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1 Introduction
Robustness checks are a standard feature of applied empirical work in economics and
finance. After establishing their main results, researchers commonly ask if alterna-
tive channels can explain their findings and provide additional empirical analyses
that control for such alternative channels. It is also standard to establish the robust-
ness of findings across various sub-samples. When worried that the empirical results
may depend on including particular years in the sample (e.g., a recession) or par-
ticular industries (e.g., service industries), economists will typically run additional
regression analyses that exclude particular years or industries. Sample splits are
also commonly used to assess the economic channels that underlie empirical findings.
These analyses belong to the standard toolbox used by empirical researchers.

Such robustness checks are rare in structural research that uses simulation-based
methods. The reason is mostly computational. Consider for instance robustness
checks in reduced-form work that evaluate the role of alternative mechanisms in ex-
plaining the main empirical finding. This is usually done by introducing additional
control variables in a regression analysis. Such an analysis entails close to zero com-
putational cost. With simulation-based estimation, the equivalent exercise requires
to (1) consider alternative models (2) generate data based on these alternative mod-
els (3) re-estimate the baseline model on these data, and (4) assess how estimates
change across the various models. In many cases, the computational burden of esti-
mating alternative structural models implies that very few alternatives, if any, can be
considered in practice. Similarly, sub-sample analysis, e.g., re-estimating a model for
particular periods or groups of observations, can prove computationally prohibitive.
These limitations harm the credibility of structural estimates, since they make it dif-
ficult to assess how sensitive structural findings are to particular assumptions, or
particular features of the data. This paper develops a methodology to bypass these
computational limitations, and show how it can be used to perform many robustness
checks in the context of two standard applications in economics and finance.

Our approach works as follows. We consider the structural estimation of an eco-
nomic model through a simulated method of moments. Given structural parameters
✓, the model generates moments m = f(✓). In most applications, as for instance
with dynamic models, f is calculated numerically. Structural parameters ✓ are then
estimated by minimizing a distance between simulated moments f(✓) and empirical
moments bm. While simulating the economic model given ✓ is in general computation-
ally cheap, estimating ✓ can be costly as it can require a large number of simulations.
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This computational cost often limits the number of estimations (e.g., of alternative
models, or sample splits) that are feasible for a given research project.

We propose to reduce this computational cost using an approximation of f . Impor-
tantly, we do not approximate the numerical solution of the model, an approach that
has been explored in recent research in macroeconomics and finance (e.g., Fernandez-
Villaverde et al. (2021b), Fernández-Villaverde et al. (2021a), Duarte (2020)). Instead,
we rely on a parametric approximation of the moment function f(✓), g(✓,�), where �

is a vector of parameters that characterize this approximation. Our approach boils
down to estimating �. In contrast to the numerical solution of the underlying model,
which can be non-linear and therefore hard to approximate, the function f(), which
maps structural parameters to moments, is smooth. This feature allows us to obtain
good approximations of f() at low computational costs (i.e. using low-dimensional
parameters �).

Our methodology proceeds in three steps. First, we draw a large number (N )
of potential parameters (✓i)i21,N and simulate corresponding moments mi = f(✓i).
This generates a dataset D = {(✓i, f(✓i))}i2[1,N ], which is fixed once and for all. This
simulation stage is the computationally intensive step in our approach. However, it
is not more costly than estimating the model once using standard estimation tech-
niques: we select N to match the typical number of simulations required to estimate
the model. Second, we use the dataset D = {(✓i, f(✓i))}i2[1,N ] to fit a parametric ap-
proximation of f(). For instance, g() can be a polynomial function. In this case, the
coefficients � can be estimated at close to zero computational cost via regressions.
More advanced statistical learning methods can be used if in-sample over-fitting is
a concern (e.g., penalized regressions or tree-based methods). In our applications,
this step – the estimation of � – is computationally cheap, as we show that a third-
order polynomial function provides a precise approximation of f(). Third, once � has
been estimated, the “approximate” moment function g(✓, b�) can be computed for any
parameter ✓ without simulation. This feature allows us to minimize the distance be-
tween empirical moments bm and approximate simulated moments g(✓, b�)| at close to
zero computational cost. This approach can be seen as a generalization of Andrews
et al. (2017b), who focus on first-order local deviations and thus restrict g() to be a
linear function. As we show in our applications, focusing on linear functions can be
restrictive. We discuss the relation of our approach to that of Andrews et al. (2017b)
in Section 2.

How precise are the parameter estimates resulting from our approximation? We
answer this question using simulated data in the context of two canonical models of
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the literature: (1) a dynamic corporate finance model similar to Hennessy and Whited
(2007a), and (2) a life-cycle consumption and portfolio choice model similar to Viceira
(2001) and Cocco et al. (2005). In each application, we generate the dataset D of
parameters and simulated moments introduced above. We split D into a training and
a validation sample. We use the training sample to estimate the parameters � of our
approximation. For each set of moments in the validation sample f(✓i), we estimate
structural parameters b✓ using the approximation g(✓, b�) fit on the training sample.
We then compare the actual structural parameters that generate the moments in
the validation sample, f(✓i), with the parameter estimates b✓i. In both applications,
when the structural parameters are identified in the true model, the estimates from
the approximate model are almost identical to the true parameters: the correlation
between true and estimated parameters across the validation sample is in most cases
larger than .99, and never lower than .97.

Using the approximation moment function g(✓, b�) instead of the true moment
function f(✓) allows us to run identification diagnostics and robustness checks that
would otherwise be computationally prohibitive. We first consider the sensitivity of
parameter estimates to targeted moments. Discussions of identification in structural
work typically rely on the function f(✓) in the vicinity of b✓, i.e. how local variations
in parameters affect simulated moments. This approach is computationally cheap as
it only requires a few additional simulations of the underlying economic model. As
pointed out by Andrews et al. (2017a), a preferable diagnostic tool is the relation-
ship between parameter estimates b✓ and empirical moments cm: how variations in
targeted moments affect parameter estimates? However, uncovering this relation-
ship has a high computationally cost: it requires re-estimating the model for each
alternative moment value. Andrews et al. (2017a) bypass this cost by consider a
first-order local approximation. Their approach essentially involves inverting the Ja-
cobian matrix – a linear approach that is valid for small changes in moments around
their empirical value. Because our methodology reduces the cost of re-estimating the
model on alternative moments by several orders of magnitude, it allows us to trace
out the mapping from targeted moments to parameter estimates without relying on
a first-order approximation. We show, in our two applications, that this linear ap-
proximation is restrictive for several moments and thus may fail to provide all the
information required to discuss identification.

Our methodology also makes it feasible to assess the robustness of parameter es-
timates to the selection of targeted moments. A common practice to assess a model’s
performance is to (1) divide the set of relevant moments into moments targeted in

4



estimation (Mused) and non-targeted moments (Mnon-target) (2) compare non-targeted
moments in the data to their simulated counterparts. This approach is not ideal. The
selection of targeted vs. non-targeted moments is arbitrary. This approach also re-
mains silent on how parameter estimates would change had non-targeted moments
been included in the set of targeted moments. We leverage the low estimation cost
offered by our methodology to develop two systematic tests of robustness to moment
selection. We first consider how parameter estimates change when one of the mo-
ments in Mnon-target is included in Mused. A robust baseline estimation should not
be sensitive to these inclusions. A second exercise re-estimates the model using all
possible combinations of moments in Mnon-target and plots the resulting distribution
of parameter estimates. Because this exercise requires thousands of estimations, it
would be infeasible with standard simulation-based methods. A robust estimation
should exhibit a peaked distribution of alternative parameter estimates around their
baseline value. When a parameter estimates is not robust to moment selection, this
analysis serves as a useful diagnostic tool to identify features of the data missed by
the model, and thus helps amend the model to better fit the data. In our two applica-
tions, we find that few parameter estimates are robust to moment selection.

A standard concern in empirical work is the robustness of parameter estimates to
the sample used in estimation. In reduced-form analyses, it is for instance common
to re-estimate regression models on different sub-samples of industries (e.g., manu-
facturing vs. services) or years (e.g., excluding recessions). Sample splits are also
commonly used as additional tests to validate the robustness of the baseline find-
ings (e.g., when the main effect is expected to be stronger for small vs. large firms).
In structural work, the equivalent exercise would require to (1) recompute moments
on different sub-samples (e.g., for each industry in the sample) (2) re-estimate the
model using these alternative moments. Working with dozens or hundreds of sub-
samples can make such robustness checks computationally prohibitive with standard
simulation-based methods. In contrast, the low computational cost of estimating the
model with the approximate moment function g() makes these robustness checks fea-
sible. As a result, researchers can estimate and report structural parameters for each
year or industry in the sample. As we show in our corporate finance application, this
type of analysis can bring interesting insights about the validity of the underlying
model.

Finally, our methodology also allows us to test the robustness of estimation to
misspecification, a standard concern with structural analysis (e.g., Andrews et al.
(2017a)): economic forces not included in the model may alter the inference of struc-
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tural parameters. In reduced-form work, robustness to misspecification can be ad-
dressed at low computational cost by adding variables to regression analyses (e.g.,
non-linear controls or omitted variables that may affect the outcome variable). In
structural work, considering alternative models and how they affect estimated pa-
rameters of interest is computationally costly as it involves a new estimation for each
alternative considered. Our methodology does not allow us to speed up the estima-
tion of a new model. However, we can still address robustness to misspecification in
the following way. Let \✓baseline be the set of structural parameters recovered using
the baseline model. Consider an alternative to this baseline model, with structural
parameters ✓a and moments h(✓a). Using our approximation g(✓, b�), we can estimate
how inference on ✓ is affected when we target the alternative moments h(✓a) gener-
ated by the alternative model. Note that this methodology only requires to (1) solve
the alternative models to generate simulated moments (2) estimate the approximate
model using moments simulated under the alternative model. Both steps carry low
computational cost. This allows us to consider a large number of alternative pa-
rameters ✓a. Note that we can perform similar robustness exercises for functions of
parameters (e.g., welfare measures).

Related literature. Our paper mostly relates to a recent literature that tries to
make structural estimation more transparent, with a particular focus on the sen-
sitivity of policy predictions to moment or model misspecification. Andrews et al.
(2020b) propose a formal definition of transparency in empirical research and apply
it to structural estimation in economics. Andrews et al. (2017a) derives a local linear
approximation of the relationship between parameter estimates and the moments of
the data they depend on. This measure serves as a diagnostic tool that allows to easily
assess potential misspecification bias for a range of alternatives models. In follow-up
work, Andrews et al. (2020a) propose a way to formalize the relationship between de-
scriptive analysis and structural estimation using a similar local approximation. Our
methodology can be seen as a generalization of Andrews et al. (2017a) – as discussed
in Section 2. Our approximation is global, not local. As we show below, non-linearity
can be an important feature of the relationship between moments and parameters,
so that local approximations sometime produce erroneous diagnostics. In addition,
our numerical approach allows quantitative researchers to report many sub-sample
estimates, which is another way in which structural work can be made more trans-
parent. Our analysis more generally connects to the literature on robustness to model
misspecification (e.g., Huber (2011); Armstrong and Kolesár (2021); Bonhomme and
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Weidner (2018)).
When papers in the structural literature discuss identification, the relation be-

tween moment and structural parameters – the function f(✓) – is usually the focal
point. Table A.1 provides a review of recent structural papers in corporate and house-
hold finance. Out of 36 papers, one third show local comparative statics (i.e. plots of
m(✓) around the baseline estimates, nine reports the Jacobian matrix (J(b✓) = rf(b✓)),
and two thirds do not report any of these two. Reporting f(✓)) or its derivatives
around the parameter estimates is useful. It confirms the precision of the numerical
solution. It also helps understand how the model works. However, it is not a suffi-
cient tool to discuss the robustness of the estimates, in particular how they depend on
the targeted moments. Four recent papers in Table A.1 reports the sensitivity matrix
of Andrews et al. (2017a), which provides a linear approximation of this relation be-
tween parameter estimates and targeted moments. Our approach provides a low-cost
method to evaluate how estimates depends on targeted moment that does not rely on
this linear approximation.

Our paper is also related to the emerging literature trying to improve numerical
solutions of models through approximations. Our goal is quite different, and, in a
sense, simpler. We seek to approximate the model moments in order to speed up es-
timation and perform robustness analysis. Norets (2012) extends the state-space by
adding the model parameters as “pseudo-states” to efficiently estimate finite-horizon,
dynamic discrete choice models. He uses shallow artificial neural networks to ap-
proximate the dynamic programming solution as a function of both state variables
and parameters prior to estimation. Chen et al. (2021) use an insight similar to ours
but use it to solve the model instead of the relation between moments and parame-
ters; their focus is on solution more than estimation. Like us, they draw a large set
of parameters, and solve the model numerically for each parameter draw. They then
train a Machine Learning (ML) algorithm to predict model outcomes as a function of
parameters. The non-linearity of their model requires that they use highly flexible
ML algorithms (e.g., deep Neural Networks (NN)). The models we consider in our
applications also feature solutions that may be highly non-linear functions of state
variables. However, having a flexible approximation is less crucial for our purpose,
since e do not approximate policy functions but instead the relation between moments
and parameters f(✓), which is smoother. Our focus on f(✓) is driven by our interest in
estimation and robustness analyses, a focus different from theirs. Similarly, Duarte
(2020) describes a new solution method combining ML algorithms and Gradient De-
scent Algorithm. The intuition is that value functions can be represented through
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NNs rather than functions defined on a grid. Using value function iteration, the fixed
point of the Bellman problem can be obtained through gradient descent. His method
allows to quickly solve models with large state spaces. Overall, this literature builds
on the burgeoning fied that develops approximate solutions to dynamic quantitative
models in economics and finance using machine learning tools(e.g., Duarte (2020),
Fernández-Villaverde et al. (2021a), Villa and Valaitis (2019),Maliar et al. (2019), Azi-
novic et al. (2019)). In contrast to these papers, we solve the model exactly to generate
a training sample that we then use to approximate the mapping between simulated
moments from the true economic model and parameters. Our paper also differs by
its focus on robustness and the scope of its applications (corporate and household
finance).

Finally, our paper is related to the vast literature that structurally estimate dy-
namic models of corporate and household finance (see Strebulaev and Whited (2012)
for a survey of the corporate finance literature, and Gomes et al. (2021) for house-
hold finance). Our paper provides a new methodology to improve the transparency of
identification and assess the robustness of estimated models in these literature.

2 General Approach and Notations
This section lays out our general approach.

2.1 Approximation

Let S be a structural model with deep parameters ✓. The model S generates a vector
of moments f(✓) 2 RM that have empirical counterparts, where M is the number of
moments targeted in estimation. In simulation-based estimation, f() does not admit
a closed-form representation, and is obtained through simulations. For the sake of
clarity, we ignore simulation error, and assume that f() can be exactly computed with
a large number of simulations. Let cm be the vector of empirical counterparts to the
model-based moments f(✓).

The minimum distance estimator of ✓ is obtained by minimizing:

b✓ = argmin
✓

(bm� f(✓))0 ⌦ (bm� f(✓)) (1)

where ⌦ is a weighting matrix.
The estimation proceeds in two-steps:
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1. For a given ✓, standard numerical methods are used to solve the model given ✓

and simulate model-based moments f(✓) (inner loop).

2. ✓ is selected to minimize the objective in 1 (outer loop).

Because ✓ is potentially high-dimensional, model estimation can be computation-
ally costly, as it requires a large number of inner loops, and each inner loop requires
to solve and simulate the model. In particular, there are no “economies of scope” in
estimation: if the model has to be estimated against a different set of empirical mo-
ments cm0 (e.g., moments estimated for different subsamples, or alternative moments
not included in cm), the second estimation carries the same computational cost as the
first one.

The objective of our paper is to create such economies of scope using an approxi-
mation of the function f(). Our approach proceeds in four steps:

(i) We define ex ante bounds for each parameter in ✓. These bounds are based on
expert knowledge, and also have to be specified for standard estimation tech-
niques in the literature. We note ⇥ the resulting set of admissible parameter
vectors.

(ii) We use a Halton sequence1 to generate N vectors of parameters (✓i)i2[1,N ] with
N large.

(iii) For each vector ✓i, we solve the model S and simulate moments f(✓i). This is
computationally intensive as the true model has to be solved and simulated N

times. This steps results in a dataset D = {(✓i, f(✓i))}i2[1,S] that contains N

vectors of parameters and the corresponding N vector of moments.

(iv) On the dataset D, we estimate the parameters � of an approximation g(✓,�) of
the function f(✓) in the following way:

(a) For each draw (✓i,mi) 2 D, we compute the distance between mi and the
moment values of interest cm: �i = (mi � cm)0W (mi � cm). W is a scal-
ing matrix. In our applications, we choose the inverse of the empirical

1Alternatively, one could sample points over a regular grid. Low discrepancy sequences present two
advantages. First, if the researcher underestimates the sample size required to properly approximate
g, the sequence can just be expanded to the next points. On the other hand, a grid-based approach
requires to restart the computation from scratch. Second, in high dimension, a regular grid approach
would result in most sample points falling on a few hyperplanes. For example, with a sample size
50,000 and 7 parameters, the moment function would be evaluated at only 4 or 5 coordinates for each
parameter.

9



variance-covariance matrix of moments in the overall sample, estimated
using bootstrap. This matrix corresponds to the efficient weighting matrix
for estimation in Equation 1.

(b) The approximation is estimated to minimize the following objective:

b� = argmin
�

"
NX

i=1

1

(�i)k
(g(✓i;�)� f(✓i))

0 (g(✓i;�)� f(✓i))

#

k measures the weight the approximate model puts on observations in D
with moments close to the empirical moments cm. When k = 0, the approx-
imation is estimated using all elements of D equally. As k increases, the
approximation puts increasing weights on elements of D that are near the
empirical moments cm that are targeted in the estimation.

In our applications, we consider, three classes of functions for g(): linear, third
degree polynomials and neural nets. Once ✓ is estimated, we use the approximation
g(✓, b�) to estimate the deep parameters ✓ by solving:

b✓(cm; b�) = argmin
✓

⇣
cm� g(✓; b�)

⌘0
⌦
⇣
cm� g(✓; b�)

⌘
(2)

This last step is fast since simulations are no longer required, and g() is a closed-
form, smooth function of ✓. We do not have formulas for standard errors of b✓(cm; b�),
since the model is misspecified: g() is not the right model if f() is, so inference may
be biased and noisy. In our applications below, we show that the error induced by the
approximation is, in practice, small.

2.2 Relation with the sensitivity matrix

Andrews et al. (2017a) propose a tool to assess the robustness of parameter estimates
to misspecification. Their analysis relies on a local linear approximation of the map-
ping from targeted moments to parameter estimates. Conceptually, their approach
builds on the idea that, for small variations in moments around their empirical value,
the model can be costlessly estimated using a linear approximation. However, for the
type of robustness exercises we consider in this paper, such a linear approximation
may be too coarse. Our approach can thus be seen as a generalization of Andrews et
al. (2017a) that relies on a higher-order approximation.
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More precisely, consider any vector of parameter ✓ 2 ⇥ (possibly, a SMM estimate),
and m = f(✓) the corresponding moments. Let ✓̃ be in the vicinity of ✓. Then,
provided f() is differentiable,

f(✓̃) ⇡ m+ J(✓)
⇣
✓̃ � ✓

⌘

| {z }
=glinear(✓̃)

,

where J(✓) = rf(✓) is the Jacobian matrix. With this linear expansion, the approx-
imation glinear does not need to be estimated: its parameters are simply given by the
moments m and the Jacobian J(✓).

Assume now that the econometrician wants to estimate the model using the linear
approximation glinear of the true model f() by targeting moments cm. The parameter
estimates b✓ are then defined by the following First-Order Condition (FOC) from the
optimization program (2):

0 = J(✓)0⌦(cm� glinear(b✓)) = J 0(✓)⌦
⇣
cm�m� J(✓)

⇣
b✓ � ✓

⌘⌘

This formula can be rewritten to make explicit the link between our approximate
parameter estimate and Andrews et al. (2017b)’s sensitivity matrix ⇤:

⇣
b✓ � ✓

⌘
⇡ �(J 0(✓)⌦J(✓))�1J 0(✓)⌦| {z }

⇤

(bm�m) (3)

Assume for instance that ✓ are parameters estimated using SMM and m corre-
sponds to the empirical moments. Andrews et al. (2017b) argues that 3 can be used to
explore how estimated parameters vary for alternative moments bm that differ slightly
(in a first-order sense) from m = f(✓). Conceptually, Andrews et al. (2017b) suggest
that, for moments in the neighborhood of m, parameter can be estimated without
directly through the linearization formula 3.

However, this approach only works locally (or if the relationship between moments
and parameters is in fact linear). As alternative targeted moments get further away
from the baseline moments, the quality of the approximation, and thus of the esti-
mation, may deteriorate. Since most of the robustness checks we consider requires
re-estimating the model using a wide range of alternative targeted moments, this is
a key issue for our approach. Section 3 and 4 below explore the relative precision of
estimations that rely on non-linear approximations relative to linear approximations.
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3 Dynamic Corporate Finance Model

3.1 Model Layout

We use a standard model of firm dynamics with collateral constraints. It is similar
to Hennessy and Whited (2007b) or Ottonello and Winberry (2020). The frictions
are adjustment costs to capital, a tax shield for debt, costly equity issuance and a
collateral constraint. The firm’s shareholder is risk-neutral and her discount rate
is r. At date t, the firm’s EBIDTA, ⇡t, depends on the firm’s capital stock and its
productivity:

⇡t = ezt(1�↵)k↵
t , (4)

with zt the firm’s productivity which follows an AR(1) process zt = ⇢zzt�1 + ⌘t. �2
z the

variance of the innovation ⌘t.

Capital accumulation is subject to depreciation, time to build, and adjustment
costs:

kt+1 = kt + it � �kt, (5)

where � is the depreciation rate. In period t, investing it entails a convex cost of �
2
i2t
kt

.
Additionally, the firm pays in period t for capital that will only be used in production
in period t+1. This one period time-to-build for capital is conventional in the macroe-
conomic literature (Hall, 2004; Bloom, 2009) and acts as an additional adjustment
cost. Firms’ profits net of interest payments and capital depreciation (�kt) are taxed
at a rate ⌧ . This tax rate applies both to negative and positive income so that firms
receive a tax credit when their accounting profits are negative.

The firm finances investment out of retained earnings, debt, and equity issuance
to outside investors. di is net debt, so that dt < 0 means that the firm holds cash. We
set up the model so that debt is risk-free and pays an interest rate r. As is standard
in the structural corporate finance literature (Hennessy and Whited, 2005), we only
consider short-term debt contracts with a one period maturity. For an amount dt of
debt issued at date t, the firm commits to repay (1 + r)dt+1 at date t + 1. Finally, the
interest rate the firm receives on cash is lower than the interest rate it has to pay
on its debt. If the firm has negative net debt, it receives a positive cash inflow of
�(1 + (1�m)r)dt+1 with 0 < m < 1.

Financing frictions come from the combination of two constraints. First, issuing
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equity is costly. If pre-issuance cash-flows are x, cash-flows net of issuance costs are
given by:

G(x) = x (1 + ⇣1x<0)

where ⇣ > 0 parameterizes the cost of equity issuance. Second, firms face a collateral
constraint, which emanates from limited enforcement (Hart and Moore, 1994). We
follow Liu et al. (2013) and adopt the following specification for the collateral con-
straint:

dt+1  �kt+1. (6)

The total collateral available to the creditor at the end of period t + 1 consists of de-
preciated productive capital �kt+1. �, the share of the collateral value realized by
creditors, captures the quality of debt enforcement, but also the extent to which col-
lateral can be redeployed and sold.

The firm is infinitely lived. Every period, physical capital and debt are chosen opti-
mally to maximize a discounted sum of per-period cash flows, subject to the financing
constraint. The firm takes as given its productivity, and forms rational expectations
about future productivity. Firm behavior is represented by a Bellman equation whose
solution is the present value of future cash-flows, maximized over capital kt+1 and
debt dt+1, under the collateral constraint. This value is a function of the elements
of the state space: (kt, dt, zt). This Bellman equation is written in Catherine et al.
(2022b).

Financial frictions in the model result in value losses. The model offers a simple
statistics to gauge the economic importance of these frictions: The average value
increase that constrained firms would experience if financial frictions were entirely
removed. Precisely, let V c(k, d, z) be the value of a firm with state variable (k, d, z)

in the model with financial frictions. Define V ?(k, d, z) the value of a firm with state
variable (k, d, z) in the absence of financial frictions (i.e. when equity issuance cost is
0, ⇣ = 0). We define the value loss as:

Value loss = E [log(V ?(k, d, z))� log(V (k, d, z))] ,

using the ergodic distribution of (k, d, z) in the model with financial frictions. Be-
yond structural parameters, we also report below how our approximation affects the
estimation of this statistic.
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3.2 Training dataset

We consider a vector of seven structural parameters to be estimated: ✓ = (�, �,↵, ⇢z, �z, ⇣,�).
We restrict these parameters to values � 2 [0; .2], � 2 [0; .12], ↵ 2 [.4; .9], ⇢z 2 [.4; 1],
� 2 [0; .35], ⇣ 2 [0; .2] and � 2 [0; 1]. This defines the set ⇥ of possible parameter values.

We then draw a Halton sequence of N = 50, 000 vectors ✓i in ⇥ – we verify below
that N is large enough to generate a good approximation. For each ✓i, we simulate
the model and compute a vector of 17 moments mi, which corresponds to the set
of moments that have been used in the literature. The 17 moments are listed in
Table 1. The first seven moments correspond to “core” moments that are typically
targeted in the literature: m1 = mean(investment/assets), m2 = mean(profit/assets),
m3 = mean(equity issuance/assets), m4 = mean(net leverage), m5 = autocorrelation
of (investment/assets), m6 = std(log growth sales), m7 = std(log growth 5yr sales).
These moments are our baseline moments, i.e. moments that we always target in our
estimation.

The next 10 moments correspond to moments that have been less frequently tar-
geted in the literature. We will explore the role of these moments for estimation in our
robustness exercises below. These moments are: m8 = var(investment/assets), m9 =

var(equity issuance/assets), m10 = frequency(equity issuance), m11 = coefficient of the
regression of investment ratio on market to book ratio, m12 = coefficient of the regres-
sion of net leverage on market to book ratio, m13 = coefficient of the AR(1) regression
of profit ratio with year fixed-effects, m14 = residual std of the AR(1) regression of
profit ratio with year fixed-effects, m15 = var(leverage), m16 = mean(dividend/assets),
m17 = var(dividend/assets),

The training dataset D = (✓i,mi)i2[1,50000] is then used to fit several approxima-
tions g() of the relationship between moments and parameters mi = f(✓i) ⇡ g(✓i,�).
Generating this training dataset is computationally costly as it requires solving and
simulating the model 50,000 times. Since solving and simulating the model takes 10
seconds with our numerical setup, generating the training dataset takes about 140
hours. However, note that SMM estimations that use the Tik Tak algorithm with
the same number of starting points require the exact same training step. Tik Tak
is a multi-start algorithm that has been shown to have the strongest performance
in both mathematics test functions and economic applications (Arnoud et al., 2019).
Thus, this computational fixed cost has to be paid, whether one uses our approxima-
tion approach or standard estimation techniques. Note, however, that, in our case,
this cost is paid only once: once the training dataset has been generated, additional
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estimation that targets alternative moments use the same training dataset. The only
remaining cost for additional estimations is to fit the approximation in the vicinity of
the alternative targeted moments, which, in our applications, is minimal.

3.3 Validating the approximation approach

We start our analysis by assessing the precision of our approximation approach. We
first draw a validation dataset Dvalidation made out of 1, 000 additional random draws of
parameters

�
✓validation
j

�
j2[1,1000] within the bounds defined above, and their correspond-

ing moments
�
f
�
✓validation
j

��
j2[1,1000]. For each of these draws, we estimate the model

using the methodology described in Section 2.1 and targeting the vector of moment
f
�
✓validation
j

�
. We evaluate the precision of the estimation by comparing the resulting

parameter estimates b✓j with the vector of parameters that generated the moments,
✓j.

For this exercise, we consider a just-identified estimation of the seven structural
parameters that targets only (mi)i2{1,...,7} described above. While the parameters
✓ affect all the moments jointly, the intuition behind the model’s identification is
the following. Mean(investment/assets) (m1) is tightly connected to depreciation �.
Mean(profit/assets) (m2) pins down returns to scale ↵. Mean(equity issuance/assets)
(m3) informs the model about the cost of issuing equity while mean(leverage) (m4) con-
tributes to the estimation the collateral parameter �. Estimates of adjustment cost
� are mostly sensitive to the autocorrelation of investment (m5). Finally, the persis-
tence of the investment ratio (m6) and std(log growth 5yr sales) (m7) help pin down
the persistence and volatility of TFP shocks (⇢z and �2

z ). Note that, while the model is
just-identified in this exercise, this is not a requirement for our approach to work.

Because the draws that generate the validation sample Dvalidation are random,
many end up in a region where the model is not identified (with the set of targeted
moments). For instance, draws with a sufficiently high equity issuance cost all lead
to the same moment m3 ⇡ 0 since firms stop issuing equity. Thus, in this region,
the specific cost of equity issuance used to generate the moments cannot be pinned
down. In such cases, estimating the model is impossible, whether using the true
SMM approach or our approximation. We thus discard these “non-identified” draws
from our validation dataset. To detect these “non-identified” draws, we would ideally
want to calculate the standard errors that a standard SMM approach would estimate
when targeting the moments f(✓validation

j ). However, since f(✓validation
j ) is not an empir-

ical object, we cannot estimate the sampling variance of these simulated moments.
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Instead, we approximate it using the inverse of the actual variance-covariance ma-
trix of the baseline moments targeted in estimation, ⌦. We then simply compute
(J 0(✓validation

j )⌦J(✓validation
j ))�1 and say that a draw is not identified when one of the re-

sulting standard error is 10 times larger than the standard error of the parameter
estimates in the baseline estimates (i.e. targeting the baseline empirical moments).2

Among the 1,000 draws that constitute the initial validation dataset, there are 837
non-identified draws, i.e. draws of moments that cannot be identified by the true
model. The remaining dataset of 158 observations constitute our validation sample.3

For each vector of moments mvalidation
j = f(✓validation

j ) in the validation sample, we
then use the training dataset constructed in Section 3.2 to fit a local approximation
of the relationship m = f(✓). We follow similar steps to (iv)-(a) and (iv)-(b) in Section
2.1: (a) for each validation moment mvalidation

j , we compute the distance between each
training moment mi and mvalidation

j : �j
i = (mi�mvalidation

j )0⌦(mi�mvalidation
j ) (b) we then

fit the approximation by minimizing the following objective in the training dataset:

b� = argmin
�

"
NX

i=1

1

(�j
i )

k
(g(✓i;�)� f(✓i))

0 (g(✓i;�)� f(✓i))

#
(7)

where we experiment with different levels of k. When k = 0, observations in the
training sample are equal-weighted, and the approximation b� will be the same for
each validation moment. As k increases, our approximation, for a given mvalidation

j ,
puts larger weights on observations “near” mvalidation

j in the sense of the SMM objective
function. As a result, when k > 0, b� depends on the moments mvalidation

j targeted in the
estimation and thus needs to be re-estimated for each set of moments in the validation
sample. However, since fitting the approximation and estimating the approximate
model are both computationally cheap, this step remains order of magnitudes cheaper
than estimating the true model.

A difference between problem (7) and our general presentation in Section 2 is that
we use log-transforms for moments that are positive: instead of matching their value
mi, we instead target log (mi + ✏i), where the constant ✏ is scaled by the size of the
moment through the formula ✏i = max{10�6, 10�2mi}. This steps improves the “gran-

2While this selection criterion is somewhat arbitrary, we have experimented with alternative defi-
nitions and found that this did not affect our assessment of the estimates’ precision.

3Whether equity issuance cost are small enough for firms to ever issue equity depends on other
parameters. Even with small issuance costs, firms will rarely issue equity if TFP volatility is low or
capital adjustment costs are large. On the other hand, firms may issue equity even when the cost of
doing so is large if TFP is very volatile and capital adjustment costs are small. Overall, over most of
the large parameter space we explore, firms do not issue equity.
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ularity” of our estimation in situations where moment values are small. For instance,
when equity issuance cost are large, average issuance is close to 0. Taking such a
log-transform of average equity issuance helps to obtain a more accurate estimation
of issuance costs.

We consider 5 different functional forms for g. The first one is a linear approxi-
mation g(✓,�) = �0✓. We also use a third-order polynomial approximation g(✓,�) =

P
↵0+↵1+↵2+...+↵73

�↵0↵1↵2...↵71
↵0
Q7

m=1 (✓m)
↵m . Third, to directly account for the censoring

at 0 of the equity issuance moment, we consider a third-order polynomial approxima-
tion augmented with a Tobit model for the equity issuance moment. We also consider
two neural net approximations: (a) a two-layer neural network with 10 neurons per
layer and a hyperbolic tangent activation function and (b) a five-layer neural network
with 10 neurons per layer and a hyperbolic tangent activation function.

For each one of these five possible functions, and various weights k, we then esti-
mate the parameters � of the approximate model. As explained above, b� technically
depends on mvalidation

j since, as soon as k > 0, it is estimated using weights that in-
creases close to the targeted moments mvalidation

j . However, we omit this dependence to
keep notations light. Note also that � is estimated using the entire training sample.
As is the case for the validation sample, the training sample includes draws of param-
eters for which the model is not identified. However, since the validation sample only
contains moments where the true model is well-identified, the non-identified draws
in the training datasets are presumably far enough from the validation moments that
they do not affect the fit of the approximation. We thus keep all the 50,000 draws in
the initial training dataset, except for 205 observations that are either undefined or
extreme outliers.4

In a final step, we estimate parameters \✓validation
j for each of the 158 vectors of

moments in the validation dataset by minimizing the approximate-SMM objective:

\✓validation
j = argmin

✓

⇣
mvalidation

j � g(✓; b�)
⌘0
⌦
⇣
mvalidation

j � g(✓; b�)
⌘

(8)

We measure the accuracy of the resulting estimates, \✓validation
j , by computing, for

the seven dimensions i of the parameter vector, the share of the variance of the true
parameters ✓validation

j (i) left unexplained by the approximate parameters \✓validation
j (i):

4More precisely, we drop cases with either (a) undefined auto-correlation of investment-asset ratio
because of zero variance (this drops only one case) (b) mean and variance of investment-asset ratio of
greater than 1 (this drops an additional 157 cases) or (c) mean and variance of equity issuance-asset
ratio greater than 1 (this drops an additional 47 cases).
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1�R2
i =

Var
h
✓validation
j (i)� \✓validation

j (i)
i

Var
⇥
✓validation
j (i)

⇤ , (9)

where variances are taken across the 158 draws in the validation sample. 1 � R2
i

is small when the approximate estimation yields parameter estimates that are, on
average, close to the true parameters.

Figure 1 reports this measure 1 � R2
i for the seven estimated parameters and the

value loss statistic described in Section 3.1. The measure is computed for each of the
five functional forms described above, and seven different weighting scalar k.

Figure 1 highlights that polynomial approximations improve the precision of esti-
mation relative to linear functions. The linear fit leads to values for 1�R2 that are at
least twice larger than those computed for the third-order polynomial approximation.
Neural nets – which can account for further non-linearity in f(✓) – are not preferable
to the third-order polynomial approximation: they require significantly more com-
puting time to be estimated,5 but do not bring significant fit improvement. Figure 1
also makes it clear that weighting matters. The choice of the weight k involves the
following trade-off. When k is low, all observations in the training dataset have a sim-
ilar weight, and the approximation fails to detect the particular shape of f(✓) in the
neighborhood of the targeted moments, leading to imprecise estimates. In contrast,
when k is high, the approximation is calibrated on a small number of observations of
the training dataset, which results in overfitting and imprecise estimates as well.

Given the findings in Figure 1, we use, in the rest of this section, the third-
order polynomial approximation with weights 1

(�j
i ))

2
as our benchmark approximation

model. The performance of this benchmark approximation is high on the validation
sample: for most parameters, the approximation explains more than 99% of the vari-
ance of the parameters in the validation sample (1�R2 < .01). For the equity issuance
parameter and the value loss – the two estimates with a weaker performance – 1�R2

remains below 0.03.

Figure 2 provides additional details on the precision of our preferred approximate
estimation (third-order polynomial with quadratic weights). Figure 2 plots, for each
draw of the validation sample, the estimated parameters \✓validation (y-axis) against the
true parameters ✓validation. A perfect approximation would put all points on the 45
degree line. The horizontal bars in Figure 2 correspond to the square roots of the

5With our numerical setup, the SMM using the polynomial approximation takes 4 seconds while
the two-layer neural net takes about 111 seconds
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diagonal terms of the matrix J 0(✓validation)⌦J✓validation, where ⌦ is the inverse of the
variance-covariance matrix of the data moments used in our baseline estimation, and
J✓validation is the Jacobian matrix of the true model around the value of the parame-
ter that generated these moments, ✓validation. Wide bars imply that the parameter is
poorly identified by the true model for this particular draw of the validation sample.

Across all seven parameters, the large mass of observations on the 45 degree line
confirms the findings of Figure 1: the benchmark approximation does a good job at
recovering the true parameters in the vast majority of validation draws.

The estimated parameters that do not sit on the 45 degree line correspond mostly
to draws in the validation sample that leads to poorly-identified parameters, i.e. mo-
ments such that, if estimated against the true model, would lead to parameter esti-
mates with large standard errors. Despite our attempt at weeding-out such poorly-
identified draws, some remain in the validation sample. Unsurprisingly, for these
draws, the approximate SMM – like the true SMM – has a harder time recovering the
true parameter values. This issue appears clearly for high values of equity issuance
costs, which all leads to similarly low values of m3 the average equity issuance to
asset ratio.

How does N – the number of draws in the training sample – affect the precision of
the approximate estimates? For the seven parameters and three different approxima-
tions (third-order polynomial with no weight, third-order polynomial with k = 2, and
linear weights with k = 2), Appendix Figure A.1 shows how 1�R2

i varies for values of
N ranging from 10,000 to 50,000 (the value in our benchmark approximation). Figure
A.1 first confirms the superior precision of our benchmark approximation, irrespec-
tive of the size of the training sample. In general, the precision of the approximate
SMM does not increase much with the size of the training sample. For most parame-
ters, 1 � R2 is below 5% when N=10,000. The one exception is equity issuance costs:
since the approximation can only work well for low enough values of this parameter
(otherwise the true model itself is poorly identified), the training sample needs to be
large to contain enough well-identified draws, i.e. draws where equity issuance costs
are small.

3.4 Actual Estimation with Approximate SMM

This section evaluates the precision of the approximate SMM using actual data. We
simply compare the approximate estimates and the true-SMM estimates when tar-
geting actual empirical moments.
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3.4.1 Data

Our sample comes from COMPUSTAT. Our sample period is 1970-2019. We only
keep firms that appear at least twice in the sample. We drop firms in the financial
(SIC code 6) or regulated (SIC code 49) sectors. We also drop observations with total
assets that are less than 10 million real 1982 dollars, or sales or book assets that grow
by more than 200%. This results in a sample of 117,976 firm-year observations and
11,198 unique firms.

We compute the seven moments (mi)1,...,7 targeted in the baseline estimation. We
described above how we compute these moments in the model. In the data, we com-
pute moments as follows: m1, the average investment to capital ration, is capx

l.at . m2, the
average profit to asset ratio, is oibdp

l.at . m3, the average equity issuance to asset ratio,
is computed net of repurchases: sstk�prstkc

l.at . m4, mean net leverage, is dlc+dltt �che
at .

m5, the autocorrelation of investment rates, is measured by regressing capx
l.at on its lag,

with year fixed-effects. Last, m6 and m7, are the sample standard deviations of 1-year
and 5 year log sales growth: log sale � log l.sale and log sale � log l5.sale. All
ratios are winsorized at the median +/- five times the interquartile range. We also
remove firm fixed-effects from all the variables used in the empirical analysis, as the
model does not feature any source of fully persistent heterogeneity across firms: for
each variable, we subtract the within-firm average and add back the overall sample
average. The bold lines in Table 1, in Column 1, provide the means and standard
deviations of these moments in our sample.

3.4.2 Estimated Parameters

Table 2 presents parameters estimates of the model using two estimation techniques
that target the seven moments described in Section 3.4.1:

1. A standard SMM, that uses the Tik Tak algorithm. We initialize the algorithm
by evaluating the SMM objective at 50,000 starting points. We then run Nelder-
Mead optimizations at the 50 best starting points using at most 200 function
evaluations. Standard errors are computed using the standard formula J 0⌦J ,
where the Jacobian J is computed at the SMM estimate, and ⌦ is the inverse of
the variance-covariance matrix of targeted moments.

2. An approximate SMM that uses the benchmark approximation (third-order poly-
nomial with 1

�2 weights). We compute standard errors using the delta method
with the approximate Jacobian. This estimation of standard errors underesti-
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mate true standard errors as it neglects the error introduced by the approxima-
tion.

Table 2 reveals that the two resulting estimators are quantitatively close. For all
parameters, both estimators lie within a few percentage points of each other. The
difference in estimated parameter values across the two approaches is well within
the estimated standard errors. Columns 2,3,4 of Table 1 shows that both estimators
are equivalent in their ability to match the empirical moments. Column 2 of Table 1
reports the value of simulated moments using the true model f() and the true-SMM
estimate. Column 3 shows the value of approximate moments at the approximate
estimate g( \✓validation, b�). Column 4 computes the values of simulated moments using
the true model, but the approximate estimate \✓validation: f( \✓validation). For both targeted
(first 7 lines) and non-targeted moments (last 10 lines), Column (4) shows that the
approximate SMM leads to moments that are both close to the moments generated by
the true-SMM (Column (2)) and to the data (Column (1)).

3.4.3 Computing time

How much computational cost is saved by using the approximate estimation vs. the
true SMM? Figure 3 shows the estimated structural parameters as a function of com-
puting time in our setup, for both the standard and approximate SMM using the
benchmark specification. The computing times we report exclude the simulation of
the training sample, which is required for both estimations. For the true SMM (blue
line), it takes at least 17 minutes for the estimation to converge to its final value;
for some parameters like productivity persistence or return to scale, full convergence
requires as much as nine hours. In contrast, the approximation can be fit and the
approximate model estimated in less than four seconds. This is why the approxi-
mate SMM (red line) jumps right away to its final value. Therefore, once the training
dataset has been simulated, it takes at least 250 times longer for the true SMM to
converge to its final value than for the approximate SMM. The convergence time of
the approximate SMM – four seconds in our setup – also implies that it can be per-
formed many times over to test robustness, as we discuss below.

3.5 Using the Approximation to Explore Identification

A standard practice in the structural literature is to present local comparative statics
to discuss identification. Typically, after the model has been estimated, a researcher
shows how variations of parameters around their estimated values affect simulated
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moments. This analysis allows researchers to get some intuition for the role of tar-
geted moments in identifying the model’s parameters. However, such intuition is nec-
essarily incomplete: local variations in f(✓) only provide partial information about
the link from targeted moments m to estimated parameters b✓.

Because of the low computational cost of an approximate SMM, our methodology
allows to fully trace out the mapping from targeted moments m to estimated parame-
ters b✓, even far from the empirical momentscm. This is a in contrast to Andrews et al.
(2017a), who rely on a local linear approximation around cm. We illustrate this analy-
sis in Figure 4, where the blue line shows parameter estimates for alternative values
of m6, the standard deviation of 1-year sales log-growth. In the data, m6 is 22%, and
we consider 100 alternative values ranging from 5% to 35%. Drawing this relation-
ship thus requires 100 separate estimations. It is computationally costly with stan-
dard simulation-based techniques, but becomes cheap using the approximate SMM.
Figure 4 reports two additional curves: (1) the yellow line reports the link between
parameter values ✓ and simulated moments f(✓) for 100 possible parameter values;
it corresponds to the standard local comparative statics shown in many structural
papers (2) the red line corresponds to the local linear approximation of the mapping
from empirical moments to parameter estimates proposed by Andrews et al. (2017a).

Figure 4 illustrates well how incomplete intuitions about identification can be
when relying solely on local comparative statics. For instance, local comparative stat-
ics suggest that m6 is not very useful to identify ⇢z: for most values of ⇢z around its
estimated value, the simulated value of m6 is close to its empirical value. However,
Figure 4 clearly shows that this interpretation is incorrect: Small variations in m6

would leads to significant variations in the estimation of ⇢z. The wedge in interpreta-
tion comes from the fact that parameter estimates depend jointly on all the targeted
moments. For instance, when the volatility of 1-year sales growth decreases, the es-
timation naturally finds a lower volatility of TFP shocks �z. To keep matching the
volatility of 5-year sales growth, a higher persistence of TFP shocks ⇢z is required. If
m6 further declines, the upper bound for ⇢z, ⇢z = 1, is reached. Below this value, since
the persistence of TFP shocks can no longer be adjusted, we see that (1) the SMM er-
ror sharply increases (the model fit deteriorates) (2) the model uses a combination of
adjustment costs, equity issuance costs, and returns to scale to try and match the low
volatility of one-year sales log-growth. This leads to non-linear variations in these
parameters’ estimate. Figure 4 also shows that the local linear approximation used
in Andrews et al. (2017a) can fail to hold for moment values in a small vicinity of their
empirical values. For instance, if m6 was 17% instead of 22% (its empirical value), the
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local linear approximation of Andrews et al. (2017a) would suggest an estimated ⇢z

of about .9, while its true estimated value would be close to 1. For parameters that
have a more direct connection to m6 (e.g., �z, the volatility of TFP shocks), the linear
approximation works well over a wide range of moment values.

3.6 Robustness to Selected Moments

A weakness of methods of moments is that there is no well-established theory of mo-
ment selection. Similar models can be estimated using different set of targeted mo-
ments. The selection of targeted moments is thus essentially arbitrary. Assessing
the robustness of parameter estimates to moment selection is thus a key aspect of
transparency in structural estimation. This is easy conceptually: the model needs to
be re-estimated using a large set of alternative moments. Robustness is established if
parameter values exhibit limited sensitivity to the set of moments targeted in estima-
tion. In practice, this exercise cannot be done with standard estimation techniques,
as it is computationally prohibitive.

In contrast, our approximation approach makes such robustness exercises feasi-
ble at low computational cost. An important reason is that, when we simulate the
training dataset D, including a large number of moments (beyond those used for esti-
mation) comes at almost-zero marginal cost. The computationally intensive step is to
solve the Bellman equation; adding an extra-moment computed on simulated data is
cheap. Thus, when generating the training dataset, researchers can include as many
moments as possible, and then easily test the robustness of parameter estimates to
moment selection.

We present two tests of robustness to moment selection.
The first exercise reports how parameter estimates change when we target one

of the 10 moments in {m8,m9, . . . ,m17} in addition to the seven baseline moments
{m1,m2, . . . ,m10} targeted in the baseline estimation of Table 2. Each panel in Figure
5 corresponds to one of the seven estimated parameters (plus the average value loss
from financing constraints). The solid black horizontal line corresponds to the base-
line estimation in Table 2, which targets the seven baseline moments. The shaded
line plots the 95% confidence interval. Each coordinate on the x-axis corresponds to
one of the 10 moments in {m8,m9, . . . ,m17}. The y-axis reports the parameter es-
timate when the estimation targets the seven baseline moment and the additional
moment on the x-axis. We also report standard errors for each estimated parameters.
These standard errors are calculated using the delta method with the approximate
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Jacobian matrix.

Figure 5 offers a clear diagnostic tool for robustness to moment selection. For in-
stance, the estimation of the collateral constraint parameter (Panel �) is robust to
including several additional moments to the set of baseline moments (e.g., the vari-
ance of investment (m8), the variance of equity issuance to asset (m9), the frequency
of equity issuance (m10), the coefficient of a regression of net leverage on market to
book ratio (m12), or the autoregression coefficient of the profit ratio (m13)). However,
the estimated collateral constraint parameter becomes significantly larger when the
estimation also targets the coefficient of a regression of investment on the market-to-
book ratio (m11), the variance of leverage (m15) or the average dividend to asset ratio
(m16). In particular, including the variance of the leverage ratio almost triples the
estimated �.

More generally, we see in Figure 5 that the baseline estimation is in general not
robust to including dividend moments. This is intuitive as firm’s dividend policy is
poorly explained by traditional investment models in the literature. In the data,
firms tend to smooth out dividends for many reasons explored in the literature (e.g.,
signaling), but not included in the model. To capture this prudent behavior, the esti-
mation that targets dividend policy finds tighter financing constraints, which biases
the estimate of �. Figure 5 also allows us to see that the estimation is overall robust to
certain moments, such as the sensitivity of net leverage to MB, or the autoregression
of profits. All the estimated parameters remain unchanged whether or not we target
these moments.

The exercise in Figure 5 explores a small set of alternative moment selection.
Given the low computational cost of an approximate estimation, we can explore more
systematic tests of robustness to moment selection. In Figure 6, we re-estimate the
model by targeting (a) the seven moments used in our baseline estimation {m1,m2, . . . ,m7}
and (b) any possible subset of the other 10 additional moments {m8,m9, . . . ,m17}. This
represents 210 = 1, 064 separate estimations. Of these, we only consider estimations
that correspond to reasonably well-identified sets of moments: We drop cases where
the standard errors for all estimated parameters is more than 10 times larger than
the standard errors of the baseline true SMM.6 This leaves us with 987 estimates.
Figure 6 reports the distribution of estimates across the 987 alternative sets of mo-
ments. The dashed line corresponds to the 95% confidence interval for the baseline

6As before, we compute standard errors through the classic SMM formula J 0⌦J , therefore using as
weight matrix the inverse of the variance-covariance matrix of empirical moments.
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estimate. A baseline estimate robust to moment selection would have a large share of
alternative estimates close to its value.

Clearly, most parameter estimates for this model are not robust to moment se-
lection. For instance, the estimated variance of innovations to z, �z, is distributed
almost uniformly from .5 to 1.2, with a benchmark estimate around 1.1. Alternative
estimates for the collateral constraint parameter � or the depreciation rate � are sim-
ilarly uniformly distributed. We also see that a large share of estimates for equity
issuance cost (⇣) and adjustment cost (�) parameters are quite different from their
baseline value, suggesting that the baseline estimates are quite specific to the seven
moments selected in our baseline estimation. In contrast, the returns to scale param-
eters appear to be robust to moment selection.

3.7 Sample Splits

A traditional approach to analyzing robustness in reduced-form empirical work is
to evaluate a regression model across various sub-samples. For instance, theory
might predict that the baseline estimated effect should be stronger (or weaker) for
groups with particular characteristics. Estimating a regression separately for differ-
ent groups then provides a simple way to assess the validity of the findings’ inter-
pretation. Alternatively, researchers might be worried that a particular estimated
effect is spuriously driven by a subset of the sample (e.g., particular years or partic-
ular regions). To evaluate the robustness of the main estimate, the regression can
be re-estimated across different sub-samples to check whether the estimates remain
similar in the restricted sample.

Such robustness checks can be costlessly performed in a regression setting. How-
ever, the equivalent exercise with a structural model can prove costly with simulation-
based techniques as it may involve a large number of additional estimation. In fact,
it is uncommon for structural papers in the literature to report such “sample splits”
analyses.

Our methodology provides a low-cost way to implement such exercises. We pro-
vide an example in Figure 7. For every year in the sample, we re-estimate the model
by targeting the moments estimated over a 10-year rolling window. We report the
resulting estimates in Figure 7, with their 95% confidence interval. For each date
t, the targeted moments are calculated over the [t-5,t+4] window. The red solid and
dashed line represents the baseline estimates, with their 95% confidence interval.
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While some estimated parameters remain relatively stable over time, some experi-
ence large trends. For instance, the collateral constraint parameter � decreases from
.2 in the 1970s to close to 0 in the 2000s. This results in a large increase in the value
loss from financial constraints starting in the 2000. This finding can be simply under-
stood through the lens of the contemporaneous increase in cash holdings over time
(Bates et al., 2009). The corresponding reduction in net leverage leads the model to
believe that firms are more financially constrained as collateral constraints become
tighter (i.e. � is smaller). This interpretation points to the difficulty of using leverage
ratios to identify the severity of credit frictions, a point that echoes the analysis of
Catherine et al. (2022b).

Similarly, we observe a large decline in the estimated depreciation rate over the
sample period, which go from .08 at the beginning of the sample period to .04 toward
the end. While the actual depreciation of physical capital is unlikely to have changed
over time, the rise in intangible capital may explain this apparently surprising result
(Crouzet and Eberly, 2018). Since the model does not feature intangible capital, it
interprets the reduction in physical capital expenditures as a decline in depreciation
rate.

Another interesting exercise splits the sample across industries. Table 3 re-estimates
the model by targeting moments calculated separately for five broad industries (man-
ufacturing, retail trade, services, transportation, and mining). We find that, rela-
tive to manufacturing, the value loss from financial frictions are much higher in the
mining and transportation industries. This finding reflects the much higher equity
issuance costs in these industries relative to manufacturing.

Figure 7 and Table 3 illustrate the power of our methodology to build transparent
tools to evaluate the validity of structural estimates. By allowing to re-estimate the
model on a large set of moments, we can easily test the mechanisms that underlie the
structural model.

3.8 Model Misspecification

Our approach can also be used to explore directly model misspecification. One ap-
proach to misspecification explored in Andrews et al. (2017a) considers only local
sources of misspecification, which would affect moments only by a small amount. Our
approach explores instead “larger” sources of misspecification, although at the cost of
“specifying the misspecification” (Catherine et al., 2022b). The exercise we propose
proceeds in two steps: (1) we solve (a potentially large number of) alternative models

26



and simulate corresponding moments (2) we estimate our (misspecified) model with
the approximate SMM using the moments generated in (1) as targeted moments. The
model is robust to misspecification if the resulting parameter estimates are close to
the baseline estimates.

We illustrate this exercise in the context of the recent corporate finance literature
arguing that financial constraints often take the form of cash-flow constraints, rather
than collateral constraints (e.g. Lian and Ma (2019), Greenwald (2019)). Our objective
is to assess the robustness of the baseline estimates in Section 3.4 to this particular
source of misspecification.

In a first step, we simply augment the baseline model of Section 4.1 to account for
the fact that the debt constraint may not only depend on the capital stock, but also on
the firm’s EBITDA:

dt < �kt + �2.E[e
zt(1�↵)]k↵

t (10)

so that the firm can not only pledge collateral but also a multiple �2 of its EBITDA.
For the initial seven parameters, we use the baseline estimates of Table 2. We con-
sider 40 linearly-spaced values for �2, ranging from 0 (no misspecification) to 2 (large
misspecification). For each of these values of �2, we solve the model and simulate the
seven baseline moments ({m1, . . . ,m7}).

In a second step, we use the approximate SMM to estimate the model targeting
each of the 40 different vectors of moments. Figure 8 shows the effect of misspec-
ification on our estimates of the value loss from financing constraints. The x-axis
represents the value of �2 used to simulate the moments. The black line corresponds
to the actual value loss of financing constraints in the correctly-specified model with
both collateral and cash-flow constraints. Intuitively, as �2 increases, the value loss
from financial constraints decrease since the firm is less and less constrained. The
loss is about 2.5% if �2 = 0 and goes down to about 1.2% for �2 = 2. The blue line
shows the estimate of value loss when the misspecified model is used to estimate the
model.

Two main results emerge from Figure 8. First, the estimates of value loss is robust
to low values of cash-flow pledgeability (�2 < .6). Second, as �2 increases further, the
misspecified model finds larger value loss while the true value loss decreases. One key
mechanism explains this surprising result. In the cash-flow based model, an increase
in �2 affects productive firms disproportionately, an effect that the misspecified model
misses. This error affects two different moments.

First, as �2 rises, the autocorrelation of investment decreases. Looser cash-flow
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constraints make firms more responsive to productivity shocks – so that they smooth
their investment policy less. The misspecified model, in which this effect is less pro-
nounced, attributes the reduction in the autocorrelation of investment to lower capital
adjustment costs. With lower capital adjustment costs, the value loss from financial
constraints are amplified. This is because financial frictions are less likely to be bind-
ing in the presence of real frictions. Intuitively, if the firm needs to smooth investment
because of capital adjustment costs, it’s more likely to be able to finance its growth
with its own cash flows. Thus, the misspecified model expects larger value losses
when the data is generated with larger �2.

Second, as �2 increases, equity issuance decreases. This is because firms that
want to invest – i.e. the most productive firms – need less equity issuance as they can
pledge their EBITDA. The collateral-only model, which does not have this feature,
attributes this lower equity issuance to larger equity costs. Larger equity issuance
costs increase the value loss from financial constraints.

4 Dynamic Household Finance Model

4.1 Model

Our second model is similar to Catherine (2021) but abstracts from housing choices
to focus on consumption choices and the allocation of wealth between a risk-free asset
and the stock market portfolio. Relative to seminal papers by Viceira (2001) and
Cocco et al. (2005), our model incorporates countercyclical income risk documented in
Guvenen et al. (2014)7 and a realistic Social Security system in retirement.

Macroeconomic environment The stock market log return in year t is

st = s1,t + s2,t, (11)

where s1 denotes the component of returns that covaries with labor market conditions
and follows a normal mixture distribution:

s1,t =

(
s�1,t ⇠ N (µ�

s , �
2
s1) with probability ps

s+1,t ⇠ N (µ+
s , �

2
s1) with probability 1� ps

(12)

7See Catherine et al. (2022a) for reduced-form evidence of the effect of countercyclical risk on house-
holds’ portfolio.
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On the other hand, s2,t is normally distributed with variance �2
s2. We impose µ�

s < µ+
s

and interpret µ�
s as the expected log return in stock market crash years, and ps their

frequency. The growth of the log national wage index l1 is:

l1,t � l1,t�1 = µl + �lss1,t + "l,t, (13)

where "l,t follows N (0, �2
l ), µl is the average growth rate, and �ls captures the correla-

tion with stock returns.

Income risk Labor earnings can be decomposed as the product of the wage index
and an idiosyncratic component L2,it:

Lit = L1,t · L2,it. (14)

The idiosyncratic component is further decomposed into a deterministic function of
age fit, a persistent component zit and a transitory shock ⌘it:

L2,it = efit+zit+⌘it . (15)

The persistent component follows an AR(1) process, with innovations drawn from
a normal mixture. Specifically, the dynamics of zi are given by

zit = ⇢zzit�1 + ⇣it, (16)

where

⇣it =

8
<

:
⇣�it ⇠ N

⇣
µ�
z,t, �

�
z
2
⌘

with probability pz

⇣+it ⇠ N
⇣
µ+
z,t, �

+
z
2
⌘

with probability 1� pz
(17)

The values of pz, µ�
z,t and µ+

z,t control the degree of asymmetry in the distribution of
income shocks. To capture the cyclicality of skewness, µ�

z,t is an affine function of the
log growth rate of the wage index:

µ�
z,t = µ�

z + �zl(l1,t � l1,t�1). (18)

where pzµ
�
z,t + (1 � pz)µ

+
z,t = 0 and pz  0.5. If ��

z � �+
z , pz represents the frequency

of significant events in a worker’s career. Finally, the transitory component of income
is also modeled as a mixture of normals whose first and second components always
coincide with the first and second components of the normal mixture governing the
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innovations to zi.

⌘it =

(
⌘�it ⇠ N (0, ��

⌘
2) if ⇣it = ⇣�it

⌘+it ⇠ N (0, �+
⌘
2) if ⇣it = ⇣+it

(19)

Social Security Social Security payroll taxes represent 12.4% of the agent earnings
below the maximum taxable earnings, which represents 2.5 times the national wage
index.

Tit = .124 ·min {Lit, 2.5 · L1,t} . (20)

Retirement benefits depend on historical taxable earnings, adjusted for the growth
in the national wage index. Specifically, the agent’s Social Security benefits B are:

Bi

L1,R
=

8
><

>:

.9 · SiR if SiR < .2

.116 + .32 · SiR if .2  SiR < 1

.286 + .15 · SiR if 1  SiR,

(21)

where R is the retirement age and L1,R is the value of the wage index at that age. The
variable Sit keeps track of a worker’s average taxable idiosyncratic earnings:

Sit =
tX

k=t0

min {L2,ik, 2.5}
t� t0 + 1

, (22)

where t0 denotes his first year of earnings.

Agent The agent maximizes lifetime expected utility:

Vt0 = E
TX

t=t0

�t�1

 
t�1Y

k=0

(1�mk)

!
C1��

it

1� �
, (23)

where � is the coefficient of relative risk-aversion, mk the mortality rate at age k, � the
subjective discount factor and T the maximum lifespan. After receiving his income,
the agent determines his consumption and invests his remaining wealth in stocks or
bonds. Wealth evolves as:

Wit+1 = [Wit + Lit +Bit � Tit � Cit � cit] · [⇡ite
st + (1� ⇡it)e

r] , (24)

where ⇡it is the share of his wealth invested in equity. Owning stocks incurs a cost
cit = �L1,t if ⇡it > 0. Short selling or leveraging are not allowed, such that 0 < ⇡it < 1.

30



Preset parameters We calibrate the labor income process and the distribution of
stock market returns using estimates from Catherine (2021) reported in Appendix
Table A.2.

4.2 Training dataset and estimation

We estimate three structural parameters: risk-aversion, time preference and partici-
pation cost (✓ = (�, �,�)). We restrict these parameters to values � 2 [1; 20], � 2 [.5; 1],
� 2 [0; .25]. This defines the set ⇥ of possible parameter values. We then draw a
Halton sequence of S = 2, 000 vectors ✓i 2 ⇥. For each ✓i, we simulate the model and
compute three moments mi: m1 is the average wealth, normalized by the wage index
(E[W/L1]) ; m2 is the stock market participation rate (E[⇡ > 0]) ; and m3 the average
equity share among stock market participants(E[⇡|⇡ > 0]).

These 2,000 parameter draws result in a training dataset D = (✓i,mi)i2[1,S], which
we use to estimate g(), the approximate relationship between moments and param-
eters mi = f(✓i) ⇡ g(✓i,�). Like in Section 3.3, we also build a validation dataset
of 200 additional draws of parameters and corresponding moments, that we use to
assess the approximate SMM’s performance.

Figure 9 is the analog of Figure 1 for this household finance model. The figure
illustrates the out-of-sample performance of the approximate SMM approach by com-
paring, on a validation sample, the estimated parameters to the true parameters.
Like in the corporate finance application, the third-order polynomial approximation
with k = 2 works best: 1� R2 is smaller than 1% for the three estimated parameters.
Unlike the corporate finance application, Figure 9 also shows that other approxima-
tions like an unweighted NN or a weighted linear model are precise. In what follows,
we use the third-order polynomial approximation with k = 2 as our benchmark ap-
proximation.

Figure 10 is the analog of Figure 2. For each draw of the validation sample, it
shows the true parameters ✓ on the x-axis, and, on the y-axis, b✓, the parameters
estimated using the benchmark approximate SMM targeting f(✓), the moments gen-
erated by the true model with parameters ✓. Figure 10 highlights the precision of the
approximate SMM. The out-of-sample R2 – the share of the variance of parameters in
the validation sample explained by the estimated parameters – is larger than 99.9%
for all three parameters �, � and �. Like in the corporate finance application, the few
cases where the approximate SMM fails to recover the true parameters corresponds
to cases where the true model is poorly identified, which can be seen by the large
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standard errors estimated with the true model for these parameter draws.8

Here again, the approximate SMM improves estimation speed by at least two or-
ders of magnitudes. With our numerical setup, solving the agent’s Bellman equation
a single time takes 20 seconds whereas running a full approximate SMM only takes
less than a second.

4.3 Data

We compute data moments using the 1989–2016 waves of the triennial Survey of
Consumer Finances (SCF). We restrict the sample to households whose head is be-
tween age 22 and 99 and have positive net worth. We use three baseline moments
to estimate the model (the equivalent of (mi)i2{1,..,7} in the corporate finance appli-
cation): (a) m1 is the mean wealth, which is measured using the net worth variable
(networth) from the SCF summary extract public data; note that to improve compa-
rability across survey years, we scale wealth by the average wage income (wageinc)
of each survey year (b) m2 is the average participation rate, which is the share of
households whose total holdings of stock (equity) is strictly positive (c) the mean con-
ditional equity share, which is the total holdings of stock (equity) divided by net worth,
excluding vehicles (vehic), and is only computed for households with strictly positive
holdings of stocks.

Panel A of Table 4 reports the true and approximate SMM estimations targeting
these three moments. Both approaches give similar values for risk-aversion � (about
8.4) and the discount factor � (some .91). For both parameters, estimates differ by
about 1%, which is much lower than the estimates’ standard error. The estimate of
�, the participation cost, is however significantly lower in the approximate SMM, by
about 15%: while � is estimated at.0053 in the true SMM, the approximate SMM
provides an estimate of .0045. Figure 11 shows the speed of convergence of the true
SMM and the approximate SMM when both target these empirical moments. With
our numerical setup, the approximate SMM converge in about .2 seconds, while the
true SMM takes between 15 minute to an hour to converge to its final value.

As in the corporate finance application, we also compute two additional, non-
targeted moments: m4, which is the median wealth and m5, which is the median
conditional equity share. Table 4, Panel B shows that these moments are matched,

8Like for the corporate finance application, standard errors are computed using the Delta method
with the true model f(✓) and the variance-covariance matrix of the baseline moments used in the main
estimation. The choice of this matrix is by nature arbitrary, since the moments that we target in these
estimations are not empirical object – they are simulation-based.
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whether we use the true or the approximate SMM.

4.4 Identification Diagnostic

Figure 12 is the analog of Figure 4. It traces out the mapping from targeted mo-
ments to estimated parameters (blue line), which is only possible thanks to the low
estimation cost of the approximate SMM. As with our corporate finance application,
two salient features emerge from the figure. First, intuitions from local comparative
statics (in yellow on the figure) can be misleading regarding the true relation from mo-
ments to estimated parameters. Second, the linear approximation used in Andrews
et al. (2017a) can be rapidly imprecise for some parameters. The global exercise to
identification – made possible by the low estimation cost of the approximate SMM –
is thus a useful tool to

Panel A shows how estimated parameters vary with mean wealth. Targeting a
higher level of wealth results in a greater estimated discount factor �. At the same
time, locally, an increase in the discount factor leads to higher wealth. Thus, for this
parameter-moment pair, local comparative statics provides the correct intuition for
identification. This is not the case for the other two parameters. For instance, local
comparative statics tell us that an increase in the participation cost leads to a small
reduction in wealth, as households invest less in the risky asset (yellow line). In con-
trast, we see that lower mean wealth leads to a lower estimation of the participation
cost (blue line). As mean wealth decreases, the model predicts lower participation; to
keep matching the participation rate, the cost of participation has to decrease. Thus,
local comparative statics do not provide a valid intuition for the role of mean wealth
in identifying the participation cost. The same is true for risk-aversion. Because of
precautionary savings, wealth is a steeply increasing function of risk-aversion (yellow
line). However, in estimation, an increase in mean wealth leads to a small reduction
in estimated risk-aversion (blue line). When wealth increases, the model predicts a
higher equity share; to keep matching the equity share, risk-aversion has to increase.
Here again, local comparative statics do not provide useful intuitions for identifica-
tion. We reach a similar conclusion in Panel B, which looks at how estimated param-
eters depend on the participation rate, and Panel C (conditional equity share).

Figure 12 also makes clear that linear approximation in Andrews et al. (2017a) is
sometime imprecise, even for moment value close to their empirical counterparts. For
instance, the conditional equity share in the data is about 35%. If it was 45% instead,
the local linear approximation of Andrews et al. (2017a) would suggest an estimated
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risk-aversion of about 6, while its estimated value would in fact be close to 7.

4.5 Robustness to moment Selection

We use the approximate SMM to explore robustness to moment selection. We first
consider the following set of moments in addition to the baseline moments: (1) median
wealth (m4) (2) median conditional equity share (m5) (3) an alternative definition of
the conditional equity share, where we normalize stock holdings by financial wealth
instead of net worth (m6) (4) the median of this alternative conditional equity share
(m7). m4 and m5 provide additional information when stock holdings and total wealth
have a fat upper-tail, as is the case in the model. m6 and m7 recognize the fact that,
absent housing, net worth and financial wealth are the same in the model, but not in
the data. There is no consensus in the literature on the proper denominator, but as
Panel C of Figure 12 illustrates, this choice is consequential as a modest change in
the target conditional equity share has substantial effect on parameter estimates.

We also consider the robustness of estimation to targeting groups of moments that
describe the age profile of the baseline moments (m1,m2,m3): (i) the life-cycle profile
of mean wealth (m8) (ii) the life-cycle profile of participation rates (m9) (iii) the life-
cycle profile of equity shares (m10)9 These groups of moments are computed using
the procedure explained in Catherine (2021), which implements the Deaton-Paxson
method to filter out cohort and year effects from the data. We use 20 age groups,
going from 23-25 to 80-82 years old, by increments of 3 years, so m8, m9 and m10 each
contains 20 moments.

We explore robustness of parameter estimates to targeting some of the additional
moments in {m4, . . . ,m10} in addition to the baseline moments {m1,m2,m3}. Figure
13 reports our first robustness check, which is the equivalent of Figure 6 above: We
target only one additional moment in {m4,m5,m8,m9,m10} and report the resulting
parameter estimates.10 Our estimates of risk-aversion and participation cost are ro-
bust to including m4 and m5 in the set of targeted moments. The estimate of the
discount factor, however, becomes lower when targeting median wealth (m4), from
about .9 to .86. Since median wealth is much lower in the data than mean wealth, the
model requires more impatience to match this additional moment. Figure 13 makes

9Note that we compute the life-cycle of unconditional equity share, instead of conditional equity
share. This is because the model tends to return no participation in the stock market for some age
groups in the simulation, which makes the conditional mean equity share not well-defined.

10We omit m6 and m7 from this exercise since, conditional on targeting the mean participation rate,
targeting the mean conditional or mean unconditional equity shares is equivalent.
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clear that our baseline estimation is not robust to the inclusion of the life-cycle profile
of equity shares in the set of targeted moments. Targeting this group of moments
leads to a significantly higher participation cost and discount rate, and a significantly
lower risk-aversion.

We also consider a more systematic exploration of robustness to moment selection
that mirrors the exercise in Figure 6. We leverage the speed of the approximate SMM
to re-estimate the model using 72 alternative sets of moments:

• We consider all possible combinations of three moments drawn from (a) m1 or
m8, i.e. moments related to mean wealth (overall or life-cycle) ⇥ (b) m2 or m9, i.e.
moments related to mean participation (overall or life-cycle) ⇥ (c) m3, m7 and
m10, i.e. moments related to the mean equity share (conditional, or conditional
using the alternative empirical definition, or life cycle unconditional share). This
leads to 12 different possible combinations.

• the 12 set of moments above, to which we add either median wealth (m4) or
median conditional equity share (m5) or median conditional equity share using
the alternative definition (m6). This adds 36 sets of moments.

• any of the 12 combinations above to which we add either m4 (median wealth)
and m5 (median conditional equity share) or m4 (median wealth) and m6 (median
conditional equity share using the alternative empirical definition). This adds
another 24 sets of moments.

Figure 14 reports the distribution of parameter estimates across all 72 sets of
targeted moments. A large share of moment combinations lead to consistent risk-
aversion estimates: The distribution of risk-aversion estimates peaks at around 6-7.
However, this mode of 6-7 is substantially below the baseline estimate for this pa-
rameter, which is about 8.5.11 The estimates of �, the discount factor, are clustered
between .9 and .98, and the mode of the distribution is close to the baseline esti-
mate (about .93 vs. .91). The distribution of participation costs estimates peaks at
0. A large share of these estimates is thus significantly lower than the baseline esti-
mate of about .005. These histograms illustrate how the approximate SMM can help
build useful tools to analyze the robustness of structural analysis to moment selec-
tion. They also explain why, depending on moment selection, different papers in the
literature can legitimately obtain significantly different parameter estimates.

11Note that this mode of 6-7 is consistent with Catherine (2021)’s estimates.
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5 Conclusion
This paper provides a fast and simple way to run robustness checks and identification
diagnostics in structural estimation. The approach consists of estimating a flexible
relation between model parameters and moments. Once this relation has been esti-
mated, it can be used to estimate structural parameters for any given set of moments.
In the two applications we consider – workhouse corporate finance and household fi-
nance models – we show that this “approximate SMM” carries computational costs
that are several orders of magnitude lower than standard SMM estimations. Using
model-based moments, we also show that, as the long as the model is identified, the
approximate estimation is precise: its estimates are close to the true estimates. As
a result, this approximate SMM is a useful tool for running robustness checks and
identification diagnostics that require many alternative estimations.

We consider three such exercise. The first one assesses the robustness of parame-
ter estimates to moment selection. Because our approximate SMM carries low com-
putational cost, we can easily re-estimate the model using many different sets of
targeted moments. This allows researchers to evaluate the influence of particular
moments, or set of moments on parameter estimates, and thus serve as a useful iden-
tification diagnostic. The second one is sample-splits. Thanks to the low computa-
tional cost of the approximate SMM, we can easily re-estimate the model by targeting
moments defined on different sub-samples (e.g., across different years or industries).
This exercise allows researchers to evaluate how estimated parameters depend on
the particular sub-sample used in estimation. If they do, the researcher can assess
whether the variations in parameter estimates across the different samples conform
to the economics of the underlying model. Finally, we use the approximate SMM to
gauge the sensitivity of the baseline estimates to misspecification error. To do so,
we generate a large set of new moments using alternative models and consider how
baseline estimates would differ if the baseline model was used to estimate parame-
ters against these alternative moments. Again, this exercise can be done at a low
computational cost using the approximate SMM. We think these robustness checks
are useful diagnostics to explore identification, misspecification and robustness of
structural estimates. They are easy to implement for researchers seeking to make
structural estimation more transparent.
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des HEC, Département d’économie February 2021.

Cocco, João F., Francisco J. Gomes, and Pascal J. Maenhout, “Consumption
and Portfolio Choice over the Life Cycle,” The Review of Financial Studies, 02 2005,
18 (2), 491–533.

Crouzet, Nicolas and Janice Eberly, “Intangibles, Investment, and Efficiency,”
American Economic Review: AEA Papers and Proceedings, 2018, 108, 426–431.

Duarte, Victor, “Machine Learning for Continuous-Time Finance,” 2020.
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Figure 1: Out-of-sample precision of approximate estimation, for different approxi-
mations and weighting schemes (Corporate Finance Model)

Notes. This figure reports a measure of the estimation error from the approximate SMM for different approxima-

tions and weighting schemes. For each draw (✓validation
j , f(✓validation

j )) in the validation sample, we estimate parame-

ters \✓validation
j with an approximate SMM targeting moments f(✓validation

j ). For each parameter i and approximation

used, the figure reports 1�R2(i) =
Var


✓validation
j (i)� \✓validation

j (i)

�

Var
h
✓validation
j (i)

i We consider the following specification for the approxima-

tion g(): linear, third-order polynomial, tobit (third-order polynomial with equity issuance censored at zero), a neural net

with two layers, and a neural net with 5 layers. The approximation g(✓;�) is estimated on the training dataset D as
b� = argmin

�

P
l2D

1

(�j
l )

k
(g(✓l;�)� f(✓l))

0 (g(✓l;�)� f(✓l))

�
where �j

l = (ml � mvalidation
j )0⌦(ml � mvalidation

j ) and ⌦ is

the inverse of the variance-covariance matrix of the empirical moments. We consider k=0, .5, 1, 2, 5 and 10, as well as 1/ log�j
l

weights.
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Figure 2: Out-of-sample Performance (Corporate Finance Model)
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Notes. This figure shows the precision of our benchmark approximate SMM across estimated parameters. For each

draw (✓validation
j , f(✓validation

j )) in the validation sample, we estimate parameters \✓validation
j with an approximate SMM

targeting moments f(✓validation
j ). The x-axis reports the true parameters ✓validation

j , while the y-axis reports the esti-

mated parameters \✓validation
j . The approximation g(✓;�) we use in this plot is estimated on the training dataset D as

b� = argmin
�

P
l2D

1

(�j
l )

k
(g(✓l;�)� f(✓l))

0 (g(✓l;�)� f(✓l))

�
where �j

l = (ml � mvalidation
j )0⌦(ml � mvalidation

j ), ⌦ is the

inverse of the variance-covariance matrix of the empirical moments, g() is a third-order polynomial approximation and k=2.
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Figure 3: True SMM Estimates, Convergence Speed (Corporate Finance Model)
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Notes. We report parameter values estimated as a function of time taken via two different algorithms in our numerical setup.

This estimation corresponds to the baseline estimation described in Section 3.4. The blue line corresponds to the true SMM, i.e.

the minimization of the distance of empirical moments to the true model f(✓). The optimization algorithm used in this case is

Tiktak, using 50 starting points selected from a training set of 50,000 cases and Nelder-Mead algorithm for local optimization

per starting point with 200 max function iteration. The red line corresponds to the benchmark approximate SMM, which uses a

third-order polynomial approximation and a weight k=2. The approximate estimation requires 1.1 seconds – hence the red line

jumps to its final value at the origin. The black line corresponds to the true SMM estimate and the dashed lines represent the

confidence interval around the true SMM estimate.
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Figure 4: Sensitivity of parameters to the volatility of sales growth
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Notes. This figure plots parameters values on the y-axis and the value of the moment m6 on the x-axis. m6 is the standard

deviation of the one year log sales growth. The yellow line draws local comparative statics, i.e. how variations in one parameter

around its estimated value – holding other parameters fixed at their estimated value – affect the value of m6 obtained through

simulations. The blue line plots how variations in the value of the empirical moment m6 – holding other moments fixed at their

empirical value – affects the estimated parameter values. Each dot on the blue line corresponds to a separate estimation. Finally,

the red line corresponds to the local linear approximation of the blue line around the parameter estimates, and represents the

“sensitivity matrix” of Andrews et al. (2017a): it is a linear approximation of the mapping from moments to parameter estimates

around the empirical value of the moments m6.
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Figure 5: Robustness to adding moments one by one (Corporate Finance Model)
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Notes. This figure explores the sensitivity of parameter estimates to the inclusion of an additional moment in the set of targeted

moments. Our baseline estimation targets seven moments (mi)i2{1..7}. We consider a set of 10 additional moments used in the

literature to estimate similar models: (mi)i2{8..17} described in Section 3.2. Each point on the X axis refers to one additional

targeted moment in the list (mi)i2{8..17}. The y-axis reports the parameter estimated with the benchmark approximate SMM

that targets the baseline moments (mi)i2{1..7} and one of the 10 additional moments, along with their 95% confidence interval.

The black line and dashed lines show the baseline parameter estimates and their 95% confidence interval. Standard errors are

derived using the standard formula (J 0WJ)�1, where W is the SMM weight matrix and J the approximate Jacobian matrix

computed at the parameter estimates. We use the delta method to calculate SE of value loss.
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Figure 6: Histogram of estimates across 1,024 sets of targeted moments (Corporate
Finance Model)

Notes. This figure explores the sensitivity of parameter estimates to moment selection. Our baseline estimation targets

seven moments (mi)i2{1..7}. We consider a set of 10 additional moments used in the literature to estimate similar models:

(mi)i2{8..17} described in Section 3.2. We construct all possible sets of moments that contain the seven baseline moments and

any combination of the 10 additional moments. These sets of moments are then used as targeted moments in an approximate

SMM. These result in 1,064 sets of parameter estimates. After dropping cases where estimates are poorly-identified – where the

standard errors for all estimated parameters is more than 10 times larger than the standard errors of the baseline true SMM

– we end up with 987 estimates. Each panel in the figure shows the distribution of parameters across these 987 estimations.

The vertical black line and dashed lines show the baseline parameter estimates using the true SMM, together with their 95%

confidence interval.
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Figure 7: Time Series Estimates (Corporate Finance Model)
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Notes. This figure shows the sensitivity of parameter estimates to the sample period used to compute the targeted moment.

For each year t on the x-axis, we compute the seven baseline moments (mi)i2{1..7} on the sample period [t-5,t+4]. We then re-

estimate the model using the benchmark approximate SMM that targets the moments measured on this sub-period. The y-axis

reports the resulting parameter estimates and their 95% confidence interval. The horizontal solid and dashed red lines corre-

sponds to the baseline estimates obtained when computing moments on the entire sample, together with their 95% confidence

interval.
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Figure 8: Model Mispecification: Estimating Model with Collateral Constraints
on Data Generated by Cash-flow Constraints (Corporate Finance Model)
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Notes. This figure explores the sensitivity of estimation to model misspecification. We consider an augmented version of our

corporate finance model where firms can pledge a multiple �2 of their EBITDA so that their debt constraint takes the form

dt < �kt + �2.E[ezt(1�↵)]k↵t . We assume that the correctly specified model is the augmented model where the baseline pa-

rameters are set to their estimated value in Table 2 and �2 takes various values from 0 (the baseline model) to 2. For each

possible value of �2, we re-estimate the baseline parameter values using the mis-specified model that targets these moments

(simulated with the correctly-specified model). The x-axis plots the values of �2 used in each estimation. The blue circles report

the value loss from financial constraint estimated with the misspecified model estimated by targets moments generated by the

correctly-specified model. The black line reports the value loss from financial constraint in the correctly-specified model.
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Figure 9: Out-of-sample Performance across models and weight schemes (Household
Finance Model)

Notes. This figure reports, for the household finance model, a measure of the estimation error from the approximate SMM

for different approximations and weighting schemes. For each draw (✓validation
j , f(✓validation

j )) in the validation sample, we

estimate parameters \✓validation
j with an approximate SMM targeting moments f(✓validation

j ). For each parameter i and ap-

proximation used, the figure reports 1�R2(i) =
Var


✓validation
j (i)� \✓validation

j (i)

�

Var
h
✓validation
j (i)

i We consider the following specification for the ap-

proximation g(): linear, third-order polynomial, tobit (third-order polynomial with equity issuance censored at zero), a neural

net with two layers, and a neural net with 5 layers. The approximation g(✓;�) is estimated on the training dataset D as
b� = argmin

�

P
l2D

1

(�j
l )

k
(g(✓l;�)� f(✓l))

0 (g(✓l;�)� f(✓l))

�
where �j

l = (ml�mvalidation
j )0⌦(ml�mvalidation

j ) and ⌦ is the

inverse of the variance-covariance matrix of the empirical moments. We consider k=0, .5, 1, 2, 5 and 10, as well as 1/ log�j
l

weights. 49



Figure 10: Performance of Estimation using Benchmark Approximation (Household
Finance Model)
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This figure shows, for the household finance model, the precision of the benchmark approximate
SMM across estimated parameters. For each draw (✓validation

j , f(✓validation
j )) in the validation sam-

ple, we estimate parameters \✓validation
j with an approximate SMM targeting moments f(✓validation

j ).
The x-axis reports the true parameters ✓validation

j , while the y-axis reports the estimated parame-

ters \✓validation
j . The approximation g(✓;�) we use in this plot is estimated on the training dataset D

as b� = argmin
�

hP
l2D

1
(�j

l )
k
(g(✓l;�)� f(✓l))

0 (g(✓l;�)� f(✓l))
i

where �j
l = (ml � mvalidation

j )0⌦(ml �

mvalidation
j ), ⌦ is the inverse of the variance-covariance matrix of the empirical moments, g() is a third-

order polynomial approximation and k=2.
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Figure 11: True SMM Estimates, Convergence Speed (Household Finance Model)
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Notes.

We report, for the household finance model, parameter values estimated as a function of time taken via two different algorithms

in our numerical setup. This estimation corresponds to the baseline estimation described in Section 4.2. The blue line corre-

sponds to the true SMM, i.e. the minimization of the distance of empirical moments to the true model f(✓). The optimization

algorithm used in this case is Tiktak, using 5 starting points selected from a training set of 2,000 cases and Nelder-Mead al-

gorithm for local optimization per starting point with 200 max function iteration. The red line corresponds to the benchmark

approximate SMM, which uses a third-order polynomial approximation and a weight k=2. The approximate estimation requires

.2 seconds – hence the red line jumps to its final value at the origin. The black line corresponds to the true SMM estimate and

the dashed lines represent the confidence interval around the true SMM estimate.
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Figure 12: Sensitivity of Parameters to Moments (Household Finance Model)

A. Mean Wealth

0 2 4 6 8 10

2

4

6

8

10

12

14

0 2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

B. Participation rate
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C. Mean Conditional equity share
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Notes. This figure plots parameters values on the y-axis and the value of the moment on the x-axis.
Panel A (resp. B and C) corresponds to m1 (mean wealth) (resp m2 (participation rate) and m3 (con-
ditional equity share)). The yellow line draws local comparative statics, i.e. how variations in one
parameter around its estimated value – holding other parameters fixed at their estimated value – af-
fect the value of mi obtained through simulations. The blue line plots how variations in the value of
the empirical moment m6 – holding other moments fixed at their empirical value – affects the esti-
mated parameter values. Each dot on the blue line corresponds to a separate estimation. Finally, the
red line corresponds to the local linear approximation of the blue line around the parameter estimates,
and represents the “sensitivity matrix” of Andrews et al. (2017a): it is a linear approximation of the
mapping from moments to parameter estimates around the empirical value of the moments mi.
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Figure 13: Robustness to adding moments one by one (Household Finance Model)
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Notes. This figure explores the sensitivity of parameter estimates to the inclusion of an additional moment in the set of targeted

moments. Our baseline estimation targets three moments (mi)i2{1..3}. We consider a set of five (group of) additional moments:

(1) median wealth (m4), (2) median conditional equity share (m5), (3) life-cycle mean wealth (m8) but excluding overall mean

wealth in this case, (4) life-cycle mean participation (m9) but excluding overall mean participation, and (5) life-cycle mean equity

share (m10) but excluding the overall mean conditional share. Each point on the X axis refers to one of the additional targeted

moment. The y-axis reports the parameter estimated with the benchmark approximate SMM that targets the baseline moments

(mi)i2{1..7} and one of the 10 additional moments, along with their 95% confidence interval. The black line and dashed lines

show the baseline parameter estimates and their 95% confidence interval. Standard errors are derived using the standard

formula (J 0WJ)�1, where W is the SMM weight matrix and J the approximate Jacobian matrix computed at the parameter

estimates. We use the delta method to calculate SE of value loss.
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Figure 14: Histogram of estimates across 72 sets of targeted moments (Household
Finance Model)

Notes. This figure shows the histogram of parameter estimates via approximate SMM that targets the 72 sets of moments
described in Section 4.5. These sets are combinations of variants of the baseline moments (overall average, median, life-cycle,
changing normalization). We only keep locally identified models: models with invertible matrix J 0⌦J where ⌦ is the inverse of
data moment variance matrix and J is derivative of moments wrt parameters, and models with standard error of all estimates
being at most 10 times larger than the standard error of estimates in the benchmark estimation (i.e. with only 3 targeted
moments). These two criteria leave us with the entire 72 models out of the total 72 different sets of moments. Blue charts
show the histogram of estimates. The vertical black line and dashed lines show estimates plus/minus two standard errors in the
benchmark estimation.

This figure explores the sensitivity of parameter estimates to moment selection. Our baseline estimation targets three moments

(mi)i2{1..3}. We consider 72 alternative set of moments described in Section 4.5. These sets are combinations of variants of the

baseline moments (overall average, median, life-cycle, changing normalization). Each panel in the figure shows the distribution

of parameters across these 72 estimations. The vertical black line and dashed lines report the baseline parameter estimates

using the true SMM, together with their 95% confidence interval.
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Tables:

Table 1: Simulation Moments (Corporate Finance Model)

Data True SMM Approximate Simulation

mean(investment/assets) .0760 (.0007) .0761 .0760 .0747
mean(profit/assets) .1343 (.0012) .1343 .1343 .1342
mean(equity issuance/assets) .0158 (.0007) .0158 .0158 .0150
mean(leverage) .1049 (.0030) .1051 .1049 .1080
autocorr(investment/assets) .3754 (.0067) .3753 .3755 .3907
std(log sales growth) .2270 (.0017) .2270 .2270 .2252
std(log sales growth 5yr) .5851 (.0052) .5854 .5851 .5800
var(investment/assets) .0033 (.0001) .0167 .0170 .0156
var(equity issuance/assets) .0071 (.0002) .0024 .0021 .0021
frequency(equity issuance) .1178 (.0015) .1521 .1605 .1516
coeff. regr. investment ratio on market to book ratio .0122 (.0005) .3190 .3039 .3081
coeff. regr. net leverage on market to book ratio -0.0348 (.0018) -0.0325 -0.0490 -0.0246
coeff. AR(1) regr. of profit ratio .5210 (.0057) .5358 .5405 .5445
resid std AR(1) regr. of profit ratio .0728 (.0006) .0287 .0283 .0285
var(leverage) .0266 (.0004) .0002 .0004 .0001
mean(dividend/assets) -0.0031 (.0008) .0491 .0491 .0492
var(dividend/assets) .0073 (.0002) .0054 .0052 .0050

Notes. The ‘Data’ column reports moments in the data with standard errors in parenthesis. The ‘True SMM’ column reports
simulated moments using the true economic model f(✓) and parameters estimated using the true SMM. The ‘Approximate’
column reports moments calculated using the benchmark approximation g(✓,�) (third-order polynomials with k = 2) and the
parameter estimated using the approximate SMM. The ‘Simulation’ colum reports moments calculated from the true economic
model f(✓) but using parameter estimates from the approximate SMM. Targeted moments in the SMM are shown in bold font.
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Table 2: Moment and Parameter Estimates: true vs. approximate SMM
(Corporate Finance Model)

⇢z �z � � ⇠ ↵ � value loss

true SMM .7176 1.1601 .0412 .1090 .0381 .8161 .0671 .0253
- s.e., local deriv. .0069 .0525 .0023 .0032 .0020 .0076 .0008 .0020

approximate SMM .7269 1.1204 .0462 .1110 .0375 .8103 .0663 .0240
- s.e., local fit deriv. .0062 .0465 .0025 .0031 .0017 .0070 .0007 .0018

estimation, lower bound .5 .2 0 0 0 .5 0
estimation, upper bound .98 1.5 .3 .6 .3 .9 .2

The table reports the parameter estimates and simulated moments of the corporate finance model pre-
sented in Section 3.1. The first line corresponds to parameter estimates using the true SMM. The sec-
ond line shows parameter estimated using the benchmark approximate SMM (third-order polynomial
with k = 2). ⇢z is the persistence of the productivity process. �z is standard deviation of innovations
to productivity. � is the capital adjustment cost parameter. � is the collateral constraint parameter. ⇠
is linear equity issuance cost. ↵ is the return to scale. � is the depreciation rate of capital. ‘s.e., local
deriv.’ corresponds to the standard errors of the true SMM parameters, calculated using the Jacobian
matrix of the true model. ‘s.e., local fit deriv.’ corresponds to the standard errors of the approximate
SMM parameters, calculated using the approximate Jacobian matrix. ‘estimation, lower bound’ (resp.
‘estimation, upper bound’) indicates the lower bound (resp. upper bound) imposed ex ante on an esti-
mated parameter.
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Table 3: Subsample Estimates (Corporate Finance Model)

⇢z �z � � ⇠ ↵ � value loss

benchmark (all) .7269 1.1204 .0462 .1110 .0375 .8103 .0663 .0240
- se .0062 .0465 .0025 .0031 .0017 .0070 .0007 .0018

manufacturing .7055 .8488 .0367 .0735 .0172 .7534 .0545 .0095
- se .0093 .0379 .0028 .0039 .0021 .0091 .0006 .0013

retail trade .8626 .7911 .0821 .1837 .1577 .8294 .0941 .0439
- se .0160 .0749 .0108 .0127 .0543 .0145 .0022 .0077

services .8075 .8487 .0301 .0579 .0646 .7488 .0575 .0444
- se .0145 .0626 .0061 .0090 .0059 .0172 .0019 .0068

transportation .7397 1.5000 .0375 .3012 .0763 .8920 .0946 .0703
- se .0547 .4611 .0069 .0203 .0221 .0306 .0043 .0145

lower bound .5 .2 0 0 0 .5 0
upper bound .98 1.5 .3 .6 .3 .9 .2

Notes. This table reports parameter estimates of the corporate finance models using the benchmark approximate SMM (third-
order polynomial with k=2) that targets moments calculated separately for four broad industries: manufacturing, retail trade,
services and transportation. Benchmark corresponds to the baseline approximate estimation in Table 2. Standard errors are
calculated using the approximate Jacobian matrix and the efficient weight matrix. The standard error of the value loss statistics
is calculated using the delta method.
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Table 4: Moment and Parameter Estimates: true vs. approximate SMM
(Household Finance Model)

(a) Parameter Estimates

� � �

true SMM 8.328 .9106 .0053
- s.e., local deriv. .064 .0021 .0002

approximate SMM 8.455 .9060 .0045
- s.e., local fit deriv. .060 .0020 .0002

estimation, lower bound 1.01 .5 0
estimation, upper bound 20 1 .25

(b) Estimated Moments

Data Approx. Moments with Moments with
Moments Approx. ✓ True SMM

mean(wealth) 5.63 (.03) 5.63 5.60 5.63

participation rate .557 (.002) .557 .568 .557

mean(cond. equity share) .345 (.003) .345 .337 .345

median(wealth) 2.00 (.01) 2.94 2.9 2.92

median(cond. equity share) .224 (.002) .261 .259 .269

The table reports the parameter estimates and simulated moments of the household finance model
presented in Section 4.1. Panel 4a reports parameter estimates using the true SMM (first line) and
the benchmark approximate SMM (second line). The benchmark approximation is a third-order poly-
nomial with k=2. � is risk-aversion. � is time discount factor. � is the participation cost. Panel
4b reports the moments targeted in estimation in bold fonts and untargeted moments representing
median of statistics in regular fonts. Column “Data” shows the empirical moments, with standard er-
rors in parenthesis. Column “Approx. Moments” show the approximate moments at the approximate
parameter estimates (g(b✓approx, b�)). Column “Moments with approx. ✓” reports the true simulated
moments at the approximate parameters (f(✓approx)). “Moments with true SMM” corresponds to the
simulated moments for the parameters using the SMM estimation. The moments used in the estima-
tion are defined in Section 4.3.
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