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1 Introduction

In this paper we provide a micro-founded, analytically tractable general equilib-
rium macroeconomic model of neoclassical investment, production, and the cross-
sectional consumption distribution in which the limits to insurance of idiosyncratic
income risk arise from limited commitment. We fully characterize the equilibrium
in a general case. When production is Cobb-Douglas, when productivity takes two
values, of which one is zero and agents have log-utility, the equilibrium interest rate,
capital stock and consumption distribution is given in closed form. We employ this
easy-to-use benchmark to study questions of consumption distribution, precaution-
ary savings and aggregate allocations in the presence of limited insurance.

As we discuss in our literature survey below, households smooth consumption
considerably more in the presence of idiosyncratic productivity risks than would
be possible with trading state-uncontingent assets alone. Firms provide consider-
able insurance against the productivity fluctuations of its workers: wage income is
typically not proportional to individual spot productivity. As an example surely fa-
miliar to most readers of this paper, consider a tenured appointment at a university.
As long as a faculty member is productive and would easily find appointments else-
where, the university will seek to keep the salary at a competitive level in order to
keep the researcher from leaving or will do so in response to outside offers. When
the faculty member turns unproductive, he is not fired or receives zero income, how-
ever. Rather, the salary will gradually decline relative to his more productive peers,
and only jump again once the faculty member regains productivity and potentially
collects outside offers. Thus, the university provides the faculty member with some
insurance against his productivity fluctuations, presumably financed by the differ-
ence between spot productivity and the competitive salary during good times. As we
shall show, this description provides good intuition for the equilibrium allocations
in our model. The described contract exhibits one-sided commitment: while the
faculty member may leave at any moment in light of a better offer elsewhere, the
university is committed to providing insurance during low-productivity episodes.
Examples of these types of partial insurance allocations are ubiquitous; the logic
applies to many firm-worker relationships. Similar insurance arrangements abound
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outside worker-firm relationships as well. For example, people pay into health in-
surance while healthy and productive in order to receive payments when sick and
unproductive. Informal networks of friends will provide support in dire times, pro-
vided one has been a good and contributing member of that community before.

From a financial management perspective, the insurance premia are used to fund
asset purchases from which payments are made to suddenly unproductive agents.
These assets accrue interest according to their productive use elsewhere in the econ-
omy. There is then a tight relationship between these funds, the aggregate capital
stock and the overall macroeconomic equilibrium in the economy. The purpose of
this paper is to investigate this relationship between individual consumption risk
sharing and aggregate capital accumulation. To do so, we integrate this one-sided
limited commitment friction into a continuous time, general equilibrium neoclassi-
cal production economy and characterize its stationary equilibria. We implement
the limited commitment friction as part of a financial market structure in which
individuals can purchase state-contingent assets permitting the type of explicit in-
surance against idiosyncratic productivity discussed above, but limited commitment
prevents them from selling these assets short.1

Given the aggregate interest rate r and implied wage w, we analytically charac-
terize the optimal consumption and capital allocation choices and the resulting ag-
gregate capital supply when income follows a general N -state Poisson process and
agents have CRRA utility in consumption. We the show how to determine the equi-
librium interest rate (and associated wage) by solving a one-dimensional nonlinear
equation in r after normalizing capital supply and demand by the aggregate wage.
For the special case of two income states, one of which is zero, we characterize the
equilibrium interest rate and all equilibrium entities in closed form, including com-
parative statics with respect to the model parameters determining preferences, tech-

1In a previous version of this paper, Krueger and Uhlig (2022) we formulated the one-sided
limited commitment friction as a long-term contract between agents and perfectly competitive fi-
nancial intermediaries in which the intermediaries are committed to the contract but agents could
switch intermediaries at no cost, and where the state-contingent value of switching is determined
in equilibrium by a zero profit condition. Following Krueger and Uhlig (2006) we demonstrated
the equivalence between the long-term contract- and the financial market formulation of the limited
commitment friction. Here, we directly proceed with the latter formulation. See the end of Section
2.3 for a more detailed discussion of this point.
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nology and, especially, income risk. We exploit these comparative statics results
with respect to income risk to demonstrate that our model generates precautionary
saving behavior, and study how steady state consumption inequality responds to
elevated income risk. Finally, we use this special case to illustrate how the general
theory works and to show how a unique, or multiple-state equilibria can arise.

1.1 Relationship to the literature

Our theory builds on recent advances regarding the empirical properties of house-
hold consumption. There is important evidence that individual consumption smooth-
ing is larger than what standard approaches of self-insurance via asset savings gen-
erate. Blundell, Pistaferri and Preston (2008) have shown that there is very con-
siderable consumption insurance even of permanent income shocks, a finding that
is difficult to rationalize within the standard incomplete markets (SIM) model, see
Kaplan and Violante (2011). Using improved methods and data as well as alter-
native approaches, these results have been largely confirmed by the more recent
literature such as Arellano, Blundell and Bonhomme (2017), Eika et al. (2020),
Chatterjee, Morley and Sigh (2020), Braxton et al. (2021), Commault (2022), and
Balke and Lamadon (2022) for the labor market, as well as Hofmann and Browne
(2013), Ghili, Handel, Hendel and Whinston (2023) and Atal, Fang, Karlsson and
Siebarth (2023) for the private health insurance market. Thus, alternatives to the
conventional self-insurance approach are desirable which our paper provides.

As in Harris and Holmstrom (1982), one interpretation of the consumption in-
surance allocation in this paper is that firms insure workers against idiosyncratic
productivity fluctuations. This perspective is pursued in Guiso, Pistaferri, and
Schivardi (2005) and Balke and Lamadon (2022). Saporta-Eksten (2016) shows
that wages are lower after a spell of unemployment, which he interprets as a loss
in productivity. In the context of our model, this observation can be rationalized as
part of the optimal consumption allocation.

From a broader perspective, our model seeks to integrate two foundational lit-
eratures on macroeconomics with household heterogeneity. The first strand studies
the SIM model with uninsurable idiosyncratic income shocks, see Bewley (1986),
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Imrohoroglu (1989), Huggett (1993) and neoclassical production, see Uhlig (1990)
and Aiyagari (1994). There, agents can trade assets to self-insure against income
fluctuations, but the payout of these assets is assumned to not depend on an agent’s
individual income realization, thereby ruling out explicit insurance against income
risk. The second branch is the large literature on endogenously incomplete markets,
and the recursive contract techniques to solve them, that permit explicit insurance
but its extent is restricted by informational or contract enforcement frictions. We
follow Alvarez and Jermann (2000) and Krueger and Uhlig (2006) and allow agents
to trade assets that pay out contingent on agent-specific shocks but are subject to
limited commitment: whereas the market participants (such as insurance compa-
nies or other financial intermediaries) selling these assets are committed to making
state-contingent payments, the agents are not. As a consequence of the assumed
lack of punishment from default agents cannot sell these assets short, limiting the
degree of insurance they can obtain. The contracts are front-loaded: when income is
high, the agent purchases insurance that finances consumption in excess of income
down the road should income fall.

Our results for the special two-income state case and the full characterization of
the resulting equilibrium can be seen as the counterpart to the characterization of the
two-state continuous-time SIM model in Achdou et al. (2022). They also charac-
terize the equilibrium by two key differential equations: one governing the optimal
solution of the consumption (self-)insurance problem and one characterizing the
associated stationary distribution. They derive an analytical characterization of the
wealth distribution, given the savings function. The latter cannot be determined in
closed form there (although partially characterized). In our market structure and for
the two-state case, we achieve a full characterization of the stationary distribution in
this paper and thus proceed all the way to closed-form solutions for the equilibrium
objects. Methodologically, the papers complement each other by characterizing
equilibria in the same physical environment but under two fundamentally different
market structures. Our results for the N-state case and the full analytical characteri-
zation, given the equilibrium interest rate, go beyond Achdou et al. (2022) and open
the door to quantitative applications in a rich environment but with considerable an-
alytical transparency regarding the solution. We then study the 2-state special case
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analytically and one N-state case quantitatively to showcase our approach.
Our model builds on the substantial literature on limited commitment, includ-

ing Thomas and Worrall (1988), Kehoe and Levine (1993), Phelan (1995), Kocher-
lakota (1996), Broer (2013), Golosov et al. (2016), Abraham and Laczo (2018),
Sargent et al. (2021), and specifically shares insights with the theoretical analyses
in Krueger and Perri (2006, 2011), Zhang (2013), Grochulski and Zhang (2012),
Miao and Zhang (2015) and Ai et al. (2021), but for a general N -state continuous
time Poisson process.2 We provide a general equilibrium treatment of this class of
models, as do Martins-da-Rocha and Santos (2019), Gottardi and Kubler (2015),
and Hellwig and Lorenzoni (2009).

The last paper considers an endowment economy with finitely many types of
agents. As in our paper, agents have access to a complete set of Arrow securities
and are subject to state-contingent borrowing constraints. As a key difference to
us, defaulting agents face the punishment of being excluded from borrowing ever
again in their environment (but they still can hold non-negative positions of state-
contingent assets). Hellwig and Lorenzoni (2009) show that this off-equilibrium
threat can sustain an equilibrium with a zero interest rate and positive debt limits
that are “not too tight” in the sense of Alvarez and Jermann (2000). In contrast, we
assume that there is no punishment from default at all and thus the “not too tight”
constraints are exactly at zero, and we embed it all in a neoclassical production
economy.3 In sum, while the models are broadly similar, their analysis does not
carry over to our environment.

2 The Model

Time is continuous, and the economy is populated by a continuum of infinitely
lived individuals of mass 1 who value consumption streams. Aggregate output is
produced with capital and labor and can be used for consumption and investment.

2Our approach to the analysis of this class of models is also related in spirit to recent work by
Dàvila and Schaab (2023), Alvarez and Lippi (2022), and Alvarez, Lippi and Souganidis (2022).

3This discussion does not answer the question whether with our market structure there is a sta-
tionary equilibrium with an interest rate of zero. We return to this question in Section 5.2 of the
paper and argue that, generically, the answer is no.
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2.1 Technology

The unique final output good is produced by a perfectly competitive sector of
firms that use labor and capital as input. The production function F (K,L) for
K ≥ 0, L ≥ 0 is assumed to be strictly concave, have constant returns to scale, be
strictly increasing in each argument, satisfy F (0, 0) = 0 and be twice continuously
differentiable. Production firms seek to maximize profits, taking as given the mar-
ket spot wage w per efficiency unit of labor and the market rental rate per unit of
capital. Capital accumulation is linear, and capital depreciates at rate δ. There is
a resulting equilibrium rate of return (equal to the real interest rate) r for investing
in capital. We drop time subscripts t to economize on notation whenever possible
since we shall concern ourselves only with stationary equilibria in which aggregate
variables such as the factor prices (w, r) are constant and where w > 0.

2.2 Preferences and Endowments

Agents have a strictly increasing, strictly concave, twice continuously differentiable
CRRA period utility function u(c), with risk aversion parameter σ, and discount the
future at rate ρ > 0. The expected lifetime utility of a newborn agent is given by

E

[∫ ∞

0

e−ρt c
1−σ
t

1− σ
dt

]
.

where it is understood that σ = 1 represents the log-case.
Individuals face idiosyncratic income risk. Specifically, each agent can be in one

of N states x ∈ X = {1, . . . , N}, with associated idiosyncratic labor productivity
level z(x) ≥ 0.4 For a fixed aggregate equilibrium wage w per labor efficiency
units, individual labor income in state x is then wz(x), and we will use the terms
(labor) productivity and income interchangeably. Let αx,x′ be the transition rate
from x to x′, with αx,x = −

∑
x′ ̸=x αx,x′ and collect the transition rates in the

4We denote real-valued functions of x with round brackets, while subscript-x denotes vectors of
length x − 1 or matrices of size (x − 1) × (x − 1). For example, zx is the (x − 1)-dimensional
vector [z(1), . . . , z(x − 1)]′. We use function-of-x notation to denote entries of a vector, as in
this example, as well as entries of a matrix, except denoting αx,x′ using sub-indices. We also use
sub-index notation to denote functions of time.
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N × N matrix A. We assume that for every x′, there is some x ̸= x′, so that
αx,x′ ̸= 0, i.e., every state can be reached from some other state. Transitions are
assumed to be independent across individuals. Associated with A is a stationary
distribution µ̄ = [µ̄1, . . . , µ̄N ]

′, an N × 1-dimensional vector satisfying

A′µ̄ = 0 and
∑
x∈X

µ̄(x) = 1 (1)

We also assume that the stationary distribution is unique, that all individuals draw
their initial productivity from µ̄ and that the idiosyncratic shock process satisfies∑

x∈X

z(x)µ̄(x) = 1 (2)

so that aggregate labor input is equal to L = 1 in every period.5

2.3 Financial Markets

Households seek insurance against their idiosyncratic risk. We envision a compet-
itive sector of intermediaries who provide insurance at actuarially fair rates. These
intermediaries invest the insurance payments in agent-specific accounts in units of
capital k, earning the market interest rate r. They will then make payments from
this capital account in the insurance case, i.e., if the current state x of the agent state
changes to a new state x′. This may require changing the account amount from k to
k(x′). The household budget budget constraint reads as

c+ k̇ +
∑
x′ ̸=x

αx,x′(k(x′)− k) = rk + wz(x) (3)

This constraint takes into account that insurance is actuarially fair so that the out-
lay for the account change k(x′) − k equals αx,x′(k(x′) − k). In this economy
with only idiosyncratic but no aggregate risk, a financial intermediary offering the
insurance can always contract with a measure one of agents with current state x

5Uniqueness of µ̄ can be assured under standard assumptions on A, for example, that all elements
of A are strictly positive. The assumption that all states can be reached assures that µ̄(x) > 0 for all
x. The idiosyncratic productivity states z(x) can always be scaled such that (2) is satisfied.
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buying insurance for state x′, and therefore faces the deterministic insurance pay-
out αx,x′(k(x′) − k). By perfect competition this then also is the price charged for
this insurance in equilibrium.

In contrast to the SIM model, capital is state-contingent (on agent-specific pro-
ductivity x). We assume that intermediaries are fully committed to making the
state-contingent payments, but the commitment by the agents is limited in that they
are free to switch intermediaries at any point and without penalty for not making
promised payments. Therefore, agents cannot go short in their capital accounts,
resulting in the constraints

k(x′) ≥ 0 (4)

Furthermore, we need to ensure that capital does not become negative even in the
absence of a state transition. This is achieved by requiring that

k̇ ≥ 0 if k = 0 (5)

The Hamilton-Jacobi-Bellman equation for the value function U of the household
maximization problem can then be stated as

ρU(k, x) = max
c≥0,k̇,(k(x′))x′∈X

{
u(c) + U ′(k, x)k̇ +

∑
x′ ̸=x

αx,x′(U(k(x′), x′)− U(k, x))

}
(6)

with maximization subject to the budget constraint (3) and the limited commitment
constraints (4) and (5).

An alternative and equivalent formulation (see Krueger and Uhlig, 2006) of the
limited commitment friction without punishment for default is to explicitly intro-
duce competitive cost-minimizing financial intermediaries that offer long-term con-
sumption insurance contracts. These contracts stipulate full income-history contin-
gent consumption payments in exchange for delivering all labor income to the inter-
mediaries. One-sided limited commitment then means that intermediaries can fully
commit to long-term contracts, but individuals cannot. That is, in every instant, af-
ter having observed current labor productivity, the individual can leave her current
contract and sign up with an alternative intermediary at no punishment, obtaining
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in equilibrium the highest lifetime utility contract that allows an intermediary to
break even. Here, we focus on formulating the model with financial markets in the
spirit of Alvarez and Jermann (2000). The tight borrowing constraints at zero are
not imposed ad hoc, but are precisely the borrowing limits these authors call “not
too tight”, in a world with no punishment from default.

As a third interpretation of the financial market structure, one can think of our
model as a convex combination of the standard complete markets model with a full
set of state-contingent claims and natural state-contingent borrowing constraints on
one hand and the SIM model with borrowing constraints at zero on the other hand.

3 The Optimal Consumption-Asset Allocation

3.1 General Properties of Optimal Allocations

We now characterize the optimal consumption-saving allocation under the assump-
tion that r ≤ ρ. To that end, it is helpful to move from recursive to time domain
since the time dependence of allocation comes through the evolution of the indi-
vidual capital account k and the state x when focusing on steady states (and thus
on constant wages and interest rates). Written as a function of time, the budget
constraint (3) reads

ct + k̇t +
∑
x′ ̸=x

αx,x′(kt(x
′)− kt) = rkt + wz(x) (7)

where kt(x′) is the date-t state-contingent capital stock going forward from state x′.
It is also equal to the expected net present value of the future consumption stream
net of income when the current state is x′.

Intuitively, agents with positive capital and no state transitions obey a standard
complete markets Euler equation. Optimality dictates that consumption is contin-
uous when a state transition occurs and positive capital is kept at that next state.
Consumption might jump up upon a state transition, but only if the state-contingent
capital k′(x′) is zero (i.e. if the limited commitment constraint binds). For a given
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rate of return r on capital, define g = g(r) ≥ 0 per

g =
ρ− r

σ
(8)

The growth rate g will be the common decay rate of consumption of all agents
whose limited commitment constraint is not binding, i.e., g ≥ 0 is the negative of
the negative growth rate of the consumption of unconstrained agents. Formally:

Proposition 1. Let w > 0 and r be given. A solution to the HJB equation has the

following properties:

1. For a agent with k > 0, (6) implies

ċt
ct

= −g. (9)

If k′(x′) > 0, then consumption after the state transition is unchanged,

c(k′(x′), x′) = c(k, x). (10)

If k′(x′) = 0, then

c(k′(x′), x′) ≥ c(k, x) (11)

2. The decision rules for consumption c(k;x) is strictly increasing in k. The

decision rule for k(x′; k, x) is weakly increasing in k and strictly increasing

wherever it is positive.

3. U(k, x) is strictly concave in k.

4. For k = 0, the HJB equation (6) implies

k̇t = 0 and ċt = 0 (12)

Proof. See Appendix A.
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3.2 Characterization of the Optimal Allocation

On the basis of the previous proposition, we now provide a full characterization
of the optimal consumption allocation under the assumption that r ≤ ρ. The next
proposition does so by N consumption levels c(x), x ∈ X so that consumption
either drifts down at rate g or jumps up to c(x′), if a state transition to x′ occurs and
c(x′) is higher than the pre-jump consumption level.

If consumption is higher than labor income, it needs to be financed with cap-
ital (income). In particular, suppose that ct = c(x). Capital reserves kx(x

′) > 0

have to be created for all transitions from state x to states x′ with c(x′) < c(x),
while an upward jump in consumption resets the allocation at zero capital (and
the limited commitment constraint is binding).6 For a given current state x, the
state-contingent capital stocks for states x′ < x form an x − 1-dimensional vector
kx = [kx(1), . . . , kx(x − 1)]′ which we need to characterize as part of the opti-
mal allocation. This characterization proceeds by first calculating the amount of
capital dx = [dx(1), . . . , dx(x − 1)]′ needed to finance the gap between consump-
tion and labor income until the endogenous time T (x) when consumption drifting
down from c(x) at rate g reaches the next consumption level c(x− 1) and no state
transition occurs until then. The total capital saved to insure for a state transition
to x′ < x is then the appropriately discounted sum of these capital differences.
For a given g = g(r), a full solution of the agent problem is then determined by
(c(x), T (x), dx, kx) for all x ∈ X . The following proposition provides a complete
and explicit characterization of these entities.

We need the following notation. Let αmin = minx<N αx,N be the minimum
hazard rate across states x < N of escaping to the highest state N . Let 1x be the
(x− 1)-dimensional vector with only 1’s, let 0x be the (x− 1)-dimensional vector
with only 0’s, let Ix be the (x−1)×(x−1)-dimensional identity matrix, let zx be the
(x− 1)-dimensional vector [z(1), . . . , z(x− 1)]′ and let αx = [αx,1, . . . , αx,x−1]

′ ∈
IRx−1 be a vector of length7 x−1. Define the (x−1)×(x−1)-dimensional matrices

6Since the enumeration of states has no intrinsic importance, we can relabel them such that c(x)
is an increasing sequence.

7Typically the (x− 1)× (x− 1)-dimensional identity matrix is denoted by Ix−1. For tightness
of notation we use the subscript x here, as well as for other (x− 1)× (x− 1)-dimensional matrices.
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Ax, Bx and Cx by Ax(x̃, x
′) = αx̃,x′ for x̃, x′ ∈ {1, . . . , x− 1}, Bx = rIx −Ax and

Cx = (r + g)Ix − Ax. We require the following additional technical condition. It
is satisfied if the matrix Ax has only positive entries off the diagonal. It is closely
related to the concept of irreducibility of Markov chains.

Assumption 1. For every x there is some ϵ̄ > 0 with the property that e−Bxϵ has

only nonzero entries for all 0 < ϵ < ϵ̄.

Proposition 2. Let Assumption 1 be satisfied and w > 0 and r be given. Suppose

that −αmin < r ≤ ρ. Let assumption 1 be satisfied. For each state x ∈ X , let

c = c(x) be the solution to the HJB equation (6) with k = 0. Without loss of

generality, suppose that the exogenous states are ordered such that c(x) ≤ c(x′)

when x < x′.8 For each x ∈ X , the consumption levels c(x), wait times T (x) ∈ IR+

and contingent capital stocks kx ∈ IRx−1
+ and capital differences dx ∈ IRx−1

+ for x =

1 are given by the initialization c(1) = wz(1) and the empty vectors d1 = k1 = [ ],

and for all states x > 1 solve the system of equations9

T (x) =
log(c(x))− log(c(x− 1))

g
∈ [0,∞] (13)

dx = c(x)C−1
x

(
Ix − e−CxT (x)

)
1x −B−1

x

(
Ix − e−BxT (x)

)
wzx (14)

kx = dx + e−BxT (x)

[
kx−1

0

]
(15)

c(x) = wz(x)− αxkx (16)

Proof. See Appendix A

Note that the proof establishes that the expressions in (14) and (15) are also
well-defined for T (x) = ∞, which is important for the case r = ρ and also for the

8Since the enumeration of states has no intrinsic importance, we relabel them such that c(x) is
an increasing sequence. For a recursive algorithm, set x = 1 be the state resulting in the lowest
income z(x). Suppose the sequence of states x = 1, . . . , n and their associated consumption levels
and capital reserves have already been found. Try each remaining state as candidate for the state
resulting in the next lowest c(x) and solve equations (13) to (16). Among these candidates, pick the
state x, which results in the lowest c(x).

9Note that d1 and k1 have dimension zero. Thus, for x = 2,
[

kx−1

0

]
= [0] and k2 = d2 in

equation (15) which is another way of writing the start of the recursion.
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example considered in the next subsection. Also note that the system of equations
(13)-(16) is block-recursive in x and thus can be solved recursively by starting with
the allocation for x = 1 and iterating forward in x. At each step, these four equa-
tions solve a fixed point problem. Given T (x), one can solve for dx, kx and c(x),
but then c(x) is needed to calculate T (x). The intuition is as follows. A lower c(x)
allows the agent to pay more for the insurance against worse states and consume
more there. However, that consumption plan ultimately must result in the same ini-
tial consumption c(x), when such a transition occurs. So, neither too much nor too
little insurance will do the trick: it has to be just right. In the next subsection 3.3,
we simplify the problem in a two state example, where the low income is zero and
thus T (x) = ∞, but this will not work generally.

Proposition 3. Let Assumption 1 be satisfied. Then the solution is unique.

Proof. See Appendix A

3.3 An Example

In this subsection, we provide an example that serves two purposes. First, it clarifies
how to use the notation and characterization in Proposition 2 and allows us to give
an intuition for the optimal solution based on closed-from formulas. Second, this
example delivers a closed-form solution not only of the optimal agent consumption-
capital process but will also exhibit a closed-form solution for the equilibrium con-
sumption distribution and the law of motion for the aggregate capital stock, making
a complete closed-form characterization of the entire equilibrium feasible.

Assume that X = {1, 2} and z(1) = 0. We can interpret the state x = 2 as
being employed and state x = 1 as unemployed. Denote the Poisson intensity of
losing a job as ξ = α2,1 > 0 and the intensity of finding a job by ν = α1,2 > 0. Now
consider x = 2. The ingredients for the characterization in Proposition 2, for state
x = 2 are as follows. All x− 1 entities are simply numbers (rather than vectors or
matrices), and Ax = α1,1 = −α1,2 = −ν since all rows of the transition rate matrix
A sum to zero. Then Bx = r − α1,1 = r + ν, Cx = r + g − α1,1 = r + g + ν,
αx = α2,1 = ξ, 1x = 1, zx = 0. For this two-state example, c(1) = 0 and
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T (2) = ∞, that is, consumption drifts down from c(2) to c(1) = 0 at rate g

asymptotically.10 Now (15) implies that d2(1) = k2(1) and (16) and (14) read as

c(2) = wz(2)− ξk2(1) (17)

k2(1) =
c(2)

r + g + ν
(18)

Note that (18) requires r + g + ν > 0 in order for the expression to make sense.
This is assured by the assumption that −min{ξ, ν} = −αmin < r of Proposition 2.
The two equations above can be easily solved explicitly as

c(2) =
r + g + ν

r + g + ν + ξ
wz(2) < wz(2) (19)

k2(1) =
1

r + g + ν + ξ
wz(2) (20)

We also note that for r = ρ or for log-utility (σ = 1) and thus g = ρ− r we have

c(2) =
ρ+ ν

ρ+ ν + ξ
wz(2) (21)

k2(1) =
1

ρ+ ν + ξ
wz(2). (22)

Both the share of income in the high state devoted to consumption c(2) and to cap-
ital bought as insurance for the low state k2(1) are independent of the interest rate
r. The outlay for insurance is ξ × k2(1); it is strictly increasing in the intensity ξ

that the agent turns unproductive and falls with rate ν of finding a new job. Fig-
ure 1 provides a visual representation of the optimal consumption path. The left
panel displays the case r = ρ. Full insurance is achieved the first time the agent
receives high income by front-loading the insurance payment against future income
losses. The right panel shows the case r < ρ where agents are impatient and, absent
constraints, prefer a downward-sloping consumption path.

10When r = ρ, which is encompassed here, consumption remains constant.
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Figure 1: The figures show the optimal consumption dynamics for given a sam-
ple path for productivity. If the agent always had zero productivity, the agent will
consume zero and hold no contingent capital. Upon the first instance of high pro-
ductivity, the agent uses labor income to finance a jump in consumption to c(2),
and to acquire the state-contingent capital position k2(1) which finances the con-
sumption path in the absence of labor income (i.e., when productivity falls to z(1)).
When r = ρ (left panel), consumption remains constant. While productivity is high,
consumption is also constant for r < ρ (right panel). When productivity switches
to zero, consumption follows the standard Euler equation and falls at rate g.

4 The Invariant Consumption Distribution

In the previous section, we have derived the optimal agent consumption allocation
and shown that it is characterized by N consumption thresholds c(x) and wait times
T (x) for all x ∈ X , as well as a common downward consumption drift −g(r) =

−ρ−r
σ

≤ 0 whenever the limited commitment constraint is not binding. In this
section, we will first derive the unique stationary distribution associated with this
consumption process for the general case and then continue our two-state example
for which a closed-form calculation of the distribution can easily be given.

4.1 Theoretical Characterization of the Distribution

Assume now that αmin < r < ρ. Let µ(x) be the mass of agents in state x and
at consumption level c(x). Let fx,x̃(t) be the density of agents with current state
x̃ whose consumption has been drifting down t ∈ [0, T (x)] periods from c(x),
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starting at t = 0. For these t, consumption is equal or higher than c(x − 1).11 We
collect the mass points and densities as

D = ((µ(x))x∈X , (fx,x̃(t))x,x̃∈X,t≥0) (23)

and call it the stationary distribution if its mass integrates to unity and it is a
solution to the state and consumption transitions implied by the Markov process for
the states determined by the matrix A and the consumption evolution characterized
in Proposition 2. Thus, these point masses µ(x) and densities fx,x̃ satisfy a list of
conditions implied by the Kolmogorov forward equations given in Proposition 12
of Appendix B.In particular, let fx(t) = [fx,1(t), . . . , fx,x−1(t)]

′. This vector of
densities satisfies the matrix ODE

ḟx(t) = A′
xfx(t). (24)

from which the characterization of the stationary decay time distribution D follows:

Proposition 4. Recall that µ̄ is the unconditional stationary distribution across

states, solving 0 = A′µ̄ and
∑

x µ̄(x) = 1, assumed to be unique. Let Assumption

1 be satisfied and assume that αx,x < 0 for all x and that µ̄N > 0.12 Let fx(t) =

[fx,1(t), . . . , fx,x−1(t)]
′. Then the stationary distribution D is unique and can be

calculated recursively as follows.

1. µN = µ̄N

2. For x = N, . . . , 2,

(a) calculate the x−1-dimensional vector fx(0) = [fx,1(0), . . . , fx,x−1(0)]
′:

fx,x̃(0) =

{
αx,x̃µ(x), if x = N

αx,x̃µ(x) + fx+1,x̃(Tx+1), if x < N
(25)

11For t > T (x), consumption has drifted below c(x − 1), and we let fx,x̃(t) = 0 for t > T (x)
and count the agents arriving at t = T (x) towards µ(x − 1) if x̃ = x − 1 or towards fx−1,x̃ if
x̃ < x− 1. Note that fx,x̃(t) = 0, if x̃ ≥ x, since agents in state x̃ ≥ x consume at least c(x).

12If αx,x = 0, the state x would be absorbing. Note that it is easy to generalize the result to a case
where µ̄N = . . . = µ̄x̄+1 = 0 in which case µ(x) = 0 and fx,x′(t) = 0 for all x > x̄.
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(b) calculate the solution fx(t) for t ∈ (0, T (x)] to (24) as13

fx(t) = exp (A′
xt) fx(0) (27)

(c) Finally,

µ(x−1) =
−1

αx−1,x−1

(
fx,x−1(Tx) +

∑
x̃<x−1

αx̃,x−1

(
µ̄x̃ −

∑
x′>x−1

∫ Tx′

t=0

fx′,x̃(t)dt

))
(28)

The integral terms in (28) can be calculated explicitly as∫ Tx

t=0

fx(t)dt = (A′
x)

−1
(exp(A′

xT (x))− Ix)fx(0) (29)

Proof. See Appendix B

The conditions that a stationary distribution has to satisfy have the following in-
terpretation. Item 1. states that all individuals currently in the highest state x = N

(with mass µ̄N) are located at the mass point µN and thus have the highest con-
sumption level c(x). Condition 2.a, characterizes the density for the instant (i.e.,
t = 0) an individual experiences a drop in the state from x to x̃ < x. Two groups of
individuals transit here: those at the mass point µ(x) that experience a transition to
x̃, which happens at intensity αx,x̃, and those that have continued to drift down from
state x + 1 and thus consumption c(x + 1) for Tx+1 units of time and have passed
through c(x) at this very instant. From t ∈ (0, T (x)] on the vector-valued density
follows a simple matrix ordinary differential equation determined by the matrix of
state transitions Ax whose solution is given in (25). Finally, the last equation charac-
terizes the next lower mass point µx−1,x−1 and states that in the stationary distribu-
tion the outflow from this mass point, αx−1,x−1µ(x−1) =

∑
x′ ̸=x−1 αx−1,x′µ(x−1)

is equal to its inflow. This inflow comes from two sources, those that have drifted
down from the consumption level c(x) for Tx units of time (density fx,x−1(Tx)), and

13In particular,
fx(T (x)) = exp (A′

xT (x)) fx(0) (26)
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then those experiencing state transitions to x − 1 from states x̃ (which occur with
intensity αx̃,x−1). The term in brackets gives the mass of all individuals in current
state x̃ which do not currently drift down from state even higher than x− 1.14

Since there is a one-to-one mapping between the time t consumption has drifted
down from one of the thresholds c(x) upon a transition to a lower state and the level
of consumption at this time, the characterization of the decay time distribution im-
plies the cross-sectional consumption distribution for a given interest rate r (which
we make explicit now). We characterize this distribution ϕr(c) next.

Proposition 5. Let Assumption 1 be satisfied. For c ∈ (c(x − 1), c(x)), define

t(c) = (log(c(x)) − log(c))/g. The probability density ϕr(c) for consumption c ∈
[c(1), c(N)], permitting mass points, is given by

ϕr(c) =

{
1
gc

∑
x′<x fx,x′(t(c)) if c ∈ (c(x− 1), c(x))

µ(x)δδδc if c = c(x)
(30)

where δδδc indicates a Dirac mass point at c.

For x ∈ X , define Dx = gIx − A′
x. Aggregate consumption is given by

C = c(1)µ1 +
∑
x>1

c(x)
(
µ(x) + 1′

xD
−1
x (Ix − exp(−DxT (x))) fx(0)

)
(31)

Proof. This is a direct consequence of the characterization of the distribution of
consumption decay times in Proposition 4 and a change of variables from t to c

through the mapping tc, see Appendix B for the details.

So far, we have treated r as fixed; we now seek to understand how the solution
varies with r. All objects calculated in Propositions 2, 4 and 5 are functions of
r.15 In particular, let us explicitly denote the dependence of aggregate consumption
C(r) on r, where C(r) = C is given in equation (31). We next continue the two-
state example from Section 3.3 to show how Propositions 4 and 5 work.

14The others simply continue to drift down upon making the state transition to x − 1 rather than
enter the mass point µ(x− 1).

15Proposition 3 guarantees that they are indeed functions, not correspondences.
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4.2 The Example Continued

For the two-state example from Section 3.3, the calculation of the stationary decay-
time and consumption distributions is straightforward and deliver the consumption
distribution in closed form. We can directly apply Proposition 4 with the highest
state with a mass point being N = 2, and thus item 1 of Proposition 4 implies

µ2 = µ̄2 =
ν

ξ + ν
. (32)

Thus, all individuals in state 2 consume c = c(2), per Proposition 5.
The remainder of the decay-time distribution f2(t) = f2,1(t) for x = 2 follows

directly from parts 2.a and 2.b of Proposition 4. Since for this example the matrix
A2 = α1,1 = −ν is just a number, α2,1 = ξ and T (2) = ∞ (see Section 3.3), we
immediately have that

f2,1(0) = α2,1µ2 =
ξν

ξ + ν
(33)

f2,1(t) =
ξν

ξ + ν
e−νt, t ∈ (0,∞). (34)

Note that
∫∞
0

f2,1(t)dt = ξ
ξ+ν

= µ̄1, and thus the decay-time distribution in (34)
accounts for the entire mass of low-productivity individuals.

Translated into the consumption distribution, equation (30) in Proposition 5 im-
plies that t(c) = (log(c(2)) − log(c))/g and the consumption probability density
function for all c ∈ (0, c(2)) is given by

ϕr(c) =
1

gc

ξν

ξ + ν
e−νt(c) =

1

gc

ξν

ξ + ν
e−

ν
g
[log(c(2))−log(c)] =

ξνc(2)−
ν
g c

ν
g
−1

g(ξ + ν)
(35)

and thus the consumption distribution in this example has a mass point at c(2) and
a Pareto density with shape parameter ν

g
− 1 on the interval (0, c(2)) below it.

Part 2.c of Proposition 4 immediately implies that µ1 = 0, that is, there is
no mass point for state x = 1, which is intuitive since consumption reaches c =

c(1) = 0 only asymptotically. The normalization in equation (2), that aggregate
labor L = µ̄2z(2) =

ν
ξ+ν

z(2) = 1 and z(1) = 0 implies z(2) = (ξ + ν)/ν. Plug
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this into equation (19) to obtain

c(2) =
r + g + ν

r + g + ν + ξ

ξ + ν

ν
w

The last part of Proposition 5, with the matrix D2 = g+ν becoming a scalar, allows
us to calculate aggregate consumption as a function of the interest rate, as16

C(r) = 0 + c(2)

(
µ2 +

1

g + ν
f2,1(0)

)
= c(2)

ν

ξ + ν

(
g + ν + ξ

g + ν

)
=

(
1 +

rξ

(g + ν)(r + g + ν + ξ)

)
w, (36)

which in the case of log-utility (σ = 1 and thus g = ρ− r) simplifies to

C(r) =

(
1 +

rξ

(ρ+ ν − r)(ρ+ ν + ξ)

)
w (37)

5 Stationary Equilibrium

Equipped with the solution of the agent problem and the associated stationary con-
sumption (and asset) distribution ϕr as well as aggregate consumption C(r) derived
in the previous section, we can now determine the general equilibrium interest rate
and wage in the economy. In this economy, there are three markets: the labor mar-
ket, the capital market, and the goods market. Aggregate labor supply, the sum of
labor efficiency units of all agents, is exogenous and normalized to L = 1, and thus,
the wage adjusts such that firms demand that labor in stationary equilibrium, which
we define next.

Definition 1. A stationary equilibrium consists of an equilibrium wage and interest

rate (w, r), aggregate capital K, and a stationary consumption probability density

function ϕ(c) such that
16To see this, add and subtract ξ to and from the numerator of c(2), write

c(2)
ν

ξ + ν

(
g + ν + ξ

g + ν

)
=

(r + g + ν + ξ − ξ)(g + ν) + (r + g + ν)ξ

(r + g + ν + ξ)(g + ν)

and combine terms.
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1. The interest rate and wage (r, w) satisfy

r = FK(K, 1)− δ (38)

w = FL(K, 1) (39)

2. The goods market and the capital markets clear

C(r) + δK = F (K, 1) (40)
C(r)− w × 1

r
= K. (41)

3. The stationary consumption probability density function ϕ(c) is consistent

with the dynamics of the optimal consumption allocation characterized in

Proposition 2, that is, it satisfies Proposition 4.

In the capital market clearing condition (41), the right-hand side K = Kd is
the demand for capital by the representative firm. The numerator on the left-hand
side is the excess consumption, relative to labor income, of all agents, that is, the
aggregate capital income required to finance that part of consumption that exceeds
labor income. Dividing by the return to capital r gives the capital stock that agents
need to own to deliver the required capital income. Thus we can think of

Ks(r) =
C(r)− w(r)

r
(42)

as the household sector’s supply of assets. By restating the capital market clearing
condition as

Ks(r) = Kd(r)

where Ks(r) is defined in (42) and Kd(r) is defined through (38), we can provide an
analysis of the existence and uniqueness of the stationary equilibrium in the (K, r)

space, analogously to the well-known analysis familiar from Aiyagari (1994) for
the standard incomplete markets model.

As long as r ̸= 0, by Walras’ law one of the two market clearing conditions is
redundant. Equation (41) always implies (40), but the reverse is not true for r = 0.
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Thus, we employ the capital market clearing condition (41) rather than the goods
market clearing condition (40) for our ensuing analysis of stationary equilibria.17

5.1 Equilibrium Existence

We seek to establish the existence of an equilibrium with partial insurance. We
will impose a simple condition ensuring that capital supply exceeds capital de-
mand at r = ρ. One would also like to find a simple condition so that capi-
tal demand exceeds capital supply at some suitable lower bound. Suppose, say,
that production is Cobb-Douglas, F (K,L) = KθL1−θ. As r approaches −δ and
thus r + δ approaches zero, equation (38) implies that Kd(r) → ∞ and therefore
w(r) = (1 − θ)

(
Kd(r)

)θ → ∞. Hence, per Lemma 5, the total asset supply
associated with that wage then diverges, Ks(r) → ∞, thwarting this strategy.

We therefore adopt the more fruitful approach of examining capital supply and
demand (Kd(r), Ks(r)) normalized by the wage w(r) = FL(K

d(r), 1),

κs(r) =
Ks(r)

w(r)
and κd(r) =

Kd(r)

w(r)
. (43)

and characterize it in the following proposition.18 Define the following bounds r

and r̄ for the interest rate such that both (normalized) capital demand and supply
are well-defined for interest rates r ∈ (r, r̄) in between these bounds:

r = max{−αmin, lim
K→∞

FK(K, 1)− δ} and r̄ = min{ρ, lim
K→0

FK(K, 1)− δ} (44)

Section 6 shows that r cannot exceed ρ since capital supply is infinitely elastic at
r = ρ.

17From Euler’s theorem and equations (38) − (39) it follows that

w + rK = F (K, 1)− δK

Thus, (41) always implies (40), but the reverse is only true for r ̸= 0. This issue is not unique to our
model; it is present in the Aiyagari model as well. See Proposition 7 in Auclert and Rognlie (2020).

18We believe that this approach of analyzing the model is fruitful more generally for any model
with standard neoclassical production, including the Aiyagari (1994) model and the competitive
equilibrium of the standard representative agent model.
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Proposition 6. Let Assumption 1 be satisfied. Then normalized capital supply κs(r)

and normalized capital demand κd(r) are well-defined, continuous and strictly pos-

itive functions of r ∈ (r, r̄).

Proof. For normalized capital supply κs(r), Lemma 5 in Appendix D.1 establishes
that aggregate consumption C(r) is differentiable and equal to w(r) at r = 0. The
existence and continuity of a well-defined κs(r) function follows from L’Hospital’s
rule at r = 0 and is straightforward otherwise. Thus κs(r) has the stated properties
on (αmin, ρ) ⊇ (r, r̄). For normalized capital demand κd(r), note that the marginal
product of capital is a continuously differentiable and strictly decreasing function
of K, mapping K ∈ (0,∞) onto (limK→∞ FK(K, 1), limK→0 FK(K, 1)) ⊇ (r +

δ, r̄ + δ). Since the marginal product of labor FL(K, 1) is positive and continuous
for all positive K, function κd(r) has the properties stipulated in Proposition 6.

A rate of return r∗ gives rise to a stationary equilibrium if

κs(r∗) = κd(r∗) (45)

In order to ensure existence of equilibrium we need the following conditions.19

Assumption 2. Let lim infr→r κ
s(r) < lim supr→r κ

d(r) and lim supr→r̄ κ
s(r) >

lim infr→r̄ κ
d(r).

The next proposition is then a consequence of Proposition 6 and the intermediate
value theorem.

Proposition 7. Suppose assumptions 1 and 2 are satisfied. Then, a stationary equi-

librium with an interest r∗ ∈ (−δ, ρ) exists.

Assumption 2 involves the endogenous entities (κs(r), (κd(r)) at the bound-
aries (r, r̄). If one is willing to put further structure on the production function
and agent preferences and endowments, then it can be replaced with conditions
on exogenous parameters only. In particular, consider a CES production function

19The use of lim inf and lim sup in the assumption is sufficient for the existence result of Propo-
sition 7 and avoids a discussion of the existence of the associated limits.

23



F (K,L) =
(
θK1− 1

η + (1− θ)L1− 1
η

) η
η−1

with elasticity of substitution η ∈ (0,∞).
This includes the Cobb-Douglas specification F (K,L) = KθL1−θ as a special case
for η = 1. We show in Appendix C.2 that normalized capital demand becomes

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)η−1 − θ
] (46)

If the elasticity of substitution is as high or higher than in the Cobb-Douglas case,
η ≥ 1, then κd(r) is strictly decreasing and continuously differentiable. It is defined
on r ∈ (θ

η
η−1 − δ,∞) for η > 1 and r = (−δ,∞) for η = 1, and diverges, as r

approaches the lower bound of that interval. If −αmin is lower than that lower
bound, then the first half of Assumption 2 is automatically satisfied.20

In the next subsection, we show that for our example the second half of Assump-
tion 2 can be replaced by an assumption on exogenous parameters characterizing the
extent of income risk (and the other parameters of the model). Section 6 considers
the case when the second inequality in Assumption 2 is reversed, and a stationary
equilibrium with full consumption insurance can emerge.

5.2 The Example Continued

The properties of normalized capital supply can be examined explicitly in the two-
state example of Sections 3.3 and 4.2. Equation (36) immediately implies that for

20For η ∈ (0, 1), normalized capital demand κd(r) is defined on r ∈ (−δ, θ
η

η−1 ). We show
in appendix C.2 that in this case κd(r) has an upward-sloping part. For the limit case of η = 0
(Leontieff production function), κd(r) is upward-sloping on the entire interval r ∈ (−δ, 1−δ) where
it is defined. For the general CES case, we establish in Appendix C.1 that κd(r) is strictly decreasing
if FK is strictly convex. Note that these results and issues arise in any model with neoclassical
production, including the representative agent model as well as the Aiyagari (1994) model. This
might explain why the literature typically assumes a Cobb-Douglas production function.
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this example21

C(r)

w(r)
= 1 +

rξ

(g(r) + ν)(r + g(r) + ν + ξ)
(47)

where we recall that the growth rate g(r) (and thus the decay rate of consumption
−g) is given per equation (8) by g(r) = ρ−r

σ
. With a Cobb-Douglas production

function and thus equation (46), and with κs(r) = (C(r)/w(r) − 1)/r, the capital
market clearing condition can be stated explicitly as

κd(r) =
θ

(1− θ)(r + δ)
=

ξ(
− r

σ
+ ρ

σ
+ ν
) ((

1− 1
σ

)
r + ρ

σ
+ ν + ξ

) = κs(r)

(48)
where we have now written out the growth rate g(r) = ρ−r

σ
. This is a quadratic

equation and can have no, one or two solutions in the interval (−δ, ρ).
It is easy to see that the following assumption, stated purely in terms of the

exogenous parameters of the model, implies Assumption 2 with r = −δ and r̄ = ρ.

Assumption 3. The production function takes a Cobb-Douglas form. The param-

eters characterizing the production technology (θ, δ), agent preferences (ρ) and

idiosyncratic risk (ν, ξ) satisfy αmin = min{ν, ξ} > δ and

κd(ρ) =
θ

(1− θ)(ρ+ δ)
<

ξ

ν (ρ+ ν + ξ)
= κs(ρ) (49)

We will now show that if, in addition to this assumption, the intertemporal elas-

21Observe that at an interest rate r = 0 this implies that C(0) = w(0) and since F (K, 1)− δK =
w+rK, at r = 0 the goods market always clears. This is true not only in the example, but in general
directly follows from the fact that with r = 0 households only have labor income, and aggregating
across all households immediately implies C = w at r = 0. However, since the asset market
generically (that is, outside a measure zero set of parameters) does not clear with a zero interest rate,
in our market structure with only private supply of assets a stationary equilibrium with r = 0 does
not exist. One could, of course, envision an alternative environment in which the government (or
some other outside entity) supplies just the right (possibly negative) amount of government bonds
such that the asset market (with capital and bonds as perfectly substitutable assets whose sum makes
up asset supply) now clears at r = 0 at zero; with that interest rate the government does not have to
raise tax revenue for financing the debt interest rate service (and does not earn interest either in case
government debt is negative), so the analysis of private asset supply and consumption would remain
unchanged.
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ticity of substitution 1/σ is sufficiently high (σ is sufficiently low), then capital
supply is upward sloping in the interest rate and the partial insurance steady state is
unique. In contrast, if σ is sufficiently large, then κs(r) can have downward-sloping
segments and the possibility of multiple partial insurance steady states emerges.

5.2.1 Logarithmic Utility (σ = 1): Uniqueness and Comparative Statics

If σ = 1, then the equilibrium condition (48) is linear in the interest rate, and the
unique partial insurance stationary equilibrium can be characterized in closed form.

Proposition 8. Suppose that the utility function is logarithmic, σ = 1.

1. Further, suppose Assumptions 1 and 2 are satisfied and that normalized cap-

ital demand κd(r) is downward sloping. Then the equilibrium is unique.

2. Now suppose Assumption 3 is satisfied as well. Then the unique equilibrium

interest rate r∗ ∈ (−δ, ρ) is given by

r∗ =
θ(ν + ρ+ ξ)(ν + ρ)− ξδ(1− θ)

ξ + θ(ν + ρ)
(50)

r∗ is strictly increasing in ρ+ ν and θ and strictly decreasing in ξ and δ. The

capital stock K∗ is strictly increasing in ξ and strictly decreasing in ρ+ν and

δ. The stationary consumption distribution has a mass point and a truncated

Pareto distribution with Pareto coefficient κ = ν
ρ−r∗

−1 below the mass point.

Proof. With σ = 1, normalized capital supply in equation (47) is given by

κs(r) =
ξ

(ρ− r + ν)(ρ+ ν + ξ)
(51)

and is strictly increasing in r. Thus, the equilibrium must be unique. Equation (50)
follows from solving the (now linear) equation (48) when σ = 1. The comparative
static properties for the equilibrium interest rate follow directly from its closed-
form expression, and the comparative statics results for the equilibrium capital stock
follow from the fact that it is a decreasing function of r∗. The statements about the
consumption distribution follow directly from equation (35).
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5.2.2 Income Risk, Precautionary Saving and Consumption Inequality

The finding that the equilibrium capital stock increases with an increase in the risk
of losing productivity ξ indicates the presence of precautionary saving in our model.
The variance of labor productivity (and thus income) is given by ξ/ν. The next
corollary gives the comparative statics with respect to an increase in income risk
induced by an increase in ξ and holding ν fixed.22

Corollary 1. A mean preserving spread of labor productivity induced by an in-

crease in ξ results the following changes in the stationary equilibrium:

1. Households save more individually and the aggregate capital stock rises.23

2. The share of income- and thus consumption-rich individuals Ψh = ξ
ν+ξ

falls.

3. Per capita consumption of high productivity individuals ch increases relative

to c̄l of the consumption-poor:24 ch/c̄l is strictly increasing in ξ.

4. The left tail of the consumption distribution within the income-poor, charac-

terized by the Pareto shape parameter of the consumption distribution ν
ρ−r⋆

thickens since with a reduction in the equilibrium interest rate r⋆ consumption

drifts down faster, putting more mass at lower consumption levels.

The corollary states that there is precautionary saving both at the micro and
macro level in our model, and it takes the form of state-contingent saving due to the
market structure we have assumed. This precautionary saving mitigates the increase
in income risk, but it does not fully offsets it: consumption inequality rises.

22V ar(z) = µ̄1(0− 1)2 + µ̄2(ζ − 1)2 = ξ/ν where we held average labor productivity L = µ̄2ζ
constant at 1. Increasing ξ, holding ν fixed and increasing ζ such that average productivity remains
at one thus constitutes a mean-preserving spread increasing income risk.

23Capital saved for the transition to the low state (see equation (22)) is given by k2(1) =
1

ξ+ν+ρζw = w
ν(1+ρ/(ξ+ν)) which is increasing in ξ.

24Let total consumption of the income-poor and income-rich be (Cl, Ch). Direct calculations give

ch
c̄l

=
Ch/Φh

Cl/Φl
=

ξ

ν

Ch

Cl
=

ξ

ν

ρ+ν
ρ+ν+ξ (1− θ)Y

(ρ+ ν)K
=

ξ

ν

1− θ

ρ+ ν + ξ

Y/w

K/w
=

(1− θ)(ρ+ ν + δ)

ν(θ(ρ+ ν)/ξ + 1).
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Figure 2: The left panel shows wage-normalized capital demand κd(r) and capi-
tal supply by the household sector κs(r), as a function of the interest rate, for two
different values of risk ξ. The figure is drawn with Assumption 3 in place, guaran-
teeing a unique stationary equilibrium interest rate r∗ < ρ for each ξ. The right
panel displays the associated steady state consumption distributions.

The unique equilibrium characterized in Proposition 8 and its comparative stat-
ics properties with respect to income risk ξ from Corollary 1 is represented graph-
ically in Figure 2. For each ξ there is a unique equilibrium with an interest rate
r⋆ < ρ that clears the capital market and is decreasing with income risk ξ; see Fig-
ure 2a. Figure 2b shows the fatter left tail of the consumption distribution, and thus
increased consumption inequality when there is higher income risk ξ.

These comparative statics result shows that the predictions of our model dif-
fers not only from the standard incomplete markets model by providing additional
explicit consumption insurance against idiosyncratic income shocks, but also from
the standard limited commitment model in which the punishment from default is
permanent exclusion to autarky (see e.g. Kehoe and Levine (1993), Kocherlakota
(1996) and Alvarez and Jermann, 2000). In that model, an increase in income risk
makes autarky less attractive, endogenously relaxes the limited commitment con-
straints and leads to less consumption inequality (see e.g., Section 3 of Krueger
and Perri, 2006). In our model, the absence of punishment pins down the outside
option independent of income risk, and consumption inequality rises with income
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inequality, as is the case as in the Aiyagari (1994) model.25

Thus, while the existence of explicit insurance contracts permits consumption
insurance beyond self-insurance at the micro level and leads to analytical tractabil-
ity of the model, the tight shortsale constraints induce properties of precaution-
ary saving and cross-sectional consumption inequality retained from the standard
incomplete markets model. This reinforces our assertion that ours is a analyti-
cally tractable hybrid alternative to both the standard incomplete markets- and the
standard limited commitment model with empirical predictions that share elements
from both strands of these literatures. We now show that an additional value of this
tractability is that it permits us to characterize precise conditions under which the
model permits multiple stationary equilibria.

5.2.3 Multiple Partial Insurance Steady State Equilibria

If normalized capital demand κd(r) is downward sloping, as it is for Cobb-Douglas
production, the CES specification for η ≥ 1 and a multitude of other production
functions, the key to establishing the existence of a unique partial insurance steady
state is an upward-sloping normalized capital supply function.

Inspection of the asset supply function on the right-hand side of (47) shows this
to be the case if σ ≤ 1. In contrast, as σ approaches infinity and the IES converges to
zero, the lifetime utility function becomes Leontieff, and the asset supply function
is downward-sloping, raising the possibility of multiple partial insurance stationary
equilibria. The next proposition summarizes the various possibilities for σ ̸= 1. For
simplicity, we assume that the production function is Cobb-Douglas.

Proposition 9. Let Assumptions 1 and 3 be satisfied.

1. If σ < 1, then κs(r) is strictly increasing on r ∈ (−δ, ρ). There exists a

unique stationary equilibrium with r ∈ (−δ, ρ).

25Since ours is the weakest conceivable punishment from default, the associated “not too tight”
constraints are as tight as they can be within the set of limited commitment models, therefore maxi-
mally restricting insurance and providing a lower bound on how much insurance this class of models
can imply. In fact, in the absence of physical capital the resulting stationary equilibrium has to be
autarkic in our environment, as we demonstrate in Krueger and Uhlig (2006). See Broer (2013) for
a discussion on the different plausible ways the punishment from default could be chosen in limited
commitment models.
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2. Let σ > 1 and let σν+ρ
σ−1

> δ be satisfied.26 There exists at least one stationary

equilibrium with r ∈ (−δ, ρ).

(a) Suppose σ ∈ (1, 2] and let ξ ≥ δ be satisfied.27 Then κs(r) is increasing

on r ∈ [−δ, ρ). The stationary equilibrium with r ∈ (−δ, ρ) is unique.

(b) There exist parameter combinations with 2 < σ < ∞ such that κs(r)

has decreasing parts on [−δ, ρ) and that there are two stationary equi-

libria with r ∈ (−δ, ρ) solving the quadratic capital market clearing

condition (48).

Proof. See Online Appendix E. For the last part, see the example in Figure 3.

Figure 3: Two equilibria with partial insurance when σ > 2.

(a) Capital Market Clearing (b) Equilibrium Consumption Distributions

This figure plots an example of two equilibria, both with partial insurance, under parameter values
σ = 10, θ = 0.25, δ = 0.16, ν = 0.05, ξ = 0.02, ρ = 0.4. The two equilibrium interest rates are
given by r∗1 = −0.0246, r∗2 = 0.1357. Left panel: solid line represents the capital supply curve
κs (r), dashed line represents the capital demand curve κd (r). The right panel displays the two
equilibrium consumption distributions, including the mass point for each of them.

This proposition shows that for wide parameter combinations, the uniqueness
of equilibrium can be guaranteed (parts 1 and 2a). It also identifies (in part 2b) the
range of parameters where two stationary equilibria, both with partial consumption
insurance and r < ρ, can emerge. This scenario is depicted in Figure 3.

26This condition ensures that the effective discount rate r + ν + g(r) used to determine c(2) is
positive even at r = −δ, and thus c(2) is finite at that interest rate and at all higher interest rates.

27This condition ensures that κs(r) is increasing at r = −δ.
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6 Stationary Equilibrium with Full Insurance

Thus far, we made assumptions that guaranteed that equilibria featured partial in-
surance and an interest rate below the discount rate. To complete our analysis
by studying full insurance equilibria and the conditions under which they emerge.
Therefore, suppose that r̄ = ρ, but that the second part of assumption 2 is violated,
i.e., suppose lim supr→ρ κ

s(r) ≤ lim infr→ρ κ
d(r). Since there is full consumption

insurance when r = ρ, it follows that the capital supply needed to provide this full
insurance is insufficient to meet capital demand. As a result, agents hold capital
for conventional consumption smoothing motives, not just as an insurance cushion.
Capital supply becomes infinitely elastic at r = ρ and consumption of each agent
is constant over time, just as in the steady state of the standard representative agent
neoclassical growth model.

Consider an agent indexed by j ∈ [0, 1] in productivity state x. With full in-
surance, consumption is constant at some level cj . Since r = ρ, there is no (dis-
)investment, k̇j,t,x = 0. Hence, there is a constant capital level kj(x) for every
productivity level x, with the flow of interest payments financing the gap between
income and consumption. To characterize these kj(x)’s, recall that the budget con-
straint in (7) reads as

cj +
∑
x′ ̸=x

αx,x′(kj(x
′)− kj(x)) = ρkj(x) + wz(x) (52)

or
(ρIN+1 − A)kj = cj − wz (53)

where IN+1 is the identity matrix of size N×N and where kj = [kj(1), . . . , kj(N)]

is the vector of capital stocks.28 Equation (53) can be solved for the capital levels kj ,
provided the wage w and consumption cj are known. The wage w follows directly
from the production side at r = ρ. As for consumption, note that cj ≥ c(N), where
the latter is the lowest consumption level in state N compatible with r = ρ and as
calculated in Proposition 2. This follows because agents will eventually reach state

28Recall that we use the notation Ix to denote the (x − 1) × (x − 1) identity matrix: thus the
subscript N + 1 here. Further, recall that αx,x = −

∑
x′ ̸=x αx,x′ .
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N , with zero capital and permanent consumption of at least c(N) even if that agent
starts with zero capital in some other state. The proof of the following proposition
in Appendix E then implies that kj is non-negative for any agent j.

Proposition 10. Impose Assumption 1, and suppose r̄ = ρ and lim supr→ρ κ
s(r) ≤

lim infr→ρ κ
d(r). Then there is a stationary equilibrium with r = ρ in which every

agent j ∈ [0, 1] consumes a constant amount cj ≥ c(N). Average consumption c̄ is

given by sum of the flow income from capital and wages

c̄ = ρKd(ρ) + w(ρ) (54)

where K = Kd(ρ) solves (38) at r = ρ and where w(ρ) follows from (39) at

K = Kd(ρ). Individual capital holdings kj satisfy equation (53). If cj = c̄ for all

agents, the distribution of the agents over the point masses (x, k̄j(x)) is given by

the stationary distribution µ̄ for A, where k̄ solves (53) for cj = c̄.29 For arbitrary

consumption distributions cj ≥ c(N), k̄ is the average of the capital holdings

across agents.

Proof. See Appendix E. In principle, nothing guarantees that the vector of capital
holdings defined in (53) satisfies kj(x) ≥ 0 for all x. The proof in the appendix
shows that this is indeed what the assumed inequality limr→ρ κ

s(r) ≤ κd(ρ) insures.

Note that at r = ρ the goods market clearing condition (54) together with the
household budget constraints (53), aggregated across all agents, implies that the
capital market clears. To see this, replace cj = c̄ with the goods market clearing
condition (54) and taking the inner product with the stationary distribution µ̄ yields

µ̄ · (ρIN+1 − A)k̄ = ρKd(ρ) + w(ρ)− w(ρ)µ̄ · z.

Since µ̄ · z = 1 by normalization and µ̄′A = 0 by stationarity of µ̄, we have

µ̄ · k̄ = Kd(ρ) (55)
29It need not be true that all agents have the same consumption: they just each have consumption

of at least c(N) and average consumption is c̄. The consumption distribution is indeterminate and
depends on the (arbitrary) initial distribution of capital, exceeding kN (x) for x < N or 0 for x = N .
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and thus, the asset market clears at r = ρ, a simple consequence of Walras’ law.
Finally, note that Proposition 10 opens the door for the co-existence of a partial

insurance steady state and a full insurance steady state, by reversing the ordering at
both ends in Assumption 2.

Assumption 4. Assume that lim supr→r κ
s(r) > lim infr→r κ

d(r). Assume that

r̄ = ρ and that lim infr→ρ κ
s(r) < lim supr→ρ κ

d(r).

Proposition 11. Let Assumption 4 be satisfied. Then there is at least one partial

insurance equilibrium with r∗ ∈ [r, ρ) and a full insurance equilibrium with r = ρ.

Proof. Like Proposition 7, the existence of a partial insurance stationary equilib-
rium follows from the intermediate value theorem and Proposition 6. The existence
of the full insurance equilibrium follows from Proposition 10.

Assumption 4 requires that κd(r) is upward-sloping or that κs(r) is downward-
sloping in the interest rate for at least a certain range of the interest rate. As shown
above, this cannot occur in our simple 2-state example with Cobb-Douglas produc-
tion and log-utility. However, even for this example, Assumption 4 does not define
an empty set as long as σ is sufficiently large, i.e. the IES is sufficiently small.30

7 Quantitative Exploration

The previous sections characterized partial- and full insurance stationary equilibria
theoretically. We now demonstrate that our model is amenable to the same quan-
titative analysis as the standard incomplete markets (SIM) model. For a plausible

30Recall that normalized capital supply is κs(r) = ξ/((g+ν)(r+g+ν+ξ)) with g = (ρ−r)/σ,
see equation (48). While this function is well defined for −ν−ξ < r ≤ ρ, examination of (18) shows
that we need to keep r above −ν as σ → ∞. Impose that 0 < ν = ξ < δ. Therefore r = αmin = ν
is the lower bound for r in Assumption 4. As r → −ν and σ → ∞, normalized capital supply
converges to 1/ν, while normalized capital demand in the Cobb-Douglas case is θ/((1−θ)(δ−ν)).
If ν < (1− θ)δ, one can then find r > −ν and σ large enough such that Assumption 4 is satisfied.

These calculations also permit an example in which a stationary equilibrium does not exist at all.
Assume Cobb-Douglas production and Leontieff preferences σ → ∞, and impose θ = 1/3 as well
as ν = ξ < δ and thus r = −ν. Non-existence follows if κs = 1/(r + 2ν) > 2(r + δ) = κd for all
r ∈ (−ν, ρ]. This is the case if ν < 2δ/3. For finite, but large σ then follows for ν sufficiently small
compared to δ. Assume, e.g., that ν = ξ = ρ < δ/2. With some algebra one can show that κs > κd

for all r ∈ (−ν, ρ] if σ ≥ 7.
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calibration of idiosyncratic risk consistent with micro data, it delivers a unique par-
tial insurance interest rate and consumption distribution that can be quantitatively
compared to the SIM in continuous time, as explored recently in, e.g., Kaplan,
Nikolakoudis and Violante (2023). To do so, we first discuss the calibration of the
model, with focus on the idiosyncratic productivity process. We then show the sta-
tionary consumption distribution and contrast the capital market equilibrium in our
model with that in the standard incomplete market model.

7.1 Calibration

For the calibration, we adopt the five-state process used by Kaplan et al. (2023),
but augment it by a sixth state, referred to below as the superstar state, see Table
1. With this superstar state, the insights from the simple two-state example above

Table 1: Parameterization of the Quantitative Model

Parameter Interpretation Value
θ Capital Share 40%
δ Depreciation Rate 2.25%
σ Risk Aversion 1
ρ Time Discount Rate 1%
ν Poisson Rate of Moving into Top 0.001
ξ Poisson Rate of Moving out of Top 0.1
z Labor Productivity States (0.5,0.65,0.81,0.96,1.12,20)
µ̄ Labor Productivity Distribution (0.07,0.24,0.37,0.24,0.07,0.01)

The table contains the parameterization of the model at a quarterly frequency. The last two rows
contain the idiosyncratic labor productivity states z(.) as well as the associated stationary distribution
µ̄ over these states. The complete matrix of Poisson transition rates is contained in Appendix F

carry over to the quantitative version here: essentially, the agent switches back and
forth between the very high income and low incomes, setting aside insurance in the
former against the transition to the latter. Specifically, we choose the highest state
in such a way that the share of the population in that state is 1% and that their share
of labor income is 20% (see, e.g., Piketty and Saez, 2003). Since average labor
productivity is normalized to 1, we have 0.01∗z(6) = 0.2 which implies z(6) = 20.
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Analogous to our two-state example, let ξ and ν denote the Poisson intensity of
leaving or arriving at the high state.31 Since the share of highly productive agents
is 0.01 = ν

ξ+ν
= 1

1+ξ/ν
, this implies that we need ξ

ν
= 99. This leaves us with one

parameter determining the expected duration 1/ξ of the superstar state which we
choose to be 10 quarters, and thus ξ = 0.1 which implies ν = 0.1/99 = 0.001.

For the remaining parameters, we follow Kaplan et al. (2023) and set the capital
share to θ = 0.4 and the quarterly depreciation rate to δ = 2.5%. Risk aversion is
σ = 1, and the quarterly time discount rate ρ = 1%.

7.2 Stationary Consumption Distribution and Capital Market

Figure 4 shows the consumption distribution. As Proposition 5 implies, there are
N = 6 mass points, denoted by the circles in the figure. The highest mass point
contains 1% of the population at consumption level c(6)/w = 4.65 = 0.23 ∗ z(6).
Thus, agents in the highest income state set aside more than three-quarters of their
income as insurance payments against an income change.

Figure 4: Consumption Distribution: Quantitative Limited Commitment Model
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(a) Consumption Distribution
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(b) Consumption Distribution: Zoom

This figure displays the stationary consumption (normalized by the wage) distribution. We chose r ≈
0 because the mass points, depicted as solid points, are more clearly visible. The left panel shows
the entire distribution with its right tail; the right panel zooms in on the middle of the distribution.

31Formally, ξ =
∑

x<6 α6,x and ν =
∑

x<6 αx,6µ̄(x).
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The density between the mass points is provided in Proposition 5, exploiting the
matrix exponential formula (27). It is determined both by the common consumption
decay rate of all unconstrained individuals (r − ρ) as well as the outflow rates into
higher states (the αx,x̃), resulting from the differential equation. It therefore displays
exponential decay (at a rate that varies across the different segments).

Figure 5: Capital Market Equilibrium in the Limited Commitment Model and the
Standard Incomplete Markets Model with Neoclassical Production
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The figure displays the capital market equilibrium in the LCM and the SIM. The normalized capital
demand (blue solid, downward sloping) schedule is identical in both models. The normalized capital
supply from the household sector, for a given r, is larger in the SIM (yellow line) than in the LCM
(red line). Thus, the interest rate is lower and the capital stock is higher in the SIM than in the LCM.

Figure 5 depicts the capital market equilibrium for our limited commitment
model (LCM) and compares it to the standard incomplete markets (SIM) model.
With the assumed Cobb-Douglas production function, normalized capital κd is
downward-sloping, see (48), and is the same for both models. For our calibration
normalized capital supply κs is strictly upward sloping in the LCM. Assumption
2 is satisfied. Thus, there is a unique equilibrium interest rate r∗, which takes the
(quarterly) value of r∗ = 0.68%, smaller than the quarterly discount rate of ρ = 1%.

Capital supply for the SIM model needs to be calculated numerically, using
standard techniques, and is likewise upward sloping.32 We observe that capital

32We thank Greg Kaplan for providing us with the code for the SIM with N > 2 states.
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supply for the SIM model is larger for each interest rate than in our model. As
a consequence, the stationary equilibrium interest rate, unique in both economies,
is strictly smaller (and thus the equilibrium capital stock is strictly larger) in the
SIM model33 than in our economy, and is, in turn, smaller in both models than the
subjective time discount factor ρ = 1%. As summarized in Table 2, the equilibrium
interest rates for our benchmark calibration are r∗LCM = 0.68% and r∗SIM = 0.6%.
Finally, as the interest rate approaches the time discount factor from below, asset
supply in the SIM model diverges to infinity, whereas it remains finite in the LCM.

7.3 Comparative Statics

So far, we set the parameter ξ = 0.1, implying an expected time of remaining in
the superstar state of 10 quarters, or 2.5 years. We now vary this parameter, with
the objective of not only providing sensitivity analysis but also showing how the
equilibrium interest rate and associated capital stock respond to a change in the
extent of labor income risk as well as its persistence. Raising ξ but holding ξ/ν

constant keeps the cross-sectional distribution over states constant, but it decreases
the persistence of both remaining in the superstar state and remaining in one of the
5 “normal” states.34 By contrast, only raising ξ and keeping ν constant implies a
mean-preserving spread, as in Corollary 1 for the example with two states.35

Table 2 shows the outcome of both experiments. The interest rate in our model is
always larger and the associated equilibrium capital stock smaller than in the SIM.
Making the superstar state less persistent without changing the cross-sectional labor
productivity distribution lowers precautionary saving in both models, increases the
equilibrium interest rate and decreases the equilibrium capital stock. By contrast, a
mean preserving spread (MPS) increases precautionary saving in both models and
leads to a reduction in the equilibrium interest rate and an increase in the steady
state capital stock, as we showed analytically for our model with two states.

33The claim that this is always the case is intuitive, but it is not easy to prove. Our environment
allows agents to redistribute savings from states with low marginal value of wealth to states where
this value is high. The effect on the marginal value of overall capital can then turn either way.

34The mass of agents in the high income state stays at 1%; there is no need to adjust state z(6).
35This increase ξ/ν and makes the top group smaller. As a consequence, we increase z(6) and

make the top group income-richer, such that average productivity remains at one.

37



Table 2: Comparative Statics

Parameter Bench. Low Pers. High Pers. MPS
ξ 0.10 0.2475 0.025 0.20
ν 0.001 0.0025 0.00025 0.001
r∗LCM 0.675% 0.775% 0.615% 0.635%
r∗SIM 0.595% 0.695% 0.565% 0.545%

The table summarizes the equilibrium r∗ for different parameterizations of the income process.

8 Conclusion

In this paper we construct a model with idiosyncratic income risk, neoclassical
production and capital accumulation in which market incompleteness arises en-
dogenously due to limited commitment. The model is analytically tractable yet as
amenable to quantitative analysis as the benchmark model in quantitative macroeco-
nomics, the celebrated Aiyagari (1994) SIM model. For a general continuous-time
N-state Poisson labor productivity process, we have characterized the optimal con-
sumption allocation, the stationary asset distribution, as well as the aggregate sup-
ply of capital. For the specific two state labor productivity example where agents
have log-utility and production is Cobb-Douglas, the stationary equilibrium can be
computed in closed form. In contrast, multiple steady states can arise for large risk
aversion. We have then analyzed a calibrated version of our model, using six in-
come states, and shown numerically that the nominal interest rate is higher and less
sensitive to comparative static changes in parameters than in the SIM model. Thus,
our paper provides a tractable alternative to the Aiyagari (1994) model.

In this paper we have focused on stationary equilibria, sidestepping the ques-
tion of whether this stationary equilibrium is reached from a given initial aggregate
stock, and what the qualitative properties the transition path has. We pursue this
analysis for our two-state example in Krueger, Li and Uhlig (2024) and apply it
to study consumption inequality and the speed of convergence along the transition
path. Similarly, thus far we have focused on an environment that has idiosyncratic
but no aggregate shocks. We study a discrete-time version of our model with aggre-
gate shocks and its asset pricing implications in Ando, Krueger and Uhlig (2023).
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Appendix

A Optimal contract: lemmas and proofs.

Proof of Proposition 1. 1. Write the Lagrangian

L = u(c) + U ′(k, x)k̇ +
∑
x′ ̸=x

αx,x′(U(k(x′), x′)− U(k, x))

+λ

(
rk + wz(x)− c− k̇ −

∑
x′ ̸=x

αx,x′(k(x′)− k)

)
−1k=0µxk̇ −

∑
x′ ̸=x

αx,x′µx′k(x′)

The first-order conditions are

∂L

∂c
: u′(c) = λ (56)

∂L

∂k̇
: U ′(k, x) = λ− 1k=0µx (57)

∂L

∂k(x′)
: U ′(k(x′), x′) = λ− µx′ , all x′ (58)

with the additional complementary slackness conditions

1k=0min{µx, k̇} = 0 and for all x′ : min{µx′ , k(x′)} = 0 (59)

as well as the envelope condition

ρU ′(k, x) =
∂L

∂k

= U ′′(k, x)k̇ + rλ−
∑
x′ ̸=x

αx,x′(U ′(k, x)− λ)

or (
ρ− rλ+

∑
x′ ̸=x

αx,x′

)
(U ′(k, x)− λ) = U ′′(k, x)k̇ (60)
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For k > 0, (56), (57) and (59) imply

U ′(k, x) = λ = u′(c) (61)

With equation (58) and (59), we then get

u′(c(k′(x′)) = U ′(k′(x′), x′) = u′(c) for all k′(x′) > 0 (62)

showing (10). Suppose by contradiction, that u′(c(k, x)) < u′(c(k(x′), x′))

for some state x′. This cannot be optimal since a small increase of k(x′)

and thus a small increase in c(k(x′), x′) at the cost of a small decrease in
c(k, x) would improve the value U . Put differently, replacing the proposed
decision rules for c and k(x′) on the right hand side of (6) with c−αx,x′ϵ and
k(x′) + ϵ for some sufficiently small ϵ > 0 delivers a higher value than the
proposed ρU(k, x), a contradiction. We therefore obtain that u′(c(k, x)) ≥
u′(c(k(x′), x′)), in particular for states x′, for which k(x′) = 0. The statement
(11) now follows from the strict concavity of u(·).

Rewriting (61) as a function of time and taking the derivative with respect to
time, we get

U ′′(kt, xt)k̇t = λ̇t = u′′(ct)ċt (63)

Rewriting (63) and combining it with (60) and (61) for u(c) = c1−σ/(1− σ)

yields
ċt
ct

=
λ̇t

λt

u′(ct)

cu′′(ct)
=

ρ− r

σ
(64)

and thus (9).

2. This follows because any allocation that can be afforded for k can also be
afforded for k̃ > k.

3. This is a standard and straightforward argument. Consider two values for
k, say kA ̸= kB and some λ ∈ (0, 1). The λ-convex combination of the
solutions for kA and kB is feasible at the λ-convex combination of kA and kB

and thus provides a lower bound for U(kλ, x). This lower bound is strictly
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higher than the convex combination of U(kA, x) and U(kB, x) since u(·) is
strictly convex and c is strictly increasing in k.

4. A formal proof is via Lemma 8 in the Online Appendix. Here, we provide
a somewhat heuristic argument instead. If the constraint (5) is binding, then
k̇ = 0, U(kt, x) is a constant function of time and thus so is ct, establishing the
claim. Suppose, thus, by contradiction, that the constraint is not binding and
that k̇t > 0. In that case, we have (61) as well (64). Consider now a small time
interval δ later. At that point, kt+δ ≈ k̇δ > 0 as well as ct+δ ≈ ct(1−δg) < ct.
We still have (61). Noting that U(·, x) is strictly concave with the previous
part, we have

U ′(0, x) > U ′(kt+δ, x) = u′(ct+δ) < u′(ct) (65)

in contradiction to (61).

Lemma 1. For this lemma36, denote the spectral radius of a matrix M as

ρ(M).

1. e−Bxs ≥ 0 and e−Cxs ≥ 0. If, additionally, assumption 1 holds, then e−Bxs

and e−Cxs have only strictly positive entries for all s > 0.

2. The spectral radius of e−Bxs satisfies e−(r+αmax(x))s ≤ ρ(e−Bxs) ≤ e−(r+αmin)s ≤
e−rs.

3. If αmin = αmax(x), then 1x is an eigenvector of Bx and e−Bxs with eigenvalue

r + αmin and e−(r+αmin)s.

4. With assumption 1, there is an eigenvector ex to e−Bx and the largest eigen-

value ρ(e−Bx) > 0, which has only strictly positive entries. It furthermore is

the eigenvector to e−Bxs for all s ≥ 0 to the largest eigenvalue
(
ρ(e−Bx)

)s
>

0.
36Outside this lemma, ρ denotes the utility discount factor.
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5. With assumption 1, let y ≥ 0 be a (x− 1)-dimensional vector with only non-

negative entries, such that y(j) ≤ Mex(j) for some constant M > 0 and all

j = 1, . . . , x− 1. Suppose that −αmin < r. Then

0 ≤ e−Bxsy ≤ Me−(r+αmin)sex → 0 as s → 0 (66)

Proof. 1. Note37 that −Bx = −rIx + Ax only has non-negative entries off
the diagonal. For sufficiently small ϵ > 0, e−Bxϵ = Ix − ϵBx + o(ϵ) has
therefore only non-negative entries since the diagonal is dominated by Ix and
the off-diagonal is dominated by Ax. Pick such an ϵ. For arbitrary s, use
e−Bxs =

(
e−Bxϵ

)s/ϵ. The argument for Cx is exactly the same since g ≥ 0.
The argument that e−Bxs has only strictly positive entries under assumption 1
follows, since e−Bxs =

(
e−Bxϵ

)n for ϵ = s/n, where n is a sufficiently large
natural number. It then also follows for e−Cxs = e−gse−Bxs.

2. Recall that
∑

x′<x αx̃,x′ = −
∑

x′≥x αx̃,x′ . Thus, maxx̃<x

∑
x′<xAx(x̃, x

′) =

−αmin and likewise for the minimum. With that and for any ϵ ≥ 0, the row
sums of Ix − ϵBx are between 1 − ϵ(r + αmax(x)) and 1 − ϵ(r + αmin).
Let ∆ > 0. Since e−Bxϵ = Ix − ϵBx + o(ϵ), there is thus ϵ̄ > 0, so that
the sums of any row of e−Bxϵ are between 1 − (r + αmax(x) + ∆)ϵ and
1 − (r + αmin − ∆)ϵ for any 0 < ϵ < ϵ̄. Theorem 8.1.22 in Horn-Johnson
(1985) implies that 1−(r+αmax(x)+∆)ϵ ≤ ρ(e−Bxϵ) ≤ 1−(r+αmin−∆)ϵ.
Thus (1− (r + αmax(x) + ∆)ϵ)s/ϵ ≤ ρ(e−Bxs) ≤ (1− (r + αmin −∆)ϵ)s/ϵ.
Letting ϵ → 0 delivers that e−(r+αmax(x)+∆)s ≤ ρ(e−Bxs) ≤ e−(r+αmin−∆)s.
Since ∆ > 0 can be arbitrarily small and since

∑
x′≥x αx̃,x′ ≥ 0 for x̃ < x,

the result about the spectral radius follows.

3. This follows from direct calculation for Bx1x and then for e−Bxs1x =
∑∞

j=0(−sBx)
j1x/j!.

4. Assumption 1 implies that that e−Bxs is irreducible. The existence of ex is
a consequence of the Perron-Frobenius theorem applied to e−Bx . Let n > 0

37The source for this part of the proof is an answer on math.stackexchange.com.
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and m > 0 be two natural numbers. Let s = n/m. Then

(
e−Bxs

)m
ex =

(
e−Bx

)n
ex =

(
ρ(e−Bx)

)n
ex

The result now follows from the fact that e−Bxs has only strictly positive
entries, which rules out periodicity, i.e., ex must be an eigenvector of e−Bxs.
By continuity, the result then holds not just for all rational but also for all real
s > 0.

5. The first inequality follows from the first part of this lemma. For the second,
use the first and the third part of the lemma and calculate

e−Bxsy ≤ Me−Bxsv ≤ Me−(r+αmin)sex

The convergence to zero follows because r + αmin > 0 by assumption.

Proof of Proposition 2. Suppose we are in some state x̃ at t. Rewrite the budget
constraint (7) as

k̇t(x̃)− rkt(x̃) +
∑
x′

αx̃,x′kt(x
′) = wz(x)− ct(x̃) (67)

where we now explicitly denote the current state x̃ as argument for kt, k̇t and ct

and where we have exploited that αx̃,x̃ = −
∑

x′ ̸=x̃ αx̃,x′ , aside from moving terms
from one side of the equation to the other. We proceed recursively. At state x = 1,
c = c(1) = wz(1) and the net costs are zero. Define d1 = k1 = [ ] of dimension 0.

Consider now any state x > 1 and its associated consumption level c = c(x).
Suppose that we start the consumption plan at this consumption level but for some
other state x̃ < x at t = 0. Consumption will now drift down until either there
is a transition to some x′ ≥ x or until the consumption level c(x − 1) is reached.
Consumption will then continue to drift down if the current state is x′ < x− 1: we
take this into account when we aggregate costs. Let T (x) be the time it takes for
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consumption to drift down from c(x) to c(x− 1), i.e. T (x) solves

c(x− 1) = e−gT (x)c(x)

Thus,

T (x) =
log(c(x))− log(c(x− 1))

g

as in equation (13). At time 0 ≤ t ≤ T (x) and current state x̃ < x, consumption
will be

ct = e−gtc(x), (68)

provided no transition to some state x′ ≥ x has yet occurred.
In (67), kt(x′) = 0 for all x′ ≥ x and t > 0, since ct(x

′) ≥ c(x) > ct: the agent
would therefore rather dis-save in order to smooth consumption, but he is prevented
from doing so, due to our limited commitment assumption. Therefore, we only
need to calculate the entries of the (x− 1)-dimensional vector

kx,t = [kx,t(1), . . . , kx,t(x− 1)], (69)

where the second sub-index x indicates that we are at a consumption level ct in the
interval ct ∈ [c(x − 1), c(x)]. Therefore, rewrite the differential equation (67) in
vector notation as

k̇x,t −Bxkx,t = wzx − e−gtc(x)1x (70)

with terminal condition38

kx,T (x) =

[
kx−1

0

]
(71)

since kx−1,0 = kx−1 is needed to finance the consumption plan going forward for
states x̃ < x− 1 and ct ≤ c(x− 1). The solution is

kx,t = dx,t + e−Bx(T (x)−t)

[
kx−1

0

]
(72)

38Thus, if x = 2, the terminal condition is kT (2),2 = 0.
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where the solution dx,t to the non-homogeneous part with terminal condition dx,T (x) =

0x−1 is given by39

dx,t = eBxt

∫ T (x)

s=t

e−Bxs
(
e−gsc(x)1x − wzx

)
ds (73)

= c(x)C−1
x e−gt

(
Ix − e−Cx(T (x)−t)

)
1x −B−1

x

(
Ix − e−Bx(T (x)−t)

)
wzx(74)

as one can verify directly or derive, using standard ODE calculus. The difference
dx = dx,0 at t = 0 and given in equation (14) is now the (x − 1)-dimensional
vector of net costs for the piece of the consumption plan, starting at states x̃ ∈
{1, . . . , x−1} and consumption level c(x) for the time between t = 0 and t = T (x).

It follows from lemma 2 and equation (85) below that kx,t ≥ 0, thus satisfying
the limited commitment constraint (5).

We finally need to solve for c(x). Observe that the budget constraint in state x

and at c = c(x) needs to hold. It generally is given by (7). At c = c(x), k̇t = 0 and
kt = 0. Note that kt,x̃ = 0 for all x̃ > x, since c(x̃) > c(x). Note that kt,x̃ = kx(x̃)

for x̃ < x, since kx(x̃) is needed to finance the consumption plan going forward
from state x̃ and starting consumption c(x). The budget constraint (7) then reads

0 = c(x)− wz(x) +
∑
x̃<x

αx,x̃kx(x̃) (75)

As in the proposition, let αx = [αx,1, . . . , αx,x−1]
′. Then, write equation (75) as

equation (16).

Note that e−gsc(x) < wz(x − 1) for x ≥ 3 and s sufficiently close to T (x),
since e−gT (x)c(x) = c(x− 1). Therefore, dx,t(x− 1) in equation (32) is increasing
from a negative value to zero rather than decreasing from a positive value as t

approaches T (x). Nonetheless, we have the following lemma. The statement may

39In principle, the net present value calculation of equation (73) can be done for arbitrary utility
functions, except that one would then need to replace e−gsc(x) by the appropriate path for con-
sumption cs at date s and starting at c(x), which solves the optimal consumption-savings problem
at interest r. While it is unlikely that one then gets an explicit formula for the arrival time T (x) of
c(s) = c(x− 1) or an explicit solution for the ODE as in the second line (74), one can still proceed
to calculate these arrival times and integrals numerically. The rest of the analysis then continues to
go through.

50



seem obvious. The proof, however, is far from it.

Lemma 2. The solution kx,t to the vector ODE (70) together with (71) is strictly

monotonically decreasing to kx,T (x) =

[
kx−1

0

]
.

Proof. Define

vx = wzx +Bx

[
kx−1

0

]
(76)

Rewrite the solution for kx,t by combining (72) and (73) as

kx,t =

∫ T (x)

s=t

e−Bx(s−t)
(
e−gsc(x)1x − wzx

)
ds+ e−Bx(T (x)−t)

[
kx−1

0

]
(77)

=

∫ T (x)

s=t

e−Bx(s−t)
(
e−gsc(x)1x − vx

)
ds+

[
kx−1

0

]
(78)

with kx = kx,0. Since e−gsc(x) > c(x− 1) for s < T (x), it suffices to show that

vx ≤ c(x− 1)1x (79)

We shall show this recursively. Note that this is trivially true for x = 2, since
v2 = wz(1) = c(1). Suppose now that (79) is true up to some state x. We shall
establish that

vx+1 ≤ c(x)1x+1 (80)

With the definition (76) applied to x+ 1, note that

vx+1 = wzx+1 +Bx+1

[
kx

0

]
(81)

Consider first the last entry vx+1(x). With equation (16), this is

vx+1(x) = wz(x)− αxkx = c(x), (82)

thus establishing (80) for that entry.
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Next, note first that Bx is the top left (x− 1)× (x− 1) sub-matrix of Bx+1, i.e.

Bx = Bx+1(1 : x− 1, 1 : x− 1) (83)

Thus, the vector of the other entries vx+1(1 : x− 1) can be written as

vx+1(1 : x− 1) = wzx +Bxkx (84)

Replace kx with (78) for t = 0 and use e−gT (x)c(x) = c(x− 1) to see that

vx+1(1 : x− 1) = wzx +Bx

[
kx−1

0

]

+Bx

∫ T (x)

s=0

e−Bxs
(
e−gsc(x)1x − vx

)
ds

= e−BxT (x)vx + Cx

∫ T (x)

s=0

e−Cxsds c(x)1x

−g

∫ T (x)

s=0

e−Cxsds c(x)1x

= c(x)1x − e−BxT (x) (c(x− 1)1x − vx)

−g

∫ T (x)

s=0

e−Cxsds c(x)1x

≤ c(x)1x

where the last inequality follows per the induction hypothesis (79) and because
e−BxT (x) ≥ 0 and

∫ T (x)

s=t
e−Cxsds ≥ 0 per part 1 of lemma 1.

The lemma immediately implies that the solution stated in Proposition 2 satisfies

kx ≥

[
kx−1

0

]
≥ 0x (85)

and therefore, indeed satisfies the limited commitment requirement (4). The lemma
is thus needed to complete the proof of Proposition 2. Proposition 2 provides a
system of equations that the solution must satisfy. The system of equations has a
recursive structure. Given the solution up to x − 1, one may then seek to calculate
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the solution for x. Given c(x), the values for T (x), dx and kx can be calculated, but
there could potentially be many values for c(x) for which (16) is then also satisfied.
The next proposition shows that this cannot be the case.

Proof of Proposition 3. The solution is unique for x = 1. Exploiting the block
recursive structure, suppose uniqueness has been shown for x−1. We seek to show
that there is a unique solution c(x). Suppose by contradiction that there are two
solutions ca(x) > cb(x). Calculate the corresponding times T a(x) and T b(x) per
(13). Note that T a(x) > T b(x). Define t = T a(x)− T b(x) and note that

cb(x) = e−gtca(x) (86)

Next, calculate ka
x and kb

x, using (78). We have

ka
x =

∫ Ta(x)

s=0

e−Bxs
(
e−gsca(x)1x − vx

)
ds+

[
kx−1

0

]
(87)

and, with (86),

kb
x =

∫ T b(x)

s=0

e−Bxs
(
e−gscb(x)1x − vx

)
ds+

[
kx−1

0

]

=

∫ Ta(x)

s=t

e−Bx(s−t)
(
e−gsca(x)1x − vx

)
ds+

[
kx−1

0

]
= ka

x,t

Lemma 2 implies that kb
x < ka

x. Equation(16) now implies that

ca(x) = wz(x)− αxk
a
x < wz(x)− αxk

b
x = cb(x),

which is a contradiction.

Solving the system of equations (13) to (16) requires numerical techniques40.
Generally, the ordering of the states x such that c(x) is increasing in x will not be

40No numerical techniques are required if x = 2 and z1 = 0. In that case, c(x − 1) = 0,
T (x) = ∞, Bx = r − α1,1, Cx = r + g − α1,1, αx = α2,1, 1x = 1, zx = [0], kx = dx. Now (16)
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known a priori. The block recursive structure of equations (13) to (16) in Proposi-
tion 2 suggest the following algorithm. Pick as x = 1 the state which generates the
lowest flow income wz(x). Then, recursively at each stage j = 2, . . . , N , pick each
of the remaining states x. For x, calculate the candidate c(x) per solving the system
of equations (14) to (16). Among all x, pick x = j to be that state, which produces
the lowest candidate c(x) and remove it from the pool of remaining states.

B Characterizing the consumption distribution: lem-
mas, propositions and proofs.

Proposition 12. A stationary distribution D solves the following system of equa-

tions

−αx,xµx = fx+1,x(Tx+1) +
∑
x̃<x

αx̃,x

(
µx̃ +

∑
x′:x̃<x′≤x

∫ Tx′

t=0

fx′,x̃(t)dt

)
(88)

0 < t ≤ T (x), x̃ < x : ḟx,x̃(t) =
∑
x′<x

αx′,x̃fx,x′(t) (89)

t = 0, x̃ < x : fx,x̃(0) = αx,x̃µx + fx+1,x̃(Tx+1) (90)

if x̃ ≥ x or t > T (x) fx,x̃(t) = 0. (91)

This follows from straightforward accounting of the various flows. We note that

reads as
c(x) = wz(2)− α2,1c(x)

1

r + g − α1,1

which can be easily solved for c(x),

c(x) =
r + g − α1,1

r + g − α1,1 + α2,1
wz(2)

For example, when N = 2 and z(1) = 0, and with ζ = z(2) = ζ, ν = α1,2 = −α1,1, ξ = z2,1 as
well as σ = 1 and thus g = ρ− r, we have c(1) = 0 and

c(2) =
ρ+ ν

ρ+ ν + ξ
wζ
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the system of ODE’s in (89) can be stated more compactly as (24).

Lemma 3. Let µ̄x denote the unconditional probability of being in state x. Let

µ̄ = [µ̄1, . . . , µ̄N ]
′.

1. The unconditional probabilities solve

0 = A′µ̄ and
∑
x

µ̄x = 1 (92)

2. A distribution D is a stationary distribution if and only if it satisfies Proposi-

tion 12 and whose unconditional probabilities µ̄x of being in state x,

µ̄x = µx +
∑
x′>x

∫ Tx′

t=0

fx′,x(t)dt (93)

sum to unity. The unconditional probabilities then satisfy (92).

3. Given equation (93), equation (88) is equivalent to

−αx,xµx = fx+1,x(Tx+1) +
∑
x̃<x

αx̃,x

(
µ̄x̃ −

∑
x′>x

∫ Tx′

t=0

fx′,x̃(t)dt

)
(94)

Proof. Equation (92) is the usual property of stationary distributions for continuous-
time finite-state Markov processes. Equation (93) is accounting for all the possibil-
ities. It conversely implies that the marginal unconditional probabilities µ̄x cal-
culated from a stationary distribution D satisfy (92): beyond that restriction and
Proposition 12 there is nothing else to satisfy. Finally, rewrite equation (93) for x̃
rather than x. For any x > x̃, this equation then implies

µx̃ +
∑

x′:x̃<x′≤x

∫ Tx′

t=0

fx′,x̃(t)dt = µ̄x̃ −
∑
x′>x

∫ Tx′

t=0

fx′,x̃(t)dt (95)

Plugging this into equation (88) delivers (94) and vice versa.

Proof of Proposition 4. 1. Note that µ̄x ≥ µx per (93), since fx′,x(t) ≥ 0.
Thus, if µ̄x = 0, then µx = 0, since µx ≥ 0. Since consumption is only
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drifting down, it follows41 that fx,x′(t) = 0 for all t, all x > x̄ and all x′ < x.

2. Note that fx′,x̄(t) = 0 for all x′ > x̄. Equation (94) at x = x̄ then reduces to

0 = αx̄,x̄µx̄ +
∑
x̃<x̄

αx̃,x̄µ̄x̃ (96)

Compare this to the equation for the unconditional probability µ̄x̄,

0 = αx̄,x̄µ̄x̄ +
∑
x̃ ̸=x̄

αx̃,x̄µ̄x̃ (97)

and recall that αx̄,x̄ ̸= 0 as well as µ̄x̃ = 0 for x̃ > x̄. The equation µx̄ = µ̄x̄

now follows.

3. (a) Note that fx(0) can be calculated via (90), since all other terms are
known per by recursivity. The result is unique.

(b) (27) is the unique solution to (24) or, equivalently (24), given the initial
condition fx(0).

(c) Equation (28) is equation (94) stated for x − 1 rather than x. Note that
all other terms are known by recursivity and recall that αx−1,x−1 < 0 by
assumption.

The resulting D satisfies Proposition 12 as well as Lemma 3 and thus is a sta-
tionary distribution satisfying (93) by construction. The calculation for D is unique.
Thus, this is the unique stationary distribution satisfying (93) by the third part of
Lemma 3.
To establish (29), define

gx(s) =

∫ s

t=0

fx(t)dt (98)

41A more formal argument can be made by first establishing step 3 of the corollary.
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We seek to calculate gx(T (x)). Per (24), ḟx(t) = A′
xfx(t). Thus,

A′
xgx(s) =

∫ s

t=0

A′
xfx(t)dt

=

∫ s

t=0

ḟx(t)dt

= fx(s)− fx(0)

= (exp(A′
xs)− Ix)fx(0)

where the last equality follows with (27). The result now obtains for s = T (x).

Proof of Proposition 5. The corollary follows from proper accounting and the con-
sumption dynamics in Proposition 2. It is clear that the mass points are as stated.
For the density, calculate instead the cdf Φ first. It is given by

Φ(c) = Φ(c(x− 1)) +
∑
x′<x

∫ t(c)

0

fx,x′(t)dt (99)

The expression for the density in (30) follows directly by taking the derivative and
the dependence of the upper bound of the integral on t(c). With equation (30), we
seek to explicitly calculate aggregate consumption

Cr =

∫ c(N)

c(1)

cϕr(c)dc (100)

We follow a similar strategy as the proof for (29). Note that the integral expressions
in (100) can be rewritten as∫ c(x)

c(x−1)

fx(t(c))

g
dc = c(x)hx(T (x)) (101)

where
hx(s) =

∫ s

0

e−gtfx(t)dt (102)

using the transformation of variable from c to t(c)42. Recall that ḟx(t) = A′
xfx(t)

42Thus, dt = dc/(cg) or c(x)e−gtdt = dc/g.
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per equation (24). Thus, using integration by parts as well as the explicit solution
(27) to (24),

A′
xhx(s) =

∫ s

0

e−gtA′
xfx(t)dt

=

∫ s

0

e−gtḟx(t)dt

= e−gtfx(t) |s0 +g

∫ s

0

e−gtfx(t)dt

=
(
e−gs exp(A′

xs)− Ix
)
fx(0) + ghx(s)

or
Dxhx(s) = (Ix − exp(−Dxs))fx(0) (103)

For s = T (x) and with (100), we obtain (31).

C Aggregate Capital Demand

C.1 General Production Function

Proposition 13. Suppose that FK is strictly convex. Then normalized capital de-

mand κd(r) is strictly decreasing in r.

Proof. Define f(K) = F (K, 1) (within this proof). Due to constant returns to
scale, F (K,L) = f(K/L)L. Equation (39) can be rewritten as w(K) = f(K) −
f ′(K)K. Due to the strict concavity of F , capital demand K(r) characterized by
(38) is strictly decreasing in r. Therefore κd is strictly decreasing if

g(K) =
w(K)

K
=

f(K)

K
− f ′(K) (104)

is strictly decreasing in K, since g(K(r)) = 1/κd(r).
With f(0) = 0 and by the mean value theorem, there is some 0 < K̃ < K so

that f(K) = Kf ′(K̃). Applying the mean value theorem to f ′, there is some K̂

with K̃ < K̂ < K so that f ′(K)− f ′(K̃) = (K − K̃)f ′′(K̂). Since FK is strictly
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convex, so is f ′, i.e., f ′′ is strictly increasing. Thus, f ′′(K̂) < f ′′(K). Combining,

g′(K) = −f(K)

K2
+

f ′(K)

K
− f ′′(K)

=
f ′(K)− f ′(K̃)

K
− f ′′(K)

= f ′′(K̂)− f ′′(K) < 0

C.2 CES Production Function

The next proposition characterizes κd(r) for a general CES production function.

Proposition 14. Suppose that F is of the CES variety,

F (K,L) =
(
θK1− 1

η + (1− θ)L1− 1
η

) η
η−1

= (θKν + (1− θ)Lν)
1
ν (105)

where the elasticity of substitution η satisfies 0 < η < ∞ and thus ν ∈ (−∞, 1).43

Define

r̆ =

{
θ

η
η−1 − δ, if η ̸= 1

−δ, if η = 1
(106)

Note that r̆ ≥ −δ.

1. Capital demand Kd(r) satisfying FK(K
d(r), 1)−δ = r (and thus normalized

capital demand κd(r) = Kd(r)/w(r)) is well-defined for the range of interest

rates r:

(a) For η ∈ [1,∞) the interval is given by r ∈ (r̆,∞).

(b) For η ∈ (0, 1), the interval is given by r ∈ (−δ, r̆).

2. On the range where Kd(r) is defined, normalized capital demand is given by

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)η−1 − θ
] (107)

43For η = 1, this is the Cobb-Douglas production function F (K,L) = KθL1−θ.
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3. For η ∈ [1,∞), normalized capital demand is strictly decreasing in r , with

limr→r̆ κ
d(r) = ∞ and limr→∞ κd(r) = 0.

4. For η ∈ (0, 1), κd(r) is downward sloping on (−δ, η
1

1−η θ
η

η−1 −δ] and upward-

sloping on [η
1

1−η θ
η

η−1 − δ, r̆). Since η ∈ (0, 1) we have η
1

1−η ∈ (0, 1) and

thus both sub-intervals are nonempty. Furthermore, limr→−δ κ
d(r) = ∞ and

limr→r̆ κ
d(r) = ∞.

5. For η = 0 (Leontieff production), κd(r) is strictly increasing on its entire

domain r ∈ (−δ, 1− δ), with limr→−δ κ
d(r) = 1 and limr→1−δ κ

d(r) = ∞.

Proof. For ease of notation define ν = 1 − 1
η
∈ (−∞, 1). Thus the production

function is given by
F (K,L) = (θKν + (1− θ)Lν)

1
ν

and the marginal products (in equilibrium equal to factor prices) are given by

FK(K, 1) = θ
(
θ + (1− θ)K−ν

) 1−ν
ν = r + δ (108)

FL(K, 1) = (1− θ) (θKν + (1− θ))
1−ν
ν = w (109)

1. For the first part, we note that Kd(r) = K is defined through the equation
(108). First consider η > 1 and thus ν ∈ (0, 1). In that case FK(K, 1) is
strictly decreasing and

lim
K→0

FK(K, 1) = ∞

lim
K→∞

FK(K, 1) = θ
1
ν

Therefore, equation (108) has a solution if and only if

θ
1
ν < r + δ

The unique solution Kd(r) is thus well-defined on the interval r ∈ (r̆,∞).

Now consider 0 < η < 1 and thus ν ∈ (−∞, 0). Then FK(K, 1) is still
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strictly decreasing, with

lim
K→0

FK(K, 1) = θ
1
ν < ∞

lim
K→∞

FK(K, 1) = 0

and equation (108) has a unique solution if and only if

θ
1
ν > r + δ

Thus, for ν ∈ (−∞, 0), we have that Kd(r) is well-defined on r ∈ (−δ, r̆),

where r̆ = θ
1
ν − δ > −δ.

Finally, for the Cobb-Douglas case η = 1 or ν = 0, we have

FK(K, 1) = θKθ−1

with

lim
K→0

FK(K, 1) = ∞

lim
K→∞

FK(K, 1) = 0

Thus Kd(r) is well-defined on all of r ∈ (−δ,∞).

2. Now we derive κd(r) = Kd(r)
w(r)

on the interval of interest rates for which Kd(r)

is defined. From equations (108) and (109), we note that

r + δ

w
=

FK(K, 1)

FL(K, 1)
=

θKν−1

(1− θ)
=

θ

1− θ
wν−1κν−1

and thus

κ =

[
θ

r+δ
wν

1− θ

] 1
1−ν

(110)

We can express wν in terms of r from equation (109) as

wν = (1− θ)ν (θKν + (1− θ))1−ν (111)
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Rewrite (108) as

Kν =
(1− θ)[

r+δ
θ

] ν
1−ν − θ

Use it to substitute Kν in equation (111) to obtain

wν = (1− θ)

(
θ[

r+δ
θ

] ν
1−ν − θ

+ 1

)1−ν

=
(1− θ)

[
θ

r+δ

]−ν([
r+δ
θ

] ν
1−ν − θ

)1−ν

Inserting wν back into equation (110) and exploiting the relationship ν
1−ν

=

η − 1 gives the expression (107) for κd(r) in the proposition.

3. For the case η ≥ 1 we have η − 1 ≥ 0 and the properties of κd(r) stated in
the proposition follow from direct inspection of equation (107).

4. Suppose that η ∈ (0, 1) or, equivalently, ν < 0. Inspecting equation (107)
and noting that

(
r̆+δ
θ

)η−1
= θ yields

lim
r→−δ

κd(r) = lim
r→r̆

κd(r) = ∞

since κd(r) is finite on (−δ, r̆), it follows that κd(r) is non-monotone on its
domain. κd(r) is decreasing, if and only if 1/κd(r) is increasing. The deriva-
tive d(r) of

1/κd(r) =

(
r + δ

θ

)η

− r − δ (112)

is

d(r) =
η

θ

(
r + δ

θ

)η−1

− 1 (113)

and is decreasing in r. Thus, d(r) > 0 and κd(r) is decreasing, if and only if
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r < r̂, where r̂ solves d(r̂) = 0, i.e.,

r̂ = θ

(
θ

η

) 1
η−1

− δ (114)

This delivers the downward-sloping and upward-sloping segmentation of (−δ, r̆),
as stated in the proposition. Since η ∈ (0, 1) we have η

1
1−η ∈ (0, 1) and thus

both intervals above are nonempty.

5. For the Leontieff case, η = 0, and thus

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)−1 − θ
] =

1

1− (r + δ)

and the stated properties in the proposition directly follow.

D Aggregate Capital Supply

D.1 General Theoretical Properties

In this subsection, we provide the general characterization of aggregate consump-
tion as a function of the interest rate. We now note explicitly the dependence of the
wage w on r. The following lemma is needed in preparation.

Lemma 4. Let −αmin < r < ρ. Then

kx,t(x
′) ≤ κ̄sw (115)

where

κ̄s =
σz(N)

ρ− r
< ∞ (116)

Proof. Since r < ρ, the agents with x = N and the highest income do not hold any
capital for financing their own consumption and only set capital aside for insurance
purposes in case of dropping to a lower state. Lemma 2 together with (85) guarantee
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that kx,t(x′) ≤ kN(x
′). In order to find a bound for these values, consider instead a

two-state process, where the agent oscillates between income z(N)w and zero and
where the transition from zero back to z(N)w happens at rate ν = αmin. Suppose
that the consumption in the high-income state takes the same value c(N) as before.
For that two-state process and as in equation (18) of section 3.3, the insurance
capital needed to be set aside in the high-income state is

k̃ =

∫ ∞

s=0

e−(r+g+ν)sds c(N) =
c(N)

r + g + ν
(117)

where g = g(r) = (ρ − r)/σ. Since the agent in the original specification transits
back to state N at least at rate αmin and makes income no less than zero, regardless
of the state, it follows that the agent needs to set aside less insurance capital in
the original specification in state N and for any x′ than in the high-income state in
this “worst case scenario” two-state comparison, i.e., kN(x′) ≤ k̃ for all x′. Since
r > −αmin and since c(N) ≤ z(N) due to r < ρ, the bound follows.

Lemma 5. 1. C(r) is continuously differentiable in r ∈ (−αmin, ρ).

2. C(r)− w(r) has the same sign as r. In particular, C(0) = w(0).

3. −C(r)/w(r) converges to a strictly positive and finite value, as r → −αmin.

4. κs(r) = (C(r)/w(r)− 1)/r satisfies 0 ≤ κs(r) ≤ κ̄s, with κ̄s given in (116).

Proof of Lemma 5. 1. The fact that C(r) is continuously differentiable follows
from the implicit function theorem since all equations in Propositions 2, 4 and
5 are differentiable in r as well as in the endogenous objects to be calculated
and since Proposition 3 and its proof guarantee the invertibility of the relevant
Jacobian in the endogenous objects.

2. We have characterized the stationary distribution in terms of (x, t) in (23),
where x characterizes the current consumption interval ct ∈ (c(x− 1), c(x)]

and t denotes the time drifting down from c(x), rather than the current state x̃
and current capital holdings k = kx,t(x̃). These imply the decision rules de-
cision rules for consumption c(x̃, k) = e−gtc(x), capital depletion k̇(x̃, k) =
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k̇x,t(x̃) and insurance k(x′; x̃, k) = kx,t(x
′). The budget constraint (3) in

terms of the decision rules in the original state space

c(x̃, k) + k̇(x̃, k) +
∑
x′ ̸=x̃

αx̃,x′(k(x′; x̃, k)− k) = rk + wz(x̃) (118)

can therefore be rewritten as

e−gtc(x) + k̇x,t(x̃) +
∑
x′ ̸=x̃

αx̃,x′(kx,t(x
′)− k) = rkx,t(x̃) + wz(x̃) (119)

in terms of (x, t) as in (23) as well as the current state x̃. Integrate this bud-
get constraint with the stationary distribution (23) across all x, t, x̃. Due to
stationarity, the integrals over capital depletion terms plus insurance terms
must be zero, as there cannot be capital depletion or insurance in the aggre-
gate, i.e., these terms reflect cross-population redistributions. Note that C(r)

is the integral over the consumption terms e−gtc(x). Let Ks(r) denote the
integral over the capital holdings kx,t(x̃).44 Since average labor productivity
is normalized to be 1, it follows that

C(r) = rKs(r) + w (120)

By Lemma 4, kx,t(x̃) ≤ k̄, where k̄ < ∞ is defined in equation (116). Since
0 < kx,t(x̃) except on a null set, it follows that

0 < Ks(r) ≤ κ̄sw (121)

for all r ∈ (−αmin, ρ). Equation (120) now implies the claim.

3. By the first part of the lemma, C(r) and, analogously, Ks(r) are differen-
tiable functions of r ∈ (−αmin, ρ). Note that the solutions for consumption
and capital in Propositions 2, 4, and 5 are homogeneous of degree 1 in w.
Therefore, C(r)/w(r) is differentiable in r ∈ (−αmin, ρ), establish the claim
of a finite limit. Equation (120) and the bound (121) together with the degree-

44The superscript “s” denotes that this will be capital supply; see equation (42).
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1 homogeneity of Ks(r) in s imply that

0 < −C(r)/w(r) < δκ̄s, (122)

4. The last part now follows immediately, completing the proof.

E Equilibrium and Proofs of Propositions 9 and 10

Proof of Proposition 9. The first step of the proof establishes that normalized cap-
ital supply is well-defined and continuous on r ∈ (−δ, ρ). Recall that normalized
capital supply is κs(r) = ξ/((g+ν)(r+g+ν+ξ)) with g = (ρ−r)/σ, see equation
(48). It is evidently continuous and well-defined on (−δ, ρ) as long as both terms of
the denominator are strictly positive. Since r < ρ, and thus g > 0, the first term in
the denominator of κs is always strictly positive. The second term is positive since
g > 0 and r + ν + ξ > δ + ν + ξ > −min ν, ξ + ν + ξ > 0 per assumption 3.

By Assumption 3, we have κd(r = ρ) < κs(r = ρ). Since κs(r = −δ) < ∞ =

κd(r = −δ), it follows that κs and κd intersect at least once in (−δ, ρ), establishing
existence of a stationary equilibrium. Uniqueness follows if κs(r) is increasing
(given that κd(r) is strictly decreasing). The derivative of κs(r) is given by

dκs(r)

dr
= ξ

[
2
σ
− 1
] [

ρ−r
σ

+ ν
]
+ ξ+r

σ[(
ξ + ν + ρ−r

σ
+ r
) (

ν + ρ−r
σ

)]2
A sufficient condition for this expression to be positive is σ < 1 (part 1 of the
proposition) or σ ∈ (1, 2] and ξ ≥ δ (part 2a of the proposition). Part 2b follows
from the fact that equation (48) is a quadratic equation and thus has at most two
solutions (and we have already established that under the assumptions made, it
has at least one solution). The numerical example in the main text shows that the
statement in 2b of the proposition is not vacuous.

Proof of Proposition 10. The proof consists of two parts. For the first, we use
Proposition 2 to calculate the capital vector kN , when r = ρ. That proposition
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calculates c(N), when agents start with zero capital. We then show that the capital
vector of an agent has to be at least as high as kN and thus non-negative if the
agent consumes at least c(N). For the second, we use Proposition 4 to calculate the
stationary distribution when r → ρ and agents in state N do not have capital. This
delivers the limit capital supply limr→ρ κ

s(r). We then argue that limr→ρ κ
s(r) ≤

κd(r) implies that all agents consume at least c(N).

1. Consider the results in Proposition 2 for r = ρ. In that case, g = 0 and
e−CxT (x) = e−BxT (x) = 0x−1,x−1. The equations for c(N) and kN read

kN = dN = c(N)C−1
N 1N −B−1

N wzN (123)

c(N) = wz(N)− αNkN (124)

Pre-multiplying equation (123) with BN = CN = ρIN −AN , these equations
can be written as[

ρIN − AN ∗
−αN ∗

][
kN

0

]
= c(N)1N+1 − w

[
zN

z(N)

]
(125)

where 1N+1 denotes a vector of ones of length N . where “∗” denotes that
the coefficients in that last column are arbitrary, as they multiply zero. Recall
that c(N) was defined as that level of consumption in state N , if k = 0. We
might as well write (125) as

(ρIN+1 − A)

[
kN

0

]
= c(N)1N+1 − wz (126)

where IN+1 is the identity matrix of size N ×N . Now note that

(A− ρIN+1)1N+1 = −ρ1N+1 (127)

Thus, for c ≥ c(N), the vector

k =

[
kN

0

]
+

c− c(N)

ρ
1N+1 (128)
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is non-negative and is the solution to (53).

2. The main purpose of this part is to establish that

lim
r→ρ

κs(r)w(r) = lim
r→ρ

Ks(r) =
[
kN , 0

]
µ̄, (129)

which may seem obvious. The argument relies on the definition of aggregate
capital supply via the calculation of the stationary distribution in Proposi-
tion 4, which we now provide. That proposition assumes that agents in state
N do not hold capital. For r → ρ, the proposition delivers µN = µ̄N and

fN(t) = exp(A′
N t)


αN,1

...
αN,N−1

 µ̄N , t ∈ [0,∞).

Equation (29) delivers
∫∞
0

fN(t)dt = (A′
N)

−1
[
αN,1, · · · αN,N−1

]′
µ̄N .

Since µ̄ is the stationary measure, rewrite the first N − 1 rows of 0 = A′µ̄ as

0 = A′
N


µ̄1

...
µ̄N−1

−


αN,1

...
αN,N−1

 µ̄N

= A′
N




µ̄1

...
µ̄N−1

−
∫ ∞

t=0

fN(t)dt


Thus, (28) and (25) deliver recursively, starting from x = N ,

µ(x− 1) =
−1

αx−1,x−1

∑
x̃<x−1

αx̃,x−1

(
µ̄x̃ −

∫ ∞

t=0

fN,x̃(t)dt

)
= 0

fx−1 = 0x−1

completing the description of the stationary distribution D for r = ρ, when
k = 0 for agents in state N . It implies that agents are either in state N with
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probability µ̄N and holding zero capital or in some state x < N with probabil-
ity
∫∞
0

fN,x(t)dt = µ̄(x), “drifting down” at zero drift from c(N) and holding
capital kN(x). Total capital supply is therefore Ks(ρ) =

[
kN , 0

]
µ̄, thus

finally justifying (129). Therefore, take the inner product of (126) with the
stationary distribution µ̄, i.e. pre-multiply (126) with the row vector µ̄′, and
exploit µ̄′A = 0N+1 and µ̄′z = 1 to find

ρKs(ρ) = µ̄′ (ρIN+1 − A)

[
kN

0

]
= c(N)− w

Compare this to equation (54), defining c̄ from capital demand. The condition
κs(ρ) ≤ κd(ρ) or, equivalently, Ks(ρ) ≤ Kd(ρ) now implies that

c(N) ≤ c̄ (130)

which is the desired inequality. Since agents always end up in state N with
some positive probability and have at least zero capital there, it follows that
all agents consume at least c(N), validating the conclusions of the first part.

F Poisson Transition Matrix

The complete matrix (αx,x′) used in Section 7 is given by:

−0.232 0.060 0.093 0.060 0.018 0.001

0.018 −0.190 0.093 0.060 0.018 0.001

0.018 0.060 −0.157 0.060 0.018 0.001

0.018 0.060 0.093 −0.190 0.018 0.001

0.018 0.060 0.093 0.060 −0.232 0.001

0.020 0.020 0.020 0.020 0.020 −0.100


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