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1 Introduction

Although the United States strives to be a land of equal opportunity, geographic dispar-

ities in the outcomes of children appear as early as birth. For example, children born in the

Midwestern cities of Detroit and Cleveland are more than twice as likely to be born with low

birth weight (below 2500 grams) compared to those born in coastal cities of San Diego and

Seattle (Kids Count, 2021). Because of the link between birth weight and later-life success,

this raises the potential concern that disparities in the quality of a child’s birth location may

translate into gaps in economic success and upward mobility.1 However, it remains unclear

to what extent these disparities in early life reflect the causal impact of place rather than

the non-random sorting of families.

This paper provides new evidence on the role of place in determining early life outcomes.

Using birth records from California that span three decades, we follow “mover” mothers

that relocate across neighborhoods (Zip codes) and compare the birth weight of children

born post-move relative to previous births to identify causal place effects. Our within-mother

estimates capture the total effect of place, including the impacts of hard-to-measure charac-

teristics, such as the degree of social capital, and more salient features such as pollution and

climate. We use the estimated place effects to quantify the impact of moving to higher-quality

neighborhoods and decompose spatial gaps in early-life health into a causal, place-based com-

ponent and a selection, family-based component.

Our first main result is that the quality of an infant’s birth location (as measured by

the outcomes of other infants born there) is influential for birth weight. Mothers who move

from a below- to above-median area experience a 19-gram improvement in their own child’s

birth weight. This compares favorably with the impact of policies that target pregnant

women’s health, such as providing access to Food Stamps and Medicaid (Almond, Hoynes

1See Black, Devereux and Salvanes (2007); Chetty et al. (2014); Bharadwaj, Lundborg and Rooth (2017).
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and Schanzenbach, 2011; East et al., 2021) or reducing smoking (Permutt and Hebel, 1989).

Place effects are symmetric for increases and decreases in the quality of location, suggesting

that mothers are sensitive to both the health benefits and the health costs of locations. We

also find small improvements in other outcomes, including a 1.7 percent decline in being low

birth weight and a 0.64 day increase in gestational age.

Our second main finding comes from our decomposition analysis which shows that place

explains 16 percent of the 116-gram difference in birth weight between above and below-

median areas, with the remaining 84 percent of the variation due to sorting on mother-specific

factors. This implies that equalizing location-specific amenities would eliminate roughly one-

sixth of the spatial gap in infant health. We find similar shares when we decompose the gap

between the top and bottom quartiles or deciles, as well as when we decompose the cross-Zip

variance in birth weight.

However, not all groups are equally affected by place; we find much larger effects for

mothers without a college degree. Moving from a below-median to an above-median area

improves child birth weight for non-college educated mothers by three times as much as for

college-educated mothers (24 grams vs. 8 grams). In turn, place explains significantly more

of the spatial gap in outcomes for non-college-educated mothers (21 vs. 7 percent). These

results add to an emerging body of evidence that contextual factors such as pollution may

have stronger impacts on disadvantaged populations (e.g., Currie and Walker, 2011).

To shed light on the mechanisms behind the impacts of place, we study the area-level

correlates of our estimates of causal place effects. We find that pollution, and particularly

the local level of ozone, is the strongest correlate of place effects. This suggests that one of

the primary ways that place affects fetal development is by shaping the level of maternal

exposure to pollutants. Consistent with this, we find that longer-distance moves, which are

likely to entail a larger change in the environment, have a greater effect on birth outcomes.

Correlations between place effects and the supply of prenatal care and average maternal
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education are smaller, but meaningful, suggesting potential roles for improved access to

health care and the preferences of local residents.

These results rely on the key assumption that changes in the family-based determinants

of birth weight do not correlate systematically with the improvement in the quality of a

mother’s location. We address potential threats to this assumption in three ways. First, we

use an event study approach to rule out pre-trends and show that changes in birth weight

only appear for the children born after a move. Second, we provide an upper bound on

the role of confounding changes by estimating the impact of a move on predicted birth

weight, which we construct from a large number of time-varying maternal and paternal

characteristics, including proxies for economic status (some of which may be influenced by

place). Our results suggest that changes in these characteristics explain less than 10 percent

of the place effect. Third, we show that our results are similar if we instrument for the quality

of a mother’s destination using the location choices of other mover mothers in her origin.

Our study makes three contributions to the literature. First, we are the first to quantify

the total role of place-based factors in infant health. In contrast, prior research focuses

on estimating the impacts of specific contextual characteristics on early-life health, such

as the effects of exposure to pollution or higher temperatures on infant health at birth or

child mortality (Chay and Greenstone, 2003; Currie and Neidell, 2005; Currie, Neidell and

Schmieder, 2009; Deschenes, Greenstone and Guryan, 2009; Currie and Walker, 2011; Currie

et al., 2015; Knittel, Miller and Sanders, 2016; Alexander and Currie, 2017; Alexander and

Schwandt, 2019; Hansen-Lewis and Marcus, 2022).2 Moreover, our data is unique in allowing

us to follow the same mother over time, rather than following a panel of counties (or similar

2Our analysis of determinants of infant outcomes also complements research estimating the effects of
the role of family background in early life health, such as the effect of a mother’s highest level of completed
education (McCrary and Royer, 2011; Currie and Moretti, 2003), nutrition intake (Hoynes, Page and Stevens,
2011; Almond, Hoynes and Schanzenbach, 2011; Rossin-Slater, 2013), insurance coverage (Currie and Gruber,
1996; East et al., 2021; Miller and Wherry, 2022), or financial resources (Dehejia and Lleras-Muney, 2004;
Lindo, 2011; Hoynes, Miller and Simon, 2015) on birth outcomes.

3



geographic units). This allows us to rule out changes in the sample composition as a possible

source of confounding variation for the effect of place.

Second, our results complement previous studies of the causal impact of place on health-

related behaviors and mortality outcomes for adults (Finkelstein, Gentzkow and Williams,

2016, 2021; Deryugina and Molitor, 2020; Hinnosaar and Liu, 2022). Relative to prior es-

timates, our findings suggest that the share of geographic disparities in early-life health

explained by place-based factors is much smaller than the share for health spending (Finkel-

stein, Gentzkow and Williams, 2016) and alcohol consumption (Hinnosaar and Liu, 2022),

but similar to the share for over-65 mortality (Finkelstein, Gentzkow and Williams, 2021).

This is consistent with a hypothesis in which location has a larger influence over inputs to

health capital relative to the stock of health capital. Methodologically, our analysis is most

closely related to Finkelstein, Gentzkow and Williams (2016), who also use a decomposition

approach to study effects on health care spending. One advantage of our study is that the

data allow us to uniquely test for and rule out potential confounds related to changes in

family circumstances or maternal income that occur after a move. This provides additional

support for using a mover-based design in this context and may extend to other settings as

well.

Finally, we add to a growing literature studying children and neighborhood effects. Pre-

vious work has shown that living in a better neighborhood during childhood and adolescence

leads to significant improvements in later-life labor market activity, criminal behavior and ed-

ucation (Damm and Dustmann, 2014; Chetty, Hendren and Katz, 2016; Chyn, 2018; Chetty

and Hendren, 2018; Chetty et al., 2020a,b; Laliberte, 2021; Baran, Chyn and Stuart, 2022).

To our knowledge, we are the first to estimate place effects for outcomes at birth. This

fills a gap in earlier findings, which measure the impacts of place on other outcomes during

older ages. The projected effects on earnings from our estimates suggest that moving to a

higher quality neighborhood could have a small impact on later-life outcomes by improving
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health at birth. An implication of this finding is that the previously documented impacts

of neighborhoods on long-run outcomes are likely to primarily operate through post-birth

exposure, rather than through in-utero development. Hence, prior evidence that neighbor-

hood exposure effects taper at younger ages likely also extends to the critical prenatal period

(Deutscher, 2020; Chetty et al., 2020a,b; Chetty and Hendren, 2018).

2 Empirical Model

Our analysis consists of two main exercises. In the first exercise, we use a mover design

to estimate the causal effect of place (Zip) on early life health. Second, we use the estimated

place effects to decompose the difference in infant outcomes across areas into contextual

(place-specific) factors or family characteristics. The model of place effects and our subse-

quent decomposition analysis are similar to prior research on the determinants of medical

spending among the elderly (Finkelstein, Gentzkow and Williams, 2016).3

2.1 Causal Place Effects

We estimate the impact of birth location on early life health using the following model

for child outcomes:

ycmjkt = αm + γj + θk + τt + ρr(m,k) + xmkβ + εcmjkt, (1)

where ycmjkt is the birth outcome for child c (e.g., birth weight) for the kth birth of mother

m who lives in Zip j in year t. The terms αm, γj, θk, and τt represent mother (i.e., family),

location, birth order, and calendar year fixed effects, respectively. For mothers who move

across areas, r(m, k) = k − k∗ is an index that tracks the birth order relative to the first

post-move birth k∗. For example, r(m, k) = 0 if k is the first birth that occurs in a new

3Other studies use similar approaches to examine non-health-related behavior, such as consumer financial
health (Keys, Mahoney and Yang, 2020), voting (Cantoni and Pons, 2019), and workers’ earnings (Card,
Rothstein and Yi, 2021).
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mother’s new location, and r(m, k) = −1 if k is the last birth that preceded a move.4

The term ρr(m,k) is a fixed effect for this index. For mothers who never move, we assume

ρr(m,k) = 0. We also include fixed effects for the sex of the child, xmk. Finally, εcmjkt is an

error term that we assume is conditionally mean zero: E(εcmjkt|m, j, k, t, xmk) = 0.

The key parameters of interest are the location fixed effects, γj. These are identified only

if the estimation sample includes “mover” mothers who relocate between births. Otherwise,

if all mothers gave birth in the same location, we could not separately identify the impact

of location (γj) from the unobserved heterogeneity across families (αm). As discussed in

Section 4, we include both mover and non-mover mothers in our sample to enable us to

identify the birth order fixed effects (which are collinear with ρr(m,k) for movers); but our

results are unchanged if we drop non-movers.

In order to interpret γj as the causal impact of place, we require that changes in unob-

served, family-based determinants of early-life outcomes are not correlated with the difference

in the average outcomes between the destination and origin chosen by a mother. For example,

this assumption would be violated if mothers who receive negative shocks (that are corre-

lated with child outcomes) respond by moving to areas that have worse place effects. This

would lead us to attribute some of the mother-specific adverse shock to the effect of moving,

and thus overstate the place effect. We discuss the testable implications of this assumption

in Section 3.

2.2 Decomposition

We use the model from Equation 1 to guide our decomposition of geographic disparities in

infant outcomes. To define this formally, let yj denote the expectation of ycmjkt across mothers

living in location j. Also, let ymj denote the expectation of the part of child outcomes that is

only attributable to family (mother) characteristics. This includes the influence of all fixed

4Because we observe few mothers either three births before a move (r(m, k) = −3) or three births after
a move (r(m, k) = 2), we group r(m, k) = −3 with r(m, k) = −2 and r(m, k) = 2 with r(m, k) = 1.
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traits for a given mother (i.e., αm), as well as predictable changes in outcomes that occur

across children within a mother, such as from increasing birth order (i.e., θk+τt+ρr(m,k)+xmkβ

in our model). Using this notation, Equation 1 implies that yj = ymj + γj.

Applying these definitions, the difference in average child outcomes between locations j

and j′ can be written as the sum of two components:

yj − yj′ = (γj − γj′) + (ymj − ym
′

j′ ). (2)

The first term in Equation 2 is a place-specific component given by the difference in location

fixed effects, γj−γj′ . This is the causal effect of moving from location j to j′. The second term

is a family-specific component given by the difference in average maternal characteristics,

ymj −ymj′ . Rearranging terms, the share of the difference in outcomes between locations j and

j′ that is attributable to place is:

Splace(j, j
′) =

γj − γj′
yj − yj′

. (3)

Analogously, the share attributable to family (mother) factors is:

Smom(j, j′) =
ymj − ym

′

j′

yj − yj′
. (4)

By construction, the sum of these place- and family-specific shares, Splace(j, j
′) and Smom(j, j′),

is equal to 1.

Empirically, we apply these formulas to decompose average outcomes in groups of loca-

tions, R and R′, such as the top and bottom 50-percent of Zip codes. We define the shares

for these groups as Splace(R,R
′) and Smom(R,R′), which we compute by replacing the j- and

j′-level inputs in the equations above with averages within R and R′, respectively. We obtain

standard errors for our estimates as the standard deviation of the quantity of interest across
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50 bootstrapped samples.

As an alternative to the above additive decomposition, we also decompose the variance in

birth weight across Zip codes. Here, we study the share of cross-Zip variance in birth weight

that would be eliminated in counterfactuals where either the average maternal characteristics

or place (Zip) effects were equalized across Zips. These quantities are:

Svarmom =1− V ar(γj)

V ar(yj)

Svarplace =1−
V ar(ymj )

V ar(yj)
.

Note that the sum of Svarmom and Svarplace will not equal one as long as cov(ymj , γj) is nonzero. We

use a split-sample approach to estimate this covariance as well as the variances in the above

equations, as well as to generate bootstrapped standard errors for the estimated shares.5

3 Event Study and Tests of Identification

We implement three tests to study potential violations of the identifying assumption

required for causal interpretation of our place effect estimates. Although we cannot directly

rule out all violations of this assumption (i.e., that the improvement in the quality of a

mother’s location after a move is uncorrelated with family-based determinants of infant

health), the exercises that we consider narrow the scope for potential concerns. This section

previews these tests while Sections 5.1 and 7 provide results and discussion.

As one of our main tests, we use an event-study approach to test for differences in within-

5As in Finkelstein, Gentzkow and Williams (2016), we randomly assign movers within each origin-
destination pair and non-movers within each Zip code to two approximately equal-sized subsamples, and
estimate Equation 1 on each subsample. We estimate the variance of γj and ymj as the covariance between
the estimates of γj and ymj from the two subsamples. The estimated correlation between γj and ymj is based
on the estimated variance of γj and ymj and the covariance of γj and ymj , which we compute as the average
of the covariances between the estimates of γj from one subsample and ymj from the other subsample.
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mother changes in child outcomes between mothers who move to higher- and lower-quality

destinations prior to a move. This addresses potential concerns about differential pre-trends,

which could bias our results. To implement this test, we rely on the following event-study

model:

ycmjkt = αm +
1∑

r=−2

θr(m,k)δ̂m + ωk + νt + ρr(m,k) + xmkη + εcmjkt, (5)

where δ̂m is the difference in average birth weight between the mother’s origin o(m) and

destination d(m), which we use as a proxy for the change in the quality of a mother’s

destination.6 The main parameters of interest are the relative birth coefficients θr(m,k). These

parameters represent the change in the outcome ycmjkt in the years around the move scaled by

the local area differences in birth weights δ̂m. For instance, a positive value of θr(m,k) implies

that moving to location that has better birth outcomes is associated with improvements in

the birth outcomes of one’s own children in relative year r(m, k). We estimate the event

study using all mothers (although the results are the same when we restrict the estimation

sample to mover mothers). We include the same control variables as in our model of Zip

effects (birth order, year, birth order relative to move, and sex of child). For inference, we

cluster standard errors at the mother level.

If move-induced changes in place characteristics cause changes in child outcomes, then

we should observe the following pattern. The relative quality of one’s destination should not

be predictive of the birth outcomes of one’s children before a move, but should be predictive

of outcomes after a move. This implies that the estimate of θr(m,k) should be statistically

indistinguishable from zero for any birth preceding a move, i.e., r(m, k) < 0, and nonzero for

all births following a move. The magnitude of the discontinuity in the level of θr(m,k) after a

6We measure δ̂m = ŷd(m) − ŷo(m) using leave-one-out means for our estimation sample that omit the
outcomes of mother m.
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move measures how much place-specific factors influence child outcomes.7

Next, we conduct two additional tests to further rule out potential sources of endogeneity.

The first of these tests is motivated by the potential concern that the timing of a move may

be correlated with shocks to maternal and household outcomes that affect child health. To

address this, we study the extent to which changes in observable characteristics of mothers

after a move predict can predict any post-move changes in birth weight. This exercise provides

evidence for the potential role of coinciding shocks with a move, although we are limited to

studying aspects of a mother’s life that we observe in our birth records.

The second test addresses the potential concern that the choice of destination may be

endogenous. We use an instrumental variable (IV) approach to isolate variation arising from

the average change in location quality for individuals from a given origin. The power of the

instrument comes from a regression-to-the-mean-type logic: individuals that begin in worse

origins are more likely to move to a relatively better destination, and individuals that begin

in better origins are more likely to move to a relatively better destination. This idea is similar

to the IV approaches in Chetty and Hendren (2018) and Abaluck et al. (2021).

4 Data

Our primary data source is confidential individual birth records from California from

1989–2017. The data are compiled from forms completed at birth and contain approximately

15.6 million records. For each birth, the data include infant outcomes such as birth weight

and length of gestation. In addition, the records contain information on the identity of the

mother, her residential address, and demographic characteristics such as her place of birth,

race, date of birth, educational background, and proxies for economic status (e.g., type of

7Due to data limitations, we do not observe the precise timing of moves and cannot pinpoint when the
first birth occurs after a move. Based on the average spacing between births before and after a move observed
in birth records, a mother could be expected to reside in a destination Zip for up to 4.5 years.
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insurance).8

Our main outcome of interest is birth weight (measured in grams), a key measure of

early-life health that has been widely studied (Almond and Currie, 2011). Previous research

links birth weight to a range of long-run outcomes, including education, adult health, and

earnings (Black, Devereux and Salvanes, 2007; Royer, 2009; Figlio et al., 2014; Bharadwaj,

Eberhard and Neilson, 2017). We focus on birth weight because other outcomes, such as

very-low birth weight status, are rare, particularly at more granular levels of geography.

To study the role of place, we use residential Zip code (ZIP-5’s) as the geographic unit.9

This unit was created by the U.S. Postal Service and represents small geographic areas

(typically with populations less than 10,000). Using this fine level of geography allows us to

capture nuanced differences across neighborhoods, such as the diffusion of knowledge about

public programs (Chetty, Friedman and Saez, 2013). Our estimation sample includes 1,689

Zip codes.

4.1 Sample

Two main restrictions define the sample of mothers for our analysis. First, we focus on

mothers who are California residents at the time of childbirth and who we observe having

two-to-four births during the period covered by our records. The restriction to mothers with

multiple children is necessary so that we have multiple observations with which to infer the

mobility of mothers over time. We define a non-mover as a mother who is observed in the

same Zip code for all her births. A mover is a mother who changes Zips exactly once; we

drop mothers with multiple moves.10 Second, to reduce noise in our estimates, the sample is

restricted to mothers who live in Zip codes that contain at least 25 movers.

8We use this information to construct a unique identifier for each mother based on first name, maiden
name, date of birth, and place of birth.

9In Section 7, we show that our main conclusions are similar if we focus on county as the geography of
interest.

10Mothers with more than four births account for 3 percent of births in our sample. Mothers with multiple
moves are 13 percent of the sample. The results in Appendix Table A5 show that our estimates are similar
if we include mothers with multiple moves.
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Table 1 reports summary statistics for all births and our estimation sample. Columns

1 and 2 show that the births in our estimation sample have broadly similar birth weight

and demographic characteristics relative to all births in California.11 Our estimation sample

includes roughly 3.7 million mothers with a total of 8.5 million births. Among this sample,

51 and 49 percent of births are to non-mover and mover mothers, respectively. Columns 3

and 4 show that movers and non-movers are substantively similar in terms of infant birth

weight and ethno-racial demographics, although movers have less education and are younger.

Figure 1 provides a Zip-level map of birth weight. The average birth weight in the median

Zip code is 3,349 grams, and the standard deviation across Zips is 59 grams. We also find a

similar distribution when we aggregate the birth records to the county level: the mean birth

weight in the median county is 3,361 grams, and the standard deviation across counties is

55 grams.

How do these statistics for California compare more broadly? Based on birth records

from the National Center for Health Statistics (NCHS) in 2004, which is roughly the median

year of our data, the mean birth weight in the U.S. is 3,291 grams, which is 1 percent less

than what we find for California (National Center for Health Statistics, 2004).12 The average

within-state standard deviation of birth weight across counties nationally is 43 grams, which

is 9 grams (21 percent) lower than our estimate for California.13 Overall, we interpret these

small differences as reassuring in that our setting is not particularly unusual relative to other

states.

Finally, we provide descriptive statistics on the types of moves in the estimation sample.

11Appendix Figure A1 shows that the distributions of birth weight for all births in California and the
births in our estimation sample are not meaningfully different.

12We calculate these statistics using the 2004 NCHS National Vital Statistics System birth files, which
include the universe of U.S. birth records and contain identifiers for counties with populations over 100,000.
The 2004 records are the last year to include county identifiers.

13Note that the average within-state standard deviation (43 grams) is roughly three quarters of the
unconditional standard deviation across counties, suggesting that the majority of across-county variation is
within states.
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Appendix Table A1 shows that the average and median distances moved are 32.5 and 8.9

miles, respectively. Roughly 28 percent of moves cross county boundaries. At the Zip level,

movers’ destinations receive an average of 7,982 mothers at some point after their first birth.

Figure 2 further characterizes moves in terms of the change in location quality. As in the event

study, we measure the improvement in location quality using the difference in average birth

weight between a mother’s destination and origin (δ̂m). The distribution of δ̂m is centered

around zero and is roughly symmetric, indicating that mothers are equally likely to move

to a better or worse location (based on average birth weight). The standard deviation is 25

grams, which is equivalent to the change experienced from moving from the median Zip to

the 65th percentile Zip.

5 Main Results

5.1 Initial Evidence on the Impact of Place

As an initial exploration of the effect of moving to a new area, we plot the post-move

change in birth weight for children of movers against the change in quality of a mother’s

location, δ̂m. The slope of this graph can be interpreted as the extent to which moving to

a location with higher average birth weight generates improvements in the early-life health

outcomes of one’s own children. If all geographic variation is due to the impact of place, we

expect this plot to have a slope of 1. Alternatively, if individual factors explain all variation

in birth weight, this plot should have a slope of 0.

The results in Figure 3 suggest that moving to a better location positively influences child

birth weight. The slope of the fitted line is 0.11, which implies that place-based factors explain

11 percent of the geographic variation in birth weight. The relationship between the change

in location quality and the improvement in birth weight in the figure is symmetric for positive

and negative changes in location quality and appears to be linear. These findings indicate

that mothers are prone to both the health costs and benefits of locations. They also support
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the assumption of a linear relationship between birth weight and δ̂m in Equation 5.14,15

Next, Figure 4 reports event study results by plotting the estimated coefficients on δ̂m

from Equation 5 for each birth relative to a move. For ease of presentation, we scale the

coefficients to represent the impact of moving to a destination Zip that has a 100-gram

higher average birth weight than one’s origin Zip (i.e., δm = 100). The omitted category is

the relative period θr(m,k) = −1.

Our main estimates are plotted in solid grey triangle markers and show a statistically

significant jump in weight for the first birth after a move. The magnitude of the coefficient

suggests that moving to a destination with a 100-gram higher average birth weight leads

to an 11-gram improvement in the weight of one’s own child, consistent with the slope of

Figure 3. Moreover, the coefficient is essentially the same for the second birth after a move,

indicating that the impact of a place is relatively constant over time.

A key estimate of interest in Figure 4 is the coefficient for the birth that occurs in relative

period r(m, k) = −2, which constitutes our main test for the existence of pre-trends in birth

weight. We do not find detectable evidence of differential trends. The point estimate is −2.2

and is statistically insignificant.

As a point to consider for the interpretation of our results, it is worth noting that the main

event study estimates rely on an unbalanced panel of mothers (i.e., we do not observe all

mothers for two births before and two births after a move). This implies that the event time

estimates are identified by distinct samples of mothers. We find similar estimates when we

alternatively use balanced samples. The hollow blue markers in Figure 4 report results from

separate event study specifications where the samples are defined based on three different

balance subsample restrictions. These include (i) mothers that have two births with one

14It also supports the assumption of additive separability in Equation 1, which requires that the change
in outcomes when an individual moves from j to j′ is the same as when an individual moves from j′ to j.

15In Figure 3, the change in birth weight is positive for all values of δ̂m (including when δ̂m = 0) due to
birth order effects. We include fixed effects for birth order in our decomposition and event study specifications
to absorb this (level) effect.

14



birth occurring after a move; (ii) mothers that have three births with two births occurring

after a move; and (iii) mothers that have three births with two births occurring before a

move. Reassuringly, we estimate a very similar increase in birth weight post-move as in the

main estimates (in the grey triangle markers) and continue to find no detectable evidence of

pre-trends.

5.2 Impacts of Moving and Decomposition Results

Next, we exploit the variation in birth location around a move to estimate Equation 1.

Appendix Figure A2 provides a map of the estimated γ̂j’s. These estimates are relative to

the effect of an excluded Zip (90019, in Los Angeles County) as we must omit one fixed effect

due to collinearity. The estimates are roughly half positive and half negative, indicating that

the effect of the omitted Zip code is roughly median.16 Suggestively, Zips that are further

inland appear to have more negative place effects; although there are “good” and “bad”

locations in most areas of the state. To contextualize the role of place in infant health, we

now conduct two sets of analyses that describe the absolute and relative impact of location

quality on infant birth weight.

5.2.1 Impacts of moving to more advantaged areas

First, we use our estimated Zip effects to estimate the absolute impact of moving to a

higher quality area. At baseline, we define this as the expected gain in birth weight associated

with a move from a below- to an above-median birth weight Zip.17. We also consider a range

of alternative definitions of “higher quality” areas, including comparisons of the top and

bottom 25, 10, 5 and 1 percent of Zips.

The first row of Table 2 shows that moving to an above-median Zip increases birth weight

by 19 grams (s.e. = 2.690). This represents an 8 percent effect improvement relative to the

16We convert the estimates to standard deviations for easier interpretability.
17We estimate this as the difference between the average place effect for above and below median Zips

(i.e., γ̂R − γ̂R′).
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average within-mother change in weight across births. It also compares favorably with the

effects of policies that target maternal health. For example, it is larger than the impact

of access to Food Stamps and Medicaid during pregnancy, which has a 1 to 5 gram effect

(Almond, Hoynes and Schanzenbach, 2011; East et al., 2021); similar to the impact of access

to WIC during pregnancy (Hoynes, Page and Stevens, 2011; Rossin-Slater, 2013), which has

a 2 to 27 gram effect; and comparable to reducing smoking during pregnancy by one cigarette

per day, which has a 15-gram effect (Permutt and Hebel, 1989).

The remaining columns of Table 2 show the effects of moving when we consider more

stark changes in the quality of a mother’s location. The estimated effects in Columns 2-5

indicate that the effect of moving scales up with larger changes in Zip quality. For example,

moving from a bottom 1 percent to a top 1 percent location increases birth weight by 65

grams, which is three times as large as the effect of moving from a bottom 50 percent to a

top 50 percent location.

5.2.2 Decomposition analysis

Second, we conduct two types of decomposition analyses of the overall gaps in birth weight

between areas. As previewed in Section 2, our main decomposition computes the share of

the total difference in birth weight attributable to place- or family- (mother) specific factors

(i.e., Splace(R,R
′) =

γR−γR′
yR−yR′

for groups R and R′). Rows 2-4 of Table 2 report results using

the various definitions of relatively advantaged and disadvantaged areas.

Column 1 decomposes the difference in birth weight between above- and below-median

Zips. Overall, the gap is 117-grams, which is equivalent to roughly 4 percent of the average

birth weight. The 19-gram causal increase in birth weight due to place effects represents 16.2

percent of the total difference. This implies that the remaining 83.8 percent is due to family

(maternal) factors. The standard error on our estimate implies that we can reject a role for

place that exceeds 21 percent or falls below 12 percent.
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The remaining columns show similar but smaller shares attributable to place when we

examine other definitions of high and low birth weight locations. We consider a range of

alternatives, including comparisons of the top and bottom 25, 10, 5 and 1 percent of Zips.

Moving across columns, the overall difference in average birth weight increases substantially,

from 193 to 725 grams. Nevertheless, the estimated share of the gap explained by place is

relatively stable, ranging from 13.9 to 9 percent. Hence, the majority of geographic differences

in birth weight appears to reflect sorting of mothers.

As an alternative to the additive decomposition, Table 3 decomposes the variance in

birth weight across Zip codes. The bottom of the table reports results for two scenarios: (i)

the share of cross-Zip variance in birth weight that would be eliminated if average maternal

characteristics were equalized across Zips, and (ii) the share of cross-Zip variance that would

be eliminated if place fixed effects were equalized.

The variance decomposition shows that 89 percent of the variance in birth weight would

be eliminated if maternal characteristics were equalized, while 15 percent of the variance

would be eliminated if place effects were equalized. This is consistent with the results from the

additive decomposition, which similarly suggested that place effects account for around one-

sixth of the disparity across locations. We also find that there is a small, positive correlation

between ymj and γj, indicating that mothers with more advantaged characteristics (in terms

of infant birth weight) tend to sort into areas that have slightly more beneficial place effects

on child health.

How should we think about these decomposition results? Relative to past estimates of the

share of health-related outcomes explained by place, our estimate is at the lower end of the

spectrum. At the higher end, place effects have been shown to account for at least 54 percent

of the gap in seniors’ health care utilization across Hospital Referral Regions (Finkelstein,

Gentzkow and Williams, 2016), and 70 percent of the gap in alcohol consumption across

states (Hinnosaar and Liu, 2022). On the lower end, Finkelstein, Gentzkow and Williams
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(2021) find that 15 percent of the variance in elderly mortality across commuting zones

would be eliminated by equalizing place effects. Our estimates suggest that the share of

birth weight explained by place is less than one-third as large as the shares for health care

utilization and alcohol purchases, and the same as the share for mortality. This is consistent

with an intuitive hypothesis that place is more influential for flows of health inputs than for

stocks of health capital.

5.3 Heterogeneity

Next, we study whether the influence of place on infant health varies with the socioeco-

nomic background or race of mothers. This analysis is broadly motivated by previous research

suggesting that contextual factors may have stronger impacts on disadvantaged populations

(Currie and Walker, 2011; Almond, Currie and Duque, 2018). The existing empirical findings

for such heterogeneous place effects (e.g., of pollution) are mixed, however, which makes it

useful to revisit this question with our new approach.18 For simplicity, all of our hetero-

geneity analyses focuses on estimating the impact of moving from a below- to above- and

below-median area.

Table 4 presents the results. Column 1 reproduces our baseline estimate from Table 2,

while Columns 2–5 report estimates for mothers who are non-college-educated, college-

educated, white non-Hispanic, or Hispanic, respectively. We focus on Hispanic mothers be-

cause they constitute the predominant minority group in our sample.

The most notable pattern across these subgroups is that the relative importance of place is

significantly larger for mothers with less than a college education. For mothers with a college

education, we find that moving to an above-median Zip leads to an 8.5 gram improvement

in birth weight, such that place explains roughly 7 percent of the birth weight gap (Column

2). In contrast, moving to an above-median Zip increases birth weight by 24 grams for non-

18For example, Alexander and Schwandt (2019) find that reductions in vehicle emissions lead to a similar
increase in birth weight for college- and non-college-educated mothers.
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college-educated mothers, and place effects account for nearly 21 percent of the variation

across place (Column 3).19,20

Moreover, this pattern by education does not appear to be driven by differences in the

ethnic make-up of less-educated mothers. In Columns 4–5, we find a similar role of place

across White and Hispanic mothers. Together, these results indicate that less-advantaged

mothers, regardless of race, are more sensitive to the local environment during pregnancy.

We provide further support for this finding when we explore specific mechanisms in Section

6.

6 Mechanisms: Correlates of Place Effects

To examine potential channels through which place could influence infant health, we

conduct a descriptive analysis of the correlates of our causal place effects. Specifically, we

estimate the correlation of the estimates γ̂j from Equation 1 and proxies for four types of

contextual factors: (i) demographic and economic measures, such as racial composition and

household income; (ii) crime rates, to capture community-stress, the potential for exposure

to in-utero violence, and social capital; (iii) proxies for access to general health and prenatal

care, such as the number of hospital beds per capita and obstetrician-gynecologists (OB-

GYNs) per capita; and (iv) environmental measures such as temperature and pollution,

including the level of particulate matter and ozone. We standardize each measure to have

a mean zero and standard deviation of 1. Note that each of these place factors is either

measured at the Zip- or county-level depending on data availability. Appendix B provides

details on each measure and the underlying data sources.

19Appendix Figure A3 presents event studies estimated separately for college- and non-college-educated
mothers. We do not find evidence of pre-trends for either group. Consistent with the decomposition, we find
significantly larger benefits of moving to a better location for non-college-educated mothers.

20Given that non-college-educated mothers are slightly over-represented among movers (see Table 1), this
suggests that our main effects may be higher than the role of place in the population of California mothers.
Consistent with this, Appendix Table A2 shows that reweighting our estimates to account for this imbalance
between movers and non-movers (as in Miller, Shenhav and Grosz, 2021) reduces our estimated effect of
place by about 32 percent.
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Figure 5 plots the bivariate correlation for each of these factors, along with 95-percent

confidence intervals.21 The most striking result from this figure is that the level of pollution in

an area has a significant and large correlation with its estimated place effect. The correlation

for ozone is particularly sizable at −0.35. While the correlation for particular matter (PM2.5)

is smaller, it is still among the largest magnitude correlations. These pollution results are

consistent with findings from experimental studies in animal models showing that exposure

to ozone during pregnancy raises maternal pulmonary inflammation and reduces offspring

weight (Salam et al., 2005). It also aligns with evidence that broad reductions in pollutants,

including ozone and PM2.5, improve infant weight (Alexander and Schwandt, 2019).

We find smaller but still meaningful associations with other area characteristics. Zip

codes that have higher crime rates also have less beneficial place effects. In terms of health

care access, the number of OB-GYNs per capita has a significant positive correlation that

is relatively large at 0.17. Finally, demographic, economic, and temperature measures tend

to have smaller correlations.22 Of these, the largest coefficient is for maternal education (the

share of mothers with a college degree), which may reflect the fact that higher-educated

women have higher levels of civic engagement and greater support for progressive policies

(Milligan, Moretti and Oreopoulos, 2004; Gillion, Ladd and Meredith, 2020).

Figure 6 expands on these results by examining whether these correlations vary between

college- and non-college-educated mothers. For both groups, we find the largest correla-

tions between place effects and the level of pollutants (ozone and PM2.5). However, the

correlation with ozone is three times larger for non-college-educated mothers relative to

21We also explore correlations between our Zip-level estimates of mother effects (i.e., ymj ) and means for
specific maternal characteristics. Appendix Figure A10 shows that family (mother) effects on birth weight
are moderately correlated with the share of non-White mothers (-0.30 correlation). Correlations are smaller
in magnitude for the remaining characteristics. Appendix Table A7 reports results from a decomposition
exercise that suggests observable maternal characteristics explain a small share of the difference in birth
weight between above and below median Zips.

22While we find smaller correlations for factors outside of pollution and OB-GYN access, many of these
correlations are larger than those used to explain variation in health spending place effects in Finkelstein,
Gentzkow and Williams (2016) (which are typically below 0.05).
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college-educated mothers. We can statistically reject that the correlation is the same across

the groups (p-value < 0.01). This could suggest that less-educated mothers are either more

exposed to airborne pollutants, or are more susceptible to harmful effects from exposure. For

the remaining characteristics, we find largely overlapping confidence intervals between the

correlations for higher- and lower-educated mothers.

Finally, to better understand the biological pathways behind the increase in birth weight,

we examine other measures of infant health. Appendix Table A3 shows the estimated effect of

moving to a destination with a 100-gram higher average weight on a child’s birth weight; the

likelihood of being born low birth weight (< 2500 grams); the likelihood of being born pre-

mature (< 37 weeks); and gestational age at birth (in days), using a difference-in-difference

version of our event study specification.23 We find an improvement in each of the outcomes:

gestational age increases by 0.55 days, and the likelihoods of being low birth weight and pre-

mature each decline by 1.5 percent relative to the mean.24 This suggests that higher quality

locations improve birth weight in part by increasing gestation, and that at least some of the

rise in birth weight is attributable to a reduction in more rare and costly birth outcomes,

such as being low birth weight.

7 Robustness Exercises

In this section, we report results from five exercises that provide evidence in support our

key identifying assumption and assess the robustness of our results.

Post-move maternal shocks:

One potential concern is that post-move shocks to maternal factors could generate im-

provements infant health and be correlated with location quality. To assess this possibility,

23Specifically, we substitute the interaction between δ̂m and indicators for relative birth order with an
interaction between δ̂m and an indicator for being a birth that occurred post-move.

24Thus, moving from a below- to above-median location (an 116-gram improvement in location birth
weight) would lead to a 1.7 percent decrease in the probabilities of being low birth weight and of being
premature and a 0.64 day increase in gestational age.

21



we construct a maternal index for each infant as the fitted value from a regression of birth

weight on a number of proxies for partner quality, financial resources, or delivery complica-

tions.25 This approach allows us to aggregate many different maternal characteristics into

a single index (which can provide more power to detect an effect); to assign proportionally

greater weight to outcomes that have a stronger correlation with birth weight; and to easily

compare magnitudes with our main effects. Panel (a) of Appendix Figure A4 shows that

there is little change in the maternal index after a move. The magnitude of the post-birth

increase is around 1 gram, which implies that these factors could at most explain 10 per-

cent of our estimated impact of moving. This provides suggestive evidence that the observed

change in birth weight after a move is unlikely due to time-varying individual covariates.26

To validate that the small effect on the maternal index is not due to lack of statistical

power or poor model fit, we also examine the impact of moving on a second index that

is based on place-based covariates. In particular, we generate a place-based index as the

fitted value from a regression of birth weight on the 11 place-based characteristics in our

correlational analysis. Panel (b) of Appendix Figure A4 shows that the place-based index

increases substantially after a move. The increase in the index is an order of magnitude

larger than the effect that we predicted using maternal covariates, consistent with the strong

correlations of our Zip fixed effects with place-based factors. Importantly, this is not due to

greater predictive power of place-based factors for infant health generally, as the R2 of the

prediction regression is in fact larger when we use maternal covariates.

25These covariates include an indicator for whether a father is present at the time of birth, father’s age,
indicators for whether the father completed high school and college, an indicator for having a C-section,
an indicator for having no delivery complications, and indicators for public and private insurance. Missing
father characteristics are imputed as the mean in a given calendar year. Based on the R2 of the prediction
regression, these covariates are one-third as predictive of birth weight as indicators for maternal race and
education categories.

26We find similarly small effects when we expand the index to include indicators for whether the mother
worked in the last year, her expected income based on her reported occupation and the average income
for women by occupation calculated from the 2007–2017 ACS, and whether she received any WIC for the
pregnancy. These measures are only available after 2007, and we limit this robustness analysis to 2007 and
onward. See Appendix Figure A5.
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Instrumental variable estimates:

As a second robustness test, we use an IV approach to address the potential concern

that the quality of a mother’s destination may be correlated with unobserved, time-varying

determinants of child health. In particular, we instrument for the difference in average birth

weight between a mother’s origin and destination (i.e., δ̂m) using the average difference for

all other mover mothers from her same origin.27 This reduces the scope for selection bias by

eliminating variation in the change in location quality due to individual choice. Appendix

Figure A6 shows that point estimates from the IV version of our event study are essentially

the same as those from our main results.28

County-level results:

As an alternative measure of location, we conduct an analysis of place effects at the

county-level. This addresses potential concerns that average birth weight may be noisily

measured at the Zip code level, or that within-county moves may underestimate the effect

of place because many administrative rules are held constant within counties. Appendix

Figure A7 shows that we find slightly larger impacts of moving when we focus on across-

county moves: a 30-gram increase associated with an 100 gram improvement in location

quality. These effects imply that place accounts for 30 percent of the across-county variation

in birth weight. Thus, our Zip effects may be a lower bound on the effect of moving to a

more advantaged location. We examine possible sources for the larger effects of across-county

moves and find the greatest support for a distance-based explanation: across-county moves

cover longer-distances, and thus only identify impacts based on larger shifts in the local

27Broadly similar approaches appear in other recent papers. For example, Chetty and Hendren (2018)
study long-run earnings for children whose families move to new locations. As a robustness check, they
reproduce their main exposure effect estimates by predicting the change in location quality using other
movers from a child’s origin. Relative to their approach, we innovate by combining an IV approach with an
event study framework. This uniquely allows us to examine the validity of the instrument by testing whether
predicted changes in location quality affect birth weight for children born before a mother moves.

28Notably, the IV estimate for the coefficient for the birth that occurs in relative period θr(m,k) = −2 is
not statistically significant. This favors the plausibility of the exclusion restriction in our setting.
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environment.29 In contrast, we find little evidence for measurement error in the results (e.g.,

our Zip effects are unchanged when we restrict to larger Zips). We also do not find systematic

improvements in means-tested program participation, such as WIC, suggesting that changes

in administrative burden are unlikely to drive the difference.30

Functional form:

We also examine whether our results are sensitive to changes in the functional form of

our model (logs or levels) or changes in our sample criteria. Estimating our model in logs

allows for the possibility that there could be interactions between mother effects and place

effects (i.e., that mothers that tend to have smaller infants (low αi) may be benefited more

by moving to a high-birth-weight Zip code than mothers that tend to have larger infants

(high αi)). Appendix Figure A9 shows that re-estimating our event-study model with log

birth weight as an outcome and δ̂m defined in logs, produces very similar effects to our main

effects. In terms of changes in the sample definition, Appendix Table A5 demonstrates that

our decomposition results are not meaningfully changed when we expand our sample to

include mothers that move multiple times.

Place effects and fertility:

Finally, we conduct an analysis to address the potential concern that fertility is correlated

with a mother’s location choice. For example, if mothers are less likely to have a birth when

they move to a lower-quality location (smaller δ̂m) and the effects of place are heterogeneous

across mothers, then the estimated post-move changes in birth weight could confound such

differences in unobserved selection into having a birth across locations with the causal im-

pacts of place. We examine these types of fertility responses by testing whether the quality of

29In support of this, we find that longer-distance Zip-level moves, relative to shorter-distance moves, have
larger impacts on birth weight (see Appendix Table A4) that are comparable to our estimated effects of
moving across counties.

30In particular, Appendix Figure A8 shows that moving to a higher-birth-weight county does not statis-
tically increase WIC participation.
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a mother’s destination, δ̂m, is a significant predictor of a total completed fertility, controlling

for fixed maternal characteristics.31 Appendix Table A6 shows that an 100-gram increase

in δ̂m is associated with a substantively small and statistically insignificant decline in com-

pleted fertility.32 This provides strong evidence that selective fertility is not a factor in our

estimates.

8 Discussion

One final question is to what extent being born in a better location is likely to improve

long-run outcomes. Understanding the size of any lasting effects is relevant for gauging

whether improved birth outcomes could be a mechanism for previously-documented impacts

of childhood neighborhoods on intergenerational mobility, as well as inferring the size of the

potential fiscal externality from these moves.

Because we are unable to observe long-run outcomes directly, we project our place impacts

on birth weight to achievement and earnings using estimates of the effect of birth weight

from previous studies based on twin comparisons (Black, Devereux and Salvanes, 2007; Figlio

et al., 2014). This is likely to be a conservative estimate of the total effect on outcomes, since

improved location can affect fetal development in ways not captured by birth weight (see,

e.g., Persico, Figlio and Roth, 2020). Nevertheless, based on these effects of birth weight,

the estimated 38-gram (1.2 percent) gain from moving between top and bottom 10-percent

locations would be expected to lead to a 0.6 percent of a standard deviation improvement

in test scores and a 0.12 percent increase in earnings.

Taking the long-run projections at face value, these results suggest that in-utero expo-

sure to better neighborhoods likely explains a small share of how childhood neighborhoods

shape adult outcomes. This is consistent with evidence that the majority of prior place-based

31Controls include fixed effects for mother race; whether a mother has a college education; the age of a
mother’s first birth; and the parity of the first child born after a move.

32The estimate is also economically small when controls are not included.
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benefits appears to accrue during adolescence, with smaller impacts during early-childhood

(Deutscher, 2020; Chetty et al., 2020b). Collectively, this indicates that childhood place ef-

fects on long-run outcomes operate primarily through post-birth mechanisms, such as schools

or neighborhood peer effects.

9 Conclusion

This paper uses birth records and a movers-based research design to estimate the absolute

and relative importance of place-effects for early-life health. We find that the gain in birth

weight from moving to a higher-quality location (as proxied by higher average birth weight)

compares favorably with policies directly targeting maternal health, including core safety net

programs. In terms of their relative importance, place effects can explain up to 16 percent

of the variation in birth weight across locations. A descriptive analysis suggests that causal

place effects are most related to the presence of airborne pollutants, particularly the level of

ozone.

Overall, our analysis provides the first estimates of the total role of place-based factors on

infant health. These effects capture the effects of more-difficult-to-measure characteristics of

neighborhoods, such as the degree of social capital, and more salient features studied in prior

work, such as pollution or climate. Our work provides new evidence about the importance

of neighborhoods for infant development, complementing recent research that has found

large impacts of childhood location on long-run outcomes (Chetty, Hendren and Katz, 2016;

Chetty et al., 2020a). Based on our estimates, a back-of-the-envelope calculation suggests

that a small portion of the lasting effects of neighborhoods may be due to improvements in

early life health.
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10 Figures and Tables

Table 1: Summary Statistics

All: Estimation sample:

All All Non-movers Movers
Infant birth weight (g) 3,333.372 3,334.395 3,317.200 3,352.434

(577.5) (582.8) (599.7) (563.9)
Black mother 0.063 0.054 0.040 0.068

(0.244) (0.226) (0.196) (0.252)
White, non-Hispanic mother 0.327 0.350 0.366 0.334

(0.469) (0.477) (0.482) (0.472)
Hispanic mother 0.482 0.471 0.461 0.480

(0.500) (0.499) (0.499) (0.500)
Asian mother 0.087 0.086 0.095 0.077

(0.281) (0.281) (0.293) (0.266)
Mother has HS degree 0.722 0.750 0.762 0.738

(0.448) (0.433) (0.426) (0.439)
Mother has college degree 0.226 0.257 0.296 0.216

(0.418) (0.437) (0.457) (0.412)
Maternal age 27.950 28.129 28.740 27.487

(6.255) (6.053) (6.044) (5.997)
Number of births 2.205 2.446 2.379 2.516

(1.141) (0.646) (0.612) (0.673)
Observations 15,318,719 8,457,806 4,330,108 4,127,698

Notes: This table presents summary statistics based on birth records from California
(1989-2017). Column 1 provides statistics for all births. Columns 2-4 provide statistics
for the estimation sample that we use for our main analysis.
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Table 2: Estimated Impacts of Moving and Decomposition Results

(1) (2) (3) (4) (5)

Top vs.
Bottom

50%

Top vs.
Bottom

25%

Top vs.
Bottom

10%

Top vs.
Bottom

5%

Top vs.
Bottom

1%

Panel A. Effects of Moving

Estimated impact (grams) 18.944 26.982 37.832 40.676 64.949
(2.690) (4.648) (8.117) (12.279) (27.581)

Panel B. Decomposition:

Overall difference (grams) 116.899 193.469 295.752 387.577 725.233

Share due to place effects 0.162 0.139 0.128 0.105 0.090
(0.023) (0.024) (0.027) (0.032) (0.038)

Share due to family (mother) 0.838 0.861 0.872 0.895 0.910

Notes: This table presents estimates of (i) the impact of moving to more advantaged areas on birth weight
(Panel A) and (ii) additive decomposition results of the role of place- and family-based factors in explaining
the gap in birth weight across locations (Panel B). All results are based on estimates of Equation 1, where
the dependent variable is birth weight (in grams). Each column defines a set of areas R and R′, such as the
top-50% and bottom-50% of Zip codes (Column 1). The first row in Panel A reports the estimated difference
due to place effects (i.e., γR − γR′). The first row of Panel B presents the overall difference in average birth
weight between two areas (i.e., yR − yR′). The second and third rows of Panel B report the shares of the
overall difference attributable to place and family (mother) characteristics. Standard errors (in parentheses)
are calculated using a mother-level bootstrap approach that has 50 repetitions.
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Table 3: Variance Decomposition of Geographic Differences in Birth Weight

(1)

Estimates

Variances of birth weight (grams):

Birth weight 8,981.612
Place effects 963.706
Family (mother) effects 7,660.681

Corr. of average place and family effects 0.066
(0.070)

Share of variance reduced if:

Family (mother) effects were made equal 0.893
(0.080)

Place effects were made equal 0.147
(0.132)

Notes: This table presents variance decomposition results. All results are based estimates of Equa-
tion 1, where the dependent variable is birth weight (in grams). We use a split-sample approach
to estimate variances and covariances as detailed in Section 3. The first row reports the variance
of zip-code average birth weight (i.e., yj). The second, third and fourth rows report the variance
of place effects (i.e., γj), variance of family (mother) effects (i.e., ymj ), and the correlation of place
effects and family effects. The final two rows report the shares of the variance in birth weight that
would be reduced if zip-level place effects were made equal and if family (mother) effects were
made equal, respectively. Standard errors (in parentheses) are calculated using a mother-level
bootstrap approach that has 50 repetitions.
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Table 4: Estimated Impacts of Moving and Decomposition Results, By Group

(1) (2) (3) (4) (5)

All
College

Educated
Non-college
Educated White Hispanic

Panel A. Effects of Moving

Estimated impact (grams) 18.944 8.494 24.171 23.330 23.939
(2.690) (4.513) (2.868) (3.603) (3.867)

Panel B. Decomposition:

Overall difference (grams) 116.899 123.744 113.267 106.827 91.603

Share due to place effects 0.162 0.069 0.213 0.218 0.261
(0.023) (0.036) (0.025) (0.034) (0.042)

Share due to family (mother) 0.838 0.931 0.787 0.782 0.739

Notes: This table presents estimates of (i) the impact of moving from a below- to an above-median birth
weight Zip on a child’s own birth weight (Panel A) and (ii) additive decomposition results of the role of place-
and family-based factors in explaining the gap in birth weight between below- and above-median birth weight
locations (Panel B) for selected groups. Columns 2-5 report results for college educated, non-college, white,
and Hispanic mothers, respectively. All results are based on estimates of Equation 1, where the dependent
variable is birth weight (in grams). The first row in Panel A reports the estimated impact of moving from
a below- to an above-median birth weight Zip. The first row of Panel B presents the overall difference in
average birth weight between two areas. The second and third rows of Panel B report the shares of the
overall difference attributable to place and family (mother) characteristics. Standard errors (in parentheses)
are calculated using a mother-level bootstrap approach that has 50 repetitions.
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Figure 1: Average Birth Weight by Zip Code

Notes: This figure provides a map of average birth weight (in grams) at the zip
code level. The legend indicates the level of birth weight with dark blue and dark
red colors indicating places with the highest and lowest birth weight, respectively.
White areas are Zip codes where there are no mothers that meet our baseline
sample criteria (always being in California; always being in a zip code with at
least 25 movers; and either never moving or moving once across births). Note that
average birth weight is winsorized at the 1 percent level to limit the influence of
outliers.
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Figure 2: Distribution of Destination-Origin Difference in Average Child Birth Weight
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Notes: This figure shows the kernel density of the destination-origin difference in
average child birth weight (δ̂m) for mothers who move across zip codes.
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Figure 3: Destination-Origin Differences in Average Child Birth Weight
2

0
4

0
6

0
8

0
1

0
0

C
h

a
n

g
e

 i
n

 B
ir
th

w
e

ig
h

t 
o

n
 M

o
v
e

−100 −50 0 50 100
Destination−Origin Difference in Birthweight

Notes: This figure shows the relationship between changes in birth weight before
and after a move and the type of move that a mother experiences. For each mover,
we calculate the difference δ̂m in average birth weight between their destination
and origin zip codes and group the data into 20 bins. The x-axis displays the
mean of δ̂m. The y-axis reports binned averages of the change in birth weight for
the children born before and after the move. The line of best fit is obtained from
an OLS regression using the underlying mother-level sample.
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Figure 4: Event Study Analysis of Child Birth Weight

−
1

0
0

1
0

2
0

C
o

e
ff

ic
ie

n
t 

o
n

 [
B

W
(d

e
s
t)

−
B

W
(o

ri
g

) 
(1

0
0

’s
 g

ra
m

s
)]

−2 −1 0 1
Birth order relative to move (grouped)

Pooling: All

Balance: −2 to 0 −1 to 0 −1 to 1

Notes: This figure reports the coefficient estimates of θ̂r(m,k) from Equation 5. The
coefficient for the birth that occurs immediately before the move is normalized
to 0. The x-axis indicates the birth order relative to the mother’s move, r(m, k).
Each dot is a point estimate and represents the impact on birth weight measured
in grams. The dashed vertical lines surrounding each dot are estimates of the
95-percent confidence interval. We report results for a sample that includes all
mothers, as well as for three subsamples of mothers that are balanced in event time
to estimate subsets of the event study coefficients. The filled grey triangles report
“pooled” estimates based on all mothers; the blue hollow dots report estimates
based on the sample of mothers that have two births and one occurs after a move;
the blue hollow squares report estimates based on the sample of mothers that have
three births and one occurs prior to a move while two occur after a move; and the
blue hollow diamonds report estimates based on the sample of mothers that have
three births where two occur prior to a move and one occurs after a move. To
reduce noise in the figure, the “pooled” coefficient shown at “-2” and “-1” on the
x-axis includes the second and third birth prior to a move (i.e., r(m, k) = −2 and
r(m, k) = −3) and the “pooled” coefficient shown at “1” on the x-axis includes
the second and third birth births after a move (i.e., r(m, k) = 1 and r(m, k) = 2).
Standard errors are clustered at the mother-identifier level.
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Figure 5: Correlates of Spatial Variation in Place Effects on Birth Weight
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Notes: This figure shows the correlation of estimates of place effects based on
Equation 1 and place characteristics. For each characteristic listed on the y-axis,
the dots report the point estimate of the correlation and the horizontal lines show
the 95-percent confidence intervals based on robust standard errors. Details on
each measure and the underlying data sources are provided in Appendix B.
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Figure 6: Correlates of Spatial Variation in Place Effects on Birth Weight, by Maternal
Education
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Notes: This figure shows the correlation of estimates of place effects based on
Equation 1, estimated separately for college-educated and non-college-educated
mothers, and place characteristics. For each characteristic listed on the y-axis, the
grey unfilled triangle markers and the red filled triangle markers report the point
estimates of the correlations for non-college-educated and college-educated moth-
ers, respectively, and the horizontal lines show the 95-percent confidence intervals
based on robust standard errors. Details on each measure and the underlying data
sources are provided in Appendix B.
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Online Appendix

A Appendix Tables and Figures

Table A1: Distribution of Distance Between Origin and Destination

Average Move Distance (mi.) 32.528
25th Percentile of Move Distance (mi.) 4.214
50th Percentile of Move Distance (mi.) 8.937
75th Percentile of Move Distance (mi.) 22.552
Share of Moves that Cross Counties 0.279
Observations 8,457,806

Notes: This table presents summary statistics for the average and percentiles of the
distance of moves for movers in our estimation sample. Distance is measured as the miles
between centroids of the origin and destination Zip codes for each mover.
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Table A2: Impact of Reweighting Estimates of Place to Account for Covariate Imbalance
Across Movers and Non-Movers

(1) (2)
Baseline Model Reweighted

Dest-Origin Diff. in BW (100’s of grams) x Post 10.934∗∗∗ 8.010∗∗∗

(1.032) (2.603)

Mean Y 3334.416 3328.036
Observations 8,457,481 8,117,145

Notes: This table presents estimates of the within-mother change in birth weight around a move, scaled
by the destination-origin change in quality, δ̂j . We estimate the following equation: ycmjkt = αm + θδ̂m ×
postmk + ωk + νt + xmkη+ εcmjkt, which replaces the relative birth order dummies in our event study model
with postmk, an indicator for the births that occur after a mother’s move. The key coefficient of interest
is θ, the parameter on the term δ̂m × postmk. We estimate this equation without weights (Column 1), as
in our main analysis, and applying weights to correct for imbalance in maternal covariates between movers
and non-movers (Column 2). We follow Miller, Shenhav and Grosz (2021) and generate the weights as the
product of (i) the inverse of the probability of being a mover (estimated from fitted values from a logit model
that includes fixed effects for maternal race/ethnicity and maternal education, and a linear term in maternal

age) and (ii) the inverse of the within-mother variance in δ̂m × postmk. Standard errors are clustered at the
mother-identifier level.
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Table A3: Impact of Moving to a Higher Quality Location on Other Infant Outcomes

(1) (2) (3) (4)
Birthweight LBW Gestation Premature

Dest-Origin Diff. in BW (100’s of grams) x Post 10.934∗∗∗ -0.001∗∗ 0.545∗∗∗ -0.002∗∗∗

(1.032) (0.000) (0.115) (0.001)

Mean Y 3334.416 0.067 267.571 0.130
Observations 8,457,481 8,457,481 8,450,228 8,450,228

Notes: This table presents estimates of the within-mother change in infant outcomes around a move, scaled
by the destination-origin change in quality, δ̂j . We estimate the following equation: ycmjkt = αm + θδ̂m ×
postmk + ωk + νt + xmkη+ εcmjkt, which replaces the relative birth order dummies in our event study model
with postmk, an indicator for the births that occur after a mother’s move. The key coefficient of interest is θ,
the parameter on δ̂m × postmk. Column (1) presents effects on birth weight; Column (2) presents effects on
the likelihood of being low birth weight (1(<2500 grams)); Column (3) presents effects on gestational age at
birth (in days); Column (4) presents effects on the likelihood of being premature (1(<37 weeks)). Standard
errors are clustered at the mother-identifier level.
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Table A4: Impacts of Place on Birth Weight by Distance of Move

(1)

Dest-Origin Diff. in BW (100’s of grams) x Post x Move 0-5 mi 6.006∗∗

(2.525)

Dest-Origin Diff. in BW (100’s of grams) x Post x Move 5-10 mi 1.794
(2.345)

Dest-Origin Diff. in BW (100’s of grams) x Post x Move 10-25 mi 6.928∗∗∗

(2.101)

Dest-Origin Diff. in BW (100’s of grams) x Post x Move at least 25 mi 22.435∗∗∗

(1.788)

Mean Y 3333.630
Individuals 8,357,113

Notes: This table presents estimates of the within-mother change in birth weight around a move, scaled by
the destination-origin change in quality, δ̂j , from a model that allows this effect to vary by the distance of

the move. We estimate the following equation: ycmjkt = αm + θ1δ̂m × postmk ×Move05 + θ2δ̂m × postmk ×
Move510 +θ3δ̂m×postmk×Move1025 +θ4δ̂m×postmk×Move25pl+ωk +νt +xmkη+εcmjkt. This equation
replaces the relative birth order dummies in our event study model with postmk, an indicator for the births
that occur after a mother’s move, and allows the coefficient on the δ̂m × postmk interaction to vary for
mothers that move (i) up to 5 miles, Move05; (ii) between 5-10 miles, Move510; (iii) between 10-25 miles,
Move1025; or (iv) more than 25 miles, Move25pl. The key coefficients of interest are θ1, θ2, θ3, and θ4, the

parameters on the interactions between δ̂m × postmk and each of the distance of move variables. Standard
errors are clustered at the mother-identifier level
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Table A5: Estimated Impacts of Moving and Decomposition Results, Robustness to Includ-
ing Multiple Movers

(1) (2) (3) (4)

Main Estimation Sample Including Multiple Movers

Top vs.
Bottom

50%

Top vs.
Bottom

25%

Top vs.
Bottom

50%

Top vs.
Bottom

25%

Panel A. Effects of Moving

Estimated impact (grams) 18.944 26.982 22.286 33.651

Panel B. Decomposition:

Overall difference (grams) 116.899 193.469 116.899 193.469
Share due to place effects 0.162 0.139 0.191 0.174
Share due to family (mother) 0.838 0.861 0.809 0.826

Notes: This table presents estimates of (i) the impact of moving to more advantaged areas on birth weight
(Panel A) and (ii) additive decomposition results of the role of place- and family-based factors in explaining
the gap in birth weight across locations (Panel B). Columns 1 and 2 reproduces our estimate for all mothers
from Table 2. Columns 3 and 4 report results from a sample that includes multiple-move mothers. All results
are based on estimates of Equation 1, where the dependent variable is birth weight (in grams). The first
row in Panel A reports the estimated impact of moving from a below- to an above-median birth weight Zip
code (i.e., γR− γR′). The first row of Panel B presents the overall difference in average birth weight between
below- and above-median birth weight Zip codes (i.e., yR − yR′). The second and third rows of Panel B
report the shares of the overall difference attributable to place and family (mother) characteristics.
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Table A6: Tests for Differences in Fertility by Destination-Origin Difference in Average
Birth Weight

(1) (2)

Controls added:

None Mom Chars.

Dest-Origin Diff. in BW (100’s of grams) -0.008∗∗∗ -0.001
(0.001) (0.001)

Mean of outcome 2.367 2.368
Observations 1,743,865 1,705,598

Notes: This table presents results from mother-level regressions where the outcome is
the total completed fertility of each mother, and the key regressor of interest is the
destination-origin difference in average child birth weight (δ̂m) for each mother. Column
1 includes no additional covariates; while Column 2 includes fixed effects for mother race,
whether a mother has a college education, the age of a mother’s first birth, and the parity
of the first child born after a move. Robust standard errors are shown in parenthesis.
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Table A7: Share of Birth Weight Gaps Explained by Observable Maternal Characteristics

(1) (2) (3) (4)

Avg.
Mother’s

Education

Avg.
Mother’s

Age

Share
Non-white

Share on
Medi-Cal

Regression Coef. -31.172 -3.880 -103.453 -11.138
Diff. in Mom Characteristic -0.033 -0.312 -0.156 -0.015
Share 0.009 0.010 0.138 0.001

Notes: This table presents results for the difference in birth weight between areas that can be explained
by differences in specific maternal characteristics. All results are based on dividing areas based on those
that have above- and below-median birth weight. Each column provides results where the focus is on a
specific Zip-level mean of a maternal characteristic observed in birth records. We estimate the role of a given
maternal characteristic by regressing family (mother) effects (i.e., ymj ) on a Zip-level mean. These estimates
are reported in the first row. The Zip-level differences in the given maternal characteristic are reported in
the second row. The third row reports our estimate of the share explained by the given characteristic which
is defined as the product of the first and second rows divided by the raw difference in birth weight between
above and below median Zips, as in Finkelstein, Gentzkow and Williams (2016).
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Figure A1: Distribution of Birth Weight for all Mothers and Estimation Sample
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Notes: This figure shows the kernel densities for the birth weight of children born
to all mothers in California (from 1989 to 2017), all mothers in our estimation
sample, and mover mothers in our estimation sample.
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Figure A2: Estimated Place Effects
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Notes: This figure provides a map of the estimated Zip code place effects in
standard deviation units. The legend indicates the level of birth weight with dark
blue and dark red colors indicating zip codes with the highest and lowest estimated
effects (relative to the omitted zip code, 90019), respectively. Zip codes with no
color are not included in our estimation of zip code fixed effects. Note that the Zip
code effects are winsorized at the 1 percent level to limit the influence of outliers.
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Figure A3: Event Study Analysis of Birth Weight for College- and Non-College-Educated
Mothers

(a) College-Educated Mothers (b) Non-College-Educated Mothers
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Notes: This figure reports the coefficient estimates of θ̂r(m,k) from Equation 5 where the sample is either
college-educated mothers (Panel a) or non-college-educated mothers (Panel b). See the notes for Figure 4
for additional details about the interpretation of the estimates.
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Figure A4: Predicted Infant Birth Weight Around a Move

(a) Maternal Index
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(b) Place-based Index
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Notes: This figure shows coefficients from our event study model (Equation 5) in which the dependent
variable is predicted infant birth weight using either maternal and household covariates (Panel a) or place-
based characteristics (Panel b). We generate the predicted “maternal index” in Panel (a) as the fitted value
from a regression of birth weight on an indicator for whether a father is present at the time of birth,
father’s age, indicators for whether the father completed high school and college, an indicator for having a
C-section, an indicator for no delivery complications during the birth, and indicators for public and private
insurance. Missing father characteristics are imputed as the mean in a given calendar year. We generate the
predicted “place-based index” in Panel (b) as the fitted value from a regression of birth weight on Zip-level
median income, poverty share, share black, share of mothers with a college degree; county-level hospital beds
per-capita and OB/GYNs per capita; county-level arrests per capita and violent arrests per capita; Zip-
level PM2.5, ozone, and average temperature. Details on each place-based measure and the underlying data
sources are provided in Appendix B. See the notes for Figure 4 for additional details about the interpretation
of the estimates.
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Figure A5: Maternal Index Around a Move Using Additional Covariates (2007 onward)
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Notes: This figure shows coefficients from our event study model (Equation 5)
when we use predicted infant birth weight as an outcome. We generate predicted
birth weight using the baseline prediction model for the maternal index (described
in the notes of Appendix Figure A4), augmented with additional covariates that
include indicators for whether the mother worked in the last year, her expected
income based on her reported occupation and the average income for women by
occupation calculated from the 2007–2017 ACS, and whether she received any
WIC for the pregnancy. See the notes for Figure 4 for additional details about
the interpretation of the estimates.
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Figure A6: Event Study Analysis of Birth Weight Using an Instrument for Changes in
Location Quality
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Notes: This figure shows coefficients from our event study model (Equation 5)

in which we instrument for the change in mother m’s location quality δ̂m. The
instrument is based on computing the leave-out average of δ̂m using all mover
mothers from a given origin zip while excluding the focal mother. Standard errors
are clustered at the origin zip code level. The first stage coefficients and standard
errors are 0.988 (s.e. = 0.004), 1.00 (s.e. = 0.0007), and 1.00 (s.e. = 0.003) for the
estimates two periods before a move, one period after a move, and two periods
after a move, respectively. See the notes for Figure 4 for additional details about
the interpretation of the estimates.
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Figure A7: Event Study of Birth Weight using Moves Across Counties
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Notes: This figure reports the coefficient estimates of θ̂r(m,k) from Equation 5
where the dependent variable is child birth weight and we define moves as a
change in a mother’s county of residence. See the notes for Figure 4 for additional
details about the interpretation of the estimates.
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Figure A8: Event Study of WIC Participation using Moves Across Counties
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Notes: This figure reports the coefficient estimates of θ̂r(m,k) from Equation 5
where the dependent variable is an indicator for whether a mother received WIC
during her pregnancy and we define moves as a change in a mother’s county
of residence. The sample includes births from 2007-2017, for which information
about maternal WIC participation is available. See the notes for Figure 4 for
additional details about the interpretation of the estimates.
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Figure A9: Event Study of Log Birth Weight
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Notes: This figure shows coefficients from our event study model (Equation 5) in
which we set log birth weight as the dependent variable. See the notes for Figure
4 for additional details about the interpretation of the estimates.
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Figure A10: Correlates of Spatial Variation in Family (Mother) Effects
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Notes: This figure shows the correlation of estimates of family (mother) effects
(i.e., ymj ) based on Equation 1 and Zip-level means of specific maternal charac-
teristics observed in the birth records. For each characteristic listed on the y-axis,
the dots report the point estimate of the correlation and the horizontal lines show
the 95-percent confidence intervals based on robust standard errors. Details on
each measure and the underlying data sources are provided in Appendix B.
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B Additional Data Description

This appendix provides details on the data sources that we use to construct measures of
place characteristics. We use measures at the Zip or county geographic levels to analyze the
correlates of the causal place effects in Section 6.

1. Pollution: We rely on Zip-level measures of particular matter (PM2.5) and ozone from
the CalEnviroScreen (version 1.1) database. The CalEnviroScreen database was created
by the California Office of Environmental and Health Hazard Assessment (OEHHA).
The PM2.5 measure is the annual mean concentration (average of quarterly means)
over the three year period 2007-2009. The ozone measure is the portion of the daily
maximum eight-hour ozone concentration over the federal eight-hour standard (0.075
ppm), averaged over the three year period 2007-2009.

2. Criminal Justice: We rely on county-level measures of arrests for violent and all types
of crime per 100,000 persons. Arrest data are available from the California Department
of Justice (DOJ) Criminal Justice Statistics Center (CJSC). We compute the average
annual number of arrests for violent and all types of crime for the period 1990-2015.
We use population statistics from the U.S. Census Bureau to calculate the number of
arrests per 100,000 persons.

3. Demographics and Economic Characteristics: We rely on Zip-level measures of
median income, the poverty share, and the share of Black residents from the 2000
Decennial Census. The Zip-level data was downloaded from the IPUMS National His-
torical Geographic Information System (NHGIS) (Manson et al., 2021). In addition,
we also calculate the Zip-level share of mothers with a college degree using the birth
records from California (1989-2017) for all of the mothers in our estimation sample.

4. Health Care: We rely on county-level measures of the per capita number of hospital
beds and obstetrician-gynecologists (OB-GYNs) from the Area Health Resource Files
(AHRF).

5. Temperature: We rely on Zip-level temperature data for California used in Heutel,
Miller and Molitor (2021) (Heutel, Miller and Molitor, 2020).

Appendix - 18


	Introduction
	Empirical Model
	Causal Place Effects
	Decomposition

	Event Study and Tests of Identification
	Data
	Sample

	Main Results
	Initial Evidence on the Impact of Place
	Impacts of Moving and Decomposition Results
	Impacts of moving to more advantaged areas
	Decomposition analysis

	Heterogeneity

	Mechanisms: Correlates of Place Effects
	Robustness Exercises
	Discussion
	Conclusion
	Figures and Tables
	Appendix Tables and Figures
	Additional Data Description

