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ABSTRACT

Smart-home technologies have been heralded as an important way to increase energy 
conservation. While in vitro engineering estimates provide broad optimism, little has been done 
to explore whether such estimates scale beyond the lab. We estimate the causal impact of smart 
thermostats on energy use via two novel framed field experiments in which a random subset of 
treated households have a smart thermostat installed in their home. Examining 18 months of 
associated high-frequency data on household energy consumption, yielding more than 16 million 
hourly electricity and daily natural gas observations, we find little evidence that smart thermostats 
have a statistically or economically significant effect on energy use. We explore potential 
mechanisms using almost four million observations of system events including human 
interactions with their smart thermostat. Results indicate that user behavior dampens energy 
savings and explains the discrepancy between estimates from engineering models, which assume 
a perfectly compliant subject, and actual households, who are occupied by users acting in accord 
with behavioral economists’ conjectures. In this manner, our data document a keen threat to the 
scalability of new user-based technologies.
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Innovation is the market introduction of a technical or organisational novelty, not just
its invention - Joseph Schumpeter

Nearly every problem has been solved by someone, somewhere. The frustration is that
we can’t seem to replicate [those solutions] anywhere else. – President Bill Clinton

1 Introduction

Economists have long argued that an essential driver of economic growth is innovation (see,
e.g. Romer, 1990; Aghion and Howitt, 1992). Indeed, in his seminal work, Young (1995)
argues that differences in production technologies represent an important source of dispari-
ties in patterns of long-run economic growth across countries. For instance, some estimates
suggest that roughly 50 percent of U.S. annual GDP growth can be attributed to innovation
(U.S. Chamber of Commerce Foundation, 2012). Not surprisingly, policymakers have thus
focused a great deal of attention on policies designed to stimulate innovation and the sup-
ply of new technologies. Yet, as Schumpeter’s quote in the epigraph suggests, innovation
includes not only creation, but also the diffusion of new technologies and products in the
marketplace. Schumpeter’s insight has motivated various disciplines to explore the diffusion
process (Skinner and Staiger, 2007). For their part, economists have explored both pecuniary
and non-pecuniary aspects of technology adoption (see, e.g., the excellent survey by Hall,
2005).

Given that an important policy input is to measure the total impact of new technologies,
Schumpeter’s insight is unduly narrow. Beyond diffusion, there are many technologies whose
impacts depend upon appropriate use upon adoption. In this manner, while “innovation
is the market introduction of a technical or organisational novelty, not just its invention,” an
effective innovation should be measured by its returns at scale. A nascent literature has begun
to recognize that scale underlies all social and technological progress, since deeply impactful
innovations are those that reach the largest number of people and remain effective at scale
(List, 2022).

As President Clinton noted in the epigraph, solutions in one setting are often frustrated
when transferred to another. We denote this frustration as part of the scale-up problem (Al-
Ubaydli, List and Suskind, 2017; Al-Ubaydli et al., 2017; Muralidharan and Niehaus, 2017),
which revolves around several important questions such as do research findings persist in
larger markets and broader settings? When we scale the intervention to these populations,
should we expect the same level of efficacy that we observed in the small-scale setting? If not,
then what are the important threats to scalability? Without a proper understanding of these,
and related questions, the scale-up problem can lead to a vast waste of resources, a missed
opportunity to improve people’s lives, and a diminution in the public’s trust in the scientific
method’s ability to contribute to policymaking (Al-Ubaydli, List and Suskind, 2020).

In this study, we explore the scale-up problem for an important class of new technologies
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in the energy space that leverage “smart” functionalities. Partnering with Opower and Hon-
eywell in conjunction with Pacific Gas and Electric (PG&E) – the second largest residential
energy provider in the United States – our goal is to explore the effect that smart thermostats
have on home energy usage. To do so, we examine data from two framed field experiments,
wherein the 1,385 households that volunteered to participate in the study were randomized
into either a treatment group that received free installation of a Honeywell two-way pro-
grammable smart thermostat or a control group that did not receive such a smart device and
kept their existing thermostat.1 We evaluate the effect of the smart thermostat on subsequent
energy consumption using high-frequency data over an 18-month period that includes more
than 16 million hourly electricity use records and almost 700 thousand daily observations of
natural gas consumption.

Non-experimental methods obtain estimates that predict substantial energy savings from the
adoption of smart thermostats. For instance, the ecobee (2019) website touts savings of "up
to 23%" on heating and cooling costs. The Nest (2019) website advertises a 10 to 12% sav-
ings on heating and a 15% savings on cooling costs. These claims inflate savings expectations
by using heating- and cooling-specific energy use as the denominator and are agnostic to
the local climate. However, even more pertinent engineering estimates from the California
Technical Forum also predict that smart thermostats will produce substantial reductions in
energy consumption. The most relevant estimates to our experimental sample come from
Department of Energy (DOE) Technical Reference Manuals (TRM), which are annual reports
produced by energy providers and regulators (DOE, 2017).2 These reports primarily rely on
engineering simulations and survey data to predict the effects of energy efficiency programs
at scale. These predictions are then used by energy providers to justify expenditures on en-
ergy efficiency programs. Mapping these predictions for Californians, which vary by climate
zone and the size of a home, to our experimental samples we find that savings of 1.3% and
4.0% are respectively predicted for overall electricity and natural gas consumption (Califor-
nia Municipal Utilities Association, 2017).

Our experimental estimates provide several insights into whether the petri dish estimates of
engineers hold when technology is scaled beyond the lab. First, we find that smart ther-
mostats fail to deliver the expected energy savings; our results show that such technologies
have neither a statistically nor economically significant effect on energy use. For example,
using a specification that includes household and time fixed effects, as well as controls for

1In addition to the ability to schedule permanent temperature setpoints and interact with the thermostat
remotely, the smart thermostat given to households in our experiment provided households with a social norm
framing of their setpoint choices. Framing of setpoints is an increasingly common feature of more modern
smart thermostats, and there is an extensive literature documenting the responsiveness of household energy
consumption to social norm framing (e.g., Allcott, 2011; Ferraro and Price, 2013; Ayres, Raseman and Shih,
2012; Costa and Kahn, 2013; Allcott and Rogers, 2014; Dolan and Metcalfe, 2015). Given this finding and the
Peffer et al. (2013) result that most individuals do not use the programmable features of their thermostats as
intended, this feature should provide the best chance for the smart thermostats used in our experiment to cause
a reduction in energy consumption.

2A related set of econometric estimates can be found in white papers produced by utility-commissioned
consultants. Both these and the engineering approaches have known issues. See Allcott and Greenstone (2012)
for a general discussion, and Section 2 for a review of the smart thermostat-specific literature.
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weather, our point estimates suggest that smart thermostats actually increase electricity and
gas consumption by 2.3% and 4.2%, respectively. The failure of engineering estimates to ac-
curately predict measured responses is broadly consistent with a growing body of research
that documents real-world effects of energy efficient technology that pale in comparison to
the effects predicted by engineers (Davis, Fuchs and Gertler, 2014; Levinson, 2016; Zivin
and Novan, 2016; Houde and Aldy, 2017; Fowlie, Greenstone and Wolfram, 2018; Alpízar,
Bernedo and Ferraro, 2019; Davis, Martinez and Taboada, 2020; Christensen et al., 2021).

Second, to investigate whether this aggregate result masks significant, but offsetting, hetero-
geneous effects that may have implications for how the intervention scales to different set-
tings, we estimate the model across different subsamples such as day of the week, hour of the
day, by ambient temperature/humidity quintiles, and when there is a peak-load alert. We find
almost no evidence of heterogeneous treatment effects.3 The overall pattern across all our re-
sults consistently indicates that smart thermostats under-deliver on the savings promised by
engineers.

Third, to explore potential mechanisms that explain this pattern of results, we use almost four
million observations of treatment group heating, ventilation, and air conditioning (HVAC)
system activity and user interactions with their smart thermostat in the form of scheduled
temperature setpoints, temporary overrides, and HVAC system events. A key insight is that,
in aggregate, users frequently override permanently scheduled temperature setpoints. And,
when they do, the override settings are less energy efficient than the previously scheduled set-
point. Next, to more formally test the hypothesis that user behavior explains the discrepancy
between the decrease in energy use purported by the engineering studies and our experimen-
tal estimates, we categorize smart thermostat households into flexible user-type categories
based on how intensively they use the energy-saving features of their thermostat.4 In doing
so, we find that while some user types realize significant savings, engineering models fail to
capture how the majority of people actually use smart technologies and this limits the use-
fulness of their estimates in real-world settings. More specifically, people adopt the smart
technology but use its features in ways that undo the purported benefits, suggesting that
human behavior is a peril to scaling such technologies.

We view our results as speaking to several literatures and stakeholders. For example, for pol-
icymakers, empiricists, and theorists interested in scaling insights from the small to the large,
we present a novel case study that holds import for the recent evidence-based policy move-
ment. Over the past several decades, empirical methods have evolved to be a key contributor
to the scientific knowledge base from which policymakers draw insights. Indeed, in most
governmental circles, evidence-based programs were once an aspirational goal and now they

3Similar to other studies in the weather-energy use literature (Deschênes and Greenstone, 2011; Auffhammer
and Mansur, 2014), we find that temperature has a U-shaped impact on energy consumption, but that smart
thermostats do not attenuate this relationship. As climate change will result in more extreme temperature days,
smart thermostats are not a panacea for climate change mitigation.

4Specifically, we define types based on each household’s relative position in the distributions of permanent
setpoints and temporary overrides (e.g., high types are those above the median number of programmed setpoints
and low types are those below). For both measures, we vary the cutoff between high and low types.
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are the expectation (Abraham et al., 2017). Yet, whether, and to what extent, insights from
any research study scale to the level of the broader public is, in many situations, based on
blind faith. A recent literature has emerged in economics that explores the economic under-
pinnings of the scale-up problem (see, e.g., Al-Ubaydli, List and Suskind, 2020). Our results
pinpoint a key feature for user-based technologies; humans may not use the technology as
envisioned and assumed by engineers.5

In this sense, our framed field experiments and analysis of the underlying mechanisms that
drive our results provide fresh insights into a key issue that medical practitioners have grap-
pled with for centuries: patient non-adherence to prescribed medications. This problem has
spawned a large literature in the medical sciences regarding the best practices for improving
medication adherence, and the results are directly relevant to economists seeking to tackle
the key component of the scaling problem that arises in the efficacy of new technologies.
While distinct from the features that implementation scientists tend to focus on – how lack
of fidelity causes treatment effect sizes observed in research studies to diminish substantially
when the program is rolled out at larger scale (see, e.g., Kilbourne et al., 2007; Weiss, Bloom
and Brock, 2014; Supplee and Meyer, 2015; Supplee and Metz, 2015; Gottfredson et al., 2015;
Cheng et al., 2017; and in economics, Al-Ubaydli et al., 2017; Brandon, 2019) – we view our
work as complementing this literature in that it highlights the multi-dimensional nature of
the scale-up problem.

The non-adherence we highlight as the key hindrance to scaling engineering estimates occurs
because human behavior is not appropriately accounted for in those models. In their most
naive form, engineering studies compare the energy use of an HVAC system simulated under
two different scenarios: a smart thermostat optimally programmed for energy savings and a
traditional thermostat set to maintain a fixed temperature (Urban, Elliott and Sachs, 2012; Ur-
ban and Gomez, 2013; Daken, Meier and Frazee, 2016). Both the experimental and baseline
scenarios are unrealistic as they treat users as automaton and thus ignore how people actually
use their thermostats.6 As such, these studies estimate the upper bound on true energy sav-
ings. Thus, it is not surprising that device producers often justify their energy-saving claims
based on the results of engineering studies. In contrast, our study is based on a field experi-
ment that captures how individuals actually use both smart and traditional thermostats and
allows us to estimate real-world savings as opposed to a hypothetical upper-bound.

Moreover, issues with non-adherence are likely to be compounded at larger scales than our
framed field experiments. Even though our sample is externally valid with respect to base

5We are more concerned with “vertical” scaling (e.g., moving from the lab to the field) as opposed to “hori-
zontal” scaling (e.g., moving from one place or sample or another) (List, 2022). Allcott (2015) is an example of
the latter, but to the best of our knowledge, we are the first to examine the former in the smart technology space.

6For instance, the ecobee (2019) website makes the aforementioned claim of 23% in HVAC energy savings
from its smart thermostat relative to a constant temperature setting. This methodology is akin to implicitly
assuming ideal energy-conservation behavior in the treatment group and no optimizing behavior in the control
group.
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energy use, it is comprised of those who expressed interest in a smart thermostat.7 If selection
into our experiments is driven by anticipated energy savings (i.e., gains) then scaling adoption
of the smart thermostat would be less likely to yield the savings predicted by engineers and
policymakers. This, of course, is subject to future research because it assumes that such
households override setpoints more than households that are interested in the technology.

More generally, while null results like ours have posed a challenge for researchers in terms
of their informativeness (Abadie, 2020), we show that people’s interaction with the smart
technology is the reason why we observe the null effect and the resulting departure from en-
gineering model predictions. While our findings are “statistical” nulls, they are not “policy”
nulls because they are counter to widely-held prior beliefs based on engineering estimates,
and these estimates are driving policymakers and energy producers alike to subsidize smart
technologies based on misleading information. For example, according to the Environmental
Protection Agency (EPA), 170 energy providers subsidize the purchase of smart thermostats
(EPA, 2019). In 20 states, over half of all households are eligible for a smart thermostat rebate
(Bloomberg Finance L.P., 2019).8 These subsidies are justified both by the aforementioned
TRMs and the joint EPA and DOE ENERGY STAR program. This program grants certain
types of energy efficient technologies with a ENERGY STAR certification (Houde and Aldy,
2017). Energy providers then subsidize the purchase of certified products with funds that
would be better spent on more effective interventions.

Regarding energy efficiency policies more broadly, our results also speak to the literature on
the potential benefits of smart grid investments (Joskow, 2012). Between 2009 and 2014,
the DOE invested $7.9 billion in smart technologies under the Smart Grid Investment Grant
(SGIG) program by providing matching grants to competitively chosen projects (DOE, 2016).
Much like the smart thermostats we study, many of the grant funds were allocated to projects
that were justified on the basis of engineering estimates and targeted smart technologies that
rely on households conforming to the behavioral expectations of engineers.9 Our analysis
of the mechanisms underlying the effects of smart thermostats highlights one reason why
investments in these related smart grid technologies may fail to scale if they are applied more
broadly: because engineering models do not properly account for how individuals actually
use them.

The remainder of this study is organized as follows. In Section 2 we describe the details of the
field experiment, the sample of households in the study, and our data. The following section
formalizes our empirical specification. Section 4 presents our model estimates, and Section 5

7Based on data from the Energy Information Administration’s (EIA) Residential Energy Consumption Sur-
vey (RECS) for the year 2009, Californians eligible for our thermostats experiment used 1.2 kWh per hour. This
number is extremely similar to our sample, which ranges between 1.0 and 1.3. kWh per hour.

8In the most generous case, all of the residents in Nevada are eligible to receive a smart thermostat for free.
9A non-trivial fraction of the projects targeted the development and dissemination of technologies such as

smart thermostats that allow individuals to remotely communicate with their appliances. At the same time,
more than two-thirds of the grants went towards other projects such as outfitting households with complimen-
tary technologies that include smart meters and systems that allow utilities to better monitor and communicate
grid conditions to customers with the goal of influencing their consumption decisions (e.g., via demand response
messaging).
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explores the mechanisms that drive our findings. The final section concludes.

2 Field Experimental Design

Before discussing our experimental design, it is worthwhile to briefly summarize the current
literature pertaining to energy savings estimates. The existing econometric literature primar-
ily consists of white papers that thermostat producers use to claim energy savings of 10% or
more based on a combination of observational and experimental data (Apex Analytics, LLC,
2014, 2016; Aarish et al., 2015; Ho, 2014; Kelsven, Weber and Urbatsch, 2016; Nest Labs,
2014, 2015; Schellenberg, Lemarchand and Wein, 2017; Stewart and Jackson, 2015; Robin-
son et al., 2016; Ward, Stewart and Jackson, 2014). Importantly, to our best knowledge, few,
if any, of these have been subject to peer review. And, to varying degrees, all are unclear
about salient features of the study, have methodological flaws (primarily related to selection),
and/or draw incorrect conclusions from their estimates. These issues are likely to lead to
upwardly biased estimates of savings, thus it is not surprising that device manufacturers are
eager to advertise the results of these studies.10 Such studies have likely influenced energy
producer and federal policies on smart thermostats.

Exceptions in terms of both clarity and quality are the white papers due to Broaddus, Ryan
and Marrin (2016, 2018) and Park et al. (2017).11 However, in both cases, the observed out-
come is based on aggregate energy consumption data: Broaddus, Ryan and Marrin (2016,
2018) observe monthly energy billing data and Park et al. (2017) observe weekly smart meter
data. Following Agnew and Goldberg (2013), both studies include coarse measures to control
for ambient weather conditions: counts of heating and/or cooling degree days. In contrast
to the existing econometric literature, we use high-frequency energy use data to estimate
a DDIV model. Ghanem and Smith (2021) formalize the benefits of using high-frequency
hourly data over a more aggregate analog. They show that fixed effects estimators based on
aggregate data are inconsistent when there is high-frequency temporal heterogeneity in the
effects and/or confounders.

Accounting for this variation is particularly important in our context because smart ther-
mostats are designed to allow individuals to vary energy use in response to within-day changes

10The aforementioned Nest (2019) website claims of 10 to 15% in savings is based on an internal study.
Nest Labs (2015) reports estimates from a difference-in-differences (DD) regression model that compares the
monthly energy use of a self-selected group of households that were early adopters of the Nest smart thermostat
and enrolled in an energy-monitoring program to those who only enrolled in the monitoring program. The
study’s authors acknowledge potential sources of bias in their estimates, but fail to provide evidence that the
change in the energy use of their comparison group is a reasonable counterfactual for that of those who decide
to install a Nest.

11These studies acknowledge self-selection in the treatment group and estimate ITT models on all those
encouraged to install a smart thermostat in their experiment. The latter uses four different methodologies to
estimate the effect of a smart thermostat on energy use, including a small-scale field experiment that uses a
matched-pair randomization design to address selection after randomization. While significant, we note that
estimated savings effects in these studies are generally smaller than in the previously cited studies and in-line
with the predictions from the TRMs, on the order of 1% to 6%.
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in temperatures. Thus, in addition to our model specification addressing the selection issues
that bias much of the existing literature towards findings of significant savings, our high-
frequency data allows us to better control for differences in ambient weather conditions and
more accurately estimate our coefficient of interest than existing studies.12 With these advan-
tages in mind, we turn to our data generation procedure.

2.1 Smart Thermostat

The intervention in our framed field experiments occurs when a given household’s existing
thermostat is replaced by a smart device.13 Smart thermostats are designed to increase con-
sumer utility by improving the efficiency of the home’s HVAC system and reducing adjust-
ment costs. To these ends, the device in our experiment has two primary features common to
most smart thermostats. First, the thermostat allows the user to program an extensive sched-
ule of permanent temperature setpoints for each day of the week. Second, the user can either
interact with the device directly or remotely via a web portal or smartphone app. Both lower
the cost of adjusting temperature settings.14

While the effect of these features on energy usage is theoretically ambiguous depending the
schedule the user sets and how she interacts with the device, there are several additional
features of the thermostat used in our experiment that are designed to reduce energy con-
sumption compared to a traditional thermostat. First, our smart thermostat is able to learn
about how HVAC system operations affect indoor temperatures, then optimize the transition
between programmed temperature setpoints. Second, when choosing setpoints, users receive
messages that compare their settings to those of similar households. Analogous to the social
comparison module studied in Allcott (2011), the thermostat interface presents: (i) descrip-
tive norms with information on peer setpoint choices and (ii) injunctive norms with efficiency
ratings of setpoints. Third, the thermostat app interface is designed to facilitate toggling to a
less energy intensive setting when the user leaves home and toggling it back to the previous
setting when the user returns. Finally, when a user overrides a permanent setpoint to make a
temporary change that is more energy efficient than the scheduled one, she is prompted by a
query asking if she wants to make this more energy efficient setting permanent.15

12Novan, Smith and Zhou (2022) use similar high-frequency smart meter data to reexamine the effect of
building codes on energy use. In contrast to the existing literature (Levinson, 2016; Kotchen, 2017), which
analyzes lower-frequency data, the authors find that residential energy efficiency standards reduce electricity
consumption.

13Specifically, surrogates of Opower/Honeywell installed a Honeywell Z-Wave Touchscreen Thermostat that
communicates with a website portal and smartphone app designed and hosted by Opower. We do not observe
anything about the pre-existing thermostat.

14Appendix Section A provides a more detailed description of the device. Panel (a) of Appendix Figure
12 displays the thermostat and associated applications. Panel (b) shows a screen-shot of scheduling using the
smartphone app.

15Appendix Figure 13 highlights features of the smart thermostat. Panel (a) illustrates the social norm fram-
ing displayed when households choose setpoints. Panel (b) shows how households can remotely toggle the
thermostat in response to leaving and returning home via a smartphone or personal computer.
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Some newer smart thermostats have additional energy saving features.16 While we cannot
say whether our experiment tests the efficacy of all smart thermostats or the combination of
features in the experimental thermostat, we note that the thermostat in our experiment has
all the core features of current smart thermostat models. Additionally, the analysis in Section
5 indicates that individuals make use of these features and do so largely as intended. Taken
together, this suggests that our results are unlikely to be specific to the particular device
installed as part of the experiment.

2.2 The Framed Field Experiments

Subjects were recruited in public places (e.g., malls, markets, and festivals) in two waves (or
experiments) following the spirit of a framed field experiment (Harrison and List, 2004).17

Recruitment for the first field experiment took place across four counties in Northern Cali-
fornia from July through October of 2012. Subjects in the second experiment were recruited
from December of 2012 to February of 2013 in three Central California counties.18 Appendix
Figure 15 depicts the locations of homes in the experiments and provides visual evidence that
treatment and control groups are spatially balanced across locations.19

Figure 1 illustrates the execution of the field experiments. It describes the assignment of
households to treatment and control groups, as well as the subsequent installation decisions
of treatment households. A total of 1,379 eligible households agreed to participate in our
experiments: 815 as part of the Northern California experiment and 564 in the Central Cal-
ifornia experiment.20 They were randomized into either a treatment or control group. Af-
ter group assignment, the experimenter had no further contact with the total of 690 control
households across both experiments. The 689 total households assigned to the treatment
groups were offered the smart thermostat described in the previous section and installation
at no cost.

Professional installation of the smart technology is an important feature of our experiments

16For instance, Daken, Meier and Frazee (2016) explain that some smart thermostats use the location of user
cell phones to automatically adjust settings when users are away from home and/or optimize HVAC system
settings in response to local weather conditions.

17To be eligible, an individual had to own her residence and have central air conditioning, a smart phone,
and high-speed Internet. See Appendix Section I.1 for a summary of the eligibility requirements. For more
information on canvassing, see Appendix Section I.2 for the original recruitment and enrollment guide.

18Subjects for the experiment in Northern California were recruited from the greater San Fran-
cisco/Sacramento area (Contra Costa, San Joaquin, Solano, and Yolo counties). Households in the Central Cali-
fornia experiment are located in and around Fresno and Bakersfield (Fresno, Kern, and Madera counties).

19We formally test balance in Section 2.6 and fail to reject the null of spatial balance in the counties where
households are located.

20All household counts in this section are based on the households for which we observe electricity con-
sumption. Aggregating across both experiments, there are a total of 1,379 unique households in the electricity
sample, a total of 1,369 unique households in the natural gas samples, and a total of 1,385 unique households
across both energy-type samples. Stated another way, we observe 16 households with electricity consumption
data, but not natural gas information and another six households that consume natural gas, but for which we
have no electricity consumption information.
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over the encouragement or self-installation designs common to other experiments. Peffer
et al. (2011, 2013) provide evidence that programmable thermostats are often installed incor-
rectly and list flawed installation as a reason they are not more effective. Additionally, Apex
Analytics, LLC (2016) find that although cheaper, their self-installation design "led to sub-
stantial attrition among interested and qualified customers." In contrast to the 35% take-up
rate in their experiment, on average across our experiments, the smart thermostat was suc-
cessfully installed in 73% of treatment group homes. Of the remaining treatment homes, 19%
percent declined, and 8% had complications that prevented installation (e.g., compatibility
issues).21

Figure 1: Sample Randomization

N = 815

398

Control

417

45

Failed Install

98

Decline

274

Install

Treatment

(a) Northern CA Experiment

N = 564

292

Control

272

13

Failed Install

30

Decline

229

Install

Treatment

(b) Central CA Experiment

2.3 Energy Data

All households in the study were equipped with smart meters that enabled PG&E to record
household-level data on hourly electricity use and daily natural gas consumption. The quan-
tity of electricity consumed is measured in kilowatt hours (kWh), and the unit of measure-
ment for natural gas is a therm (thm).22 As we cannot observe temperature setpoints directly
for control households with a traditional thermostat, and energy is the policy-relevant good,
these measures are the main outcome variables in our analyses. In total, we observe an aver-
age of 11,908 hourly electricity use decisions for the 1,379 households in electricity sample
and 495 natural gas use decisions for the 1,369 households in the natural gas sample over an
18 month period from July 2012 through December 2013.

21Appendix Figure 14 plots the cumulative density function (CDF) of the difference in time between assign-
ment and installation dates that illustrates how long it takes households in the treated groups to install the smart
thermostat (conditional on eventual installation of the smart thermostat). Most households had the smart ther-
mostat installed shortly after being assigned to the treatment group: 50% of households had their thermostat
installed within 5 days, and 95% had it installed within 30 days.

22A therm is a unit of heat energy equivalent to 100,000 BTUs.
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2.4 Timing

Figure 2 presents two visual depictions of important timing issues associated with the exper-
iments and data. Panel (a) of Figure 2 plots the flow of households into treatment and control
groups over time. The horizontal axis spans the period of time over which we observe energy
data. The grey shaded areas illustrate the periods of subject recruitment in each of the two
experiments. The subfigure shows that treatment and control households are temporally bal-
anced, as they were assigned at similar rates over time, and that there is very little attrition
over the year and a half study period.23

Unfortunately, we only observe energy readings starting on the first day of recruitment in
Northern California experiment. Panel (b) illustrates the effect of this issue by plotting the
number of electricity readings per day for each experiment relative to event time (where as-
signment to the treatment or control group occurs at time zero).24 The figure shows that we
do not observe a substantial pre-period for all households in the Northern California experi-
ment, but we do for the Central California experiment. We report estimates in Section 4 both
separately by experiment and based on a sample that combines data from both experiments
to account for this issue. Estimates are not qualitatively different across specifications.

Figure 2: Timing
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23We formally test balance in Section 2.6 and fail to reject the null of temporal balance in the month of
assignment to experimental group.

24Plotting an analogous graph for natural gas readings changes the scale of the vertical axis but produces the
same overall pattern.
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2.5 Additional Data

2.5.1 External Data

We supplement the main experimental dataset with information from several external sources
and additional data collected as part of the experiment. First, we compile hourly temperature,
humidity, and heat index readings for each county in the study from the National Oceanic
and Atmospheric Administration (NOAA).25 Appendix Table 3 summarizes the weather data.
Temperatures in the combined sample (Panel C) average 63.7 degrees Fahrenheit (F), but
range from below freezing to well over 100 degrees F. The various Daily Measure statistics for
each of the three weather measures indicate that there is both spatial (between-county) and
seasonal (within-county) variation in the data. The Minimum and Maximum statistics indi-
cate that there is also daily variation in all three weather variables. Figure 3 visualizes this
variation by plotting experiment-specific time series of the minimum and maximum daily
outdoor temperatures over the sample period. The table and figures indicate that despite our
sample being drawn from a temperate part of the country, there is substantial variation in the
weather data. Summers are hot, humid and likely to require the use of air conditioning to
ensure comfortable indoor temperatures. While the rest of the year is more moderate, there
are many days cold enough to necessitate home heating.

To confirm that this is the case and that we are able to identify the effects of HVAC system
use in our smart meter data, Figure 4 plots the relationship between mean daily energy con-
sumption and mean daily temperature for homes in the control group.26 The blue markers
represent electricity use (the energy source used for cooling; denoted on the left-hand verti-
cal axis), and the red markers represent natural gas consumption (the predominate energy
source for heating; denoted on the right vertical axis).27 As one would expect, electricity
use increases, and natural gas use decreases, with the temperature. Both relationships are
non-linear, and the fitted-value lines indicate that quadratic models predict the data well.

These descriptive analyses indicate that there is sufficient variation in weather conditions
in our sample and energy use responds to that variation, so our experimental setting meets
the necessary conditions for assessing the efficacy of smart thermostats. They also inform
our model specification. We estimate separate models of the effects of smart thermostats on
electricity and natural gas use. For robustness, we include outdoor temperature and humidity
measures, as well as location and time effects, as controls to mitigate the effects of residual
variation on our estimates.

25We are missing values for 0.09% of the temperature and 0.5% of the humidity observations in the sample.
We interpolate these missing values using the predicted values from separate regressions of the given weather
variable on location, day, and hour fixed effects. We calculate the heat index from the temperature and humidity
readings (see: https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml for the formula).

26Analogous scatter plots based on treated households produce the same patterns. Additionally, Ge and Ho
(2019) analyze high frequency, smart thermostat event log data (similar to the data we analyze in Section 5) and
find that the home heating and cooling decisions of smart thermostat users are affected by weather conditions.

27The area of both markers are weighted by the number of observations in the given cell.
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Figure 3: Minimum and Maximum Daily Outdoor Temperatures (°F) by Date

20

40

60

80

100

120

T
e
m

p
e
ra

tu
re

 (
°F

)

J
u
l.
 2

0
1
2

J
a
n
. 
2
0
1
3

J
u
l.
 2

0
1
3

J
a
n
. 
2
0
1
4

Date

Maximum Minimum

Northern CA Experiment

20

40

60

80

100

120

 

J
u
l.
 2

0
1
2

J
a
n
. 
2
0
1
3

J
u
l.
 2

0
1
3

J
a
n
. 
2
0
1
4

Date

Central CA Experiment

Figure 4: Average Daily Energy Use by Outdoor Temperature (°F)
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Second, we supplement the household electricity use measure with data from two sources
that allow us to test whether smart thermostats have a differential effect on usage when there
is critical demand load. To do so, we collect data on the average hourly real-time price of
electricity from the California Independent System Operator (CAISO).28 Electricity is pro-
duced from many sources with different production and external costs.29 Appendix Figure
16 is a box and whisker plot of hourly spot prices by quintile that illustrates the variation in
these costs in our data. Spot prices are relatively consistent over the first four quintiles, but
increase substantially from the fourth to the fifth quintile. This is consistent with what we
would expect during peak-load times, but the long whisker in the fifth quintile suggests that
peak-demand times may comprise only a small fraction of the observations in our dataset.

To further identify times when the system is most strained, we also collect data on system-
wide peak-alert messages from CAISO and utility-wide alerts from PG&E. The latter alerts
(referred to as "SmartDays" by the utility) are issued at a finer spatial scale, but a more gran-
ular temporal level (daily) than the former. In contrast, the CAISO alerts are issued hourly,
but apply to a broader area. Since system-wide alerts may occur on days when it is less ob-
vious that there is a need to reduce demand to avoid brownouts based on local conditions,
we also identify CAISO alerts that were broadcast by local media outlets (e.g., the Fresno Bee
or the Bakersfield Californian) to ensure that they reach a reasonable level of publicity to be
salient to the households in our experiments. Conditioning on the additional information
from these sources allows us to test whether smart thermostats reduce demand when the cost
of electricity production to society is the greatest.

2.5.2 Internal Data

In addition to the external data we collect, we also observe a high-frequency, exact-time log of
3,967,558 HVAC system events, including user interactions with their smart thermostat, from
372 households. The unbalanced panel dataset spans from July 2012 to January 2013, and
Figure 5 illustrates the number of households observed by calendar date. Recruitment and
installation of smart thermostats first began in Northern California in July of 2012, whereas
those in Central California began in December of 2012. Since this dataset is truncated in
January of 2013, the majority of the observations in this dataset are generated by homes from
Northern California, while only about 5% of the observations are from Central California
homes.

The system events and user interactions we observe include ambient temperature, HVAC
state, and heating/cooling setpoints (which we classify into permanent setpoints and tempo-

28The real-time market for electricity in California clears every five minutes. We use this data to calculate the
average spot price each hour.

29California instituted a cap-and-trade carbon emissions program in 2012 (Shobe, Holt and Huetteman,
2014), so the price of electricity on the state’s wholesale market reflects both the marginal cost of production
and the prevailing market price for emissions as reflected in the price of carbon permits.
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Figure 5: Number of Households Observed in Events Data by Date
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rary overrides).30 Permanent setpoints are thermostat temperature settings previously sched-
uled to occur automatically at specific times on a periodic basis. Temporary overrides are
changes to the current setpoint which result from a concurrent interaction with the thermo-
stat.31 We aggregate these measures to hour-level observations. Appendix Table 4 summa-
rizes the data. The table shows that while there are more observations from the Northern
California experiment, settings in the two locations are remarkably similar.32

Finally, Opower and Honeywell conducted an online survey to collect baseline information
on both treatment and control households in the experiments. We do not use these time-
invariant household characteristics in our main analysis because they are redundant to house-
hold fixed effects, but we use them to test the validity of Opower and Honeywell’s random-
ization process.

30Unfortunately, we do not observe who or how many people in the household have access to the app and/or
interact with the thermostat.

31We do not directly observe whether system temperature changes are due to permanent setpoints or tempo-
rary overrides, but we are able to infer event types based on the precise timing of when the changes occur. See
Appendix Section D for details.

32Average ambient temperatures are higher in Northern than Central California because of seasonal variation.
The Northern California panel spans July through January, whereas the Central California panel runs from
December through January.
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2.6 Balance

To test for balance, we estimate a linear probability model with an indicator for assignment
to treatment as the dependent variable. Appendix Table 5 reports estimates from that model
that summarize the results of our balance tests. Column (1) reports estimates based on a
sample comprised of households from both experiments, and the estimates in Columns (2)
and (3) are from models estimated on subsamples by experiment. The significance of each
coefficient estimate represents the results of a single hypothesis test against a null of balance,
and the reported F-statistics test the null hypothesis that all parameters in the given model
are jointly equal to zero. We fail to reject the null for all single and multiple hypothesis tests
across all three models. This indicates that control and treatment households are statistically
balanced across observable, pre-experiment measures and is consistent with an appropriate
randomization process.

We note that that households in the treatment group in the Northern California experiment
used 5.5% less electricity per hour in the pre-period on average than those in the control.
Accounting for means that are based on less than two weeks of data in Appendix Table 5
indicates that this difference is driven by the subset of households for which we observe only
a limited number of pre-period electricity observations (see Section 2.4). Regardless, out of
an abundance of caution, we estimate double-difference models to account for any potential
pre-period imbalance.

2.7 Time-Trend and Event-Study Analyses

To illustrate basic temporal patterns in the data and the effect of experimental assignment
on energy use Appendix Figure 20 plots the mean of residual energy consumption against
event time (days before/after assignment to the treatment or control group) for each of the
two experiments.33 Panel (a) displays electricity use, and Panel (b) illustrates the patterns in
natural gas consumption. The figure shows that being assigned to receive free installation of
a smart thermostat has no discernible impact on subsequent patterns of use. However, the
raw data is too noisy to be visually conclusive.34

To provide further evidence of the validity of the experimental randomization and additional
evidence of parallel pre-trends, Figure 6 plots the coefficient estimates and 95% confidence
intervals from event studies of the effect of assignment to treatment.35 Panels (a) and (b) plot

33We project out household fixed effects prior to taking daily averages to adjust for pre-period differences
in electricity use in a subset of Northern California homes for which we observe only a limited number of pre-
period energy values.

34For instance, the seasonal effects of summer for electricity use and winter for natural gas can be seen in the
patterns in the data.

35The models being estimated include household fixed effects and daily time effects. Confidence intervals
are based on standard errors clustered by household. To mitigate the visual effects of noisy coefficient estimates
resulting from unbalanced lags and leads at the endpoints of the time window, we bin all lags and leads that are
based on fewer than 30 observations (Schmidheiny and Siegloch, 2019; Clarke and Schythe, 2020).
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electricity and natural gas estimates, respectively, based on data from the Northern California
experiment. Panels (c) and (d) plot the Central California experiment analogs. Consistent
with Appendix Figure 20, the event study plots show evidence of parallel pre-trends, but do
not indicate large, persistent effects of being assigned to treatment on energy use.

We note that these figures do not account for incomplete take-up of the treatment, and they
are based on temporally aggregated, day-level data. For these reasons, in the next section, we
outline empirical models that allow us to instrument for smart thermostat installation and
take advantage of the high-frequency nature of the electricity consumption data.

Figure 6: Event Study Estimates of Energy Use by Experiment
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−1.0

−0.5

0.0

0.5

C
o
e
ff
ic

ie
n
t 
E

s
ti
m

a
te

−200 0 200 400 600

Days Before/Since Assignment

Point Estimate 95% CI

(b) N. CA Experiment: Natural Gas
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(c) C. CA Experiment: Electricity
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(d) C. CA Experiment: Natural Gas

3 Empirical Model

Our field experiment randomizes receipt of a smart thermostat among eligible applicants.
We observe a long time series of household-level energy use for treatment and control groups
before and after experimental assignment. Both motivate our empirical strategy. Given
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the potential pre-period imbalance in electricity use discussed in Section 2.6, we estimate
difference-in-differences (DD) models. To address noncompliance with experimental ran-
domization, we augment our DD model with instrumental variables (IV) modeling tech-
niques. We begin by formalizing our model specification, then discuss identification issues.

3.1 Model Specification

We model the effect of a smart thermostat on household i’s consumption of energy type
j ∈{kWh, thm} (electricity, natural gas) in time period t (ejit) using a DD model:

e
j
it = αji + βjt +γ jSiPt +Xitδ

j +ujit, (1)

where Si is an indicator equal to one if household i installs a smart thermostat, Pt is an indi-
cator for post-assignment status in time period t, Xit is a vector of controls, αji is a household

fixed effect, βjt is a vector of time effects, and ujit is a household/time varying unobservable.36

We cluster standard errors at the household level to account for serial correlation (Bertrand,
Duflo and Mullainathan, 2004) and estimate the model separately for each energy type. When
j denotes electricity, energy is measured in kWh and the time period is an hour. If j denotes
natural gas, the energy unit is a therm and observations are recorded daily.

Our parameter of interest is γ j , which measures the differential change in energy use across
pre- and post-intervention periods for smart relative to traditional thermostat households.
This specification implicitly assumes that smart thermostats have a constant effect for all
households. Given that individuals in our treatment sample are each optimizing over their
household’s expected energy savings and installation costs when deciding whether or not to
follow through with installation of the smart thermostat, our treatment is likely to result
in heterogeneous effects and Roy (1951) selection on gains. Consistent with this underlying
model of behavior, there is incomplete installation compliance among the treated households
in our experiment (see Figure 1). To address concerns of bias from noncompliance, we es-
timate a DDIV model that uses the experimental randomization as an instrument for the
installation of a smart thermostat. Formally, we estimate γ j using two-stage least squares

(2SLS) methods with E
[
Z
j
itu

j
it

]
= 0, where Zjit =

(
α
j
i ,β

j
t ,TiPt,Xit

)′
, and Ti is an indicator for

36We obtain similar results when estimating the model on the natural log of energy consumption (ln(ejit)).
If the randomization in our experiment is valid, our coefficient of interest is identified regardless of whether
or not we include household fixed effects (αji ), time effects (βjt ), or additional controls (Xit). Thus, we begin by

estimating a basic specification of the model without any additional covariates that replaces αji with αjSi and

β
j
t with βjPt . Subsequent specifications add controls for the weather (which cannot be randomized a priori),

household fixed effects, and various time effects to demonstrate robustness and to improve the efficiency of our
estimates. Results are qualitatively similar across all specifications.
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household i’s treatment status in our experiment.37

3.2 Identification

If the assumption of parallel trends holds in our DD setting, our instrument is relevant and
valid, monotonicity holds, and there is one-sided noncompliance in our experiment, our
DDIV coefficient of interest, γ j , identifies the ATT of a smart thermostat (Cornelissen et al.,
2016). This is the average impact of a smart thermostat on the energy use of households that
install one. We discuss our identifying assumptions in more detail in Appendix Section F.38

4 Results

We begin by reporting estimates of the parameters in Equation 1 for electricity and natural gas
in the next section. We then re-estimate the model on restricted subsamples of the data to in-
vestigate whether our main results mask significant, but offsetting, heterogeneous treatment
effects. In the subsequent section, we estimate the model separately by quintile of ambient
weather conditions, day of the week, hour of the day, hour of the day by weekday/weekend,
quintile of the price of electricity, and during peak-use alerts.

4.1 Main Estimates

Table 1 summarizes multiple estimates of the effect of a smart thermostat on energy use based
on each of the two experiments and the combined sample of all households recruited during
both experiments. Panel A reports estimated effects on hourly electricity usage, and Panel B
reports analogous estimates based on daily consumption of natural gas. Each ATT estimate
reported in Columns (1) through (6) is based on a separate DDIV regression corresponding to
the experimental sample indicated in the given row and the controls indicated at the bottom

37Equation 1 is the second-stage equation, and the first stage is modeled as

SiPt = θji +κjt +λjTiPt +Xitπ
j +wjit . (2)

38First-stage results in Appendix Section G provide strong support for instrument relevance. Appendix Table
5 and Figure 6 provide evidence in favor of instrument validity and parallel trends. Monotonicity is a standard
assumption in IV settings that rules out irrational behavior. Finally, our experimental environment suggests that
one-sided non-compliance is a reasonable assumption. In our context, this means that while some households
randomized into treatment do not install a smart thermostat, no households in the control group install one. At
the time of our experiment, smart thermostats were a nascent technology. According to data from the EIA RECS,
two to three years after our experiment, only 4.09% of all households in the survey and 10.58% of observationally
similar households owned a smart thermostat. Regardless, note that if we relax the one-sided noncompliance
assumption to one of just monotonicity, our DDIV specification instead recovers the Local Average Treatment
Effect (LATE) estimate of γ j (Imbens and Angrist, 1994).
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of the table.39 Column (1) reports estimates of a basic version of the DDIV model without
any fixed effects, time effects or other additional controls.40 Column (2) reports estimates
from a similar model that adds an indicator for experimental wave to control for differences
in recruitment conditions, as well as linear and quadratic county temperature and humidity
readings to control for ambient weather conditions. In Column (3), we add household fixed
effects to the previous model that control for all of the time-invariant, unobserved character-
istics of the home and household (e.g., age and square footage of the home, number of family
members).41 Column (4) reports estimates from a model that adds month-of-year (MOY) ef-
fects to the previous specification in order to control for aggregate, time-varying effects such
as seasonal variation in weather patterns. In Column (5), we add day-of-week effects to the
previous model in order to control for variation in daily usage patterns due to occupant work
and schooling schedules. Finally, in Column (6), we replace the time effects in the previous
model with day and hour-of-day effects.42

The interpretation of these coefficients is straightforward. For example, the coefficient esti-
mate of 0.026 reported in Column (6) of the third row in Panel A indicates that, across the
two experiments, a smart thermostat causes a 0.026 kWh increase in electricity usage per
hour. The cluster-robust estimate of the standard error of 0.017 reported in parentheses indi-
cates that this estimate is statistically insignificant.43 To put the magnitudes of these effects
in context, Column (7) reports mean energy use in the control group in the corresponding
sample. The estimated effect is equivalent to 2.3% of the control group energy use of 1.140
kWhs per hour. The corresponding natural gas coefficient estimate in Panel B is equivalent
to an increase of 4.2% of control energy use. Across all specifications in both panels, the lack
of economic or statistical significance indicates that smart thermostats do not reduce energy
usage. In fact, both of these estimated coefficients are positive, and the natural gas estimate
is statistically significant.

The estimated coefficients in Table 1 also cast doubt on the validity of the savings predicted
by engineers. For example, they fall well short of the 10 to 23 percent savings predicted by

39See Appendix Tables 6, 7, and 8 for identical estimates with full regression diagnostics. The rk LM and Wald
F statistics reported in those tables are first-stage diagnostic tests of under and weak identification, respectively,
in models with non-i.i.d. errors. In all specifications, we reject the nulls of an under or weakly identified model.
See Kleibergen and Paap (2006) for details.

40Relative to Equation 1, the model in Column (1) replaces αji with αjSi , β
j
t with βjPt , and restricts δj = 0.

41Since the experimental wave indicator is perfectly collinear with recruitment wave, we drop the wave indi-
cator from this and subsequent specifications.

42The estimates in Panel B are based on daily natural gas meter readings (thm), so the hour-of-day effects
noted in Column (6) are included in the electricity model (Panel A) only. Estimates based on models that
instead include week-of-year, month-by-year, week-by-year, and day-by-hour effects result in qualitatively sim-
ilar results. Furthermore, estimates based on models that include weather controls, day-of-week effects, and
household-by-MOY (or household-by-WOY) effects do not affect our findings. The specification identifies off of
hourly (electricity) or daily (gas) variation in usage within a household at a particular time of year. Intuitively,
identification comes from the change in consumption in a given month of a the year for a treated home before
and after treatment, relative to that same change for a control home. We also estimate models that include ZIP
Code-by-MOY and ZIP Code-by-WOY effects that similarly identify off of variation within a neighborhood at a
particular time of year. Again, results are qualitatively similar.

43Standard errors are clustered at the household level.
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engineers for smart thermostat manufacturers. Furthermore, these coefficients fall short of
the savings predicted by engineers for policymakers in California in the TRM reports. While
only the estimates in Column (6) reject these predictions for electricity at traditional levels of
statistical significance, every estimate rejects the predicted savings for natural gas.

4.2 Heterogeneity in Treatment Effects

In order to investigate the possibility of significant, heterogeneous effects that are not ap-
parent in the aggregate, we estimate the model conditional on various sub-sample selection
criteria. Given that the results in Table 1 do not indicate any substantial differences between
experiments and given that all subsequent specifications include household fixed effects, all
results presented in this section start from a sample that pools the observations from both
experiments. This should also give our models the best chance of recovering a significant
heterogeneous treatment effect. We treat the model reported in Column (5) of Table 1 as our
preferred specification because it is applicable to both samples with hourly- and daily-level
variation. We then use this model as the basis for our subsequent analyses.

First, since smart thermostats will only have an effect on energy usage when there is a need for
the HVAC system to heat or cool the house, moderate ambient temperature observations may
attenuate a significant effect. To address this concern, Appendix Table 9 reports estimates
by ambient temperature quintile. If the effect of a smart thermostat is only apparent when
the HVAC system is in use, we would expect to find significant effects in the upper quintiles
of temperature for electricity use and in the lower quintiles for natural gas. This is not the
case. Only one of the 10 estimates is statistically significant, and the significant effect occurs
in the second quintile of temperature for electricity consumption. Given the overall pattern
of results, this finding is likely spurious.

Similarly, Appendix Table 10 reports estimates by ambient humidity quintile. In contrast to
the results by temperature quintile, the estimates in Columns (4) and (5) of Panel A indicate
that smart thermostats have a significant, negative effect on electricity use when the humidity
is high (but not necessarily the temperature). We would expect to find this pattern of results
if smart thermostats are successful at reducing the level of humidity in treated homes without
deviating from a pre-programmed schedule, but individuals in the control group are prone
to over-adjusting their traditional thermostats to less energy-efficient setpoints in order to
mitigate the discomfort caused by high humidity. Consistent with this explanation, we do not
find similar, significant effects on the consumption of natural gas (in Panel B). Alternatively,
as it takes more energy to cool humid air than dry air, the pattern temperature and humidity
results is consistent with smart thermostats providing small energy-efficiency gains that are
only evident when the HVAC system has to work hardest.44

44Appendix Table 11 reports estimates from analogous models that condition on quintiles of the heat index
(the perceived temperature) to rule out effects by the combined effects of temperature and humidity on comfort.
We do not find significant results.
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Table 1: ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(1) (2) (3) (4) (5) (6) (7)
Power Use (kWh or thm) Mean

Panel A: Electricity (kWh)
N. CA Experiment: ATT (γ̂kWh) -0.055 -0.061 -0.016 -0.016 -0.016 -0.003 1.103

(0.058) (0.058) (0.046) (0.046) (0.046) (0.041) (1.196)

C. CA Experiment: ATT (γ̂kWh) 0.009 0.006 0.002 0.002 0.002 -0.001 1.191
(0.029) (0.028) (0.025) (0.025) (0.025) (0.023) (1.273)

Both Experiments: ATT (γ̂kWh) -0.031 -0.031 -0.003 -0.001 -0.001 0.026 1.140
(0.036) (0.035) (0.022) (0.022) (0.022) (0.017) (1.230)

Panel B: Natural Gas (thm)
N. CA Experiment: ATT (γ̂ thm) -0.009 0.009 0.085 0.075 0.075 0.069 1.422

(0.061) (0.063) (0.068) (0.066) (0.066) (0.055) (1.761)

C. CA Experiment: ATT (γ̂ thm) -0.003 0.007 0.001 0.001 0.001 -0.021 1.129
(0.044) (0.031) (0.027) (0.026) (0.026) (0.026) (1.332)

Both Experiments: ATT (γ̂ thm) 0.062 0.065 0.028 0.023 0.023 0.055** 1.298
(0.060) (0.049) (0.028) (0.026) (0.026) (0.022) (1.599)

Weather Controls x x x x x
HH Fixed Effects x x x x
Month-of-Year Effects x x
Day-of-Week Effects x
Day Effects x
Hour-of-Day Effects x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *
p < 0.1.
Columns (1) through (6) report ATT estimates of the effect of a smart thermostat on energy use (γ̂ j )
based on separate DDIV regressions corresponding to the experimental sample indicated in the given
row and the controls indicated at the bottom of the table. To put the magnitudes of these effects in
context, Column (7) reports mean energy use in the control group in the corresponding sample. The
samples used to produce the estimates in Panel A are based on hourly electricity meter readings in kWh,
while the samples underlying the estimates in Panels B are based on daily natural gas meter readings
(thm). Thus, the hour-of-day effects noted in Column (6) are included in the electricity models (Panel
A) only. Note that the estimates reported in Column (2) for samples that combine data from both
experiments include an indicator equal to one for observations in the Northern California experiment.
This indicator is perfectly co-linear with household fixed effects, so it is dropped from subsequent
models. See Appendix Tables 6, 7, and 8 for full regression diagnostics. Based on the values of the rk
LM and Wald F statistics reported in those tables, we reject the nulls of an under or weakly identified
model across all specifications.
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Next, since smart thermostats may only have an effect on energy use during the weekdays
when individuals have more predictable schedules, Appendix Table 12 reports estimates by
day of the week and by weekday/weekend. Across all days of the week and when we aggregate
to the weekday/weekend level, we find no evidence that smart thermostats reduce energy
consumption.

Similarly, smart thermostats may only have an effect during the times of day that individuals
typically schedule permanent temperature changes (e.g., before leaving for work/school or
after returning home). Appendix Table 13 reports estimates by hour of the day. We are
only able to calculate estimates conditional on the hour of the day for the effects of a smart
thermostat on electricity usage, as we observe natural gas use at the daily level. Again, there is
scant evidence that smart thermostats have a significant effect on energy use. To further test
whether smart thermostats have effects only during certain hours of the day on certain days of
the week (e.g., weekdays), Appendix Table 14 reports estimates by hour of the day separately
for weekdays (Panel A) and weekends (Panel B). Consistent with our previous findings, we
do not find evidence of significant effects on electricity use by hour of the day and day of the
week.

Finally, since a potential benefit of smart technologies is that they enable consumers to better
respond to spikes in demand and network congestion that lead to increased wholesale prices
and brownouts (Joskow, 2012), we estimate two sets of models that condition on times when
the social benefits of reduced electricity consumption are the greatest. Appendix Table 15
reports results by quintiles of electricity spot prices. If smart thermostats save energy at the
most beneficial times, we would expect to see a statistically significant, negative effect in the
fifth quintile of prices when production and external costs are the greatest, but none of the
reported effects are statistically significant. To further isolate periods of high demand, Ap-
pendix Table 16 conditions on times when the system operator or utility issued a peak-usage
alert. Column (1) reports estimates based on a sample of hours when CAISO issued hourly
alerts. Holladay, Price and Wanamaker (2015) find that media coverage impacts consumer
responses to such utility issued conservation appeals, so the estimates in Column (2) further
condition on a sample of hours when there was both a CAISO alert and local media coverage
of that alert. Neither of the resulting coefficient estimates is statistically significant.

In contrast, we find significant, negative effects when PG&E issues a daily, utility-wide alert.45

Column (3) is based on a sample of all hours on alert days. PG&E advises their consumers
to conserve electricity between 2:00pm and 7:00pm on these days, so the results in Columns
(4) and (5) disaggregate this effect into off-peak and peak hours, respectively. The coefficient
estimate in Column (3) (Column (4), Column (5)) indicates that smart thermostats reduce

45Why smart thermostats have significant effects in response to some types of alerts, but not others, remains
an open question. One possibility is due to the different time periods covered by the alerts (hourly versus daily).
The frequency of the alerts may also play a role: there are 173 CAISO hourly alerts, 121 of which received
local media coverage, and 18 PG&E daily alerts observed over our sample period. Alternatively, the PG&E alert
distribution system may be more robust or their messaging may be more salient. Brewer and Crozier (2022) find
that the amplification of a similar peak-alert request by a state Governor increased conservation effects among
smart-thermostat users.
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electricity consumption by 0.103 kWh (−0.073 kWh, −0.116 kWh) relative to mean electricity
use of 1.775 kWh (1.402 kWh, 2.893 kWh) in the control group. These estimates imply that
smart thermostats result in electricity conservation of 5.8 percent (5.2 percent, 4.0 percent).

While these estimates of savings compare favorably to the overall savings predicted by engi-
neers, we note that we find mixed evidence of these alert-period effects only during a narrow
time horizon over which our PG&E estimates are obtained.46 There are only 18 PG&E peak-
alert days observed in our dataset. Additionally, the impact of smart thermostats on peak
energy use is not uniform over the course of the alert period. Appendix Figure 21 further
disaggregates these effects by hour of the day. While the estimates are rarely statistically dif-
ferent from zero, the hourly pattern suggest that households with a smart thermostat reduce
electricity use before the peak alert period begins, but that they undo some of this benefit by
ramping up their energy use before the peak period ends.

We are encouraged that there is some evidence that smart thermostats have their biggest im-
pact on energy use when conservation is most beneficial, but our results suggest that these
peak-period effects are nuanced. Both a better understanding of the differential responses of
smart thermostat users to distinct types of alerts and a greater understanding of why smart
thermostat households undo conservation benefits accrued over the course of the day are
warranted. These could help manufacturers and policymakers design energy efficiency tech-
nology and programs that replicate the limited success of smart thermostats over broader
time horizons. Overall, despite these encouraging findings, the complete set of results leaves
us unable to reject the conclusion that smart thermostats under-deliver on their promised
energy efficiency claims.

5 Potential Mechanisms

In this section, we supplement our experimental analysis by analyzing user interactions with
the smart thermostat to explore features of why the scale up of this new technology failed. As
aforementioned, there is a new line of research exploring why new technologies may not de-
liver their purported benefits (see, e.g., List, 2022). Examples of this phenomenon are many
fold. For instance, Levitt (2008) shows that scaling-up car seat technologies did not produce
predicted benefits because people did not fasten them in correctly. A more recent and timely
example comes from the use of facemasks to prevent the spread of COVID-19 (Abaluck et al.,
2022). This phenomenon is also found in the context of energy. Fowlie, Greenstone and Wol-
fram (2018) show that a broad set of technologies offered by the Weatherization Assistance
Program do not deliver their purported energy savings. Yet, little is understood about the
benefits of an important class of new technologies in the energy space that leverage “smart”
functionalities.

As shown in Figure 5 and Appendix Table 4, our interactions data is heavily drawn from the

46This favorable comparison does indicate that our experiments are sufficiently powered to detect the savings
predicted by engineers when these savings actually occur in the data.
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Northern California wave of the experiment, so we focus our analysis on those households.
We consider five questions with the interactions data of this sample. First, do users program
their smart thermostat? Second, are programmed setpoints energy-efficient setpoints? Third,
do users deviate from their programmed schedules? Fourth, do users deviate from their pro-
grammed schedule towards energy-efficient setpoints? Fifth, do households save energy when
they use the smart thermostats scheduled setpoints and overrides as intended by engineers?

By answering these questions we aim to sharpen our understanding of the failure of the smart
thermostat to deliver energy savings. While engineering models assume households will uti-
lize the functionality of a smart thermostat and do so to conserve energy, economic models
are ultimately agnostic and emphasize the potential for preferences to interfere with the re-
sponse desired by an engineer. The first four questions consider whether households interact
with the smart thermostat as engineers predict. The fifth question considers whether the
subsamples of households that interact with their smart thermostat as an engineer assumes
obtain the predicted energy savings.

We find that households schedule setpoints and that these setpoints are broadly in line with
energy-efficient suggestions. However, the setpoint overrides made easy by the smart thermo-
stat are common and these overrides are biased towards warmer setpoints in the winter and
cooler setpoints in the summer. Finally, we find that households using the setpoint function-
ality as an engineering model assumes save as much as 10 to 20 percent on their consumption
of natural gas. However, these savings are not found for electricity consumption, nor for
households using the override functionality to obtain more energy-efficient setpoints.

5.1 Do Users Program Their Smart Thermostats?

Peffer et al. (2013) find that programmable thermostats fail to achieve their advertised sav-
ings due, in part, to poor usability.47 If users do not program schedules for their smart ther-
mostats to follow because the interfaces are too complicated or they do not understand how
thermostats and/or their HVAC systems work, we would not expect the installation of a smart
thermostat to affect energy consumption.

To determine what fraction of households who install the smart thermostat use the pro-
grammable features of the device and how long it takes them to begin doing so, Figure 7
plots the CDF of the time between the installation date and the first scheduled setpoint. The
figure shows that almost all users who install a smart thermostat program at least one per-
manent setpoint, and most households do so almost immediately. The median time from
installation to the first permanent setpoint is zero days.

Additionally, users do not just quickly schedule a permanent setpoint, then fail to continue

47Programmable thermostats are a precursor technology to smart thermostats. The two types of thermostats
share the ability to schedule permanent temperature setpoints in advance, but users cannot interact with pro-
grammable thermostats remotely, nor do they offer built-in setpoint framing. Peffer et al. (2013) report that they
were so difficult to program that most users disabled their defining feature, and the ENERGY STAR program
stopped certifying them in December 2009.
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Figure 7: Distribution of Time from Installation to First Scheduled Setpoint
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to use the smart features of the device. Individuals who have a smart thermostat installed
as part of our experiment set an average of 3.749 (heating and cooling) setpoints per day.
Figure 8 plots a measure of the frequency of permanent setpoints by hour of the day (denoted
in military time) for both heating (red bars) and cooling (blue bars) setpoints. The figure
provides visual evidence that setpoints occur frequently and when we would expect them:
in the morning from about 5:00 AM until 10:00 AM when most users wake and leave for
work and/or school. Similarly, there is a small increase in frequency of setpoints during the
afternoon from 4:00 PM until 7:00 PM when users return home at the end of their days.
Consistent with scheduling setpoints when most users go to sleep, we also observe frequent
setpoints in the evening from about 10:00 PM until 12:00 AM. Thus, our analysis suggests
that users do program their smart thermostats both quickly and frequently, consistent with
engineering model assumptions.

5.2 Are Programmed Setpoints Energy-Efficient Setpoints?

The previous analysis is consistent with users taking advantage of their device’s scheduling
feature, but is inconclusive as to whether or not they are programming setpoints to achieve
energy savings. To inform the latter, Figure 9 is a box and whisker plot of heating and cooling
setpoints by hour of the day. The dashed lines represent the cooling and heating temper-
ature settings the DOE recommends for energy savings of 78 degrees F for cooling and 68
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Figure 8: Average Permanent Setpoints per Household per Day by Time of Day
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degrees F for heating (DOE, 2020). The figure illustrates that median (as well as the 25th and
75th percentiles of) temperatures are in line with the DOE’s recommendations.48 According
to Appendix Table 4, cooling setpoints average 78.80 degrees F and are higher than heating
setpoints, which average 63.95 degrees F. Additionally, the figure illustrates that there is tem-
poral variation in setpoints over the course of the day consistent with individuals adjusting
settings when they leave the house: cooling setpoints increase slightly starting at around 9:00
AM and drop back to baseline around 3:00 PM. Heating setpoints follow a similar, but oppo-
site pattern with a more pronounced discrepancy between evening and daytime temperature
setpoints. Overall, while the figure illustrates variation in setpoints across households, our
analysis suggests that users program their smart thermostats to save energy.49

5.3 Do Users Deviate from Their Programmed Schedules?

Given the evidence that indicates users program their smart thermostats and do so with en-
ergy savings in mind, we turn to an alternative explanation for our null findings. The remote
features of the thermostat reduce the costs associated with both permanent and temporary
setpoint changes. If users program their thermostats to reduce energy usage, but the ability

48The horizontal lines in the shaded boxes represent the median temperature setting, the ends of the boxes
indicate the first and third quartiles, and the ends of the whiskers denote the upper/lower adjacent values.

49Regarding the variation in setpoints, Appendix Table 4 reports standard deviations of 4.12 degrees for
cooling and 5.58 degrees for heating setpoints.
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Figure 9: Box and Whisker Plots of Permanent Setpoints by Time of Day
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to more easily adjust temperature settings via a computer or smart phone makes individuals
more likely to deviate from their schedules, individuals may undo the benefits of their smart
thermostat. If so, the effects of the scheduling and override features of smart thermostats
have opposing effects on energy use and could result in a net null effect.

To explore this possibility, Figure 10 plots a measure of the frequency of setpoint overrides by
time of the day.50 As we would expect, overrides are more frequent when most individuals are
likely to be awake, from about 6:00 AM to 11:00 PM. Heating overrides peak in the morning
and early evening, while cooling overrides rise throughout the day until about 6:00 PM. More
importantly given our focus, the figure illustrates that users often override their permanent
schedule both when heating and cooling their homes. Compared to the previously noted
3.749 setpoints per day, users in our data temporarily override their permanent setpoints
an average of 1.699 times per day. The hourly measures are also substantial relative to the
number of permanent setpoints reported in Figure 8.

50The figure is the analog to Figure 8 for temporary overrides, save for our definition of “per day.” While users
program both heating and cooling setpoints every day, we typically only observe heating (cooling) overrides on
heating (cooling) degree days. Given that we predominantly observe the HVAC system events data during the
fall and winter, failure to address this issue results in heating and cooling override measures that are of different
magnitudes. To account for this artifact in the data, we adjust the numerator of our measure to days on which the
HVAC system heated or cooled the home to standardize the scales of the heating and cooling override measures.
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Figure 10: Average Temporary Overrides per Household per Day by Time of Day
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5.4 Do Users Deviate From Their Programmed Schedule Towards Energy-
Efficient Setpoints?

Evidence that smart thermostat users frequently override their setpoints offers a potential ex-
planation for our null findings. The features of the smart thermostat that lower adjustment
costs both make it easier to override in ways that increase energy use (e.g., users no longer
have to get off the couch or out of bed and walk to the thermostat when they are uncom-
fortable) and to override to decrease energy use (e.g., by toggling the HVAC system off when
leaving home). To determine which effect dominates, Figure 11 plots kernel densities of the
difference between the override temperature a user sets and the permanent setpoint, con-
ditional on a temperature override, by temperature setting (cooling or heating). The figure
illustrates that when users override their permanently scheduled setpoints, they generally do
so in ways that use more energy: when cooling, they set temperatures colder and when heat-
ing, they set it warmer.51 Taken together with the previous figure, our analysis suggests that

51There is a non-trivial mass at large override-setpoint temperature differences (e.g., greater than 10 de-
grees F). This is primarily driven by a small number of households that program setpoints (~55 degrees F) that
essentially turn off the HVAC system in the morning and override those setpoints at varying times in the af-
ternoon/evening every day. This is consistent with using the programmable features of the smart thermostat
based on a consistent daily departure time and a variable return time. Additionally, we note that the figure plots
override-setpoint temperature differences, not override-ambient temperature differences. The ambient temper-
ature may not actually be as low as the setpoint, so the actual temperature change caused by the override may
not be so extreme.
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individuals undo the benefits of their preset smart thermostat schedule when they are un-
comfortable in the moment. This suggests a potential explanation for our null experimental
findings, and is consistent with existing observational studies (Sachs et al., 2012; Peffer et al.,
2013; Pritoni et al., 2015; Huchuk, O’brien and Sanner, 2020).

Figure 11: Density of Difference between Temporary Override and Permanent Setpoint Tem-
peratures by Heating/Cooling
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5.5 Do Households Save Energy When the Smart Thermostat is Used as
Intended?

There is an extensive literature in economics in that shows that engineering estimates fail to
live up to their predictions (Davis, Fuchs and Gertler, 2014; Levinson, 2016; Zivin and No-
van, 2016; Houde and Aldy, 2017; Fowlie, Greenstone and Wolfram, 2018; Alpízar, Bernedo
and Ferraro, 2019; Davis, Martinez and Taboada, 2020; Christensen et al., 2021). In this sub-
section, we consider whether the non-response to the smart thermostat in our experimental
analysis is due to the smart thermostat not being used as intended. To accomplish this, we
estimate the effect of the smart thermostat on energy consumption for different subsamples
of households in the treatment group. These subsamples are selected to split households who
utilize the setpoint scheduling and overrides for energy-efficient temperatures from those
who do not.

We begin by using the interactions data to classify households who installed a smart thermo-

30



stat based on how diligently they use their device to achieve energy savings. We do so by
defining three energy-efficiency types: high (H), low (L), and unknown types (?). Appendix
Figure 18 illustrates how this classification builds on our existing experimental design. The
unknown type is necessary because we do not observe all households who install a smart
thermostat in the HVAC events data. The high and low types are based on the distributions
of two measures of energy-efficiency: the average number of permanent setpoints and tem-
porary overrides observed per hour. For both metrics, we specify models based on various
cutpoints between high and low types. Appendix Figure 19 plots the CDFs of both measures
of behavior based on all households for which we observe interactions data. As an example,
we define high-type households based on the permanent setpoint measure as those above the
median and low types as those below the median. In contrast, for the other metric, we define
high types as those below the median number of average overrides per hour and low types as
those above the median.

Given these classifications, we interact indicators for type with treatment and estimate a
DDITT model.52 Letting k ∈{H, L, ?} index the three types, we estimate

e
j
it = αji + βjt +

∑
k

γ
j
kTiR

k
i Pt +Xitβ

j
X +ujit, (3)

where Rki is an indicator for household i being of type k and all other indexes, variables, and
parameters are defined as in Equations 1 and 2. The parameters of interest in this model are
the γ jk which are the the ITT effects of a smart thermostat on the consumption of energy j for
households of type k.

Table 2 reports estimates of the γ thmk parameters based on this subsample. Panel A reports
estimated effects from a model based on the permanent setpoint type classification, and Panel
B reports analogous estimates based on the temporary override type definition. Column (1)
reports estimates from a baseline DDITT model that does not differentiate by type. Consis-
tent with our DDIV model estimates, the effects are not statistically significant. Columns (2)
through (6) report estimates based on varying definitions of the high- vs. low-type percentile
cutpoint.53 The estimates in Panel A in these columns indicate that households above the
10th percentile of average permanent setpoints per hour enjoy statistically significant sav-
ings, with those above the 90th percentile seeing the greatest reduction in their natural gas
use. In contrast, low types who program relatively few setpoints do not reduce their energy
consumption after installing a smart thermostat.

Interestingly, the high types that are above the median of permanent setpoints experience
energy savings that are broadly in line with the predictions touted by manufacturers. For
example, Column (4) of Panel A shows the high types save 0.146 thm per day and, as reported
in Table 1, the control group consumes an average of 1.422 thm per day. This implies an

52We are not able to estimate an analogous DDIV model because we do not have valid instruments for types.
53For instance, the estimates reported in Column (4) of Panel A define high-types as those with more than

the median number of setpoints per hour and low-types as those below the median.
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energy savings of about 10 percent. Coupled with the subsequent estimates in Columns
(5) and (6), these estimates line up strikingly well with the estimates of 10-23% discussed
in Section 1. Moving to Panel B, however, we see less consistent evidence that temporary
overrides explain the response to the smart thermostat. In all columns except Column (6), we
see no energy savings regardless of type at traditional levels of significance.

These results illustrate that engineering estimates can go astray because households do not
utilize energy efficient technology as engineers assume. For example, in Column (4) of Panel
A of Table 2, we see that approximately 50% of households save the energy predicted by engi-
neering estimates and the other 50% enjoy no such savings at all and this substantially atten-
uates the effect of the technology. Furthermore, in Panel B, we find that most specifications
fail to find any evidence of temporary overrides providing households with energy savings.
As a result, consumer and policymaker decisions based on these estimates are destined to fall
short of their expected effects.

6 Conclusion

In recent years, citizens and lawmakers have become increasingly enthusiastic about adopt-
ing evidence-based policies and programs. Social scientists and engineers have delivered
evidence of countless interventions that positively impact people’s lives. And yet, most pro-
grams, when expanded, have not delivered the dramatic societal impacts promised. This is a
common phenomenon known in the literature as “voltage drop” (List, 2022), but this type of
predictable change is not accounted for in benefit–cost analysis. While the economics litera-
ture is beginning to provide insights into the features of ideas that make a policy predictably
unscalable (Al-Ubaydli, List and Suskind, 2020), much remains unknown.

In this study, we use two framed field experiments to explore the scaling potential of smart
technologies. Given that American households spend an average of over $2,200 on energy an-
nually, and residential energy accounts for roughly 20% of the annual carbon dioxide pollu-
tion from energy production (EIA, 2018; 2019b), this exploration holds policy import. These
high private and social costs have led to substantial interest in smart technologies that reduce
energy use without reducing consumer utility by increasing efficiency. Given that the largest
share of residential energy (almost 40%) goes to heating and cooling the home (EIA, 2019a),
smart thermostats are an increasingly popular example of such a technology.

Smart thermostats allow individuals to program temperature setpoint schedules and adjust
settings remotely via a smart phone application. While producers of these devices promise
consumers substantial savings on their home heating and cooling bills, projected savings are
often based on engineering simulations that fail to account for how people actually use their
smart thermostats and therefore represent an upper bound on potential savings. Or they are
based on studies that use non-experimental data and have methodological flaws that result in
upwardly biased estimates of savings (see, e.g., Nest, 2019). Thus, the true marginal impact
of smart thermostats on real world energy usage is uncertain.
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Table 2: ITT Estimates of the Effect of a Smart Thermostat on Natural Gas Use by Setpoint
and Override Type

(1) (2) (3) (4) (5) (6)
High/Low-Type Percentile Cutpoint

Baseline 10 25 50 75 90
Power Use (thm)

Panel A: Permanent Setpoint Type Classification
ITT (γ̂ thm) 0.051

(0.045)
High Type ITT (γ̂ thmH ) -0.076 -0.108** -0.146*** -0.178*** -0.302***

(0.047) (0.047) (0.050) (0.061) (0.074)
Low Type ITT (γ̂ thmL ) -0.071 0.088 0.014 -0.025 -0.046

(0.146) (0.105) (0.069) (0.055) (0.049)
N 805 805 805 805 805 805
N × T 398,243 398,243 398,243 398,243 398,243 398,243
R2 0.618 0.618 0.618 0.618 0.618 0.618
F statistic 520.944 397.030 398.793 397.866 398.103 398.168

Panel B: Temporary Override Type Classification
ITT (γ̂ thm) 0.051

(0.045)
High Type ITT (γ̂ thmH ) 0.058 -0.070 -0.068 -0.082 -0.095**

(0.146) (0.081) (0.061) (0.050) (0.046)
Low Type ITT (γ̂ thmL ) -0.091* -0.077 -0.086 -0.040 0.414***

(0.046) (0.050) (0.054) (0.074) (0.095)
N 805 805 805 805 805 805
N × T 398,243 398,243 398,243 398,243 398,243 398,243
R2 0.618 0.618 0.618 0.618 0.618 0.618
F statistic 520.944 398.476 398.424 402.226 401.014 409.991

Weather Controls x x x x x x
HH Fixed Effects x x x x x x
Month-of-Year Effects x x x x x x
Day-of-Week Effects x x x x x x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *
p < 0.1.
All estimates are based on a sample comprised of the Northern California wave of the experiment. The
sample underlying the estimates in both panels is based on daily natural gas meter readings (thm). The
coefficient estimate for the unknown type ITT parameter (γ̂ thm? ) is 0.014 across all specifications, and
it is not statistically significant.

Our work utilizes a framed field experiment to explore how smart technologies affect energy
use—both through actual measurement and by investigating the mechanisms that prevent
the realization of advertised energy savings. In our experiment, residential households are
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randomized into either a treatment group that receives a smart thermostat or a control group.
In contrast to the commonly held prior that smart thermostats are an effective way to reduce
residential energy use, we find little to no evidence that the installation of a smart thermosat
reduces household energy consumption on average. This null result is robust to numerous
specifications. We believe that the discord between the results of our field experiment and the
extant belief stems from the source of the latter: engineering studies that do not adequately
account for how individuals use their smart devices. We augment our experimental analysis
with data on user interactions with their smart thermostat and find evidence that supports
this belief.

There are many ways to extend our research. More than 90 percent of the households in our
experiment faced a tiered energy pricing tariff. Although millions of Americans face tiered
tariffs, they have been shown to be sub-optimal from a welfare point of view (Borenstein,
2012) and lead to the use of heuristics that dampen the response to changes in the marginal
price of energy (Shin, 1985; Kahn and Wolak, 2013). Evidence from Jessoe and Rapson (2014),
Harding and Lamarche (2016), Fabra et al. (2021), and Blonz et al. (2021) suggests that there
are benefits from combining time-varying prices (time-of-use or real-time pricing) and smart
tech. Future work should add to our understanding of the extent to which the returns to smart
thermostats are enhanced when matched with smart economics - e.g., dynamic pricing plans
that get energy prices right. A related avenue of inquiry would be to explore the impact of
such technologies have on the price elasticity of energy demand (some preliminary evidence
from Herter (2007) suggests that they do). If technology can enable people to better optimize
their energy consumption, then price might become even more salient and therefore make
people more marginal.

Viewed the lens of climate mitigation, our results provide little justification for the amount
of subsidies directed towards smart thermostats; such technologies have no impact of en-
ergy use and associated greenhouse gas emissions. However, this does not mean that the
technology has no social benefit and the subsidies cannot be justified. Perhaps the value of
such technologies arise through adaptation and the ability of households to respond to the in-
creased frequency/severity of extreme weather events that are projected to occur with climate
change. A second avenue for future work is to explore this conjecture in greater detail. In this
regard, we see promise in work designed to understand why smart thermostats are so popular
amongst consumers given their costs and limited impact on energy use. Perhaps our focus on
mitigation and energy savings has us thinking about the benefits of smart thermostats incor-
rectly. Rather than valuing smart thermostats for their expected savings, perhaps consumers
value smart thermostats as a means to adapt to climate change and the increased severity of
extreme weather events. This avenue speaks to the energy efficiency gap literature as outlined
by Allcott and Greenstone (2012) by shifting attention to a broader set of characteristics than
mitigation and expected energy savings.

A final avenue for extension would be to better understand when and how different smart
technology features affect subsequent patterns of use. For instance, Harding and Lamarche
(2016) and Blonz et al. (2021) estimate the effects of feature that automates temperature set-
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ting changes in response to time-of-use pricing. Given that various features of a smart ther-
mostat may theoretically have opposing impact on energy use or simply facilitate a shift in
energy use over the day, such a decomposition is a necessary next step in estimating the ben-
efits of such technologies.

In summary, cooling and heating homes, powering transportation, and producing the wealth
of goods and services enjoyed in modern economies are all heavily reliant on energy. Given
that most of the world relies on non-renewable resources to produce energy and this reliance
will not end any time soon (Covert, Greenstone and Knittel, 2016), one of the greatest pol-
icy challenges of this century is how to address the negative externalities associated with
energy production. Without efforts to promote energy conservation and associated reduc-
tions in greenhouse gas emissions, future generations will face a lower quality of life due to a
degraded environment.

Viewed through this lens, results from our paper provide a cautionary tale. Energy producers
and policymakers alike are subsidizing smart technologies based on misleading information
- estimates from engineering models of energy use. Had they instead complemented such an
approach to evaluation with carefully designed field experiments, they would have realized
that the estimates from engineering based models do not scale beyond the lab and could have
reallocated some of the public funds spent subsidizing such technologies on more promising
ways to promote energy conservation and associated reductions in greenhouse gas emissions.

The urgency of scaling up important ideas and enterprises impacts us every day, whether it’s
by protecting the health and safety of a community, improving the viability of a business, or
enhancing the education and opportunities of a future generation. We hope that our paper
represents a step towards ensuring that decision makers focus their energies on the use of
science to identify the smartest, most scalable, policies possible.

35



References

Aarish, Carlyn, Matei Perussi, Andrew Rietz, and Dave Korn. 2015. “Evaluation of the
2013-2014 Programmable and Smart Thermostat Program.” The Cadmus Group. 7

Abadie, Alberto. 2020. “Statistical Nonsignificance in Empirical Economics.” American Eco-
nomic Review: Insights, 2(2): 193–208. 6

Abaluck, Jason, Laura H. Kwong, Ashley Styczynski, Ashraful Haque, Md. Alamgir Kabir,
Ellen Bates-Jefferys, Emily Crawford, Jade Benjamin-Chung, Shabib Raihan, Shad-
man Rahman, Salim Benhachmi, Neeti Zaman Bintee, Peter J. Winch, Maqsud Hos-
sain, Hasan Mahmud Reza, Abdullah All Jaber, Shawkee Gulshan Momen, Aura Rah-
man, Faika Laz Banti, Tahrima Saiha Huq, Stephen P. Luby, and Ahmed Mushfiq Mo-
barak. 2022. “Impact of community masking on COVID-19: A cluster-randomized trial in
Bangladesh.” Science, 375(6577): eabi9069. 24

Abraham, Katherine G., Ron Haskins, Sherry Glied, Robert M. Groves, Robert Hahn, Hi-
lary Hoynes, Jeffrey B. Liebman, Bruce D. Meyer, Paul Ohm, Nancy Potok, Kathleen Rice
Moiser, Robert J. Shea, Latanya Sweeney, Kenneth R. Troske, and Kim R. Wallin. 2017.
“The Promise of Evidence-Based Policymaking: Report of the Commission on Evidence-
Based Policymaking.” Commission on Evidence-Based Policymaking, Washington, DC. 5

Aghion, Philippe, and Peter Howitt. 1992. “A Model of Growth Through Creative Destruc-
tion.” Econometrica, 60(2): 323–351. 2

Agnew, Ken, and Mimi Goldberg. 2013. “Chapter 8: Whole Building Retrofit with Con-
sumption Data Analysis Evaluation Protocol. The Uniform Methods Project: Methods for
Determining Energy Efficiency Savings for Specific Measures.” National Renewable Energy
Laboratory NREL/SR-7A30–53827. 7

Allcott, Hunt. 2011. “Social norms and energy conservation.” Journal of Public Economics,
95(9): 1082 – 1095. Special Issue: The Role of Firms in Tax Systems. 3, 8

Allcott, Hunt. 2015. “Site selection bias in program evaluation.” Quarterly Journal of Eco-
nomics, 130(3): 1117–1165. 5

Allcott, Hunt, and Michael Greenstone. 2012. “Is There an Energy Efficiency Gap?” Journal
of Economic Perspectives, 26(1): 3–28. 3, 34

Allcott, Hunt, and Todd Rogers. 2014. “The Short-Run and Long-Run Effects of Behavioral
Interventions: Experimental Evidence from Energy Conservation.” American Economic Re-
view, 104(10): 3003–37. 3

Alpízar, Francisco, María Bernedo, and Paul J. Ferraro. 2019. “Input Efficiency as a Solution
to Externalities: Engineers vs Behavioral Scientists in a Randomized Controlled Trial.” 4,
30

36



Al-Ubaydli, Omar, John A. List, and Dana L. Suskind. 2017. “What Can We Learn from Ex-
periments? Understanding the Threats to the Scalability of Experimental Results.” Ameri-
can Economic Review, 107(5): 282–86. 2

Al-Ubaydli, Omar, John A. List, and Dana Suskind. 2020. “2017 Klein Lecture: The Science
of Using Science: Toward an Understanding of the Threats to Scalability.” International
Economic Review, 61(4): 1387–1409. 2, 5, 32

Al-Ubaydli, Omar, John A. List, Danielle LoRe, and Dana Suskind. 2017. “Scaling for
Economists: Lessons from the Non-Adherence Problem in the Medical Literature.” Jour-
nal of Economic Perspectives, 31(4): 125–44. 2, 5

Apex Analytics, LLC. 2014. “Energy Trust of Oregon Nest Learning Thermostat Heat Pump
Control Pilot Evaluation.” 7

Apex Analytics, LLC. 2016. “Energy Trust of Oregon Smart Thermostat Pilot Evaluation.” 7,
10

Auffhammer, Maximilian, and Erin T Mansur. 2014. “Measuring climatic impacts on energy
consumption: A review of the empirical literature.” Energy Economics, 46: 522–530. 4

Ayres, Ian, Sophie Raseman, and Alice Shih. 2012. “Evidence from Two Large Field Experi-
ments that Peer Comparison Feedback Can Reduce Residential Energy Usage.” The Journal
of Law, Economics, and Organization, 29(5): 992–1022. 3

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. “How Much Should
We Trust Differences-In-Differences Estimates?” The Quarterly Journal of Economics,
119(1): 249. 18

Blonz, Joshua, Karen Palmer, Casey J. Wichman, and Wietelman Derek C. 2021. “Smart
Thermostats, Automation, and Time-Varying Prices.” Resources for the Future (RFF) Work-
ing Paper 21-20. 34

Bloomberg Finance L.P. 2019. “Sustainable Energy in America Factbook.” The Business
Council for Sustainable Energy. Smart thermostat facts on page 112. 6

Borenstein, Severin. 2012. “The redistributional impact of nonlinear electricity pricing.”
American Economic Journal: Economic Policy, 4(3): 56–90. 34

Brandon, Alec. 2019. “Social Pressure and Self-Selection in Experimental Policy Evaluation.”
5

Brewer, Dylan, and Jim Crozier. 2022. “Who Heeds the Call to Conserve in an Energy Emer-
gency? Evidence from SmartThermostat Data.” 23

Broaddus, Phil, Barb Ryan, and Kelly Marrin. 2016. “PG&E Smart Thermostat Study: First
Year Findings.” 7

37



Broaddus, Phil, Barb Ryan, and Kelly Marrin. 2018. “PG&E Smart Thermostat Study: Sec-
ond Year Findings.” 7

California Municipal Utilities Association. 2017. “Savings Estimation Technical Reference
Manual.” ERS. 3

Cheng, Sierra, Erica J. McDonald, Matthew C. Cheung, Vanessa S. Arciero, Mahin Qureshi,
Di Jiang, Doreen Ezeife, Mona Sabharwal, Alexandra Chambers, Dolly Han, Natasha
Leighl, Kelley-Anne Sabarre, and Kelvin K.W. Chan. 2017. “Do the American Society of
Clinical Oncology Value Framework and the European Society of Medical Oncology Mag-
nitude of Clinical Benefit Scale Measure the Same Construct of Clinical Benefit?” Journal
of Clinical Oncology, 35(24): 2764–2771. PMID: 28574778. 5

Christensen, Peter, Paul Francisco, Erica Myers, and Mateus Souza. 2021. “Decomposing
the Wedge between Projected and Realized Returns in Energy Efficiency Programs.” The
Review of Economics and Statistics, 1–46. 4, 30

Clarke, Damian, and Kathya Tapia Schythe. 2020. “Implementing the Panel Event Study.”
Institute of Labor Economics (IZA) IZA Discussion Papers 13524, Bonn. 16

Cornelissen, Thomas, Christian Dustmann, Anna Raute, and Uta Schönberg. 2016. “From
LATE to MTE: Alternative Methods for the Evaluation of Policy Interventions.” Labour Eco-
nomics, 41: 47 – 60. SOLE/EALE Conference Issue 2015. 19

Costa, Dora L., and Matthew E. Kahn. 2013. “Energy Conservation "Nudges" and Envi-
ronmentalist Ideology: Evidence From a Randomized Residential Electricity Field Experi-
ment.” Journal of the European Economic Association, 11(3): 680–702. 3

Covert, Thomas, Michael Greenstone, and Christopher R. Knittel. 2016. “Will We Ever Stop
Using Fossil Fuels?” Journal of Economic Perspectives, 30(1): 117–38. 35

Daken, Abigail A, Alan K Meier, and Douglas G Frazee. 2016. “Do Connected Thermostats
Save Energy?” ACEEE Summer Study on Energy Efficiency in Buildings, eScholarship, Uni-
versity of California. 5, 9

Davis, Lucas W., Alan Fuchs, and Paul Gertler. 2014. “Cash for Coolers: Evaluating a Large-
Scale Appliance Replacement Program in Mexico.” American Economic Journal: Economic
Policy, 6(4): 207–38. 4, 30

Davis, Lucas W., Sebastian Martinez, and Bibiana Taboada. 2020. “How effective is energy-
efficient housing? Evidence from a field trial in Mexico.” Journal of Development Economics,
143: 102390. 4, 30

Department of Energy. 2016. “Smart Grid Investment Grant Program Final Report.” U.S.
Department of Energy, Office of Electricity Delivery & Energy Reliability. 6

38



Department of Energy. 2017. “Guide for States: Establishing and Maintaining Technical Ref-
erence Manuals for Energy Efficiency Measures.” SEE Action Network. 3

Department of Energy. 2020. “Thermostats.” https://www.energy.gov/energysaver/thermostats,
Accessed: July 21, 2020. 27

Deschênes, Olivier, and Michael Greenstone. 2011. “Climate change, mortality, and adapta-
tion: Evidence from annual fluctuations in weather in the US.” American Economic Journal:
Applied Economics, 3(4): 152–85. 4

Dolan, Paul, and Robert Metcalfe. 2015. “Neighbors, Knowledge, and Nuggets: Two Natu-
ral Field Experiments on the Role of Incentives on Energy Conservation.” Becker Friedman
Institute for Research in Economics Working Paper. 3

ecobee. 2019. “Savings from your ecobee.” https://www.ecobee.com/savings/, Accessed:
September 10, 2019. 3, 5

Energy Information Administration. 2018. “Energy Consumption and Expenditures Ta-
bles.” U.S. Department of Energy, 2015 Residential Energy Consumption Survey. 32

Energy Information Administration. 2019a. “Annual Energy Outlook 2019 with Projections
to 2050.” U.S. Department of Energy, Office of Energy Analysis. 32

Energy Information Administration. 2019b. “Monthly Energy Review.” U.S. Department of
Energy, Office of Energy Statistics. 32

Environmental Protection Agency. 2019. “ENERGY STAR Summary of HVAC & Smart Ther-
mostat Programs.” U.S. Environmental Protection Agency. Accessed: July 24, 2020. 6

Fabra, Natalia, David Rapson, Mar Reguant, and Jingyuan Wang. 2021. “Estimating the
Elasticity to Real-Time Pricing: Evidence from the Spanish Electricity Market.” AEA Papers
and Proceedings, 111: 425–29. 34

Ferraro, Paul J., and Michael K. Price. 2013. “Using Nonpecuniary Strategies to Influence
Behavior: Evidence from a Large-Scale Field Experiment.” The Review of Economics and
Statistics, 95(1): 64–73. 3

Fowlie, Meredith, Michael Greenstone, and Catherine Wolfram. 2018. “Do Energy Effi-
ciency Investments Deliver? Evidence from the Weatherization Assistance Program.” The
Quarterly Journal of Economics, 133(3): 1597–1644. 4, 24, 30

Ge, Qi, and Benjamin Ho. 2019. “Energy Use and Temperature Habituation: Evidence from
High Frequency Thermostat Usage Data.” Economic Inquiry, 57(2): 1196–1214. 12

Ghanem, Dalia, and Aaron Smith. 2021. “What Are the Benefits of High-Frequency Data
for Fixed Effects Panel Models?” Journal of the Association of Environmental and Resource
Economists, 8(2): 199–234. 7

39



Gottfredson, Denise C, Thomas D Cook, Frances EM Gardner, Deborah Gorman-Smith,
George W Howe, Irwin N Sandler, and Kathryn M Zafft. 2015. “Standards of Evidence
for Efficacy, Effectiveness, and Scale-up Research in Prevention Science: Next Generation.”
Prevention science, 16(7): 893–926. 5

Hall, Bronwyn H. 2005. “Innovation and Diffusion.” In The Oxford Handbook of Innovation. ,
ed. Jan Fagerberg, David C Mowery and Richard R. Nelson, Chapter 17, 459–485. Oxford
University Press. 2

Harding, Matthew, and Carlos Lamarche. 2016. “Empowering Consumers Through Data
and Smart Technology: Experimental Evidence on the Consequences of Time-of-Use Elec-
tricity Pricing Policies.” Journal of Policy Analysis and Management, 35(4): 906–931. 34

Harrison, Glenn W., and John A. List. 2004. “Field Experiments.” Journal of Economic Litera-
ture, 42(4): 1009–1055. 9

Heckman, James J., and Jeffrey A. Smith. 1995. “Assessing the Case for Social Experiments.”
Journal of Economic Perspectives, 9(2): 85–110. 55

Herter, Karen. 2007. “Residential implementation of critical-peak pricing of electricity.” En-
ergy Policy, 35(4): 2121 – 2130. 34

Ho, Benjamin. 2014. “Understanding Energy Efficiency Benefits from Smart Thermostats in
Southern California.” EnergyHub. 7

Holladay, J. Scott, Michael K. Price, and Marianne Wanamaker. 2015. “The perverse impact
of calling for energy conservation.” Journal of Economic Behavior and Organization, 110: 1–
18. 23

Houde, Sébastien, and Joseph E. Aldy. 2017. “Consumers’ Response to State Energy Efficient
Appliance Rebate Programs.” American Economic Journal: Economic Policy, 9(4): 227–55. 4,
6, 30

Huchuk, Brent, William O’brien, and Scott Sanner. 2020. “Exploring smart thermostat
users’ schedule override behaviors and the energy consequences.” Science and Technology
for the Built Environment, 27(2): 195–210. 30

Hudson, Sally, Peter Hull, and Jack Liebersohn. 2017. “Interpreting Instrumented
Difference-In-Differences.” 55

Imbens, Guido W., and Joshua D. Angrist. 1994. “Identification and Estimation of Local
Average Treatment Effects.” Econometrica, 62(2): 467–475. 19, 55

Ito, Seiro. 2007. “A Practical Guide to the Program Evaluation Methods.” Health Service and
Poverty: Making Health Services More Accessible to the Poor, 143–203. 56

Jessoe, Katrina, and David Rapson. 2014. “Knowledge Is (Less) Power: Experimental Evi-
dence from Residential Energy Use.” American Economic Review, 104(4): 1417–38. 34

40



Joskow, Paul L. 2012. “Creating a Smarter U.S. Electricity Grid.” Journal of Economic Perspec-
tives, 26(1): 29–48. 6, 23

Kahn, Matthew, and Frank Wolak. 2013. “Using information to improve the effectiveness of
nonlinear pricing: Evidence from a field experiment.” 34

Kelsven, Phillip, Robert Weber, and Eva Urbatsch. 2016. “Nest Learning Thermostat Pilot
Program Savings Assessment.” Bonneville Power Administration & Franklin Public Utility
District. 7

Kilbourne, Amy M, Mary S Neumann, Harold A Pincus, Mark S Bauer, and Ronald Stall.
2007. “Implementing evidence-based interventions in health care: application of the repli-
cating effective programs framework.” Implementation Science, 2(1): 1–10. 5

Kleibergen, Frank, and Richard Paap. 2006. “Generalized reduced rank tests using the sin-
gular value decomposition.” Journal of Econometrics, 133(1): 97 – 126. 20

Kotchen, Matthew J. 2017. “Longer-Run Evidence on Whether Building Energy Codes Re-
duce Residential Energy Consumption.” Journal of the Association of Environmental and Re-
source Economists, 4(1): 135–153. 8

Levinson, Arik. 2016. “How Much Energy Do Building Energy Codes Save? Evidence from
California Houses.” American Economic Review, 106(10): 2867–94. 4, 8, 30

Levitt, Steven D. 2008. “Evidence that Seat Belts Are as Effective as Child Safety Seats in
Preventing Death for Children Aged Two and Up.” The Review of Economics and Statistics,
90(1): 158–163. 24

List, John A. 2022. The Voltage Effect: How to Make Good Ideas Great and Great Ideas Scale.
Currency. 2, 5, 24, 32

Muralidharan, Karthik, and Paul Niehaus. 2017. “Experimentation at Scale.” Journal of Eco-
nomic Perspectives, 31(4): 103–24. 2

Nest. 2019. “It saves energy. And here’s the proof.” https://www.nest.com/thermostats/real-
savings/, Accessed: September 10, 2019. 3, 7, 32

Nest Labs. 2014. “Energy Savings from the Nest Learning Thermostat: The Impact of Nest
Learning Thermostat.” 7

Nest Labs. 2015. “Energy Savings from the Nest Learning Thermostat: Energy Bill Analysis
Results.” 7

Novan, Kevin, Aaron Smith, and Tianxia Zhou. 2022. “Residential Building Codes Do Save
Energy: Evidence from Hourly Smart-Meter Data.” The Review of Economics and Statistics,
104(3): 483–500. 8

41



Park, Toby, Pantelis Solomon, Michael Sanders, Marius Dietsch, Julie Faller, Daniel Gib-
bons, Elisabeth Costa, and Alex Tupper. 2017. “Evaluating the Nest Learning Thermostat:
Four Field Experiments Evaluating the Energy Saving Potential of Nest’s Smart Heating
Control.” The Behavioural Insights Team. 7

Peffer, Therese, Daniel Perry, Marco Pritoni, Cecilia Aragon, and Alan Meier. 2013. “Facil-
itating energy savings with programmable thermostats: evaluation and guidelines for the
thermostat user interface.” Ergonomics, 56(3): 463–479. PMID: 23005033. 3, 10, 25, 30

Peffer, Therese, Marco Pritoni, Alan Meier, Cecilia Aragon, and Daniel Perry. 2011. “How
people use thermostats in homes: A review.” Building and Environment, 46(12): 2529 – 2541.
10

Pritoni, Marco, Alan K. Meier, Cecilia Aragon, Daniel Perry, and Therese Peffer. 2015. “En-
ergy efficiency and the misuse of programmable thermostats: The effectiveness of crowd-
sourcing for understanding household behavior.” Energy Research & Social Science, 8: 190 –
197. 30

Robinson, Jen, Ram Narayanamurthy, Bienvenido Clarin, Christine Lee, and Pranshu
Bansal. 2016. “National Study of Potential of Smart Thermostats for Energy Efficiency and
Demand Response.” ACEEE Summer Study on Energy Efficiency in Buildings. 7

Romer, Paul M. 1990. “Endogenous Technological Change.” Journal of Political Economy,
98(5): S71–S102. 2

Roy, A. D. 1951. “Some Thoughts on the Distribution of Earnings.” Oxford Economic Papers,
3(2): 135–146. 18

Sachs, Olga, Verena Tiefenbeck, Caroline Duvier, Angela Qin, Kate Cheney, Craig Akers,
and Kurt Roth. 2012. “Field evaluation of programmable Thermostats.” National Renew-
able Energy Lab.(NREL), Golden, CO (United States). 30

Schellenberg, Josh, Alana Lemarchand, and Alexandra Wein. 2017. “Xcel Energy Colorado
Smart Thermostat Pilot - Evaluation Report.” Nexant, Inc. 7

Schmidheiny, Kurt, and Sebastian Siegloch. 2019. “On Event Study Designs and
Distributed-Lag Models: Equivalence, Generalization and Practical Implications.” Insti-
tute of Labor Economics (IZA) CESifo Working Paper 7481, Munich:Center for Economic
Studies and ifo Institute (CESifo). 16

Shin, Jeong-Shik. 1985. “Perception of price when price information is costly: evidence from
residential electricity demand.” Review of Economics and Statistics, 591–598. 34

Shobe, William, Charles Holt, and Thaddeus Huetteman. 2014. “Elements of emission mar-
ket design: An experimental analysis of California’s market for greenhouse gas allowances.”
Journal of Economic Behavior and Organization, 107: 402–420. 14

42



Skinner, Jonathan, and Douglas Staiger. 2007. “Technology Adoption from Hybrid Corn to
Beta-Blockers.” Hard-to-Measure Goods and Services: Essays in Honor of Zvi Griliches, , ed.
Ernst R. Berndt and Charles R. Hulten, 545–570. University of Chicago Press. 2

Stewart, James, and Jeremy Jackson. 2015. “Energy Savings from Honeywell Total Connect
Comfort Thermostats-Estimates from 2nd National Impact Study.” The Cadmus Group. 7

Supplee, Lauren H, and Aleta L Meyer. 2015. “The Intersection Between Prevention Science
and Evidence-Based Policy: How the SPR Evidence Standards Support Human Services
Prevention Programs.” Prevention Science, 16(7): 938–942. 5

Supplee, Lauren H, and Allison Metz. 2015. “Opportunities and Challenges in Evidence-
Based Social Policy.” Social Policy Report, 28(4): 1–16. 5

Urban, Bryan, and Carla Gomez. 2013. “A Case for Thermostat User Models.” International
Building Performance Simulation Association. 5

Urban, Bryan, Diana Elliott, and Olga Sachs. 2012. “Towards Better Modeling of Residential
Thermostats.” Proceedings of SimBuild 1. 5

U.S. Chamber of Commerce Foundation. 2012. “Enterprising States: Policies that Produce.”
Praxis Stratgy Group. 2

Ward, Bryan, James Stewart, and Jeremy Jackson. 2014. “Energy Savings from Honeywell
Total Connect Comfort Thermostats.” The Cadmus Group. 7

Weiss, Michael J., Howard S. Bloom, and Thomas Brock. 2014. “A Conceptual Framework
for Studying the Sources of Variation in Program Effects.” Journal of Policy Analysis and
Management, 33(3): 778–808. 5

Young, Alwyn. 1995. “The Tyranny of Numbers: Confronting the Statistical Realities of the
East Asian Growth Experience.” Quarterly Journal of Economics, 110(3): 641–680. 2

Zivin, Joshua Graff, and Kevin Novan. 2016. “Upgrading Efficiency and Behavior: Electricity
Savings from Residential Weatherization Programs.” Energy Journal, 37(4): 1–23. 4, 30

43



A Smart Thermostat

Figure 12: Smart Thermostat Overview

(a) Interfaces: The left panel shows the web portal, the middle panel shows the smart-
phone app, and the right panel shows the thermostat.

(b) Permanent Setpoint Scheduling:
Screenshot of the smartphone app
scheduling interface.
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Figure 13: Smart Thermostat Features

(a) Setpoint Choice Messaging: Screenshots of smartphone app that shows the messaging associ-
ated with different temperature set points.

(b) Temporary Overrides: Screenshots of the smartphone app that
facilitates changes to the temperature setpoint. The left panel
shows the interface after the user indicates she is not home. The
right panel shows the same interface when the user indicates she
is at home.
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B Experimental Data

Figure 14: Conditional Distribution of Time from Assignment to Installation
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Figure 15: Locations of Treatment and Control Groups
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C External Data

Table 3: Daily Outdoor Weather Summary Statistics

Between Within
Daily Std. County County

Variable Measure Mean Dev. Std. Dev. Std. Dev. Min. Max
Panel A: N. CA Experiment
Temperature (◦F) Mean 61.54 11.53 1.23 11.48 33.29 91.25

Minimum 49.19 9.88 0.44 9.88 21.00 76.00
Maximum 75.78 14.35 1.70 14.27 43.00 108.00

Relative Mean 60.02 15.46 2.90 15.25 10.54 97.53
Humidity (%) Minimum 33.77 16.66 1.99 16.57 3.00 93.00

Maximum 84.46 11.85 2.28 11.69 14.00 100.00

Heat Index (◦F) Mean 60.61 11.57 1.16 11.52 31.62 90.30
Minimum 48.42 10.25 0.45 10.24 18.97 76.01
Maximum 74.19 13.63 1.54 13.57 40.82 108.61

N 4
N × T 2,060

Panel B: C. CA Experiment
Temperature (◦F) Mean 66.58 14.36 2.56 14.20 32.63 96.04

Minimum 54.20 12.91 3.66 12.56 19.00 85.00
Maximum 79.85 16.05 1.17 16.02 45.00 110.00

Relative Mean 51.11 17.08 6.55 16.22 13.33 96.78
Humidity (%) Minimum 28.86 15.74 1.78 15.67 2.00 90.00

Maximum 73.15 16.87 10.15 14.70 22.00 100.00

Heat Index (◦F) Mean 65.42 14.18 2.43 14.04 30.62 95.68
Minimum 53.41 13.28 3.62 12.94 16.87 83.66
Maximum 77.81 15.07 1.09 15.04 43.20 109.53

N 3
N × T 1,545

Panel C: Both Experiments
Temperature (◦F) Mean 63.70 13.06 3.20 12.71 32.63 96.04

Minimum 51.34 11.55 3.43 11.10 19.00 85.00
Maximum 77.52 15.23 2.58 15.05 43.00 110.00

Relative Mean 56.20 16.76 6.42 15.67 10.54 97.53
Humidity (%) Minimum 31.66 16.45 3.15 16.19 2.00 93.00

Maximum 79.62 15.28 8.57 13.06 14.00 100.00

Heat Index (◦F) Mean 62.67 12.97 3.04 12.66 30.62 95.68
Minimum 50.56 11.90 3.41 11.48 16.87 83.66
Maximum 75.74 14.38 2.31 14.22 40.82 109.53

N 7
N × T 3,605
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Figure 16: Box and Whisker Plots of CAISO Spot Price by Quintile of Price
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The HVAC system events data does not label temperature changes as being the result of a
permanent setpoint or temporary override. We infer this information based on the precise
timing of when the change occurs. Appendix Figure 17 informs our approach to this classifi-
cation. Panel (a) plots the density of the second of the minute at which temperature changes
take place. The density is roughly uniform with a probability of about 0.70 across all seconds,
save for a large increase in the probability of changes occurring at :00 through :02 (and to a
lesser extent :03) seconds of the minute. Since we would expect temporary overrides to occur
uniformly across seconds of the minute, we code temperature changes occurring at less than
:03 seconds of the minute as permanent setpoints and all other temperature changes as tem-
porary overrides. Panel (b) plots the density of permanent setpoints (as determined by our
classification rule) by minute of the hour. Consistent with our priors, users schedule most
setpoints on the hour or half hour (and to a lesser extent, at :15 and :45 minutes past the
hour). This is both a finding and a confirmation of the validity of our approach to classifying
setpoints and overrides.
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Figure 17: Timing of HVAC System Events
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Figure 18: Modified Sample Randomization with Energy-Efficiency Types (N. CA Experi-
ment)
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Note: Counts of high- and low-efficiency types are based on a definition that divides types at the
median.

Figure 19: Distributions of Permanent Setpoints and Temporary Overrides
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E Balance and Time-Trend Analysis

Table 5: Balance Table

(1) (2) (3)
Both N. CA C. CA

Treatment Treatment Treatment
Variable Indicator Indicator Indicator
Household Characteristics
Family in the Household Indicator 0.025 -0.028 0.083

(0.053) (0.071) (0.080)
Pets in the Household Indicator 0.013 0.019 0.005

(0.029) (0.038) (0.045)
HER Experiment Indicator -0.021 -0.004 -0.046

(0.031) (0.040) (0.048)
HER Recipient Indicator -0.006 0.027 -0.062

(0.039) (0.049) (0.063)
Home Characteristics
Multi-Family Home Indicator -0.017 -0.022 0.039

(0.080) (0.091) (0.166)
Year Home Built (Year / 1,000) 0.230 -0.589 1.363

(0.800) (1.110) (1.170)
Size of Home (Sq. Ft. / 10,000) 0.286 0.377 -0.061

(0.246) (0.324) (0.433)
Pool Indicator -0.006 0.037 -0.082

(0.033) (0.044) (0.052)
Electric Heat Indicator 0.014 -0.068 0.126

(0.094) (0.125) (0.140)
Pre-Period Energy Use
Mean (kWh) -0.036 -0.054 0.010

(0.028) (0.034) (0.048)
Mean (thm) -0.029 0.002 -0.054

(0.032) (0.050) (0.040)

N 1,385 821 564
R2 0.011 0.015 0.021
F 0.664 0.689 0.799

Notes: Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
The table reports linear probability model estimates of the probability of assignment to treatment. The HER
Experiment Indicator variable is equal to one for households that participated in the Home Energy Report
experiment, and the HER Recipient Indicator variable is equal to one for households that were assigned to
the treatment group in that experiment. We interpolate missing values of continuous variables (year built,
home size, and pre-period energy use). We also code as zero and include an indicator for missing values of
binary variables (heating type) and mismeasured values of pre-period electricity means in Northern Cali-
fornia that are based on less than two weeks of data (see Section 2.4). Models include indicators for month
and county of recruitment, as well as the aforementioned indicators for missing/mismeasured values. All
omitted coefficient estimates are statistically insignificant. The F-statistic tests the null hypothesis that all
parameters are jointly equal to zero. We fail to reject the null in all three models.
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Figure 20: Average Residual Energy Use by Experimental Status and Wave
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F Discussion of Identifying Assumptions

Our DDIV empirical specification identifies the ATT of a smart thermostat if our experi-
mental instrument is relevant and valid, there are common or parallel trends, monotonicity
holds, and there is one-sided experimental noncompliance.54 We provide evidence that each
of these assumptions is reasonable in this section. First, instrument relevance requires that
assignment to treatment affects the probability that a household installs a smart thermostat.
We report the first-stage F statistics with all of our results tables. As one would expect of a
field experiment, we always easily reject the null of weak instruments.

Second, the instrument validity assumption in a DDIV model can be thought of as two sepa-
rate conditions (Hudson, Hull and Liebersohn, 2017). The first is the traditional IV assump-
tion that the instrument is exogenous and the only way assignment to the treatment group
affects energy use is through the installation of a smart thermostat. The second is the assump-
tion implicit in all DD analyses that post-period randomization does not affect the pre-period
values of outcomes (energy use) or treatment (smart thermostat installation). Both assump-
tions are satisfied by the nature of our experiment: households are randomly assigned to a
treatment or control group. Assignment occurs both (shortly) after the household first inter-
acts with the experimenter and after the household’s pre-period energy use decisions have
been made. The analyses in Section 2.6 and 2.7 are consistent with an appropriate random-
ization process.

Third, the common or parallel trends assumption requires that the unobserved, counterfac-
tual trend in energy use that would have been experienced by the treated group is parallel to
the observable, untreated trend in the comparison group. In the context of our experiment,
this means that the energy consumed by control group households is a good proxy for the
energy homes who installed a smart thermostat would have used in a counterfactual world
without a smart thermostat. While this assumption is fundamentally untestable because of
the counterfactual outcomes problem, it is satisfied if there is appropriate randomization
(Hudson, Hull and Liebersohn, 2017). Nonetheless, we provide additional support for this
assumption by showing evidence of parallel pre-trends via the event studies in Section 2.7.

Finally, if there is two-sided noncompliance in an experiment, the estimates are confounded
by substitution bias (Heckman and Smith, 1995). The standard in the literature is to relax the
noncompliance assumption to one of monotonicity (or uniformity). In our case, this means
that the experimental treatment makes all households in more (or less) likely to get a smart
thermostat than they would have been otherwise. Under this alternative assumption, the
DDIV specification recovers the LATE estimate of γ j (Imbens and Angrist, 1994). This is an
estimate of the average impact of a smart thermostat on the energy consumption of house-
holds that were induced to install one by our experiment.

54Alternatively, we can recover the ITT estimate of γ j by replacing the Si in Equation 1 with Ti . This is
an estimate of the average effect of being randomized into the treatment group in our experiment. We estimate
DDITT models in Section 5.5 as we do not observe additional instruments for household energy-efficiency types.
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Our experimental environment allows us to make the stronger assumption that there is one-
sided experimental noncompliance that allows us to identify the ATT of a smart thermostat.
The assumption of one-sided noncompliance is tenuous to the extent that "the need for treat-
ment under question is widely acknowledged and there is competition over implementation"
(Ito, 2007). This is not the case in our context as smart thermostat technology was in its in-
fancy at the time of our study. As noted in the main text, using data from the EIA’s 2015
Residential Energy Consumption Survey (RECS), we find that only 4.09% of all households
in the survey and 10.58% of households observationally similar to those in our study own a
smart thermostat several years after our experiment.55 Additionally, while we are unable to
directly observe whether any households in the control group upgrade their thermostat, we
never observe control households using a smart thermostat on Opower platform. Thus, the
available evidence supports the validity of the one-sided noncompliance assumption in our
experimental context.

55The RECS is not conducted annually, so we use data from the 2015 survey as it is the closest possible survey
iteration subsequent to the time period observed in our data. The previous iteration of the survey in 2009 did
not ask questions about smart devices. We define "observationally similar" households by restricting the RECS
sample to homes that would pass Opower’s initial eligibility screening to join the trial (to the extent possible
given the measures available). Specifically, we condition on owner-occupied, single-family homes located in the
Pacific Division (state of residence is not observed) that have a functioning central furnace or heat pump, central
air conditioning, and an electrical connection. We are not able to condition on whether or not the household has
a high-speed Internet connection or whether the occupants plan to move in the next year, as those questions are
not part of the RECS survey.
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G Main Results with Full Regression Diagnostics

Table 6: N. CA Experiment-ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(1) (2) (3) (4) (5) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
ATT (γ̂kWh) -0.055 -0.061 -0.016 -0.016 -0.016 -0.003

(0.058) (0.058) (0.046) (0.046) (0.046) (0.041)
Constant 1.294***

(0.035)

N 815 815 815 815 815 815
N × T 9,729,849 9,729,849 9,729,849 9,729,849 9,729,849 9,729,849
F statistic 44.591 270.070 343.596 353.483 350.375 171.299
rk LM statistic 391.219 391.264 313.225 313.190 313.190 269.656
rk Wald F statistic 379.956 380.003 670.871 670.765 670.766 639.637

Panel B: Natural Gas (thm)
ATT (γ̂ thm) -0.009 0.009 0.085 0.075 0.075 0.069

(0.061) (0.063) (0.068) (0.066) (0.066) (0.055)
Constant 0.523***

(0.020)

N 805 805 805 805 805 805
N × T 398,243 398,243 398,243 398,243 398,243 398,243
F statistic 801.768 568.771 674.486 519.934 520.789 22.446
rk LM statistic 386.783 386.896 313.868 313.885 313.886 270.288
rk Wald F statistic 377.042 377.090 672.580 672.617 672.609 641.179

Weather Controls x x x x x
HH Fixed Effects x x x x
Month-of-Year Effects x x
Day-of-Week Effects x
Day Effects x
Hour-of-Day Effects x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *
p < 0.1.
All estimates are based on a sample comprised of the Northern California wave of the experiment.
The sample used to produce the estimates in Panel A is based on hourly electricity meter readings in
kWh, while the sample underlying the estimates in Panel B is based on daily natural gas meter readings
(thm). Thus, the hour-of-day effects noted in Column (6) are included in the electricity model (Panel A)
only. Based on the values of the rk LM and Wald F statistics, we reject the nulls of an under or weakly
identified model across all specifications.
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Table 7: C. CA Experiment-ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(1) (2) (3) (4) (5) (6)

Power Use (kWh or thm)

Panel A: Electricity (kWh)

ATT (γ̂kWh) 0.009 0.006 0.002 0.002 0.002 -0.001

(0.029) (0.028) (0.025) (0.025) (0.025) (0.023)

Constant 1.292***

(0.030)

N 564 564 564 564 564 564

N × T 6,691,885 6,691,885 6,691,885 6,691,885 6,691,885 6,691,885

F statistic 49.321 411.636 539.983 392.831 389.611 249.936

rk LM statistic 394.996 395.009 384.992 384.985 384.985 374.160

rk Wald F statistic 677.494 677.449 1,352.535 1,352.620 1,352.619 1,365.852

Panel B: Natural Gas (thm)

ATT (γ̂ thm) -0.003 0.007 0.001 0.001 0.001 -0.021

(0.044) (0.031) (0.027) (0.026) (0.026) (0.026)

Constant 1.101***

(0.034)

N 564 564 564 564 564 564

N × T 279,061 279,061 279,061 279,061 279,061 279,061

F statistic 3.488 357.120 408.612 280.326 281.833 15.312

rk LM statistic 393.909 393.941 390.416 390.404 390.404 379.295

rk Wald F statistic 675.636 675.284 1,376.620 1,376.557 1,376.527 1,388.599

Weather Controls x x x x x

HH Fixed Effects x x x x

Month-of-Year Effects x x

Day-of-Week Effects x

Day Effects x

Hour-of-Day Effects x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *

p < 0.1.

All estimates are based on a sample comprised of the Central California wave of the experiment. The

sample used to produce the estimates in Panel A is based on hourly electricity meter readings in kWh,

while the sample underlying the estimates in Panel B is based on daily natural gas meter readings

(thm). Thus, the hour-of-day effects noted in Column (6) are included in the electricity model (Panel A)

only. Based on the values of the rk LM and Wald F statistics, we reject the nulls of an under or weakly

identified model across all specifications.
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Table 8: Both Experiments-ATT Estimates of the Effect of a Smart Thermostat on Energy Use

(1) (2) (3) (4) (5) (6)
Power Use (kWh or thm)

Panel A: Electricity (kWh)
ATT (γ̂kWh) -0.031 -0.031 -0.003 -0.001 -0.001 0.026

(0.036) (0.035) (0.022) (0.022) (0.022) (0.017)
Constant 1.293***

(0.024)

N 1,379 1,379 1,379 1,379 1,379 1,379
N × T 16,421,734 16,421,734 16,421,734 16,421,734 16,421,734 16,421,734
F statistic 67.704 538.083 818.852 749.195 743.903 547.479
rk LM statistic 738.263 749.372 611.958 612.274 612.275 488.960
rk Wald F statistic 790.294 819.435 1,948.381 1,951.624 1,951.629 1,931.185

Panel B: Natural Gas (thm)
ATT (γ̂ thm) 0.062 0.065 0.028 0.023 0.023 0.055**

(0.060) (0.049) (0.028) (0.026) (0.026) (0.022)
Constant 0.963***

(0.028)

N 1,369 1,369 1,369 1,369 1,369 1,369
N × T 677,304 677,304 677,304 677,304 677,304 677,304
F statistic 126.946 685.010 910.597 687.556 686.021 87.637
rk LM statistic 733.785 744.065 618.764 619.162 619.163 497.269
rk Wald F statistic 790.386 817.152 1,976.210 1,980.104 1,980.097 1,958.933

Wave Indicator x
Weather Controls x x x x x
HH Fixed Effects x x x x
Month-of-Year Effects x x
Day-of-Week Effects x
Day Effects x
Hour-of-Day Effects x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *
p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. Note that the estimates
reported in Column (2) are based on a model that includes an indicator for the first wave of experiment
(N. CA). This indicator is perfectly co-linear with household fixed effects, so it is dropped from subse-
quent models. The sample used to produce the estimates in Panel A is based on hourly electricity meter
readings in kWh, while the sample underlying the estimates in Panel B is based on daily natural gas
meter readings (thm). Thus, the hour-of-day effects noted in Column (6) are included in the electricity
model (Panel A) only. Based on the values of the rk LM and Wald F statistics, we reject the nulls of an
under or weakly identified model across all specifications.
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H Heterogeneous Treatment Effects Estimates

H.1 Ambient Weather Estimates

Table 9: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Tem-
perature Quintile

(1) (2) (3) (4) (5)
Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Power Use (kWh or thm)
Panel A: Electricity (kWh)
ATT (γ̂kWh) -0.036 -0.033* -0.024 -0.008 0.009

(0.022) (0.019) (0.019) (0.024) (0.044)

N 1,376 1,379 1,379 1,379 1,378
N × T 3,345,085 3,541,064 3,239,489 3,102,224 3,193,872
F statistic 1.522 1.610 14.502 16.745 24.597
rk LM statistic 368.164 652.296 681.468 600.120 545.434
rk Wald F statistic 1,379.806 1,920.331 1,966.682 1,879.175 1,769.185

Panel B: Natural Gas (thm)
ATT (γ̂ thm) -0.054 -0.013 0.005 -0.008 0.010

(0.064) (0.038) (0.023) (0.018) (0.015)

N 1,364 1,366 1,369 1,368 1,365
N × T 145,525 147,440 120,087 138,512 125,737
F statistic 22.958 0.550 6.339 6.145 0.431
rk LM statistic 360.657 435.244 563.227 699.424 403.356
rk Wald F statistic 1,375.353 1,587.271 1,323.568 1,802.507 1,377.126

HH Fixed Effects x x x x x
Month-of-Year Effects x x x x x
Day-of-Week Effects x x x x x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *
p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sample used to
produce the estimates in Panel A is based on hourly electricity meter readings in kWh, and temper-
ature quintiles are calculated from the distribution of hourly average ambient temperature readings.
The sample underlying the estimates in Panel B is based on daily natural gas meter readings (thm),
and temperature quintiles are calculated using the distribution of daily average ambient temperature
readings. Based on the values of the rk LM and Wald F statistics, we reject the nulls of an under or
weakly identified model across all specifications.
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Table 10: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient
Humidity Quintile

(1) (2) (3) (4) (5)
Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Power Use (kWh or thm)
Panel A: Electricity (kWh)
ATT (γ̂kWh) 0.050 -0.010 -0.021 -0.041** -0.066***

(0.048) (0.024) (0.019) (0.018) (0.020)

N 1,379 1,379 1,379 1,379 1,379
N × T 3,313,684 3,333,963 3,255,920 3,239,969 3,278,198
F statistic 45.607 3.514 8.612 4.219 7.804
rk LM statistic 521.960 564.647 595.843 638.333 623.192
rk Wald F statistic 1,763.238 1,860.182 1,910.165 1,944.091 1,612.296

Panel B: Natural Gas (thm)
ATT (γ̂ thm) 0.004 -0.010 -0.005 0.047 -0.022

(0.017) (0.025) (0.036) (0.044) (0.067)

N 1,367 1,369 1,369 1,369 1,367
N × T 141,016 133,650 132,648 153,013 116,975
F statistic 0.930 0.188 0.149 14.963 65.458
rk LM statistic 380.444 564.518 647.032 611.390 550.812
rk Wald F statistic 1,356.189 1,740.682 1,908.480 1,522.235 1,306.659

HH Fixed Effects x x x x x
Month-of-Year Effects x x x x x
Day-of-Week Effects x x x x x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *
p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sample used to
produce the estimates in Panel A is based on hourly electricity meter readings in kWh, and humidity
quintiles are calculated from the distribution of hourly average ambient relative humidity readings.
The sample underlying the estimates in Panel B is based on daily natural gas meter readings (thm),
and humidity quintiles are calculated using the distribution of daily average ambient relative humidity
readings. Based on the values of the rk LM and Wald F statistics, we reject the nulls of an under or
weakly identified model across all specifications.
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Table 11: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Ambient Heat
Index Quintile

(1) (2) (3) (4) (5)
Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Power Use (kWh or thm)
Panel A: Electricity (kWh)
ATT (γ̂kWh) -0.036 -0.030 -0.026 -0.009 0.009

(0.022) (0.019) (0.019) (0.024) (0.043)

N 1,376 1,379 1,379 1,379 1,378
N × T 3,296,464 3,272,861 3,296,156 3,273,130 3,283,123
F statistic 1.491 1.632 13.865 17.538 24.681
rk LM statistic 367.624 636.517 691.267 604.526 546.840
rk Wald F statistic 1,381.488 1,927.034 1,955.091 1,883.345 1,770.575

Panel B: Natural Gas (thm)
ATT (γ̂ thm) -0.060 -0.004 -0.004 -0.003 0.009

(0.066) (0.044) (0.024) (0.018) (0.015)

N 1,364 1,366 1,369 1,367 1,365
N × T 135,502 136,401 134,876 135,317 135,204
F statistic 18.708 6.519 10.808 12.692 0.289
rk LM statistic 351.296 404.357 586.160 702.841 413.818
rk Wald F statistic 1,364.503 1,468.623 1,403.564 1,797.169 1,406.956

HH Fixed Effects x x x x x
Month-of-Year Effects x x x x x
Day-of-Week Effects x x x x x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *
p < 0.1.
All estimates are based on a sample comprised of both waves of the experiment. The sam-
ple used to produce the estimates in Panel A is based on hourly electricity meter readings in
kWh, and heat index quintiles are calculated from the distribution of hourly average ambient heat
index readings. The heat index is calculated using temperature and humidity readings. See
https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml for the exact formula. The sample
underlying the estimates in Panel B is based on daily natural gas meter readings (thm), and heat index
quintiles are calculated using the distribution of daily average ambient heat index readings. Based on
the values of the rk LM and Wald F statistics, we reject the nulls of an under or weakly identified model
across all specifications.

H.2 Day of Week and Hour of the Day Estimates
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H.3 Price and Peak-Alert Estimates

Table 15: ATT Estimates of the Effect of a Smart Thermostat on Energy Use by Price Quintile

(1) (2) (3) (4) (5)

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Power Use (kWh)

ATT (γ̂kwh) 0.027 -0.002 0.003 -0.007 -0.012

(0.027) (0.020) (0.021) (0.024) (0.026)

N 1,379 1,379 1,379 1,379 1,379

N × T 3,274,085 3,272,108 3,273,626 3,272,248 3,272,504

R2 0.133 0.114 0.096 0.088 0.081

F statistic 692.939 784.327 788.042 719.974 630.113

rk LM statistic 713.547 557.232 514.273 466.017 585.746

rk Wald F statistic 1,827.171 1,849.146 1,798.582 1,651.200 1,938.912

Weather Controls x x x x x

HH Fixed Effects x x x x x

Month-of-Year Effects x x x x x

Day-of-Week Effects x x x x x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *

p < 0.1.

All estimates are based on a sample comprised of both waves of the experiment. The sample used to

produce the estimates is based on hourly electricity meter readings in kWh. Based on the values of

the rk LM and Wald F statistics, we reject the nulls of an under or weakly identified model across all

specifications.
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Table 16: ATT Estimates of the Effect of a Smart Thermostat on Energy Use on Peak-Alert
Days

(1) (2) (3) (4) (5)

CAISO Alert CAISO Alert PG&E Alert PG&E Alert PG&E Alert

Hours Hours w/ Local Days Days: Days:

Media Coverage Off-Peak Hours Peak Hours

Power Use (kWh)

ATT (γ̂kwh) -0.046 -0.011 -0.103*** -0.073** -0.116*

(0.052) (0.069) (0.033) (0.029) (0.065)

N 1,378 1,376 1,378 1,378 1,378

N × T 227,005 158,614 475,920 356,940 118,980

R2 0.015 0.019 0.015 0.012 0.016

F statistic 126.639 117.259 236.227 204.697 135.732

rk LM statistic 595.465 630.654 525.434 529.324 531.045

rk Wald F statistic 1,580.882 1,585.741 1,777.016 1,775.353 1,785.294

Weather Controls x x x x x

HH Fixed Effects x x x x x

Day Effects x x x x x

Hour-of-Day Effects x x x x x

Note: Standard errors clustered at the household level in parentheses. *** p < 0.01, ** p < 0.05, and *

p < 0.1.

All estimates are based on a sample comprised of both waves of the experiment. The sample used to

produce the estimates is based on hourly electricity meter readings in kWh. Based on the values of

the rk LM and Wald F statistics, we reject the nulls of an under or weakly identified model across all

specifications.
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Figure 21: ATT Estimates of the Effect of a Smart Thermostat on Energy Use on PG&E Peak
Alert Days by Hour of the Day

I Recruitment and Enrollment

I.1 Subject Eligibility

Appendix Table 17 summarizes the eligibility requirements for participation in the experi-
ment. Participants had to own their residence and have central air conditioning with a single
thermostat. They also had to have a smart phone and high-speed Internet. Finally, individu-
als who were planning to move in the near future were excluded from the experiment.

Table 17: Subject Eligibility Summary

Eligible Not Eligible
Rent or own? Own Rent
Home Type House or Condo Apartment or Other
Phone iPhone or Android Blackberry or Other
# of Thermostats 1 ≥ 2
A/C Central Air Box Unit, Fans, Other
Heating Air Vents Baseboard or Other
High-speed Internet? Yes No
Plan to move in next year? No Yes
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I.2 Trial Recruitment and Enrollment Guide
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Introduction 
Experimental Trial Information 

UTILITY is running an experimental thermostat trial with Opower and Honeywell, offering 
eligible customers a free remote-controlled thermostat solution (a thermostat controlled by a 
smartphone and web application).  The goal of the experiment is to test the energy savings and 
customer experience of the thermostat solution. Customers gain a thermostat and app that helps 
them save energy, by creating a customized, energy efficient schedule that fits their lifestyle. 
For this trial, 1 in 2 qualifying customers will receive the thermostat solution.  Customers who 
meet the eligibility qualifications must complete the online enrollment process to determine if 
they will receive a thermostat or not. At the end of the online enrollment process the system will 
randomly flip a coin to determine which customer will receive the remote-controlled thermostat 
and which will not.  All customers who enroll for a chance to participate are benefiting the trial 
(even those who do not receive a thermostat), and it is important that all qualified customers 
complete the full enrollment process.   

Customers should be encouraged to enroll for a chance to receive this exciting solution, which 
allows them to control their thermostat on-the-go. UTILITY, Opower, and Honeywell are grateful 
for the time each customer takes to enroll online for a chance to participate, and all customers 
should be thanked for their time regardless of the outcome. 

Customers should be encouraged to answer all qualification and enrollment questions honestly. If 
a customer provides inaccurate information during enrollment it negatively impacts the trial and 
the customer will ultimately be turned down for the trial. 

 

Talking Points for Recruitment Events 

Initial Communication 

Initial communication should be a call to action, provide quick benefits (FREE remote-controlled 
thermostat), provide a fun atmosphere and garner attention.  

• Do you own an iPhone or an Android? If so, would you be interested in a free thermostat 
controlled by your smartphone?  

• How would you like to gain better control of your energy use at home? You can control 
your thermostat at home from right here! Want to know how?  

• Sign-up for a free remote-controlled thermostat, a $500 dollar value and take control of 
your energy consumption and improve the comfort of your home.  

• I know you’re in a hurry but this opportunity will allow you to take control of your 
energy use and you’ll always come home to a house at the perfect temperature.  

• Save energy while you’re away and stay comfortable while you’re at home, all by using 
your smartphone or the web.  

• How would you like to control your heating/cooling by your iPhone or Android and 
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through the internet from anywhere in the world?  

After Initial Communication  

After initial communication, you should be focused on getting the customer more excited about 
the offering by providing key information and benefits unique to the opportunity.  

• We are conducting a trial on behalf of UTILITY that allows you to interact with your 
heating & cooling system using your smartphone or the web. That means you can control 
your home’s comfort at your fingertips from wherever you are. All you need is your 
smartphone of the web. Are you ready to take control?  

• Did you know that a typical family spends almost half (49%) of its energy cost on heating 
and cooling? (Source: Energy Star)-- How would you like to have the opportunity to be 
selected for a special trial UTILITY is conducting to provide a limited number of 
customers a thermostat controlled by your smartphone? That’s right you can control the 
comfort of your home at anytime or any place using your smartphone or the web. 

• How would you like to be one of the lucky UTILITY customers who receives a free 
thermostat controlled on-the-go from your smartphone or the web? This is over a $500 
value completely free with professional installation and a 1-year warrantee. UTILITY is 
conducting this trial to allow customers a unique way to reduce energy use and save 
money. The process for signing up only takes a few minutes of your time. Let’s see if you 
qualify.  

• Check out this free thermostat controlled by your smartphone.  You’ll have complete 
control over your comfort, and you can see how your temperature settings stack up 
against other participants in the trial. 

Overcoming Initial Objections 

Objection: “I don’t have time”  

• You’ll never come home to a cold house again and sign-up only takes a few minutes.  

Objection: “I still don’t have time”  

• Okay; here’s how you can see if you qualify and sign-up from home (postcard)  

Objection: “I don’t want to give out my personal information”  

• You’re information is completely confidential and will be only used to determine if you 
qualify for the free thermostat.  

Objection: “I’m not interested”  

• Here is a free pen, compliments of UTILITY. Have a great day!  

 

Initial Eligibility Screening 

 Eligible Not eligible 
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Do you rent or own your home? Own Rent 
What kind of home do you own? Single family, 

Townhome, 
Condo 

- Apartment  
- Other 

What kind of phone do you have? - iPhone 
- Android 

- Blackberry 
- Other 

How many thermostats do you have in your 
home? 

One (1) Two (2) or more 

How do you cool your home? Central air - Window box unit 
- Fans 
- Other 

What is the main way you heat your home? Air vents - Baseboard 
- Other 
- None 

Are your heating and air conditioning systems 
functional and have you used them the last 6 
months? 

Yes No 

Do you have high-speed internet access 
(Cable, DSL, satellite, Broadband)? 

Yes No 

Do you have an available ethernet port on 
your internet router? 

Yes No 

Do you plan to move to a new home in the 
next 12 months? 

No Yes 

Will other adults in your household object to 
enrolling in this program? 

No Yes 

Customer Does NOT Pass Initial Eligibility Screening  

• Thank you for your interest, but unfortunately you don’t meet the eligibility requirements 
for this trial. However, UTILITY is developing a number of residential energy efficiency 
programs that you may qualify for. Please fill out this post card in to enable them to 
contact you in the future for other offerings. Thank you and please accept this free pen, 
compliments of UTILITY. We appreciate your time!  

• If you do know someone else who may be interested, please let them know about this free 
trial and they can sign-up right away. (Staffer hands the customer a post card.) 

Customer Passes Initial Screening 

• Great! You’ve pre-qualified to participate in the selection process, which only takes a few 
minutes. Would you like to learn how the thermostat and app works? (demo)  

• Let’s get you signed-up and see if you are selected to join the UTILITY Smart 
Thermostat Trial, with a free remote- controlled thermostat and professional installation. 
The sign-up process just takes a few minutes and we can help you complete it here.  

• You’ll need your UTILITY account number for enrollment. You can use my phone to 
retrieve your utility account number from UTILITY. You will also be asked to provide 
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the last four digits of the Social Security Number of the UTILITY account holder—this 
may be you or a housemate. Staffer provides customer phone & contact number (1-888-
743-0011).  

Customer is Selected to Join the Trial  

Encourage customers to take the first available appointment. Explain that technicians are only in 
the area for a limited amount of time.  

• Congratulations! You’ve been selected to participate in the UTILITY Smart Thermostat 
Trial. A customer service representative will contact you with further information about 
your free installation. You will receive an email reminder with the date and time of your 
installation appointment, but you may want to write it down now, so you don’t forget. 

• Tell your friends and family to see if they are eligible and sign-up online! (postcard)  

• Here is a free lens cleaner or smartphone holder for your smartphone, compliments of 
UTILITY. We appreciate your time! 

• You will be contacted within a few days to confirm your eligibility and appointment 
time. (Honeywell CSR will conduct a follow-up call to confirm appointment time & 
answer any additional questions) 

Customer is NOT Selected for the Trial 

Thank you for your interest in the Smart Thermostat Trial. Unfortunately, this is currently a trial 
so participation cannot be granted for everyone.  

• In the event the trial is extended, would you like to leave your contact information, which 
will only be used to contact you regarding other opportunities to participate in UTILITY 
residential trials or programs?  

• Please accept this free pen, compliments of UTILITY. Have a great day.  

• Tell your friends and family to see if they are eligible and sign-up! (postcard). 

• Here is a free lens cleaner or smartphone holder for your smartphone, compliments of 
UTILITY. We appreciate your time!  
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How Online Enrollment Works 
If a customer passes the initial qualification screening, direct them to the Opower Web 
application to enroll online.  Eligible customers have a 1 in 2 chance of being selected to receive 
a thermostat. 

Enroll online at: https://thermostat.opower.com/ 

The customer begins by clicking "See if your household qualifies." 

 

Verifying if the Household Qualifies 

In order to verify that they can participate in the program, customers must answer a series of 
questions about their home. 

On the first verification screen, they are asked to provide the following information: 

• Zip code: Qualified zip codes are those within the greater Fresno and Bakersfield areas, 
see list provided by Honeywell. 

• Whether they rent or own: Customers must own their own home. 

• What kind of home they live in: Customers can select any option except "other." 

• Whether they plan on moving in the next year: Customers must plan on remaining in the 
same home. 

• What kind of phone they have: Customers must have an iPhone or Android phone if the 
utility program requires a smartphone. 
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If a customer qualifies based on the answers to the questions above, they are asked to provide the 
following additional information: 

• Number of thermostats: Customers can have only one thermostat. 

• Primary cooling system: Customers must have central air. 

• Main way they heat their home: Customers must have a gas furnace. 

• If their air conditioning and heat are currently working: Customers must have an 
operational air conditioner and heater that they have used in the last 6 months. 
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Finally the customer is asked, if they:  

• Have high-speed Internet access: Customers must have high-speed access. 

• Have an available Ethernet port on their router: Customers must have an available port. 

• Are in agreement with the terms and conditions of the program: Customers must agree to 
the terms. Terms vary by utility. 
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When they complete the final verification screen, they are told if they are eligible to receive an 
account. They must meet all of the qualifications to be considered for the program. 

If a customer answers any of the qualification questions with a response that makes them 
ineligible, they are excluded from the program. 

 

Creating an Account 

Customers who are eligible for the program are required to enter the following information to 
create an account: 

• The email address they will use to access the Web application. Basic validation is 
performed to verify that the email address is well-formed. 

• A unique password. The password must be at least eight characters long. Passwords must 
not be or contain the customer’s name or email address. 

• Customers enter the same password again and are prompted to correct the password if it 
is not identical in the two password fields. 

• The full name of the utility account holder exactly as it appears on the utility bill. The 
customer enrolling in the program must enter the name of the utility account holder as it 
appears on the utility bill, even if they are not the account holder. 

• The utility account number exactly as it appears on the utility bill. This includes spaces 
or any other characters included in the data. 

Customers are prompted to agree to the Opower Terms of Use. 
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Customers submit their account information, and then a new page prompts the customer to check 
their email. 

 

Customers should receive an email message at the address they specified. If the customer does 
not receive the email, they have the option to "Resend confirmation" in the Web application. The 
email is titled "Your Thermostat," and it will arrive from an @opower.com email address. The 
customer may need to check their junk/spam folder for the email.  



 

Copyright 2012 by Opower and Honeywell. All rights reserved. 1
1  

 

 

The customer must click "Confirm my account" to complete their registration and verify their 
email address. If nothing happens when the button is clicked, the customer can copy and paste the 
customer-specific URL provided in the email to their Internet browser to confirm the account. 

Thermostat Registration 

Once the customer has confirmed their account, they are provided with more information about 
the program and asked to describe their daily routine. 

 

Qualifying Questions 

The customer begins to program their thermostat by providing the following information: 

• Whether multiple people live in their home. Opower tailors the language in the 
application to the number of people in the household. 
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• Whether they have pets. If the customer has pets, the default away temperature of the 
home is adjusted to a safe temperature for household pets. For homes with pets, the 
default away temperature is 82 instead of 85 for cooling and 60 instead of 55 for heating. 

• Their mobile phone number. Customers are sent a text message to this number with a 
link to the Opower mobile application.. 

Setting an Initial Schedule 

After completing the qualification questions, the customer is prompted to create a personalized 
schedule. By default, customers set a schedule for all weekdays and then Saturday and Sunday. 

For all weekdays, Saturday, and Sunday, the customer has the following options: 

• They can set a schedule for when they typically wake, leave the home, return home, and 
go to sleep. 
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• They can indicate they are home all day and set the time for when they usually wake and 
go to sleep. 
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• They can indicate their schedule is unpredictable. In this case, they are still asked when 
they typically wake and go to sleep. 
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Instead of setting the same schedule for all weekdays, a customer can also create a day-by-day 
schedule for each weekday separately. The same schedule options are available on a daily basis. 

 

Setting Initial Temperatures 

Customers are prompted to set their home and sleep temperatures for heating and cooling. The 
default temperatures for these settings are based on the suggested Energy Star settings (ENERGY 
STAR® Program Requirements for Residential Climate Controls, Version 1.0 Partner 
Commitments, DRAFT 2). 
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On the heating page, customers are asked how warm they would like their home to be when they 
are home and asleep. 

 

If the home temperature is greater than the recommended setting (less efficient), an insight 
appears to tell them how much money they will spend during the winter keeping the home at this 
higher temperature. If the away temperature is higher than the recommended setting, they are 
prompted to try setting the temperature lower since the house will warm up to a comfortable 
setting before they wake up. 
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On the cooling page, customers are asked how cool they would like their home to be when they 
are home and asleep. 

 

If the home temperature is less than the recommended setting (less efficient), an insight appears 
to tell them how much money they’ll spend during the summer keeping the home at this lower 
temperature. If the away temperature is lower than the recommended setting, they are prompted 
to try setting the temperature higher since the house will cool down to a comfortable setting 
before they wake up. 
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Installation 

After submitting their temperature settings, the customer is randomly selected to be part of the 
test or control group.  

 

If they are part of the control group, they will not receive a thermostat. Customers in the control 
group may opt to sign up for a waiting list and may receive a thermostat if the program is 
expanded. 
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If they are randomly selected into the test group, they will receive a thermostat and become part 
of the program. Customers participating in the test group can schedule an appointment to have 
their thermostat installed. 

 

If none of the times available on the screen are convenient for the customer, they can click "Don't 
see an appointment you like?" to see a phone number they can call to schedule the appointment 
(1-888-660-5028). 
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Once they have selected the date and time for their appointment, they will see a confirmation 
screen. This includes information on how to reschedule the appointment and where to download 
the mobile application. 

 

The customer will also receive an email confirmation for their appointment and a reminder to 
install the mobile application in advance of the appointment. 

 

 

Mobile Application Tour 
The mobile application tour can be launched at anytime, using the Opower mobile app on the 
iPod Touches, and later on the customer’s smartphone. Click on the Settings tab, click “Launch 
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tour,” slide through the tour pages, and click “Done” to exit. The tour provides an overview of 
some of the main application functions and customer messages. 

      

     

     

Answering Customer FAQs 
This section will help you answer customer questions about the program, mobile and Web 
applications, and thermostat. A full set of customer FAQs can be found at 
https://thermostat.opower.com/faq. 
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What is this thermostat program? 

Opower and Honeywell have partnered to create a smart thermostat solution, which allows utility 
customers to program and monitor heating and cooling energy usage, not just from the thermostat 
itself, but also via Internet-connected devices like smartphones. This solution also gives you the 
ability to create optimal thermostat schedules that fit your lifestyle and provides customized 
recommendations to help you trim your energy bills. 

How can I save? 

A programmable thermostat can help reduce your heating and cooling costs. You can save all 
year long if you ensure your thermostat is set at the optimum program settings that match your 
lifestyle. You can manipulate your temperature setting and conserve energy, even while you are 
away, through the use of the Internet or your smartphone. Setting your programmable thermostat 
to the highest comfortable temperature in the summer and lowest comfortable temperature in the 
winter can help you reduce your energy bill. 

What are the estimated savings based on? 

The estimated costs and savings calculations are based on average heating and air conditioning 
usage and utility billing rates in your area. These are only estimations and are not a guarantee of 
savings from your utility company. 

What other benefits does this program provide? 

This thermostat program also benefits the community by helping to educate customers about 
energy use and energy efficiency goals. The energy customers save will not only help the 
environment, but also help reduce the need for new power plants and the occurrence of power 
outages. 

Are there any safety or privacy concerns I should be aware of related to this thermostat 
program? 

The Honeywell VisionPro thermostat used for this program was rigorously tested prior to being 
installed in customers’ homes. These devices go through numerous quality control checks by 
multiple parties, to ensure they meet a high level of customer safety, reliability, and satisfaction. 

It is also our top priority to protect our customers' information. We apply the same privacy 
protection standards to all data collected by the company from customers. We treat each 
customer's personal information and data as confidential, consistent with all regulatory 
requirements, including those established by the Public Utilities Commission. Therefore, be 
assured that your information is kept private. 

Can I get this device for my other properties and/or business? 

The smart thermostat program is only available for residential use at this time. Only a single 
thermostat is available for each program participant. 

How many devices can I access the applications from? 

Only a single wall-mounted thermostat is available for each program participant. You can install 
and access the mobile application from as many smartphones as you would like, but the 
application must be registered with the same username and password. Similarly, you can use the 
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Web application from any supported web browser on any computer. If more than one member of 
your household uses the application at the same time, the changes are preserved for the last 
person who saves their changes. 

Can people see if I am home or not? 

No. We apply the same privacy protection to this data as other all other data collected by the 
company for customers. The only way someone can see your status and schedule is if you give 
them your login credentials to the web or smartphone application. 

If I work from home or have a severe illness for which I have special temperature 
needs, can I still benefit from this program? 

You will always have control of your thermostat, so you can set safe and comfortable 
temperatures that are suitable for your lifestyle. An easy way to save energy is to lower your 
heating temperatures and raise your cooling temperatures when you are away. Depending on your 
personal needs, you may also be able to use more efficient temperatures while you are asleep. 

How safe is the program? Can anyone hack into the system? 

It is our top priority to protect our customers' information. Our system employs industry-standard 
defense mechanisms against brute-force attacks, code injection, and other malicious activity. We 
apply the same privacy protection standards to all data collected by the company from customers. 
We treat each customer's personal information and data as confidential, consistent with all 
regulatory requirements, including those established by the Public Utilities Commission. 
Therefore, be assured that your information is kept private. 

What smartphones support the mobile application? 

The mobile application is currently supported on the Apple iPhone 3GS or later, running IOS 4.3 
or later, and Android phones running 2.2 or above. To locate your operating system on your 
iPhone, open the Settings app, click on “About,” and see what “Version” your iPhone is running 
(needs to be 4.3 or above).  To locate your operating system on your Android, open the Settings 
app, click on “About phone,” and see what “Android version” your phone is running (needs to be 
2.2 or above).   

How do I make a one-time change to my schedule? 

You can use the “Thermostat” page of the mobile application or the “ My Thermostat” page of 
the Web application to manually change your temperature, change your current state (away, 
home, asleep), or set a new time to come home, wake, or go to sleep. On the thermostat on the 
wall, you can also manually change your temperature. 

How can I change my email address and/or password? 

Open the Web application, and then select “My account” to change your password or email 
address. 

I now have three ways to change my thermostat. How are they different? 

You can use your thermostat to manually change temperatures, turn on and off your heating and 
AC, and control your fan. The Web application has the same functionality as the thermostat and 
also allows you to register for an account, set a vacation schedule, and change your account 
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settings, primary schedule, default temperatures, state (home, away, asleep), and schedule for 
today. The mobile application has all of the functionality of the thermostat and Web application, 
plus it allows you to compare your temperature settings, set a passcode, and set and receive 
notifications. 

Which browsers are supported for the Web application? 

The current major release and previous major release of the four desktop browsers with the 
largest market share are supported. Currently, this means Internet Explorer, Safari, Mozilla 
Firefox, and Google Chrome are supported.  

Will my house really be comfortable enough when I get home? 

Yes. You just set the time you will return home and your thermostat does the rest. Your home 
will be heated or cooled for you before you return home after being away or on vacation. Your 
smart thermostat learns the amount of time it takes to heat or cool your house before you arrive, 
based on the actual temperature in your home and past usage. 

Can I enroll in the program using my smartphone? 

You can only enroll in the program using the Web application. If you are selected for the 
program, you will receive information about how to install the mobile application. 
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