Data:     
Infant Mortality Rate per 100,000 Births 61.93882 28.64321 0 1000 
Birth Rate per 1000 Women 39.87917 11.38456 0 149.79358 
Share of Births to Whites .67368 .23898 0 1 
Share of Births to Blacks .32546 .23886 0 1 
Observations 60330 
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Table 2 - Endogenous Births and Infant Deaths 

 Outcomes: 
 Infant 

Mortality Rate Birth Rate Share of Births 
to Whites 

Share of Births 
to Blacks 

      (1)   (2)   (3)   (4) 
Medium Erosion × Post-
1930 

.29965 -.10856 -.00331 .00223 
(.74654) (.45641) (.00591) (.00334) 

High Erosion × Post-1930 .96117 -1.05308 -.00463 -.00293 
(.91843) (.9651) (.00624) (.0045) 

Observations 60249 60283 19188 19177 
R-squared .78545 .79456 .96055 .9766 
Mean DV 63.052 36.740 0.732 0.266 
%Change Medium 0.475 -0.295 -0.453 0.838 
%Change High 1.524 -2.866 -0.632 -1.100 
Standard errors, clustered on county, are in parentheses. Regressions include county and state-by-
birth-year fixed effects. 
*** p<0.01, ** p<0.05, * p<0.1   
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Table 3 - Endogenous Numident-Census Merging 

    Outcome: Successful Merging of Numident Death Records with The 
Target Population of 1940  

 Full Sample Whites Nonwhites Maternal 
Education < HS 

      (1)   (2)   (3)   (4) 
Medium Erosion × Post-1930 
   

.00087 .00094 .00124 .00076 
(.00061) (.00065) (.00111) (.00069) 

High Erosion × Post-1930 
   

.00065 .00094 .00096 .00069 
(.00087) (.00094) (.00144) (.00093) 

Observations 16577045 14994802 1582095 9515538 
R-squared .02169 .02105 .02798 .0214 
Mean DV 0.112 0.114 0.086 0.113 
%Change Medium 0.780 0.822 1.438 0.673 
%Change High 0.576 0.821 1.115 0.611 
Standard errors, clustered on county, are in parentheses. Regressions include county and state-by-birth-year 
fixed effects. Regressions are weighted using county farmland in 1930. 
*** p<0.01, ** p<0.05, * p<0.1   
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Table 4 - Main Results 

 
 

    Outcome: Age at Death (Months) 
    (1) (2) (3) (4) (5) 

Medium Erosion × Post-1930 -.12984 -.22404 -.23245 -.22794 -.19115 
(.24992) (.26841) (.2686) (.26793) (.26558) 

High Erosion × Post-1930 -.89638** -.96564** -1.01418** -.99868** -.93643** 
(.40811) (.44179) (.44152) (.44161) (.44418) 

Observations 1818426 1818422 1818422 1818422 1818422 
R-squared .32596 .32643 .32928 .32959 .32959 
Mean DV 854.811 854.811 854.811 854.811 854.811 
%Change Medium -0.015 -0.026 -0.027 -0.027 -0.022 
%Change High -0.105 -0.113 -0.119 -0.117 -0.110 
Birth Year FE      
County FE      
Birth-Year-by-Birth-State FE      
Individual Covariates      
Family Controls      
County Covariates      
Standard errors, clustered on county, are in parentheses. Regressions are weighted using county farmland in 1930.  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 5 - Robustness Checks 

 Column 5 Table 4 Adding More Family 
Controls 

Adding County by 
Individual Covariates 

FE 

Adding County by 
Family Covariates FE 

 (1) (2) (3) (4) 
Medium Erosion × Post-
1930 

-.19115 -.21981 -.20291 -.2066 
(.26558) (.28192) (.26597) (.26763) 

High Erosion × Post-
1930 

-.93643** -.90088* -.93431** -.88892** 
(.44418) (.47908) (.44775) (.45076) 

Observations 1818422 1593832 1818161 1818417 
R-squared .32959 .33406 .33155 .33402 
     

 Adding Birth-Month 
and Death-Month FE 

Adding More County 
Controls 

Outcome: Log Age at 
Death 

Outcome: Age at 
Death >70 Years 

 (5) (6) (7) (8) 
Medium Erosion × Post-
1930 

-.18937 -.13814 -.00022 -.0007 
(.26542) (.26406) (.00033) (.0021) 

High Erosion × Post-
1930 

-.90628** -.8228* -.00115** -.00629* 
(.44301) (.44458) (.00055) (.00359) 

Observations 1818422 1818422 1818422 1818422 
R-squared .33251 .3296 .33034 .19596 
     

 Sun-Abraham DD 
Two-Way Cluster SE 
at County and State-

by-Birth-Year 

Restricting Cohorts to 
1925-1935 

Restricting Cohorts to 
1925-1940 

 (9) (10) (11) (12) 
Medium Erosion × Post-
1930 

-.14670 -.19115 -.24417 -.24168 
(.29612) (.28608) (.29813) (.29156) 

High Erosion × Post-
1930 

-98681*** -.93643* -.9987* -1.08318** 
(.46549) (.47886) (.51843) (.48871) 

Observations 1819061 1818422 1221136 1257218 
R-squared 0.32960 .32959 .22302 .26286 
Standard errors, clustered on county (except for column 10), are in parentheses. Regressions include county and 
state-by-birth-year fixed effects. All regressions include individual, family, and county covariates. Regressions 
are weighted using county farmland in 1930. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 6 - Heterogeneity across Subsamples 

  Outcome: Age at Death (Months), Subsamples: 
 

Full Sample Whites Females 
Father Farmers Mother 

Education < 
College 

 (1) (2) (3) (4) (4) 
Medium 
Erosion × 
Post-1930   

-.19115 -.27474 -.2735 .5522 -.14724 
(.26558) (.27489) (.39198) (.67948) (.28629) 

High Erosion 
× Post-1930   

-.93643** -.81722* -1.04682 -2.26091* -1.02616** 
(.44418) (.47207) (.7008) (1.25049) (.45583) 

Observations 1818422 1684118 779673 219587 1578090 
R-squared .32959 .32752 .33689 .35807 .33198 
Mean DV 854.811 855.514 860.479 846.752 853.954 
%Change 
Medium 

-0.022 -0.032 -0.032 0.065 -0.017 

%Change 
High 

-0.110 -0.096 -0.122 -0.267 -0.120 

Standard errors, clustered on county, are in parentheses. Regressions include county and state-by-birth-year fixed 
effects. All regressions include individual, family, and county covariates. Regressions are weighted using county 
farmland in 1930. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 7 - Heterogeneity across Regions 

 Outcome: Age at Death (Months), Subsamples: 
 Northeast Midwest West South 
 (1) (2) (3) (4) 
Medium Erosion × 
Post-1930   

.03522 -.17928 -.4396 -3.00973** 
(.39421) (.60346) (.52562) (1.40469) 

High Erosion × 
Post-1930   

1.11763 -2.98537*** -1.44847* -4.41077*** 
(.86613) (.89175) (.82081) (1.57793) 

Observations 868085 466265 404399 79534 
R-squared .39137 .26039 .26975 .25926 
Mean DV 854.811 862.371 857.165 863.448 
%Change Medium -0.018 -0.021 -0.051 -0.349 
%Change High -0.097 -0.346 -0.169 -0.511 
Standard errors, clustered on county, are in parentheses. Regressions include county and state-by-birth-year fixed 
effects. All regressions include individual, family, and county covariates. Regressions are weighted using county 
farmland in 1930. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 8 - Heterogeneity by Migration from Birth to Death 

    
Outcome: Migrant 

Outcome: Age at 
Death, Subsample: 

Migrants 

Outcome: Age at 
Death, Subsample: 

Non-Migrants 
      (1)   (2)   (3) 

Medium Erosion × Post-1930   
   

.00696*** .43636 -.48439 
(.00228) (.39539) (.32576) 

High Erosion × Post-1930   
   

.00826** -.10827 -1.45934** 
(.00413) (.70694) (.63319) 

Observations 1818283 846900 971371 
R-squared .09152 .32343 .35129 
Mean DV 0.463 847.775 860.869 
%Change Medium 1.503 0.051 -0.056 
%Change High 1.784 -0.013 -0.170 
Standard errors, clustered on county, are in parentheses. Regressions include county and state-by-birth-year 
fixed effects. All regressions include individual, family, and county covariates. Regressions are weighted 
using county farmland in 1930. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 9 - Comparing the Results with DMF Records 

 
 
 

    Outcome: Age at Death (Months) 
 Numident, Both 

Genders, 1988-2005 
Numident, Females, 

1988-2005 
Numident, Males, 

1988-2005 
DMF, Males, 1988-

2005 
DMF, Males, 1975-

2005 
    (1) (2) (3) (4) (5) 

Medium Erosion × Post-1930 -.18715 -.26246 -.15998 -.59886 -.18366 
(.26546) (.39211) (.34483) (.45874) (.67764) 

High Erosion × Post-1930 -.92573** -1.01567 -.88874 -1.29073* -1.19612 
(.44359) (.70148) (.57673) (.73813) (1.13698) 

Observations 1819191 780006 1039180 735022 967520 
R-squared .3296 .33689 .32131 .32349 .13385 
Mean DV 854.810 860.477 850.593 848.958 803.512 
%Change Medium -0.022 -0.031 -0.019 -0.071 -0.023 
%Change High -0.108 -0.118 -0.104 -0.152 -0.149 
Standard errors, clustered on county, are in parentheses. Regressions include county and state-by-birth-year fixed effects. All regressions include individual, family, and 
county covariates. Regressions are weighted using county farmland in 1930. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 10 - Exploring Potential Mechanisms Using Census 1960 

 Outcomes: 

 Years of Schooling 
> 4 

Years of Schooling 
> 5 

Years of Schooling 
> 6 

Years of Schooling 
> 7 

Years of 
Schooling > 8 

Years of 
Schooling > 9 

Years of 
Schooling > 10 

Years of 
Schooling > 11 

Years of 
Schooling > 12 

Log Total 
Personal Income 

Log Wage 
Income 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Medium 
Erosion × 
Post-1930   

.00367 .00741 .01461*** .01324*** .01521*** .01568** -.00338 -.00138 -.00174 -.02827 -.09837* 
(.00439) (.0051) (.00526) (.00456) (.00545) (.00641) (.00571) (.00469) (.00342) (.05534) (.05232) 

High Erosion 
× Post-1930  

.02792*** .04444*** .03946*** .03228*** .02344*** .0251*** -.00181 -.0013 .00063 -.2756*** -.38177*** 
(.00745) (.00957) (.00893) (.00786) (.00826) (.00824) (.00903) (.00694) (.00489) (.07732) (.09492) 

Observations 645778 645778 645778 645778 645778 645778 645778 645778 645778 645058 645778 
R-squared .11966 .14075 .12932 .11942 .10943 .1034 .06643 .05974 .05012 .32987 .22665 
Mean DV 0.928 0.890 0.795 0.728 0.644 0.572 0.180 0.131 0.089 5.371 4.830 
Standard errors, clustered on county, are in parentheses. Regressions include county-PUMA and state-by-birth-year fixed effects. All regressions include individual covariates. Regressions are weighted using IPUMS-provided person weights. 
*** p<0.01, ** p<0.05, * p<0.1 
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Figures 
    
 

 
Figure 1 - Distribution of Top-soil Erosion 
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Notes. Point estimates and 95 percent confidence intervals are illustrated. Standard errors are clustered 
on county. Regressions include state-year and county fixed effects. Regressions are weighted using 
county farmland in 1930. 

Figure 2 - Event Study Results to Explore Individual/Family Sociodemographic 
Change across Years and Topsoil Erosion Measures 
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Notes. Point estimates and 95 percent confidence intervals are illustrated. Standard errors are clustered 
on county. Regressions include state-year and county fixed effects. Regressions are weighted using 
county farmland in 1930. 

Figure 3 - Event Study Results to Explore Individual/Family Sociodemographic 
Change across Years and Topsoil Erosion Measures 
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Notes. Point estimates and 95 percent confidence intervals are illustrated. Standard errors are clustered 
on county. Regressions include state-year and county fixed effects. Regressions are weighted using 
county farmland in 1930. 

Figure 4 - Event Study Results to Explore Individual/Family Sociodemographic 
Change across Years and Topsoil Erosion Measures 
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Notes. Point estimates and 95 percent confidence intervals are illustrated. Standard errors are clustered 
on county. Regressions include state-year and county fixed effects. Regressions are weighted using 
county farmland in 1930. 

Figure 5 - Event Study Results to Explore Individual/Family Sociodemographic 
Change across Years and Topsoil Erosion Measures 



56 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes. Point estimates and 95 percent standard errors are illustrated. Standard errors are 
clustered on county. Regressions include county and state-by-birth-year fixed effects. All 
regressions include individual, family, and county covariates. Regressions are weighted using 
county farmland in 1930. 
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Figure 6 - Event Study Results 
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Appendix A  

In the main text of the paper, we show implemented a series of event studies to explore the 

balancing test of sociodemographic compositional change in the final sample for our treated versus 

control groups in pre-1930 years. In this appendix, we show the results for a difference-in-

difference framework. In so doing, we regress dummies of individual and family characteristics 

on measures of erosion conditional on county and state-by-birth-year fixed effects. The results are 

reported in Appendix Table A-1. The estimated coefficients do not provide statistically significant 

associations between in-utero and early-life exposure to soil erosion measures and the likelihood 

of being white, black, female, paternal socioeconomic score, and maternal education. Moreover, 

the magnitude of the observed marginal effects is quite small in magnitude. This is more obvious 

when we compare the effects with the mean of the respective dependent variables reported in the 

last two rows of the table. Overall, these results are in line with the pattern of pre-trend coefficients 

in Figure 2 through Figure 5.  
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Appendix Table A-1 - Balancing Tests 

 Outcomes: 
 

White Black Female 
Father’s 

Socioecono
mic Score 

Father’s 
Socioecono
mic Score 
Missing 

Mother’s 
Education < 
High School 

Mother’s 
Education = 
High School 

Mother’s 
Education > 
High School 

Mother’s 
Education 
Missing 

    (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Medium Erosion × 
Post-1930 

-.00055 .00062 .00069 .0239 .00023 .00384 -.00319 -.00051 -.00014 
(.00124) (.00118) (.00207) (.12281) (.00097) (.00315) (.00258) (.00141) (.0014) 

High Erosion × Post-
1930 

.00154 -.00178 .0044 -.1542 .00239 .01064** -.00424 -.00206 -.00435* 
(.00242) (.00238) (.0037) (.19653) (.0016) (.00486) (.0041) (.00219) (.00231) 

Observations 1818422 1818422 1818422 1514672 1818422 1818422 1818422 1818422 1818422 
R-squared .24828 .26533 .00504 .08371 .01114 .06525 .05281 .0186 .05025 
Mean DV 0.936 0.060 0.427 26.633 0.043 0.564 0.283 0.068 0.086 
%Change Medium -0.059 1.034 0.162 0.090 0.538 0.680 -1.126 -0.754 -0.159 
%Change High 0.164 -2.972 1.030 -0.579 5.553 1.887 -1.498 -3.025 -5.055 
Standard errors, clustered on county, are in parentheses. Regressions include county and state-by-birth-year fixed effects. Regressions are weighted using county farmland 
in 1930. 
*** p<0.01, ** p<0.05, * p<0.1   
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Appendix B  
In Appendix Table B-1, we show the robustness of the main results to alternative weighting 

schemes. In column 1, we replicate the benchmark results from column 5 of Table 4. In column 2, 

we use the total number of children aged 0-4 in the county in 1930. This measure is a proxy for 

the total pre-1930s fertility rate. We observe quite comparable marginal effects to column 1. In 

column 3, we use the number of farmers in the county in 1930 as an alternative proxy for the 

county’s reliance on agriculture. The coefficients rise (in magnitude) by 37 percent for high erosion 

and 142 percent for medium erosion. Finally, in column 4, we implement unweighted regressions. 

Although the marginal effects drop slightly, they are similar to our main results.  
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 Appendix Table B-1 - Robustness of the Results to Unweighted Regressions and Alternative Weights 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 Outcome: Age at Death (Months) 
 Weighted by County 

Farmland in 1930 

Weighted by  County 
Number of Children 

Aged 0-4 in 1930 

Weighted by  County 
Number of Farmers in 

1930 

Unweighted 
Regressions 

    (1) (2) (3) (4) 
Medium Erosion × Post-1930 -.19115 -.17052 -.4785* -.12541 

(.26558) (.22653) (.27449) (.21874) 
High Erosion × Post-1930 -.93643** -.88305** -1.27396*** -.88766** 

(.44418) (.43836) (.4742) (.44245) 
Observations 1818422 1819061 1818454 1819061 
R-squared .32959 .33181 .33636 .32998 
Mean DV 854.811 854.017 852.380 854.476 
%Change Medium -0.022 -0.020 -0.056 -0.015 
%Change High -0.110 -0.103 -0.149 -0.104 
Birth Year FE     
County FE     
Birth-Year-by-Birth-State FE     
Individual Covariates     
Family Controls     
County Covariates     
Standard errors, clustered on county, are in parentheses.  
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix C  
One concern in interpreting the main results of Table 4 is the limited death window of the 

Numident data. In section 5.5 and Table 9, we provided evidence that the results are stable in 

magnitude when we consider alternative data sources that include earlier deaths. In this appendix, 

we examine the sensitivity of the results to the inclusion of deaths that occurred after the end of 

the Numident window, i.e., post-2005 deaths. In so doing, we use Vital Statistics death records 

extracted from the National Center for Health Statistics (NCHS, 2020). The NCHS data covers the 

universe of mortality records in the US. The limitation of the data is that it does not provide 

information on the county of birth. However, from 1979, the NCHS data reports the state of birth, 

which we can use to examine the effects of the Dust Bowl and soil erosion on longevity. To do so, 

we aggregate the top-soil erosion data to the state level using the county-level share of farmlands 

as weights in the aggregation. We then merge it with the NCHS data at the birth-state level. In 

addition, to examine to what extent the effects change in state versus county-level aggregation of 

exposure measures, we also use Numident data and merge it with state-aggregated erosion data at 

the birth-state level. In the main results of the paper, we have cohorts born between 1920-1940. In 

the analysis of this appendix, we focus on a narrower set of cohorts, specifically those born 

between 1923-1939 to better match the NCHS data. In the paper, we follow a procedure to infer 

the county-of-birth (see section 3). The fact that we restrict the sample to non-migrants and that 

individuals leave their original households after age 17 leaves fewer individuals from 1920-1922 

cohorts in the final sample. Moreover, since the 1940 census was enumerated in April, there are 

fewer 1940-born individuals in our Numident sample. To make the NCHS sample comparable to 

the final sample of Numident, we remove those born in 1940 and 1920-1922.  
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We implement regressions that include birth-state fixed effects, birth-year fixed effects, 

region-by-birth-year fixed effects, and individual covariates. The results are reported in Appendix 

Table C-1. In column 1, we use all Numident death records. In column 2, we restrict the Numident 

data to those records that are included in the final sample of the paper. The results suggest negative 

impacts on longevity. Consistent with Table 4, we observe the largest effects stemming from high 

erosion states. However, they are statistically insignificant and much smaller in magnitude due to 

the measurement error we induce by aggregating the county-level erosion measures to the state 

level. The high erosion coefficients are roughly 17-20 percent of the effects reported in Table 4. 

However, assuming this attenuation is held constant as we add additional years of death records, 

we can explore the possible impacts of the right-censored death window in our Numident analysis.  

In column 3, we rely on the subsample of 1923-1939 cohorts and replicate the results of column 

2. We observe quite similar coefficients.  

In column 4, we use the NCHS sample for the death window of 1988-2005. We observe 

negative impacts and larger effects from high erosion states. The coefficient of high erosion is 

roughly 80 percent larger than the effects found in state-aggregated Numident data. In column 5, 

we use all death records over the years 1979-2020. The effect of high erosion is about 2.3 times 

the effect in column 3. The marginal effect of low erosion increases substantially, changes sign, 

and becomes statistically significant. One interpretation of this finding is that the right censoring 

of death data in the Numident analysis produces a failure to find effects of low-erosion that 

accumulate over the life cycle and effect older age mortality (ages 75+) rather than earlier life 

mortality. We also find evidence that the right censoring of the death data in Numident attenuates 

our main results for high erosion exposure.   
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We can use the comparison of coefficients of columns 3 and 4 to extrapolate the effects of 

Table 4 to out-of-sample death records. A back-of-an-envelop calculation suggests that high 

erosion is associated with roughly 3 months lower longevity.7  

  

 

 
7 We multiply the ratio of high erosion effects of column 4 versus column 3 (rise in NCHS for post-2005) of  Appendix 
Table C-1 by the coefficient of column 5 of Table 4, as follows: 0.939

0.289
× 0.936 
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Appendix Table C-1 - Comparing the Effects with the NCHS Death Records at the Birth-State Level 

 Outcome: Age at Death (Months), Sample: 
 Numident, Death Years 

1988-2005, Birth Years 
1920-1940 

Numident Records in 
the Final Sample, Death 
Years 1988-2005, Birth 

Years 1920-1940 

Numident Records in 
the Final Sample, Death 
Years 1988-2005, Birth 

Years 1923-1939 

NCHS Death Records, 
Death Years 1988-
2005, Birth Years 

1923-1939 

NCHS Death Records, 
Death Years 1979-
2020, Birth Years 

1923-1939 
 (1) (2) (3) (4) (5) 
Medium Erosion × 
Post-1930 

-.04963 -.02574 -.00632 .00622 -.67285** 
(.14752) (.3083) (.30013) (.28446) (.26051) 

High Erosion × Post-
1930 

-.19796 -.15804 -.1607 -.28879 -.93902 
(.14409) (.19972) (.19993) (.46735) (.628) 

Observations 4222514 1814309 1642589 9,327,508 20,662,410 
R-squared .45952 .32825 .28899 .44212 .29129 
Mean DV 837.042 854.409 850.381 832.924 903.355 
%Change Medium -0.006 -0.003 -0.001 0.001 -0.074 
%Change High -0.024 -0.018 -0.019 -0.035 -0.104 
Notes. Standard errors, clustered on birth state, are in parentheses. Regressions include state and year of birth fixed effects. Regressions also include individual 
race, gender, and ethnicity dummies. 
*** p<0.01, ** p<0.05, * p<0.1 
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