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Abstract

We review, from a practical standpoint, the evolving literature on assessing external
validity (EV) of estimated treatment effects. We provide an implementation and real-world
assessment of the general EV measures developed in Bo and Galiani (2021). In the context
of estimating conditional average treatment effect models for assessing external validity,
we provide a novel method utilizing the Group Lasso (Yuan and Lin, 2006) to estimate a
tractable regression-based model. This approach can perform better when settings have
differing covariate distributions and allows for easily extrapolating the average treatment
effect to new settings. We apply these measures to a set of identical field experiments
conducted in three different countries (Galiani et al., 2017).

1 Introduction
For any empirical causal study, one can decompose its validity into internal and external
components. Internal validity concerns whether the estimated effect is valid for the particular
setting studied. External validity (EV), in contrast, looks beyond the sample studied. In
evaluating the external validity of a set of experiments, one poses the question, to what other
populations can this effect be generalized? (Campbell, 1957) In studies that utilize well-
understood sources of variation, it is possible to assess their internal validity. External validity,
however, is typically harder to assess as it is difficult to know how a treatment effect may change
in different populations.

We review the measures of external validity, both those that focus solely on a single setting and
those that compare across settings. We use both types of methods to assess the external validity
of estimated treatments effects from an existing study (Galiani et al., 2017) that conducted
identical experiments in three countries. Since these were randomized controlled trials (RCTs),
the threats to internal validity are small and addressed in the original study. Thus, we focus our
attention here on external validity.

Single-setting measures of external validity were proposed by Bo and Galiani (2021). They
provide a theoretical treatment of external validity as well as propose two specific measures
for assessing external validity based on how estimations vary as the experimental data are
reweighted. Reweightings are used to simulate different possible populations. Reweighting
“enables the researcher to compare the treatment effects in different locations” (Athey and
Imbens, 2017). Bo and Galiani (2021) base their method on 1-to-1 matching. After constructing
treated-control pairs, they generate reweighting vectors uniformly distributed over all possible
reweighting vectors. They categorize treatment effects according to their statistical-significance
category (positive significant, insignificant, and negative significant), and then gauge how often
a reweighted sample results in an estimate that is in a different category. This measure of EV is

∗The views expressed in this paper are those of the authors and do not necessarily represent the U.S. Bureau
of Economic Analysis or the U.S. Department of Commerce.
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derived from their more general definition of external validity, namely, external validity on the
overarching population. They also propose a local measure that relates how their measure of
the degree of EV changes with the correlation between the reweighting vector and the pair-level
outcome differences. This measure of EV is motivated by their definition of external validity
from one population onto other, letting the degree of external validity depend on how different
is the parameter vector that characterizes the target population in relation to the one that
characterizes the sample studied.

The above measures consider only the observable data. If one is willing to make certain
assumptions about how the role of unobservables may be different in other settings, then bounds
on the estimated treatments effect can be derived (Nguyen et al., 2017; Andrews and Oster,
2019; Gechter, 2021).

While some information can be gathered from a single dataset, ultimately, EV is established
by replicating the same experiments in different populations (Angrist, 2004; List, 2020). We
therefore also provide practical guidance in the multi-setting case.

Some papers approach the issue more informally, discussing differences in means for a subset
of covariates between the two datasets (Attanasio et al., 2011; Bloom et al., 2014; Muralidharan
et al., 2019). It is typically difficult, however, to use this information on its own, as one would
also need to know how the treatment effect differs along those dimensions.

Formal measures of external validity using two settings were developed by Hotz et al. (2005).
The main challenge is that the two settings may be different and the observable characteristics
may not be sufficient for adjustment (there could be important unobservable differences, including,
for instance, macro-level factors). The concern is analogous to that in treatment effect studies
when there is selection bias. The necessary assumptions required for generalizability (on top of
those for internal validity in the respective settings) are therefore also analogous: overlap of the
settings in terms of the propensity of being in the Sample (i.e, the inference population) versus
the Population (i.e, the target population) and that the setting is unconfounded conditional
on observable covariates. With these in place, they then take a reweighting approach to assess
external validity. They pool data from the two settings, fit a propensity score model to account
whether an observation is in the Sample conditional on a set of covariates, trim the data to ensure
overlap, and then construct unit-level inverse-propensity weights. They then assess whether
observable characteristics are sufficient to make the data comparable by checking if there are
statistically significant differences in the weighted outcomes of the control units between the
two settings. If there is not, they assess whether the treatment effect in the inference sample
generalizes to the target population by testing for statistically significant differences in the
treatment unit outcomes between settings.

Stuart et al. (2011) surveys the reweighting schemes such as those used in Hotz et al. (2005),
noting that the propensity scores can be used for unit-level weights, matching, or sub-classification.
They also suggest that overlap in the distribution of propensity scores between both settings
alone may not be sufficient for robust inference. They suggest checking the average propensity
score between the two settings and that if the difference is over 0.25 standard deviations of the
propensity score distribution for the controls, the results may depend too heavily on extrapolation.

Aside from reweighting, other work has built models of the conditional average treatment effect
(CATE) from subsets of the data and then calculated what error would result in extrapolating
that to new settings (Kern et al., 2016; Dehejia et al., 2019; Pritchett and Sandefur, 2014). With
a sizable set of replications, Vivalt (2020) and Meager (2019) use Bayesian hierarchical models
to evaluate the ability of a subset of studies to extrapolate to others in the set.

This paper proceeds as follows. In Section 2 we investigate single-setting measures. We
provide an implementation of the single-setting measures of Bo and Galiani (2021). We apply
their measures to the case of a three-country randomized control trial on the effect of upgrading
slum dwellings (Galiani et al., 2017). In Section 3 we then consider analyses that split the
data into the Sample and the Population groups. We first assess external validity using the
propensity-score reweighting methods of Hotz et al. (2005). Finally we assess external validity by
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Table 1: Satisfaction
(1) (2) (3) (4) (5) (6)

Treatment 1.031** 0.898** 0.317** 0.273** 0.295** 0.264**
(0.0866) (0.128) (0.0618) (0.103) (0.0519) (0.0686)

[0.861,1.201] [0.648,1.148] [0.196,0.439] [0.0715,0.474] [0.193,0.397] [0.130,0.398]
Observations 656 478 718 630 826 642
Country ES ES UY UY MX MX
Estimation OLS Matching OLS Matching OLS Matching
Outcome is Satisfaction Index and statistics are coefficient, (standard error), and [confidence interval].
Table shows the variation in treatment effect from the original OLS models of Galiani et al. (2017) to the matching
estimators needed for EV reweighting. OLS models include baseline controls from Galiani et al. (2017).
Matching estimator is one-to-one (with replacement) bias-corrected and using the same baseline variables.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

modeling the CATE. The existing external validity CATE literature focuses on estimating the
CATE using a subset of the settings and evaluating the mean-squared error that would result
from predicting the CATE on the held-out settings versus estimating the CATE directly on the
held-out setting. We, by contrast, focus on building a CATE model where we can construct
a hypothesis test for whether it generalizes across settings. To this end, we provide a method
using machine learning (ML) to select the components of the CATE model (the dimensions
along which we will estimate heterogeneity) that will later be estimated. We then show that
this method allows easy extrapolation for forecasting the treatment effect in other, not studied,
populations. Section 4 concludes.

2 Single-setting measures
Throughout the paper, we use as an application, the housing experiment evaluated in Galiani
et al. (2017) so we first briefly describe their setting and empirical results we will focus on. We
then describe the single-setting measures of Bo and Galiani (2021) and apply them to the housing
example.

Galiani et al. (2017) estimate the effect of upgrading slum housing on the living conditions of
the extreme poor. The upgrades were almost identical and done by the same organization in El
Salvador (ES), Uruguay (UY), and Mexico (MX). Their main finding is that better houses have
a positive effect on overall housing conditions and general well-being: treated households are
happier with their quality of life.

We focus on their main outcome, the “Satisfaction” Index. This is an aggregate index that
summarizes several satisfaction sub-measures: Satisfaction with Floor, Wall Quality, Roof Quality,
House Protection against Water when it rains, and Qualify of Life. Each of those measures is
turned into a Z-score, signed so that the positive direction indicates an improvement, and then
added together. We focus on their specification that controls for covariates. These comprise
three sets: main baseline covariates, indicators for whether the baseline controls were imputed
due to being missing, and indicators for subnational geographic clusters.

As the estimation methods of Bo and Galiani (2021) are based on 1-to-1 matching, we first
replicate, for each country, the original estimates of Galiani et al. (2017). We next construct the
analogous 1-to-1 matching estimation of Abadie and Imbens (2011) that ensures exact matches
on cluster and then matches and bias-corrects for the remaining controls. Results are shown in
Table 1. The estimated effect is positive and statistically significant across all three countries for
both estimation approaches. Overall, the matching estimates tend to be slightly smaller and less
precisely estimated.

We next assess the external validity using the techniques from Bo and Galiani (2021). 1

1Stata package available at https://github.com/bquistorff/ExternalValidity and
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Figure 1: Satisfaction - EV curve
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Plots are of the proportion of reweightings that have the same statistical significance category as
well as the density of the reweightings. They are aligned according to the “distance”, which is
defined by Bo and Galiani (2021) as one minus the correlation of the treated-control outcome

difference vector and the reweighting vector.

Table 2: Satisfaction (Matching EV estimates)
(1) (2) (3)

Treatment 0.898** 0.273** 0.264**
(0.128) (0.103) (0.0686)

[0.648,1.148] [0.0715,0.474] [0.130,0.398]
Observations 478 630 642
Country ES UY MX
Pr. Same Stat. Sig. 1 0.765 0.962
Outcome is Satisfaction Index and statistics are coefficient, (standard error), and [confidence interval]
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

After constructing the 1-to-1 matches, 1000 reweighting vectors for the treated-control pairs are
drawn uniformly from the distribution of all possible reweightings and the matching estimate
is re-calculated for each. If all the pair-level outcome differences are quite similar then the
reweighting estimates will be very similar to the original estimate. To the extent that there
is variation, the effect will change with how the reweighting vector modulates heterogeneity.
We then calculate the proportion of reweightings that have the same category of statistical
significance. The overall proportion is listed in Table 2. Practically all reweightings for the two
countries with the higher effect t-statistic (El Salvador and Mexico) have the same statistical
significance class whereas for Uruguay it is still high (0.765), but smaller.

One can also view how the EV measure changes “locally” as the reweighting vector becomes
more or less “favorable”. This is done by calculating a “distance” variable, defined in Bo and
Galiani (2021) as one minus the correlation between the reweighting vector and pair-level treated
minus control outcome difference vector. The domain is [0, 2], where a low value indicates
reweightings that increase the estimated treatment effect, a value of 1 indicates reweightings
similar to the unweighted estimate, and a high value indicates reweightings that decrease the
treatment effect. We graph how the EV measure changes locally with distance in Figure 1. Since
the estimated treatment effects are positive, the EV measure will be high for low distances and
may decrease at higher distances. The local measure decreases faster for Uruguay as its initial
estimate had the lowest t-statistic.
http://www.sebastiangaliani.com/.
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Figure 2: Density comparison across countries at baseline
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3 Multi-setting measures
Given the positive results from the previous single-setting analyses, we would hope that the
results would generalize across countries and so next look at methods to compare across them.
We show that a simple comparison that does not account for treatment effect heterogeneity fails
and then we turn to methods to address this: reweighting and modelling the CATE.

We first, though, take some preliminary steps to make the settings more comparable. This
is embodied in one of the preliminary assumptions of Hotz et al. (2005), who propose that
when comparing treatment effects across countries, we restrict ourselves to analyzing “overlap”
households that are similar to those in the other countries. To get a sense of the difference
between countries we first compare the distributions of a few measures that summarize the
housing situation: the baseline measures for the main outcome2 along with Housing quality and
Housing investment, which are the two main measures related to the physical house. We show
the distributions in Figure 2. El Salvador has much lower baseline levels than the other two
countries for these measures indicating some trimming for sample overlap will be required. We
subsequently include these three covariates in our main set of covariates and remove observations
that are outside the min-max range of the other countries for all the main baseline variables.

With just two settings, label one the Sample and the other the Population. To assess if the
average treatment effects (ATEs) are statistically different in the two settings, we first estimate
an equation where we interact the standard ATE model with an indicator for being in the Sample:

2The follow-up outcome constructs Z-scores by normalizing sub-measures according to each cluster’s control
group’s mean and standard-deviation. This is helpful when analyzing follow-up data as it can control for variation
in the scale of response across locations. When using this baseline version of this measure as a control we want to
be able to compare across clusters. We therefore normalize each sub-measure by the full (three-country) control
group mean and variance.
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Table 3: ATE Sample-interacted
(1) (2) (3)

Treatment × Is Sample -0.567** 0.200** 0.199**
(0.111) (0.0842) (0.0797)

Observations 1814 1814 1814
R2 0.177 0.164 0.164
Sample UY+MX ES+MX ES+UY
Population ES UY MX
p-val no ATE difference 0.000000327 0.0176 0.0127
Outcome is Satisfaction Index and statistics are coefficient and
(standard error).
Omitting non-sample-interacted coefficients (e.g., base treatment).
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

Yi = Diβ +Di × 1i∈Sδ +Xiγ +Xi × 1i∈Sγd + εi (1)

where Y is the outcome (Satisfaction Index), D is the treatment assignment, X are the control
variables, and 1i∈S is an indicator for whether the observation is in the Sample. We can then
test the statistical significance of δ̂ to assess if the ATE are different in the Sample and in the
Population.

With more than two settings, we rotate through them, each time considering all but one as
the Sample and the other as the Population. Results for our three countries are shown in Table 3.
In all three configurations, δ̂ is statistically significant at p < 0.05 and in one configuration it is
also statistically significant at p < 0.01, indicating that the ATE is different across countries.

The difference in the ATE across the countries could be due to either a common, but
heterogeneous CATE model coupled with differing covariates, or entirely differing treatment
effects by country. We will pursue two approaches to disentangling these possibilities. Analogous
to estimating causal effects with selection on observables, we will assess external validity using
both a reweighting and regression (CATE) modeling approaches.

3.1 Reweighting
For the reweighting approach, we follow the general path of Hotz et al. (2005), but make
modifications that allow us to continue to control for covariates when estimating treatment
effects.

For each Sample-Population configuration, we first estimate a prediction model over the
pooled data of whether an observation is in the Sample:

1i∈S = Xi · ζ + ei. (2)

Covariates in the prediction model are the main covariates and missing indicators (cluster
dummies would perfectly predict being in the Sample) and we estimate the model using a logistic
regression. Results are shown in Table 4. Many of the covariates are statistically significant
suggesting that some adjustment is necessary to make the covariate distributions similar. Using
this model we calculate predicted probabilities for each observation (propensity to be in the
Sample), p̂i, that will be used to construct weights.

Stuart et al. (2011) suggests that if the covariate distributions are very dissimilar then
reweighting may rely heavily on extrapolation and may not be robust to functional form changes.
They suggest calculating the difference between Sample and Population average predicted
probabilities and dividing it by the standard deviation of the distribution of those predicted
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Table 4: Sample vs Population Prediction
(1) (2) (3)

Is Sample
Head of HH Educ. 0.167** -0.158** 0.0181

(0.0252) (0.0211) (0.0177)
Head of HH Female -0.777** 1.253** -0.625**

(0.159) (0.131) (0.114)
Head of HH Age -0.0220** 0.0166** 0.00333

(0.00481) (0.00474) (0.00356)
HH Asset value/capita -0.000347 0.000334 -0.000199

(0.000458) (0.000538) (0.000362)
HH Income/capita 0.0150** -0.000700 -0.00556**

(0.00219) (0.00122) (0.00104)
Missing Head of HH Educ. -0.240 -1.059** 0.936**

(0.428) (0.388) (0.389)
Missing HH Asset value/capita 1.629** -0.866** -0.133

(0.246) (0.194) (0.155)
Missing HH Income/capita 0.854** 0.0479 -0.426**

(0.193) (0.193) (0.143)
Z-score Housing quality (Baseline) 0.559** -0.0484** -0.315**

(0.0348) (0.0241) (0.0220)
Z-score Housing investment (Baseline) 0.301** -0.522** 0.201**

(0.0295) (0.0288) (0.0205)
Z-score Satisfaction (Baseline) 0.0830** 0.0824** -0.0968**

(0.0196) (0.0182) (0.0134)
Constant 1.551** 0.499* 1.122**

(0.302) (0.264) (0.215)
Observations 2155 2155 2155
Sample UY+MX ES+MX ES+UY
Population ES UY MX
Pr. Score Diff. 1.848 1.519 0.894
Outcome is In Sample and statistics are coefficient, (standard error), and [confidence interval]
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

probabilities of the Population. They also suggest a rule-of-thumb cutoff of 0.25, arguing that
a reweighting approach may not be trustworthy in situations where the normalized difference
described above is higher than that. Table 4 shows that all the normalized differences are above
the threshold, and so there should be some caution in terms of using a reweighting approach.

Following Hotz et al. (2005) we construct weights in each configuration according to inverse-
probabilities to make the Sample and Population similar. Sample units are weighted by 1/p̂i and
Population units are weighted by 1/(1− p̂i). To enable controlling for covariates, as the original
analysis did, we use these weights and re-estimate Equation 1 using weighted OLS. Results are
shown in Table 5. In this model, the coefficient on “Is Sample” reports whether the reweighting
made the control outcomes similar. This is statistically significant with p < 0.05 for one of the
comparisons, indicating that covariates adjustments are likely not sufficient for that comparison.
For those comparisons where this difference is not statistically significant we can then check the
coefficient on “Is Sample x Treatment” to test if the estimated treatment effect is similar across
settings. We find that this is statistically insignificant only for the configuration comparing El
Salvador and Mexico to Uruguay. Overall, the reweighting approach indicates that the ATE
generalizes in only one of the three configurations.
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Table 5: Reweighted pooled treatment-effect estimation
(1) (2) (3)

Treatment 1.080** 0.320** 0.361**
(0.165) (0.106) (0.0622)

Is Sample -0.437* -0.141 0.934**
(0.240) (0.254) (0.218)

Is Sample x Treatment -0.847** 0.173 0.192**
(0.175) (0.122) (0.0912)

Observations 2155 2155 2155
Sample UY+MX ES+MX ES+UY
Population ES UY MX
Outcome is Satisfaction Index and statistics are coefficient and (standard error). Models include baseline controls.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

3.2 CATE Modelling
In this section we outline an alternative approach based on the modelling the CATE directly.
We will show that it can have a lower rate of false positives when covariate distributions are
different. We will also recast the testing process as a simple combined test, rather than as a set
of pair-wise tests, as the latter approach will invariably find some pairwise differences as the
number of countries increases. We show that this approach allows for easy extrapolation to new
settings to test for external validity.

We first outline the basic CATE method. A simple CATE model would include interactions
of the treatment variable (D) with a set of variables, X̃, derived from the baseline covariates.
For ease of notation, assume that X̃ includes an intercept. The model would then be:

Yi = Di × X̃iβX̃ +XiγX + εi (3)

where βX̃ is the vector of the CATE parameters. In order to test if the estimated β̂X̃ are different
between two settings, we extend Equation 1 and interact the parameters of the model with an
indicator of whether an observation is in the Sample:

Yi = (Di × X̃iβX̃ +XiγX) + (Di × X̃i × 1i∈SδX̃ +Xi × 1i∈SδX) + εi (4)

where δX̃ is the vector of coefficients that capture how the CATE parameters differs between
subsets. We can then test for generalizability of the CATE parameters by testing whether the
δ̂X̃ coefficients are jointly zero.

3.2.1 Simulation comparison

We motivate the use of the CATE model partially due to potential concerns about high false-
positive rates when using the reweighting method. A well known problem with inverse propensity
weighting methods is that when probabilities are close to 0 or 1, they can result in biased
and variable estimates(Crump et al., 2009). We show how this can result in a higher level of
false-positives using a simple simulation. We construct a simple DGP of two countries (“Sample”
and “Population”) where there is a single covariate which affects both the treatment effect and
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Figure 3: Simulations of False Positives by estimation method
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the probability of being in the sample:

yi =Di ×Xiβ0 + ui

Pr(Di = 1) =0.5

Pr(i ∈ S) =invlogit(Xiθ)

X,u ∼N(0, 1)

β0 =1

θ ∈[0, ..., 6] (5)

We vary θ across our simulations to show how the rate of false positives using each approach
changes the covariate distirbutions become more dissimilar. Results are shown in Figure 3. For
each θ we simulate 10,000 samples, each with N = 10, 000. We can see that when θ is small
(the samples are similar) then both methods have similar low error rates. But as θ increase, the
reweighting method does worse even though the CATE method is unaffected. The reweighting
technique also does not improve when the true propensity scores are used in place of estimated
propensity scores (Appendix Figure 4).

Common approaches for dealing with this include trimming the sample, though this presents
several difficulties. First, it is difficult to know what thresholds to use, and the thresholds will
change the estimated effect. Indeed, in this example, the point when θ increased enough such that
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most of the simulation samples were too different according to the rule-of-thumb for standardizes
differences in propensity scores did not match the point when we see increased error rates in
the reweighting method. Second, trimming by propensity scores changes the interpretation
(estimand) of effect in a complex way as it depends on a potentially large non-linear model.
This makes interpretability of the results difficult. Finally, it is challenging to know how to
extrapolate from an existing analysis to estimate an average treatment effect in a new setting.3
While we can use the existing propensity model to predict (and trim) propensity values for the
new setting, this is not really the relevant model to use. In order to extrapolate to a new setting
we need to estimate a new propensity model between existing and new data in order to reweight
the data. This will result in different propensity scores for the existing data and so the same
trimming rule will result in different data used (highlighting the problem with the estimate being
conditional on a complex model).

We note that the trimming procedure that bounds covariate values is much more straightfor-
ward to use. This, coupled with the potentially increased false-positive rate of the reweighting
approach motivate our use of the CATE approach.

3.2.2 Determining the CATE structure

The previous simulation was simple in that there was only a single covariate used. We did not
additionally need to determine what dimensions the CATE parameter vector varies over. In
the real world, this structure is unknown and must be estimated as well. Though a simple idea
would be to include all covariates (and possible transformations), this has the downside that the
test for δ̂X̃ = 0 will be less powerful if X̃ includes extraneous variable unrelated to the CATE
parameters. Those variables will tend to be insignificant and weaken the F-test. We therefore
develop a machine learning approach to automatically select variables that are important for the
CATE parameters.

As is common in the causal ML literature (Belloni and Chernozhukov, 2013; Belloni et al.,
2014), we will use the Lasso method (Tibshirani, 1996) to select the relevant CATE variables
and then estimate the CATE parameters using an OLS regression.4 The Lasso estimator is used
to selected the set of variables that together are the most predictive of the outcome variable. It
augments the typical OLS objective function so that coefficients are selected to minimize the
sum of squared residuals as well the sum of the coefficient sizes. In our setup, this is

min
βX̃ ,γX

N∑
i=1

(Yi − (X̃iβX̃ +XiγX))2 + λ

∑
k̃∈K̃

|βX̃,k̃|+
∑
k∈K

|γX,k|

 (6)

where K and K̃ is the number of variables in X and X̃, respectively, and λ is a hyper-parameter
that controls the level of penalization against complex models. The penalty on the L1-norm of
the coefficients causes some of them to be exactly zero when λ is sufficiently high (unlike the
Ridge Regression with an L2 penalty, which never sets coefficients to exactly zero).5

A theoretical motivation for using the Lasso for variable selection is that, if most covariates
are truly irrelevant and only a sparse set affects the outcome variable, the Lasso method, under
certain conditions, would select the relevant set asymptotically (Zou, 2006). In finite samples,
however, it is common for small perturbations in the data to result in the Lasso estimator
selecting different subsets of predictors, especially when they are correlated. If our primary

3A related challenge is how to trim when the initial set of settings is more than two. Estimating logit equations
for each pair of Sample-Population would result in conflicting predicted probabilities for observations. A solution
here, though, is to use a single multinomial logit for all the initial settings.

4We note that while there are more flexible ways to estimate a non-linear CATE (e.g., Wager and Athey 2018),
they do not allow to test for differences in the global model across settings.

5Given the penalization is on the magnitude of the coefficient, the Lasso is not invariant to covariate scaling
(unlike OLS). The standard practice is to pre-normalize all covariates to have the same mean and variance.
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goal were to identify a CATE model for rigorous inspection and independent uses, such as to
provide detailed policy recommendations on policy design, then the Lasso method may not be
satisfactory. We, however, view the CATE parameter vector as a nuisance parameter in service
of the goal of testing external validity. We therefore use the Lasso method merely as a disciplined
and automated way to select a set of variables that likely matter to model treatment effect
heterogeneity.

We note that the Lasso does not select variables based on statistical significance, but on
predictive performance. An example of a variable that highlights this difference, is a binary
variable that has a strong effect on the outcome, but is rarely non-zero. Since this variable only
helps the prediction of a small number of units, even if it is statistically significant in OLS, it
may not be selected by the Lasso. Additionally, a set of variables may jointly be rather predictive
even if each individually is statically significant.

One point stressed by the literature on using ML for causality (e.g., Chernozhukov et al.
2018) is that taking into account non-linearities can be particularly helpful. We therefore have
as our candidate set of variables, all main covariates and their second-order interactions, which
results in 72 potential CATE parameters. To keep the set from being too large, imputation
dummy variables and cluster indicators are only used as control variables in the model.

One novel aspect of using a selection algorithm when modelling the CATE is that for every
variable we include in the CATE parameter vector, we need to include it as a control. That
is, if we model heterogeneity along a particular dimension k, we need to include the pair of
regressors Xik and Di ×Xik in the model so that we can estimate the relative difference for the
treatment group. The previous Lasso technique, however, will not necessarily ensure this, as it it
may select Xik, but drop Di ×Xik. While we could ex-post adjust the set of selected regressors,
this is less efficient than including this constraint in the main estimation. A way to model this
structure using the general Lasso approach is to use the Group Lasso (Yuan and Lin, 2006),
which allows putting coefficients into groups so that entire groups to be either “selected” (all
having non-zero coefficients) or “unselected” (all having zero coefficients). If each group has a
single member, then this reduces to the normal Lasso. When applied to CATE estimation, each
dimension of CATE heterogeneity then would have a group of two elements and covariates that
are just controls would be singletons,

min
βX̃ ,γX

N∑
i=1

(Yi − (X̃iβX̃ +XiγX))2 + λ

∑
k̃∈K̃

√
β2
X̃,k̃

+ γ2X,k +
∑

k∈K\K̃

|γX,k|

 . (7)

When using a selection technique, such as the Lasso, one must be careful to use the methods
on separate data from that used for statistical tests so that the inference can be trusted (Leeb
and Pötscher, 2008a,b). Using the ideas from Athey and Imbens (2016), we therefore split our
data in “training” and “estimating” halves.6 We will use the Lasso on the training data to select
the variables that should be in the CATE and then use the estimating data to estimate the
Sample-interacted CATE model and test for differences across the country groups.

The procedure will be most useful when the two halves (train and estimate) have similar
distributions to the whole. If they are different, then the Lasso is more likely to select variables
that are later unimportant. Splitting data while ensuring similar distributions in the splits is a
common concern in RCTs where they assign treatment while often wanting to ensure balance
across covariates. We will therefore employ two common methods to ensure similar distributions
across the halves: blocking and rerandomization. Blocking partitions the dataset into blocks and
ensures a consistent split between training and estimating halves across the blocks. By splitting
an important variable into blocks, we can ensure that an even split is achieved at multiple levels
of the important variable. Rerandomization conducts multiple randomizations (given constraints

6If one is willing to make stronger assumptions on the data generating process, one could use the Post-Lasso
OLS using the whole data as in Belloni and Chernozhukov (2013)
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such as blocking) and then compares differences in means for important variables between the
train and estimate halves. It then picks as the final randomization, the one that resulted in the
smallest maximum t-statistic across the compared variables.

3.2.3 Full approach

The final component of our approach is to reframe the test of generalizability to provide a
straightforward result when there are S > 2 settings, where S now stands for the number
of settings. The approach used with reweighting provided S separate pair-wise tests. As S
increases, however, is not clear that with a single failed test we should conclude that an effect
does not generalize.7 We therefore modify the approach to provide a single combined test of
generalizability, by expanding Equation 4 to have each setting interacted with the CATE.

Yi = (Di × X̃iβX̃ +XiγX) +
∑
s>1

(Di × X̃i × 1i∈sδc,X̃ +Xi × 1i∈sδc,X) + εi (8)

We then conduct a joint test of the combined vector of coefficients δ̂∗,X̃ = (δ̂2,X̃ , ..., δ̂S,X̃).
The full algorithm is shown in Algorithm 1. We estimate this for each configuration of

Sample and Population countries. We use as blocking variables the product of “treatment x
cluster” (which are subnational). This ensures that both train and estimate halves of the data
have treatment and control observations from every cluster ensuring that the treatment effect
estimated from each is suitably representative. We also use 100 rerandomizations comparing
across the outcome and main covariates.

Algorithm 1 CATE Estimation and Test of EV

1. Split the data into training and estimating halves using tools that balance covariates. First
block on any blocking variables, and then use R rerandomizations to pick the split that
has the smallest maximum t-statistic over the variables to be compared.

2. Using the training portion of the data, fit a Group Lasso model of CATE (Equation 7)
where the full set of CATE terms, X̃, includes all second-order interactions of the main
covariates. We set the Lasso regularization parameter to minimize 10-fold cross-validation
error. Call the subset of X̃ selected by the Group Lasso X̃∗.

3. The CATE model can be estimated by using the estimating portion of the data and the
variables selected by the Group Lasso. (Used in Algorithm 2.)

4. Using the estimating portion of the data, estimate a Setting-interacted CATE model as in
Equation 8 using the variables selected by the Group Lasso yielding δ̂∗,X̃ .

5. Use an F-statistic to test if the δ̂∗,X̃ vector of coefficients is jointly different than zero.

We show δ̂X̃ from the setting-interacted CATE model in Table 6. We do not reject the joint
test that the estimated conditional average treatment effects are different across the countries
(p > 0.05). We take this as evidence of the generalizability of the treatment effect (in the presence
of covariate differences and treatment effect heterogeneity). As we treat the selected CATE
models as nuisance parameters, we do not inspect them directly. We do see, though, that the
size of the CATE model is much smaller than 72.

As the CATE procedure estimates treatment effect differences excluding the training data,
for complete reference we replicate the previous treatment effect approaches (the simple ATE
comparison and the reweighting approaching) using the same subsample in Appendix Tables 7

7There is also a subtle multiple testing issue as the data from each country are used multiple times.
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and 8. They are qualitatively similar. In the simple ATE comparison, two of the configurations
had statistically significant differences in the ATE at p < 0.05. In the reweighting approach, one
configuration had statistically different outcomes for control units and another had statistically
different outcomes for the treated units.

3.2.4 Extrapolation

One benefit of constructing a regression-based CATE model is that we can now easily provide
a method to assess external validity in new settings even in the presence of treatment effect
heterogeneity and differing covariate distributions. With the reweighting approach, to assess
external validity on a new setting, one needs access to the original data in order to estimate the
Sample-prediction model (Equation 2) to derive the weights. Our CATE-based approach avoids
this; all that is needed are the estimates of the CATE model.

For our data, we now consider all three countries as the Sample (any new setting would be
the Population) and conduct steps 1-3 of Algorithm 1. This yields the selected CATE variables,
X̃∗ and Sample CATE estimates β̂S,X̃∗ and the associate sub-matrix V̂S,β of the overall estimator
variance-covariance matrix. These are show in Tables 10 and 11.

On a new setting (Population) one can then use Algorithm 2 to extrapolate what the ATE
would be expected and test whether the original treatment effect generalizes:

Algorithm 2 ATE extrapolation and test of generalization

1. Calculate the Population’s average values for X̃∗P . Call this rP .

2. The estimate of the ATE using extrapolation in the Population is then β̂P,Ext = r′P β̂S,X̃∗ .

3. Construct confidence intervals for this new ATE using the standard Wald test for linear
combinations of coefficients, V ar(β̂P,Ext) = r′P V̂S,βrP .

4. Estimate the ATE in the Population directly, β̂P,Dir.

5. If β̂P,Dir is outside the confidence interval β̂P,Ext, then this implies a failure of generalization
in this case.

3.2.5 Effect of Trimming

We note that the preceding treatment effect estimations was conditional on trimming observations
that had values of key covariates outside the bounds of the countries. We check if our results
are robust to inclusion of these observations in two ways. For both checks, we will need to
compare estimated coefficient vectors across sample trimming methods. We therefore hold fixed
the selected CATE variables and consider the initially trimmed observations as part of the
“estimation” subset of the data. First, we check if the estimated CATE coefficients β̂X̃ pooling all
three countries changes with the inclusion of the initially trimmed observations. A joint test of
the difference in coefficients yields a p-value of 0.89. Second, we check if Algorithm 1 still yields
an insignificant result from the joint test of the sample-interacted CATE coefficients. Results are
shown in Appendix Table 9, where we see that we still do not reject that overall country-specific
CATE changes across countries are zero. Given this, we conclude that the effects in Galiani et al.
(2017) generalizes, regardless of sample trimming.
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Table 6: Setting-interacted CATE
(1) (2) (3)
UY ES offset MX offset

Treatment -0.546 0.612 0.820
(0.419) (0.598) (0.570)

Treatment x Head of HH Educ. 0.0874** -0.00557 -0.0580
(0.0352) (0.0525) (0.0464)

Treatment x Head of HH Female 0.0540 -0.182 -0.100
(0.273) (0.445) (0.346)

Treatment x Head of HH Age 0.0111 0.00521 -0.0109
(0.00831) (0.0110) (0.0110)

Treatment x Z-score Satisfaction (Baseline) -0.0839 -0.0198 0.0503
(0.0615) (0.0936) (0.0724)

Treatment x HH Asset value/capita Sq. 0.00000420 -0.00000361 -0.00000281
(0.00000481) (0.00000499) (0.00000519)

Treatment x Head of HH Educ. x Z-score Satisfaction (Baseline) 0.0116 -0.0109 -0.0105
(0.00852) (0.0118) (0.0106)

Treatment x Head of HH Female x HH Asset value/capita 0.0000221 -0.000210 0.00112
(0.00242) (0.00278) (0.00296)

Treatment x Head of HH Age x Z-score Housing quality (Baseline) 0.0000367 0.000394 0.000221
(0.00166) (0.00242) (0.00202)

Treatment x HH Asset value/capita x Z-score Housing quality (Base-
line)

-0.000708 0.000991 0.000123

(0.000454) (0.000623) (0.000591)
Treatment x HH Asset value/capita x Z-score Housing investment
(Baseline)

-0.000545 -0.000126 -0.0000767

(0.000383) (0.000625) (0.000554)
Treatment x HH Income/capita x Z-score Housing quality (Baseline) 0.0000724 -0.00218 -0.00110

(0.000579) (0.00134) (0.000910)
Treatment x HH Income/capita x Z-score Satisfaction (Baseline) -0.0000880 0.00335** 0.000297

(0.000438) (0.00166) (0.000543)
Treatment x Z-score Housing quality (Baseline) x Z-score Housing
investment (Bas

0.00749 0.0207 0.0165

(0.0216) (0.0386) (0.0311)
Treatment x Z-score Housing investment (Baseline) x Head of HH
Educ.

-0.0198** 0.0302 0.0200

(0.0100) (0.0203) (0.0177)
Treatment x Z-score Housing investment (Baseline) x Head of HH
Female

0.104 -0.0216 -0.0236

(0.0807) (0.137) (0.114)
Treatment x Z-score Housing investment (Baseline) x Z-score Satis-
faction (Baseli

-0.00205 0.00833 -0.0139

(0.0149) (0.0241) (0.0183)
Observations 905
R2 0.339
p-val no CATE difference 0.243
Outcome is Satisfaction Index and statistics are coefficient and (standard error). Test-sample only.
Omitting non-sample-interacted coefficients.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

The three columns report coefficients from a single (setting-interacted CATE) model. Only
CATE coefficients are shown. The UY column contains the base coefficients and the ES and MX
offset columns report the coefficient for those same variables interacted with dummy variables

for whether the observation was in that country.
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4 Conclusion
In this paper we evaluate various strategies for assessing external validity (EV) of treatment
effects estimates and apply them to data from an RCT that was conducted across three countries
(Galiani et al., 2017). This study found a strong and statistically significant effect across all
three countries of housing upgrades on a summary index of respondent’s satisfaction with their
housing situation. When we apply the single-setting EV measures of Bo and Galiani (2021) to
each country individually, the results suggest that the treatment effects is fairly generalizable,
though in two of the countries it may not generalize for large shifts in the covariates. As there is
a large difference in several covariates across the countries, this becomes quite important when
we evaluate EV procedures that compare across countries.

We evaluate two ways of controlling for changes in the covariate distribution that assessing
if there is a common conditional average treatment effect (CATE) or if the treatment effects
fundamentally differ. Results from the reweighting procedure of Hotz et al. (2005) suggests
that the treatment effects do differ across countries. We show that this procedure can yield
false-positives in the presence of covariate differences, which we have in this data.

To address this short-coming, we provide a method that allows for modelling the CATE
directly. To allow for a tractable regression-based model that can be used for statistical tests, we
develop a new machine-learning (ML) based method that uses the Group Lasso (Yuan and Lin,
2006) to select a possibly non-linear the CATE model. We note that, while we model the CATE
directly, we view it as a nuisance parameter in the service of testing for external validity. We do
not, therefore, need to estimate the true CATE, just a reasonable approximation, which is what
the ML algorithm allows us to do.

When we apply our procedure to the data and test for differences in the CATE across
countries, the results are no longer statistically different, indicating that the procedure was able
to find a common treatment effect in the presences of covariate differences. We view these results
on this dataset as compatible with the results of Bo and Galiani (2021). We then show that this
regression-based CATE model allows researchers in new settings to predict the treatment effect
and confidence intervals in a new setting without access to the original data.
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A Appendix

Figure 4: Simulations of False Positives by estimation method (using true propensity)
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Diagnostics from simulations according to Equation 5. “Prop. extreme pr Score Diff” notes the
proportion of simulations that had standardized propensity score differences of at least 0.25.
The “Type I Error” plots are for the proportion of simulations where that method found a

statistically different treatment effect between the Sample and Population. No sample trimming
was used for either method. In this figure the reweighting method uses the true propensity score

rather then the estimated one.
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Table 7: ATE Sample-interacted (excl. Sample training data)
(1)

Treatment × Is ES 0.689**
(0.178)

Treatment × Is MX 0.116
(0.128)

Observations 905
R2 0.251
p-val no ATE difference 0.000361
Outcome is Satisfaction Index and and statistics are coefficient and (standard error). Excludes training data for Sample.
Omitting non-sample-interacted coefficients.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

Table 8: Reweighted pooled treatment-effect estimation
(1) (2) (3)

Treatment 1.111** 0.326** 0.354**
(0.160) (0.105) (0.0625)

Is Sample 0.154 -0.563** 0.956**
(0.271) (0.239) (0.386)

Is Sample x Treatment -0.764** 0.260** 0.158
(0.174) (0.129) (0.108)

Observations 1312 1295 1358
Sample UY+MX ES+MX ES+UY
Population ES UY MX
Outcome is Satisfaction Index and statistics are coefficient and (standard error). Models include baseline controls.
Exludes Sample training data.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)
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Table 9: Sample-interacted CATE (including initially trimmed obs.)
(1) (2) (3)
UY ES offset MX offset

Treatment -0.228 0.576 0.382
(0.333) (0.505) (0.455)

Treatment x Head of HH Educ. 0.0557* 0.00230 -0.0261
(0.0311) (0.0492) (0.0400)

Treatment x Head of HH Female 0.154 0.0152 -0.107
(0.247) (0.379) (0.302)

Treatment x Head of HH Age 0.00878 0.00328 -0.00896
(0.00662) (0.00940) (0.00856)

Treatment x Z-score Satisfaction (Baseline) -0.0809 0.00661 0.0754
(0.0563) (0.0835) (0.0637)

Treatment x HH Asset value/capita Sq. 0.00000289 -0.00000261 -0.00000316
(0.00000375) (0.00000377) (0.00000378)

Treatment x Head of HH Educ. x Z-score Satisfaction (Baseline) 0.0122 -0.0114 -0.0125
(0.00768) (0.0114) (0.00930)

Treatment x Head of HH Female x HH Asset value/capita -0.000905 0.000425 0.00251
(0.00210) (0.00223) (0.00228)

Treatment x Head of HH Age x Z-score Housing quality (Baseline) -0.000216 0.00169 0.000490
(0.00131) (0.00187) (0.00150)

Treatment x HH Asset value/capita x Z-score Housing quality (Base-
line)

-0.000593 0.000717 0.000213

(0.000370) (0.000475) (0.000410)
Treatment x HH Asset value/capita x Z-score Housing investment
(Baseline)

0.0000260 -0.000362 0.0000214

(0.000260) (0.000409) (0.000354)
Treatment x HH Income/capita x Z-score Housing quality (Baseline) -0.0000121 -0.00140* -0.000462*

(0.000146) (0.000783) (0.000260)
Treatment x HH Income/capita x Z-score Satisfaction (Baseline) -0.0000985 0.00181 0.000254

(0.000133) (0.00112) (0.000235)
Treatment x Z-score Housing quality (Baseline) x Z-score Housing
investment (Bas

0.0113 0.0273 -0.0177

(0.0117) (0.0193) (0.0167)
Treatment x Z-score Housing investment (Baseline) x Head of HH
Educ.

-0.0141** 0.0265** 0.0114

(0.00631) (0.0127) (0.0118)
Treatment x Z-score Housing investment (Baseline) x Head of HH
Female

0.0176 0.0710 0.0632

(0.0559) (0.0911) (0.0762)
Treatment x Z-score Housing investment (Baseline) x Z-score Satis-
faction (Baseli

-0.00736 0.00663 -0.00246

(0.00677) (0.0135) (0.0107)
Observations 1291 1291 1291
R2 0.321 0.321 0.321
p-val no CATE difference 0.243 0.243
Outcome is Satisfaction Index and statistics are coefficient and (standard error). Test-sample only.
Omitting non-sample-interacted coefficients.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

The three columns report coefficients from a single (setting-interacted CATE) model. Only
CATE coefficients are shown. The UY column contains the base coefficients and the ES and MX
offset columns report the coefficient for those same variables interacted with dummy variables

for whether the observation was in that country.
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Table 10: CATE Coefficients
(1)

Treatment -0.1055
Treatment x Head of HH Educ. 0.03306
Treatment x Head of HH Female 0.1399
Treatment x Head of HH Age 0.008237
Treatment x Z-score Satisfaction (Baseline) -0.02852
Treatment x HH Asset value/capita Sq. 2.759e-07
Treatment x Head of HH Educ. x Z-score Satisfaction (Baseline) -0.0007141
Treatment x Head of HH Female x HH Asset value/capita 0.0006955
Treatment x Head of HH Age x Z-score Housing quality (Baseline) -0.001679
Treatment x HH Asset value/capita x Z-score Housing quality (Baseline) -0.0003103
Treatment x HH Asset value/capita x Z-score Housing investment (Baseline) -0.0002562
Treatment x HH Income/capita x Z-score Housing quality (Baseline) 0.0001504
Treatment x HH Income/capita x Z-score Satisfaction (Baseline) 0.0001566
Treatment x Z-score Housing quality (Baseline) x Z-score Housing investment (Bas 0.01394
Treatment x Z-score Housing investment (Baseline) x Head of HH Educ. -0.01247
Treatment x Z-score Housing investment (Baseline) x Head of HH Female 0.07701
Treatment x Z-score Housing investment (Baseline) x Z-score Satisfaction (Baseli 0.001989
Observations 905
Outcome is Satisfaction Index. Stats=b. Test-sample only.

Variables align with those in Table 11.

Table 11: CATE Variance-Covariance Sub-Matrix
V_complex_lmt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 .0527297 -.0023474 -.0125147 -.0007591 .0001889 -1.30e-08 -.0000424 .0000143 -1.95e-06 -1.20e-07 -2.76e-06 -3.08e-06 -5.15e-06 -.0002755 .0000327 .0003476 .0000456
2 -.0023474 .000321 -.0001757 .0000268 -.0000413 9.78e-10 .0000101 -4.19e-07 -4.27e-07 -7.07e-08 1.83e-07 2.74e-07 5.39e-07 .0000182 -.000032 .0000669 -6.26e-06
3 -.0125147 -.0001757 .0168428 .0000519 .0001028 3.20e-08 -.0000253 -.0000385 -5.15e-06 1.03e-06 -1.67e-06 2.39e-06 4.34e-07 .0000476 .0001501 -.0007106 -.0000375
4 -.0007591 .0000268 .0000519 .0000155 -4.53e-06 6.94e-11 1.05e-06 -1.93e-07 1.14e-07 -1.55e-08 4.50e-08 1.97e-08 3.38e-08 9.45e-07 -1.52e-06 6.36e-06 2.99e-07
5 .0001889 -.0000413 .0001028 -4.53e-06 .0007343 1.05e-09 -.0000783 -7.83e-07 1.35e-06 2.44e-07 -4.74e-07 -1.24e-06 -4.05e-06 .000018 7.62e-06 .000027 .0000346
6 -1.30e-08 9.78e-10 3.20e-08 6.94e-11 1.05e-09 8.01e-13 -1.98e-10 -7.26e-10 -4.88e-11 2.39e-11 -3.77e-11 2.11e-11 4.07e-12 -1.41e-09 2.55e-10 2.61e-09 -6.99e-10
7 -.0000424 .0000101 -.0000253 1.05e-06 -.0000783 -1.98e-10 .0000178 1.86e-07 -9.16e-08 -4.69e-08 1.03e-07 2.03e-08 1.56e-07 -1.21e-06 -1.78e-06 4.19e-06 -6.06e-06
8 .0000143 -4.19e-07 -.0000385 -1.93e-07 -7.83e-07 -7.26e-10 1.86e-07 8.05e-07 3.37e-08 -8.83e-09 4.20e-08 -2.23e-08 -3.88e-09 1.17e-06 -3.28e-07 -2.64e-06 5.31e-07
9 -1.95e-06 -4.27e-07 -5.15e-06 1.14e-07 1.35e-06 -4.88e-11 -9.16e-08 3.37e-08 4.25e-07 -3.79e-08 8.16e-09 -1.04e-07 -1.42e-08 2.11e-07 -1.92e-07 -4.17e-07 3.72e-07
10 -1.20e-07 -7.07e-08 1.03e-06 -1.55e-08 2.44e-07 2.39e-11 -4.69e-08 -8.83e-09 -3.79e-08 4.60e-08 -8.26e-09 -9.49e-09 -1.46e-09 -8.25e-08 1.28e-07 1.70e-07 -4.97e-08
11 -2.76e-06 1.83e-07 -1.67e-06 4.50e-08 -4.74e-07 -3.77e-11 1.03e-07 4.20e-08 8.16e-09 -8.26e-09 3.79e-08 -2.51e-09 -2.40e-10 2.01e-07 -2.00e-07 -1.15e-06 -1.96e-07
12 -3.08e-06 2.74e-07 2.39e-06 1.97e-08 -1.24e-06 2.11e-11 2.03e-08 -2.23e-08 -1.04e-07 -9.49e-09 -2.51e-09 1.24e-07 1.48e-08 -6.13e-07 8.47e-09 4.65e-09 -8.62e-08
13 -5.15e-06 5.39e-07 4.34e-07 3.38e-08 -4.05e-06 4.07e-12 1.56e-07 -3.88e-09 -1.42e-08 -1.46e-09 -2.40e-10 1.48e-08 6.33e-08 -8.29e-08 4.04e-09 -8.12e-07 -3.64e-07
14 -.0002755 .0000182 .0000476 9.45e-07 .000018 -1.41e-09 -1.21e-06 1.17e-06 2.11e-07 -8.25e-08 2.01e-07 -6.13e-07 -8.29e-08 .0001199 -.0000121 -6.59e-06 -1.27e-06
15 .0000327 -.000032 .0001501 -1.52e-06 7.62e-06 2.55e-10 -1.78e-06 -3.28e-07 -1.92e-07 1.28e-07 -2.00e-07 8.47e-09 4.04e-09 -.0000121 .0000343 -.0001466 3.10e-06
16 .0003476 .0000669 -.0007106 6.36e-06 .000027 2.61e-09 4.19e-06 -2.64e-06 -4.17e-07 1.70e-07 -1.15e-06 4.65e-09 -8.12e-07 -6.59e-06 -.0001466 .0016716 2.12e-06
17 .0000456 -6.26e-06 -.0000375 2.99e-07 .0000346 -6.99e-10 -6.06e-06 5.31e-07 3.72e-07 -4.97e-08 -1.96e-07 -8.62e-08 -3.64e-07 -1.27e-06 3.10e-06 2.12e-06 .0000555

Variables align with those in Table 10.
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