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1 Introduction

The production of health lies at the core of health economics (e.g., Grossman 1972), yet with

the exception of mortality, the study of health has been hampered by a lack of consistently

and comprehensively measured data on health outcomes. As a result, instead of focusing on

health outputs, most research in health economics has focused on inputs into the production

of health – such as health-care utilization and health behavior – where extensive data is

available.

Nursing homes represent an important exception to the general paucity of data on

health. For decades, virtually all nursing homes in the United States have been required

to administer detailed health assessments to all of their patients at the time of admission,

and at regular intervals during their stay. These assessments capture multiple different

measures of each patient’s physical health, mental health, daily functioning, and cognitive

capacity. They present a rare opportunity to study the health production process across

health-care providers, and to estimate potential gains from reallocation of patients.

In this paper, we use this rich data on health outcomes at nursing homes to construct

measures of patient health and estimate nursing home value added in improving these health

measures for about 14,000 nursing homes. Our estimation approach is designed to account

for potential bias from endogenous selection of patients into nursing homes and endogenous

timing of when patients are discharged. We use the estimates to examine heterogeneity in

nursing home quality across and within markets.

The nursing home sector is an important setting for assessing the production of health,

because of its size and because of widespread concerns about the quality of nursing home

care. In 2016, there were over 15,000 certified nursing homes in the U.S., providing care

to over 1.3 million patients at an annual cost of $160 billion, or roughly 5% of national

health expenditures (Harrington et al. 2018; CMS 2019b). For decades, policymakers and

the public have expressed concerns about the quality of nursing home care (e.g., Rau 2018;

Rau and Lucas 2018; Goldstein and Gebeloff 2019; Jacobs and Richtel 2019) and about the

ability of patients (or their caregivers) to assess this quality (Wunderlich et al. 1996; GAO

2016, 2019). To help patients make choices, the Centers for Medicare and Medicaid Services

(CMS) construct ratings of each nursing home that are widely used (CMS 2008a; GAO 2016)

but also widely criticized (Thomas 2014; Rau 2018; Ryskina et al. 2018; Silver-Greenberg

and Gebeloff 2021).

We focus on Medicare patients, for whom nursing homes are intended to provide

short-term care to aid in the recovery from a hospitalization or medical condition.

1



Specifically, we focus on the approximately 85% of Medicare nursing home patients with

coverage from Traditional Medicare (henceforth “Medicare”), as opposed to coverage from a

private Medicare Advantage plan. In 2016, about one fifth of hospitalized Medicare patients

were discharged to nursing homes at an annual cost to Medicare of nearly $30 billion, or

about 8% of overall Medicare spending (MedPAC 2018).

Estimating a nursing home’s value added requires overcoming two econometric challenges,

which we do by following approaches developed by the prior literature. First, there is

potential non-random sorting of patients to nursing homes, even conditional on the rich

set of observable patient characteristics at admission. This problem of “selection in” is a

standard one in the education literature on value added, and we follow the standard approach

of constructing a control function to address it (Dubin and McFadden 1984; Abdulkadiroğlu

et al. 2020). We use distance between the patient’s residence and the nursing homes in their

market as excluded instruments. We specify a model in which distance shifts nursing home

choice but does not affect value added except via the choice of nursing home. Conditional

on the validity of our instrument and our functional form assumptions, this approach allows

us to control for unobserved determinants of demand that could otherwise bias our value

added estimates.

A second challenge in our setting is that patients may leave nursing homes before their

30-day assessment, either because they recover and return to the community (which we refer

to as “discharged downstream”) or because their health worsens and they are sent back to the

hospital, to a hospice, or they die (“discharged upstream”). We model this “selection out”

with an explicit model of the nursing home’s discharge decision that is similar in spirit to

Heckman (1979). Our SNF-level parameterization of downstream discharge accommodates

any mechanism that creates variation across SNFs in discharge propensities for patients with

similar health. This could include differences in clinical practice styles or differences in the

extent of strategic discharge (Hackmann et al. July 2024) among other factors.

Our estimate of nursing home value added can be interpreted as the average improvement

in a patient’s health between the assessment at admission and the one taken 30 days later. As

noted, an attraction of our setting is that we can analyze value-added for any of the many

different health measures recorded in nursing home assessments, either individually or in

combination. For our baseline analysis, we combine all the consistently and comprehensively

recorded health measures in a one-dimensional “health index” that is a weighted average of

the individual measures, where the weights reflect the measure’s importance in predicting

whether the patient is discharged home to the community within a week of their 30-day
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assessment. We consider our baseline measure appealing given that, as mentioned above,

the purpose of Medicare-covered nursing home care is to help the patient recover to the point

where they can be discharged home. However, it is straightforward to use our approach to

estimate value added for other aggregations of the individual health measures. To illustrate

this, we also use our framework to estimate and present SNFs’ value added in improving

several alternative health indices.

We estimate our value added model by maximum likelihood using data from 2011 to

2016 on health assessments for about 6 million Medicare patients at about 14,000 different

nursing homes.1 Our results indicate substantial heterogeneity in value added. While the

(patient-weighted) average nursing home increases the health index – i.e., the probability of

community discharge within a week – by 4.9 percentage points between admission and 30

days, there is a 5.6 percentage point difference in value added between the 90th and 10th

percentile nursing home. To put that in perspective, consider that in the cross section of

admitted patients, a 1 percentage point higher health index is associated with approximately

1 fewer day in the nursing home. This means that the 5.6 percentage point difference in

value added between the 90th and 10th percentile nursing home is roughly equivalent to a

nursing home discharging a patient at a given health level almost an entire week sooner, a

one-quarter reduction compared to the median length of stay in our sample. Given that a

nursing home costs Medicare about $470 per day (MedPAC 2018), this means that a 90th

percentile value-added nursing home can save Medicare more than $2,500 per patient relative

to the 10th percentile nursing home. Interestingly, our estimates of nursing homes’ value

added are only weakly correlated with their CMS five-star rating (correlation of 0.23).

We find considerable variation in (patient-weighted) nursing home value added both

across and within geographic markets. Value added is on average 2.8 percentage points

higher in the 90th percentile market than in the 10th percentile market; nursing homes

in markets in the South tend to have substantially lower value added. Within markets,

the average difference between the 90th and 10th percentile nursing home is 4.9 percentage

points, almost as large as the corresponding nationwide difference (of 5.6). Even in markets

in the top decile of average value added, close to 25% of patients are in nursing homes

that perform below the national median. While the exact estimates naturally vary, our

general finding of considerable variation in value added both across and within markets is

robust to measuring value added using different health indices (such as the extent of the

patients’ limitations to activities of daily living). The substantial within- and across-market

1The value-added measures for each nursing home are available to researchers on our individual web
pages.
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heterogeneity also persists when we separately estimate value added using our baseline health

measure for different groups of patients based on their age or their socioeconomic status.

We also find that SNF value added for different patient demographic groups are highly

(positively) correlated within SNF, which suggests that our baseline specification which

assumes a one-dimensional metric for SNF value added across patients may not be a bad

approximation.

Our focus on geographic variation in health production complements an influential body

of research associated with the Dartmouth Atlas, which has documented substantial regional

variation in Medicare spending and health-care utilization without corresponding variation

in mortality (e.g., Congressional Budget Office 2008; Gawande 2009; Skinner 2011; Institute

of Medicine 2013). Variation in spending for post-acute care (mainly nursing homes) explains

a substantial share of the spending variation.2 Relative to this existing literature, we are

able to use rich, consistently measured data on (non-mortality) health outcomes to estimate

and examine heterogeneity in health-care quality. Our finding of substantial heterogeneity

in quality across markets suggests that there may be scope to improve the quality of care in

low-value-added regions. Moreover, our findings of substantial variation in value added within

markets is particularly encouraging, since there are likely more policy levers for encouraging

reallocating patients within markets than across them.

In addition to the Dartmouth Atlas literature, our paper relates to several other distinct

lines of work. It complements the literature on value added for hospitals (e.g., Geweke

et al. 2003; Chandra et al. 2016; Doyle et al. 2019; Hull February 5, 2018) and nursing

homes (e.g., Olenski and Sacher April 2024) which, like most of the prior health literature, has

focused on mortality as the single outcome. Our paper also contributes to a growing literature

in health economics on nursing home behavior (e.g., Grabowski et al. 2008; Hackmann

2019; Gandhi 2020; Gandhi et al. 2021; Gupta et al. November 2023; Hackmann et al. July

2024) and a literature in health services research that examines cross-sectional variation

in nursing home process measures and outcomes (e.g., Castle and Ferguson 2010; Morris

et al. 2018). Finally, our econometric approach connects to a well-developed literature on

teacher and school value added (e.g., Todd and Wolpin 2003; Chetty et al. 2014a, 2014b;

Koedel et al. 2015; Abdulkadiroğlu et al. 2020). This education literature has mainly focused

on bias from “selection in,” while in our setting both “selection in” and “selection out” are

prominent concerns.

The rest of the paper proceeds as follows. Section 2 provides background on our setting

2Specifically, despite accounting for only 16% of Medicare spending, post-acute care accounts for 73% of
the geographic variation in Medicare spending (Institute of Medicine 2013).
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and data. In Section 3 we present our econometric model of value added. Section 4 discusses

implementation and estimation, and Section 5 presents the main results. In Section 6 we

present results from alternative specifications and briefly compare our estimates to other

measures of nursing home quality (including the widely-used CMS five-star ratings). Section

7 concludes. All appendix material referenced in the paper is available in Einav et al. (2024).

2 Setting and Data

2.1 Institutional Setting

Nursing homes provide both short-term care to patients recovering from a hospitalization or

illness, and long-term care to patients in need of ongoing assistance with their daily living.

Most short-term patients are covered by Medicare, which pays for short-term nursing and

rehabilitation services for Medicare patients recovering from a surgical procedure (e.g., hip

replacement) or a health event (e.g., stroke). Crucially, Medicare coverage is predicated on

the expectation that the patient is on a path to recovery and return to the community (CMS

2019a), which is why we focus on discharge to the community as a key marker of “success”

for our baseline health index.

Patients who need ongoing assistance typically receive nursing home coverage from

Medicaid. Some patients are initially admitted with Medicaid coverage, but many others

transition to Medicaid during their stay. While over 60% of nursing home patients are covered

by Medicare at the time of admission,3 only 14% of nursing home patients have Medicare as

their primary payer at a given point in time. By contrast, 60% of nursing home patients have

Medicaid as their primary payer at a given point in time, because Medicaid patients have

much longer stays than Medicare patients. The remainder are covered by private insurance

or pay out of pocket (Harrington et al. 2018).

Almost all nursing homes (96% of beds) are certified to care for both Medicare and

Medicaid patients (Harrington et al. 2018). Nursing homes that are certified to treat

Medicare patients are referred to by Medicare as Skilled Nursing Facilities (SNFs, pronounced

“sniffs”), a terminology we will adopt for the rest of the paper.

During our 2011-2016 study period, Medicare reimbursed SNFs at a prospective daily

rate, with the rate depending on both the SNF’s geographic location and a measure of the

patient’s health at admission derived from health assessments (MedPAC 2021). Starting at

3Authors’ calculation using data described in Section 2.2.
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the 21st day in the SNF, patients must pay daily co-pays (either directly or via supplemental

coverage), and after 100 days Medicare coverage ends.

To be eligible for Medicare or Medicaid reimbursement, a SNF must comply with

federal requirements regarding the civil rights and ethical treatment of patients, as well

as the health care services they provide (42 C.F.R. §483 2016). States conduct an

initial certification of a SNF, after which the SNF must be re-certified annually. During

(re-)certification, a state inspector collects (facility-reported) data on staffing levels and

nursing home characteristics (e.g., number of beds, occupancy rates, and ownership type) and

records any quality deficiencies that are identified during inspection (CMS 2018; Harrington

et al. 2018; LTCFocus 2024). Certified SNFs are also required to assess their patients’ health

at regularly defined intervals during their stay, producing the health assessment data we use

below (CMS 2017).

The information collected during re-certification is aggregated by CMS into a “five-star”

rating system. These ratings, which have been constructed since 2008, are then publicly

posted on the Nursing Home Compare website. Patients and their families are encouraged

to use the five-star ratings in choosing a facility, and many do (CMS 2008a; GAO 2016);

the ratings are also used by insurers for determining their provider networks, and by federal

regulators deciding on loans to facilities (12 U.S.C. §1715w 2014; CMS 2024a). Extremely

poorly-performing SNFs – fewer than 0.1% of facilities – are subject to twice as many

inspections, as well as financial penalties and potential termination (CMS 2022).

2.2 Data Sources

Our primary data source is the Long-Term Care “Minimum Data Set” for Resident

Assessment and Care Screening (hereafter, MDS) (CMS 2024b). These data contain a series

of federally mandated, standardized patient assessments that track the health status of all

patients in Medicare and Medicaid certified nursing homes. The assessments were developed

by a consortium of professionals in the late 1980s in response to a congressional mandate to

create a national resident assessment system for nursing homes (Morris et al. 1990). These

data have since been widely used by researchers studying the economics of nursing homes

(e.g., Grabowski et al. 2008; Cornell et al. 2019; Hackmann 2019; Gandhi 2020; Gupta

et al. November 2023; Hackmann et al. July 2024). The assessment form has been revised

several times since it was first created. We use version 3.0, which was in effect during our

entire 2011-2016 study period.

The MDS covers all nursing home patients, not just the Medicare patients on whom we
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focus. Assessments are required for all patients at admission and at discharge. In addition,

during our study period, assessments were also required for Medicare-covered patients at

days 14, 30, 60, and 90.4 The rich, longitudinal information that the assessments provide

on patient physical health, mental health, and cognition will form the backbone of our

measurement of value added. The MDS also provides basic demographics (age, race, gender,

and marital status), length of stay, and discharge destination.

We supplement the MDS with additional data on Medicare patients and on nursing

homes. We merge the MDS with Medicare data that provides the patient’s 5-digit zip

code of residence, an indicator for dual eligibility for Medicaid (a proxy for low income),

separate indicators for 27 different chronic conditions at the start of the year of their SNF

admission, an indicator for discharge to the SNF from an acute care hospital, and diagnoses

from the prior hospital admission if the patient was discharged directly from a hospital.5 We

also use facility-level data from the OSCAR/CASPER system, created during the annual

re-certification process, to measure the SNF’s number of beds, occupancy rate, for-profit

status, and whether the SNF is based within a hospital (LTCFocus 2024). Lastly, we used a

variety of geographic crosswalks to match zipcodes with various other geographic identifiers

(HUD 2024; NBER 2024; Dartmouth Atlas 2024).

2.3 Sample Construction and Summary Statistics

We start with the full sample of all patient stays at SNFs during the five fiscal years that begin

on October 1, 2011 and end on September 30, 2016. The start of the period corresponds

to the start of a new schedule for required assessments. The data contain 22.5 million

patient-stays, admitted to 16,355 distinct SNFs. We restrict attention to patients who, at

the time of their SNF admission, are at least 65 years old and whose stay is covered by

Traditional Medicare. This leaves 10.7 million patient-stays at 16,306 distinct SNFs.

We then make several additional sample restrictions, which bring our final analysis sample

to 6.2 million patient-stays at 13,996 distinct SNFs. Appendix Table A.I provides more detail

4Specifically, initial assessments must be conducted by day 8, day-14 assessments must be conducted
during days 13-18, day-30 assessments during days 27-33, day-60 assessments during days 57-63, and day-90
assessments during days 87-93.

5The MDS does not include information on whether the patient is covered by Medicare. We use a
crosswalk between the internal resident ID in the MDS and the Medicare beneficiary ID in the Medicare data
to identify patients covered by Medicare at admission to the SNF. We use the Master Beneficiary Summary
File to provide additional demographics, the Chronic Conditions file for chronic conditions diagnosed in the
year of SNF admission, and the MedPAR file to identify whether the patient had a prior hospital admission
and which of the 241 Clinical Classifications Software (CCS) diagnoses applied for that admission (CMS
2024c, 2024d).
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about the number of observations that are dropped due to each of these restrictions. First,

we restrict attention to a patient’s first stay within an episode of nursing home care; this

accounts for the vast majority of the sample decline.6 Second, we require that the patient

is admitted to the SNF when discharged from an acute-care hospital stay with a diagnosis

code from that hospital stay (which about 91% of the remaining sample does). Third, we

require that the patient has a 5-day health assessment (as defined in Appendix A). Finally,

to ensure an adequate sample size for estimating value added, we require that the SNF has

at least 50 stays that meet our sample requirements over the five-year period.

Table I presents summary statistics on the patients in the sample (column (1)), as well

as the standard deviation of the SNF-level average across SNFs, with each SNF weighted by

the number of patient-stays (column (2)). The average patient is 81 years old, almost two

thirds are female, one third are married, and 86% are white. Almost one fifth of patients are

dually eligible for Medicaid (a marker of low income), and the average hospital stay prior

to admission lasts 7.6 days. The variation across patients in race and Medicaid status has a

considerable SNF-specific component (see column (2)).

Panel B presents statistics on length of stay. The median length of stay is 22 days

(not shown), but some patients stay for much longer; the average length of stay is 45 days.

Almost 60% of the patients in our sample are discharged from the SNF prior to their 30-day

assessment, while a non-trivial share (8%) remain in the SNF for more than 90 days.

Panel C shows discharge destinations for the approximately three fifths of our sample

who are discharged prior to their 30-day assessment. Nearly two thirds are discharged

“downstream” (i.e. to the community), which is the good outcome, and about one third are

discharged “upstream” (most of whom are sent back to the hospital).

Figure 1 shows the movement of patients through our environment. Every patient in our

sample receives an initial health assessment. Our value-added measure, described below, is

based on the change in health between the initial assessment and the assessment conducted

at 30 days. We chose the 30-day assessment as the endpoint because, relative to the 14-,

6A stay is defined as a set of contiguous days within a facility between admission and discharge or
death. To account for patients with brief interruptions in their nursing home stay, CMS defines an episode
of nursing home care as a period of time that spans one or more stays and ends either when the patient (i)
is discharged without a return anticipated, or (ii) is discharged and does not return within 30 days, or (iii)
dies; although in principle facilities could game whether or not a return is anticipated, in practice, of the over
3.7 million patients in our sample that are discharged to the community with no anticipated return, only
about 56,500 (1.5%) of these patients actually return within 30 days of discharge. About 85% of Medicare
patients admitted to a SNF have an episode consisting of a single stay. The stay is the more natural unit of
analysis when measuring health changes, since time between stays can be of varying length and Medicare’s
requirements for patient assessment are based on days within a stay (although Medicare cost-sharing rules
are based on the cumulative number of days to date across stays within an episode) (CMS 2016).
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60- and 90-day assessments, it seemed to strike a balance between being long enough after

admission for SNFs to have had the opportunity to have an effect and short enough that

there was still a significant share of patients at the SNF. Before the 30-day assessment,

36.8% of patients are discharged downstream, 19.8% are discharged upstream, and 3.1%

are discharged elsewhere, leaving 40.3% of patients in the SNF for the 30-day assessment.

Within a week of the 30-day assessment, 7.4% of patients are discharged downstream, 2.0%

are discharged upstream, and 0.6% are discharged elsewhere, leaving 30.3% of all patients

in the SNF one week after the 30-day assessment.

Table II reports summary statistics on our baseline sample of 13,996 SNFs. The average

SNF has just over 110 beds; the 5th percentile SNF has 40 beds and the 95th percentile

SNF has 210 beds. For most SNFs, occupancy rates hover around 80-90%, although there

is a small fraction with occupancy rates lower than 60%. More than two thirds of SNFs are

for-profit, which is similar to the rate elsewhere in the post-acute care sector (for example,

almost three quarters of long-term care hospitals are for-profit) but much higher than the rate

for acute-care hospitals (where fewer than one fifth are for-profit) (MedPAC 2020). About

4% of SNFs are located on the premises of a hospital. On average, our baseline sample

includes 446 patient admissions per SNF over our five-year sample period; the 5th-percentile

SNF has 65 admissions and the 95th-percentile SNF has more than a thousand.7

For computational tractability, we restrict the choice set of SNFs that each patient

considers, rather than allow each patient to choose across all SNFs in the US. We begin

with the standard market definition for hospital choice, namely the 306 Hospital Referral

Regions (HRRs).8 Each HRR is composed of one or more Hospital Service Areas (HSAs).

We then partition the 118 largest HRRs into smaller choice sets, which are geographically

connected HSAs within each HRR (see Appendix B for more details). These, along with the

188 smallest HRRs, yield a total of 655 choice sets, which we refer to as “sub-HRRs.” About

19% of SNF stays occur outside of the patient’s sub-HRR. The average sub-HRR has about

20 SNFs and 7,300 stays, and 5% of them have more than 40 SNFs.

7Recall that we require a minimum of 50 patient admissions as part of our sample restrictions, and
that our admission count only includes Medicare patients 65 and over, among other sample restrictions (see
Appendix Table A.I).

8HRRs are designed to approximate health-care markets for tertiary medical care, each containing at
least one hospital that performs operations on the heart and brain (Wennberg et al. 1998).
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2.4 Health Measures

The rich data from patient health assessments are a key feature of our setting. These

assessments are conducted by a nurse or an assessment team (42 C.F.R. §483 2016). We

draw on 109 health measures that are consistently recorded over our study period. Appendix

A explains how we selected these measures and describes them in more detail; Appendix

Table A.II provides the full set of measures and their complete definitions.

The 109 measures include a wide range of health outcomes. Many are physical health

measures, such as vomiting or falls; or physical limitations to activities of daily living – such as

walking, dressing, or toileting – that are measured on a 5-point (0-4) scale ranging from fully

independent (requiring no help or staff oversight at any time) to total dependence (requiring

full staff help every time during a 7-day period). Other categories of health measures include

those that deal with mental health, use of restraints, pain, use of treatment and equipment,

and interactions with others.

Table III lists a selected group of the 109 measures and provides summary statistics for

them at admission. It shows the mean and standard deviation across patient stays, and the

standard deviation across SNFs (weighted by patient stays).9

There is a great deal of variation across measures in the frequency of health problems.

For example, about two thirds of patients use a walker, about one third are taking

antidepressants, 9% are on anti-psychotics, and 2% are experiencing vomiting. The median

patient scores about 3 out of 4 in terms of activities of daily living for walking, dressing,

and toileting, meaning that for each of these activities they require extensive assistance but

are not totally dependent on the staff. There is considerable heterogeneity across patients

in these measures (column (2)). Although not as heterogeneous, there is also a non-trivial

variation in the averages of these measures across SNFs (column (3)). This across-SNF

heterogeneity highlights the importance of grappling with potential selection on initial health.

More broadly, the large number of measures underscores the need for combining these

measures into an interpretable health index. As we discuss in more detail below, our baseline

approach will be to construct an index guided by the SNF’s objectives for these patients,

which is to help them recover to the point where they can be discharged home. We will also

examine a number of alternative indices, which have different conceptual motivations and

exclude or change the relative weights on various health measures.

9The fourth column discusses how each measure is used in constructing our baseline health index; we
defer a discussion of this to Section 4.
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3 An Econometric Model of Nursing Home Value

Added

3.1 Defining Value Added

To fix ideas, consider a population of patients, each denoted by i, who are randomly assigned

to a set of SNFs, each denoted by j. Patients arrive at SNFs with baseline health described

by the index hi1 at the start of period 1 (initial assessment). We then observe health hi2 at

period 2 (30-day assessment) for all patients.

Given this setup, we define the value added of SNF j as αj in the equation

hi2 = αj + θhhi1 + x′iθx + εi, (1)

where hi1 controls for the effect of baseline health, xi is a vector of observable patient

demographics, and εi is a mean-zero i.i.d. error term. Thus, SNF value added, αj, can be

interpreted as the average improvement in health at SNF j between period 1 and period 2,

conditional on baseline health and patient characteristics.10 This conceptualization of value

added is very similar to that used in the education literature. For instance, teacher value

added in test scores is often based on a regression of test scores at the end of a year on

teacher fixed effects and lagged test scores.

While the specification may be familiar, it imposes several restrictions that are worth

noting. First, it assumes that αj is homogeneous across patients; this allows us to estimate

a single value added for each SNF. It is straightforward to estimate the model separately

for different groups of patients, and in Section 6 we will estimate the value-added model

separately for patients of different age groups and by whether the patient is dually eligible

for Medicaid (a proxy for being low-income). Second, it assumes that the serial correlation

in health (captured by θh) does not vary across SNFs. This assumption is needed for the

cross-SNF differences in αj to be interpretable; if we allowed θh to vary by SNF, then the

same value of αj would lead to different health improvements as a function of SNF-specific

θh, so we would not be able to characterize the health improvement across SNFs with αj

alone.

10In practice, we will estimate θh to be very close to 1 (0.965). As a result, our measure of SNF value
added effectively measures the average improvement in patient health between period 1 and period 2, and
we will use the terms “health improvement” and “value added” interchangeably in what follows.
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3.2 Key Challenges to Estimation

Estimating equation (1) for a given health measure would be straightforward if patients were

randomly assigned to SNFs and we observed health for all patients in periods 1 and 2. In

practice, neither of these conditions holds, and we explicitly address this in our econometric

approach.

First, patients are not randomly assigned to SNFs. If there is a correlation between

patient health improvements and SNF quality, then estimates of αj may be biased, although

the direction of this bias is unclear. For example, if savvy patients are more likely to choose

higher-quality SNFs and are also more likely to improve, this would bias upward the estimates

of αj for these high-quality SNFs, stretching the distribution of αj. Alternatively, if SNF

quality is particularly important for those who would not improve otherwise, estimates of

αj for high-quality SNFs would be biased downwards, compressing the distribution. We call

this issue “selection in,” and strive to address it by using the patient’s distance to different

SNFs as instrumental variables that shift SNF choice.

Second, some patients leave the SNF before receiving a follow-up health assessment.

Specifically, three fifths of patients are discharged prior to their period 2 (30-day) health

assessment, with about two thirds of them discharged “downstream” to the community, and

one third discharged “upstream,” meaning they either are sent to a hospital or hospice or

they die at the SNF (recall Figure 1).11 If there is a correlation between patient health

improvements and SNF discharge propensities, estimates of αj using only those patients

who remain in the SNF until period 2 may be biased. This bias will most likely generate a

compression of estimates of αj around the mean. SNFs with higher value added will have

a sicker pool of patients at day 30 than they would without discharge, since they are likely

to discharge to the community the patients that improve the most, understating the health

improvements. SNFs with lower value added will also have a sicker pool of patients at day

30, but because the sickest are more likely to die or be transferred to a hospital before

the 30-day assessment, the observed pool of patients may be healthier, overstating health

improvements. We call this issue “selection out,” and address it with an explicit model of

the SNF’s discharge decision.

11There are 58 (smaller) SNFs in our baseline sample that discharge all patients prior to the 30-day
assessment. We cannot estimate value added for these SNFs, so our discussion of value-added estimates
below is focused on the 13,938 SNFs that have some patients who are still in the SNF at day 30.
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Selection Out of the Nursing Home

Selection of patients out of the SNF can occur both “downstream” when they are discharged

to the community presumably once their health is sufficiently good and “upstream” when

their health deteriorates and they have to be discharged to a hospital or (less frequently)

die or are sent to hospice. To account for this selection in an econometrically-tractable

fashion, we model it as a two-step sequential process. First, SNFs actively make downstream

discharge decisions, dDi ∈ {0, 1}, based on a SNF-specific health discharge threshold. Then,

upstream discharge decisions are realized for the remaining patients, dUi ∈ {0, 1}, as a

result of stochastic health deterioration. We choose to model the two discharge decisions

sequentially and not simultaneously (for example via an ordered probit) in order to allow for

different amounts of noise in each direction; this makes the model more flexible and allows

us to fit the data significantly better.

We assume that downstream discharge is a result of a stylized discharge model, in which

SNFs decide whether to discharge each patient to the community (that is, downstream)

using the following rule:

dDi = 1 ⇐⇒ hi2 ≥ λj + νi, (2)

where λj is a SNF-specific discharge threshold and νi is an i.i.d. error term, drawn from

N(0, σ2
ν). That is, SNFs are more likely to discharge healthier (higher hi2) patients, with

a discharge threshold that varies across SNFs and is affected by unobservables, such as

the availability of family members to assist in the discharge and the opportunity cost of

SNF beds.12 Recent work has shown evidence that SNFs engage in strategic admission

and discharge of less profitable patients (Hackmann et al. July 2024). Nursing homes

may also weigh differently non-strategic factors, such as clinical guidelines and patients

preferences, in their discharge decisions. For our purpose of producing unbiased estimates

of SNF-specific value added (αj), the SNF-specific discharge threshold (λj) is sufficient to

purge our SNF-specific value added estimates from any SNF-level sample selection bias that

would result from differences in (strategic or non-strategic) downstream discharge behavior

across SNFs (conditional on our functional form and parametric assumptions).

We model discharge upstream in a more statistical way, assuming that upstream

discharges are the result of a probit stochastic process, which is a (presumably declining)

12This model is obviously a simplification, abstracting for example from the possibility that the discharge
decision also directly depends on the length of time spent in the SNF or the improvement in health since
admission. However, as shown in Appendix C, this parsimonious model performs well compared to richer
specifications.
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function of hi2. That is, we assume

P
(
dUi = 1 | dDi = 0

)
= Φ(γ0

k + γ1
khi2), (3)

where Φ(·) is the standard normal cumulative density function and k indexes markets. We

allow γ0
k and γ1

k to be market-specific in order to account for any potential differences in

hospital access across markets.13 We note that, from a modeling perspective, although we

describe the upstream model as a more passive decision than the downstream model, the

two situations are very similar from a statistical and estimation perspective, giving rise to a

probit-like model downstream and a probit model upstream.

Selection Into the Nursing Home

The possibility that patients do not sort into SNFs randomly, even conditional on observables,

is a standard concern in the value-added literature. Following the literature (Dubin and

McFadden 1984; Abdulkadiroğlu et al. 2020), we use an instrumental variable – the distance

between the patient’s residence and her potential SNF choices – to construct a control

function that accounts for this selection. Specifically, we first specify a discrete choice

model of SNF choice which depends on distance to the SNF. We then show how this choice

model yields closed-form selection correction terms in the value-added equation. We provide

evidence in support of the exclusion restriction in Section 4.2.

Let the utility of patient i from SNF j be

uij = δj(hi1, xi)− τmij + ηij, (4)

where δj(hi1, xi) is the average utility from SNF j for all patients with baseline health hi1

and demographics xi, mij is the log distance between patient i and SNF j, and ηij is an

error term drawn i.i.d. from a Type I Extreme Value (logit) distribution. Note that we

impose no restriction on δj; it may be correlated with SNF value added αj and with any

other characteristics of the SNF that affect patient choice, such as available capacity.14

13In principle, it might be desirable to allow the parameters of the discharge model to also vary across
SNFs within a market. In practice, however, because upstream discharge is naturally harder to predict
as it is predominantly driven by unexpected health events, and, as we describe below, our health index is
not designed to predict upstream discharge, our market-level estimates of the γ’s are already quite variable,
making us wary of estimating γ’s at a more granular level. If, in the extreme, upstream discharge is completely
uncorrelated with our health index, the upstream discharge model would have no power. However, in that
case we would not expect any differential selection across SNFs that is driven by upstream discharges.

14Recent work has drawn attention to the challenges in estimating demand under latent choice constraints
(Agarwal and Somaini 2022) and to the importance of nursing home capacity constraints in affecting patient
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Following Dubin and McFadden (1984), we account for selection on unobservables with

a control function that is linear in the (de-meaned) logit errors. Conditional on the choice

of SNF cij, period 1 health hi1, observable characteristics xi, and the demand shocks ηij,

expected period 2 health can be written as

E
[
hi2 | cij, hi1, xi, ηi1, . . . , ηi|Ji|

]
= αj + θhhi1 + x′iθx +

[∑
`∈Ji

φ`(ηi` − µη)

]
+ ϕ(ηij − µη), (5)

where Ji is patient i’s choice set,15 and µη is the mean of the logit errors (Euler’s constant).

Integrating out the η’s yields the estimating equation

E
[
hi2 | cij, hi1, xi,mi1, . . . ,mi|Ji|

]
= αj + θhhi1 + x′iθx +

[∑
`∈Ji

φ`βi`

]
+ ϕβij, (6)

where the β’s are functions of the logit choice probabilities p̂i`:

βi` (j) =

− log p̂i` ` = j

p̂i`
1−p̂i`

log(p̂i`) otherwise
, (7)

and the logit choice probabilities are the predicted values from the choice model described

in equation (4):

p̂ij =
exp (δj(xi)− τmij)∑
`∈Ji exp (δ`(xi)− τmi`)

. (8)

The estimating equation (6) integrates over an error term ε that is distributed N(0, σ2
ε ).

Appendix D provides the full derivation.

The additional parameters in equation (6) have an economic interpretation. The φ`βi`

terms control for any unobservable correlation between the choice shocks for SNF k and the

value added at SNF k. This term would correct, for example, for the bias that would result

from a SNF that is known to generate larger improvements in health receiving patients who

are unobservably less likely to improve. The ϕβij term soaks up any correlation between

the patient’s demand shock at the chosen SNF j and patient’s health improvement at the

chosen SNF, beyond that captured by the φ`βi`’s. This term would capture any Roy-type

allocation to nursing homes (Gandhi 2020). In our context, any impact of capacity constraints will be reflected
in the δj ’s in the choice model (equation (4)). Since we do not attempt to interpret these coefficients as
reflecting demand, this concern is not directly relevant for our analysis.

15The choice set Ji always includes the outside option (j = 0), which in our context is a SNF that is
outside patient i’s sub-HRR. We normalize the average utility from the outside option (which includes the
disutility from travel distance) to zero; that is, δ0 = 0 and mi0 = 0 in equation (4) for all i.
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selection, in which a patient has an idiosyncratically higher preference for a SNF at which

they are idiosyncratically more likely to improve.

The key assumptions underlying our econometric approach are the validity of the distance

instrument and the functional form assumptions embedded in the choice and value added

models. In terms of the functional form assumptions, our control function approach assumes

that the unobserved determinants of choice enter the value added equation in a linear,

additive separable manner. This follows the literature i.e., Dubin and McFadden 1984;

Abdulkadiroğlu et al. 2020 and can be thought of as a first order approximation of a

specification that allows for a richer relationship between choice and value added. In terms

of the validity of the distance instrument, in Section 4.2, we provide evidence in support

of the exogeneity of the distance instrument with respect to SNF value added. Specifically,

in the spirit of Altonji et al. (2005) and Oster (2019), we show the coefficient on distance

is stable when we add a richer set of controls to the SNF choice model. This is reassuring

of the identifying assumption, but it is also useful to think through the potential bias that

would result from an invalid instrument. If our instruments were invalid because distance to

the SNF directly improved patient health (e.g., due to familiarity with the neighborhood or

more frequent visits from family), our value added estimates would be upward biased with

ambiguous effects on the distribution of value added across SNFs. If our instrument were

invalid because high value added SNFs happened to be located closer to patients who are

unobservably more likely to improve, our value added estimates for high value-added SNFs

would be overstated (and vice versa for low value-added SNFs), artificially stretching the

distribution of value added. The same logic, mutatis mutundis, applies to the scenario where

high value added SNFs happened to be located closer to patients who are unobservably less

likely to improve.

3.3 Intuition for Identification

To gain some intuition for the identification properties of the model, we consider first a

simpler version of the model in which there is a health production function (equation (1))

and only downstream discharge (equation (2)), and where we have already conditioned on

observable patient characteristics xi and there is conditional random assignment to SNFs (so

that we do not yet have to worry about selection in). The objects of interest are the SNF

value-added parameters, the αj’s in equation (1).

This version of the model closely resembles the standard Heckman (1979) selection model

for estimating the impact of wages on hours worked. In our case, the selection problem is
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that period-2 health is not observed for patients who are discharged before period 2. In

this simplified setting, we would estimate hi2 = αj + θhhi1 + εi, taking into account the

fact that hi2 is observed if and only if εi < λj + νi − αj − θhhi1 (see equation (2)). The

identification challenge arises because SNFs may vary not only in their value added αj, but

also in their discharge threshold λj. Thus, if we were to run a simple regression of hi2 on

SNF fixed effects, the fixed effects would depend on both αj and λj, and we will not be able

to separately identify the SNF’s value added.

To address this, we take advantage of the (observed) heterogeneity in patient health at

admission, hi1. The key to identification in our setting arises from the fact that we observe

many patients with different initial health within a SNF, and each SNF is characterized by

a single discharge threshold λj.
16 To see this, note that – provided sufficiently large support

of hi1 – for any two SNFs j and j′, there exists a pair of initial health levels hi1 at SNF j

and h′i1 at SNF j′, such that the probability of downstream discharge is equalized.17 Since

the probability of downstream discharge is a sufficient statistic for the bias from selection,18

it follows that for these two cases the selection correction terms in the value-added equation

are identical. This, in turn, implies that the differential improvements for patients hi1 and

h′i1 at their respective SNFs allow us to recover the SNFs’ differential value added. We can

then apply this argument for each pair of SNFs in order to identify the full set of αj’s up to

a level normalization. The normalization is not needed if there exists a SNF k and a health

level h, such that discharge probability for that health level at that SNF is zero.

This core identification argument is preserved when we introduce patient demographics

xi and the possibility of upstream discharges. Introducing patient demographics is

straightforward; we can apply the same argument conditional on a set of patients that

have the same value of xi to recover value added. We modelled upstream discharge with a

probit equation with parameters γ0
k and γ1

k that do not vary within markets (see equation

(3)). Given this assumption, it is sufficient to observe a single SNF in the market with some

patients with a low enough value of h1 (or a high enough value of λj) such these patients

are never discharged downstream before period 2. This allows us to recover the market level

16The fact that we observe discharge decisions for many patients within each SNF is also a key difference
from the original Heckman (1979) setup, in which each worker makes only one labor force participation
decision; in that setting, an instrument that shifts that decision without affecting wages is typically needed.

17Given the model, the probability of a patient with initial health hi1 to be discharged prior to period
2 out of SNF j is monotonically (and continuously) increasing in hi1, and as long as the support of hi1
spans sick enough patients who do not get discharged before period 2 as well as healthy enough patients who
always do, one can invert the discharge probability at SNF j′ to obtain the appropriate value for h′i1.

18That is, if Pr(εi > λj + νi − αj − θhhi1) = Pr(εi > λj′ + νi − αj′ − θhh′i1) then E(εi|εi < λj + νi −
αj − θhhi1) = E(εi|εi < λj′ + νi − αj′ − θhh′i1).
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upstream discharge parameters for each market. With the upstream discharge model in

hand, we can map from the observed distribution of hi2 in each SNF to the “pre-upstream

discharge” distribution of hi2. We can then apply the identification argument above (for the

setting without upstream discharge) using this adjusted pre-upstream distribution of hi2 to

identify SNF value added.

Finally, we account for potential selection into the SNF in a more standard way, with a

control function for selection into the SNF that uses distance as an instrument to identify

the selection correction terms. Intuitively, people who live farther away from a given SNF j

will only choose it if it provides them with a large idiosyncratic utility shock (ηij in equation

(4)) relative to people who live nearby. By comparing health outcomes for people who live

further from versus closer to the SNF, we can identify any correlation between unobserved

determinants of choice and improvements in health.

4 Implementation

In this section, we discuss some key implementation decisions we make to bring the model to

the data. Specifically, we describe the construction of our baseline health index, provide

support for our choice of distance as an instrument for SNF demand, and discuss our

specification and estimation in more detail.

4.1 Health Index

An attraction of our setting is the rich, consistent, and comprehensively measured data from

patient health assessments, including measures of physical health (e.g., shortness of breath),

physical independence (e.g., degree of assistance needed with dressing), mental health (e.g.,

depression), and cognitive ability (e.g., delirium). Unlike test scores in education, which

(debatably) provide a low-dimensional summary of student achievement, there is no “off the

shelf” summary measure of health to use for our analysis.

Our econometric framework can be applied to any aggregate (or individual) health

measure. For our baseline analysis, we construct a health index that is a weighted average

of the individual health measures, where the weights are determined by the importance of

these measures for predicting whether a patient will soon be discharged home. We consider

this a natural and appealing measure because it aligns with the SNF’s objective which is, as

we have noted, to help Medicare patients recover to the point where they can be discharged

home. But of course one may well be interested in other measures of health, and we therefore
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also compute value-added using several alternative health measures and compare the results

to those from our baseline approach.

Baseline health index

The weights on the individual health measures that we use to construct our baseline health

index are taken from a prediction model – trained on our large sample of patients – that

maps from the 109 health measures recorded during the 30-day assessment to an indicator for

whether the patient was discharged to the community within 7 days of their assessment.19

We then apply these weights to the health measures recorded at the initial and 30-day

assessments to construct the health index for these time periods. A higher value added SNF

– i.e., one that increases its patients health index by more between the initial and 30-day

assessments – can be thought of as a SNF that more quickly raises patient health to the level

conducive to community discharge.

Operationally, we use a regression tree for our prediction model, since it is able to capture

potentially important interactions among the health measures.20 We estimate the tree using

five-fold cross validation to tune the complexity parameter. The resulting tree has 635

terminal nodes (“leaves”) and an Area Under the Curve (AUC) of 0.71.21

To give some sense of what drives the health index, the last column of Table III shows

the importance of each individual measure, defined as the sum of the incremental R2 for

that variable across all the leaves of the tree, scaled so that the “most important” variable

has an importance value of 100. The most important variable for predicting discharge to

19The choice to use the 30-day assessment is motivated by two considerations. First, it makes the
construction of the health index orthogonal to our primary analysis, which relies on what happens to patients
between admission and the 30-day assessment, but not after. Second, over the first two weeks in the SNF
there is a non-trivial set of patients who get transferred to other SNFs for, we suspect, non-health reasons.
In practice, the choice of 30-day assessment is not essential; we find that using the initial assessment creates
a highly-correlated health index. The choice of a 7-day outcome horizon is admittedly arbitrary, attempting
to trade off greater noise that can be generated from additional health events over longer periods against
lower prediction quality of “rare” outcomes, which would be the case if the horizon were too short. About
18% of the patients who have a 30-day assessment are discharged downstream within the next week (see
Figure 1).

20As described in Appendix A, about 500,000 patient stays (out of a total of 2,517,006 who are present for
the 30-day assessment) are missing values for their 30-day assessment. For these patients, we use a hot-deck
procedure to impute missing values; see Appendix E for more details.

21Appendix Figure A1 plots the observed 7-day discharge rate against the period 2 health index, both
overall and for patients with different values of period 1 health. Panel A shows that period 2 health is
unsurprisingly extremely strongly correlated with discharge rates; when the data is binned into 100 groups,
the correlation is virtually perfect. The subsequent figures show this correlation is just as strong when we
split the data by terciles of period 1 health, demonstrating the stability of the model for different patient
groups.
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the community is pain intensity; other important variables include mood score, needing help

with toileting, and needing help with locomotion (i.e., moving between locations).22

Table IV Panels A and B summarize the resulting health index and how it correlates with

subsequent outcomes.23 Panel A shows the index for the patients on which we trained the

regression tree.24 The average patient in this sample has a health index of 0.135; that is, they

have a 13.5% chance to be discharged to the community within 7 days. Patients who are

actually discharged to the community within the next 7 days have a higher average health

index (0.201) than patients who remain at the SNF (0.127). Patients who are discharged

elsewhere (predominantly to the hospital) within 7 days have a lower average health index

(0.113). These patients also have a slightly lower health index than those who remain in

the SNF (0.127), although the difference is small. The small difference is consistent with

our health index not being trained to predict discharge to the hospital and the fact that the

sudden health shocks that precipitate hospital discharge are inherently hard to predict.

Panel B shows a similar qualitative pattern when we apply the health index construction

to the initial health assessment for all patients, a sample different from the one used to

construct the index. Relative to the average health index at admission (0.134), patients who

are discharged to the community before the 30-day assessment are healthier (average health

index at admission of 0.186). Those who remain in the SNF or are discharged elsewhere are

sicker (both groups have an average health index at admission of 0.104); the identical initial

health index for those who remain or are discharged elsewhere is again consistent with low

predictive power of the health index for upstream discharge.

The full distribution of the health index at admission is shown in Figure 2, Panel A. The

standard deviation is 0.10; only 5% of patients have a probability of discharge at admission

of 32% or more, which is consistent with them being admitted for care. Panel B of Figure 2

shows a scatter plot of the average SNF length of stay (among those ultimately discharged

to the community during our study period) against health index at admission for each of the

635 unique values of the health index. The relationship between health at admission and

length of stay is monotone, with a slope slightly steeper than −1. Thus, one can alternatively

think about a SNF with a 1 percentage point higher value added as one that is able to get

a patient to the same level of health one day faster.25

22In Section 6.1 we explore the sensitivity of our key results to using alternative ways to construct the
health index.

23We defer a discussion of Panel C to the next section.
24Appendix Table A.IV shows the fit for all patients present at 30 days, which includes the patients

whose 30-day health assessment was missing, and was imputed using the hot-decking procedure described
in Appendix E.

25A potential conceptual concern with our baseline health index is that it might reflect some degree of
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Alternative health indices

As noted at the outset, our approach can be used to estimate value added for any alternative

health indices that can be constructed from the health assessment data. To illustrate this,

we construct an alternative measure, known in the clinical literature as the long-form ADL

(Carpenter et al. 2006). It is the sum of the scores of seven measures of limitations to

activities of daily living (ADLs): hygiene, walking, dressing, locomotion, transfer, toilet,

bed-mobility, and eating (see Appendix Table A.II).26 For our purposes, we negate the

long-form ADL so that a higher score corresponds to better health.

We also consider a modification to our baseline health index to deal with a natural concern

that the nursing home staff in the SNFs may have an incentive to strategically misreport

some or all of the health measures in the MDS assessments. A similar concern arises in the

education setting, where test scores are the outcome and teachers or principals may have

incentives to “teach to the test” (Hoffman et al. 2001; Lazear 2006) or even fraudulently

change students’ answers (Jacob and Levitt 2003). In our setting, the existence or direction

of any bias to our value-added estimates is unclear. SNFs face opposing incentives to

report better scores (to increase their quality ratings) and worse scores (to generate larger

payments). Moreover, our value-added estimates are based on within-patient changes in

health assessment, so that any persistent bias between the initial and 30-day assessments

will be differenced out in the construction of value added. Nonetheless, to assess any potential

bias from strategic misreporting, we construct a modified version of our baseline health index

that excludes health measures where nursing homes may have an incentive to shade their

scores.

To do so, we note that not all 109 health measures in our baseline health index are used

in the CMS quality star ratings or the CMS case-mix reimbursement criteria. We therefore

restrict attention to the 45 of the original 109 health measures that are not used in either the

reverse causality. If discharge is planned several days in advance, and the SNF uses the days before the
planned discharge to train patients to be more self-sufficient, this higher self-sufficiency would be heavily
weighted in the health index, and the baseline health index might be measuring short-term preparation for
discharge rather than underlying health. To reduce the influence of short-term preparation, we construct an
alternative index that excludes soon-to-be discharged patients. Specifically, rather than train the model on
discharge within 7 days of the 30-day assessment, we restrict the sample to patients who receive a 30-day
assessment and remain at the SNF for at least 7 additional days. We then construct an alternative health
index that is based on predicting downstream discharge on days 8-14 after the 30-day assessment versus
remaining at the SNF for at least 15 days. Reassuringly, the alternative health index has a similar goodness
of fit, with an AUC of 0.70 (versus 0.71 for the baseline health index), a similar distribution to the baseline
index (see Appendix Table A.VIII), and is highly correlated with the baseline index both within and across
markets (see Appendix Figure A10).

26Since each measure takes a value from 0-4, the aggregate measure ranges from 0 to 28, with higher
values indicating that the patient needs more assistance.
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star ratings or the reimbursement criteria; we refer to these as “non-incentivized measures”

(see Appendix Table A.II for which measures are “non-incentivized”).27 We train a regression

tree that uses these 45 health measures (instead of the 109) to predict whether the patient

will be discharged to the community within 7 days of their 30-day assessment and use the

resulting prediction model to construct an alternative health index. The new regression tree

has an AUC of 0.70, which is very close to 0.71 AUC for our baseline health index.

4.2 Distance as an Instrument for Nursing Home Choice

We use patients’ distance to each nursing home as the excluded instruments in our control

function for SNF choice. This is a common instrument for choice of health-care provider,

including choice of nursing home (e.g., Grabowski et al. 2013; Gupta et al. November 2023),

hospital (e.g., McClellan et al. 1994; Geweke et al. 2003; Cutler 2007; Card et al. May 2023),

and other medical providers (e.g., Einav et al. 2016). Our identifying assumption is that

distance affects health improvements only through the choice of SNF.

To investigate the plausibility of this assumption, we examine the stability of the

relationship between distance and SNF choice as we add increasingly rich controls for patient

demographics and health measures.28 Panel A of Figure 3 plots the probability of going to

a SNF as a non-parametric function of distance for the sample of patients and SNFs in

greater Chicago. The figure shows that distance is strongly predictive of SNF choice, with

the expected probability dropping by over 80% as distance increases from 1 to 5 miles.

It also shows that the relationship between distance and SNF choice is well approximated

with a logarithmic relationship, which motivates our functional form choice in the demand

model (equation (4)). Finally, it shows that this relationship is virtually identical across

specifications with different sets of observables interacted with choice-specific indicators

(described in the figure notes).

Panel B extends the exercise in Panel A to all of the markets in our data. We estimate

the model of SNF choice as a function of log distance (see equation (4)) in each market, both

without and with observable shifters of δj, and plot the market-specific coefficients on log

27We also drop measures categorized as “supporting measures” (the two measures for which inclusion in
the reimbursement criteria is ambiguous) or those introduced in January 2015 or July 2016 (near the end of
our sample period).

28This coefficient stability test can be thought of as a type of “balance test” for our identifying variation.
In quasi-experimental settings, it is typical to look at whether observables are uncorrelated with treatment
assignment (the excluded variable). In our context, the excluded variables are the vector of distances to each
SNF (mij) in the choice set, so a simple balance test is infeasible. However, a similar test can be constructed
by examining how the coefficient on distance τ in the choice model varies with the inclusion of covariates; if
it does not, this is consistent with our exclusion restriction.
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distance from the specification without observable shifters (x-axis) against the specification

with the full set of shifters (y-axis). The coefficients are almost identical across specifications,

suggesting that the stability of the SNF demand-distance relationship we saw for the Chicago

market in Panel A generally holds for all markets.

4.3 Specification and Estimation

Estimation proceeds in two steps. We first estimate the SNF demand model in equation (4)

market-by-market to construct the choice probabilities p̂i` that are inputs into the control

function terms βi` in equation (6). For computational tractability, we limit the shifters of δj

in the choice model to the baseline health index hi1 and the demographics xi to be binned

age ai and Medicaid dual-eligibility (a proxy for being low-income).29

With the control function estimates in hand, we then jointly estimate the remaining

components of the model by maximum likelihood. Specifically, we jointly estimate the health

process (equation (6)), the downstream discharge model (equation (2)), and the upstream

discharge model (equation (3)).30 In equation (6), we control for binned age and Medicaid

dual-eligibility, similar to the demand model.31

One numerical challenge is that with thousands of SNFs, we have thousands of parameters

(recall that αj, λj, and φj are all SNF-specific). To overcome this challenge, we partition the

model parameters to two groups: seven “national” parameters (θ, ϕ, σε, σν , θx1, θx2, θx3), and

all other parameters, which vary at either the market- or SNF-level. This allows us to have

a nested estimation procedure. Conditional on the “national” parameters, we estimate the

model market by market, which is relatively standard and fast. We then search numerically

over the seven “national” parameters to maximize the likelihood. In Appendix F, we describe

the likelihood function and our estimation approach in more detail.

To obtain standard errors for the parameters estimated from equation (6), we perform a

two-step score bootstrap procedure similar to the approach in Abdulkadiroğlu et al. (2020).

Appendix F.4 provides more details. This approach allows estimation error in the control

29That is, we define xi to be three mutually exclusive age bin indicators (a1i = 1{65 ≤ ai ≤ 74},
a2i = 1{75 ≤ ai ≤ 84}, and a3i = 1{85 ≤ ai}) and an indicator for Medicaid dual-eligibility gi. Thus
δj(xi) = δ0j + δ1jhi1 + δ2jgi + δ3ja2i + δ4ja3i. In Appendix Figure A3 we show that adding more shifters
does not affect the estimated coefficient on log-distance.

30As shown in Table I, there is a small share (approximately 7%) of patients who are discharged to
another SNF or to “other” locations prior to the 30-day assessment. Because it is unclear how to classify
such discharges, we do not use these patients for estimation of the health production function.

31As in the demand model, we divide age ai into three mutually exclusive bins a1i, a2i, and a3i. The
vector xi in equation (6) then contains three demeaned indicators (g̃i, ã2i, ã3i); θx := (θx1, θx2, θx3) is defined
conformably.
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function terms to propagate through to the value-added and downstream discharge parameter

estimates.

Finally, the variation in estimated value added across SNFs can be biased upwards by

noise in the individual SNF value added estimates. To adjust for this potential bias, we

perform an empirical Bayes (EB) shrinkage procedure (Morris 1983), shrinking our SNF- and

market-level parameter estimates toward their global means using their standard errors.32

5 Main Results

5.1 Parameter Estimates and Model Fit

Panel A of Figure 4 reports estimates of the “national” parameters that we restrict to be the

same across SNFs in all markets, while Table V reports summary statistics for the γ0
k’s and

γ1
k’s, which are allowed to vary across markets (indexed by k). The θh coefficient on initial

health is close to 1, implying that αj can be interpreted as the average health improvement

at the given SNF. The σε coefficient for the standard deviation of the health shocks is

0.075, which is slightly smaller than the 0.095 cross-sectional standard deviation of initial

health (Table IV). The γ1
k market-level slope coefficients in the upstream discharge model

are negative in most markets; this is consistent with lower upstream discharge probability for

patients with higher initial health, which seems natural. However, as we discussed earlier,

the fact that the health index is not designed to predict upstream discharge, as well as that

upstream discharges are naturally harder to predict as they are predominantly driven by

unexpected health events, may explain the substantial dispersion in the slope parameter

across markets.33

Panel C of Table IV shows some evidence on model fit, displaying model-predicted

discharge locations and reporting the mean and standard deviation of health conditional

on those discharge locations.34 The shares discharged to different locations are very similar

32More details are provided in Appendix G. For the baseline specification, we estimate the standard
errors using a bootstrap methodology that allows estimation error in the control function terms to propagate
through to the value added estimates. Since the bootstrap approach is computationally intensive, and the
standard errors are virtually indistinguishable to those from an approach that calculates standard errors
using the Hessian from the second stage likelihood function, we use the Hessian-based approach for the
non-baseline specifications.

33The range of estimated slope coefficients is misleading in terms of their implications for heterogeneity
in upstream discharge patterns across markets. The large standard deviation of γ1k is driven by the long tails
of the distribution. Moreover, the intercept and slope coefficients are negatively correlated: markets with a
large intercept have a more negative slope, such that the predicted upstream probabilities are similar within
the fairly concentrated range of h1.

34Appendix H provides more details on how these predicted discharge destinations are computed.
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in the actual data (Panel B) and when predicted by the model (Panel C). The initial

health distributions of health conditional on these discharge locations is also similar in the

actual data and when model-generated. This suggests that our model is capturing selection

upstream and downstream reasonably well.

5.2 Estimates of Nursing Home Value Added

Figure 5 shows our estimates of the distribution of value-added across SNFs. In this figure,

and all subsequent results, each SNF is weighted by the number of patient-stays so that

the statistics are representative of the nursing home sector. Panel A plots a kernel density

of the baseline value added estimates and a second kernel density of the estimates shrunk

towards the mean using the empirical Bayes methodology. The empirical Bayes adjustment

attenuates the dispersion in value added by about 40% (reducing the standard deviation in

value-added across SNFs from 0.038 to 0.023). We therefore use the empirical-Bayes adjusted

estimates of our SNF-specific parameters for all subsequent analysis.

Panel B shows the distribution of value added for the SNFs in our baseline sample,

along with summary statistics for this distribution. The average (median) SNF value added

is 0.049 (0.050). Combined with our estimate of nearly 1 for the coefficient on health at

admission (θh = 0.965), this implies that the average SNF increases the weekly probability

of discharge to the community by about 4.9 percentage points between the initial and 30-day

health assessments. The fact that value added is on average positive (health improves on

average while at a nursing home) is consistent with the role of nursing homes in the Medicare

system to aid patient rehabilitation and recovery (rather than to provide long-term custodial

care).

The figure also indicates substantial heterogeneity across SNFs in value added. The

difference in value added between the 10th- and 90th-percentile SNFs is 0.056; the difference

in value added between the 25th- and 75th-percentile SNFs is 0.029. The inter-quartile

range in value added across SNFs is over one quarter of the inter-quartile range of health

in admission across patients (of 0.11; see Figure 2). That is, going from a SNF at the 25th

percentile to a SNF at the 75th percentile would generate the same health improvement as

moving a patient from the 10th to the 25th percentile in health at admission.35

35CMS stipulates that the initial assessments be conducted by day 8 and the day-30 assessments be
conducted during days 27-33, leaving SNFs some flexibility as to when exactly to conduct patient health
assessments. If patients’ health improved at a constant daily rate, then SNFs that had a longer lag between
assessments would incorrectly appear to be higher value added. Reassuringly, Appendix Figure A11 shows
that there is little systematic variation in the average lag in assessment dates across SNFs (inter-quartile
range of 20.5 to 21.3; 10-90th percentile range of 19.8 to 22.1) and that the average lag is not correlated with
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The heterogeneity in value added across SNFs can also be interpreted in terms of variation

in length of stay and the associated Medicare spending at the SNF. Recall from Figure 2 that

a one percentage point increase in the health index at admission is associated with about

one less day on average in a SNF. Given this relationship, moving from a 10th-percentile

value-added SNF to a 90th-percentile one can also be thought of as getting a patient to the

same level of health 5.6 days faster, relative to a median length of stay of 22 days. With

median Medicare spending per SNF day of about $470 (MedPAC 2018), this corresponds to

about $2,600 in Medicare savings per SNF admission.

Panels B and C of Figure 4 show the relationship between SNF value added and the two

other SNF-specific parameters estimated in the model: the discharge threshold λj and the

selection coefficients φj. Panel B shows that the discharge threshold is uncorrelated with the

value added. This does not imply that patients have on average equal length of stay across

low versus high value SNFs. Indeed, because patient health improves more quickly at high

value added SNFs, and discharge thresholds do not systematically vary, patients on average

have shorter stays at higher value added facilities.

Panel C shows that the correlation between the value added and the selection coefficient

φj is negative and large (correlation of −0.42). This is consistent with a standard adverse

selection mechanism, in which the most challenging patients – those with the lowest

unobserved expected health improvements – have greater demand for the highest-value-added

SNFs. Since distance is our excluded instrument, the estimates reflect the fact that patients

with the lowest expected health improvements are disproportionately likely to travel longer

distances to high-value-added SNFs. By contrast, the estimate of the “Roy selection”

coefficient ϕ is negligible (Panel A of Figure 4), implying that there is little correlation

between patients’ unobserved expected health improvements and patients’ idiosyncratic

preferences for SNFs.

5.3 Sources of Heterogeneity in Nursing Home Value Added

Heterogeneity Across and Within Markets

We analyze heterogeneity in value added across and within markets. To do this, we use the

standard market definition used in the Dartmouth Atlas literature on geographic variation

in health care productivity, namely the 306 Hospital Referral Regions (HRRs) defined in

Section 2. Figure 6 plots average SNF value added by market (Panel A) and the difference

our value added estimates (correlation of 0.00).
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in value added between the 90th- and 10th-percentile SNFs within each market (Panel B),

as well as associated summary statistics (Panel C). Nursing home value added is lower on

average across a band of markets that stretches from Texas northeast through the Deep South

and up through Appalachia. It is highest in the New England, the Midwest, and the Pacific

Northwest. The average difference in value added between the 90th- and 10th-percentile

markets is about 2.8 percentage points, or about half of the 90th- to 10th-percentile difference

across SNFs.

While the substantial cross-market variation will be familiar to many health economists,

the considerable variation in nursing home value added within markets may be more

surprising. In the average HRR, the difference in value added between the 90th- and

10th-percentile nursing homes is 4.9 percentage points (third row of Panel C), which is

almost as large as the 5.6 percentage point 90-10 difference nationwide (top row of Panel C).

This finding regarding substantial within-market dispersion in value added is robust to using

another standard, but smaller market definition, namely Hospital Service Areas (HSAs).36

Unlike market-level average valued added, the within-market dispersion in value added does

not exhibit any consistent regional pattern.37

To further examine the within-market dispersion in value added, Figure 7 plots the

average within-market distribution of value added for markets at different deciles in the

national distribution of value added. It shows substantial overlap in the distribution of SNF

quality across markets of different average quality. For example, in markets in the 10th (i.e.

top) decile of value added, roughly 25% of patients are in SNFs that perform below the

national median. Likewise, in markets in the second decile of value added, roughly 25% of

patients are in SNFs that perform better than the national median.

This considerable within-market dispersion suggests potentially large gains from

within-market reallocation of patients. For example, if patients at the 10th-percentile SNF

within a market could be moved to the 90th-percentile SNF within the same market, the

gains would be on average equivalent to getting a patient home at the same health level 4.9

days sooner (relative to a median length of stay of 22 days), saving Medicare approximately

$2,300 per patient stay. We view this within-market dispersion as potentially promising.

Relative to reallocation across markets, it seems more feasible to imagine policies – such as

36HSAs are designed to represent local health-care markets for community-based inpatient care (https:
//www.ncbi.nlm.nih.gov/books/NBK585005/). There are over 3,000 HSAs, an order of magnitude more than
the number of HRRs. The within-market difference in value added between the 90th- and 10th-percentile
nursing homes when markets are defined as HSAs remains quite large (3.9 percentage points).

37As shown in Appendix Figure A4, there is a fairly weak positive correlation (0.06) between average
value added at the market level and the within-market variation.
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payment incentives or information to consumers – that could reallocate patients across SNFs

within their geographic market.

Correlates of Nursing Home Value Added

A natural question is whether the variation in SNF value added is associated with underlying

characteristics of SNFs or their patients. Table VI examines these correlations both

unconditionally (column (1)) and after conditioning out market fixed-effects (column (2)).38

The relationship between SNF value added and SNF-level characteristics is weak, both

overall as well as within markets (Panel A). SNF value added is virtually uncorrelated with

occupancy rate and size (as measured by the number of beds). For-profit SNFs, which

account for 77% of facilities, have slightly lower value added (average of 0.048) than non-profit

facilities (average of 0.055). However, the negative correlation between for-profit status

and value added is not very strong (−0.134). Within markets, SNF value added is weakly

negatively correlated with chain ownership (−0.064) and with whether the SNF has an

Alzheimer’s special care unit (−0.011). Chain-owned SNFs account for 70% of all SNFs,

and approximately 24% of SNFs have an Alzheimer’s unit. The SNF’s share of Medicare

patients shows the strongest (positive) correlation (0.248).

SNF value added shows a stronger correlation with patient characteristics, both

unconditionally and within markets (Panel B). There is some sorting to SNFs based

on baseline patient health, with healthier patients (those with a higher health index at

admission) being more likely to go to higher-value-added SNFs; higher-value-added SNFs

also receive a lower share of Black patients, a lower share of patients who are dually-eligible

for Medicaid at the time of admission, a higher share of patients that are female or married

at admission, and a higher average patient age.

6 Additional Analyses

We report results for SNF-value added for several alternative health measures and several

alternative econometric models. Our key finding of substantial within-market heterogeneity

persists across these alternatives. Table VIII summarizes the correlation between our baseline

measure and alternative measures; once again, we report both the unconditional correlation

between our baseline value added and each of the alternatives (column (1)), and the partial

38Appendix Figure A5 shows scatter plots that correspond to column (1) of each row of Table VI.
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correlation conditional on market fixed effects (column (2)).39

6.1 Estimating value added for alternative health measures

We re-estimate our value-added model for the two alternative health measures described in

Section 4.1: limitations to activities of daily living (ADLs) and a health index constructed

using the subset of the baseline measures for which SNF strategic misreporting incentives

should be limited (“excluding incentivized measures”), since these measures are not used for

either CMS quality measures or reimbursement rates. Appendix Table A.IX provides the

parameter estimates for each of these separate models.

The first three panels of Table VII show that our key finding that the within-market

variation in SNF quality is substantial relative to the national variation or the cross-market

variation persists under both measures. Panel A reproduces our baseline results (from Panel

C of Figure 6), while Panels B and C show the estimated variation for the alternative health

measures. In addition, Panel A of Table VIII shows that our baseline SNF value-added

measure is fairly highly correlated with value added measured using ADLs (correlation of

0.56), and even more highly correlated (correlation of 0.85) with the “excluding incentivized

measures” version.

6.2 Allowing SNF value added to vary across patients

Our baseline model estimates a single value-added measure for each SNF. In practice, of

course, SNF value-added may vary across patients. One possibility is that SNFs specialize,

so that they are relatively more effective in treating some types of patients and less effective

in treating others. Another possibility is that SNF quality is a general characteristic, with

higher quality SNFs exhibiting higher value added for all types of patients.

To investigate this, we estimate value-added separately for patients of different age groups

(65-74, 75-84, and 85 or older) and separately by whether the patients are dually eligible

for Medicaid (which is a proxy for being low-income). Specifically, we re-estimate the SNF

demand model in equation (4) and the health production function in equation (6) separately

for each of the five groups. Appendix Table A.IX provides the parameter estimates for each

demographic sub-group respectively.

The results paint a fairly clear picture in favor of the latter hypothesis: good SNFs tend

to be good across the board, for all patient groups. Appendix Figures A7, A8, and A9

39Appendix Figure A6 produces scatter plots that correspond to column (2) of each row of Table VIII.

29



summarize these results. Each panel in these figures pairs up two groups of patients, and

then presents bin scatters of the value added estimates for one group of patients against the

corresponding estimates (of the same SNFs) for another group of patients. The pairwise

correlations for each pair are always positive and quite high (predominantly between 0.5 and

0.7), suggesting that summarizing SNFs’ quality with a single value added (as we do in our

baseline analysis) captures the lion’s share of the quality variation across SNFs. In addition,

Panel D of Table VII shows that our finding of substantial within-market heterogeneity in

value-added across SNFs (relative to the national variation or the cross-market variation)

persists even when value-added is estimated separately for each demographic sub-group.

6.3 Relationship to Alternative Nursing Home Ratings

We compare our baseline SNF value-added estimates to the “five-star” SNF ratings produced

by the government and regularly used by patients, providers, and insurers. Specifically, we

compare our quality measure to the overall five-star rating and its three sub-components:

a quality index which relies on the same health-assessment data we use in this paper, an

inspection score based on deficiencies (e.g., abuse and neglect by staff and medication errors)

identified during the three most recent annual state health inspections and the last three

years of complaints, and a SNF-reported staffing measure (CMS 2008b).

The first row of Panel B of Table VIII reports a fairly low positive correlation of 0.23

between our value added and the overall five-star rating. The low correlation between our

measure of value added and the overall government rating is consistent with widespread

concerns about the reliability of the government ratings highlighted in a scathing New

York Times critique (Thomas 2014). Among other issues, there is evidence that SNFs

game the staffing measure by inflating self-reported estimates and up-staffing around the

(known) inspection dates (Thomas 2014; Boccuti et al. 2015; Yaraghi et al. 2016; Rau 2018).

The other rows in Panel B show the correlation between our value added and each of the

star-rating’s sub-components.40 The correlation between our measure and the quality index

component, which uses the same health assessment data we do, is very low (0.02), reflecting

a number of underlying differences in the construction of these measures.41

To get a sense of how different markets might fare under our value-added measure relative

40These sub-components are only weakly correlated with each other, with correlations ranging from a low
of -0.02 between the inspection and staffing sub-components to a high of 0.16 between the inspection and
quality components.

41Unlike our measure of health improvement, the government’s quality rating is based on a cross-section of
patient health. The government quality rating is also based only on a partially overlapping set of measures,
and it includes all patients rather than just the short-stay Medicare patients that we focus on.
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to the current star ratings, Figure 8 plots the average star rating in each market against the

average value-added estimate in each market. There is considerable dispersion around the

regression line, suggesting that a number of markets would benefit or suffer substantially

under the alternative measures. For example, Manhattan (New York) and Chicago (Illinois)

both score well with the star ratings (averaging 4.0 and 3.7 stars, respectively, relative to the

nationwide average of 3.5) but perform poorly with our value-added measure (with average

scores of 0.005 and 0.026, respectively, relative to the average of 0.049). On the other hand,

Great Falls (Montana) averages a fairly low star rating of only 2.3 but an above-average

value-added estimate of 0.061.

6.4 Relationship to 90-Day Outcomes

We also examine the correlation between our value-added measure and quality measures

based on outcomes that we observe at 90 days after SNF admission, such as hospital

readmission or death. These measures are available for all patients, and therefore do not raise

concerns about bias from “selection out” (of the SNF); however, they are relatively indirect

measures of what the SNF is supposed to be doing – namely, getting a patient to the point

where they can safely be discharged to the community. Another limitation is that – because

they are measured at 90 days – they are likely affected by events that happen to the patient

outside of the SNF (recall that the median length of stay is 22 days), and therefore provide

only a noisy measure of SNF quality. These caveats notwithstanding, the comparison of

these measures to our value-added measure can still serve as an informative sniff test (ahem)

of our estimates, and allow us to investigate potential concerns about multi-tasking.

To estimate SNF quality for these outcomes, we make two modifications to the baseline

value-added specification described in Section 3. First, as mentioned above, we do not

face the original issue of selection bias from patient discharge and therefore do not need to

correct for selection out. Second, unlike the health index that we observe at admission and

at 30 days, we do not observe these outcomes at admission and therefore cannot estimate a

value-added model that uses the value of the outcome at admission as a control. Instead, we

control for the health index at admission, patient demographics (three age bins and Medicaid

dual-eligibility), and the control functions for SNF choice, as in equation (6), which gives

our estimates a slightly different interpretation.

Panel C of Table VIII shows these estimates for six different 90-day outcomes. In

reporting the results, we flip the sign of bad outcomes, so that a positive correlation has

the same qualitative interpretation across the six 90-day outcomes, regardless of whether
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they are good (e.g., home in 90 days) or bad (e.g., death or readmission). All six 90-day

outcomes are positively correlated with our value-added estimates both overall and within

markets. These correlations range from 0.08 to 0.42 across outcomes conditional on market

fixed effects. Our measure of value added was designed to capture the extent to which SNFs

are able to improve patient health in a way that allows patients to be discharged to their

homes. Consistent with this intent, our value-added measure has the largest correlation with

the health measures that also reflect whether the patient is able to transition to their homes

(indicator for whether a patient is home at 90 days and share of days in facilities). The fact

that SNFs that score better on our value-added measure also tend to score better on all of

these other measures suggests that higher SNF value added does not come at the expense of

addressing other unmeasured health issues that would otherwise show up in a higher death

rate or a higher readmission rate.

6.5 Comparison to More Basic Econometric Models

Finally, we consider the quantitative importance of different components of our econometric

model for our value-added estimates. We start with a model in which value added is simply

the average value of the 30-day health index at the SNF. We recover this measure, which we

call “average health,” from a regression of period 2 health on SNF fixed effects and patient

demographics: hi2 = αj + x′iθx + εi2. A slightly more sophisticated measure, which we call

“average health improvement,” is based on a regression of period 2 (i.e. 30-day assessment)

health on initial health and patient demographics: hi2 = αj + θhhi1 + x′iθx + εi2. The first

two rows in Panel D of Table VIII report the correlation between our preferred measure of

value added and these two simpler measures. Our preferred value-added measure has 0.63

correlation with average health and 0.72 correlation with the health improvement; these

correlations are slightly lower (0.58 and 0.69, respectively) within markets.

The final two rows in Panel D of Table VIII explore the quantitative importance of the

corrections we employ in our construction of SNF value added. In the third row, we report

the relationship between our preferred value-added measure and a version of the average

improvement model that accounts for the selection into the SNF (as we do in our baseline

model), but does not account for the selection out (via discharges from the SNF before the

30 day assessment). The fourth row reports on the reverse exercise, accounting for selection

out but without correcting for selection into the SNF. Controlling for selection into the SNF

by itself has a small impact on the correlation with the preferred measure. Controlling for

selection out actually marginally reduces the correlation with the preferred measure, despite
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the fairly strong adverse selection documented in Panel C of Figure 4. These results indicate

that it is important to account for both selection in and selection out to credibly recover

SNF value added.

7 Conclusions

In this paper we developed an econometric model that allowed us to estimate and compare

the health production process at almost 14,000 nursing homes. We found substantial

heterogeneity in value added across nursing homes: moving from the 10th percentile to

the 90th percentile of the nursing home value-added distribution is equivalent to being able

to discharge a patient to the community almost one week faster (or about one-quarter of the

median length of stay in our sample).

Strikingly, we found that the dispersion in nursing home value added within markets

is almost as large as the nationwide dispersion. In other words, there are at least some

high-quality nursing homes in low-quality markets and at least some low-quality nursing

homes in high-quality markets. This points to the potential for substantial gains from

policies that encourage reallocation of patients to higher-quality nursing homes within their

market.

Our findings suggest that an important area for further work is to analyze the economic

and policy forces that can achieve such market reallocation. Using our value-added measure

as the dependent variable, it would be useful to study how it is affected by mergers or

other changes in competition, as well as by the types of policies that are used to try to

improve nursing home quality, such as changes in Medicare reimbursement, the imposition of

minimum staffing ratios, or information campaigns (Wunderlich and Kohler 2001; Konetzka

2020).

There are a number of ways to extend our analysis of nursing home value added. While

we examined some SNF-level correlates of SNF quality, there is likely scope to examine the

correlation between our baseline and alternative value added measures and a richer set of

measures of SNF behavior. Indeed, with the right data and variation, it may be possible

to estimate the causal effect of various aspects of SNF behavior on relevant value added

metrics. We conducted some basic analysis of heterogeneity in value added within SNFs

across patients of different ages or by a proxy for income status. Extending this analysis to

better understand how nursing homes contribute to heterogeneity in patient outcomes would

be another promising area for inquiry.
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Abdulkadiroğlu, Atila, Parag A Pathak, Jonathan Schellenberg, and Christopher R Walters.
2020. “Do parents value school effectiveness?” American Economic Review 110 (5):
1502–39.

Agarwal, Nikhil, and Paulo Somaini. 2022. “Demand Analysis under Latent Choice
Constraints”. NBER Working Paper, number 29993.

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber. 2005. “Selection on Observed
and Unobserved Variables: Assessing the Effectiveness of Catholic Schools”. Journal of
Political Economy 113 (1): 151–84.

Boccuti, Cristina, Giselle Casillas, and Tricia Neuman. 2015. “Reading the Stars: Nursing
Home Quality Star Ratings, Nationally and by State”, https://www.kff.org/medicare/
issue-brief /reading-the-stars-nursing-home-quality-star-ratings-nationally-and-by-
state/.

Bring, Johan. 1995. “Variable importance by partitioning R2”. Quality & Quantity 29 (2):
173–189.

Card, David, Alessandra Fenizia, and David Silver. May 2023. “The Health Impacts of
Hospital Delivery Practices”. American Economic Journal: Economic Policy 15, number
2 (): 42–81. https://doi.org/10.1257/pol.20210034. https://www.aeaweb.org/articles?
id=10.1257/pol.20210034.

Carpenter, G. Iain, Charlotte L. Hastie, John N. Morris, Brant E. Fries, and Joel Ankri.
2006. “Measuring change in activities of daily living in nursing home residents with
moderate to severe cognitive impairment”. BMC Geriatrics 6 (7).

Castle, Nicholas G., and Jamie C. Ferguson. 2010. “What Is Nursing Home Quality and How
Is It Measured?” The Gerontologist 50 (4): 426–442.

Centers for Medicare & Medicaid Services. 2008a. Talking Points – Improving the CMS
Nursing Home Compare Website — Guidance Portal. https://www.cms.gov/Medicare/
Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/downloads/impro
vingnhcompare.pdf.

. 2008b. “The Five-Star Nursing Home Rating System – Questions and Answers”.
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertifi
cationGenInfo/downloads/SCLetter09-18.pdf.

. 2016. Long-Term Care Facility Resident Assessment Instrument 3.0 User’s Manual.
https://downloads.cms.gov/files/mds-30-rai-manual-v114-october-2016.pdf.

. 2017. “Medicare-Required SNF PPS Assessments”. https://www.cms.gov/Outr
each-and-Education/Medicare-Learning-Network-MLN/MLNProducts/SNF-PPS/
SNFAssessHTML022817f.html.

. 2018. “Survey and Enforcement Process for Skilled Nursing Facilities and Nursing
Facilities”. Chapter 7 in State Operations Manual. https://www.cms.gov/Regulations-
and-Guidance/Guidance/Manuals/Downloads/som107c07pdf.pdf.

. 2019a. “Medicare Coverage of Skilled Nursing Facility Care”. https://www.medicare.
gov/Pubs/pdf/10153-Medicare-Skilled-Nursing-Facility-Care.pdf.

34

https://www.kff.org/medicare/issue-brief/reading-the-stars-nursing-home-quality-star-ratings-nationally-and-by-state/
https://www.kff.org/medicare/issue-brief/reading-the-stars-nursing-home-quality-star-ratings-nationally-and-by-state/
https://www.kff.org/medicare/issue-brief/reading-the-stars-nursing-home-quality-star-ratings-nationally-and-by-state/
https://doi.org/10.1257/pol.20210034
https://www.aeaweb.org/articles?id=10.1257/pol.20210034
https://www.aeaweb.org/articles?id=10.1257/pol.20210034
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/downloads/improvingnhcompare.pdf
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/downloads/improvingnhcompare.pdf
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/downloads/improvingnhcompare.pdf
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/downloads/SCLetter09-18.pdf
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/SurveyCertificationGenInfo/downloads/SCLetter09-18.pdf
https://downloads.cms.gov/files/mds-30-rai-manual-v114-october-2016.pdf
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/SNF-PPS/SNFAssessHTML022817f.html
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/SNF-PPS/SNFAssessHTML022817f.html
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/SNF-PPS/SNFAssessHTML022817f.html
https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/som107c07pdf.pdf
https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/som107c07pdf.pdf
https://www.medicare.gov/Pubs/pdf/10153-Medicare-Skilled-Nursing-Facility-Care.pdf
https://www.medicare.gov/Pubs/pdf/10153-Medicare-Skilled-Nursing-Facility-Care.pdf


Centers for Medicare & Medicaid Services. 2019b. “National Health Expenditures by Type of
Service and Source of Funds: Calendar Years 1960 to 2019”. https://www.cms.gov/files/
zip/national-health-expenditures-type-service-and-source-funds-cy-1960-2019.zip.

. 2022. “Special Focus Facility (“SFF”) Program”. https://www.cms.gov/Medicare/
Provider-Enrollment-and-Certification/CertificationandComplianc/Downloads/SFFLi
st.pdf.

. 2024a. “Compare Nursing Home Quality”. https : / / www . medicare . gov / what -
medicare-covers/what-part-a-covers/compare-nursing-home-quality.

. 2024b. Long Term Care Minimum Data Set (MDS) 3.0. https://resdac.org/cms-
data/files/mds-30.

. 2024c. Master Beneficiary Summary File. https://resdac.org/cms-data/files/mbsf-
base.

. 2024d. Medicare Provider Analysis and Review. https://resdac.org/cms-data/files/
medpar.

Chandra, Amitabh, Amy Finkelstein, Adam Sacarny, and Chad Syverson. 2016. “Health Care
Exceptionalism? Performance and Allocation in the US Health Care Sector”. American
Economic Review 106 (8): 2110–2144.

Chetty, Raj, John N Friedman, and Jonah E Rockoff. 2014a. “Measuring the impacts of
teachers I: Evaluating bias in teacher value-added estimates”. American Economic
Review 104 (9): 2593–2632.

. 2014b. “Measuring the impacts of teachers II: Teacher value-added and student
outcomes in adulthood”. American Economic Review 104 (9): 2633–79.

42 C.F.R. §483. 2016.

Congressional Budget Office. 2008. Geographic Variation in Health Care Spending.
Washington, DC: Congress of the United States. https://www.cbo.gov/sites/default/
files/cbofiles/ftpdocs/89xx/doc8972/02-15-geoghealth.pdf.

Cornell, Portia Y, David C Grabowski, Edward C Norton, and Momotazur Rahman. 2019.
“Do report cards predict future quality? The case of skilled nursing facilities”. Journal
of Health Economics 66:208–221.

Cutler, David M. 2007. “The lifetime costs and benefits of medical technology”. Journal of
Health Economics 26 (6): 1081–1100.

Dartmouth Atlas. 2024. Geographic Boundary Files. https : / / data . dartmouthatlas . org /
supplemental/#boundaries.

Doyle, Joseph, John Graves, and Jonathan Gruber. 2019. “Evaluating Measures of Hospital
Quality:Evidence from Ambulance Referral Patterns”. The Review of Economics and
Statistics 101 (5): 841–852.

Dubin, Jeffrey A, and Daniel L McFadden. 1984. “An econometric analysis of residential
electric appliance holdings and consumption”. Econometrica 52 (2): 345–362.

Einav, Liran, Amy Finkelstein, and Neale Mahoney. 2024. “Producing Health: Measuring
Value Added of Nursing Homes”. NBER Working Paper No. 30228.

Einav, Liran, Amy Finkelstein, and Heidi Williams. 2016. “Paying on the Margin for
Medical Care: Evidence from Breast Cancer Treatments”. American Economic Journal:
Economic Policy 8 (1): 52–79.

35

https://www.cms.gov/files/zip/national-health-expenditures-type-service-and-source-funds-cy-1960-2019.zip
https://www.cms.gov/files/zip/national-health-expenditures-type-service-and-source-funds-cy-1960-2019.zip
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/CertificationandComplianc/Downloads/SFFList.pdf
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/CertificationandComplianc/Downloads/SFFList.pdf
https://www.cms.gov/Medicare/Provider-Enrollment-and-Certification/CertificationandComplianc/Downloads/SFFList.pdf
https://www.medicare.gov/what-medicare-covers/what-part-a-covers/compare-nursing-home-quality
https://www.medicare.gov/what-medicare-covers/what-part-a-covers/compare-nursing-home-quality
https://resdac.org/cms-data/files/mds-30
https://resdac.org/cms-data/files/mds-30
https://resdac.org/cms-data/files/mbsf-base
https://resdac.org/cms-data/files/mbsf-base
https://resdac.org/cms-data/files/medpar
https://resdac.org/cms-data/files/medpar
https://www.cbo.gov/sites/default/files/cbofiles/ftpdocs/89xx/doc8972/02-15-geoghealth.pdf
https://www.cbo.gov/sites/default/files/cbofiles/ftpdocs/89xx/doc8972/02-15-geoghealth.pdf
https://data.dartmouthatlas.org/supplemental/#boundaries
https://data.dartmouthatlas.org/supplemental/#boundaries


Gandhi, Ashvin. 2020. “Picking your patients: Selective admissions in the nursing home
industry”. Working Paper, visited on January 8, 2021. https://papers.ssrn.com/sol3/
papers.cfm?abstract id=3613950.

Gandhi, Ashvin, Huizi Yu, and David C Grabowski. 2021. “High Nursing Staff Turnover In
Nursing Homes Offers Important Quality Information: Study examines high turnover of
nursing staff at US nursing homes.” Health Affairs 40 (3): 384–391.

Gawande, Atul. 2009. “The Cost Conundrum: What a Texas Town Can Teach Us about
Health Care”. The New Yorker, https://www.newyorker.com/magazine/2009/06/01/
the-cost-conundrum.

Geweke, John, Gautam Gowrisankaran, and Robert J. Town. 2003. “Bayesian Inference for
Hospital Quality in a Selection Model”. Econometrica 71 (4): 1215–1238.

Goldstein, Matthew, and Robert Gebeloff. 2019. “Dozens of Nursing Homes With
HUD-Backed Mortgages Have ‘Serious Deficiencies’”. The New York Times, https :
//www.nytimes.com/2019/06/24/business/nursing-homes-hud.html.

Grabowski, David C., Zhanlian Feng, Richard Hirth, Momotazur Rahman, and Vincent
Mor. 2013. “Effect of nursing home ownership on the quality of post-acute care: An
instrumental variables approach”. Journal of Health Economics 32 (1): 12–21.

Grabowski, David C., Jonathan Gruber, and Joseph J Angelelli. 2008. “Nursing Home
Quality as a Common Good”. The Review of Economics and Statistics 90 (4): 754–764.

Grossman, Michael. 1972. “On the Concept of Health Capital and the Demand for Health”.
Journal of Political Economy 80 (2): 223–255.

Gupta, Atul, Sabrina T Howell, Constantine Yannelis, and Abhinav Gupta. November 2023.
“Owner Incentives and Performance in Healthcare: Private Equity Investment in Nursing
Homes”. The Review of Financial Studies 37, number 4 (): 1029–1077. issn: 0893-9454.
https://doi.org/10.1093/rfs/hhad082. https://doi.org/10.1093/rfs/hhad082.

Hackmann, Martin B. 2019. “Incentivizing better quality of care: The role of Medicaid
and competition in the nursing home industry”. American Economic Review 109 (5):
1684–1716.

Hackmann, Martin B., R. Vincent Pohl, and Nicolas R. Ziebarth. July 2024. “Patient
versus Provider Incentives in Long-Term Care”. American Economic Journal: Applied
Economics 16, number 3 (): 178–218. https://doi.org/10.1257/app.20210264. https:
//www.aeaweb.org/articles?id=10.1257/app.20210264.

Harrington, Charlene, Helen Carrillo, Rachel Garfield, MaryBeth Musumeci, and
Ellen Squires. 2018. “Nursing Facilities, Staffing, Residents and Facility Deficiencies,
2009 Through 2016”, https://www.kff.org/medicaid/report/nursing-facilities-staffing-
residents-and-facility-deficiencies-2009-through-2016/.

Heckman, James J. 1979. “Sample selection bias as a specification error”. Econometrica 47
(1): 153–161.

Hoffman, James V., Lori Czop Assaf, and Scott G. Paris. 2001. “High-Stakes Testing in
Reading: Today in Texas, Tomorrow?” The Reading Teacher 54 (5): 482–492.

Hull, Peter. February 5, 2018. Estimating Hospital Quality with Quasi-Experimental Data,
3118358, Rochester, NY, February 5, 2018. Visited on November 2, 2024. https://doi.
org/10.2139/ssrn.3118358. https://papers.ssrn.com/abstract=3118358.

36

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3613950
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3613950
https://www.newyorker.com/magazine/2009/06/01/the-cost-conundrum
https://www.newyorker.com/magazine/2009/06/01/the-cost-conundrum
https://www.nytimes.com/2019/06/24/business/nursing-homes-hud.html
https://www.nytimes.com/2019/06/24/business/nursing-homes-hud.html
https://doi.org/10.1093/rfs/hhad082
https://doi.org/10.1093/rfs/hhad082
https://doi.org/10.1257/app.20210264
https://www.aeaweb.org/articles?id=10.1257/app.20210264
https://www.aeaweb.org/articles?id=10.1257/app.20210264
https://www.kff.org/medicaid/report/nursing-facilities-staffing-residents-and-facility-deficiencies-2009-through-2016/
https://www.kff.org/medicaid/report/nursing-facilities-staffing-residents-and-facility-deficiencies-2009-through-2016/
https://doi.org/10.2139/ssrn.3118358
https://doi.org/10.2139/ssrn.3118358
https://papers.ssrn.com/abstract=3118358


Institute of Medicine. 2013. Variation in Health Care Spending: Target Decision Making,
Not Geography. Redacted by Joseph P. Newhouse, Alan M. Garber, Robin P. Graham,
Margaret A. McCoy, Michelle Mancher, and Ashna Kibria. Washington, DC: The
National Academies Press.

Jacob, Brian A., and Steven D. Levitt. 2003. “Rotten Apples: An Investigation of the
Prevalence and Predictors of Teacher Cheating”. The Quarterly Journal of Economics
118 (3): 843–877.

Jacobs, Andrew, and Matt Richtel. 2019. “Nursing Homes Are a Breeding Ground for a
Fatal Fungus”. The New York Times, https://www.nytimes.com/2019/09/11/health/
nursing-homes-fungus.html.

Koedel, Cory, Kata Mihaly, and Jonah E Rockoff. 2015. “Value-added modeling: A review”.
Economics of Education Review 47:180–195.

Konetzka, R. Tamara. 2020. “The Challenges of Improving Nursing Home Quality”. JAMA
Network Open 3 (1): e1920231.

Lazear, Edward P. 2006. “Speeding, Terrorism, and Teaching to the Test*”. The Quarterly
Journal of Economics 121 (3): 1029–1061.

Long-Term Care: Facts on Care in the US. 2024. “About Us”. http://ltcfocus.org/about.

McClellan, Mark, Barbara J. McNeil, and Joseph P. Newhouse. 1994. “Does More Intensive
Treatment of Acute Myocardial Infarction in the Elderly Reduce Mortality?: Analysis
Using Instrumental Variables”. JAMA 272 (11): 859–866.

Medicare Payment Advisory Commission. 2018. “Skilled nursing facility services”. Chapter 8
in Report to the Congress: Medicare Payment Policy. Medicare Payment Advisory
Commission.

. 2020. “Post-acute care”. Chapter 8 in Health Care Spending and the Medicare
Program. Medicare Payment Advisory Commission.

. 2021. “Skilled Nursing Facility Services Payment System”. https://www.medpac.
gov/wp-content/uploads/2021/11/medpac payment basics 21 snf final sec.pdf.

Morris, Carl N. 1983. “Parametric Empirical Bayes Inference: Theory and Applications”.
Journal of the American Statistical Association 78 (381): 47–55.

Morris, John N, Katherine Berg, Eva Topinkova, Leonard C Gray, and Erez Schachter. 2018.
“Developing quality indicators for in-patient post-acute care”. BMC Geriatrics 18 (1):
161.

Morris, John N, Catherine Hawes, Brant E Fries, Charles D Phillips, Vincent Mor, Sidney
Katz, Katharine Murphy, Margaret L Drugovich, and Alan S Friedlob. 1990. “Designing
the national resident assessment instrument for nursing homes”. The Gerontologist 30
(3): 293–307.

National Bureau of Economic Research. 2024. SSA to Federal Information Processing
Series (FIPS) Core-Based Statistical Area (CBSA) and Metropolitan and Micropolitan
Statistical Area (MSA) County Crosswalk. https://www.nber.org/research/data/ssa-
federal - information - processing - series - fips - core - based - statistical - area - cbsa - and -
metropolitan-and.

37

https://www.nytimes.com/2019/09/11/health/nursing-homes-fungus.html
https://www.nytimes.com/2019/09/11/health/nursing-homes-fungus.html
http://ltcfocus.org/about
https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_snf_final_sec.pdf
https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_snf_final_sec.pdf
https://www.nber.org/research/data/ssa-federal-information-processing-series-fips-core-based-statistical-area-cbsa-and-metropolitan-and
https://www.nber.org/research/data/ssa-federal-information-processing-series-fips-core-based-statistical-area-cbsa-and-metropolitan-and
https://www.nber.org/research/data/ssa-federal-information-processing-series-fips-core-based-statistical-area-cbsa-and-metropolitan-and


Olenski, Andrew, and Szymon Sacher. April 2024. “Estimating Nursing Home Quality with
Selection”. The Review of Economics and Statistics (): 1–31. issn: 0034-6535. https:
//doi.org/10.1162/rest a 01449. https://doi.org/10.1162/rest%5C a%5C 01449.

Oster, Emily. 2019. “Unobservable Selection and Coefficient Stability: Theory and Evidence”.
Journal of Business & Economic Statistics 37 (2): 187–204.

Rau, Jordan. 2018. “‘It’s Almost Like a Ghost Town.’ Most Nursing Homes Overstated
Staffing for Years”. The New York Times, https://www.nytimes.com/2018/07/07/
health/nursing-homes-staffing-medicare.html.

Rau, Jordan, and Elizabeth Lucas. 2018. “Medicare Slashes Star Ratings for Staffing at 1
in 11 Nursing Homes”. The New York Times, https://www.nytimes.com/2018/07/27/
health/medicare-nursing-homes.html.

Ryskina, Kira L., R. Tamara Konetzka, and Rachel M. Werner. 2018. “Association
Between 5-Star Nursing Home Report Card Ratings and Potentially Preventable
Hospitalizations”. INQUIRY: The Journal of Health Care Organization, Provision, and
Financing 55.

Silver-Greenberg, Jessica, and Robert Gebeloff. 2021. “Maggots, Rape and Yet Five Stars:
How U.S. Ratings of Nursing Homes Mislead the Public”. The New York Times, https://
www.nytimes.com/2021/03/13/business/nursing-homes-ratings-medicare-covid.html.

Skinner, Jonathan. 2011. “Causes and Consequences of Regional Variations in Health Care”.
In Handbook of Health Economics, 2:45–93. Elsevier.

Small, Kenneth, and Harvey Rosen. 1981. “Applied welfare economics with discrete choice
models”. Econometrica 49 (1): 105–130.

Thomas, Katie. 2014. “Medicare Star Ratings Allow Nursing Homes to Game the System”.
The New York Times, https://www.nytimes.com/2014/08/25/business/medicare-star-
ratings-allow-nursing-homes-to-game-the-system.html.

Todd, Petra E, and Kenneth I Wolpin. 2003. “On the specification and estimation of
the production function for cognitive achievement”. The Economic Journal 113 (485):
F3–F33.

12 U.S.C. §1715w. 2014.

United States Department of Housing and Urban Development. 2024. Zipcode Population
Weighted Centroids. https://catalog.data.gov/dataset/zip-code-population-weighted-
centroids.

United States Government Accountability Office. 2016. Nursing Homes: Consumers Could
Benefit from Improvements to the Nursing Home Compare Website and Five-Star
Quality Rating System. https://www.gao.gov/products/gao-17-61.

. 2019. Nursing Homes: Improved Oversight Needed to Better Protect Residents from
Abuse. https://www.gao.gov/products/gao-19-433.

Wennberg, John E, Megan M Cooper, JD Birkmeyer, et al. 1998. “The Dartmouth Atlas of
Health Care 1998”.

Wunderlich, Gooloo S, and Peter O Kohler. 2001. Improving the quality of long-term care.
National Academies Press (US).

Wunderlich, Gooloo S., Frank Sloan, and Carolyne K. Davis. 1996. Staffing and Quality of
Care in Nursing Homes. National Academies Press (US).

38

https://doi.org/10.1162/rest_a_01449
https://doi.org/10.1162/rest_a_01449
https://doi.org/10.1162/rest%5C_a%5C_01449
https://www.nytimes.com/2018/07/07/health/nursing-homes-staffing-medicare.html
https://www.nytimes.com/2018/07/07/health/nursing-homes-staffing-medicare.html
https://www.nytimes.com/2018/07/27/health/medicare-nursing-homes.html
https://www.nytimes.com/2018/07/27/health/medicare-nursing-homes.html
https://www.nytimes.com/2021/03/13/business/nursing-homes-ratings-medicare-covid.html
https://www.nytimes.com/2021/03/13/business/nursing-homes-ratings-medicare-covid.html
https://www.nytimes.com/2014/08/25/business/medicare-star-ratings-allow-nursing-homes-to-game-the-system.html
https://www.nytimes.com/2014/08/25/business/medicare-star-ratings-allow-nursing-homes-to-game-the-system.html
https://catalog.data.gov/dataset/zip-code-population-weighted-centroids
https://catalog.data.gov/dataset/zip-code-population-weighted-centroids
https://www.gao.gov/products/gao-17-61
https://www.gao.gov/products/gao-19-433


Yaraghi, Niam, Ram Gopal, and Xu Han. 2016. “Five-star ratings for sub-par service:
Evidence of inflation in nursing home ratings”. Governance Studies at Brookings, 1–22.

39



Figure 1: Movement and Measurement of Patients
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Notes: Figure shows the movement of SNF patient stays and the timing of health assessments.
“Downstream” refers to patients who are discharged to the community. “Upstream” refers to patients
who die in the nursing home, are sent to hospice, or are sent to an acute care hospital. Between the
initial assessment and the 30-day assessment, 3.1 percent of patients are discharged to a destination
not accounted for by our upstream and downstream definitions; these include discharges to other
SNFs, facilities for intellectual and developmental disabilities, inpatient rehabilitation facilities, and
other/unknown locations (not shown). Statistics on discharge after the 30-day assessment are for
discharges within 7 days of the 30-day assessment. In the one-week period following the 30-day
assessment, 0.6% of patient stays are discharged to destinations not accounted for by our upstream
and downstream destinations (not shown). Statistics are calculated using our baseline sample
(N = 6, 246, 686).
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Figure 2: Health Index

(A) Distribution of Health Index at Admission
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(B) Health Index at Admission and Length of Stay
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Notes: Panel (A) shows the distribution of our health index at admission (h1) in the baseline sample
(N = 6, 246, 686). Panel (B) shows the relationship between length of stay and health index at
admission (h1) conditional on discharge to the community during our study period (N = 3, 847, 120); it
shows the relationship for each of the 635 unique values of h1 that come from our regression tree. The
line in Panel (B) is the linear fit between average length of stay and baseline health for patients with a
baseline health measure below the 95th percentile (0.36) conditional on discharge to the community.
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Figure 3: Distance Instrument for Selection In

(A) Chicago HRR
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Notes: Panel A plots the non-parametric relationship between the probability of going to a SNF and
distance to that SNF in the greater Chicago market from specifications that sequentially add observables
interacted with choice-specific indicators (N = 212, 937 patient stays; 294 SNFs). Panel B plots the
coefficient on log distance from estimates of demand model shown in equation (4) estimated on the
baseline sample (N = 6, 246, 686). Specifically, each point denotes a choice set, with the horizontal axis
displaying the coefficient on distance from the specification without observable shifters of δj and the
vertical axis displaying the coefficient on distance from the specification with demographics and health
shifters. The shifters for demographics and health are the first five principal components of a set of
demographics (above median age, female, married, Hispanic, Black, white, dual eligible) and health
measures at admission (walking, indwelling, falls, shortness of breath, depressed, delirium, vomiting,
fever, dehydration, weight loss, and long-form ADL).
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Figure 4: Value Added

(A) National Parameters

Parameter Estimate 
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(C) Value Added vs. Selection Coefficient
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Notes: Figure reports the parameter estimates from jointly estimating equations (2), (3), and (6).
Panel A reports estimates of the “national parameters” from our model. Parameter θx1 is the coefficient
for Medicaid dual-eligibility, θx2 is the coefficient for ages 75–84, and θx3 is the coefficient for ages
85+. Panel B plots the relationship between value added (αj) and the SNF-specific downstream
discharge thresholds (λj). Panel C plots the relationship between value added (αj) and the SNF-specific
coefficients on the selection control function (φj). The sample is comprised of 13,938 SNFs and 6,246,686
patient stays. The analysis weights each SNF by the number of patient stays we observe at that facility.
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Figure 5: Distribution of Value Added across SNFs

(A) Kernel Densities with and without
empirical Bayes (EB) Shrinkage
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Notes: Panel A shows a kernel density of value added before and after performing empirical Bayes
shrinkage to account for estimation error in the value-added estimates. The correlation between the
value added estimates and their shrunken counterparts is 0.81. The standard errors of value added
are the critical inputs to the empirical Bayes procedure. The average standard error is 0.015. Panel
B shows the distribution of (empirical-Bayes adjusted) value added (αj) across SNFs. The analyses
weight each SNF by the number of patient stays we observe at that facility.
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Figure 6: Heterogeneity Across and Within Markets

(A) Average Value Added by Market
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(C) Distributions of Value-Added

Mean SD 10th 25th 50th 75th 90th

Across SNFs 0.049 0.023 0.021 0.035 0.050 0.064 0.077
Across markets 0.049 0.012 0.035 0.044 0.050 0.057 0.063
Within markets 0.049 0.019 0.025 0.036 0.050 0.062 0.074

Notes: Panel (A) plots the average value added in each market. Panel (B) plots the difference between
the 90th percentile and 10th percentile of the value-added distribution within each market. Summary
statistics are constructed after weighting each SNF by the number of patient stays. The color gradients
follow quartiles of the corresponding market-level distribution. Data is shown for 306 markets (i.e.
HRRs) covering 13,938 SNFs. Blank regions in the maps have no SNFs with patients in our sample.
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Figure 7: Dispersion in Value Added Within Markets
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Notes: Figure shows box-and-whiskers plots of SNF value added by deciles of the market-level
distribution of value added, where markets are defined by the 306 HRRs. The lower (upper) “whisker”
shows the 2.5th (97.5th) percentile. The bottom of each box is the 25th percentile, the middle is the
median, and the top is the 75th percentile. The distribution depicted by each box-and-whisker plot
is weighted by patient stays. The dashed horizontal line is the median across all SNFs in our sample,
weighted by patient stays.
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Figure 8: Correlating CMS Star Ratings and Value Added at the Market
Level
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Notes: Figure shows a scatter of the average CMS overall star rating against average value added
at the market level. Market-level averages are weighted by the number of patient stays. The points
represent 306 markets covering the 13,646 SNFs for which we observe CMS star ratings. The black dot
shows the patient-stay-weighted average of the overall rating and value added. Certain outlier markets
and other markets of interest are labeled. The line is based on a linear regression with observations are
weighted by the number of patient stays in each market.
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TABLE I: Patient Characteristics

(1) (2)

A. Patient characteristics at admission (N = 6,246,686)

Age 81.0 (8.3) 1.9
Female 0.63 0.06
Married 0.36 0.07

White 0.86 0.18
Black 0.08 0.14
Asian 0.02 0.06
Hispanic 0.03 0.09
Other/Unknown 0.01 0.04

Medicaid (aka "dually eligible") at admission 0.18 0.14
Length of hospital stay (days) (prior to SNF admission) 7.6 (7.7) 2.0

B. SNF length of stay

Length of stay (days) 44.7 (100.9) 20.8
Share discharged before 30-day assessment 0.59 0.12
Share discharged before 60-day assessment 0.85 0.07
Share discharged before 90-day assessment 0.92 0.04

C. Discharge destination for patients discharged prior to day-30 assessment

Community (downstream) 0.62 0.14
Acute care hospital (upstream) 0.28 0.11
Deceased or hospice (upstream) 0.03 0.03
Another nursing home 0.05 0.04
Other 0.02 0.02

Mean
Std. dev. 

across SNFs

Notes: Table shows summary statistics of patient characteristics in our baseline sample (N =
6, 246, 686 patients at 13,996 SNFs). Column (1) reports the mean across patients, with patient-level
standard deviations in parentheses. Column (2) reports the standard deviation of the SNF-level average
across SNFs, with each SNF weighted by the number of patient stays in that SNF.
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TABLE II: SNF Characteristics

Mean

(weighted mean)a

Number of beds 13,646 111.8 60.5 40 104 210
(128.3)

Occupancy % 13,646 82.2 12.6 56.8 85.9 95.9
(83.7)

For profit status 13,646 0.71
(0.70)

Hospital-based 13,646 0.04
(0.06)

Admissions 13,996 446.3 478.1 65 290 1,343
(958.5)

No. of obs. Std. dev.
5th 

pct'ile
Median

95th 
pct'ile

Notes: Table shows summary statistics of SNF characteristics in our baseline sample. All data except
for the number of admissions in the bottom row come from Online Survey Certification And Reporting
(OSCAR), which are collected during annual inspections of SNFs and are missing for 350 SNFs.
a Weighted means are weighted by the number of patient stays in the SNF.
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TABLE III: Selected Health Index Measures

Mean Std. dev.
Std. dev. 

across SNFs
Importance

(1) (2) (3) (4)

Physical
Has fallen (0-1) 0.07 0.25 0.03 4.54
Vomiting (0-1) 0.02 0.15 0.01 0.00
Turning balance (0-3) 2.11 0.79 0.29 14.84
Upper extremity range (0-2) 0.20 0.52 0.15 4.38
Surgical wounds (0-1) 0.32 0.46 0.12 15.51

Mental 
Mood score (PHQ-9) (0-27) 2.59 3.50 1.59 82.18
Antipsychotics (0-1) 0.09 0.29 0.05 2.81
Antidepressants (0-1) 0.34 0.48 0.07 19.35
Psychosis (0-1) 0.98 0.14 0.03 0.00
Brief Interview for Mental Status (BIMS) (0-15) 12.12 3.80 1.06 18.98

Restraints
Bed rail restraints (0-2) 0.03 0.24 0.18 0.00
Trunk rail restraints (0-2) 0.00 0.02 0.00 0.00
Limb rail restraints (0-2) 0.00 0.04 0.01 0.00
Trunk chair restraints (0-2) 0.00 0.06 0.01 0.00
Limb chair restraints (0-2) 0.00 0.03 0.00 0.00

Activities of Daily Living (ADL) 
Walking (0-4) 2.96 1.06 0.36 31.36
Hygiene (0-4) 2.51 0.90 0.40 1.40
Dressing (0-4) 2.75 0.69 0.22 9.65
Locomotion (0-4) 2.75 0.97 0.34 53.00
Toilet (0-4) 2.79 0.69 0.23 43.32

Pain
Pain management (0-1) 0.71 0.45 0.12 2.77
Pain presence (0-1) 0.60 0.49 0.13 7.41
Pain swallowing (0-1) 0.03 0.16 0.03 0.00
Mouth/face pain when chewing (0-1) 0.01 0.11 0.02 0.00
Pain intensity (0-10) 3.11 3.36 1.19 100.00

Treatement and Equipment
Walker (0-1) 0.65 0.48 0.20 3.87
Wheelchair (0-1) 0.86 0.35 0.15 10.97
Limb prosthesis (0-1) 0.00 0.05 0.00 0.00
Insulin (0-7) 1.13 2.46 0.35 6.70
Oxygen therapy (0-1) 0.26 0.44 0.09 24.78

Interaction
Speech clarity (0-2) 0.09 0.40 0.09 0.00
Makes self understood (0-3) 0.25 0.64 0.19 3.18
Ability to understand others (0-3) 0.29 0.64 0.21 6.45
Verbal behavior symptoms (0-3) 0.04 0.23 0.03 0.08
Other behavior symptoms (0-3) 0.03 0.24 0.04 0.84

Health Measure

Notes: Table shows summary statistics at admission for a selected subset of the 109 health measures
that are used in our health index. The health measures are binary or categorical variables. The range
for each measure is shown in parentheses; higher values indicate worse health, except for the BIMS
score, where higher values are better. Appendix A provides more detail on the measurement of some
variables. Standard deviation across SNFs in column (3) is weighted by the number of patient stays in
the SNF. The importance measure in column (4) is defined as the incremental R2 of that variable; that
is, the difference in R2 of the health index model with and without that variable. The incremental R2

is then scaled such that the “most important” variable has an importance of 100 (see Bring (1995) for
a discussion of variable importance).
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TABLE IV: Health Index

A. Internal fit (h as of day-30 assessment, N = 2,028,014):
    All patients assessed at day 30 0.325 0.135 0.093
    Discharged to community w/in 7 days 0.035 0.201 0.115
    Still at the SNF 7 days after 0.275 0.127 0.087
    Discharged elsewhere w/in 7 days 0.014 0.113 0.083

B. External fit (h as of initial assessment, N = 6,246,686):
    All patients 1.000 0.134 0.095
    Discharged to community before day-30 assessment 0.368 0.186 0.106
    Still at the SNF for day-30 assessment 0.403 0.104 0.069
    Discharged elsewhere before day-30 assessment 0.229 0.104 0.082

C. Model-predicted decisions (h as of initial assessment, N = 6,215,699):
    All patients 1.000 0.134 0.095
    Discharged to community before day-30 assessment 0.365 0.185 0.112
    Still at the SNF for day-30 assessment 0.425 0.106 0.069
    Discharged elsewhere before day-30 assessment 0.209 0.103 0.068

Share of baseline 
sample

Mean h Std. dev. of h

Notes: Table shows summary statistics for our health index. Panel A shows the health index at 30
days for the sample of 2,028,014 patient stays with non-missing 30-day assessment data. Panel B shows
the health index at admission for our full sample of 6,246,686 patient stays. Panel C shows the health
index at admission for model-predicted discharge groups for patients in SNFs that have estimates for
all parameters.
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TABLE V: Upstream discharge parameters

Mean SD 10th 25th 50th 75th 90th

γ0 -0.37 0.39 -0.64 -0.54 -0.43 -0.31 -0.14
γ1 -4.95 37.39 -2.92 -1.12 -0.15 0.47 1.07

Notes: Table reports summary statistics of the market-level upstream discharge parameters (γ0k and
γ1k) in our model for 655 markets. The patient-stay-weighted correlation between γ0k and γ1k is −0.96.
The patient-stay-weighted correlation between winsorized γ0k (dropping the bottom 5%) and γ1k is−0.85,
and between γ0k and winsorized γ1k is −0.85.

52



TABLE VI: Correlations of Value-Added Estimates with SNF and Patient
Characteristics

Correlation
Partial correlation 

controlling for 

market FEs

(1) (2)

A. Other SpecificationsSNF characteristics 

SNF occupancy -0.015 0.000

Number of beds -0.180 -0.063

For profit -0.134 -0.140

Hospital-based 0.015 0.045

Chain ownership 0.013 -0.064

Medicare share 0.248 0.296

Has Alzheimer's special care unit 0.038 -0.011

B. CMS Star RatingsPatient characteristics

Health index at admission 0.480 0.386

Black patient share -0.274 -0.233

Medicaid (aka "dually eligible") at admission -0.463 -0.452

Female patient share 0.242 0.318

Married patient share 0.333 0.265

Mean age 0.172 0.211

Notes: Table shows SNF-level correlations between our value-added estimates and characteristics of
both SNFs (Panel A) and their patients (Panel B). Correlations are weighted by the number of patient
stays in the SNF and calculated based on value-added estimates for 13,938 SNFs covering 306 markets.
“Chain ownership” refers to whether a facility is owned or leased by a multi-facility (chain) organization.
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TABLE VII: Distribution of value-added for alternative measures and
specifications

Mean SD 10th 25th 50th 75th 90th

A. Baseline
Across SNFs 0.049 0.023 0.021 0.035 0.050 0.064 0.077
Across HRRs 0.049 0.012 0.035 0.044 0.050 0.057 0.063
Within HRRs 0.049 0.019 0.025 0.036 0.050 0.062 0.074

B. ADLs
Across SNFs 3.988 0.642 3.251 3.548 3.938 4.341 4.778
Across HRRs 3.988 0.244 3.712 3.831 3.965 4.146 4.285
Within HRRs 3.988 0.583 3.285 3.600 3.958 4.323 4.732

C. Excluding incentivized measures
Across SNFs 0.045 0.020 0.022 0.033 0.044 0.057 0.070
Across HRRs 0.045 0.011 0.033 0.041 0.046 0.052 0.055
Within HRRs 0.045 0.017 0.024 0.034 0.044 0.056 0.066

D. By patient characteristics

i. Ages 65-74
Across SNFs 0.064 0.033 0.026 0.043 0.061 0.084 0.106
Across HRRs 0.064 0.014 0.049 0.057 0.066 0.071 0.081
Within HRRs 0.064 0.029 0.029 0.044 0.062 0.083 0.105

ii. Ages 75-84
Across SNFs 0.055 0.033 0.020 0.035 0.053 0.075 0.094
Across HRRs 0.055 0.015 0.040 0.048 0.058 0.065 0.071
Within HRRs 0.055 0.027 0.024 0.037 0.054 0.073 0.091

iii. Ages 85+
Across SNFs 0.047 0.025 0.019 0.032 0.047 0.063 0.078
Across HRRs 0.047 0.012 0.030 0.042 0.051 0.055 0.060
Within HRRs 0.047 0.021 0.022 0.033 0.047 0.060 0.074

iv. Not dual-eligible
Across SNFs 0.062 0.032 0.024 0.042 0.061 0.082 0.101
Across HRRs 0.062 0.015 0.044 0.056 0.065 0.072 0.078
Within HRRs 0.062 0.028 0.028 0.043 0.062 0.080 0.098

v. Dual-eligible
Across SNFs 0.025 0.036 -0.018 0.002 0.024 0.047 0.071
Across HRRs 0.025 0.021 -0.001 0.010 0.021 0.039 0.052
Within HRRs 0.025 0.029 -0.010 0.006 0.024 0.043 0.062

Notes: Table reports summary statistics for value added estimates for various models across and within
markets.
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TABLE VIII: Correlations of Value-Added Estimates with Alternative
Measures

Correlation
Partial correlation 

controlling for 
market FEs

(1) (2)

A.   Alternative health indices
ADLs 0.56 0.53
Excluding incentivized health measures 0.85 0.81

B. CMS star ratings
Overall 0.23 0.25
Quality 0.02 0.07
Inspection 0.14 0.19
Staffing 0.35 0.28

C. 90-day outcomes (signed so that higher is better )
Share of days in facilities 90 days 0.39 0.41
Home at 90 days 0.40 0.42
Spending per day 90 days 0.35 0.32
SNF readmission 90 days 0.22 0.22
Hospital readmission 90 days 0.15 0.08
Alive at 90 days 0.21 0.29

D. Other specifications
Average health 0.63 0.58
Average health improvement 0.72 0.69
Average health improvement + select in 0.73 0.72
Average health improvement + select out 0.69 0.61

Notes: Table shows correlations between our baseline value added estimates and alternative measures
of SNF quality, with and without controlling for market fixed effects. Panel A shows correlations with
alternative health indices defined using the same health assessment data as in our baseline estimates.
See Section 6.1 for details. Panel B shows the correlation with the overall five-star rating and its three
sub-components. Panel C shows correlations with outcomes based on the 90-day period following SNF
admissions. For instance, “Home at 90 days” is an indicator for whether the patient is at home 90 days
post admission and “SNF readmission 90 days” is an indicator for whether the patient was readmitted to
the SNF within 90 days of the initial admission. See Section 6.4 for details. Panel D shows correlations
with alternative econometric specifications of value added using the health index. Correlations are
weighted by the number of patient stays in the SNF and calculated based on value-added estimates for
13,938 SNFs covering 306 markets, except for Panel B which is based on the 13,646 SNFs (covering
306 markets) for which we observe CMS five-star ratings.
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Producing Health: Measuring
Value Added of Nursing Homes

Online Appendix

A Health Measures Used in Health Index

We observe 132 separate health measures in both the 5-day and the 30-day assessment in
every year in our data. Following the clinical literature (Morris et al. 2018), we remove
six redundant measures that relate to activities of daily living (ADL) and urinary tract
health. We also combine closely related health measures into composites. Specifically, we
sum indicators for shortness of breath and those for pain management. This leaves us with
122 separate health measures.

We restrict our sample to stays that have a 5-day health assessment, which we define as
having non-missing responses for at least half of the 122 health measures and occurring in
the first 8 days of the stay (CMS requires the 5-day assessment to be conducted between
days 1 and 8). Most dropped stays are missing responses to all of the questions on the health
assessment.

Of the 6.2 million patient stays covered by our final sample (see Appendix Table A.I), 2.5
million are long enough to cover the 30-day assessment period. Among these, approximately
500,000 are missing more than half (and typically all) of the health measures at 30 days.
When this is the case, we treat the entire assessment as missing and use a hot-deck procedure
to impute values for these missing assessments (see Appendix E).

We drop 13 of the 122 measures because they are missing for over 80% of the assessments
at both 5 days and 30 days. The remaining 109 measures are summarized in Appendix
Table A.II. The vast majority of the 109 measures are missing for fewer than 5% of the
5-day assessments. Only three measures (pain frequency, pain effect on sleep, and pain
effect on activity) are missing for between 40–50% of the 5-day assessments, and 50–60% of
the 30-day assessments. When a measure is missing, we fill it in with a distinct “99” value,
so that all measures in each assessment have numeric values.

As shown in Appendix Table A.II, most of the health measures are either binary variables
that indicate whether or not a patient receives some treatment or experiences some condition
or categorical variables that reflect the intensity of the patient’s condition. For example, the
measures of activities of daily living (ADLs) – such as walking, dressing, or hygiene – take
values from 0 to 4, with 0 meaning independent (no help or staff oversight at any time),
1 meaning supervision (oversight, encouragement, or cueing), 2 meaning limited assistance
(resident highly involved in activity and staff provide guided maneuvering of limbs or other
non-weight-bearing assistance), 3 meaning extensive assistance (resident involved in activity,
staff provide weight-bearing support), and 4 meaning total dependence (full staff performance
every time during entire 7-day period.) There are also some cardinal measures that reflect
the number of days in the last week a condition or treatment happened, and range from 0 to
7. For example, the walking training measure reflects the number of days in the last seven
during which the resident received walking training for at least 15 minutes. Finally, there
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is a measure that counts the number of venous and arterial ulcers present on a patient; the
maximum number in our sample is 9.

B Choice set (“sub-HRR”) construction

To define the choice set of SNFs for each patient, we begin with the standard market
definition for hospital choice, namely the 306 Hospital Referral Regions (HRRs), each of
which is composed of one or more Hospital Service Areas (HSAs). There are 3, 436 HSAs
in the United States. Of those, 276 (8%) HSAs have no SNF in our data. Of the remaining
3, 160 HSAs, 315 (9% of all HSAs) have some SNFs but no SNF with more than 50 episodes,
leaving 2, 845 HSAs in our baseline sample restriction.

To make our choice sets more computationally tractable, we split the largest HRRs into
smaller markets comprised of geographically connected HSA groups as follows: We would
like each sub-HRR to have more than 80% of its episodes in the top 20 largest SNFs. Out
of the 306 HRRs, 188 already satisfy this criterion, and 118 are split into sub-HRRs. To
ensure that the sub-HRRs to be geographically connected, we use k-means clustering on the
longitude and latitude of HSA centroids. For HRRs with less than 80% of their episodes in
the top 20 largest SNFs, we split HRRs by the following recursive method: Split each HRR
into two groups by k-means clustering. Then, for each sub-HRR, if it has less than 80% of
its episodes in the top 20 largest SNFs, split that sub-HRR further into two groups. Stop
until every sub-HRR either has more than 80% of its episodes in the top 20 largest SNFs,
or has only one HSA in it.

In summary, of the 306 original HRRs, 188 of them are not split. The 118 HRRs that
are split are comprised of 467 sub-HRRs. This yields a total of 655 sub-HRRs.

C Characterizing Discharge Decisions

We model the SNF’s decision of whether to discharge someone to the community before day
30 as a function of their current health (see equation (2)). This abstracts from the possibility
that this discharge decision could depend not only on their current health, but also on their
health improvement or the length of time they had been at the SNF.

Here we provide empirical support for our modeling decision by estimating alternative
discharge models. Specifically, we examine whether or not a patient is discharged to the
community in the week following the 30-day assessment. For this discharge outcome, we
estimate both our baseline model – in which this decision is only a function of current health
– and a variety of richer models. The results suggest that our baseline model is a good
approximation of the discharge decision.

Appendix Table A.III shows the results. For purposes of exploring the appropriate
functional form for the discharge model, we pool data across SNFs, and ignore any SNF-level
heterogeneity. The first column shows results for our baseline discharge model. The second
column shows results of estimating an augmented version of our baseline discharge model, in
which we allow the discharge decision to depend not only on the patient’s current health level
(as in our baseline model), but also on their health improvement since admission. Controlling
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for health improvement has almost no effect on the impact of the health level on the discharge
probability, and the coefficient on health improvement is an order of magnitude smaller than
that on the health level.

Additionally, we estimate a probit model of discharge to the community that allows for
discharge to depend (linearly) on the length of time in the SNF. To do so, recall that we
measure health at admission (typically around day 5), at 14 days (for people still in the
SNF), and at 30 days (see Section 2). We can therefore think of our health measures as
occurring roughly at week 1 (t = 1), week 2 (t = 1.33), and week 4 (t = 2) in the SNF.

The results are reported in the third column of Appendix Table A.III. They show
similar effects of health each week on the probability of discharge, indicating that discharge
probabilities as a function of health do not vary with length of time in the SNF. To see this
more clearly, Appendix Figure A2 shows the predicted probability of being discharged to
the community at t = 1, t = 1.33, and t = 2. We see these functions lie essentially on top
of each other, supporting the idea that discharge to the community one week after a given
assessment is predominantly a function of health at the beginning of the week and not length
of time in the SNF.

D Controlling for Selection In

In Section 3, we briefly described the discrete choice framework used to construct the control
function for selection into SNFs. In this section, we provide more detail on the derivation of
this control function.42

Recall that utility is given by uij = δj−τmij+ηij where δj is a SNF fixed effect, mij is the
(log) distance patient i must travel to SNF j, and ηij is patient i’s idiosyncratic preferences
for SNF j. SNF value added, αj, is given by

E
[
hi2 | hi1, xi, ηi1, . . . , ηi|Ji|, ci

]
= αj + θhhi1 + x′iθx + gj(ηi1, . . . , ηi|Ji|),

where gj(ηi1, . . . , ηi|Ji|) allows period 2 health to vary flexibly with unobserved preferences
(i.e., to allow for arbitrary selection patterns), ci is a categorical variable that indicates the
SNF chosen by patient i, and Ji is patient i’s choice set. We assume that distance does
not affect health conditional on these unobserved preferences, so mij is excluded from the
outcome equation above.

Following Dubin and McFadden (1984), we parameterize gj(·) as a linear function of the
unobserved logit shocks ηi1, . . . , ηij according to

E
[
hi2 | hi1, xi, ηi1, . . . , ηi|Ji|, ci

]
= αj + θhhi1 + x′iθx +

∑
`∈Ji

φ`(ηi` − µη)︸ ︷︷ ︸
Preferences not specific to j

+ ϕ(ηij − µη)︸ ︷︷ ︸
Selection specific to j

,

where µη is the mean of the logit shocks (Euler’s constant) and acts as a normalization. The
term

∑
`∈Ji φ`(ηi` − µη) captures preferences that have effects on the outcome that are not

42To simplify the notation, we use δj and δk below instead of explicitly denoting the conditioning on
observable patient characteristics used in the actual estimation, δj(xi) and δk(xi).
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specific to SNF j, while ϕ(ηij − µη) captures selection that is specific to SNF j. Roy-type
selection is indicated by ϕ > 0.

Integrating over the unobserved logit shocks ηi1, . . . , ηij yields

E
[
hi2 | hi1, xi, ηi1, . . . , ηi|Ji|, ci

]
= αj + θhhi1 + x′iθx +

∑
`∈Ji

φ`βi`(j) + ϕβij(j),

where βi`(j) = E[ηi` − µη | ci = j] are the control functions. Letting j indicate the chosen
SNF, we will show below that the control functions are

βi`(j) =

{
− log p̂i` l = j
p̂i`

1−p̂i`
log p̂i` otherwise

, (9)

where p̂i` is the predicted probability that patient i chooses SNF ` based on their distance to
SNFs. Since p̂i` < 1, we have log p̂i` < 0, meaning that the control function takes a positive
value when ` = j and a negative value otherwise.

We will now derive the expressions for the control functions in (9). Again, letting j
denote the chosen SNF, we know from rearranging the utility function that

E[ηij − µη | ci = j] = E[uij | ci = j]− δj + τmij − µη.

From Small and Rosen (1981), we know

E[uij | ci = j] = log

[∑
`∈Ji

exp(δ` − τmi`)

]
+ µη. (10)

Substitution yields

E[ηij − µη | ci = j] = log

[∑
`∈Ji

exp(δ` − τmi`)

]
+ µη − δj + τmij − µη

= log

[∑
`∈Ji

exp(δ` − τmi`)

]
− log [exp(δj − τmij)]

= − log

[
exp(δj − τmij)∑
`∈Ji exp(δ` − τmi`)

]
= − log p̂ij,

which is the first expression in (9).
For a non-chosen alternative ` 6= j, we have

E[ηi` − µη | ci = j] = E[ui` | ci = j]− δ` + τmi` − µη. (11)

By properties of conditional expectation, we know

E[ui`] = P(ci = `)E[ui` | ci = `] + P(ci 6= `)E[ui` | ci 6= `]. (12)

59



Using the result (10) from Small and Rosen (1981), as before, and substituting the above
expression into the expected utility equation yields

δ` − τmi` + µη = P(ci = `)

[
log

(∑
`′∈Ji

exp(δ`′ − τmi`′)

)
+ µη

]
+ P(ci 6= `)E[ui` | ci 6= `],

which implies

E[ui` | ci 6= `] =
1

1− P(ci = `)

{
δ` − τmi` + µη

− P(ci = `)

[
log

(∑
`′∈Ji

exp(δ`′ − τmi`′)

)
+ µη

]}
.

Substitution of the above into (11) then yields

E[ηi` − µη | ci = j] =
1

1− P(ci = `)

{
δ` − τmi` + µη

− P(ci = `)

[
log

(∑
`′∈Ji

exp(δ`′ − τmi`′)

)
+ µη

]}
− δ` + τmi` − µη

=
1

1− P(ci = `)

{
δ` − τmi` + µη − (1− P(ci = `)) [δ` − τmi` + µη]

− P(ci = `)

[
log

(∑
`′∈Ji

exp(δ`′ − τmi`′)

)
+ µη

]}

=
P(ci = `)

1− P(ci = `)

[
δ` − τmi`′ − log

(∑
`′∈Ji

exp (δ`′ − τmi`′)

)]

=
P(ci = `)

1− P(ci = `)

[
log [exp (δ` − τmi`)]− log

(∑
`′∈Ji

exp (δ`′ − τmi`′)

)]

=
P(ci = `)

1− P(ci = `)
log

(
exp (δ` − τmi`)∑

`′∈Ji exp (δ`′ − τmi`′)

)
=

p̂i`
1− p̂i`

log p̂i`. (13)

E Hot-Deck Imputation Procedure

Approximately 20% of patients, who are still in the SNF 30 days after admission, do not
receive a 30-day health assessment. Moreover, assessments are not missing at random:
patients with missing 30-day assessments are more likely to be discharged within 7 days
of when their assessment would have been (Appendix Table A.V). We use a “hot-deck”
procedure to impute the 30-day health index for patients with missing information.

The hot-deck procedure takes patients with missing 30-day assessments and finds a set
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of “donor” patients who share observable information with the missing patients but are not
missing their 30-day assessments. The missing health index is imputed by random selection
from these donors. We require donor patients to be from the same SNF as the recipient
patient, and from this pool select the donors by matching to the recipient based on the
health index at admission, the health index at 14 days (if available), and discharge direction
(upstream, downstream, or stay) in the week following what should have been the 30-day
assessment. To facilitate matching, we discretize the health index into 16 bins of width
0.025, ranging from 0 to 0.4. We observe initial health assessment data for all patients (h1);
14-day assessment for 68% of patients (h1.33), and discharge destination within 7 days of the
30-day assessment (if any) for all patients (d2). We have two different imputation procedures
depending on whether or not we observe 14-day health (case 1 or case 2). Appendix Table
A.VI provides more details on the procedure.

Appendix Table A.VII shows summary statistics for patients who are still in a SNF
at the time of the 30-day assessment for the two cases. We successfully impute health at
30 days for 99.7% of patients with missing information. Consistent with the differential
discharge patterns documented in Appendix Table A.V, patients with missing health at 30
days are on average healthier than those with non-missing health. Imputed health varies
in the expected way based on the patients’ location as 7 days after their (imputed) 30 day
assessment, with the highest values for those discharged downstream, lowest values for those
discharged upstream, and middle values for those who remain in the SNF.

F Estimation Details

F.1 Deriving the Likelihood

The health process and the upstream and downstream discharge equations are specified in
Section 3. In our setting, patients can be partitioned into three groups:

1. Discharged downstream before period 2 (dDi = 1)

2. Discharged upstream before period 2 (dUi = 1)

3. Still in the SNF by period 2 (dDi = 0 ∩ dUi = 0).

Given this partition, the likelihood for a market is given by

L =
∏
i

[
P(dDi = 1)

]dDi︸ ︷︷ ︸
downstream

[
P(dUi = 1)

]dUi︸ ︷︷ ︸
upstream

[
P(dDi = 0 ∩ dUi = 0 | hi2)f(hi2)

](1−dUi )(1−dDi )︸ ︷︷ ︸
still in SNF

, (14)

where f(hi2) is the probability density function of hi2.
We will derive an explicit formula for L by considering each partition separately. Recall

our definitions of the health production (equation (1)) and the downstream and upstream
discharge equations (equations (2) and (3)) provided in Section 3. First, consider patients
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with dDi = 1. We know

P(dDi = 1) = P(hi2 ≥ λj + νi)

= P

(
αj + θhhi1 + x′iθx +

∑
`∈Ji

φ`βi` + ϕβij + εi ≥ λj + νi

)

= P

(
εi − νi ≥ λj − αj − θhhi1 − x′iθx −

∑
`∈Ji

φ`βi` − ϕβij

)

= 1− P

(
εi − νi < λj − αj − θhhi1 − x′iθx −

∑
`∈Ji

φ`βi` − ϕβij

)

= 1− Φ

(
λj − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij√

σ2
ε + σ2

ν

)

= Φ

(
αj + θhhi1 + x′iθx +

∑
`∈Ji φ`βi` + ϕβij − λj√

σ2
ε + σ2

ν

)
.

where Φ (·) is the standard normal cumulative density function. This is the case because εi
and νi are independent normal random variables, meaning that εi − νi ∼ N (0, σ2

ε + σ2
ν) .

Next, consider patients with dUi = 1. Notice that we can rewrite the portion of the
likelihood for these patients as follows:

P(dUi = 1) = P(dDi = 0)P(dUi = 1 | dDi = 0)

= Φ

(
λj − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij√

σ2
ε + σ2

ν

)
P(dUi = 1 | dDi = 0).

Now consider P(dUi = 1 | dDi = 0). Since we model P(dUi = 1 | dDi = 0, hi2) = Φ(γ0
k + γ1

khi2),
we have that

P(dUi = 1 | dDi = 0) =

∫
φ̃(εi)Φ

(
γ0
k + γ1

k

(
αj + θhhi1 + x′iθx +

∑
`∈Ji

φ`βi` + ϕβij + εi

))
dεi,

(15)
where φ̃ (·) is the probability density function of εi conditional on dDi = 0 (see Section F.3
for a derivation of φ̃ (·)). Together, this yields

P(dUi = 1) = Φ

(
λj − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij√

σ2
ε + σ2

ν

)

·
∫
φ̃(εi)Φ

(
γ0
k + γ1

k

(
αj + θhhi1 + x′iθx +

∑
`∈Ji

φ`βi` + ϕβij + εi

))
dεi

Lastly, consider patients who remain in the SNF in period 2, meaning that dDi = 0 ∩ dUi =
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0. We know

P(dDi = 0 ∩ dUi = 0 | hi2)f(hi2) = P(dDi = 0 | hi2)P(dUi = 0 | dDi = 0, hi2)f(hi2). (16)

It is trivial that

f(hi2) = φ

(
hi2 − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij

σε

)
, (17)

where φ (·) is the standard normal probability density function. Similarly, by assumption we
know that P(dUi = 0 | dDi = 0, hi2) = 1 − Φ(γ0

k + γ1
khi2). Now consider P(dDi = 0 | hi2). We

know that

P(dDi = 0 | hi2) = P(hi2 < λj + νi | hi2)

= P

(
εi − νi < λj − αj − θhhi1 − x′iθx −

∑
`∈Ji

φ`βi` − ϕβij

∣∣∣∣∣ hi2
)

= P

(
εi − νi < λj − αj − θhhi1 − x′iθx −

∑
`∈Ji

φ`βi` − ϕβij

∣∣∣∣∣ εi
)
.

In order to derive an expression for the above quantity, we must first understand the joint
distribution of εi and εi − νi. Since these two random variables can be expressed as a linear
combination of two independent normal random variables (namely, εi and νi), we know they
are jointly normally distributed. Specifically,(

εi
εi − νi

)
∼ N

((
0
0

)
,

(
σ2
ε σ2

ε

σ2
ε σ2

ε + σ2
ν

))
. (18)

The conditional distribution of a bivariate normal is also normal. Specifically,

εi − νi | εi ∼ N
(
εi, σ

2
ν

)
. (19)

Hence, we have

P(dDi = 0 | hi2) = Φ

(
λj − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij − εi

σν

)
= Φ

(
λj − hi2
σν

)
.

(20)

Together this yields

P(dDi = 0 ∩ dUi = 0 | hi2)f(hi2) = Φ

(
λj − hi2
σν

)(
1− Φ(γ0

k + γ1
khi2)

)
· φ
(
hi2 − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij

σε

)
.
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Combining the three cases considered above, the likelihood for any market is given by

L =
∏
i

[
Φ

(
αj + θhhi1 + x′iθx +

∑
`∈Ji φ`βi` + ϕβij − λj√

σ2
ε + σ2

ν

)]dDi
︸ ︷︷ ︸

downstream

·

[
Φ

(
λj − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij√

σ2
ε + σ2

ν

)∫
φ̃(εi)Φ

(
γ0
k + γ1

k

(
αj + θhhi1 + x′iθx +

∑
`∈Ji

φ`βi` + ϕβij + εi

))
dεi

]dUi
︸ ︷︷ ︸

upstream

·
[
Φ

(
λj − hi2
σν

)(
1− Φ(γ0

k + γ1
khi2)

)
φ

(
hi2 − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij

σε

)](1−dUi )(1−dDi )

︸ ︷︷ ︸
still in SNF

.

(21)
For estimation purposes, we minimize the negative log-likelihood.

F.2 Estimation

For computational reasons, we estimate the model in two steps by partitioning parameters
into two groups: “national” parameters, (θh, ϕ, σε, σν , θx1, θx2, θx3), and market-level or
SNF-level parameters, (αj, λj, φj, γ

0
k, γ

1
k). This procedure takes advantage of the fact that the

market-level parameters only show up in the likelihood for the specific market, meaning that
conditional on the national parameters (which show up in the likelihood for all markets), we
can maximize the likelihood market-by-market. This approach is computationally attractive
since it is easily parallelizable.

The estimation process is as follows.

1. Specify grids for the “national” parameters (θh, ϕ, σε, σν , θx1, θx2, θx3).

For all combinations of points on these grids,

2. Maximize the likelihood with respect to (αj, λj, φj, γ
0
k, γ

1
k) within each market holding

(θh, ϕ, σε, σν , θx1, θx2, θx3) fixed.

After searching over all grid points,

3. Maximize the sum of the market-level likelihoods over the grid of “national”
parameters.

Steps 1 through 3 are repeated as the grids specified in step 1 are fine tuned. Step 3 is
accomplished by using a gradient based nonlinear solver within markets. The final grids for
each parameter are

• θh ∈ {0.96, 0.965, 0.97}

• σε ∈ {0.07, 0.075, 0.08}

• σν ∈ {0.14, 0.145, 0.15}

• ϕ ∈ {−0.005, 0, 0.005}
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• θx1 ∈ {−0.01,−0.005, 0}

• θx2 ∈ {−0.015,−0.01,−0.005}

• θx3 ∈ {−0.025,−0.02,−0.015}.

Another problem to tackle is that of estimating the integral in (equation (15)), which
enters the likelihood for patients who are discharged upstream. Due to runtime concerns,
we estimate this integral using rectangular quadrature. We explored the sensitivity of our
results to this method by focusing on a large market and estimating the error introduced
when estimating the integral via rectangular quadrature relative to Monte Carlo integration.
We tested a variety of methods for choosing the location of nodes, the number of nodes, and
the boundary of the integral (since the domain of integration is unbounded). Equally spaced
nodes performed best and the percent error was not sensitive to the number of nodes.

We also tried limiting the boundary to within 4σε, 5σε, and 6σε of the mean. Our results
were essentially invariant to the choice of boundary, so in practice, we limit the domain of
integration to be within 4σε of the mean. The error percentage was less than 0.01% across
all of the tests with equally spaced nodes.

F.3 Deriving the Marginal Density of εi Conditional on dDi = 0

In the likelihood derived in Appendix F.1, we saw that the probability density function of εi
conditional on dDi = 0 shows up in the likelihood for patients discharged upstream. This is
a result of modeling the upstream decision conditional on dDi = 0. For estimation purposes,
we need an explicit formula for φ̃(εi) since we estimate the integral by numerical quadrature.
Specifically, we are interested in the following probability density function:

φ̃(x) =
d

dx

[
P
(
εi ≤ x | dDi = 0

)]
=

d

dx
[P (εi ≤ x | hi2 < λj + νi)]

=
d

dx

[
P

(
εi ≤ x

∣∣∣∣∣ εi − νi < λj − αj − θhhi1 − x′iθx −
∑
`∈Ji

φ`βi` − ϕβij

)]
.

(22)

To understand the functional form of this expression, we must first revisit the joint
distribution of εi and εi − νi. Recall from Appendix F.1 that(

εi
εi − νi

)
∼ N

((
0
0

)
,

(
σ2
ε σ2

ε

σ2
ε σ2

ε + σ2
ν

))
.

Thus, the joint distribution of(
εi

εi − νi

) ∣∣∣∣ εi − νi < λj − αj − θhhi1 − x′iθx −
∑
`∈Ji

φ`βi` − ϕβij
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follows a bivariate truncated normal distribution, so (22) is the marginal density of a bivariate
truncated normal cumulative density function. Hence, we have that

φ̃(x) =
1

C
φ

(
x

σε

)
Φ

(
λj − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij − x

σν

)
, (23)

where φ (·) is the standard normal probability density function, and C is the total probability
in the truncated distribution of (εi, εi − νi) and is given by

C =

∫ ∞
−∞

φ

(
x

σε

)
Φ

(
λj − αj − θhhi1 − x′iθx −

∑
`∈Ji φ`βi` − ϕβij − x

σν

)
dx.

F.4 Standard Errors

To obtain standard errors for the parameters estimated from equation (6), we perform a
two-step score bootstrap procedure similar to the approach in Abdulkadiroğlu et al. (2020).
This procedure adjusts inference for the extra uncertainty introduced by the choice model
estimates without recalculating the first-step estimates or requiring that we analytically
derive the influence of the first-step estimates on the second-step estimates.

Recall that our first-step choice model in equation (4) has average utility of the form

δj(xi) = δ0j + δ1jhi1 + δ2jgi + δ3ja2i + δ4ja3i, (24)

where gi is an indicator for whether patient i is dually-eligible for Medicaid, ai is patient
i’s age, a2i = 1{75 ≤ ai ≤ 84}, and a3i = 1{85 ≤ ai}. Let ∆ denote the vector of choice
model parameters for a given market (which includes all {δ`j}5

`=0 and τ) and ∆̂ denote the
parameters estimated via maximum likelihood.

Our second-step model is specified by equations (2), (3), and (6). Let

Γ = (α1, . . . , αJ , λ1, . . . , λJ , φ0, . . . , φJ , γ
0
k, γ

1
k)
′

be the parameters that are estimated in the inner loop of the second-step optimization
(omitting the national parameters (θh, ϕ, σε, σν , θx1, θx2, θx3) optimized in the grid search)
and Γ̂ be the parameters estimated via maximum likelihood.

Fix the national parameters at their optimized values. For a given market of n patients,
we generate market-specific bootstrap distributions for ∆ and Γ via the following steps for
each bootstrap trial b ∈ {1, . . . B}:

1. Generate a bootstrap distribution for ∆ by taking repeated Newton-Raphson steps
from the full-sample estimates and randomly reweighting each observation’s score
contribution. The first-step bootstrap estimate of ∆ in trial b is

∆̂b = ∆̂−H−1
1 (∆̂)×

n∑
i=1

ζbi s1(i, ∆̂), (25)

where H1(∆̂) is the first-step Hessian and s1(i, ∆̂) is the first-step score contribution
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of patient i at the optimal parameter vector ∆̂, while {ζbi }ni=1 ∼ N(0, 1) is a set of i.i.d.
standard normal weights.

2. Using an additional set of Newton-Raphson steps, generate a second-step bootstrap
estimate of Γ as

Γ̂b = Γ̂−H−1
2 (Γ̂; ∆̂)×

n∑
i=1

[
ζbi s2(i, Γ̂; ∆̂)− s2(i, Γ̂; ∆̂b)

]
, (26)

where H2(Γ̂; ∆̂) and s2( ˆi,Γ; ∆̂) are the second-stage Hessian and score contribution of
individual i, respectively, at the two-step optima (Γ̂, ∆̂). The term s2(i, Γ̂; ∆̂b) plugs
the bootstrap estimate ∆̂b from (25) into the second-step score contribution function
s2(i, Γ̂; · ) to account for the additional variability in the second-step score due to the
first-step estimate ∆̂.

We then construct standard errors for Γ using the distribution of Γ̂b across bootstrap trials.
This approach yields market-by-market standard errors for all parameters aside from the
national parameters.

G Empirical Bayes shrinkage

Suppose true value added for SNF j is αj. Our estimates of value added are

α̂j = αj + ηj,

where αj is the true underlying value added and ηj is measurement noise. The goal of
empirical Bayes (EB) shrinkage is to adjust value added estimates to reduce sampling
variance at the cost of increased bias, yielding a minimum mean squared error (MSE)
prediction of αj (Morris 1983). Aside from reducing MSE, EB shrinkage also eliminates
attenuation bias that would arise in models using αj as a regressor (Jacob and Lefgren
2008).

Assume first that the parameters of the underlying distribution of known. Specifically,
we assume the following distribution of estimated value added α̂j:

α̂j | αj, π2
j ∼ N(αj, π

2
j ), αj ∼ N(µ, σ2),

where π2
j , µ, and σ2 are known. Note that µ and σ2 are common across SNFs. The posterior

distribution of αj is then

αj | α̂j, π2
j , µ, σ

2 ∼ N(αEBj , π2
j (1− bj)),

where
αEBj = (1− bj)α̂j + bjµ

bj =
π2
j

π2
j + σ2

.

67



Written in this form, we see that the EB estimator αEBj “shrinks” the original estimates α̂j
towards the prior mean µ.

The primary issue that arises from this framework is that π2
j , µ, and σ2 are unknown and

must instead be estimated. First, we can estimate σ2 by squaring the standard errors from
the two-step score bootstrap to produce σ̂2.

Next, we estimate µ and σ along the lines of of Morris (1983). Quantities µ̂ and σ̂2

are simultaneously determined, so we initialize uniform weights wj = 1 for all j and then
estimate via iteration:

1. Compute µ̂ then σ̂2 using the expressions

µ̂ :=

∑
j wjα̂j∑
j wj

σ̂2 = max

{
0,

∑
j wj

{(
J
J−1

)
(α̂j − µ̂)2 − π̂2

j

}∑
j wj

}
.

2. If on the second or greater iteration and σ̂2 has converged, exit. Otherwise, fix new wj
using the expression

wj =
1

π̂2
j + σ̂2

and return to step 1.

This algorithm yields the feasible posterior mean

α
EB(f)
j = (1− b̂j)α̂j + b̂jµ̂

b̂j =

(
J − 2

J

)(
π̂2
j

π̂2
j + σ̂2

)
.

(27)

The same procedure can be used to shrink SNF-specific parameters other than value added.

H Model-Predicted Discharge Destinations

One potential test of the fit of our model is to pass the original value of hi1 through the
model to produce a set of discharge decisions, then compare the share of patients discharged
downstream, discharged upstream, and still in the SNF to the actual shares observed in the
data.

Specifically, we simulate the discharge decisions as follows. First, taking the initial
distribution of hi1 for all patients, simulate the distribution of 30-day health as

ĥi2 = α̂j + θ̂hhi1 + x′iθ̂x +
∑
`∈Ji

φ̂`β̂i` + ϕ̂β̂ij.
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Next, draw εi and νi for each patient as(
εi
νi

)
∼ N

((
0
0

)
,

(
σ̂2
ε 0

0 σ̂2
ν

))
.

Then simulate the downstream discharge decision according to the rule

d̂Di = 1 ⇐⇒ ĥi2 ≥ λ̂j + νi.

The upstream discharge decision (conditional on d̂Di = 0) is then simulated as

P(d̂Ui = 1 | d̂Di = 0) = Φ(γ̂0
k + γ̂1

kĥi2).

If d̂Di = d̂Ui = 0, the patient remains in the SNF.
Panel C of Table IV shows summary statistics for health for various model-predicted

discharge decision groups. The results in Panel C (model-predicted) and Panel B (external
fit) are very similar. The sample in Panel C is slightly smaller than the sample in Panel B
because a small fraction of SNFs in our sample do not have a full set of parameter estimates.
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Appendix Figure A1: Discharge within 7 days of 30-day assessment vs.
hi2

(A) All patients
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(B) High hi1 patients
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(C) Medium hi1 patients
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(D) Low hi1 patients
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(E) Overlaid trends
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Notes: Figure shows binscatters of the share of patient-stays discharged within 7 days of the 30-day
assessment against week-4 health hi2. For each binscatter in (a)-(d), we divide the distribution of
hi2 into 100 equally-sized bins, compute the share of patient-stays within each bin discharged to the
community within 7 days, and scatter this share against the mean hi2 of each bin. For each panel,
the line shown is the fitted regression line with the slope and intercept reported in the corner; the
correlation is the unweighted linear correlation for the 100 points shown in the plot. Panel (a) shows
the relationship for all 2, 028, 014 patient-stays with non-missing 30-day assessment data. Panels (b),
(c), and (d) divide the distribution of these patient-stays into terciles of hi1 and repeat the same
exercise; Panel (c) has 682, 749 patient-stays, Panel (c) has 670, 673 patient-stays, and panel (d) has
674, 592 patient-stays. Panel (e) overlays Panels (b)–(d) but divides the distribution of hi2 in each
tercile into 20 equally-sized bins (instead of 100).
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Appendix Figure A2: Weekly Discharge Rule
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Notes: Figure plots the results from estimating an assessment-level probit discharge model that
allows for the discharge decision to depend (linearly) on time in the SNF. We estimate a probit of
the probability of discharge in the week following the assessment at t = 1 (the 5-day assessment),
t = 1.33 (the 14-day assessment), and t = 2 (the 30 day assessment). Specifically, we estimate
dDit = 1 ⇐⇒ h∗id = ρ̄hit + ∆ρthit + ξi > λ, where dDit = 1 if patient i is discharged downstream
at time t, h∗id is patient i’s latent health at discharge, and hit is health at time t. We estimate this
model on 13,231,304 patient-assessment observations. This is the same model shown in Column (3) of
Appendix Table A.III.
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Appendix Figure A3: Correlating Coefficient on Log-Distance
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Notes: Figure correlates the coefficient on log-distance from the demand model in equation (4), which
we estimate (market-by-market) using two specifications with different sets of observable shifters of
δj . The x-axis shows the coefficient for each market from our main specification, which only uses the
health index at admission, age bins, and Medicaid-dual-eligibility. The y-axis shows the same coefficient
for each market from an alternative specification that uses the first five principal components of the
following observables: demographics (above median age, female, married, Hispanic, Black, white, dual
eligible) and health measures at admission (walking, indwelling, falls, shortness of breath, depressed,
delirium, vomiting, fever, dehydration, weight loss, and long-form ADL). Coefficients are shown for all
655 choice sets.
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Appendix Figure A4: Correlating Difference between 90th and 10th
Percentile Value-Added Within Market with Average Value-Added in Market
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Notes: Figure shows a scatter plot for each of the 306 markets of the difference in value added
between the 90th- and 10th-percentile SNF in the market weighted by patient-stays and the average
value added of SNFs in the market weighted by patient-stays. The correlation is weighted by the
number of patient-stays in the market. The line is a linear fit weighted by the number of patient-stays
in each market.
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Appendix Figure A5: Correlates of SNF Value Added
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(G) Has Alzheimer’s special care unit
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(M) Mean age
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Notes: Figures show binscatters of value added on SNF characteristics using 20 bins for continuous SNF characteristics (discrete characteristics
are shown as bar plots). The Medicare share, SNF occupancy, number of beds, for-profit status indicator, hospital-based indicator, chain ownership
indicator, and Alzheimer’s special care unit indicator come from OSCAR data. The black patient share, female patient share, married patient
share, mean age, and dual-eligibility for Medicaid at admission share are calculated on all 6, 246, 686 patient-stays in our full sample of Medicare
patient-stays.76



Appendix Figure A6: Correlations of Value Added Estimates with Alternative Measures
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(G) Share of Days in Facilities at 90 Days
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(M) Average Health
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(N) Average Health Improvement
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Notes: Figures show binscatters of alternative measures of SNF quality on SNF value added (αj) controlling for market fixed effects. The
alternative measures are (A) sum of activities of daily living (ADLs), (B) the health index excluding incentivized health measures, (C) CMS
Overall Star Ratings, (D) CMS Quality Star Ratings, (E) CMS Inspection Star Ratings, (F) CMS Staffing Star Ratings, (G) share of days spent
in facilities within 90 days of SNF admission, (H) the probability of being home 90 days after SNF admission, (I) spending per day within 90
days of SNF admission, (J) the probability of readmission to a SNF within 90 days of SNF admission, (K) the probability of hospital readmission
within 90 days of SNF admission, (L) the probability of being alive within 90 days of SNF admission, (M) average health value added, (N) average
health improvement value added, (O) value added accounting for average health improvement and selection in, and (P) value added accounting
for average health improvement and selection out. Binscatters and correlations are weighted by the number of patient-stays in the SNF. The
y-axis of each binscatter extends from the mean of the variable minus 1.5 times the standard deviation to the mean plus 1.5 times the standard
deviation.
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Appendix Figure A7: Correlating value added estimates by age group

(A) Ages 65–74 vs. ages 75–84
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(B) Ages 65–74 vs. Ages 85+
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(C) Ages 75–84 vs. Ages 85+
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Notes: Figure shows patient-stay-weighted SNF-level binscatters and correlations between value added
estimates from the specifications estimated on subgroups determined by patient age. The sample
consists of the 13,368 SNFs with value added estimates for all subgroups.

80



Appendix Figure A8: Correlating value added estimates by Medicaid
status
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Notes: Figure shows patient-stay-weighted SNF-level binscatters and correlations between value added
estimates from the specifications estimated on subgroups restricted by Medicaid dual-eligibility status.
The sample consists of the 13,368 SNFs with value added estimates for all subgroups.
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Appendix Figure A9: Correlating estimates by age group against estimates by Medicaid status
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(C) Ages 85+ vs. nondual

0
.0

2
.0

4
.0

6
.0

8
.1

α 
fo

r 
ag

es
 8

5+

0 .05 .1 .15
α for nondual

Correlation =   0.84

(D) Ages 65–74 vs. dual
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(E) Ages 75–84 vs. dual
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Notes: Figure shows patient-stay-weighted SNF-level binscatters and correlations between value added estimates from the specifications estimated
on subgroups restricted by patient age (vertical axes) and Medicaid dual-eligibility (horizontal axes). The sample consists of the 13,368 SNFs
with value added estimates for all subgroups.
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Appendix Figure A10: Health index with alternative discharge definition

(A) Overall hi1
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Notes: Figure shows binscatters of the new health index plotted against the baseline health index.
Panels (a) and (b) show fitted lines for 6, 246, 151 observations of hi1 both overall and within market
(HRR fixed effects), while panels (c) and (d) show fitted lines for 2, 516, 942 observations of hi2 both
overall and within market.
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Appendix Figure A11: Differences in the timing of health assessments

(A) Distribution of mean timing difference
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(B) Correlating mean timing difference with αj
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Notes: Figure shows (a) the distribution of the SNF-level mean difference (in days) between the 5-day
and 30-day assessments and (b) a scatterplot of value added αj against this mean difference.
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Appendix Table A.I: Sample Restrictions

Stays SNFs

Full sample 22,520,577 16,355
Medicare and >= 65 10,721,447 16,306
First stays and discharged directly from ACH 7,213,728 15,730
CCS codes 6,598,040 15,680
Has 5-day health assessment 6,326,937 15,623
SNF has at least 50 episodes (analysis sample) 6,246,686 13,996

Notes: Table shows the sequential sample restrictions applied to go from the full sample (top row) to
our analysis sample (bottom row); at each step, it shows the remaining number of patient-stays and
distinct SNFs. The “full sample” consists of all Medicare and Medicaid patient-stays reported in MDS
3.0 between October 1, 2011 and September 30, 2016. The next row (“Medicare and ≥ 65”) restricts
the sample to patient-stays whose admission is covered by Traditional Medicare and are at least 65
years old. The next row (“First stays and discharged directly from ACH”) restricts to the first stay of
each episode, as well as patients who enter the SNF directly from an acute-care hospital. The “CCS
codes” row restricts to patient-stays with non-missing Clinical Classification Software (CCS) codes from
acute hospital stay prior to SNF admission. The “Has 5-day assessment” row restricts to patient-stays
with a 5-day assessment (as defined in Appendix A). The final row excludes SNFs with fewer than 50
episodes over the 5-year period.

85



Appendix Table A.II: List of Health Measures Used

Measure ResDAC Variable Name(s) Range % Missing at 5-day % Missing at 30-day

Physical

Has fallen J1800_FALL_LAST_ASMT_CD (0-1) 0.11 0.03

Vomiting J1550B_VMTG_CD (0-1) 0.06 0.01

Fever J1550A_FVR_CD (0-1) 0.06 0.01

Dehydration* J1550C_DHYDRT_CD (0-1) 0.06 0.01

Life prognosis < 6 months J1400_LIFE_PRGNS_CD (0-1) 0.27 0.09

Weight loss K0300_WT_LOSS_CD (0-2) 1.51 0.26

Urinary continence* H0300_URNRY_CNTNC_CD (0-4) 0.19 0.04

Bowel continence H0400_BWL_CNTNC_CD (0-4) 0.31 0.03

Hearing* B0200_HEARG_CD (0-3) 0.87 0.21

Vision* B1000_VSN_CD (0-4) 1.50 0.46

Seated to standing balance* G0300A_BAL_SEAT_STNDG_CD (0-3) 0.81 0.30

Walking balance* G0300B_BAL_WLKG_CD (0-3) 0.99 0.44

Turning balance* G0300C_BAL_TRNG_ARND_CD (0-3) 1.82 1.16

Moving on/off toilet balance* G0300D_BAL_TOILT_CD (0-3) 0.93 0.38

Surface-to-surface balance* G0300E_BAL_SRFC_TRNSFR_CD (0-3) 0.80 0.29

Upper extremity range* G0400A_UPR_XTRMTY_MTN_CD (0-2) 0.74 0.17

Lower extremity range*
G0400B_LWR_XTRMTY_MTN_CD

(0-2) 0.74 0.17

Has unhealed pressure ulcer* M0210_STG_1_HGHR_ULCR_CD (0-1) 0.14 0.04

# of venous/arterial ulcers M1030_ARTRL_ULCR_NUM (0-9) 0.16 0.08

Foot infection M1040A_FT_INFCTN_CD (0-1) 0.07 0.02

Diabetic foot ulcer M1040B_DBTC_FT_ULCR_CD (0-1) 0.07 0.02

Open foot lesions M1040C_OTHR_LSN_FT_CD (0-1) 0.07 0.02
Other open lesions M1040D_OPEN_LSN_CD (0-1) 0.07 0.02

Surgical wounds M1040E_SRGCL_WND_CD (0-1) 0.06 0.02

Burns M1040F_BRN_CD (0-1) 0.06 0.01

Skin and ulcer treatments M1200Z_NO_SKIN_TRMNT_CD (0-1) 0.04 0.01

Tracheostomy care
O0100E2_TRCHOSTMY_POST_CD

(0-1) 0.22 0.54

Physical behavior symptoms E0200A_PHYS_BHVRL_CD (0-3) 1.21 0.21

Internal bleeding* J1550D_INTRNL_BLEDG_CD (0-1) 0.06 0.01

Loss of liquids/solids in mouth*
K0100A_LOSS_MOUTH_EATG_CD

(0-1) 0.36 0.11

Holding food in mouth*
K0100B_HLD_FOOD_MOUTH_CD

(0-1) 0.36 0.11

Coughing/choking* K0100C_CHOK_DRNG_MEAL_CD (0-1) 0.36 0.11

No swallowing issue* K0100Z_NO_SWLWG_CD (0-1) 0.36 0.11

Passive range of motion program O0500A_PSV_ROM_NUM (0-7) 0.19 0.09

Active range of motion program O0500B_ACTV_ROM_NUM (0-7) 0.19 0.09

Bed mobility training
O0500D_BED_MBLTY_TRNG_NU
M (0-7) 0.19 0.09

Transfer training O0500E_TRNSFR_TRNG_NUM (0-7) 0.19 0.09

Walking training O0500F_WLKG_TRNG_NUM (0-7) 0.19 0.09

Dressing training O0500G_DRSG_TRNG_NUM (0-7) 0.19 0.09

Eating training O0500H_EATG_TRNG_NUM (0-7) 0.19 0.09

Amputation training O0500I_AMPUTTN_TRNG_NUM (0-7) 0.20 0.09

Short-breathnessa* J1100A_SOB_EXRTN_CD, 
J1100B_SOB_SITG_CD, 
J1100C_SOB_LYG_CD

(0-3) 0.23 0.08

Activities of Daily Living (ADLs)

Walking* G0110C1_WLK_ROOM_SELF_CD (0-4) 0.24 0.11

Hygiene
G0110J1_PRSNL_HYGNE_SELF_CD

(0-4) 0.16 0.03

Dressing G0110G1_DRESS_SELF_CD (0-4) 0.16 0.03

Locomotion
G0110E1_LOCOMTN_ON_SELF_C
D (0-4) 0.20 0.04

Transfer G0110B1_TRNSFR_SELF_CD (0-4) 0.08 0.00

Toilet G0110I1_TOILTG_SELF_CD (0-4) 0.09 0.01

Bed-mobility G0110A1_BED_MBLTY_SELF_CD (0-4) 0.08 0.01

Eating G0110H1_EATG_SELF_CD (0-4) 0.09 0.01

Interaction

Speech clarity* B0600_SPCH_CLRTY_CD (0-2) 0.69 0.13

Makes self understood B0700_SELF_UNDRSTOD_CD (0-3) 0.79 0.12

Ability to understand others* B0800_UNDRST_OTHR_CD (0-3) 0.83 0.14

Verbal behavior symptoms E0200B_VRBL_BHVRL_CD (0-3) 1.21 0.21

Other behavior symptoms E0200C_OTHR_BHVRL_CD (0-3) 1.21 0.21

Communication training O0500J_COMMUN_TRNG_NUM (0-7) 0.20 0.09
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Measure ResDAC Variable Name(s) Range % Missing at 5-day % Missing at 30-day

Mental

Mood score (PHQ-9) D0300_MOOD_SCRE_NUM (0-27) 3.00 0.66

Antipsychotics N0400A_ANTIPSYCHTC_CD (0-1) 0.00 0.00

Anti-anxiety meds* N0400B_ANTINXTY_CD (0-1) 0.00 0.00

Antidepressants* N0400C_ANTIDPRSNT_CD (0-1) 0.00 0.00

Hypnotics* N0400D_HPNTC_CD (0-1) 0.00 0.00

Delirium - inattention* C1310B_INTNTN_IND (0-2) 1.99 0.42
Delirium - disorganized thinking* C1310C_DSRGNZD_THKNG_IND (0-2) 2.09 0.49

Delirium - altered consciousness* C1310D_LVL_OF_CNSCSNS_IND (0-2) 1.95 0.40

Psychosis E0100Z_NO_PSYCHOSIS_CD (0-1) 0.90 0.18

Wandering presence E0900_WNDR_CD (0-3) 1.20 0.21

Brief Interview for Mental Status (BIMS) C0500_BIMS_SCRE_NUM (0-15) 13.53 8.74

Restraints

Bed rail restraints* P0100A_BED_RAIL_CD (0-2) 0.05 0.03

Trunk rail restraints P0100B_TRNK_RSTRNT_BED_CD (0-2) 0.05 0.03

Limb rail restraints P0100C_LMB_RSTRNT_BED_CD (0-2) 0.05 0.03

Other bed restraints* P0100D_OTHR_RSTRNT_BED_CD (0-2) 0.06 0.04

Trunk chair restraints P0100E_TRNK_RSTRNT_CHR_CD (0-2) 0.05 0.03

Limb chair restraints P0100F_LMB_RSTRNT_CHR_CD (0-2) 0.05 0.03

Chair prevent rise restraint P0100G_CHR_PRVNT_RISE_CD (0-2) 0.05 0.03

Other chair restraints*
P0100H_OTHR_RSTRNT_CHR_CD

(0-2) 0.07 0.05

Pain

Pain presence J0300_PAIN_CD (0-1) 12.27 8.10

Pain swallowing* K0100D_CMPLNT_SWLWG_CD (0-1) 0.35 0.10

Mouth/face pain when chewing* L0200F_MOUTH_PAIN_CD (0-1) 0.59 0.99

Pain intensity J0600A_PAIN_INTNSTY_NUM (0-10) 25.91 21.03

Pain frequency J0400_PAIN_FREQ_CD (1-4) 48.51 55.40

Pain effect on sleep* J0500A_PAIN_EFCT_SLEEP_CD (0-1) 48.10 55.02

Pain effect on activities* J0500B_PAIN_EFCT_ACTVTY_CD (0-1) 48.11 55.03

Pain managementb* J0100A_SCHLD_PAIN_MDCTN_CD, 
J0100B_PRN_PAIN_MDCTN_CD, 
J0100C_OTHR_PAIN_INTRVTN_CD

(0-1) 0.00 0.00

Treatment and Equipment

Anticoagulants* N0400E_ANTICOAGLNT_CD (0-1) 0.00 0.00

Antibiotics* N0400F_ANTBTC_CD (0-1) 0.00 0.00

Diuertics* N0400G_DRTC_CD (0-1) 0.00 0.00

Indwelling catheter H0100A_INDWLG_CTHTR_CD (0-1) 0.03 0.01

Hospice care O0100K2_HOSPC_POST_CD (0-1) 0.23 0.54

Hearing aid* B0300_HEARG_AID_CD (0-1) 0.77 0.15

Corrective lens* B1200_CRCTV_LENS_CD (0-1) 1.02 0.21

Cane/crutch* G0600A_CANE_CD (0-1) 0.09 0.03

Walker* G0600B_WLKR_CD (0-1) 0.12 0.05

Wheelchair* G0600C_WHLCHR_CD (0-1) 0.09 0.03

Limb prosthesis* G0600D_LIMB_PRSTHTC_CD (0-1) 0.08 0.02

Ventilator or respirator O0100F2_VNTLTR_POST_CD (0-1) 0.22 0.54

Quarantine for disease O0100M2_ISLTN_POST_CD (0-1) 0.24 0.60

Rejection of care E0800_RJCT_EVALTN_CD (0-3) 1.21 0.22

In bowel toileting program H0500_BWL_TOILTG_PGM_CD (0-1) 0.19 0.08

Broken/loose denture* L0200A_BRKN_DNTR_CD (0-1) 0.60 1.01

Injections
N0300_INJCT_MDCTN_DAY_NUM

(0-7) 0.06 0.02

Insulin
N0350A_INSLN_INJCT_DAY_NUM

(0-7) 0.07 0.02

Chemo O0100A2_CHMTHRPY_POST_CD (0-1) 0.23 0.58

Radiation O0100B2_RDTN_POST_CD (0-1) 0.23 0.54

Oxygen therapy O0100C2_OXGN_POST_CD (0-1) 0.20 0.54

Suctioning O0100D2_SCTNG_POST_CD (0-1) 0.22 0.54

IV medications O0100H2_IV_MDCTN_POST_CD (0-1) 0.22 0.54

Transfusions O0100I2_TRNSFSN_POST_CD (0-1) 0.22 0.54

Dialysis O0100J2_DLYS_POST_CD (0-1) 0.22 0.54

Splint or brace assistance O0500C_BRC_ASTNC_NUM (0-7) 0.19 0.09

Notes: Table shows the list of the 109 health measures used, the variable names from the MDS
dataset, their range, and the percentage missing in the 5-day assessment and 30-day assessment samples.
A detailed description of the variables can be found at https://resdac.org/cms-data/files/mds-30/
data-documentation.
∗ Non-incentivized measure.
a Short breathness is a sum of the associated three variables.
b Pain management is 1 if any of the three associated variables is 1.
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Appendix Table A.III: Alternative Discharge Models

(1) (2) (3)

Baseline specification
Allowing for health 

improvement
Allowing for impact of 

time

Intercept 1.72 1.73 1.76
(0.002) (0.002) (0.001)

h2 4.02 4.12
(0.011) (0.016)

ht 4.47
(0.006)

ht*t 0.19
(0.002)

Δh -0.17
(0.021)

N 2,028,014 2,028,014 13,231,304

Notes: Table shows the estimated parameters from the three alternative discharge models described
in Appendix C. The first two specifications are probit models of the probability of discharge in the
week following the 30-day assessment. Column (1) shows our baseline model, in which this discharge
probability is a function only of the 30-day health assessment (h2). Column (2) augments this baseline
model to allow the discharge probability to also depend on a health improvement term (∆h) that
reflects the change in the health index between the initial assessment and the 30-day assessment. Both
these models are estimated on the 2,028,014 patient-stays who are assessed at 30 days. Column (3)
augments the discharge model further to allow for the discharge decision to depend (linearly) on time
in the SNF; it therefore specifies an assessment-level probit of the probability of discharge in the week
following the assessment at t = 1 (the 5-day assessment), t = 1.33 (the 14-day assessment) and t = 2
(the 30-day assessment). Specifically, we estimate dDit = 1 ⇐⇒ h∗id = ρ̄hit + ∆ρthit + ξi > λ where
dDit = 1 if patient i is discharged downstream at time t, h∗id is patient i’s latent health at discharge, and
hit is health at time t. We estimate this model on 13,231,304 patient-assessment observations.
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Appendix Table A.IV: Health Index Fit for All Patients in a SNF at 30
days

Fit for those who have a 30-day assessment  (h as of day-30 assessment, N = 2,517,006):
All patients assessed at day 30 0.403 0.138 0.093
Discharged to community w/in 7 days 0.074 0.195 0.104
Still at the SNF 7 days after 0.303 0.127 0.086
Discharged elsewhere w/in 7 days 0.026 0.110 0.078

Share of baseline 
sample

Mean h Std. dev. of h

Notes: Table shows summary statistics for our health index at 30 days for all patients assessed at 30
days. This includes patient-stays for whom we hot-deck impute their health index at 30 days due to
missing health measures. Details of this imputation procedure are presented in Appendix E.
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Appendix Table A.V: Discharge Destinations by 30-Day Assessment
Availability

Has 30-day assessment Missing 30-day assessment
Share of patients in SNF at 30 days 0.802 0.198
Still in SNF 7 days later 0.847 0.365
Share discharged within 7 days

Community (downstream) 0.110 0.482
ACH (upstream) 0.029 0.091
Hospice (upstream) 0.000 0.002
Death (upstream) 0.004 0.026
Elsewhere 0.010 0.035

Notes: Table shows the discharge destinations of patient-stays conditional on being in the SNF at 30
days (N = 2, 517, 006) for both patient-stays who are missing and not missing the 30-day assessment.
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Appendix Table A.VI: Imputation Procedure

(1) (2)
Case 1 — observe ̀ h1.33 Case 2 — do not observe ̀ h1.33

(N =  464,404) (N = 70,914)

Step 1 Match on`h1,`h1.33, d Match on`h1, d

Step 2 Match on`h1, d, adjacent ̀ h1.33 Match on d  and closest ̀ h1

Step 3 Match on`h1.33, d2, adjacent ̀ h1
Match on  d, but allow d = 0 if d=2, 
closest ̀ h1

Step 4 Match on d, closest`h1,`h1.33

Step 5
Match on d but allow d = 0 if d =2, 
closest`h1, ̀ h1.33

Notes: Table describes our hot-deck imputation procedure, which is described in Appendix E. For
all imputations, we observe health at admission (h1) and discharge destination within 7 days of the
30-day assessment (d). Column (1) shows the procedure when we also observe health at 14 days (h1.33).
Column (2) shows the procedure when we do not observe health at 14 days. In the table, h̄t corresponds
to discretized health. Time t = 1 corresponds to the 5-day assessment, t = 1.33 corresponds to the
14-day assessment, and t = 2 corresponds to the 30-day assessment. Variable d is a categorical variable
that indicates the discharge destination of a patient-stay within 7 days of the 30-day assessment: still
in the SNF (0), discharged downstream (1), or discharged upstream/elsewhere (2).
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Appendix Table A.VII: Summary Statistics by Imputation Cases

(1) (2)

Sample Not missing h2 Missing h2

Subsample downstream still in SNF upstream downstream still in SNF upstream

Statistic
    N 1,983,464 535,318 243,208 149,955 71,241 11,221 53,748 5,945
    N Imputed 533,451 241,570 149,949 71,213 11,039 53,739 5,941
    Share Imputed 0.9965 0.9933 1.0000 0.9996 0.9838 0.9998 0.9993

Discretized h2

    Mean 5.66 6.81 8.15 5.94 4.78 9.55 5.57 4.79
    SD 3.32 3.78 3.68 3.52 2.85 3.80 3.53 3.05

Number of candidate comparison observations chosen from 
    Mean 8.56 2.86 13.35 2.00 6.50 30.55 2.70
    SD 22.15 5.10 26.69 2.02 14.16 44.29 3.43

(3) (4)

Case 1 Case 2

Notes: Table shows summary statistics by imputation cases for patient-stays who are still in the SNF
at the time of the 30-day health assessment. Column (1) shows the non-imputed sample, while column
(2) shows the sample for which h2, health at 30 days, is imputed. Columns (3) and (4) break up the
summary statistics in column (2) for two different cases: Case 1, not missing health at 14 days (h1.33),
and Case 2, missing health at 14 days; within each of these cases, we further break down summary
statistics by whether and where they were discharged within the next 7 days of the imputed 30-day
health assessment: downstream discharge, still in the SNF, and upstream discharge.
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Appendix Table A.VIII: Alternative health index with new discharge
definition

Mean SD 10th 25th 50th 75th 90th

A. Baseline model
hi1 0.10 0.06 0.04 0.05 0.08 0.12 0.18
hi2 0.12 0.09 0.04 0.06 0.10 0.16 0.24

B. New model
hi1 0.12 0.07 0.05 0.06 0.11 0.16 0.23
hi2 0.15 0.09 0.05 0.08 0.13 0.21 0.28

Notes: Table reports summary statistics for hi1 and hi2 constructed using two different regression
trees. The baseline regression tree predicts the probability of discharge within 7 days after the 30-day
assessment, while the new tree predicts the probability of discharge within 8–14 days after the 30-day
assessment. The sample consists of the 1, 752, 505 patient-stays that remain in the SNF until at least
7 days after the 30-day assessment.
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Appendix Table A.IX: National parameters estimated for alternative
measures and specifications

Ages 65-74 Ages 75-84 Ages 85+ Dual Nondual

θh 0.965 4 0.99 0.90 0.95 0.92 0.86 0.94

ϕ 0 1.1 0 0 0 0 0 0
σϵ 0.075 10 0.07 0.08 0.08 0.07 0.10 0.08
σν 0.145 0 0.13 0.16 0.17 0.17 0.14 0.14
θx1 -0.005 0 -0.01 -0.01 -0.01 -0.01 -- --
θx2 -0.01 -0.5 -0.01 -- -- -- -0.01 -0.01
θx3 -0.02 -1 -0.02 -- -- -- -0.01 -0.02

By age By MedicaidExcluding 
incentivized

ADLsParameter Baseline

Notes: Table reports the national parameter estimates for various alternative models. Parameter
θx1 is the coefficient for Medicaid dual-eligibility, θx2 is the coefficient for ages 75–84, and θx3 is the
coefficient for ages 85+.
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