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Engineering models often project that residential energy efficiency is one of the

most cost-effective strategies to reduce greenhouse gas emissions (IEA, 2019; McKin-

sey & Co, 2009). Consequently, it has become a key component of climate and energy

policy worldwide, with billions of dollars invested each year to unlock its potential (Euro-

pean Parliament, 2012; EEA, 2018; ARB, 2017; Barbose et al., 2013). Energy efficiency

projects are also often considered to be environmentally responsible stimulus for address-

ing an economy weakened by COVID-19.1 However, savings have been found to typically

fall short of projections.2 As a result, some economists have begun to caution against

prioritizing energy efficiency when applied to climate and economic stimulus policies

(Fowlie, 2020; Auffhammer, 2021), as alternative approaches may be more cost-effective

for these objectives (Gillingham and Stock, 2018).

The goal of this paper is to contribute to an ongoing debate on whether energy

efficiency programs have a role for climate policy. In a recent study, Christensen et

al. (2021) find significant heterogeneity in ex-post or realized benefits across retrofitted

homes, demonstrating that many energy efficiency projects are cost-effective. The cru-

cial policy question is whether it is possible for program implementers to better identify

these projects ex-ante and thus substantially increase the cost-effectiveness of residential

energy efficiency retrofit programs through improved allocation of funds. Currently, the

vast majority of energy efficiency programs use engineering models to project savings

and determine which retrofits should be done.3 While economists and internal program

evaluators have produced consistent evidence of upward bias in these projections (e.g.,

Fowlie, Greenstone, and Wolfram, 2018; Allcott and Greenstone, 2017; Berry and Get-

tings, 1998; Dalhoff, 1997; Sharp, 1994), researchers have not developed or tested the

1For example, President Biden’s “American Jobs Plan” proposes to invest “$213 billion to produce,
preserve, and retrofit more than two million affordable and sustainable places to live” (The White
House, 2021). See also European Commission (2020) and Hepburn et al. (2020).

2This has been shown across a range of energy efficiency initiatives, including home retrofit programs
(Fowlie, Greenstone, and Wolfram, 2018; Allcott and Greenstone, 2017; Zivin and Novan, 2016; Berry
and Gettings, 1998; Dalhoff, 1997; Sharp, 1994), appliance rebate programs (Houde and Aldy, 2014;
Davis, Fuchs, and Gertler, 2014), and in efficient new construction (Levinson, 2016; Bruegge, Deryugina,
and Myers, 2019; Davis, Martinez, and Taboada, 2020).

3These models are based on equations describing the physical relationships between energy consumption,
weather and home characteristics. They also incorporate demographic information, modelling effects of
characteristics such as the number of occupants on energy consumption.
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effects of more accurate prediction strategies.

The present study aims to fill this gap. Projecting the impacts of multiple retrofits

in individual diverse buildings using engineering equations presents major modeling chal-

lenges, such as accounting for heat and air exchanges between a building and the sur-

rounding environment, and interactions between different retrofits. To better capture

unobserved and difficult to account for factors, we develop a data-driven approach that

uses machine learning (ML) combined with demographics, weather, and housing struc-

ture variables to predict the impact of weatherization on home energy consumption. ML

is well suited for this type of prediction exercise because energy consumption is a func-

tion of many complex, high-order interactions among the various observable aspects of

a home and household. Our analysis uses data obtained for the Illinois Home Weather-

ization Assistance Program (IHWAP), which is the Illinois implementation of the U.S.

Department of Energy’s Weatherization Assistance Program (WAP). WAP’s focus is on

reducing energy costs for low-income households while also maintaining health and safety.

It was started in the 1970’s and carbon abatement is not one of the program’s original

mandates.4 Given the potential to deliver low-cost reductions, however, residential en-

ergy efficiency has increasingly become a part of climate policy platforms. Because many

retrofit initiatives (including IHWAP) rely on a common set of accepted structural en-

gineering equations to make their predictions (Edwards et al., 2013; Sentech, 2010), our

findings also have implications for determining the cost-effectiveness of these retrofits as

a carbon abatement strategy. We focus on energy-related benefits, but the method we

propose here could be extended to capture the benefits from effects on other measurable

outcomes.

The first step of our analysis is to determine whether a data-driven approach based

on previously realized outcomes can improve ex-ante prediction accuracy in energy effi-

ciency programs. The ex-ante prediction framework is a form of out-of-sample prediction

for which machine learning algorithms are optimized. It differs from the use of ML in ex-

post program evaluations (e.g., Burlig et al., 2020) in that the researcher’s goal is to mimic

4The program’s enabling statute mentions energy security, health and safety, and a focus on low-income
households, without any reference to carbon abatement or climate goals (US Code, 1964).
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the role of a program implementer who is trying to predict the magnitude of treatment

effects prior to an intervention. In an energy efficiency program, the implementer would

build her model to predict monthly energy consumption using data on home character-

istics, observed weather, and upgrades performed for homes that have previously been

retrofitted. However, she needs to predict outcomes for new homes based on information

available only prior to the retrofits. Along with household demographics and predicted

weather, we consider two sets of house characteristics for the prediction exercise. For our

primary model, we include the full suite of variables available from pre-weatherization

energy audits. For a secondary model, we include only the home descriptors that are pub-

licly available through a county assessor’s office, (e.g., year built, square footage, number

of bedrooms) and exclude data that can only be collected during the energy audit. This

allows us to consider a targeting exercise that may occur even prior to recruitment.

With these data, we use a neural net algorithm with nested cross-validation to

predict each home’s energy consumption under three conditions: 1) pre-retrofit; 2) post-

retrofit; 3) post-retrofit counterfactual, i.e., what consumption would have been in absence

of the upgrades. Within this ex-ante framework and data-rich setting, we find that ML es-

timates of energy consumption based on similar homes, with similar upgrades performed,

accurately predict household energy usage. On average, the predictions from both our

primary model and the secondary restricted model are statistically indistinguishable from

true energy consumption both pre- and post-retrofit.

We then turn to the primary goal of the paper, which is to test whether more accu-

rate predictions of net present benefits (NPB) can be used to increase cost-effectiveness

by targeting investments to the highest return projects. We begin by predicting the net

present benefits for each home with its associated household by summing over the dis-

counted predicted savings, which are determined by the difference between post-retrofit

counterfactuals and post-retrofit predictions. We find that only about half of the homes

in the IHWAP sample have positive private net present benefits, despite the fact that

most retrofits (excluding health and safety) performed by the program should have a

savings-to-investment ratio (SIR) greater or equal to one, according to the engineering
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models. Ex-post analyses of IHWAP and other residential energy efficiency programs

have also found low or negative net social benefits, at least on average (Christensen et

al., 2021; Fowlie, Greenstone, and Wolfram, 2018; Allcott and Greenstone, 2017).

To maximize the total predicted NPB from the program, the implementer would

choose to treat only those homes (or individual measures within homes) that have posi-

tive expected returns. We estimate predicted benefits at the home level and compare the

ML-based targeting strategy to one that uses projections from the program’s current en-

gineering model. We evaluate the performance of both strategies against a set of ex-post

NPB estimates from Christensen et al. (2021). The ex-post estimates are informed by

both pre-treatment as well as post-treatment data, acting as a benchmark for assessing

the accuracy of the two sets of ex-ante predictions. We find that the ML-based strategy

significantly outperforms the engineering model and could have a drastic impact on pro-

gram cost-effectiveness. With our primary model, targeting funds to the 43% of projects

with positive predicted energy-related benefits dramatically increases social net benefits

of a dollar spent from $0.93 to $1.23. Remarkably, 89% of this increase can be achieved

from targeting funds to the same number of homes using the model restricted to publicly

available data.

These findings are relevant to a broad literature on prediction policy problems (Mul-

lainathan and Spiess, 2017), and more specifically on the development of ML-based ap-

proaches to identify heterogeneous treatment effects for optimal policy targeting (Athey

and Wager, 2021; Wager and Athey, 2018). Similar methods have been applied to tar-

geting studies that identify the most responsive subgroups across a range of public pro-

grams (Davis and Heller, 2020; Knittel and Stolper, 2019; Johnson, Levine, and Tof-

fel, 2019; Erel et al., 2018). Our work belongs to a subset of the literature that quantifies

the monetized benefits from targeting applications (Aiken et al., 2021; Finkelstein and

Notowidigdo, 2019; Deshpande and Li, 2019; Lieber and Lockwood, 2019; Allcott and

Kessler, 2019). We introduce a framework that is suited for targeting within programs

that involve high fixed costs and generate benefits across long time horizons, which is

an important feature of a wide range of infrastructure, energy/climate, and other public
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programs. Our targeting function uses a net present value calculation that captures the

costs from a wide range of project options and the collective stream of benefits associated

with their heterogeneous lifespans.

We apply this framework to the context of greenhouse gas abatement technologies.

Quantifying the cost-effectiveness of these technologies is important for policymakers,

who often need to consider second- or third-best mechanisms to address climate change

(Stiglitz, 2019; Gillingham and Stock, 2018). In considering various technologies, most

previous work has focused exclusively on the average performance of GHG abatement in-

vestments. However, recent work estimating heterogeneous treatment effects has demon-

strated that even interventions that are cost-effective on average, such as behavioral home

energy report nudges, can achieve gains in net benefits by better targeting program partic-

ipants (Allcott and Kessler, 2019; Knittel and Stolper, 2019; Gerarden and Yang, 2021).

We find that improvements in predictive modeling could dramatically increase the returns

from physical retrofits in energy efficiency programs: they can shift from net negative

social benefits to one of the lowest cost vehicles for achieving greenhouse gas reductions.

This is even true when we limit the model to publicly available housing characteristics,

suggesting the potential to use data-driven predictions both to determine funding allo-

cations among program participants and also to target recruitment efforts to high return

homes even before energy audit data are available. These improvements could be realized

in the near term and at low cost in government or utility-based programs such as IHWAP.

A program’s funding prioritization software could readily be modified to incorporate pe-

riodically updated estimates of realized savings, rather than relying solely on engineering

modeling.

I Background

The WAP is the U.S.’s largest residential weatherization program. It aims to lower

energy bills for low-income households while maintaining health and safety. Energy sav-

ings are achieved through a variety of measures including insulation, air sealing, heat-

ing/cooling system repair or replacement, and electric baseload measures such as lighting
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and refrigerators. In order to qualify for WAP, applicants must demonstrate household

income below 200% of the poverty guidelines established by the US Department of Health

& Human Services (2020). After eligibility verification, energy audits are conducted for

the homes of successful applicants. During those audits, detailed information on housing

structure is collected (variables presented in Table 1). In IHWAP, data are entered into

a program management software called WeatherWorks, which streamlines the steps re-

quired to complete a weatherization project, including: determining eligibility, assigning

contractors, producing work orders, and determining retrofits to be implemented in each

home.

The engineering model embedded in WeatherWorks projects the impacts of a given

retrofit on energy savings using data collected during a pre-retrofit audit and a widely-

used set of structural equations (Edwards et al., 2013; Sentech, 2010).5 It estimates

savings-to-investment ratios (SIR) for the full set of potential retrofits for each home

by dividing the projected life cycle benefits for a candidate retrofit by its installation

costs.6 The WeatherWorks system then ranks all possible retrofits from highest to lowest

SIR. Retrofits are performed in order of SIR until the per-home funding is exhausted or

until there are no retrofits with SIR ≥ 1.0.7 The WeatherWorks algorithm adjusts SIR

depending on interactive effects between certain retrofits. For example, if attic insulation

has the highest SIR, the algorithm accordingly recalculates the SIR for the subsequent

measures.

II Data

We use comprehensive data on building structure characteristics, household demo-

graphics, the labor/materials costs of all retrofits considered and those completed, and

monthly energy use from over 13,000 homes served by IHWAP between 2006-2016. The

Illinois’ Department of Commerce & Economic Opportunity provided the universe of mea-

5The Weatherworks model does not incorporate utility energy consumption data. See Appendix B.
6SIR estimates are based on private – not social – benefits. Private benefits are quantified using savings
from retail electricity rates, whereas social benefits encompass the total benefits of avoided consumption,
including avoided generation, transmission, and distribution costs, and pollution damages (Borenstein
and Bushnell, 2018).

7The program occasionally must resolve serious health or safety issues even with low SIR.
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surements collected during pre-treatment audits, including information on: family size,

age, income and sex of householder; home’s floor area, number of bedrooms, number of

windows, presence of multiple stories, presence of attic, attic insulation, air sealing (blower

door test); building vintage and shielding class; type, age, size and operation status of

home’s main heating equipment; operation status and setting of water heater; presence

of air-conditioning; location (county) of home. Table 1 reports descriptive statistics for

these measurements as well as information on audit and retrofit dates and retrofit-specific

costs. The sample is comprised of low-income families (average income less than $16,800),

with an average householder age of 53 years. We observe significant variation in housing

structure. For example, air-tightness (as measured by blower door tests) varied from 980

CFM50 (cubic feet per minute, at 50 Pascals) to over 13,600 CFM50.8 Similarly, we

observe substantial variation in retrofit-specific expenditures across homes.

This study also incorporates monthly energy consumption from a major Illinois

utility. We restrict the sample to homes that use either natural gas or electricity as their

main heating fuel (representative of approximately 88% of homes in the state according to

the US Census Bureau, 2013) and focus our analyses on the combined energy consumption

from both fuels in MMBtu. Figure 1 plots the distribution of monthly energy use for

non-winter (Panel a) and winter (Panel b) months, both before and after retrofits. In

winter months, the median home consumes 15.1 MMBtu per month preceding retrofits

and 12 MMBtu following retrofits – a 20% difference. During non-winter months, the

median home consumes 5.1 MMBtu before retrofits and 4.6 MMBtu following retrofits – a

10% shift. IHWAP primarily targets home heating, but it can also improve the efficiency

of cooling among homes that have air conditioning. Therefore, our analyses take into

account efficiency improvements for heating and cooling, which are both important in

Midwestern climates.

Finally, for each home and month, we collected data on minimum outdoor tem-

perature, maximum outdoor temperature, and precipitation from the PRISM Climate

8The blower door tests output airflow measures in cubic feet per minute at 50 Pascals depressurization.
Lower airflow values indicate tighter building envelopes.
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Group (2018).9 We use these measurements to calculate heating degree days (with bases

60F and 65F ), and cooling degree days (with base 75F ). Summary statistics of the

weather variables are reported in Appendix Table A.1 Panel A. We project future weather

realizations for use in predicting post-treatment energy usage, which retains the concep-

tual consistency of one of the main purposes of this study: to predict energy savings

ex-ante, before weather can be observed. We first created daily “climate normals” for

each home by calculating day-of-the-year average pre-treatment temperatures and pre-

cipitation. We then aggregated those measures up to the monthly (bill cycle) level for

a given home by taking the average of the daily climate normals across the month.10

We use these projections as the post-treatment weather data for use in our prediction

model.11

III Empirical Strategy and Results

A Ex-Ante Estimates of Savings

The first step of our analysis evaluates the accuracy of ML-based predictions of the

effects of energy efficiency programs in an ex-ante setting – before any retrofits have been

installed. As it would be for planners making projections that guide funding decisions,

our objective is to generate accurate estimates of expected savings for each home, condi-

tional on building characteristics, household characteristics, predicted weather, and the

expected costs of measures to be performed.

The ex-ante model of the effects of retrofits takes the form:

bEAit = Ŷit(1)− Ŷit(0) , (1)

where bEAit is an ex-ante prediction of energy usage reductions resulting from retrofits

for home i in month t, Ŷit(1) is an ex-ante prediction of energy use in the presence of

9The PRISM Climate Group (2018) provides interpolated weather data for the US. We geocoded home
addresses using an API from Google (2018) to match with weather data. Indoor temperature measures
are not available for our study sample.

10For heating and cooling degree days we sum over all days in a given bill cycle, rather than taking averages.
11See Table A.1 Panel B for a summary of the projected weather variation, which closely approximates

the observed variation in Panel A.
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treatment, and Ŷit(0) is an ex-ante counterfactual prediction of energy use in the absence

of treatment. Negative values of bEAit represent energy savings.

We separately train two machine learning algorithms to obtain Ŷit(1) and Ŷit(0). We

trained the model for Ŷit(0) with untreated usage observations, and the model for Ŷit(1)

with treated usage observations. For our primary approach, the explanatory variables

marked as “Full Model” in Table 1 were included: (1) the characteristics of homes and

households collected during applications and pre-weatherization energy audits, and (2)

the expenditures scheduled for each retrofit measure (used only for Ŷit(1), not for Ŷit(0)).12

Additionally, both models include monthly temperature and precipitation. In a secondary

exercise, we train models for Ŷit(0) and Ŷit(1) with the subset of home characteristics

marked as “Subset” in Table 1. For that, the rationale was to include only information

that might be available prior to energy audits (i.e., at a recruitment phase).

We selected the best-performing prediction model from the following candidate al-

gorithms: neural networks, gradient boosted trees, random forests and Lasso. To be-

gin, we used standard five-fold cross-validation to evaluate the predictive performance

of these algorithms. Our performance metric is the mean squared error for predicting

the retrofits’ treatment effects (bEAit = Ŷit(1) − Ŷit(0)), where the “ground truth” are

the ex-post estimates of savings from Christensen et al. (2021). We chose to use neural

networks, which exhibited the lowest mean squared errors (see Appendix Tables C.1 and

C.2).13 In addition, the consistency properties of neural networks are well-understood

in the econometrics literature, including within two-step approaches (Farrell, Liang, and

Misra, 2021a; Farrell, Liang, and Misra, 2021b).

We then turn to nested cross-validation (nested CV) to mimic the exercise of a

program implementer needing to predict outcomes for future program participants, for

which no outcome data are available. For our proposed procedure, energy consumption

data is required only for training the ML algorithms. After those algorithms have been

trained, an implementer would only need data on the explanatory variables for predicting

12Because the measures performed and their costs are determined as a function of the pre-retrofit audit,
they are available ex-ante.

13See Appendix C.2.2 for performance metrics of the secondary “subset” model. The mean squared errors
are approximately 50% higher than those obtained when the full set of controls.
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savings for a set of “new homes.” Nested CV guarantees that the subsample for which

outcomes are being predicted is not only distinct from the subsample used to estimate

model parameters, as is the case with standard cross-validation approaches, but also

distinct from the subsample used for tuning the hyperparameters.14

Figure 2 illustrates our nested cross-validation design. We first split the full set

of homes into four equally-sized random subsamples.15 We then trained the neural net

algorithm using three of the subsamples (‘training set’), while holding a fourth out as the

‘test set.’ Within the training set, we performed an inner-layer of cross-validation where,

in each iteration, we used two subsamples for training and a third for validation (i.e., to

assess prediction accuracy). We selected the best hyperparameter configuration on the

basis of lowest mean squared error in the validation set (see Appendix C.1). We repeated

this process four times, such that each subsample serves once as the test set, for which

entirely out-of-sample predictions are obtained for the full set of homes.16

Figure 3 plots the results of our predictions from the primary ML model with the

full set of control variables.17 The ML method is able to recover remarkably accurate

household energy usage predictions both pre- and post-retrofit. The x-axis depicts months

before and after weatherization. We normalized monthly consumption to make estimates

comparable across homes treated at different points in the year such that the y-axis

represents deviations from the mean pre-retrofit monthly usage.

The blue line and blue shaded area represent the normalized mean and 95% confi-

dence interval corresponding to observed data. The orange line and orange vertical bars

represent the normalized mean and 95% confidence interval for the out-of-sample ML

predictions. The green line depicts counterfactual consumption, or predicted energy use

14Nested cross-validation, as opposed to standard cross-validation techniques, can significantly reduce bias
of out-of-sample prediction errors (Varma and Simon, 2006). For neural networks hyperparameters,
which are set by the researcher, include the number of layers, the number of neurons in each layer, and
the specification of the activation function (see Appendix C.1). We consider different combinations of
these hyperparameters and select those that exhibit lowest validation set mean squared errors.

15We use stratified sampling to assure that all monthly observations from a given home are in a single
subsample.

16The ML models were trained with a sample of over 13,000 homes, while results were assessed for the
subsample of 3,913 homes for which a complete year of post-retrofit data were available.

17An analogous plot for the subset model is presented in Appendix Figure C.3. It looks strikingly similar
to the one produced with the primary model. See Appendix C.2.2.
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in the absence of treatment. The red line depicts average energy savings according to

the engineering projections. Those projections capture only annual rather than monthly

savings, such that the red line is flat.18

In Figure 3, we note a slight drop in predicted counterfactual monthly energy use

when compared to pre-treatment consumption. This can largely be attributed to dis-

crepancies between observed and projected weather.19 Estimates of the treatment effect

for the average sample home are given by the difference between the green and blue lines

illustrated by diagonal shading. Post-treatment predictions and realized energy usage fall

substantially in the months following retrofit installation. The overlap between the orange

bars and the blue shading in the months both preceding and following the installation

of retrofits indicates that the ML predictions are statistically indistinguishable from the

observed values. While the prediction errors are minimal on average, in Appendix C.3,

we investigate differences in their distribution. Prediction errors in the pre-retrofit and

post-retrofit periods are similar in magnitude and sign, reducing any bias in estimated

effects of retrofits bEAit .

B Increased Cost-Effectiveness from Targeting

The ultimate goal of this study is to examine whether our data-driven approach

to predicting net present benefits based on previously realized outcomes can be used to

more effectively target investments to increase their cost-effectiveness. In the previous

section, we describe how we predict savings for a project (defined as a home) with its

suite of measures that were determined by the standard engineering model. We now

examine whether program cost-effectiveness could be improved by choosing to treat (or

not treat) homes based on ex-ante savings predictions. The results from this exercise

provide a likely lower bound on the potential improvements in cost-effectiveness from

improved predictive modeling. Better measure-specific ex-ante savings estimates could

18The engineering model predicts average savings of 29%, whereas realized savings are 15%, so that in per-
centage terms, the wedge is roughly 14 percentage points (Christensen et al., 2021). However, the engi-
neering model predicts almost twice the observed energy consumption both pre- and post-weatherization,
so that in units of energy the wedge is almost 3 MMBtu per home.

19In Appendix Figure A.1, panel b, we show that predictions using observed weather have closer alignment
with pre-treatment consumption.
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yield even larger improvements by reallocating funds not only among homes but across

measures performed in each home.20

We convert predicted savings into monetary benefits by estimating the social benefits

of avoided energy consumption, including avoided generation, transmission and distribu-

tion costs, as well as benefits from reduced GHG and local air pollution (Borenstein and

Bushnell, 2018; Davis and Muehlegger, 2010).21 The study focuses on energy-related ben-

efits, although there may be other potential benefits such as improvements related to the

health and safety (Tonn, Rose, and Hawkins, 2018; Pigg, Cautley, and Francisco, 2018).

We estimate the social net present benefit (NPB) of a project as follows:

NPBi =

Ti∑
t=1

[
β̂ei × costelec,t

(1 + r)t
+
β̂gi × costgas,t

(1 + r)t

]
i

− TotalCosti (2)

where β̂ei and β̂gi are ex-ante annual estimates of electricity and natural gas savings for

home i;22 costelec,t and costgas,t are the social costs of electricity and natural gas in year

t; r is a discount rate; TotalCosti represents the total costs of the retrofits for home i;

and Ti denotes the expected lifespan of the retrofits installed in home i. Similarly, we

can calculate benefit-cost ratios (BCR) by dividing the present value of benefits by total

costs (details in Appendix E.2). The home-specific lifespans Ti are calculated based on

expenditure-weighted averages across retrofits. Resulting average lifespans are close to

30 years. We assume a baseline a discount rate of 3%, which is recommended by the

Department of Energy for evaluation of public programs. In Appendix E.3 we test the

sensitivity of our estimates to lifetime and discount rate assumptions.

To assess the effect of prediction accuracy on cost-effectiveness, we compare a tar-

20This would require causal estimates of measure-specific effects. Given that there can be complex inter-
actions among measures, which are not randomly assigned across homes in our setting, recovering causal
effects of measure-specific savings would require strong assumptions about measure selection.

21State-level energy prices (reported in Appendix E) were obtained from the Energy Information Admin-
istration (EIA, 2017), and were adjusted based on Borenstein and Bushnell (2018); Davis and Muehleg-
ger (2010). Appendix E.4 shows our results also hold when using retail energy prices to calculate benefits
(i.e., private benefits).

22We estimated the average annual savings for each home in the sample by summing per-home month-
of-year averages of bEA

it (from equation 1) across twelve months. We assume that 17% of savings are

attributable to electricity (β̂e
i ) and 83% to natural gas (β̂g

i ), as in (Christensen et al., 2021). More details
in Appendix E.1.
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geting exercise based on our ex-ante predictions of the effects of retrofits to two kinds

of estimates: (1) ex-ante projections from the engineering model that currently guides

decisions in the program and (2) from an ex-post evaluation. The first comparison es-

timates whether and how much the proposed method improves upon current estimates.

The second comparison is akin to comparing the information available at the moment

of decisions on retrofits to more complete information available years later. Since we

cannot observe “true” savings, the ex-post estimates serve as a benchmark that is based

on the more complete information set. State-of-the-art ex-post evaluation techniques are

designed to account for unobserved factors (to the researcher) that may affect energy

consumption patterns, such as changes in weather patterns, in consumer behavior, and

in other economic factors that may occur simultaneously with treatment. We use the

ex-post estimates from Christensen et al. (2021) as the benchmark (see Appendix D for

details).23

In Figure 4, we report results from a simulation where we rank homes by net present

benefits according to each of the models considered. The figure reports the cumulative

social NPB from treating homes ranked highest to lowest.24 The ex-post model, repre-

sented by the blue line, serves as a benchmark for the maximum possible NPB at every

point along the x-axis. The first 42% of homes have positive social NPB, after which

the cumulative NPB declines. This demonstrates the potential for accurate ex-ante pre-

dictions to improve program cost-effectiveness. Targeting investments to the top 42% of

projects would maximize the program’s energy-related returns with the fully informed

ex-post model. Based on a comparison of cumulative benefit-cost ratios (Appendix Table

E.1), we find that this corresponds to a possible increase in energy-related benefits from

$0.93 to $1.36 for every dollar invested in efficiency retrofits.

23An implicit assumption is that the ex-post estimates from Christensen et al. (2021) are unbiased. One
concern is that if ex-post treatment effect estimation errors are correlated with the errors from our ex-
ante neural network approach, then we may obtain biased results on the benefits from targeting. We
cannot test for this empirically because the “true” treatment effect errors are unobservable outside of
simulated settings. Nevertheless, we argue that this type of bias is likely small in our setting because we
use substantially distinct ex-ante and ex-post algorithms, and because our main results still hold when
we use a limited set of variables for the ex-ante estimation (results below).

24Cumulative social NPB are calculated by summing over the home-specific average savings, where each
home receives the same weight regardless of the variance of their expected savings. This implies that the
program implementer is risk-neutral regarding the uncertainty of expected savings.
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We assess the potential gains from ex-ante predictions by comparing the orange

and green lines of Figure 4. To produce the orange lines, first we rank homes according

to the ML ex-ante predicted savings from the primary model that includes all variables

available at the time of treatment (post-recruitment) and secondary model that only

contains the subset of publicly available variables that programs could access prior to

recruitment. Then, we assign to those homes the “true” savings according to the ex-post

model. Finally, we compute the cumulative “true” savings that would be achieved if

homes were treated in the order of the ex-ante ML predicted rank. Similarly, for the

green line we compute the cumulative “true” savings, but now following the order of the

ex-ante engineering rank. The red line reflects a random ordering of homes treated by

the program.

While both sets of ex-ante predictions exhibit better performance than ranking

homes at random, the machine learning models yield predictions that more closely ap-

proximate the ranking from the ex-post evaluation. These simulations illustrate that

targeting investments using predictions based on previously-realized outcomes can dra-

matically improve cost-effectiveness relative to models that currently guide funding al-

locations. In this sample, a ML-based targeting strategy using all information available

prior to treatment would allocate funds to the top 43% of projects, increasing the social

net benefits of a dollar invested from 0.93 to 1.23.25 Remarkably, using only the infor-

mation available prior to the energy audits (orange dashed line), the ML-based targeting

strategy yields 89% of this increase. However, this does not imply that energy audits

have little value for the WAP. While ex ante models can help identify homes with high

potential returns, energy audits are still necessary for determining which retrofits (and

at which levels) should be performed in the homes that are selected for treatment.26 Ad-

ditionally, on-site audits are critical for identifying health and safety issues that need to

be addressed. Nevertheless, these findings indicate that the subset model can be used to

target recruitment efforts to high return homes even prior to an energy audit.

25Based on a comparison of cumulative benefit-cost ratios – see Appendix Table E.1.
26Our project-level analysis takes the retrofits selected in the existing program as given. We do not

construct or evaluate counterfactual returns based on ex ante predictions in the absence of an energy
audit.
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In Appendix E.3, we examine the sensitivity of our results to assumptions about the

underlying lifespan and discount rate parameters and find that the gains from targeting

according to the ML-based ranking are substantial across all scenarios considered.27

IV Conclusion

This study demonstrates that better ex-ante predictions could be important for op-

timizing investments in energy efficiency programs. Results indicate that: (1) predictions

based on previously-realized outcomes can outperform status quo engineering models, (2)

targeted investments based on this method could result in substantial increases in the

cost-effectiveness of retrofit programs, and (3) most of these gains can be realized even

with publicly available housing characteristics. While the sample analyzed in this study

represents a single retrofit program with specific goals, our approach could provide value

to a wide range of programs that rely on similar engineering models. The International

Energy Agency has promulgated an increase in worldwide investments in energy efficiency

from $140 Billion (currently expected) to $220 Billion per year by 2025 (IEA, 2018). Ex-

trapolating the 21% increase in benefits from the Illinois sample to worldwide investments

yields an order-of-magnitude estimate of $46 Billion in annual savings during the 5-year

period. These savings would further increase as expenditures continue to ramp up on the

basis of 2030 targets.

We identify several limitations in the present analysis to be addressed in future

research. While the present study focuses on cost-effectiveness at the home level, the

approach could be extended to applications that target measures within a given home.

Second, the study makes predictions for homes with metered fuels (electricity and nat-

ural gas), while retrofits to a smaller fraction of properties using delivered fuels such

as propane, fuel oil, and wood may have outsized effects on greenhouse gas emissions.

Third, we are not able to quantify private costs of the applications and installations to

households or any non-energy benefits such as improved health and safety. Future work

27We consider scenarios with lower and higher insulation lifespans, resulting in average home-specific
lifespans of 20 and 40 years, respectively. We also consider alternative discount rates of 2% and 4%. In
Appendix Table E.1, we show that the gains from targeting according to the ex-ante ML-based ranking
range from $0.23 to $0.33 in net present benefits per dollar spent in the program.
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could improve targeting by correlating predicted savings with a broader range of costs

and benefits. For example, to the extent that reductions in the cost of home heating

reduces the impact of temperature shocks on mortality in winter months (Chirakijja,

Jayachandran, and Ong, 2019), then the overall benefits from targeting could be larger

than the present estimates indicate.

We are not aware of any energy efficiency programs that use previously-realized

outcomes to project savings to recruit households or to select among candidate retrofits.

However, it would be straightforward to do so. Models as proposed in this paper need

only be run periodically, perhaps by consulting or academic groups, and the resulting

predictions could be fed into the back end of the engineering software for program man-

agement. Energy usage data would be needed on a subset of already treated homes to

train the model, but it would not be necessary for predicting outcomes for new homes,

for which home-level usage may not be as readily available.
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Erel, Isil, Léa H Stern, Chenhao Tan, and Michael S Weisbach (2018). “Selecting directors
using machine learning”. NBER Working Paper 24435.

European Commission (2020). “A Renovation Wave for Europe – greening our buildings,
creating jobs, improving lives”. Communication from the Commission to the Euro-
pean Parliament, the Council, the European Economic and Social Committee and
the Committee of the Regions.

European Parliament (2012). “Directive 2012/27/EU of the European Parliament and of
the Council of 25 October 2012 on energy efficiency”.

Executive Office of Energy and Environmental Affairs (2018). ““Massachusetts Global
Warming Solutions Act: 10-Year Progress Report””. [Online, accessed in 2020: https:
//www.mass.gov/doc/gwsa-10-year-progress-report/download].

Farrell, Max H., Tengyuan Liang, and Sanjog Misra (2021a). “Deep Learning for Indi-
vidual Heterogeneity: An Automatic Inference Framework”. arXiv:2010.14694.

Farrell, Max H., Tengyuan Liang, and Sanjog Misra (2021b). “Deep Neural Networks for
Estimation and Inference”. Econometrica 89(1), pp. 181–213.

Finkelstein, Amy and Matthew J Notowidigdo (2019). “Take-Up and Targeting: Ex-
perimental Evidence from SNAP”. The Quarterly Journal of Economics 134(3),
pp. 1505–1556.

Fowlie, Meredith (2020). “The Search for Good Green Stimulus”. Energy Institute Blog,
Haas School of Business, University of California Berkeley. https://energyathaas.
wordpress.com/2020/06/01/the-search-for-good-green-stimulus/.

Fowlie, Meredith, Michael Greenstone, and Catherine Wolfram (2018). “Do Energy Effi-
ciency Investments Deliver? Evidence from the Weatherization Assistance Program”.
The Quarterly Journal of Economics 133(3), pp. 1597–1644.

Gerarden, Todd D. and Muxi Yang (2021). “Using Targeting to Optimize Program De-
sign: Evidence from an Energy Conservation Experiment”. Working Paper. https:
/ / toddgerarden . com / s / Gerarden - Yang - Using - Targeting - to - Optimize -

Program-Design.pdf.

Gillingham, Kenneth and James H Stock (2018). “The cost of reducing greenhouse gas
emissions”. Journal of Economic Perspectives 32(4), pp. 53–72.

18

https://www.mass.gov/doc/gwsa-10-year-progress-report/download
https://www.mass.gov/doc/gwsa-10-year-progress-report/download
https://energyathaas.wordpress.com/2020/06/01/the-search-for-good-green-stimulus/
https://energyathaas.wordpress.com/2020/06/01/the-search-for-good-green-stimulus/
https://toddgerarden.com/s/Gerarden-Yang-Using-Targeting-to-Optimize-Program-Design.pdf
https://toddgerarden.com/s/Gerarden-Yang-Using-Targeting-to-Optimize-Program-Design.pdf
https://toddgerarden.com/s/Gerarden-Yang-Using-Targeting-to-Optimize-Program-Design.pdf


Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
Chap. 6 Deep Feedforward Networks.

Goodman-Bacon, Andrew (2021). “Difference-in-differences with variation in treatment
timing”. Journal of Econometrics 225(2), pp. 254–277.

Google (2018). “Google Maps Platform: Geolocation API”. [Online, accessed in 2018:
https://developers.google.com/maps/documentation].

Hepburn, Cameron, Brian O’Callaghan, Nicholas Stern, Joseph Stiglitz, and Dimitri
Zenghelis (2020). “Will COVID-19 fiscal recovery packages accelerate or retard
progress on climate change?” Oxford Review of Economic Policy 36, S359–S381.

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky (2013). “Lecture 6E : rmsprop:
Divide the gradient by a running average of its recent magnitude”. Lecture, COURS-
ERA. https://www.youtube.com/watch?v=SJ48OZ_qlrc.
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Table 1: Descriptive Statistics for Main Control Variables in the Study

Average Standard Deviation Full Model Subset
Demographics
Family Income ($) 16,754.27 10,091.63 X X
Family Size 2.68 1.65 X X
Female Householder (%) 0.68 0.47 X X
Householder Age 53.15 15.82 X X
Renter (%) 0.06 0.24 X X
County ID (Categorical) 43.95 26.04 X X

Housing Structure
Attic R-Value 11.43 10.96 X
Floor Area (sqft) 1450.3 622.8 X X
Pre-Retrofit Blower Door (CFM50) 3,648.79 1,786.18 X
Main Heat Type (Categorical) 2.25 1.15 X X
Main Heat Age 19.44 14.6 X
Main Heat Size (BTU) 76,735.14 41,939.71 X
Main Heat Operational (%) 0.83 0.38 X
Building Vintage (Categorical) 6 2.44 X X
Has Air-Conditioning (%) 0.01 0.11 X
Has Attic (%) 0.7 0.46 X X
Has Multiple Stories (%) 0.32 0.46 X X
Num. Bedrooms 2.76 0.98 X X
Num. Windows 15.12 5.4 X
Shielding Class (Categorical) 1.85 0.87 X
Operational Water Heater 0.99 0.12 X
Water Heater Setting (Categorical) 2.02 0.4 X

Administrative Variables
Audit Month 6 3.4 X
Audit Year 2010 2.29 X
Retrofit Year 2011 2.21 X X

Costs ($) per Retrofit Categories
Air Conditioning 6.8 90.14 X
Air Sealing 296.78 287.45 X
Attic 930.71 714.49 X
Baseload 175.65 232.23 X
Door 341.58 360.11 X
Foundation 300.73 500.35 X
Furnace 1,352.84 1,179.08 X
General 99.3 488.31 X
Health and Safety 486.67 334.03 X
Wall Insulation 274.75 622.03 X
Window 668.82 890.98 X
Water Heater 138.02 229.82 X

Number of Homes in Sample 13,638 - - -

Notes: This table presents descriptive statistics for the main control variables used for training the machine
learning algorithms. All monetary values have been inflation-adjusted, by converting to US dollars in 2017.
We also consider transformations of floor area (squared and log), and winsorized Main Heat Size. The last two
columns indicate, respectively, which variables were included in a model with full information (Full Model)
versus in a model that assumes that the energy audit has not yet taken place (Subset).
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Figures

Figure 1: Monthly Energy Use Before/After Energy Efficiency Retrofits

(a) Non-Winter Months

(b) Winter Months

Notes: The figure compares pre-retrofit (blue) and post-retrofit (orange) monthly energy use for homes
served by the energy efficiency program. Winter months are defined as November through March. The
lower (Q1), middle (Q2), and upper (Q3) quartiles are represented by vertical dashed lines.
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Figure 2: Nested Cross-Validation Design

Notes: This figure illustrates our nested cross-validation (CV) design. We randomly split the full sample
into four equally-sized subsamples. The top panel represents the outer CV loop. The subsamples
illustrated in blue are the test set which, for each iteration, are unseen by the model and are used to
generate out-of-sample predictions. Subsamples in gray are used for model training. The bottom panel
of the figure represents the inner CV loops. For that case, subsamples in orange represent the validation
set, which are used to obtain proxy out-of-sample errors, thus to guide hyperparameter tuning.
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Figure 3: Predicted Effects of Energy Efficiency Retrofits

Notes: The figure reports averages and 95% confidence bands for observed (blue), ML predicted (orange),
and ML counterfactual (green) energy use in retrofitted homes. The ML model from this figure uses the
full set of variables from Tables 1 and A.1. The horizontal axis represents the number months relative to
retrofit installation. Data were normalized to account for seasonality (Appendix A). Treatment effects are

the difference between counterfactual and predicted use, β̂EA
it from Eq. 1, illustrated by diagonal shading.

The red line represents average energy savings according to the engineering projections. Those projections
capture only annual rather than monthly savings, such that the red line is flat. The differences between
engineering projected savings and our ex-ante ML savings are consistent with the ex-post realization
rates reported in Christensen et al. (2021) Tables C.1 and C.2 (on average, 28% when comparing savings
in levels, and 51% when comparing percentage point savings).
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Figure 4: Net Present Benefits from ML-based Targeting

Notes: The figure reports estimates of cost-effectiveness when ranking homes based on the ex-ante
predicted net present benefits generated by the full ML model including all variables (orange), the
secondary ML model including only a subset of variables (dashed orange), the structural engineering
model (green), and the mean of 100 iterations of random selections (red) with std. dev. as the red shaded
region. The y-axis plots cumulative NPB according to ex-post estimates but following the ranking from
each ex-ante approach. NPB calculations use home-specific retrofit lifespans (30 years on average), a 3%
discount rate, and account for the social cost of carbon. ML models were trained using close to thirteen
thousand homes. Results were assessed in a restricted sample of 3,913 homes for which a complete year
of post-retrofit data was available. The total expenditures for this subset of homes was close to $18
million.
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Appendix – For Online Publication

A Observed and Projected Weather

We use geocoded addresses to match all homes in the sample with daily minimum

outdoor temperature, maximum outdoor temperature, and precipitation from the PRISM

Climate Group (2018). PRISM compiles and validates observations from monitoring

stations across the US, which are then interpolated based on climate models to produce

fine resolution (4km grid cell) estimates of weather variation. We calculate the average

daily maximum temperature, minimum temperature, heating degree days (with bases

60F and 65F ), cooling degree days (with base 75F ), and precipitation during all homes’

(monthly) energy billing cycles using daily weather data from 2003 to 2017. Table A.1

Panel A presents descriptive statistics for the observed weather data, while Panel B

presents descriptives for projected weather data.

Table A.1: Descriptive Statistics for Weather Variables

Panel A: Observed Variation

Average Standard Deviation Min Max
Cooling Degree Days 75F 18.76 37.6 0 426.64
Heating Degree Days 60F 351.94 388.41 0 2577.13
Heating Degree Days 65F 443.15 442.4 0 2862.13
Precipitation (cm) 3.02 1.89 0 18.36
Max Temperature (C) 17.57 10.13 -7.05 37.1
Min Temperature (C) 6.73 9.44 -19.83 24.37
Number of Obs. 457,224 - - -

Panel B: Projected Variation

Average Standard Deviation Min Max
Cooling Degree Days 75F 17.08 30.85 0 332.95
Heating Degree Days 60F 362.79 388.32 0 2403.6
Heating Degree Days 65F 455.14 442.28 0 2713.6
Precipitation (cm) 2.91 1.07 0 16.67
Max Temperature (C) 17.32 10.13 -5.84 36.65
Min Temperature (C) 6.31 9.24 -18.91 24.37
Number of Obs. 457,205 - - -

Notes: This table presents descriptive statistics for the observed and projected
weather variables used in the analyses.

In Figure A.1, we provide evidence that the main results from this research are

not highly sensitive to the use of projected instead of observed weather. The Figure

plots energy predictions and treatment effects obtained with projected weather (panel a)

and observed weather (panel b). We normalized energy use data to take into account

seasonality, as follows: (i) we calculate the pre-retrofit mean energy usage for each month

1
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in the sample; (ii) for the monthly energy usage of a given home, we subtracted by

the mean pre-retrofit usage in each corresponding month. The y-axis thus represents

deviations from the mean pre-retrofit monthly usage.

As expected, predictions are better aligned with actual energy consumption when

the model uses observed weather. Nevertheless, the differences between predicted and

real post-treatment usage are not economically or statistically significant when comparing

a model with weather projections versus with realized weather observed ex-post. This

suggests that projected weather yields savings predictions that are highly similar to those

produced by a model with actual weather data. The shaded areas of the graphs reveal

minimal differences in the estimated treatment effects from both approaches. Predic-

tions from both approaches exhibit similar seasonal patterns. Finally, the home cost-

effectiveness ranks produced with observed (not reported) or projected weather are also

similar. Comparing the ranks with a Kendall rank correlation coefficient hypothesis test

yields a p-value of 3.81×10−15, thus rejecting the null hypothesis that the ranks produced

by both approaches are independent from each other.

Figure A.1: Machine Learning Predictions; Projected Versus Observed Weather

(a) Projected Weather (b) Observed Weather

Notes: This figure presents energy usage prediction results from the machine learning approach, com-
paring a model that uses projected weather (a) versus one that uses observed weather (b).

B IHWAP’s Model for Projecting Energy Savings

Program management for IHWAP is aided by a software called WeatherWorks.

Within WeatherWorks, embedded engineering equations are used to project energy sav-

ings for an audited house, and to project savings-to-investment ratios (SIR). The current

2
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formula for the whole-house SIR is defined as:

SIRov = ($Heatsav + $ACsav + $Basesav + $WHsav)/(TotalCost) (B.1)

where SIRov represents the overall SIR for a given home; $Heatsav are heating savings;

$ACsav are air-conditioning savings; $Basesav are baseload savings (i.e., from refriger-

ators, lightbulbs, and other electric appliances); $WHsav are water heater savings; and

TotalCost are the total costs of the retrofits.

Each element from the numerator of SIRov is estimated with complex formulas

based on assumed relationships between heat exchange and energy consumption within

homes. Once energy savings are obtained, they are transformed into monetary terms by

multiplying by fuel costs, discounted with a 3% annual rate, and assuming different types

of retrofits have different expected lifespans. For example, the assumed lifespans for a

few of the major retrofits are: 25 years for insulation; 20 for air sealing; 20 for furnace

replacement; 15 for central ACs; 10 for window ACs; 15 for water heater replacements; 15

for refrigerators; and 5 for fluorescent light bulbs. Further details on each element from

equation B.1 are presented in the “WeatherWorks General Design” document, which is

available upon request.

For the purpose of this research, SIRov, TotalCost, and the combined whole-house

WeatherWorks projected savings have been provided directly to the authors. Section E

presents comparisons between SIRov from WeatherWorks and benefit-cost ratios esti-

mated according to alternative models. Further, with whole-house projected savings it is

possible to obtain monetized WeatherWorks projected benefits for each home, which can

then be subtracted by TotalCost to obtain net present benefits. Comparisons of NPB

across models are also presented in Appendix E.

3
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C Machine Learning Algorithms

C.1 Neural Networks

We use feedforward neural networks for predictive tasks as an intermediate step

for ex-ante estimation of program savings. Feedforward neural networks take features

(or covariates) X as inputs, and map them onto functions to generate predictions of a

given outcome y (energy consumption). Importantly, these functions are connected in

a chain. Following Goodfellow, Bengio, and Courville (2016), let f 1, f 2, ..., f 5 denote

the functions of a neural network with 5 layers. A complete neural network can then be

expressed as: f(X) = f 5(f 4(f 3(f 2(f 1(X))))). Often, the outputs of some of the layers

are not know to the researcher, making them “hidden layers.”

Further, each layer is itself a combination of many neurons (or sub-functions), where

the output of all neurons will be stacked to generate the output of each layer. Figure

C.1 illustrates the neural networks used in this study. The first layer is the feature layer,

for which each numeric feature is normalized and each categorical feature is one-hot

encoded (separate binary features for each category). Temperature variables were split

into 5 bins to allow for non-linear effects. We also added an indicator for winter months,

defined as November through March. The feature layer is followed by three hidden layers,

constituted of leaky-ReLU activation functions (described below). The first leaky-ReLU

layer contains 64 neurons, the second contains 32 neurons, and the last one contains 16

neurons. The final (5th) layer uses a simple linear activation function to generate the

model predictions.

Each neuron in a layer is a (linear or non-linear) function that takes a vector of

inputs, multiplies it by a weight vector and outputs a transformed outcome. Each neuron

can therefore be defined as:

y = f(βX),

where X is the input vector, β is the learnable weight vector and y is the output of the

4
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neuron. For the linear layer, the f(·) function is simply a linear function: y = βX.

For the leaky-ReLU layers, the f(·) function is non-linear. Specifically, the the

output of each neuron in the leaky-ReLU layer is:

y = f(βX) =


βX if β ·X ≥ 0

α ∗ βX otherwise.

where α is a hyperparamter defined by the researcher. The algorithm described above

was trained using the TensorFlow library (Mart́ın Abadi et al., 2015). For this study, a

default value of α = 0.3 was used. Also, an L1 regularization penalty is applied to each

neuron, with varying regularizers depending on the model being considered (Table C.1).

An RMSprop optimizer with learning rate equal to 0.00009 is used to find the optimal

parameters of the neural network (Hinton, Srivastava, and Swersky, 2013), using mean

squared error as the loss function.

We train two separate models: one with the objective of predicting pre-retrofit

and counterfactual consumption; and the other for predicting post-retrofit consumption.

Both models are first trained on the complete sample for 10 epochs, to learn general

patterns. One of the models is then further trained for 30 epochs on pre-retrofit data,

while the other is separately trained for 30 epochs on post-retrofit data, to learn specific

patterns under each counterfactual scenario. Observed weather data was used for pre-

retrofit predictions, while projected weather was used for post-retrofit and counterfactual

predictions. Finally, ex-ante predicted treatment effects were obtained by computing the

difference between the post-retrofit predictions and the predicted counterfactuals.

C.2 Algorithm Selection and Hyperparameter Tuning

Model selection and hyperparameter tuning were implemented via nested cross-

validation (CV). While other cross-validation approaches, such as k-fold cross-validation,

may be biased for out-of-sample errors, nested CV has been shown to significantly reduce

such bias (Varma and Simon, 2006). Also, nested CV is more desirable in the context

of this paper because it is better aligned with a social planner’s problem: that is, the

5
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Figure C.1: Neural Network Layers

Layer 1: Feature Layer
input: (None,73)

output: (None,324)

Layer 2: Leaky-ReLU Layer, 20800 Param
input: (None,324)

output: (None,64)

Layer 3: Leaky-ReLU Layer, 2080 Param
input: (None,64)

output: (None,32)

Layer 4: Leaky-ReLU Layer, 528 Param
input: (None,32)

output: (None,16)

Layer 5: Linear Layer, 17 Param
input: (None,16)

output: (None,1)

Model Prediction

Notes: This figure illustrates the configuration of the preferred neural network used in this study, selected
based on validation-set predictive performance.

social planner must make decisions ex-ante, based on models trained without information

about the homes that are candidates for targeting. Our nested CV design is as follows.

Prior to training the candidate algorithms, the full sample of observations from this study

was randomly split into four equally-sized subsamples, stratifying by home such that all

monthly observations of a given home were allocated to only one of the subsamples. Our

nested CV design, illustrated by Figure 2 from the main text, thus has an outer loop with

four iterations, and inner loops with three iterations each. As shown in Figure 2, for each

iteration of the outer loop, the subsamples colored in blue represent the test set which

are used to obtain out-of-sample estimates reported in the main text. Subsamples in gray

are used to train the models. For the inner loops, subsamples in orange are the validation

set, used to assess prediction errors and for hyperparameter tuning. Specifically, the best

models were selected based on the Mean Squared Error (MSE) for predicting annual

home-specific energy reductions (i.e., the program’s Treatment Effect).

6
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C.2.1 Tuning the model with full controls

Here we present hyperparameter tuning results for the full model that includes all

the control variables from Tables 1 and A.1. The configurations and prediction accuracy

metrics for neural networks are in Table C.1, while accuracy metrics for other algorithms

are in Table C.2. These other algorithms were considered at an earlier stage of the project

where we found, via standard 5-fold cross-validation, that neural networks resulted in

substantially lower MSE (as noted in a comparison of Tables C.1 and C.2). We thus chose

to focus on neural networks, further implementing nested cross-validation for those.

All neural networks considered have three hidden layers with 64, 32, and 16 neurons,

respectively (as illustrated in Figure C.1), with varying regularizers. Table C.1 presents

treatment effect MSE for all outer CV subsamples separately, both for when they served

as the validation set and when they served as the test set. The first three columns, for

example, present results for the iteration with Fold 1 as the test set. The first column

presents the regularizers considered, the second column presents the validation set MSE,

and the third column presents the test set MSE. The rows in gray highlight the best-

performing models, selected based on validation set MSE.

Comparing columns two and three from Table C.1, for example, it can be noted

that validation and test set MSE are similar throughout, suggesting that our nested CV

design is unlikely to produce biased out-of-sample errors. For some folds, the test set

MSE are even slightly smaller than validation set MSE. Overall, the MSE range from

37 to 45, resulting in Root Mean Squared Errors (RMSE) ranging from 6 to 6.7. These

represent approximately 34% to 38% of the average per-home annual savings from the

program (around 17.7 MMBtu according to the ex-post ML method). These errors are

not negligible. Nevertheless, the ex-ante model still results in substantially more accurate

estimates than the status quo model currently used by the retrofit program, as discussed

in the main text.
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Table C.2: Cross-Validation Results for Candidate Algorithms – Full Model

Model ID Model Type Model Parameter MSE (Treatment Effect) MSE (MMBtu) MSE (Pre, MMBtu) MSE (Post, MMBtu)

1 GradientBoosting boosting stages = 100, subsample = 0.8 47.308 12.652 13.804 12.383
2 GradientBoosting boosting stages = 120, subsample = 0.8 44.685 12.526 13.639 12.266

3 RandomForest number of trees = 20 72.722 13.323 14.336 13.086
4 RandomForest number of trees = 30, max depth = 4 279.469 16.171 19.468 15.400
5 RandomForest number of trees = 30 67.992 13.122 14.078 12.898

6 Lasso alpha = 1 365.241 19.466 25.483 18.059
7 Lasso alpha = 0.1 109.867 15.717 18.252 15.124
8 Lasso alpha = 0.01 58.700 14.610 16.949 14.063
9 Lasso alpha = 0.005 59.786 14.508 16.838 13.963

Notes: This table presents results from 5-fold cross-validation for candidate machine learning algorithms considered in this study. Full performance metrics for neural
networks and nested cross-validation are presented in Table C.1.

Figure C.2: Distribution of Pre- and Post-Retrofit Prediction Errors – Full Model

(a) Non-Winter Months (b) Winter Months

Notes: This figure presents validation set prediction errors based on household by month observations.
Winter months are defined as November through March.

C.2.2 Tuning the subset model

Table C.3 below presents performance metrics for neural networks trained only with

the subset of control variables available prior to energy audits. The top panel reports

results from an initial exploration of the configuration of regularizers, using outer CV fold

4 as the test set. Note that Model ID 7, highlighted in gray, was the best-performing: its

validation set MSE was 60.6 (about 50% higher than the MSE for models trained with

all controls). The bottom panel of Table C.3 shows that the MSE with this configuration

remains stable across outer CV folds. In comparing Tables C.3 and C.1, we find that

the optimal regularizers differ substantially depending on the controls that are included,

which attests the importance of the tuning procedure.

In Figure C.3, we further inspect the accuracy of the subset model. This is anal-

ogous to the event study Figure 3 from the main text. Visually, these two figures are

9
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strikingly similar, despite the substantial underlying differences in mean squared errors.

This provides supporting evidence that the full and the subset model differ mostly in

terms of variance, rather than bias.

Table C.3: Nested CV Results and Hyperparameter Tuning For Neural Networks –
Subset Model

Performance with CV Fold 4 as Test Set

Model ID Regularizer Validation Set MSE Test Set MSE
1 3.0, 2.0, 2.0 63.404 55.408
2 4.0, 2.0, 2.0 63.866 55.234
3 2.0, 2.0, 2.0 61.033 54.495
4 1.0, 2.0, 2.0 61.094 54.745
5 2.0, 1.0, 2.0 62.445 55.634
6 2.0, 3.0, 2.0 61.611 54.459
7 2.0, 2.0, 1.0 60.600 53.986
8 2.0, 1.0, 1.0 61.636 53.819
9 2.0, 3.0, 1.0 60.778 53.805
10 3.0, 2.0, 1.0 61.504 54.725

Performance in each outer CV fold, using Model ID 7

Regularizer Validation Set MSE Test Set MSE
Fold 1 Test Set 2.0, 2.0, 1.0 59.489 61.290
Fold 2 Test Set 2.0, 2.0, 1.0 57.763 57.383
Fold 3 Test Set 2.0, 2.0, 1.0 58.887 60.525
Fold 4 Test Set 2.0, 2.0, 1.0 60.600 53.986

Notes: This table presents results from the nested cross-validation procedure for neural network models. These are results
for the model using only a subset of control variables collected before the energy audits. All models have three hidden
layers with 64, 32, and 16 neurons, respectively (as illustrated in Figure C.1). The top panel shows results with different
configurations of the regularizers. The row highlighted in gray (Model ID 7) was selected as best-performing, based on the
validation set MSE. The bottom panel presents details on validation versus test set MSE for each outer CV fold of the
best-performing configuration.

Figure C.3: Predicted Effects of Energy Efficiency Retrofits – Subset Model

Notes: The figure reports averages and 95% confidence bands for observed (blue), ML predicted (orange), and ML coun-
terfactual (green) energy use in retrofitted homes. The ML model from this figure uses the only a subset of variables
available prior to energy audits. The horizontal axis represents the number months relative to retrofit installation. Data
were normalized to account for seasonality (Appendix A). Treatment effects are the difference between counterfactual and

predicted use, β̂EA
it from Eq. 1, illustrated by diagonal shading. The red line represents average energy savings according

to the engineering projections. Those projections capture only annual rather than monthly savings, such that the red line
is flat.
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C.3 Decomposing Out-of-Sample Prediction Errors

Returning to the full model with all controls, Figure C.2 presents the distributions

of validation set errors for predicting energy usage both before and after the retrofits. It

is clear that the errors are centered around zero, both for winter and non-winter months,

such that biases along that dimension are unlikely. Absolute errors are less than 2 MMBtu

for more than 75% of non-winter months, and less than 3 MMBtu for more than 75% of

winter months.

Figure C.4 plots prediction errors by bins of observed usage. This allows for a more

precise identification of regions of the sample that may have biased predictions. The

top panel presents the errors for each bin, while the bottom panel presents the number

of observations in each corresponding bin. The selected algorithm overestimates energy

usage for months at the low end, and possibly underestimates usage for months at the

high end. That is expected, as those could constitute outlier months when, for example,

households were not occupying their residences, or when there was a gas leak. The

selected algorithm should not be accurate for predicting outlier observations, otherwise

there is a risk of overfitting. Also, bias operates in the same directions for both pre-

and post-retrofit observations, such that they cancel and reduce bias in the residuals of

estimated treatment effects.

To further assess potential bias, Figure C.5 plots the per-home differences between

pre- and post-retrofit prediction errors. Those are plotted across several bins of estimated

treatment effects. The figure reveals that the pre- and post-retrofit predictions errors are

highly correlated, such that their difference is close to zero, on average. That result holds

across all bins of estimated treatment effects.
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Figure C.4: Usage Prediction Errors (MMBtu) by Bins of Observed Usage

Notes: The top panel presents validation-set prediction errors, based on household by month observations.
The x-axis represents bins of observed energy use. The bottom panel presents the number of observations
each corresponding bin.

Figure C.5: Treatment Effect Prediction Errors (MMBtu) by Bins

Notes: The top panel presents the difference between pre- and post-retrofit prediction errors in the
validation folds, based on household level observations. The x-axis represents bins of predicted treatment
effect. The bottom panel presents the number of households each corresponding bin.
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D Ex-Post Evaluation Method

For estimation of ex-post program savings, this paper implements a machine learning-

based event study approach. That is a frontier method which has been used for recent

impact evaluations, especially of energy efficiency programs (Burlig et al., 2020; Chris-

tensen et al., 2021). The advantage of that method, compared to traditional regressions,

is that it allows more precise estimation of the program effects for each treated home in

the sample. Traditional approaches, such as fixed effects regressions, were designed to

estimate average effects, thus fail to capture heterogeneity. It has also been shown that

while fixed effects regressions can result in short-term biased estimates in the presence

of heterogeneity (Chaisemartin and D’Haultfoeuille, 2020; Goodman-Bacon, 2021), the

machine learning-based approach does not (Souza, 2019).

The first step of the approach is to predict counterfactual energy consumption in

absence of the retrofits. Then, similar to equation (1) from the main text, energy savings

are estimated as:

bEPit = Yit(1)− Ŷit(0) , (D.1)

where bEPit is an ex-post estimation of the reduction in energy use resulting from energy

efficiency retrofits for home i in month t, Yit(1) is observed energy use in the presence

of treatment, and Ŷit(0) is a counterfactual prediction of energy use in the absence of

treatment. Note that since post-treatment data are available, in this case it is only

necessary to predict counterfactual energy consumption Ŷit(0) in absence of treatment.

The ex-post savings used in this paper are taken directly from Christensen et

al. (2021), who employ Gradient Boosted Trees for counterfactual predictions. Once

initial estimates of bEPit are obtained, it is then possible to add structure based on knowl-

edge on how the program operates and on which type of retrofits were implemented in

each home. For that, a second-step regression is implemented as follows:

bEPit = γXit + εit , (D.2)
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where Xit is a vector including information about demographics, housing structure, pro-

gram costs, a constant, and an idiosyncratic error term εit. Simulations demonstrate the

improved performance of implementing that two-step approach (Souza, 2019). Finally,

predictions obtained from the model described in equation (D.2) are aggregated in order

to represent a home’s annual energy savings attributable to the retrofits:

b̂EPi =
dec∑

t=jan

b̂EPit , (D.3)

where b̂EPit represents the average predicted savings for home i in a given month of the year

(January through December); and b̂EPi is the ex-post estimate of annual energy savings

for home i.

Note that ex-post savings obtained in this way are robust to potential confounders,

such as changes in weather patterns or the macroeconomic context before and after the

retrofits. Other ex-post methods that rely on simple comparisons between pre- and

post-retrofit usage and that do not incorporate a causal framework are likely to produce

biased estimates of savings for several homes, thus producing an inaccurate ranking of

cost-effectiveness. This paper therefore focuses on the frontier ex-post model described

above as the most accurate benchmark for ex-ante models.

E Details on Net Present Benefits

E.1 Assumptions

The ML approach described in the main text provides estimates of annual combined

energy savings β̂i, rather than gas and electricity savings separately. We disaggregated

savings by assuming that 17% of those are attributable to electricity consumption and

83% to natural gas, based on prior literature (Christensen et al., 2021). An annual dis-

count rate of r = 3% is assumed throughout, as recommended by Department of Energy

(DOE) for evaluation of governmental programs (Rushing, Kneifel, and Lippiatt, 2012).

Results from the main text incorporate energy costs that account for the social

costs of carbon emissions in the energy sector (Borenstein and Bushnell, 2018; Davis
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and Muehlegger, 2010), although the program that we used for this analysis uses private

benefits due to the nature of program goals. Following prior literature, citygate natural

gas prices were used for the marginal private costs of gas (to which social costs of carbon

were added) based on emissions factors from the US Environmental Protection Agency

(EPA, 1998). Estimates assume a price of $40 per ton for CO2 emissions. Based on

a similar approach, prior literature provides estimates of the social marginal costs of

electricity for the state of Illinois (Borenstein and Bushnell, 2018). The resulting energy

prices that incorporate costs of carbon were $6.74 and $33.95 per MMBtu for natural gas

and electricity, respectively.

Appendix E.4 evaluates results using an alternative approach that calculated energy

costs using the average residential energy prices for Illinois over 2009-2016. Those were

obtained from the US Energy Information Administration (EIA, 2017), resulting in $8.32

and $34.26 per MMBtu for natural gas and electricity, respectively. Price escalation was

applied to project future energy prices, also based on recommendations from the DOE

(Rushing, Kneifel, and Lippiatt, 2012). Results from this approach reflect the private

benefits to consumers that face reduced energy bills thanks to the retrofits. Note that

those prices are slightly higher than the ones that incorporate social costs of carbon as a

result of energy taxes in Illinois. Figures from Appendix E.4 show that results from this

study are robust to assumptions regarding energy prices.

Different types of retrofits installed by the program might have different expected

lifespans. To account for these differences, the per-home expected lifespan Ti is calcu-

lated as a weighted average based on expenditures across retrofits. For example, a home

with expenditures predominantly on wall insulation will have a relatively higher expected

lifespan (closer to 25 years) than a home with expenditures predominantly on the water

heater (closer to 15 years). Retrofit-specific lifespan recommendations from Weather-

Works documentation suggest home-specific lifespans are around 20 years on average.

However, updated estimates from recent engineering literature suggest that some insu-

lation measures may have up to 50-year lifespans (Kono et al., 2016). Retrofit lifespans

used in preferred estimates account for longer longevity of insulation measures, resulting
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in home-specific lifespans of approximately 30 years. Figures from Appendix E.3 show

that results from this study are robust to assumptions regarding retrofit lifespans and

discount rates.

E.2 Calculation of Benefit-Cost Ratios

As an alternative to net present benefits, for each model we also calculate benefit-

cost ratios (BCR), as follows:

BCRi =

Ti∑
t=1

[
β̂ei × costelec,t

(1 + r)t
+
β̂gi × costgas,t

(1 + r)t

]
i

/
TotalCosti

We compare ex-ante estimated benefit-cost ratios with those obtained from the ex-

post approach. Figure E.1 plots benefit-cost ratio prediction errors for the ex-ante ML

method with full controls (orange) and for the ex-ante engineering approach (green).

Each point represents the error for a given home, while the lines represent cubic fits.

Errors are sorted based on the cost-effectiveness ranking from the ex-post model. The

panel on the right zooms in to illustrate the most relevant regions for the sample. The

errors from the ML approach are substantially lower than those from the engineering

model. The majority of ML absolute errors are lower than 1 and the cubic fit curve

ranges from -0.5 to 0.2. Errors from the engineering approach are several times larger,

and could be over 30 for some homes. Errors from the engineering model systematically

overestimate savings. This stark discrepancy may partially explain the poor performance

of traditional engineering approaches for targeting funding (Figure 4 from the main text).

The mean squared relative error of the benefit-cost ratios is 272.1 for the ML approach,

and 686.6 (more than 2 times larger) for the engineering approach.

E.3 Sensitivity to Lifespan and Discount Rate Assumptions

This section presents results for cumulative net present benefits and benefit-cost

ratios, with varying assumptions regarding retrofit lifespans and discount rates. The ob-

jective is to analyze the sensitivity of the main findings reported in the study to these

parameter assumptions. In the main text, the assumed lifespan is close to 30 years and

the discount rate is 3%. Figure E.2 presents results with varying retrofit lifespans, hold-
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Figure E.1: Household Benefit-Cost Ratio Prediction Errors Ranked by Ex-Post
Evaluation

Notes: This figure compares errors in benefit-cost ratios (BCR) generated by the ex-ante ML and engineering approaches.
The errors are sorted by the ex-post evaluation rank. BCR are calculated using 30-year retrofit lifespans, a 3% discount
rate, and incorporating the social cost of carbon. The dots represent errors for a given home, while the lines represent
cubic fits.

ing the discount rate at 3%. Panel (a) suggests that the program results in almost $2

million in net benefits if the retrofits are assumed to have 40-year lifespans. However,

with 20-year lifespans (Panel c) the program is associated with almost $5 million in losses.

Nevertheless, the ranking of homes remains stable across lifespan assumptions. Impor-

tantly, note that the gains from the ex-ante ML ranking (compared to the engineering

approach) are substantial in all three panels, ranging from $1.23 to $1.36 million for the

top 40% homes. The implication is that targeting with ML methods will have similarly

beneficial impacts even if overall program cost-effectiveness is low.

Similarly, Figure E.3 presents results with varying discounts rates, but holding lifes-

pans at 30 years. Again, the program’s overall cost-effectiveness varies substantially,

depending on assumed discount rates. Cumulative net benefits are reduced by almost

$4.5 million when moving from a 2% to a 4% discount rate. Nevertheless, the conclusions

from the main text still hold: rank-distributions produced by the ex-ante ML approach

lead to substantial gains. The gains from ML modeling are strikingly similar regardless

of discount rate assumptions.

Finally, Table E.1 presents cumulative benefit-cost ratios according to each ap-

proach, and with varying assumptions. Monetary “gains” from targeting are calculated

by comparing the full sample BCR (first line of Table E.1), with the cumulative BCR that

17



Online Appendix Christensen, Francisco, Myers, Hansen, and Souza

would be obtained according to each of approaches considered. Conclusions are consistent

with those obtained from analyses of net present benefits. Gains from the ex-ante ML

approach range from 0.225 to 0.332 for each dollar invested in the program. With baseline

assumptions (3% discounts and 30-year lifespan), the subset model achieves about 89%

(0.264
0.297

) of the gains from the full model.

Figure E.2: Cumulative Net Present Benefits, Varying Retrofit Lifespans

a: 40-year lifespans b: 30-year lifespans (baseline)

c: 20-year lifespans

Notes: This figure compares presents cumulative net present benefits according to the different models, and with varying
retrofit lifespan assumptions. Panel (b) are the results with baseline assumptions (30-year lifespans, and 3% discount rate).
Panel (a) presents results with lifespans increased to 40 years, while Panel (c) is for reduced lifespans of 20 years.
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Figure E.3: Cumulative Net Present Benefits, Varying Discount Rates

a: 2% discount rate b: 3% discount rate (baseline)

c: 4% discount rate

Notes: This figure compares presents cumulative net present benefits according to the different models, and with varying
discount rates. Panel (b) are the results with baseline assumptions (30-year lifespan, and 3% discount rate). Panel (a)
presents results with the discount rate reduced to 2%, while Panel (c) is for an increased discount rate of 4%.

Table E.1: Max Benefit-Cost Ratios, Varying Lifespan and Discount Rate Assumptions

30-year lifespan, 3% discount rate,
varying discount rates varying lifespans

2% 3% 4% 40 years 30 years 20 years
Full sample BCR (3,913 homes) 1.069 0.932 0.820 1.100 0.932 0.731

Max BCR, ex-post approach 1.457 1.362 1.306 1.477 1.362 1.252
Gains from ex-post targeting 0.388 0.430 0.486 0.378 0.430 0.522

Max BCR, ex-ante ML approach (full) 1.344 1.229 1.145 1.367 1.229 1.063
Gains from ex-ante targeting (full) 0.275 0.297 0.325 0.268 0.297 0.332

Max BCR, ex-ante ML approach (subset) 1.294 1.196 1.125 1.311 1.196 1.024
Gains from ex-ante targeting (subset) 0.225 0.264 0.305 0.211 0.264 0.293

N homes selected, ex-ante ML approach 2,175 1,685 1,189 2,303 1,685 779

Notes: This table presents the sensitivity of estimates of benefit-cost ratios (BCR) to varying as-
sumptions of retrofit lifespans and discount rates. We present BCR for treating homes in order of
net benefits, up to the maximum points (i.e., when marginal benefits equal marginal costs) according
to each approach and across scenarios. Each approach serves to produce different rankings of homes,
while “true” net benefits from those rankings are always assessed based on the ex-post estimates.
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E.4 Private versus Social Benefits

Results from the main text incorporate the social cost of carbon to the net present

benefit calculations, as described in detail above. An alternative approach is to consider

only the private benefits to the households served by the program, in which case retail

energy prices should be used. Results with retail energy prices are presented in Figure

E.4, panel (b). Results with baseline assumptions (panel a) are presented for ease of

comparison. Note that the overall program cost-effectiveness increases when considering

only the program’s private benefits to consumers. That is because retail energy prices

in the state of Illinois are higher than prices from adding marginal production costs plus

the social costs of carbon (Borenstein and Bushnell, 2018; Davis and Muehlegger, 2010).

That is most likely due to the energy taxation policies in the state. Nevertheless, the gains

from using the ML approach remain similar comparing social versus private benefits: for

the top 40% homes, the gains are $1.232 versus $1.237 million in net present benefits.

Figure E.4: Social Costs of Carbon and Retail Energy Prices

(a) Cumulative NPB, social costs of carbon (b) Cumulative NPB, retail energy prices

Notes: This figure compares cumulative cost-effectiveness according to the different models, and with varying assumptions
regarding energy prices. Panel (a) presents the same results as in Figure 4 from the main text, which incorporates the
social cost of carbon. Panel (b) presents cumulative net present benefits using retail energy prices, thus representing
private benefits to the consumers. Note that retail energy prices in Illinois are higher than prices constituted of marginal
production costs plus the social costs of carbon (Borenstein and Bushnell, 2018; Davis and Muehlegger, 2010).
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