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1 Introduction

The finance literature has recently seen rapid advances in return prediction methods borrow-

ing from the machine learning canon. The primary economic use case of these predictions has

been portfolio construction. While a number of papers have documented significant empirical

gains in portfolio performance through the use of machine learning, there is little theoretical

understanding of return forecasts and portfolios formed from heavily parameterized models.

We provide a theoretical analysis of such “machine learning portfolios.” Our analysis

can be summarized in the following thought experiment. Imagine there is a true predictive

model of the form

Rt+1 = f(Gt) + εt+1 (1)

where R is an asset return, G is a fixed set of predictive signals, and f is a smooth

function. The predictors G may be known to the analyst, but the prediction function f

is unknown. Rather than futilely guessing the functional form, the analyst relies on the

universal approximation rationale of, e.g., Hornik et al. (1990), that f can be approximated

with a sufficiently wide neural network,

f(Gt) ≈
P∑
i=1

Si,tβi,

where Si,t = f̃(w′iGt) is a known nonlinear activation function with known weights wi and

P is sufficiently large.1 As a result, (1) takes the form

Rt+1 =
P∑
i=1

Si,tβi + ε̃t+1. (2)

The training sample for this regression has a fixed number of data points, T , and the

1Assuming known weights wi is innocuous, as the universal approximation result applies even if weights
are randomly generated (Rahimi and Recht, 2007). In fact, our empirical analysis uses the Rahimi and Recht
(2007) random Fourier feature method to generate features as in (2).
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analyst must decide on the “complexity,” or the number of features P , to use in their

approximating model. A simple model, one with P << T , will have low variance thanks

to parsimonious parameterization but will be a coarse approximator of f . On the other

hand, a high-complexity model (P > T ) has better approximation potential but may be

poorly behaved and will require shrinkage/bias. Our central research question is: What

level of model complexity (which P ) should the analyst opt for? Does the approximation

improvement from large P justify the statistical costs (higher variance and/or higher bias)?

Answer: We prove that, in the high-complexity regime (P > T ), expected out-of-sample

forecast accuracy and portfolio performance are strictly increasing in model complexity. The

analyst should always use the largest approximating model that she can compute. Applying

optimal shrinkage to this large P model enhances performance further (indeed, we derive the

choice of shrinkage that maximizes expected out-of-sample model performance). In other

words, when the true data-generating process (DGP) is unknown, the approximation gains

achieved through model complexity dominate the statistical costs of heavy parameterization.

The interpretation is not necessarily that asset returns are subject to a large number of fun-

damental driving forces. Even when the driving variables (Gt) are low-dimensional, complex

models better leverage the information content of Gt by more accurately approximating the

unknown and likely nonlinear prediction function.

To provide intuitive characterizations of forecast and portfolio behavior in complex mod-

els, our theoretical environment has two simplifying aspects. First, the machine learning

models we study are restricted to high-dimensional linear models. As suggested by equation

(2), this sacrifices little generality as a number of recent papers have established an equiva-

lence between high-dimensional linear models and more sophisticated models such as deep

neural networks (Jacot et al., 2018; Hastie et al., 2019; Allen-Zhu et al., 2019). Second, we

focus on a single risky asset. Thus prediction is isolated to the time-series dimension, and
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the portfolio optimization problem reduces to market timing.2 These two simplifications

make our key findings more accessible, yet neither is critical for our conclusions.

To provide a baseline for our findings, consider the well-known deficiency of ordinary least

squares (OLS) prediction in high dimensions. As the number of regressors, P , approaches

the number of data points, T , the expected out-of-sample R2 tends to negative infinity. An

immediate implication is that a portfolio strategy attempting to use OLS return forecasts

in such a setting will have divergent variance. In turn, its expected out-of-sample Sharpe

ratio collapses to zero. The intuition behind this is simple: When the number of regressors

is similar to the number of data points, the regressor covariance matrix is unstable, and

its inversion induces wild variation in coefficient estimates and forecasts. This is commonly

interpreted as overfitting: With P = T , the regression exactly fits the training data and

performs poorly out-of-sample.

We are particularly interested in the behavior of portfolios in the high model complexity

regime, where the number of predictors exceeds the number of observations (P > T ).3 In this

case, standard regression logic no longer holds because the regressor inverse covariance matrix

is not defined. However, the pseudo-inverse is defined, and it corresponds to a limiting ridge

regression with infinitesimal shrinkage, or the “ridgeless” limit. An emergent statistics and

machine learning literature shows that, in the high-complexity regime, ridgeless regression

can achieve accurate out-of-sample forecasts despite fitting the training data perfectly.4

We analyze related phenomena in the context of return prediction and portfolio opti-

mization. We establish the striking theoretical result that market timing strategies based on

2The single asset time series case is economically important in its own right. It coincides with predictive
regression for the market return, which has been the primary method for investigating a central organizing
question of asset pricing: How much do discount rates vary over time? While our analysis can be applied
to a panel of many assets, the roles of covariances in asset returns and signals across stocks complicate the
theory.

3The statistics and machine learning community often refer to P > T as the “high-dimensional” or “over-
parameterized” regime. We avoid terminology like “over-parameterized” and “overfit” as it suggests the
model uses too many parameters, which is not necessarily the case. For example, the true data-generating
process may be highly complex (i.e., P is large relative to T ); thus, a correctly specified model would require
P > T . When an empirical model has the same specification as the true model, we would prefer to call it
correctly parameterized as opposed to over-parameterized.

4This seemingly counterintuitive phenomenon is sometimes called “benign overfit” (Bartlett et al., 2020;
Tsigler and Bartlett, 2020).
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ridgeless least squares predictions generate positive Sharpe ratio improvements for arbitrarily

high levels of model complexity. Stated more plainly, when the true DGP is highly complex—

i.e., it has many more parameters than there are training data observations—one might

think that a timing strategy based on ridgeless regression is bound to fail. After all, it

exactly fits the training data with zero error. Surprisingly, this intuition is wrong. We prove

that strategies based on extremely high-dimensional models can thrive out-of-sample and

outperform strategies based on simpler models under fairly general conditions.

Our theoretical analysis delivers a number of additional conclusions. First, it shows that

the out-of-sample R2 from a prediction model is an incomplete measure of its economic

value. A market timer can generate significant economic profits even when the predictive

R2 is negative. The reason is that the R2 is heavily influenced by the variance of forecasts.5

A very low out-of-sample R2 indicates a highly volatile timing strategy. But the properties

of least squares imply that the expected out-of-sample return of a timing strategy is always

positive. So, as long as the timing variance is not too high (the R2 not too negative), the

timing Sharpe ratio can be substantial.

Second, we study two theoretical cases, one for correctly specified models and one for

mis-specified models. The correctly specified case develops the behavior of timing portfolios

when the true DGP varies from simple to complex, holding the data size fixed. This is

valuable for developing a general understanding of machine learning portfolios for various

DGPs. But the correct model specification is unrealistic—it is unlikely that we ever have

a predictor data set that nests all relevant conditioning information, and it is also unlikely

that we use information in the proper functional form. Our main theoretical results pertain

to mis-specified models, and this analysis coincides with the thought experiment above. In

5That is, R2 is not just about predictive correlation. Consider a simple model with a single predictor
and a coefficient estimate many times larger than the true value. This scale error will tend to drive the R2

negative, but it won’t affect the correlation between the model fits and the true conditional expectation.
The R2 is negative only because the variance of the fits is off. Relatedly, Rapach et al. (2010) show that
MSE decomposes into a scale-free (correlation) component and a scale-dependent component. It is the scale-
free component that is important for trading strategy performance. Leitch and Tanner (1991), Cenesizoglu
and Timmermann (2012), and Rapach and Zhou (2013) also emphasize the importance of evaluating return
prediction models based on their economic value in terms of trading strategy performance.
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practice, when we vary the empirical model specification from simple to complex, we change

how accurately the model approximates a fixed DGP.

Third, while the results discussed so far refer primarily to the case of ridgeless regression,

we show that machine learning portfolios tend to incrementally benefit from moving away

from the ridgeless limit by introducing non-trivial shrinkage. The bias induced by heavier

ridge shrinkage lowers the expected returns to market timing, but the associated variance

reduction reins in the volatility of the strategy. The Sharpe ratio tends to benefit from higher

shrinkage because the variance reduction overwhelms the deterioration in expected timing

returns. This is especially true when P ≈ T , where the behavior of ridgeless regression is

most vulnerable.

From a technical standpoint, we characterize the behavior of portfolios in the high-

complexity regime using asymptotic analysis as the model’s size grows with the number of

observations at a fixed rate (T → ∞ and P/T → c > 0). When P → ∞, the regular

asymptotic results, such as laws of large numbers and central limit theorems, do not hold.

Such analysis requires the apparatus of random matrix theory, on which we draw heavily to

derive our results. Conceptually, this delivers an approximation of how a machine learning

model behaves as we gradually increase the number of parameters holding the amount of

data fixed.

We conduct an extensive empirical analysis that demonstrates the virtues of model

complexity in a canonical asset pricing problem: predicting the aggregate US equity market

return.6 In particular, we study market timing strategies based on predictions from very

simple models with a single parameter to extremely complex models with over 10,000

parameters (applied to training samples with as few as 12 monthly observations). The

data inputs to our models are 15 standard predictor variables from the finance literature

compiled by Goyal and Welch (2008). To map our data analysis to the theory, we require

a method that smoothly transitions from low to high-complexity models while holding the

6Surveys of this large literature include Koijen and Van Nieuwerburgh (2011), Cochrane (2011), and
Rapach and Zhou (2022). For early machine learning approaches to market return prediction, see Rapach
et al. (2010) and Kelly and Pruitt (2013).
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underlying information set fixed. The random feature method of Rahimi and Recht (2007)

is ideal for this. We use it to construct expanding neural network architectures that take the

Goyal and Welch (2008) predictors as inputs and maintain the core ridge regression structure

of our theory.

We find extraordinary agreement between empirical patterns and our theoretical pre-

dictions. Over the standard CRSP sample 1926–2020, out-of-sample market timing Sharpe

ratio improvements (relative to market buy-and-hold) reach roughly 0.47 per annum with

t-statistics near 3.0. This is despite the fact that the out-of-sample predictive R2 is substan-

tially negative for the vast majority of models, consistent with the theoretical argument that

predictive R2 is inappropriate for judging the economic benefit of a machine learning model.

Timing positions from high-complexity models are remarkable. They behave similarly

to long-only strategies, following the Campbell and Thompson (2008) recommendation to

impose a non-negativity constraint on expected market returns. But our models learn this

behavior as opposed to being handed a constraint. Moreover, machine learning strategies

learn to divest leading up to NBER recessions, successfully doing so in 14 out of 15 recessions

in our test sample on a purely out-of-sample basis.

This paper relates most closely to emergent literature that studies the theoretical prop-

erties of machine learning models. A number of recent papers show that linear models

combined with random matrix theory help characterize the behavior of neural networks

trained by gradient descent.7 In particular, wide neural networks (many nodes in each

layer) are effectively kernel regressions, and “early stopping” in neural network training is

closely related to ridge regularization (Ali et al., 2019). Recent research also emphasizes the

phenomenon of benign overfit and “double descent,” in which expected forecast error drops

in the high-complexity regime.8

In this literature, the closest paper to ours is Hastie et al. (2019), who derive nearly

optimal error bounds in finite samples for bias and risk in the ridge(less) regression under

7See, for example, Jacot et al. (2018); Hastie et al. (2019); Du et al. (2018, 2019); Allen-Zhu et al. (2019).
8See, for example, Spigler et al. (2019); Belkin et al. (2019b,a, 2020); Bartlett et al. (2020).
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very general conditions.9 They are also the first to introduce mis-specified models where

some of the signals may be unobservable. In this paper, we focus on the (easier) asymptotic

regime. We use a different method of proof and relax some of the technical conditions on the

distributions of signals, using recent results of Yaskov (2016). In particular, we allow for non-

uniformly positive definite covariance matrices. Most importantly, instead of focusing on the

prediction model forecast error variance, we characterize expected out-of-sample expected

returns, volatility, and Sharpe ratios of market timing strategies based on machine learning

predictions. As in Hastie et al. (2019), our key interest is in the mis-specified model. While

Hastie et al. (2019) focus on a specific form of mis-specification and its ridgeless limit, we

derive general expressions for asymptotic expected returns and volatility in terms of signal

correlations.

Our paper also relates closely to a growing empirical literature that uses machine learn-

ing methods to analyze stock returns. The state-of-the-art market return prediction uses

high-dimensional models with shrinkage and demonstrates robust out-of-sample predictive

power. Rapach et al. (2010) use predictors from Goyal and Welch (2008) and forecast

combination methods (which they show exert a strong shrinkage effect). Ludvigson and

Ng (2007) and Kelly and Pruitt (2013) use principal components regression and partial

least squares, respectively, to leverage large predictor sets for market return prediction

and achieve shrinkage through dimension reduction. Dong et al. (2022) use 100 long-short

“anomaly” portfolios to forecast the market return using a variety of forecasting strategies to

implement shrinkage (more generally, see the recent survey by Rapach and Zhou, 2022). An

emerging literature uses machine learning methods to forecast large panels of individual stock

returns or portfolios, including Rapach and Zhou (2020), Kozak et al. (2020), Freyberger

et al. (2020), Gu et al. (2020), and Chen et al. (Forthcoming) (also see the survey by

Kelly and Xiu, 2022). Our paper offers theoretical justification for the successes of machine

learning prediction documented in the asset pricing literature. Our theoretical results call for

researchers to consider even larger information sets and higher-dimensional approximations

9See also Richards et al. (2021) who obtain less general results in an asymptotic setting (as in our paper).
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to further improve return forecasts (a rationale justified by our empirical analysis). Finally,

our paper is related to Martin and Nagel (2021) and Da et al. (2022) who examine market

efficiency implications of the high-dimensional prediction problem faced by investors, to

Fan et al. (2022b) who touch upon the “double descent” phenomenon in their analysis of

structural machine learning models, and to financial econometrics applications of random

matrix theory such as Fan et al. (2008), Ledoit and Wolf (2020), and Fan et al. (2022a).

The paper is organized as follows. In Section 2 we lay out the theoretical environment.

Section 3 presents the foundational results from random matrix theory from which we

derive our main theoretical results. Section 4 characterizes the behavior of machine learning

portfolios in the correctly specified setting and emphasizes the intuition behind the portfolio

benefits of high-complexity prediction models. Section 5 extends these results to the more

practically relevant setting of mis-specified models. We present our main empirical results

in Section 6, and Section 7 concludes. The appendix contains a variety of supplementary

theoretical results and empirical robustness analyses. We invite readers that are primarily

interested in the qualitative theoretical points and the empirical analysis to skip the technical

material of Sections 2 and 3.

2 Environment

This section describes our modeling assumptions and outlines the criteria by which we

evaluate machine learning portfolios.

2.1 Asset Dynamics

Assumption 1 There is a single asset whose excess return behaves according to

Rt+1 = S ′tβ + εt+1 (3)
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with εt+1 i.i.d., E[εt+1] = E[ε3
t+1] = 0, E[ε2

t+1] = σ2, E[ε4
t+1] < ∞,10 and St a P -vector

of predictor variables. Without loss of generality, everywhere in the sequel, we normalize

σ2 = 1.

Assumption 1 establishes the basic return generating process. Most notably, conditional

expected returns depend on a potentially high-dimensional information set embodied by the

predictors, S. The interpretation of this assumption is not necessarily that asset returns

are subject to many fundamental driving forces. Instead, it espouses the machine learning

perspective discussed in the introduction: The DGP’s functional form is unknown but

may be approximated with richly parameterized models using a high-dimensional nonlinear

expansion S of some underlying feature set.

The covariance structure of S plays a central role in the behavior of machine learning

predictions and portfolios. Assumption 2 imposes basic regularity conditions on this covari-

ance.

Assumption 2 There exist independent random vectors Xt ∈ RP with four finite first

moments, and a symmetric, P -dimensional positive semi-definite matrix Ψ such that

St = Ψ1/2Xt.

Furthermore, E[Xi,t] = E[X3
i,t] = 0 and E[X2

i,t] = 1, i = 1, · · · , P. Furthermore, the fourth

moments E[X4
i,t] are uniformly bounded and Xi,t satisfy the Lindeberg condition

lim
P→∞

1

P

P∑
i=1

E[X2
i,tI|Xi,t|>ε

√
P ] = 0 for all ε > 0.

As we show below, the theoretical properties of machine learning portfolios depend heavily

on the distribution of eigenvalues of Ψ. We are interested in limiting behavior in the high

model complexity regime, i.e., as P, T →∞, with P/T → c > 0. Assumption 3 ensures that

estimates of Ψ are well-behaved in this limit.

10The assumption of zero skewness does not affect our results, but simplifies the analytical expressions.
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Assumption 3 We will use λk(Ψ), k = 1, · · · , P, to denote the eigenvalues of an arbitrary

matrix Ψ. In the limit as P →∞, the spectral distribution FΨ of the eigenvalues of Ψ ,

FΨ(x) =
1

P

P∑
k=1

1λk(Ψ)≤x (4)

converges to a non-random probability distribution H supported on [0,+∞).11 Furthermore,

Ψ is uniformly bounded as P →∞. We will use

ψ∗,k = lim
P→∞

P−1 tr(Ψk) , k ≥ 1

to denote asymptotic moments of the eigenvalues of Ψ.

Our last assumption governs the behavior of the true predictive coefficient, β.

Assumption 4 We assume β = βP is random, β = (βi)
P
i=1 ∈ RP , independent12 of S and

R, and satisfies E[β] = 0, and E[ββ′] = P−1b∗,P I for some constant b∗,P = E[‖β‖2],13 and

satisfies b∗,P → b∗ almost surely, for some b∗ > 0. Furthermore, E[β4
i ] ≤ cP−2 for some

c > 0, and β satisfy the same Lindeberg condition as X.

The randomness of β in Assumption 4 is a device that allows us to characterize the

prediction and portfolio problem for generic predictive coefficients. The assumption that β

is mean zero is inconsequential; we could allow for a non-zero mean and restate our analysis

in terms of variances rather than second moments. E[ββ′] = P−1b∗,P I imposes that the

predictive content of signals is rotationally symmetric. In other words, predictability is

uniformly distributed across signals. This may seem restrictive, as commonly used return

predictors would not satisfy Assumption 4. But it is closely aligned with the structure of

feed-forward neural networks, in which raw features are mixed and nonlinearly propagated

into final generated features whose ordering is essentially randomized by the initialization

11If 0 is in the support of H, then Ψ is strictly degenerate, meaning that some signals are redundant.
12The assumption of a random coefficient vector β is related to that in Gagliardini et al. (2016).
13This identity follows because b∗ = trE[ββ′] = E[tr(ββ′)] = E[b∗].
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step of network training. Furthermore, the random feature methodology that we use in our

empirical analysis satisfies Assumption 4 by construction.14

When β is random and rotationally symmetric, we can focus on average portfolio behavior

across signals, which implies that only the traces of the relevant matrices matter, as opposed

to entire matrices (which are the source of technical intractability). The proportionality

of E[ββ′] to P−1, and likewise the finite limiting `2 norm of β, controls the “true” Sharpe

ratio. It ensures that Sharpe ratios of timing strategies remain bounded as the number of

predictors grows. In other words, our setting is one with many signals, each contributing a

little bit of predictability.

A key aspect of our paper, and one rooted in Assumptions 2 and 4, is that realized out-

of-sample returns are independent of the specific realization of β. This is due to a law of

large numbers in the P →∞ limit and is guaranteed by the following lemma.15

Lemma 1 As P →∞ we have

β′APβ − P−1b∗ tr(AP ) → 0

in probability for any bounded sequence of matrices AP . In particular, β′Ψβ → b∗ψ∗,1.

2.2 Timing Strategies and Performance Evaluation

We study timing strategy returns, defined as

Rπ
t+1 = πtRt+1

14From a technical standpoint, it is possible to derive explicit expressions for portfolio performance without
this assumption, but the expressions become more complex. In this case, the asymptotic behavior depends on
the distribution of projections of β on the eigenvectors of Ψ (the signal principal components). See, Hastie et
al. (2019). In particular, when β is concentrated on the top principal components, the phenomenon of benign
overfit emerges (Bartlett et al. (2020), Tsigler and Bartlett (2020)), and the optimal ridge regularization is
zero. We leave this generalization for future research.

15It is possible to use the results in Hastie et al. (2019) to extend our analysis to generic β distributions.
We leave this important direction for future research.
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where πt is a timing weight that scales the position in the asset up and down to exploit

time-varying in the asset’s expected returns.

We are interested in timing strategies that optimize the unconditional Sharpe ratio,

SR =
E[Rπ

t+1]√
E[(Rπ

t+1)2]
. (5)

While there are other possible performance criteria, we focus on this for its simplicity

and ubiquity. It is implied by the quadratic utility function at the foundation of mean-

variance portfolio theory. Academics and real-world investors rely nearly universally on the

unconditional Sharpe ratio when evaluating empirical trading strategies. The use of centered

versus uncentered second moment in the denominator is without loss of generality.16

Our analysis centers on the following timing strategy functional form:

πt(β) = S ′tβ. (6)

This strategy takes positions equal to the asset’s conditional expected return. Note that this

timing strategy optimizes the conditional Sharpe ratio. It achieves the same Sharpe ratio

as the conditional Markowitz solution, πCond. MV
t = Et[Rt+1]/Vart[R

2
t+1] = S ′tβ, according to

equation (3). While strategy πt is conditionally mean-variance efficient, it is not the optimizer

of the unconditional objective in (5), which takes the form πUncond. MV
t = S ′tβ/(1 + (S ′tβ)2).17

In the proof of Proposition 1 in the Appendix, we show that πt in equation (6) and πUncond. MV
t

are equal up to third-order terms.18 We study πt = S ′tβ for the simplicity of its linearity in

both β and St, but note that our conclusions are identical for πUncond. MV
t because, in the

limit as P →∞, the normalization factor 1 + (S ′tβ)2 converges to a constant.19

16Define S̃R =
E[Rπt+1]√
Var[(Rπt+1)]

. Direct calculation yields SR = 1√
1+S̃R

−2
.

17See Hansen and Richard (1987); Ferson and Siegel (2001); Abhyankar et al. (2012).
18In particular, the Sharpe ratio in equation (5) is less than one due to the Cauchy-Schwarz inequality.

We show the difference in Sharpe ratios for πt versus πUncond. MV
t is on the order of the Sharpe ratio cubed.

19By a version of Lemma 1, 1 + (S′tβ)2 → 1 + b∗ψ∗,1.
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Proposition 1 states the behavior of timing strategy πt = S ′tβ when T →∞ and P/T → 0

(i.e., when the predictive parameter β is known).

Proposition 1 (Infinite Sample) The unconditional first and second moments of returns

to the infeasible market timing strategy πt = S ′tβ are

E[πtRt+1]→ b∗ψ∗,1 > 0 and E
[
(πtRt+1)2

]
→
(
3(b∗ψ∗,1)2 + b∗ψ∗,1

)
.

The infeasible market timing Sharpe ratio is

SR→ 1√
3 + (b∗ψ∗,1)−1

<

(
1

3

)1/2

. (7)

For comparison, under Assumptions 1 to 4, the unconditional first and second moments of

the un-timed asset return are (see Lemma 1)

E[Rt+1] = 0, and E[R2
t+1]→ 1 + b∗ψ∗,1 .

That is, our assumptions imply the un-timed asset has a zero Sharpe ratio. This is just a

normalization so that any positive market timing Sharpe ratio can be interpreted as pure

excess performance arising from timing ability.

2.3 Relating Predictive Accuracy to Portfolio Performance

We are ultimately interested in understanding the portfolio properties of a feasible timing

strategy, π̂t = β̂′St. This is, of course, intimately tied to the prediction accuracy of

the estimator β̂, summarized by its expected mean square forecast error (MSE) on an

independent test sample. This is the fundamental notion of estimator “risk” from statistical

theory, though we use the term “MSE” here to avoid confusion with portfolio riskiness. We
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can write MSE as

MSE(β̂) = E

[(
Rt+1 − S ′tβ̂

)2

|β̂
]

= E[R2
t+1]− 2 E[π̂tRt+1|β̂]︸ ︷︷ ︸

Timing
Expected Return

+E[π̂2
t |β̂]︸ ︷︷ ︸

Timing
Leverage

. (8)

In other words, the higher the strategy’s expected return, the lower the MSE. And the larger

the positions—or “leverage”—of the strategy, the larger the MSE. A timing strategy with a

higher expected return corresponds to more predictive power, while higher leverage gives the

strategy higher variance. Interestingly, these two objects, expected return and leverage of the

timing strategy, appear repeatedly throughout our analysis. The expected return/leverage

tradeoff in (8) is a financial decomposition of MSE analogous to its statistical decomposition

into a bias/variance tradeoff.

Note that a strategy πt = β′St based on the infeasible true β satisfies E[πtRt+1] =

E[β′Ψβ] = E[π2
t ].

20 In this case, the MSE collapses to E[R2
t+1]−E[πtRt+1] and is minimized,

meaning that the leverage taken is exactly justified by the predictive benefits of the strategy.

This can also be stated in terms of the infeasible R2 based on equation (3) and Lemma 1:

R2 =
β′Ψβ

β′Ψβ + 1
→ b∗ψ∗,1

b∗ψ∗,1 + 1
.

Thus, there is a monotonic mapping from the infeasible timing strategy expected return to

the true R2, and from the infeasible Sharpe ratio to the true R2 (see equation (7)).

3 Machine Learning and Random Matrices

The central premise of machine learning is that large data sets can be used in flexible model

specifications to improve prediction. This can be understood in the environment above by

considering the regime in which the number of predictors, P, is large, perhaps even larger

than T . Our main objective is thus to understand the behavior of optimal timing portfolios

20Indeed, E[(β′St)
2] = E[β′StS

′
tβ] = β′Ψβ.

14



as the prediction model becomes increasingly complex, i.e., when P → ∞. Because this

involves estimating infinite-dimensional parameters, traditional large T asymptotics do not

apply, and we instead resort to random matrix theory. In this section, we discuss the ridge

estimator and present random matrix theory results at the foundation of our theoretical

characterization of high-complexity timing strategies.

3.1 Least Squares Estimation

Throughout, we analyze (regularized) least squares estimators taking the form

β̂(z) =

(
zI + T−1

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1

for a given ridge shrinkage parameter, z. The ridge-regularized form is necessary for char-

acterizing β̂(z) in the high-complexity regime, P/T → c > 1, though we will see it also has

important implications for the behavior of β̂(z) when P/T < 1.21

Consider first the ordinary least squares (OLS) estimator, β̂(0). As P approaches T

from below, the denominator of the least squares estimator approaches the singularity. This

produces explosive variance of β̂(0) and, in turn, explosive forecast error variance. As P → T ,

the model begins to fit the data with zero error, so a common interpretation of the explosive

variance of β̂(0) is an insidious overfit that does not generalize out-of-sample.

When P moves beyond T , there are more parameters than observations and the least

squares problem has multiple solutions. A particularly interesting solution invokes the

Moore-Penrose pseudo-inverse, (T−1
∑

t StS
′
t)

+ 1
T

∑
t StRt+1.22 This solution is equivalent

21One could alternatively analyze “sparse” least squares models that combine shrinkage with variable
selection (e.g., based on LASSO). First, recent evidence of Giannone et al. (2021) suggests sparsity of
predictive relationships in economics and finance is likely an illusion. Second, our empirical focus is on
non-parametric models that seek to approximate a generic nonlinear function as a linear combination of
generated features, and sparsity in the generated feature space is difficult to identify (see, e.g., Ghorbani et
al., 2020). Third, analysis with `1 shrinkage is significantly more taxing from a theoretical standpoint. We
thus leave sparse least squares models to future research.

22Recall that the Moore-Penrose pseudo-inverse A+ of a matrix A is defined via A+ = (A′A)−1A′ if A′A
is invertible, and A+ = A′(AA′)−1 if AA′ is invertible.
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to the ridge estimator as the shrinkage parameter approaches zero:

β̂(0+) = lim
z→0+

(
zI + T−1

∑
t

StS
′
t

)−1
1

T

∑
t

StRt+1.

The solution β̂(0+) is often referred to as the “ridgeless” regression estimator. When P < T ,

OLS is the ridgeless estimator. At P = T there is still a unique least squares solution, yet the

model can exactly fit the training data (for this reason, P = T is called the “interpolation

boundary”). When P > T , the ridgeless estimator is one of many solutions that exactly

fit the training data, but among these, it is the only solution that achieves the minimum

`2 norm β̂(z) (Hastie et al., 2019). The machine learning literature has recently devoted

substantial attention to understanding ridgeless regression in the high-complexity regime.

The counter-intuitive insight from this literature is that, beyond the interpolation boundary,

allowing the model to become more complex in fact regularizes the behavior of least squares

regression despite using infinitesimal shrinkage. We explore the implications of this idea for

market timing in the subsequent sections.

3.2 The Role of Random Matrix Theory

We analyze the behavior of β̂(z) and associated market timing strategies in the limit as

P → ∞. This is possible due to a remarkable connection between ridge regression and

random matrix theory.

In regression analysis, the sample covariance matrix of signals, Ψ̂ := T−1
∑

t StS
′
t, nat-

urally plays a central role. But no general characterization exists for the behavior of Ψ̂

in the limit as P, T → ∞. However, the tools of random matrix theory characterize one

aspect of Ψ̂—the distribution of its eigenvalues. Fortunately, as we show, the prediction

and portfolio performance properties of least squares estimators rely only on the eigenvalue

distribution of Ψ̂. Thus random matrix theory facilitates a rich understanding of machine

learning portfolios. Here we elaborate on the core results from the random matrix theory

we build upon.
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First, to understand the central role of Ψ̂’s eigenvalue distribution in determining the

limiting behavior of the least squares estimator, suppose momentarily that we could replace

Ψ̂ with its true unobservable signal covariance, Ψ. For any symmetric matrix Ψ, a convenient

matrix identity states

1

P
tr
(
(Ψ− zI)−1

)
=

1

P

P∑
i=1

(λi(Ψ)− z)−1 ,

where λi(Ψ) are the eigenvalues of Ψ. Using formula (4), we can rewrite this identity as

1

P
tr
(
(Ψ− zI)−1

)
=

∫
1

x− z
dFΨ(x) , z < 0 .

From this identity, we immediately see the fundamental connection between ridge regular-

ization and the distribution of eigenvalues for Ψ. The right-side quantity is the Stieltjes

transform of the eigenvalue distribution of Ψ, denoted FΨ. By Assumption 3, this distribu-

tion is well behaved when P →∞ and converges to a non-random distribution H. Thus, we

have

mΨ(z) :=

∫
1

x− z
dH(x) = lim

P→∞

1

P
tr
(
(Ψ− zI)−1

)
. (9)

The function mΨ(z) is the limiting Stieltjes transform of the eigenvalue distribution of Ψ.

Equation (9) is a powerful step towards understanding the least squares estimator in the

machine learning regime (and hence machine learning predictions and portfolios). It states

that key properties of the limiting inverse of the ridge-regularized signal covariance matrix

can be completely characterized if we just know Ψ’s eigenvalue distribution.

The problem, of course, is that the true Ψ is unobservable. We only observe its sample

counterpart, Ψ̂. Thus, we only have empirical access to the Stieltjes transform of Ψ̂’s

eigenvalues. The empirical counterpart to the unobservable mΨ(z) is

m(z; c) := lim
P→∞

1

P
tr
(
(Ψ̂− zI)−1

)
.
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In traditional finite P statistics, we would have convergence between the sample covariance Ψ̂

and the true covariance Ψ as T →∞. One might be tempted to think that limP→∞
1
P

tr
(
(Ψ̂−

zI)−1
)

and limP→∞
1
P

tr
(
(Ψ − zI)−1

)
also converge as T → ∞. But this is not the case.

The limiting eigenvalue distributions of Ψ̂ and Ψ remain divergent in the limit as T →∞ if

P/T → c > 0. Here we see a first glimpse of the complexity of machine learning and how we

can understand it with random matrix theory. In the Appendix (see Theorem 8), we show

how m(−z; c) can be computed from mΨ(−z) using results of Silverstein and Bai (1995) and

Bai and Zhou (2008). In particular, m(−z; c) > m(−z; 0) = mΨ(−z) for all c > 0.23 The

next result shows that, quite remarkably, if we constrain ourselves to linear ridge regression

estimators, all asymptotic expressions depend only on m(z; c) and do not require mΨ.24

Proposition 2 We have

lim
T→∞

1

T
tr((zI + Ψ̂)−1Ψ) → ξ(z; c) (11)

almost surely, where

ξ(z; c) =
1− zm(−z; c)

c−1 − 1 + zm(−z; c)
.

The quantity trE[(zI + Ψ̂)−1Ψ] appears in virtually every expression we analyze to describe

portfolio behavior. It depends on an interaction between the sample and true signal co-

variance matrix and arises in the computation of both the expected return and leverage of

23Theorem 8 in the Appendix is a generalized version of the Marčenko and Pastur (1967) theorem that
accommodates non-i.i.d. St. When signals are i.i.d. with Ψ = I and mΨ(z) = (1 − z)−1, Marčenko and
Pastur (1967) show that

m(−z; c) =
−((1− c) + z) +

√
((1− c) + z)2 + 4cz

2cz
. (10)

By direct calculation, (10) is indeed the unique positive solution to (26) when mΨ(z) = (1− z)−1. While the
eigenvalue distributions of the sample and true covariance matrices do not coincide, Theorem 8 describes the
precise nonlinear way they relate to each other. In particular, when P > T, the matrix Ψ̂ has P − T zero
eigenvalues and therefore, P−1 tr

(
(zI + Ψ̂)−1

)
contains a singular part, P−1(P − T )z−1 = (1− c−1)z−1.

24It is possible to develop nonlinear shrinkage estimators analogous to those developed by Ledoit and Wolf
(2020) for covariance matrices. Such estimators would require knowledge of the true eigenvalue distribution
of Ψ which can be recovered from m(z; c) using equation (26).
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the timing strategy (see equation (8)). One would imagine, then, that we need to know

the limiting eigenvalue distribution of both matrices (or their Stieltjes transforms, m and

mΨ) to describe trE[(zI + Ψ̂)−1Ψ]. Proposition 2 shows that this is not the case—we only

need to know the empirical version, m(−z; c). This is a powerful result. It will allow us to

quantify the expected out-of-sample behavior of machine learning portfolios based only on

the eigenvalue distribution of the sample signal covariance Ψ̂ (which is observable) without

requiring us to know the eigenvalues of Ψ.25

We refer to the constant c as “model complexity,” which (as the preceding results

show) plays a critical role in understanding model behavior. It describes the limiting

ratio of predictors to data points: P/T → c. When T grows at a faster rate than the

number of predictors (i.e., c → 0) the limiting eigenvalue distributions of Ψ̂ and Ψ in fact

converge: m(−z; 0) = mΨ(−z). As c becomes positive, these distributions fail to converge,

and their divergence is wider for larger c. It is, therefore, clear that the behavior of the

least squares estimator in the machine learning regime will differ from the true coefficient,

even when T → ∞, as long as c > 0. As a result, machine learning portfolios will suffer

relative to the infeasible performance in Proposition 1 despite abundant data. However,

while machine learning portfolios underperform the infeasible strategy, they can continue

to generate substantial trading gains. This is true even in the ridgeless case. Additional

ridge shrinkage can boost performance even further. In the following sections, we precisely

characterize these behaviors.

4 Prediction and Performance in the Machine Learning Regime

In this section, we analyze correctly specified models. We present the theoretical characteri-

zations of machine learning models in terms of prediction accuracy and portfolio performance.

We then illustrate their behavior in a calibrated theoretical setting.

25Heuristically, E[Ψ̂] = Ψ and hence trE[(zI + Ψ̂)−1Ψ] ≈ trE[(zI + Ψ̂)−1Ψ̂]. However, random matrix
corrections make the true relationship nonlinear.
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4.1 Expected Out-of-sample R2

To understand a model’s prediction accuracy in the high-complexity regime, we study its

limiting MSE, defined as

MSE(z; c) = lim
T,P→∞, P/T→c

E

[(
Rt+1 − S ′tβ̂(z)

)2

|β̂(z)

]
. (12)

Notably, while β̂(z) is random and depends on the sample realization, we show below that

the limit in (12) is non-random. The arguments z and c are central to understanding the

limiting predictive ability of least squares. Respectively, they describe the extent of ridge

shrinkage and the complexity of the DGP (and thus of the correctly specified model).

In finance and economics, it is common to state predictive performance in terms of R2

rather than MSE. We denote the limiting out-of-sample R2 as

R2(z; c) = 1− MSE(z, c)

limT,P→∞E[R2
t+1]

,

where E[R2
t+1] is the null MSE when β = 0.

In Section 2.3, we discussed the infeasible maximum R2, or

R2(0; 0) =
b∗ψ∗,1

1 + b∗ψ∗,1
.

This corresponds to a data-rich environment (c = 0, so observations vastly outnumber

parameters) and OLS regression (z = 0). R2(0; 0) is the benchmark for evaluating the loss of

predictive accuracy due to high model complexity, even when data is abundant. Specifically,

the R2 of the least squares estimator in the machine learning regime behaves as follows.

20



Proposition 3 In the limit as T, P →∞, P/T → c, we have

E(z; c) = lim E[π̂tRt+1|β̂(z)] = b∗ν(z; c)

L(z; c) = lim E[π̂2
t |β̂(z)] = b∗ν̂(z; c)− cν ′(z; c) (13)

R2(z; c) =
2E(z; c)− L(z; c)

1 + b∗ψ∗,1

where

ν(z; c) = ψ∗,1 − c−1zξ(z; c) = limP−1 tr(Ψ̂(zI + Ψ̂)−1Ψ) > 0

ν ′(z; c) = − c−1(ξ(z; c) + zξ′(z; c)) = − limP−1 tr(Ψ̂(zI + Ψ̂)−2Ψ) < 0

ν̂(z; c) = ν(z; c) + zν ′(z; c) = limP−1 tr(Ψ̂2(zI + Ψ̂)−2Ψ) > 0.

As we show in the Appendix, these limits exist in probability.

Furthermore, R2(z; c) is monotone increasing in z for z < z∗ = c/b∗, and decreasing in

z for z > z∗. R
2(z; c) attains its maximum at z∗ = c/b∗, where it is positive and given by

R2(z∗; c) = R2(0; 0)− ξ(z∗; c)

1 + b∗ψ∗,1
=

b∗ν(z∗; c)

1 + b∗ψ∗,1
> 0 .

In the ridgeless limit, assuming H(0+) = 0, we have

R2(0; c) = R2(0; 0) − (1 + b∗ψ∗,1)−1


(c−1 − 1)−1, c < 1

µ(c), c > 1.

(14)

with some µ(c) > 0, µ(1+) = +∞. Lastly, we have

lim
c→∞

R2(0; c) = 0 > lim
c→1

R2(0; c) = −∞ . (15)

When the prediction model is complex (c > 0), the limiting eigenvalues of Ψ̂ and Ψ

diverge, and this unambiguously reduces the predictive R2 relative to the infeasible best,
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Figure 1: Expected Out-of-sample R2 and Norm of Least Squares Coefficient

Note. Limiting out-of-sample R2 and β̂ norm as a function of c and z from Proposition 3 assuming Ψ is
the identity matrix and b∗ = 0.2.

R2(0; 0). Intuitively, because the frictionless R2(0; 0) is fixed, as c increases, the investor must

learn the same amount of predictability but spread across many sources, and this dimen-

sionality expansion hinders statistical inference. The degradation in predictive accuracy due

to complexity can be so severe that expected out-of-sample R2 becomes extremely negative,

particularly in the ridgeless case. Shrinkage can mitigate this and help preserve accuracy

amid complexity. Shrinkage controls variance but introduces bias. Proposition 3 points out

that the amount of shrinkage that optimizes the bias-variance tradeoff is z∗ = c/b∗.
26 More

complex settings benefit from heavier shrinkage, while settings with higher signal-to-noise

ratio (higher b∗) benefit from lighter shrinkage (see, e.g. Hastie et al., 2019). E and L are

the limiting out-of-sample expected returns and leverage of the timing strategy. Proposition

3 shows that these are the main determinants of out-of-sample R2.

Figure 1 illustrates the theoretical behavior of the least squares estimator derived in

Proposition 3. The plots set Ψ to the identity matrix and fix b∗ = 0.2 (recall σ2 is

26Note that the optimal shrinkage must be inferred from an estimate of b∗. Our theoretical and empirical
results indicate a general insensitivity of prediction and timing strategy performance to the choice of z in
the high-complexity regime. Because of this, simple shrinkage selection methods like cross-validation tend
to perform well.
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normalized to one). The left panel draws the expected out-of-sample R2 as a function

of model complexity c (shown on the x-axis) and ridge penalty z (different curves). In this

calibration, the infeasible maximum predictive R2 (that uses the true parameter values) is

the dotted red line and provides a reference point. Throughout the paper, we refer to plots

like these, which describe the model performance as a function of model complexity, as “VoC

curves.”

The blue line shows the R2 in the ridgeless limit. When c ≤ 1, the ridgeless limit

corresponds to exactly z = 0 (i.e., OLS). On this side of c = 1, predictive accuracy

deteriorates rapidly as model complexity increases. This captures the well-known property

that OLS suffers when the number of predictors is large relative to the number of data

points. As c→ 1, the denominator of the OLS estimator approaches the singularity, and the

expected out-of-sample R2 dives.

To the right of c = 1, the number of predictors exceeds the sample size, and the “ridgeless”

case is defined as the limit as z → 0 (i.e., when the least squares denominator is calculated

via the pseudo-inverse of Ψ̂). Counter-intuitively, the R2 begins to rise as model complexity

increases.27

The reason is that, while there are many equivalent β solutions that exactly fit28 the

training data when c > 1, ridgeless regression selects the solution with the smallest norm.

As complexity increases, there are more solutions for ridgeless regression to search over,

and thus it can find smaller and smaller betas that still exactly fit the training data. This

acts as shrinkage, biasing the beta estimate toward zero. Due to this bias, the forecast

variance drops, improving the R2. In other words, despite z → 0, the ridgeless solution

still regularizes the least squares estimator, and more so, the larger is c. This property of

ridgeless least squares is a newly documented phenomenon in the statistics literature and

is still an emerging topic of research.29 It shows that even in very simple data generating

27This is an illustration of what the statistics literature refers to as benign overfitting.
28That is, β′St = Rt+1 for all t ∈ [1, · · · , T ].
29See Spigler et al. (2019), Belkin et al. (2019b), Belkin et al. (2019a), Belkin et al. (2020), and Hastie et

al. (2019).
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processes, one may be able to improve the accuracy of return forecasts by pushing model

dimensionality well beyond sample size.

The remaining curves in Figure 1 show how the out-of-sample R2 is affected by non-

trivial ridge shrinkage. Allowing z > 0 improves R2 except at very low levels of complexity.

This is again a manifestation of the bias-variance tradeoff. When z > 0, the norm of β̂

is controlled, and the associated variance reduction outweighs the effects of bias when the

model is complex.

It is useful to place our analysis thus far in the context of the literature. Some formulas

of Propositions 2 and 3 have been established in papers on random matrix theory (e.g.

Ledoit and Péché, 2011). Hastie et al. (2019) prove an analog of Proposition 3 allowing

for arbitrary β and expressing all quantities in terms of the distribution of projections of β

onto the eigenvectors of Ψ (see also Wu and Xu, 2020). Furthermore, they establish non-

asymptotic bounds on the rate of convergence. However, both Hastie et al. (2019) and Wu

and Xu (2020) require that Ψ is strictly positive definite. By contrast, in our data analysis,

we find that Ψ is nearly degenerate. Richards et al. (2021) also allow for more general β

structures and Ψ matrices, but require that Xt be i.i.d. Gaussian and Dobriban and Wager

(2018) require Xt be i.i.d. This is clearly not applicable to the RFFs used in our empirical

analysis (or any other nonlinear signal transformations). In contrast to these papers, we

establish our results under much weaker conditions on the distribution of Xi,t across i. This

is important for practical applications, where neither the independence of Xt nor equality

(or boundedness) of their higher moments can be guaranteed. Lastly, the novel techniques

we develop allow us to characterize the out-of-sample performance of mis-specified models.

To the best of our knowledge, this characterization is new in the literature (see Section 5).

Our main theoretical contribution is in the subsequent sections, where we derive portfolio

performance properties.
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4.2 Expected Out-of-sample Market Timing Performance

Next, we analyze the behavior of market timing based on the least squares estimate:

π̂t(z) = β̂(z)′St.

Formula (13) derives the expected return of this strategy. The following proposition char-

acterizes the expected out-of-sample risk-return tradeoff of market timing in the high-

complexity regime.

Proposition 4 In the limit when P, T →∞, P/T → c, the limiting second moment of the

market timing strategy is

V(z; c) := limE
[
(π̂t(z)Rt+1)2|β̂

]
= 2(E(z; c))2 + (1 + b∗ψ∗,1)L(z; c),

in probability, with E and L given in (13). As a result, the Sharpe ratio satisfies

SR(z; c) =
E(z; c)√
V(z; c)

=
1√

2 + (1 + b∗ψ∗,1) L(z;c)
(E(z;c))2

. (16)

Furthermore, we have:

i) E(z; c) is monotone decreasing in z and, hence, 0 < E(z; c) < E(0, c) < E(0, 0), and

ii) SR(z; c) is monotone increasing in z for z < z∗ = c/b∗ and monotone decreasing in z

for z > z∗ = c/b∗. Thus, the maximal Sharpe ratio is given by

SR(z∗; c) =
1√

2 + (1 + b∗ψ∗,1) 1
b∗ν(z∗;c)

< SR(0; 0) , (17)

where E(0, 0) and SR(0, 0) are the infeasible market timing expected return and Sharpe ratio

from Proposition 1.

The left panel of Figure 2 plots the expected out-of-sample return and the right panel
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Figure 2: Expected Out-of-sample Risk and Return of Market Timing

Note. Limiting out-of-sample expected return and volatility of the market timing strategy as a function of
c and z from Proposition 3 assuming Ψ is the identity matrix and b∗ = 0.2.

plots the expected out-of-sample volatility based on Propositions 3 and 4 using the same

calibration as Figure 1. Again, the ridgeless case is in blue. The expected returns of least

squares timing strategies are always positive because they are quadratic in beta. When

c < 1 (i.e., in the OLS case), the ridgeless timing strategy achieves the true expected return

even though the corresponding R2 is significantly negative in much of this range. The fact

that the out-of-sample expected return is unimpaired reflects the unbiasedness of OLS, while

the declining R2 reflects the increasing forecast variance as c rises toward one. The return

volatility of the timing strategy is likewise increasing in c for c ∈ [0, 1] due to the rising

forecast variance and maxes out at c = 1.

When c > 1, the ridgeless expected return begins to deteriorate. This is more subtle and

is related to the rising R2 discussed above. When model complexity is high, the multiplicity

of least squares solutions allows ridgeless regression to find a low norm beta that exactly fits

the training data. So, even though z → 0, the ridgeless beta is biased, and the expected

return of the strategy falls. At the same time, the volatility of the strategy falls.

The other expected return and volatility curves show that the bias induced by a non-

trivial ridge penalty eats into the timing strategy even for c < 1. But the bright side of
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Figure 3: Expected Out-of-sample Sharpe Ratio of Market Timing

Note. Limiting out-of-sample Sharpe ratio of the market timing strategy as a function of c and z from
Proposition 3 assuming Ψ is the identity matrix and b∗ = 0.2.

this attenuation is a reduction in the strategy’s riskiness. For relatively high shrinkage levels

like z = 1, the volatility of the timing strategy drops even below that of the infeasible best

strategy while maintaining a meaningfully positive expected return.

The net effect of these expected return and volatility behaviors is summarized by the

market timing strategy’s expected out-of-sample Sharpe ratio, given in Proposition 4. The

calibrated Sharpe ratio is shown in Figure 3. Recall that the buy-and-hold Sharpe ratio

is normalized to zero. The key implication of Proposition 4 is that despite the sometimes

massively negative predictive R2, the ridgeless Sharpe ratio is everywhere positive, even for

extreme levels of model complexity. At c = 1, the Sharpe ratio drops to near zero, not

because the strategy is unprofitable (it remains maximally profitable in an expected return

sense) but because its volatility explodes.

Another interesting aspect of Figure 3 is that the Sharpe ratio benefits from non-trivial

ridge shrinkage regardless of model complexity. Shrinkage is most valuable near c = 1, where

it reins in volatility substantially more than it reduces expected return. At both low levels
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of complexity (c ≈ 0) and high levels of complexity (c >> 1), the Sharpe ratio is relatively

insensitive to z.

Proposition 4 also implies that when the model is correctly specified, the shrinkage that

optimizes the expected out-of-sample R2 also optimizes the Sharpe ratio. This is convenient

because it means that one can focus on tuning the prediction model and be confident that

the tuned z will optimize timing performance. But two caveats are in order. The first is that

this statement applies to the Sharpe ratio, so if investors judge their performance with other

criteria, then other levels of shrinkage may be optimal. For example, a risk-neutral investor

prefers ridgeless regression despite its comparatively poor performance in R2. Second, this

statement requires correct specification. If the empirical model is mis-specified, the optimal

amount of shrinkage can differ depending on whether the objective is to maximize out-of-

sample R2 or Sharpe ratio.

4.3 A Note on R2

At this point, we already see that a timing strategy with negative R2 can have high average

out-of-sample returns and thus positive out-of-sample Sharpe ratios.30 More plainly, the

positivity of out-of-sample R2 is not a necessary condition for an economically valuable timing

strategy. The least squares timing strategies in our framework all have strictly positive out-

of-sample expected return and Sharpe ratio regardless of shrinkage or model complexity

(despite having enormously negative R2 in many cases).

This is an important contrast versus the mapping from R2 to the timing Sharpe ratio

proposed by Campbell and Thompson (2008), which is an often-used heuristic for interpreting

the economic benefits of a predictive R2. Their mapping is population mapping, meaning it

corresponds to the special case of an analyst using a correctly specified model with c = 0

(i.e., infinitely more data than parameters). In contrast, our analysis characterizes expected

30To see this in a simple example, consider a model with one predictor and imagine estimating a predictive
coefficient that happens to be a large scalar multiple of the truth. In this case, the R2 will be pushed negative,
but the predictions will be perfectly correlated with the true expected return. Thus, the expected return of
the timing strategy will be positive. Furthermore, because the Sharpe ratio is independent of scale effects,
this timing strategy will equal the actual Sharpe ratio of the DGP.
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out-of-sample R2 and Sharpe ratios for generic c and even with mis-specified models (Section

5).

Out-of-sample R2 and Sharpe ratio measurements serve different purposes. R2 helps

evaluate forecast accuracy. The Sharpe ratio is appropriate for evaluating the economic

value of forecasts in asset allocation contexts. Much of the empirical literature in return

prediction and market timing focuses its evaluations on out-of-sample predictive R2 (see, e.g.

Goyal and Welch, 2008). Proposition 4 ensures that we can worry less about the positivity of

out-of-sample R2 from a prediction model and focus more on the out-of-sample performance

of timing strategies based on those predictions.

5 Machine Learning and Model Mis-specification

So far, we have studied the behavior of machine learning portfolios as a function of the

complexity of the true DGP while assuming we have the correctly specified model. Under

correct specification, the complexity comparative statics in Figures 1 to 3 change both the

empirical and the true model as we vary c. So, these theoretical comparative statics cannot be

taken to the data. Nevertheless, theory grounded on correct model specification is powerful

for developing a conceptual understanding of machine learning portfolios.

A more empirically relevant theoretical setting would consider a single true DGP. Then, it

would consider empirical models that are always a misspecified approximation to this DGP.

Finally, it would make comparisons by increasing the complexity of the empirical model to

achieve an increasingly accurate approximation of the true DGP. We will develop this theory

now.

We consider a true DGP with P predictors. We consider an expanding set of empirical

models to approximate the DGP. Each model is indexed by P1 = 1, · · · , P and corresponds

to an economic agent observing only a subset of the signals, S
(1)
t = (Si,t)

P1
i=1. We use

S
(2)
t = (Si,t)

P
i=P1+1 to denote the remaining unobserved signals. The signal covariance matrix
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corresponding to this partition is

Ψ =

Ψ1,1 Ψ1,2

Ψ′1,2 Ψ2,2

 .

Naturally, mis-specified estimator behavior depends on the correlation structure of observed

and unobserved signals captured by the off-diagonal blocks of Ψ.

We make the following technical assumption which ensures that estimators in the machine

learning regime have well-behaved limits.

Assumption 5 For any sequence P1 → ∞ such that P1/P = q > 0, the eigenvalue

distribution of the matrix Ψ1,1 converges to a non-random probability distribution H(x; q).

We say that signals are sufficiently mixed if H(x; q) is independent of q. We will also use

ψ∗,k(q) = lim
P1→∞

P−1
1 tr(Ψk

1,1) , k ≥ 1

to denote asymptotic moments of the eigenvalues of Ψ1,1.

In a mis-specified model, the (regularized) least squares estimator is

β̂(z; q) =
(
zI + Ψ̂1,1

)−1 1

T

∑
t

S
(1)
t Rt+1 ∈ RP1 ,

where

Ψ̂1,1 = T−1
∑
t

S
(1)
t (S

(1)
t )′ ∈ RP1×P1 .

We also introduce the following auxiliary objects:

ξ2,1(z; cq; q) = lim
T→∞

T−1 trE[(zI + Ψ̂1,1)−1Ψ1,2Ψ′1,2] ≥ 0 (18)

ξ̂2,1(z; cq; q) = lim
T→∞

T−1 trE[(zI + Ψ̂1,1)−1Ψ1,1(zI + Ψ̂1,1)−1Ψ1,2Ψ′1,2] ≥ 0 .
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The quantities in (18) account for covariances between observed and unobserved signals.

While the existence of the limits in (18) cannot be guaranteed in general, the expectations

are uniformly bounded for z > 0 (since so are the Ψ matrices). Hence, by passing to a

subsequence of T, P, we can always assume the limits in (18) exist. In the appendix, we

show that these limits actually exist for a class of correlation structures.

With the additional assumptions for the mis-specified setting in place, we have the

following analog of Propositions 2, 3, and 4.

Proposition 5 In the limit T, P, P1 →∞, P/T → c, P1/P → q ∈ (0, 1],

lim
T→∞

1

T
tr((zI + Ψ̂1,1)−1Ψ1,1) → ξ(z; cq; q)

in probability, where

ξ(z; cq; q) =
1− zm(−z; cq; q)

(cq)−1 − 1 + zm(−z; cq; q)
,

and

m(−z; cq; q) = limP−1
1 tr((zI + Ψ̂1,1)−1) .

Furthermore,

ν(z; cq; q) = ψ∗,1(q)− (qc)−1zξ(z; cq; q) > 0

ν ′(z; cq; q) = − (qc)−1(ξ(z; cq; q) + zξ′(z; cq; q)) < 0

ν̂(z; cq; q) = ν(z; cq; q) + zν ′(z; cq; q) > 0 .

In addition, we have

31



i) The expected return on the market timing strategy converges in probability to

E(z; cq; q) := limE[π̂t(z)Rt+1|β̂] = b∗ q

(
ν(z; cq; q) +

(cq)−1ξ2,1(z; cq; q)

1 + ξ(z; cq; q)

)

ii) Expected leverage converges in probability to

L(z; cq; q) := limE[π̂t(z)2|β̂] = q
(
b∗ν̂(z; cq; q)−c(1+b∗[ψ∗,1(1)−qψ∗,1(q)])ν ′(z; cq; q)

)
+∆(z; cq; q) ,

where

∆(z; cq; q) = b∗
(qc)−1ξ̂2,1(z; cq; q) + 2(1 + ξ(z; cq; q))ν ′(z; cq; q)ξ2,1(z; cq; q)

(1 + ξ(z; cq; q))2
.

iii) R2 converges in probability to

R2(z; cq; q) =
2E(z; cq; q)− L(z; cq; q)

1 + b∗ψ∗,1(1)
. (19)

iv) The second moment of the market timing strategy converges in probability to

V(z; cq; q) := limE
[
(π̂t(z)Rt+1)2

]
= 2(E(z; cq; q))2 + (1 + b∗ψ∗,1)L(z; cq; q) .

v) And, as a result, the Sharpe ratio satisfies

SR(z; cq; q) =
E(z; cq; q)√
V(z; cq; q)

=
1√

2 + (1 + b∗ψ∗,1) L(z;cq;q)
(E(z;cq;q))2

.

In general, the behavior of quantities in Proposition 5 depends in a complex fashion on the

correlations between observable and unobservable signals, as captured by the quantities (18).

When both quantities (18) are zero, expressions significantly simplify. It is straightforward to

show that both quantities in (18) are zero if the matrices Ψ1,2,Ψ2,1 have uniformly bounded

traces. For example, this is when Ψ1,2 has a finite, uniformly bounded rank when P, P1 →∞
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(due to, say, a finite-dimensional factor structure in the signals). We thus obtain the following

result.

Proposition 6 Suppose that tr(Ψ1,2Ψ2,1) = o(P ).31 Then, ξ2,1 = ξ̂2,1 = 0. Furthermore,

(i) We have E(z; cq; q) is monotone decreasing in z and, hence, 0 < E(z; cq; q) < E(0; cq; q) <

E(0, 0; 0), and

(ii) both R2(z; cq; q) and SR(z; cq; q) are monotone increasing in z for z < z∗ = c(1 +

b∗(ψ∗,1(1)− qψ∗,1(q)))/b∗ and monotone decreasing in z for z > z∗.

(iii) in the ridgeless limit as z → 0, we have

E(0; cq; q) = b∗q (ψ∗,1(q)− (cq)−2m∗(cq; q)
−1 1q>1/c)

L(0; cq; q) = E(0; cq; q) + (1 + b∗(ψ∗,1(1)− qψ∗,1(q)))


((cq)−1 − 1)−1, q < 1/c

µ̃(cq; q), q > 1/c

V(0; cq; q) = 2(E(0; cq; q))2 + (1 + b∗ψ∗,1)L(0; cq; q)

SR(0; cq; q) =
E(0; cq; q)√
V(0; cq; q)

for some m∗(cq; q) > 0 and some µ̃(cq; q) < 0 with µ̃(1+; c) = −∞. In particular, if Ψ is

proportional to the identity matrix, Ψ = ψ∗,1 I, then

E(0; cq; q) = b∗ψ∗,1 min{q, c−1} (20)

is constant for q > 1/c.

The comparative statics of Section 4.2 highlight how, even when the empirical model

is correctly specified, complexity hinders the model’s ability to hone in on the true DGP

31This is the case, for example, when ΨP = DP + QP where lim supP→∞ rankQP < ∞, while DP

are diagonal matrices, and DP , QP are uniformly bounded. In this case, we can replace ΨP with DP in
all expressions. Perhaps more tangibly, this condition obtains when the signals satisfy a finite-dimensional
factor structure. Furthermore, if the signals have similar idiosyncratic variance, they satisfy the necessary
mixing condition.
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because there is not enough data to support the model’s heavy parameterization. That

analysis shows that when models are correctly specified, the best performance (in terms

of R2 and Sharpe ratio) comes from simple models. Naturally, a small, correctly specified

model will converge on the truth faster than a large, correctly specified model. But this is

not a very helpful comparison.

The fundamental difference in this section is that while raising cq brings the usual

statistical challenges of heavy parameterization without much data, the added complexity

also brings the benefit of improving the empirical model’s approximation of the true DGP.

A simple model will tend to suffer from poor approximation and thus fare poorly in terms

of both statistical metrics like R2 and portfolio metrics like expected return and Sharpe

ratio. Thus, our mis-specification analysis tackles the most important question about high-

complexity: Does the improvement in approximation justify the statistical cost of heavy

parameterization when it comes to out-of-sample forecast and portfolio performance? The

answer is yes, as established by the following theorem.

Theorem 7 (Virtue of Complexity) Suppose that signals are sufficiently mixed (so that

H(x; q) does not depend on q) and tr(Ψ1,2Ψ2,1) = o(P ). Then, with the optimal amount of

shrinkage z∗, the Sharpe ratio SR(z∗(q; c); cq; q) and R2(z∗(q; c); cq; q) are strictly monotone

increasing and concave in q ∈ [0, 1].

Figures 4, 5, and 6 illustrate the behavior of mis-specified machine learning predictions

and portfolios derived in Proposition 5. In this calibration, the true unknown DGP is

assumed to have a complexity of c = 10. We continue to calibrate Ψ as identity and b∗ = 0.2.

We analyze the behavior of approximating empirical models that range in complexity from

very simple (cq ≈ 0 and thus severely mis-specified) to highly complex (q = 1, cq = 10 and

thus correctly specified). The left panel of Figure 4 shows the expected out-of-sample R2.

The cost of mis-specification for low c is seen as a shift downward in the R2 relative to Figure

1. The challenges of model complexity highlighted in previous sections play an important

role here as well. Intermediate levels of complexity (c ≈ 1) dilate the size of beta estimates

34



R2 ‖β̂‖

0 2 4 6 8 10

-0.3

-0.2

-0.1

0.0

0.1

0.2

0 2 4 6 8 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Figure 4: Expected Out-of-sample Prediction Accuracy From Mis-specified Models

Note. Limiting out-of-sample R2 and β̂ norm as a function of c and z from Proposition 6 assuming Ψ is
the identity matrix, b∗ = 0.2, and the complexity of the true model is c = 10.

(Figure 4, right panel), driving down the R2 and inflating portfolio volatility (Figure 5, right

panel). These effects abate once again for c > 1 due to the implicit regularization of high-

complexity ridgeless regression, just as in the earlier analysis. More generally, the patterns

for R2, β̂ norm, and portfolio volatility share similar qualitative patterns to those in Figure

1.

The most important difference versus Figure 1 is the pattern for the out-of-sample

expected return of the market timing strategy (Figure 5, right panel). Expected returns

are now low for simple strategies due to their poor approximation of the DGP. Increasing

model complexity monotonically increases expected timing returns. In the ridgeless case, the

benefit of added complexity reaches its maximum of E(0; 1; c−1) = b∗ψ∗,1c
−1 when cq = 1. A

surprising fact is that the ridgeless expected return is exactly flat as complexity rises beyond

cq = 1, in which case the benefits of incremental improvements in DGP approximation are

exactly offset by the gradually rising bias of ridgeless shrinkage; see formula (20).

This new fact that the expected return rises monotonically with model complexity in the

mis-specified setting induces a similar pattern in the out-of-sample Sharpe ratio, shown in

Figure 6. Rather than decreasing in complexity as we saw in the correctly specified setting,
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Figure 5: Expected Out-of-sample Risk and Return From Mis-specified Models

Note. Limiting out-of-sample expected return and volatility of the market timing strategy as a function
of c and z from Proposition 6 assuming Ψ is the identity matrix, b∗ = 0.2, and the complexity of the true
model is c = 10.

the expected return improvement from additional complexity leads the Sharpe ratio to also

increase with complexity. Consistent with Theorem 7, this is particularly true with non-

trivial ridge shrinkage but is even true in the ridgeless case as long as cq is sufficiently far

from unity. In summary, in the realistic case of mis-specified empirical models, complexity

is a virtue. It improves the expected out-of-sample market timing performance in terms of

both expected return and Sharpe ratio.

It is instructive to compare our findings with the phenomenon of double descent, which

is that, absent regularization, out-of-sample MSE has a non-monotonic pattern in model

complexity (Belkin et al., 2019b; Hastie et al., 2019). The mirror image of double descent in

MSE is the “double ascent” behavior of the ridgeless Sharpe ratio (Figure 6). As Theorem

7 shows, Sharpe ratio double ascent is an artifact of insufficient shrinkage. With the right

amount of shrinkage, complexity becomes a virtue even in the low complexity regime (when

cq < 1): the hump disappears, and “double ascent” turns into “permanent ascent.”
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Figure 6: Expected Out-of-sample Sharpe Ratio From Mis-specified Models

Note. Limiting out-of-sample Sharpe ratio of the market timing strategy as a function of c and z from
Proposition 6 assuming Ψ is the identity matrix, b∗ = 0.2, and the complexity of the true model is c = 10.

6 Virtue of Complexity: Empirical Evidence From Market Timing

In this section, we present empirical analyses that are direct empirical analogs to the

theoretical comparative statics for mis-specified models in Section 5.

6.1 Data

Our empirical investigation centers on a cornerstone of empirical asset pricing research—

forecasting the aggregate stock market return. To make the conclusions from this analysis as

easy to digest as possible, we perform our analysis in a conventional setting with conventional

data. Our forecast target is the monthly return of the CRSP value-weighted index. The

information set we use for prediction consists of the 15 predictor variables from Goyal and

Welch (2008) available monthly over the sample 1926–2020.32

We volatility standardize returns and predictors using backward-looking standard devi-

ations that preserve the out-of-sample nature of our forecasts. Returns are standardized

32This list includes (using mnemonics from their paper): dfy, infl, svar, de, lty, tms, tbl, dfr, dp, dy, ltr,
ep, b/m, and ntis, as well as one lag of the market return.
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by their trailing 12-month return standard deviation (to capture their comparatively fast-

moving conditional volatility). In contrast, predictors are standardized using an expanding

window historical standard deviation (given the much higher persistence of most predic-

tors). We require 36 months of data to ensure enough stability in our initial predictor

standardization, so the final sample we bring to our analysis began in 1930. We perform this

standardization to align the empirical analysis with our homoskedastic theoretical setting.

Still, our results are insensitive to this step (none of our findings are sensitive to variations

in how standardizations are implemented).

6.2 Random Fourier Features

We seek models taking the form of equation (3). In order to evaluate our theory, we also

seek a framework that will allow us to smoothly transition from low complexity models to

high-complexity. To do so, we adopt an influential methodology from the machine learning

literature known as random Fourier features, or RFF (Rahimi and Recht, 2007, 2008).33 Let

Gt denote our 15× 1 vector of predictors. The RFF methodology converts Gt into a pair of

new signals

Si,t = P−
1
2 [sin(γω′iGt), cos(γω′iGt)]

′
, ωi ∼ i.i.d.N(0, I). (21)

Si,t uses the vector ωi to form a random linear combination of Gt, which is then fed through

the trigonometric functions.34 The advantage of RFF is that for a fixed set of input data, Gt,

we can create an arbitrarily large (or small) set of features based on the information in Gt

33Rahimi and Recht (2007) describe how RFF approximation accuracy improves as you increase the level
of model complexity. In the limit of zero complexity (P, T → ∞, P/T → 0), RFF regression approximates
any sufficiently smooth non-linear function arbitrarily well. Subsequent papers (see for example Rudi and
Rosasco, 2017) further characterize rates of convergence. The case of non-zero complexity is less well
understood. Recent results (Mei and Montanari, 2019; Mei et al., 2022; Ghorbani et al., 2020) show that, for
non-zero complexity, random features methods cannot learn the true function and only learn its projection
on a specific functional sub-space.

34The parameter γ controls the Gaussian kernel bandwidth in the generation of random Fourier features.
Random features can be generated in several ways (for a survey see Liu et al., 2021). Our choice of functional
form in (21) is guided by Sutherland and Schneider (2015) who document tighter error bounds for this
functional approximation relative to some alternative random feature formulations. However, we have found
that our results are insensitive to using other random feature schemes.

38



through the nonlinear transformation in (21). If one desires a very low-dimensional model in

(3), say P = 2, one can generate a single pair of RFFs. For a very high-dimensional model,

say P = 10,000, one can instead draw many random weight vectors ωi, i = 1, ..., 5,000.

The larger the number of random features, the richer the approximation (3) provides to the

general functional form E[Rt+1|Gt] = f(Gt) where f is some smooth nonlinear function.

Indeed, the RFF approach is a wide two-layer neural network with fixed weights in the

first layer (in the form of ωi) and optimized weights in the second layer (in the form of the

regression estimates for β).

6.3 Out-of-sample Performance

To conduct the empirical analogue of the theoretical analysis in Figures 4, 5, and 6, we

consider a one-year, five-year and ten-year year rolling training windows (T = 12, 60, or

120) and a large set of RFFs (as high as P = 12,000). These choices are guided by our desire

to investigate the role of model complexity, defined in the empirical analysis as c = P/T .

The advantages of short training samples like T = 12 are i) that we can reach extreme levels

of model complexity with smaller P and thus less computing burden, and ii) it shows that

the virtue of complexity can be enjoyed in small samples. But none of our conclusions are

sensitive to this choice as we document all of the same patterns for training windows of

T = 60 and 120.

To draw “VoC curves” along the lines of Figures 4, 5, and 6, we estimate a sequence

of out-of-sample predictions and trading strategies for various degrees of model complexity

ranging from P = 2 to P = 12,000 and varying degrees of ridge shrinkage ranging from

log10(z) = −3, ..., 3. One repetition of our analysis proceeds as follows:

(i) Generate 12,000 RFFs according to (21) with bandwidth parameter γ.35

(ii) Fix a model defined by the number of features P ∈ {2, ..., 12,000} and a ridge shrinkage

35We set γ = 2. Our results are generally insensitive to γ, as discussed in the robustness section below.
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parameter log10(z) ∈ {−3, ..., 3}. The set of predictors St for regression (3) correspond

to the first P RFFs from (i).

(iii) Given the model in (ii), and fixing a training window T ∈ {12, 60, 120}, conduct a recur-

sive out-of-sample prediction and market timing strategy. For each t ∈ {T, ..., 1,091},

estimate (3) using training observations {(Rt, St−1), ..., (Rt−T+1, St−T )}.36 Then, from

the estimated regression coefficient, construct out-of-sample return forecast β̂′St and

timing strategy return β̂′StRt+1.

(iv) From the sequence of out-of-sample predictions and strategy returns in (iii), calculate

the average ‖β̂‖2 across training samples, the out-of-sample R2, and the out-of-sample

average return, volatility, and Sharpe ratio of the timing strategy.

The inherent randomness of RFFs means that estimates of out-of-sample performance tend

to be noisy for models with low P . Therefore we repeat the analysis (i)–(iv) 1,000 times

with independent draws of the RFFs, and then average the performance statistics across

repetitions.

The VoC curves in Figures 7 and 8 plot out-of-sample prediction and market timing

performance as a function of model complexity and ridge shrinkage for the case T = 12. The

wide range of complexity that we consider (e.g., c ∈ [0, 1000] when T = 12) can make it

difficult to read plots. To better visualize the results while emphasizing both behaviors near

the interpolation boundary and behavior for extreme complexity, we break the x-axis at an

intermediate value of c.

The first conclusion from these figures is that the out-of-sample empirical behavior of

machine learning predictions is a strikingly close match to the VoC curves predicted by our

theory. In particular, compare the empirical results of Figure 7 to the theoretical results

under model mis-specification from Figure 4. The beta estimates and out-of-sample R2

demonstrate explosiveness at the interpolation boundary and recovery in the high-complexity

36Prior to estimation, we volatility standardize the training sample RFFs {St−1, ..., St−T } and out-of-
sample RFFs St by their standard deviations in the training sample.
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Figure 7: Out-of-sample Market Timing Performance (T = 12)

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 12 months and RFF count P (or cT ) ranges from 2
to 12,000 with γ = 2.

regime. Figures 12 and 13 (reported in the appendix in the interest of space) document

identical patterns for training windows of 60 and 120 months.

Extreme behavior at the interpolation boundary makes it difficult to fully appreciate the

patterns in R2. Figure 14 in the appendix provides more detail by plotting the out-of-sample

R2 zooming-in on the range [−10%, 1%]. Here we see more clearly that high complexity and

regularization combine to produce a positive out-of-sample R2. In this plot, regularization

comes in two forms, directly through higher z and more subtly through higher c (which
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allows ridgeless regression to find solutions with small β̂ norm). For large z, the R2 is almost

everywhere positive for all training windows.

The most intriguing aspect of Figure 7 is the clear increasing pattern in out-of-sample

expected returns as model complexity rises. For z = 10−3, which roughly approximates the

ridgeless case, we see a nearly linear upward trend in average returns as c rises from 0 to 1.

Beyond c = 1, the ridgeless expected return is nearly flat, just as predicted by equation (20)

in Proposition 6. For higher levels of ridge shrinkage, the rise in expected return is more

gradual and continues into the range of extreme model complexity. Appendix Figures 12

and 13 again document an identical expected return pattern for longer training windows.

The increasing pattern in out-of-sample expected return and the decreasing pattern in

volatility above c = 1 translate into a generally increasing pattern in the out-of-sample

market timing Sharpe ratio, shown in Figure 8. The exception is a brief dip near c = 1 at

low levels of regularization as the spike in variance compresses the Sharpe ratio. For high

complexity, the Sharpe ratio generally exceeds 0.4.

In our theoretical setting, we normalize the expected return of the un-timed asset to

zero. This is, of course, not the case for the US market return. Therefore, to adjust for

buy-and-hold market exposure, we calculate the out-of-sample alpha, alpha t-statistic, and

information ratio (IR) of the timing strategy return via time series regression on the un-timed

market. Figure 8 shows that the market timing alpha and IR inherit the same patterns as

the average return and Sharpe ratio. In the high-complexity regime, we find information

ratios around 0.3 and significant alpha t-statistics ranging from 2.6 to 2.9 depending on the

amount of ridge shrinkage. Figure 9 repeats this analysis for training windows of 60 and 120

months, where we find similar information ratios of roughly 0.25 with t-statistics above 2.0

for high-complexity models.

What do market timing strategies look like in the high-complexity regime? Figure 10

plots π̂(z, c) for the highest complexity and shrinkage configurations of our empirical model

(P = 12, 000 and z = 103, averaged across 1,000 sets of random feature weights). The

three lines correspond to training windows of 12, 60, and 120 months. Positions show the

42



Panel A: Sharpe Ratio Panel B: Alpha

0.10

0.20

0.30

0.40

0 10 20 30 40 50 990 1000

0.00

0.01

0.02

0 10 20 30 40 50 990 1000

Panel C: Information Ratio Panel D: Alpha t-statistic

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50 990 1000

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40 50 990 1000

Figure 8: Out-of-sample Market Timing Performance (T = 12)

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 12 months and RFF count P (or cT ) ranges from 2
to 12,000 with γ = 2. Alphas are versus a static position in the volatility-standardized market portfolio.

same patterns for all training windows; their time series correlations are 90% (T = 12 with

T = 60), 87% (T = 12 with T = 120), and 97% (T = 60 with T = 120).37 The plot

shows 6-month moving averages of raw positions for better readability (our trading results

are based on the raw positions and not the moving averages).

The timing positions in Figure 10 are remarkable. First, they show that the high-

complexity strategy is long-only at heart. Negative bets are infrequent and small relative

37While the time series patterns in positions are the same for all training windows, the scale of positions
is smaller for longer training windows. This is because the “leverage” of a strategy is driven by the norm of
beta, and this is typically smaller for larger T .
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Panel A: Information Ratio (T = 60) Panel B: Alpha t-statistic (T = 60)
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Panel C: Information Ratio (T = 120) Panel D: Alpha t-statistic (T = 120)
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Figure 9: Out-of-sample Market Timing Performance (T = 60, 120)

Note. Out-of-sample prediction accuracy and portfolio performance estimates for the empirical analysis
described in Section 6.3. Training window is T = 60 or 120 months and RFF count P (or cT ) ranges from
2 to 12,000 with γ = 2. Alphas are versus a static position in the volatility-standardized market portfolio.

to positive bets. The machine learning model thus heeds the guidance of Campbell and

Thompson (2008) “that many predictive regressions beat the historical average return, once

weak restrictions are imposed on the signs of coefficients and return forecasts.” However,

unlike Campbell and Thompson (2008), the machine seems to learn this rule without being

given an explicit constraint.38

Second, the machine learning strategy learns to divest leading up to recessions. NBER

38Strictly imposing the Campbell and Thompson (2008) constraint gives a boost in Sharpe ratio from 0.47
to 0.54 in the T = 12 case; from 0.42 to 0.50 for T = 60; and from 0.41 to 0.49 for T = 120.
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Figure 10: Market Timing Positions

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 12, 60, or 120 months with P = 12, 000, z = 103,
and γ = 2. Positions are averaged across 1,000 sets of random feature weights. Plots show the 6-month
moving average of positions to improve readability.

recession dates are shown in the gray-shaded regions. For 14 out of 15 recessions in our

test sample, the timing strategy substantially reduces its position in the market before the

recession (the exception is the eight-month recession of 1945). And it does this on a purely

out-of-sample basis.

6.4 Comparison With Goyal and Welch (2008)

Our results seem at odds with the primary conclusion of Goyal and Welch (2008). They

argue that the enterprise of market return prediction, which has occupied large attention

in the asset pricing literature for decades, is by and large a failed endeavor: “these models

seem unstable, as diagnosed by their out-of-sample predictions and other statistics; and
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these models would not have helped an investor with access only to available information

to profitably time the market.” But we use the same predictive information studied in that

paper. What is the source of the discrepancy?

The conclusions of Goyal and Welch (2008) are based on their findings of consistently

negative out-of-sample prediction R2. They do not analyze the performance of timing

strategies based on expected returns or Sharpe ratios.39 We revisit their analysis with a

focus on timing strategy performance using the same recursive out-of-sample prediction

scheme as in the analysis of Figures 7 and 8. We use rolling 12, 60, and 120-month training

windows (Panels A, B, and C, respectively). We focus on a version of what Goyal and Welch

(2008) call the “kitchen sink” regression. Our implementation uses 15 monthly predictors in

a linear ridgeless regression.40

The first finding of Table 1 is that we confirm the conclusions of Goyal and Welch (2008).

Note that, with monthly data, a model with 15 regressors already has nontrivial complexity

even for long training windows, and for the 12-month training window, its complexity even

exceeds one. Monthly return forecasts using linear ridgeless regression behave egregiously.

The monthly out-of-sample R2 from ridgeless regression (z = 0+) is large and negative at

less than −100% (−9764% to be precise!). The timing strategy based on these predictions

is also poor. The Sharpe ratio is −0.11 and is insignificantly different from zero. This

seems perhaps not so terrible given the wildness of the forecasts, but it is due to the fact

that the strategy’s volatility is so high. Its maximum loss is 98 standard deviations. In

light of our theoretical analysis, this agreement with the conclusions of Goyal and Welch

(2008) is perhaps unsurprising. With P = 15 and T = 12, this analysis takes place near

the interpolation boundary. Thus, forecasts and timing strategy returns are expected to be

highly volatile, as our estimates confirm. In Panels B and C, we repeat the same analysis with

39Updating the original Goyal and Welch (2008) analysis, Goyal et al. (2021) provide some evidence of
timing strategy performance for market return predictors.

40To remain consistent with our other analyses, the forecast target is the monthly market return
standardized by its rolling 12-month volatility standardization. We continue to refer to this as “the market”
throughout. As discussed in the robustness section, our results across the board are generally insensitive to,
and our conclusions entirely unaffected by, whether we work with the raw or volatility standardized market
return.
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Table 1: Comparison With Goyal and Welch (2008)

Note. Out-of-sample prediction accuracy and portfolio performance estimates for high-complexity timing
strategy returns with c = 1000 and z = 103 in Section 6.3 (“Nonlinear”) averaged across 1,000 sets of random
feature weights, compared with the linear kitchen sink model of Goyal and Welch (2008) (“Linear”) with
shrinkage of z = 0+ (ridgeless) and z = 103. The forecast target is the monthly market return standardized
by its rolling 12-month volatility standardization. We report strategy Sharpe ratios (with average return
t-statistics), information ratios versus the market and versus the linear model with z = 103 (with alpha
t-statistics). The panels correspond to training windows of 12, 60, or 120 months. “Max Loss” is in standard
deviation units.

IR v. IR v. Max
Model Shrinkage R2 SR t Mkt t Linear t Loss Skew

Panel A: 12-month Training Window

Linear z = 0+ <-100% -0.11 -1.0 -0.16 -1.6 - - 98.5 -0.9

z = 103 -3.8% 0.46 4.4 0.33 3.1 - - 2.4 -0.1

Nonlinear z = 103 0.6% 0.47 4.5 0.31 2.9 0.26 2.5 1.2 2.5

Panel B: 60-month Training Window

Linear z = 0+ -96.6% 0.00 0.0 -0.07 -0.6 - - 35.8 -11.1

z = 103 -0.5% 0.44 4.1 0.10 0.9 - - 1.4 -0.3

Nonlinear z = 103 0.5% 0.42 3.9 0.25 2.3 0.27 2.5 0.5 1.7

Panel C: 120-month Training Window

Linear z = 0+ -26.6% 0.20 1.8 0.14 1.2 - - 15.4 -6.5

z = 103 0.1% 0.49 4.4 0.13 1.2 - - 0.8 -0.9

Nonlinear z = 103 0.3% 0.41 3.7 0.24 2.2 0.24 2.2 0.3 0.9

longer training windows (T = 60 and 120). Longer training windows lead to less variable

ridgeless regression estimates, producing higher (though still negative) R2 and improving the

Sharpe ratio.

Our theoretical analysis suggests that, in circumstances like the linear kitchen sink where

the regression takes place near the interpolation boundary, the benefits from additional ridge

shrinkage are potentially large. Therefore, we re-estimate the Goyal and Welch (2008) kitchen

sink regression with the same range of ridge parameters used in our machine learning models.

The R2 from even heavily regularized regressions can remain negative, as seen in the out-
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of-sample R2 of −3.8% when z = 103. However, with this much shrinkage, the benefits of

market timing become large. The annualized out-of-sample Sharpe ratio of the strategy is

0.46 with a t-statistic of 4.4. This performance is not due to static market exposure. In the

column “IR v. Mkt,” we report performance after regressing on the volatility-standardized

market return. The linear model with z = 103 has an information ratio of 0.33 (t = 3.1)

versus the market. Shrinkage also produces more attractive maximum loss and skewness.

These patterns align with the behavior predicted by our theoretical analysis. Near the

interpolation boundary, models can seem defective in terms of R2, yet they can nonetheless

confer large economic benefits for investors. In Panels B and C, we see that shrinkage also

benefits performance amid longer training windows. For T = 120, the linear strategy Sharpe

ratio is 0.49 for z = 103 (the alpha versus the market is insignificant, however).

The “Nonlinear” model in Table 1 refers to the machine learning timing strategy with

c = 1000 and z = 103 (averaged across 1,000 sets of random weight draws). In Panel A, the

out-of-sample R2 is 1% per month, with a Sharpe ratio of 0.46 with an information ratio of

0.31 versus the market. It also has a significant information ratio of 0.26 (t = 2.5) versus the

best linear strategy (z = 103). One of the most attractive aspects of the machine learning

strategy is its low downside risk. Its worst month was a loss of 1.23 standard deviations, and

its skewness is positive, 2.48. These attractive tail risk properties of the machine learning

model are not reflected in the Sharpe ratio. Still, they would be an important utility boost

for investors who care about non-Gaussian risks. Note that the machine learning strategy

accomplishes this using the identical information set as the linear strategy; it exploits this

information in a high-dimensional, nonlinear way. Using longer training windows (Panels B

and C) lead to the same conclusions.

6.5 Variable Importance

These results beg the question: How can such large models learn predictive patterns in

training windows as short as 12 months, particularly when several raw predictors are highly

persistent (e.g., dividend yield and T-bill rate)? The short answer is that a number of the
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Figure 11: Variable Importance

Note. Variable importance (VI) for the ith predictor is the change in performance, defined as out-of-sample
R2 or Sharpe ratio, moving from the full model with 15 variables to the re-estimated model using 14 variables
(excluding variable i).

15 raw predictors are, in fact, highly variable over short horizons, and these variables are

the most important contributors to the performance of the high-complexity model. To shed

more detailed light on this, we analyze the contribution of each variable to overall model

performance. We re-estimate the machine learning model omitting each of the 15 predictor

variables one by one. We calculate “variable importance” (VI) for the ith predictor as the

change in performance (defined as out-of-sample R2 or Sharpe ratio) moving from the full

model with 15 variables to the re-estimated model using 14 variables (excluding variable i).

Figure 11 plots the results for the 12-month training window (with P = 12, 000, z =

103, and averaged across 1,000 sets of random feature weights). The three most important

variables are also the three predictors with the highest average variation in 12-month windows

(i.e., the least persistent predictors).41 Excluding the lagged market return (“lag mkt”), long-

term bond return (“ltr”), or default return (“dfr”) from the random features model reduces

the out-of-sample monthly prediction R2 by 1.9%, 1.3%, and 0.8%, respectively. In other

words, the complex model is particularly adept at leveraging information in short-horizon

41Figure 15 in the appendix reports the average variation of each predictor in 12-month training windows
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fluctuations among predictors. The variable importance calculations tell the same story

when we measure it in terms of R2 (bars) or Sharpe ratio (line).

Variable importance helps us identify which of the 15 predictors are the most dominant

information sources. But our results further show that the key differentiator of the high-

complexity model is its ability to extract nonlinear prediction effects. The first evidence of

this is its alpha versus the linear model shown in Table 1 above. The linear model has access

to the same predictors, but incorporating nonlinearities generates significant alpha over the

linear model.

The variable importance results show some linear predictors have very impressive individ-

ual performance. To show that machine learning performance is not driven by these simple

linear effects, Appendix Table 2 reports information ratios of the machine learning strategy

on the linear univariate timing strategy of each predictor (the univariate timing strategy is

defined as the product of a predictor at time t with the market return at t+ 1).

The machine learning model has a large and highly significant information ratio over every

linear strategy. We also calculate its information ratio versus all 15 univariate strategies

simultaneously (“All”).42 In this case, we find an information ratio of 0.32 (t = 2.9),

providing further direct evidence for the nonlinear benefits of complexity.

Naturally, interpretation is a challenge for complex nonlinear models. Appendix Figure 16

makes progress in this direction by illustrating the nonlinear prediction patterns associated

with each of the 15 predictors. To trace the impact of predictor i on expected returns, we

fix the prediction model estimated from a given training sample and fix the values of all

variables other than i at their values at the time of the forecast. Next, we vary the value

of the ith predictor from its full sample min (corresponding to −1 on the plots) to its full

42We cannot run an in-sample versus all 15 univariate strategies simultaneously because this is equivalent
to using the in-sample tangency portfolio of the 15 timing strategies as a benchmark. This is not an apples-
to-apples comparison because the machine learning strategy is out-of-sample, so it should be benchmarked
to a similarly out-of-sample strategy. To this end, we build the out-of-sample tangency portfolio of the 15
timing strategies (scaled to have an expected volatility of 20%) using an expanding window. We use this
combined strategy as the regressor when calculating alpha for the “all” case.
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sample max (corresponding to +1) and record how the return prediction varies. Then we

average this prediction response function across all training windows and plot the result.

The figure illustrates a few interesting patterns. First, we see that when certain indicators

of macroeconomic risk are at their lowest (in particular, stock market variance “svar” and

credit spreads on risky corporate debt “dfy”), the machine learning model forecasts positive

returns. However, once these variables reach even moderate levels, the return prediction

drops to zero. This is consistent with the time series pattern in Figure 10, which shows that

timing positions (i.e., expected returns) drop to zero heading into recessions. In fact, all

predictors demonstrate a similar “risk on/risk off” predictive pattern in which certain values

trigger positive market bets, and otherwise, they advocate positions near zero.

6.6 The Extent of Nonlinearity and Other Robustness

It is interesting to note that the linear strategy and the nonlinear machine learning strategy

each have beneficial performance relative to buy-and-hold. Yet, they are distinct from each

other (for example, the nonlinear strategy has significant alpha versus the linear strategy).

The parameter γ controls the degree of nonlinearity in the RFF approximation. It turns

out that the linear kitchen sink regression is equivalent to an RFF model in the limit when

γ ≈ 0. In particular, note that

sin(γω′iGt) = γω′iGt + O(γ2), cos(γω′iGt) = 1− γω′iGt + O(γ2). (22)

Suppose for simplicity that we only have the sin features. Then, defining Ω = 1
P 1/2 (ωi)

P
i=1 ∈

R15×P , we have that the model is equivalent to a model with random linear features, St =

Ω′Gt.
43

This begs the question: Is there an optimal degree of nonlinearity? In general, the answer

is no. In the high-complexity regime, different choices of γ all deliver different approximations

of the true DGP, with none strictly dominating the others. Mei et al. (2022) show that high

43See Proposition 9 in Appendix E.
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model complexity poses an insurmountable obstacle for any random feature regression—it is

impossible to learn the “true” dependency Rt+1 = f(Gt) + εt+1 when the model is complex.

In this case, different random feature generators recover different aspects (projections) of

the truth on different subspaces. As a result, we would expect linear and nonlinear random

features to contain complementary information, and this is clearly reflected in the results of

Table 1.44

We assess robustness of our results to various degrees of nonlinearity (γ = 0.5 or 1,

versus γ = 2 in our main analysis) in Appendix F. We also investigate the effect of excluding

volatility standardization of the market return. The brief summary of these analyses is that

our conclusions are robust to each variation in empirical design.

Next, we analyze the robustness of our main findings in subsamples. We report model

performance splitting the test sample into halves, shown in appendix Figures 20, 21, and 22

for training windows T = 12, 60, and 120, respectively. The left side of the each figure reports

machine learning timing strategy out-of-sample performance from 1930–1974, and the right

side from 1975–2020. The figures show that the patterns of out-of-sample timing strategy

performance with respect to complexity and shrinkage do not depend on the subsample.

Average out-of-sample returns rise monotonically with complexity and decrease with ridge

shrinkage; volatility abates once we move past the interpolation boundary and is further

dampened by shrinkage. Information ratios rise with complexity and are fairly insensitive

to shrinkage. In the interest of space, we do not plot the out-of-sample R2 or β̂ norm, but

these also follow identical patterns to those for the full sample.

While the patterns are the same across subsamples, the magnitudes differ. Average

returns in the second sample are about half as large as the first. But volatilities are roughly

the same, so information ratios are about half as large in the second sample. This is consistent

with the machine’s trading patterns plotted in Figure 10. Starting around 1968, it finds

44Relatedly, the machine learning model and the linear kitchen sink (with z = 103) have alpha versus each
other, suggesting that there are benefits to model averaging. For example, an equal-weighted average of the
two strategies (after they are re-scaled to have the same volatility) produces a Sharpe ratio of 0.53 and a
significant information ratio versus the market of 0.37.
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notably fewer buying opportunities and, when it does, takes smaller positions than in the

earlier sample.

Finally, we compare the performance of the machine learning model with a 12-month

training window to a 12-month time series momentum strategy (Moskowitz et al., 2012). If

regressors are highly persistent, they will appear roughly static in a typical 12-month window.

In this case, forecasts from a high-complexity regression will behave very similarly to time

series momentum.45 In Appendix G we explain this issue in more detail. We also show

that our results are not driven by this “short window and persistent regressor” mechanism.

Instead, as emphasized in Section 6.5, our machine learning model performance is driven by

relatively high-frequency fluctuations among the predictors. We also show that the machine

learning timing strategy has economically large and statistically significant alpha over time

series momentum.

7 Conclusion

The field of asset pricing is in the midst of a boom in research applications using machine

learning. The asset management industry is experiencing a parallel boom in adopting

machine learning to improve portfolio construction. However, the properties of portfolios

based on such richly parameterized models are not well understood.

In this article, we offer some new theoretical insight into the expected out-of-sample

behavior of machine learning portfolios. Building on recent advances in the theory of

high-complexity models from the machine learning literature, we demonstrate a theoretical

“virtue of complexity” for investment strategies derived from machine learning models.

Contrary to conventional wisdom, we prove that market timing strategies based on ridgeless

least squares generate positive Sharpe ratio improvements for arbitrarily high levels of

model complexity. In other words, the performance of machine learning portfolios can be

theoretically improved by pushing model parameterization far beyond the number of training

45We are grateful to the Editor for pointing this out.
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observations, even when minimal regularization is applied. We provide a rigorous foundation

for this behavior rooted in techniques from random matrix theory. We complement these

technical developments with intuitive descriptions of the key statistical mechanisms.

In addition to establishing the virtue of complexity, we demonstrate that out-of-sample

R2 from a prediction model is generally a poor measure of its economic value. We prove

that a market timing model can earn large economic profits when R2 is large and negative.

This naturally recommends that the finance profession focus less on evaluating models in

terms of forecast accuracy and more on evaluating in economic terms, for example, based

on the Sharpe ratio of the associated strategy. We compare and contrast the implications

of model complexity for machine learning portfolio performance in correctly specified versus

mis-specified models.

Finally, we compare theoretically predicted behavior to the empirical behavior of machine

learning-based trading strategies. The theoretical virtue of complexity aligns remarkably

closely with patterns in real-world data. In a canonical empirical finance application—

market return prediction and concomitant market timing strategies—we find out-of-sample

information ratios on the order of 0.3 relative to a market buy-and-hold strategy, and

these improvements are highly statistically significant. The emerging strategies have some

remarkable attributes, behaving as long-only strategies that divest the market leading up to

recessions. Our high-complexity models learn this behavior without guidance from researcher

priors or modeling constraints.

Our results are not a license to add arbitrary predictors to a model. Instead, we encourage

i) including all plausibly relevant predictors and ii) using rich nonlinear models rather than

simple linear specifications. Doing so confers prediction and portfolio benefits, even when

training data is scarce, particularly when accompanied by prudent shrinkage. Even when

the number of raw predictors is small, gains are achieved using those predictors in highly

parameterized nonlinear prediction models.

This recommendation clashes with the philosophy of parsimony frequently espoused by

economists and famously articulated by the statistician George Box:
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Since all models are wrong, the scientist cannot obtain a ‘correct’ one by excessive

elaboration. On the contrary, following William of Occam he should seek an economical

description of natural phenomena. Just as the ability to devise simple but evocative

models is the signature of the great scientist so overelaboration and overparameteriza-

tion is often the mark of mediocrity. (Box, 1976)

Our theoretical analysis (along with that of Belkin et al., 2019b; Hastie et al., 2019; Bartlett

et al., 2020, among others) shows the flaw in this view—Occam’s razor may instead be

Occam’s blunder. Theoretically, we show that a small model is preferable only if it is

correctly specified. But, as Box (1976) emphasizes, models are never correctly specified.

The logical conclusion is that large models are preferable under fairly general conditions.

The machine learning literature demonstrates the preferability of large models in a wide

range of real-world prediction tasks. Our results indicate that the same is likely true in

finance and economics.

Our findings point to a number of interesting directions for future work, such as studying

the theoretical behavior of high-complexity models in cross-sectional trading strategies and

more extensive empirical investigation into the virtue of complexity across different asset

markets.
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INTERNET APPENDIX

A Proofs

Proof of Lemma 1. The proof of Lemma 1 follows directly from Proposition 2.1 in Yaskov
(2016). �

Proof of Proposition 1. We define πQt = πt(β)/(1 + (S ′tβ)2) to be the optimal strategy
maximizing the unconditional Sharpe ratio. First we consider πQt . Then,

E[πQt Rt+1] = E[πQt (S ′tβ)] = E[
(S ′tβ)2

σ2 + (S ′tβ)2
]

whereas

Et[R
2
t+1] = σ2 + (S ′tβ)2

and hence

E[(πQt )2R2
t+1] = E[

(S ′tβ)2Et[R
2
t+1]

(σ2 + (S ′tβ)2)2
] = E[

(S ′tβ)2

σ2 + (S ′tβ)2
] .

Thus,

SR(RπQ

) =

(
E[

(S ′tβ)2

σ2 + (S ′tβ)2
]

)1/2

.

At the same time, for the πt portfolio, we have

E[πtRt+1] = E[(β′St)
2] = E[β′Ψβ] = β′Ψβ (23)

whereas, defining β̃ = Ψ1/2β and using that St = Ψ1/2Xt, we get

σ4E[(πt)
2R2

t+1] = σ4E[(πt)
2Et[R

2
t+1]] = E[((S ′tβ)2)2(σ2 + (S ′tβ)2)]

= σ2β′Ψβ + E[(S ′tβ)4] = σ2β′Ψβ + E[(X ′tβ̃)4]

= σ2β′Ψβ + E[
∑

i1,i2,i3,i4

Xi1Xi2Xi3Xi4 β̃i1 β̃i2 β̃i3 β̃i4 ]
(24)

Since all first- and third-order moments of X are zero, the only terms that survive are those
there two pairs of i indices are identical, or all of them are identical. For the first one, there
are three possibilities, and all second moments of Xi equal one. This gives

E[
∑

i1,i2,i3,i4

Xi1Xi2Xi3Xi4 β̃i1 β̃i2 β̃i3 β̃i4 ] = 3‖β̃‖2 +
∑
i

(E[X4
i,t]− 3)β̃4

i
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and hence

σ4E[(πt)
2R2

t+1] = σ2β′Ψβ + 3(β′Ψβ)2 +
∑
i

(E[X4
i,t]− 3)β̃4

i (25)

The claim of the proposition follows by using Taylor approximation and

(S ′tβ)2

σ2 + (S ′tβ)2
=

(S ′tβ)2

σ2
(1− (S ′tβ)2

σ2
) + O(‖β‖6) .

�

The following result of Silverstein and Bai (1995) and Bai and Zhou (2008) relates the
limiting eigenvalue of distribution of Ψ̂ to that of Ψ.

Theorem 8 For any c > 0 and z < 0, the distribution of eigenvalues of Ψ̂ in the limit as
P, T → ∞, P/T → c converges to a distribution whose Stieltjes transform, m(z; c), is the
unique positive solution to the equation

m(z; c) =
1

1 − c − c z m(z; c)
mΨ

(
z

1 − c − c z m(z; c)

)
. (26)

Furthermore, for c > 1, there exists functions m∗(c) > 0 > n∗(c) such that cm∗(c) is
monotone decreasing in c and

m(−z; c) = (1− c−1)z−1 + m∗(c) + n∗(c) z + O(z2) .

We will need an auxiliary

Lemma 2 For any sequence of bounded matrices AP , we have

P−1S ′tAPSt − P−1 tr(APΨ) → 0 (27)

is probability.

Proof of Lemma 2. The proof follows directly from Proposition 2.1 in Yaskov (2016).
�

Lemma 3 We have

P−1 tr(QP (zI + Ψ̂T )−1) − E[P−1 tr(QP (zI + Ψ̂T )−1)] → 0 (28)

almost surely for any sequence of uniformly bounded matrices QP .

Proof of Lemma 3. The proof follows by the same arguments as in Bai and Zhou (2008).
Let ΨT,t = 1

T

∑
τ 6=t SτS

′
τ . By the Sherman-Morrison formula (see Bartlett (1951)),

(zI+Ψ̂T )−1 = (zI+Ψ̂T,t)
−1 − 1

T
(zI+Ψ̂T,t)

−1StS
′
t(zI+Ψ̂T,t)

−1 1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
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(29)

Let Eτ denote the conditional expectation given Sτ+1, · · · , ST . Let also

qT (z) =
1

P
tr(zI + Ψ̂T )−1QP .

With this notation, since Ψ̂T,t is independent of St, we have

(Et−1 − Et)[
1

P
tr(zI + ΨT,t)

−1QP ] = 0

and therefore

E[qT (z)]− qT (z) = E0[qT (z)]− ET [qT (z)] =
T∑
t=1

(Et−1[qT (z)]− Et[qT (z)])

=
T∑
t=1

(Et−1 − Et)[qT (z)]

=
T∑
t=1

(Et−1 − Et)[qT (z)− 1

P
tr(zI + ΨT,t)

−1QP ]

=
1

P

T∑
t=1

(Et−1 − Et)[tr(zI + Ψ̂T )−1QP − tr(zI + Ψ̂T,t)
−1QP ]

= − 1

P

T∑
τ=1

(Et−1 − Et)[γt] ,

(30)

where we have used (29) and defined

γt = tr

(
1

T
(zI + Ψ̂T,t)

−1St(I +
1

T
S ′t(zI + Ψ̂T,t)

−1St)
−1S ′t(zI + Ψ̂T,t)

−1QP

)
(31)

We will need the following known properties of the trace:

Lemma 4 If A, B are symmetric positive semi-definite, then

tr(AB) ≤ tr(A)‖B‖

and

tr(A1/2BA1/2) ≤ tr(B) ‖A‖
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Thus,

‖γt‖ ≤ ‖QP‖ tr

(
1

T
(zI + Ψ̂T,t)

−1St(I +
1

T
S ′t(zI + Ψ̂T,t)

−1St)
−1S ′t(zI + Ψ̂T,t)

−1

)

≤ z−1 tr

(
1

T
(zI + Ψ̂T,t)

−1/2St(I +
1

T
S ′t(zI + Ψ̂T,t)

−1St)
−1S ′t(zI + Ψ̂T,t)

−1/2

)
= z−1 tr(B(zI +B)−1) ≤ z−1 ,

(32)

where

B =
1

T
S ′t(zI + Ψ̂T,t)

−1St ∈ R

Thus,

(Et−1 − Et)[tr(zI + Ψ̂T )−1Ψ] = (Et−1 − Et)[γt]

forms a bounded martingale difference sequence. Applying the Burkholder-Davis-Gundy
inequality (see, e.g., Burkholder (1966)), we get

E[|qT (z)− E[qT (z)]|q] ≤ KqP
−qE

(
T∑
t=1

|(Et−1 − Et)[γt]|2
)q/2

≤ Kq(2N/z)qP−q/2
(
P

T

)−q/2
.

(33)

Almost sure convergence follows with q > 2 from the following lemma.

Lemma 5 Suppose that

E[|XT |q] ≤ T−α

for some α > 1 and some q > 0. Then, XT → 0 almost surely.

Proof. It is known that if

∞∑
T=1

Prob(|XT | > ε) < ∞

for any ε > 0, then XT → 0 almost surely. In our case, the Chebyshev inequality implies
that

Prob(|XT | > ε) ≤ ε−qE[|XT |q] ≤ T−α

and convergence follows because α > 1. �

The proof of Lemma 3 is complete. �
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Proof of Proposition 2. The proof is based on several steps.

• Let

Ψ̂T,t =
1

T

∑
τ 6=t

SτS
′
τ . (34)

Then, by the Sherman-Morrison formula (29),

(zI + Ψ̂T )−1St = (zI + Ψ̂T,t)
−1St

− 1

T
(zI + Ψ̂T,t)

−1StS
′
t(zI + Ψ̂T,t)

−1St
1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St

= (zI + Ψ̂T,t)
−1St

1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
.

(35)

• By Lemma 2,

P−1 S ′t(zI + Ψ̂T,t)
−1St − P−1 tr(Ψ(zI + Ψ̂T,t)

−1) → 0 (36)

in probability. At the same time, by Lemma 3,

P−1 tr(Ψ(zI + Ψ̂T,t)
−1) − E[P−1 tr(Ψ(zI + Ψ̂T,t)

−1)] → 0

alsmost surely. Thus,

P−1 S ′t(zI + Ψ̂T,t)
−1St − E[P−1 tr(Ψ(zI + Ψ̂T,t)

−1)] → 0 (37)

is probability.

• Theorem 8 implies that

P−1 trE[(zI + Ψ̂T )−1] → m(−z; c) (38)

• Now, we have

1 = P−1 trE[(zI + Ψ̂T )−1(zI + Ψ̂T )] = P−1 trE[(zI + Ψ̂T )−1]z + P−1 trE[(zI + Ψ̂T )−1Ψ̂T ]

= zm(−z, c) + P−1 trE[(zI + Ψ̂T )−1 1

T

∑
t

StS
′
t]

= {symmetry across t} = zm(−z, c) + P−1 trE[(zI + Ψ̂T )−1 1

N
StS

′
t]

= {using Sherman−Morrison (35)}

= zm(−z, c) + P−1 trE[(zI + Ψ̂T,t)
−1St

1

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
S ′t]

= zm(−z, c) + E[
P−1S ′t(zI + Ψ̂T,t)

−1St

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
]
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(39)

Now, E[T−1 tr(Ψ(zI+Ψ̂T,t)
−1)] ≤ ‖Ψ‖z−1 and hence is uniformly bounded. Let us pick

a sub-sequence of T converging to infinity and such that E[T−1 tr(Ψ(zI+Ψ̂T,t)
−1)]→ q

for some q > 0. By (36),

P−1S ′t(zI + Ψ̂T,t)
−1St

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
→ c−1q

1 + q

in probability and this sequence is uniformly bounded. Hence,

E[
P−1S ′t(zI + Ψ̂T,t)

−1St

1 + (T )−1S ′t(zI + Ψ̂T,t)−1St
] → c−1q

1 + q

and we get

1− zm(−z, c) =
c−1q

1 + q

Thus, the limit of ξ(z; c) = E[T−1 tr(Ψ(zI+Ψ̂T,t)
−1)] is independent of the sub-sequence

of T and satisfies the required equation.

The proof of Proposition 2 is complete.
�

Proof of Proposition 3. First we show

β′Ψβ̂ → b∗(ψ∗,1 − c−1zξ(z)) (40)

in probability, and then we establish the identity

tr(Ψβ̂β̂′)→ b∗(ψ∗,1 − 2zc−1ξ(z)− z2c−1ξ′(z)) + ξ(z) + zξ′(z) (41)

in probability. We start with the observation that

1

T

T∑
t=1

StRt+1 =
1

T

T∑
t=1

St(S
′
tβ + εt+1) = Ψ̂Tβ + qT , (42)

where we have defined

qT =
1

T

T∑
t=1

S ′tεt+1 . (43)

Therefore,

β̂ = (zI + Ψ̂T )−1(Ψ̂Tβ + qT ) (44)
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By a standard application of the law of large numbers, qT → 0 in L2 and hence also in
probability. We will be using a ≈ b to denote that a− b→ 0 in probability.

Using (44) and Assumption 4, we have (using that εt are independent of St and have zero
means) that

β′E[StS
′
t]β̂

= β′E[StS
′
t](zI + Ψ̂T )−1(Ψ̂Tβ + qT )

≈ β′Ψ (zI + Ψ̂T )−1Ψ̂Tβ

= {by Lemma 1}}
prob→ b∗ P

−1 trE[Ψ (zI + Ψ̂T )−1Ψ̂T ]

= b∗P
−1 trE[Ψ (zI + Ψ̂T )−1(zI + Ψ̂T − zI)]

= b∗P
−1 trE[Ψ− zΨ (zI + Ψ̂T )−1]

= b∗P
−1
(

tr Ψ − z trE[(zI + Ψ̂T )−1Ψ]
)

= {by Proposition 2}
→T→∞ b∗ν(z) .

(45)

At the same time,

tr(Ψβ̂β̂′)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tβ + qT )(Ψ̂Tβ + qT )′(zI + Ψ̂T )−1)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tβ + qT )(β′Ψ̂T + q′T )(zI + Ψ̂T )−1)

≈ tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tββ
′Ψ̂T + qT q

′
T )(zI + Ψ̂T )−1)

(46)

where we have used the fact that the terms that are linear in qT converge to zero in
probability. Now,

E[qT q
′
T |S] =

1

T 2
E[
∑
t

Stεt+1

∑
t1

εt1+1S
′
t1
|S]

=
1

T 2
E[
∑
t,t1

Stεt+1ε
′
t1+1S

′
t1
|S]

=
1

T 2
E[
∑
t

Stεt+1ε
′
t+1S

′
t|S]

=
1

T 2

∑
t

StE[εt+1ε
′
t+1|S]S ′t

=
1

T 2

∑
t

Stσ
2S ′t

=
1

T 2

∑
t

StS
′
t =

1

T
Ψ̂T ,

(47)
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and it is straightforward to show that the contributions coming from

T−2
∑
t,t1

St(εt+1ε
′
t1+1 − 1)S ′t1

are converge to zero in probability. Therefore, (46) takes the form

tr(Ψβ̂β̂′)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tββ
′Ψ̂T + qT q

′
T )(zI + Ψ̂T )−1)

= tr(Ψ(zI + Ψ̂T )−1(Ψ̂Tββ
′Ψ̂T +

1

T
Ψ̂T )(zI + Ψ̂T )−1)

= tr(Ψ(zI + Ψ̂T )−1Ψ̂Tββ
′Ψ̂T (zI + Ψ̂T )−1)

+ tr(Ψ(zI + Ψ̂T )−1 1

T
Ψ̂T (zI + Ψ̂T )−1)

= tr(Ψ̂T (zI + Ψ̂T )−1Ψ(zI + Ψ̂T )−1Ψ̂Tββ
′)

+ tr(Ψ(zI + Ψ̂T )−1 1

T
(zI + Ψ̂T − zI)(zI + Ψ̂T )−1)

= {by Lemmas 1, 3 and V itali′s thorem}
prob→ b∗P

−1 trE[Ψ̂T (zI + Ψ̂T )−1Ψ(zI + Ψ̂T )−1Ψ̂T ]

+
1

T
tr(ΨE[(zI + Ψ̂T )−1(zI + Ψ̂T )(zI + Ψ̂T )−1])

− z 1

T
tr(ΨE[(zI + Ψ̂T )−1(zI + Ψ̂T )−1])

= b∗P
−1 trE[Ψ(zI + Ψ̂T )−1Ψ̂T Ψ̂T (zI + Ψ̂T )−1]

+
1

T
tr(ΨE[(zI + Ψ̂T )−1])

− z 1

T
tr(ΨE[(zI + Ψ̂T )−2])

= Term1 + Term2 + Term3 .

(48)

We now proceed with each term:

(zI + Ψ̂T )−1Ψ̂T Ψ̂T (zI + Ψ̂T )−1 = {all matrices commute} = (zI + Ψ̂T )−2Ψ̂2
T

= (zI + Ψ̂T )−2(Ψ̂2
T + 2zΨ̂T + z2I − 2zΨ̂T − z2I)

= (zI + Ψ̂T )−2(Ψ̂2
T + 2zΨ̂T + z2I − 2z(Ψ̂T + zI) + z2I)

= (zI + Ψ̂T )−2
(

(zI + Ψ̂T )2 − 2z(Ψ̂T + zI) + z2I
)

= I − 2z(zI + Ψ̂T )−1 + z2(zI + Ψ̂T )−2 .

(49)

Therefore,

Term1 = b∗P
−1 trE[Ψ(zI + Ψ̂T )−1Ψ̂T Ψ̂T (zI + Ψ̂T )−1]

= b∗P
−1 trE[Ψ(I − 2z(zI + Ψ̂T )−1 + z2(zI + Ψ̂T )−2)] ,

(50)
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and

Term2 =
1

T
tr(ΨE[(zI + Ψ̂T )−1]) → ξ(z)

by Proposition 2, and hence

d

dz

1

T
tr(ΨE[(zI + Ψ̂T )−1]) → d

dz
ξ(z) (51)

by the Vitali theorem. However,

d

dz
tr(ΨE[(zI + Ψ̂T )−1]) = − tr(ΨE[(zI + Ψ̂T )−2]) (52)

and hence

1

T
tr(ΨE[(zI + Ψ̂T )−2]) → − d

dz
ξ(z) . (53)

Summarizing, we get

Term3 → z
d

dz
ξ(z) ,

whereas

Term1 → b∗P
−1 trE[Ψ(I − 2z(zI+Ψ̂T )−1+z2(zI+Ψ̂T )−2)] → b∗(ψ∗,1−2zc−1ξ(z)−z2c−1ξ′(z))

(54)

and hence

tr(ΨE[β̂β̂′]) = Term1 + Term2 + Term3

prob→ b∗(ψ∗,1 − 2zc−1ξ(z)− z2c−1ξ′(z)) + ξ(z) + z
d

dz
ξ(z)

= b∗ ν̂(z; c) − c ν ′(z; c)

(55)

Now, by (8), we have

MSE → E[R2
t+1] − 2E[β̂′StS

′
tβ] + trE[β̂β′Ψ] (56)

and therefore equations (45) and (55) imply that

MSE → E[R2
t+1] − 2 E(z; c) + L(z; c) (57)

and hence

R2(z; c) = 1− MSE

E[R2
t+1]

→ 2 E(z; c) + L(z; c)

E[R2
t+1]

(58)
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whereas

2E(z; c)− L(z; c) = limP−1 tr(2b∗Ψ̂(zI + Ψ̂)− b∗Ψ̂2 − cΨ̂)(zI + Ψ̂)−2Ψ)

= limP−1 tr(Ψ̂(2b∗z − c) + b∗Ψ̂
2)(zI + Ψ̂)−2Ψ)

(59)

and the optimality of z∗ = c/b∗ follows because the function f(z) = ((2b∗z−c)λ+ b∗λ
2)/(z+

λ)2 attains its maximum at z = z∗ for any value of λ > 0. The proof of the first part of
Proposition 3 is complete.

To study the ridgeless limit, we will need the following auxiliary result.

Lemma 6 Suppose that c > 1. Then,

m(z; c) = (1− c−1)z−1 +m∗(c) + n∗(c)z + O(z2), z → 0 . (60)

Furthermore,

m∗(c) = c−1((σ∗ψ∗,1)−1c−1 + σ−1
∗ ψ∗,2ψ

−3
∗,1c
−2) + O(c−4)

n∗(c) = c−1
(
−(σ∗ψ∗,1)2c2 + 3σ2

∗ψ∗,2c
)−1

+ O(c−5) .
(61)

Proof of Lemma 6. Let σ∗ = 1.
Case 1: c > 1 Substituting

m̃(−z; c) = (1− c)z−1 + cm(−z; c) , (62)

into the equation of Theorem 8, we get that m̃ satisfies

z =

∫
(1− (c− 1)m̃x) dH(x)

m̃(1 + m̃ x)

Our goal is to understand what happens when z → 0. We have∫
(1− (c− 1)m̃x) dH(x)

m̃(1 + m̃ x)
= 0

always has a finite solution m̃∗(0, c) > 0 because∫ dH(x)
m̃(1+m̃ x)∫ x dH(x)
(1+m̃ x)

is monotone decreasing in m̃, from +∞ to 0 and hence it crosses the level c− 1 somewhere.
Thus, m̃∗(c) is the unique solution to∫ dH(x)

m̃(1+m̃ x)∫ x dH(x)
(1+m̃ x)

= c− 1 . (63)

and m̃(z) stays bounded and smooth when z → 0+ by the implicit function theorem.
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Furthermore, substituting m̃(0, c) = ac−1 + bc−2, we get∫
dH(x)

(ac−1 + bc−2)(1 + (ac−1 + bc−2)x)
= (c− 1)

∫
x dH(x)

(1 + (ac−1 + bc−2)x)
(64)

that is (up to negligible terms)

a−1c

∫
(1− bc−1/a+ (bc−1/a)2)(1− (ac−1 + bc−2)x+ (ac−1 + bc−1)2 x2)dH(x)

= (c− 1)

∫
x(1− (ac−1 + bc−2)x+ (ac−1 + bc−2)2 x2)dH(x)

(65)

Equating the coefficient on c gives

a−1c = cσ∗ψ∗

while the constant coefficient gives

−ba−2 − σ∗ψ∗,1 = −aσ2
∗ψ∗,2 − σ∗ψ∗,1

and hence

a = (σ∗ψ∗,1)−1, b = a3σ2
∗ψ∗,2 = σ−1

∗ ψ∗,2/ψ
3
∗,1

and

m∗(c) = c−1m̃∗(c) ∼︸︷︷︸
c→∞

c−1((σ∗ψ∗,1)−1c−1 + σ−1
∗ ψ∗,2ψ

−3
∗,1c
−2) (66)

Thus,

cm′(−z; c) = (1− c)z−2 + m̃′(−z; c) = (1− c)z−2 + O(1)

Differentiating the identity∫
dH(x)

m̃(1 + m̃ x)
− (c− 1)

∫
x dH(x)

(1 + m̃ x)
= z

with respect to z, we get

m̃′(0)

(
−
∫

(1 + 2m̃∗x)dH(x)

(m̃∗(1 + m̃∗ x))2
+ (c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2

)
= 1 .

Furthermore,∫
dH(x)

m̃∗(1 + m̃∗ x)
− (c− 1)

∫
x dH(x)

(1 + m̃∗ x)
= 0 ,
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and therefore

(c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2
< (c− 1)

∫
x dH(x)

m̃∗(1 + m̃∗ x)
=

∫
dH(x)

m̃2
∗(1 + m̃∗ x)

=

∫
(1 + m̃∗ x)dH(x)

m̃2
∗(1 + m̃∗ x)2

<

∫
(1 + 2m̃∗ x)dH(x)

m̃2
∗(1 + m̃∗ x)2

(67)

and the claim follows with

n∗(c) = c−1

(
−
∫

(1 + 2m̃∗x)dH(x)

(m̃∗(1 + m̃∗ x))2
+ (c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2

)−1

< 0 .

We have

(c− 1)

∫
x2 dH(x)

(1 + m̃∗ x)2
= (c− 1)

1

m̃2
∗

∫
((1 + m̃∗ x)2 − 1− 2m̃∗x) dH(x)

(1 + m̃∗ x)2

Furthermore,

cn∗(c) ∼
(
−a−2c2

∫
(1 + 2(ac−1 + bc−2)x)dH(x)

((1 + bc−1/a)(1 + (ac−1 + bc−2)x))2
+ (c− 1)

∫
x2 dH(x)

(1 + (ac−1 + bc−2)x)2

)−1

∼
(
−a−2c2

∫
(1 + 2ac−1x− 2bc−1/a− 2ac−1x)dH(x) + c

∫
x2(1− 2ac−1x) dH(x)

)−1

∼
(
−a−2c2 + (2a−3b+ σ2

∗ψ∗,2)c
)−1

=
(
−(σ∗ψ∗,1)2c2 + (2(σ∗ψ∗,1)3σ−1

∗ ψ∗,2/ψ
3
∗,1 + σ2

∗ψ∗,2)c
)−1

=
(
−(σ∗ψ∗,1)2c2 + 3σ2

∗ψ∗,2c
)−1

(68)

when c→∞. �

We will now use this lemma to prove the behavior of the ridgeless limit. We have

ξ(z) = −1 + c−1/(c−1 − 1 + zm(−z; c))

= −1 + c−1/(zm∗(c) + z2n∗(c) +O(z3))

= −1 + c−1(zm∗(c))
−1/(1 + zn∗(c)/m∗(c) +O(z2))

= −1 + c−1(zm∗(c))
−1(1− zn∗(c)/m∗(c) +O(z2))

= −1 + c−1(zm∗(c))
−1 − c−1n∗(c)m∗(c)

−2 + O(z)

(69)

and hence

ν ′(z) = −c−1(ξ + zξ′) = −c−1(−1− c−1n∗(c)m∗(c)
−2 + O(z))

converges to a finite limit when z → 0. Thus,

L(z; c) = b∗(ν + zν ′)− cν ′ = b∗(ψ∗,1 − c−2m∗(c)
−1) + (−1− c−1n∗(c)m∗(c)

−2) + O(z)
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Hence,

2E(0; c) − L(0; c) = b∗(ψ∗,1 − c−2m∗(c)
−1) + (1 + c−1n∗(c)m∗(c)

−2)

The proof of Proposition 3 is complete. �

Lemma 7 Let a = σ∗. We have

1−zm(z) = ψ∗,1az
−1−z−2(ψ∗,2 +cψ2

∗,1)a2 +z−3a3(ψ∗,3 +3cψ∗,2ψ∗,1 +c2ψ3
∗,1) + O(z−4) (70)

for z →∞.

Proof of Lemma 7. Then, Theorem 8 implies

zm(−z) =

∫
zdH(x)

x(1− c+ czm) + z
,

implying that zm(z)→ 1 when z →∞, whereas

1−zm(z) = 1−
∫

zdH(x)

x(1− c+ czm(−z)) + z
= (1−c+czm(z))

∫
xdH(x)

x(1− c+ czm(−z)) + z
,

and therefore

1− zm(z) ∼ z−1aψ∗,1 ,

and

1− zm(−z)− ψ∗,1az−1

= (1− c+ czm(z))

∫
xdH(x)

x(1− c+ czm(−z)) + z
− ψ∗,1az−1

= (1− cz−1aψ∗,1 +O(z−2))z−1

∫
xdH(x)

xz−1(1− cz−1aψ∗,1 +O(z−2)) + 1
− ψ∗,1az−1

∼ (1− cz−1aψ∗,1 +O(z−2))z−1

∫
xdH(x)

xz−1 + 1
− ψ∗,1az−1

∼ (1− cz−1aψ∗,1 +O(z−2))z−1

∫
(x− x2z−1)dH(x)− ψ∗,1az−1

∼ z−1ψ∗,1a− ψ∗,2a2z−2 − cz−2a2ψ2
∗,1 − ψ∗,1az−1 + O(z−3)

= −z−2(ψ∗,2 + cψ2
∗,1)a2 + O(z−3)

(71)

Now, we can expand to the higher order. We have

1− c+ czm(−z) = 1− c(1− zm(−z)) = 1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2))
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and hence

1− zm(−z)− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

= (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))

×
∫

xdH(x)

x(1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2))) + z

− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

= (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))

× z−1

∫
xdH(x)

xz−1(1− cz−1ψ∗,1a) + 1 +O(z−3)
− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2

∗,1)a2

∼ (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))z−1

∫
x(1− xz−1(1− cz−1ψ∗,1a) + x2z−2)

− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

∼ (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a2 + O(z−2)))z−1

(
ψ∗,1a− z−1ψ∗,2a

2 + z−2a3(ψ∗,3 + cψ∗,2ψ∗,1)

)
− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2

∗,1)a2

= ψ∗,1az
−1 − z−2ψ∗,2a

2 + z−3a3(ψ∗,3 + cψ∗,2ψ∗,1)

− cz−2ψ∗,1a(ψ∗,1a− z−1ψ∗,2a
2) + cz−3(ψ∗,2 + cψ2

∗,1)a2ψ∗,1a + O(z−4)− ψ∗,1az−1 + z−2(ψ∗,2 + cψ2
∗,1)a2

= z−3a3(ψ∗,3 + cψ∗,2ψ∗,1)

− cz−2ψ∗,1a(−z−1ψ∗,2a
2) + cz−3(ψ∗,2 + cψ2

∗,1)a2ψ∗,1a + O(z−4)

= z−3a3(ψ∗,3 + 3cψ∗,2ψ∗,1 + c2ψ3
∗,1) + O(z−4) .

(72)

The proof of Lemma 7 is complete. �

B Proofs for the Mis-specified Model

We will be using a slightly simpler notation St,1 = S
(1)
t and St,2 = S

(2)
t . Then,

MSE = E[‖Rt+1 − St,1β̂‖2]

= trE[Rt+1R
′
t+1] − 2E[β′S ′tSt,1β̂1] + trE[St,1β̂1β̂

′
1S
′
t,1]

= trE[Rt+1R
′
t+1] − 2E[β′S ′tSt,1β̂1] + trE[Ψ1,1β̂1β̂

′
1]

(73)

where β̂1 is the estimate of the first component of the whole β vector. We will also denote
c1 = cq = P1/T and omit the dependence on q in all the functions. Finally, we will use the
notation ξ1,1(z) = limT−1 trE[(zI + Ψ̂)−1Ψ] to denote ξ(z; cq; q).

The following is true.
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Lemma 8 We have

E(z; c1) = limE[β′S ′tSt,1β̂1]

= b∗
c1

c
(ψ∗,1 − c−1

1 zξ(z)) + b∗
c−1ξ2,1(z)

1 + ξ1,1(z)

(74)

where

ξ2,1(z) = lim
T→∞

1

T
trE[Ψ1,2Ψ2,1(zI + Ψ̂T,1,t)

−1] (75)

Proof of Lemma 8. We have

Stβ = St,1β1 + St,2β2

and

1

T

∑
t

S ′t,1Rt+1 =
1

T

T∑
t=1

S ′t,1(Stβ + εt+1) = Ψ̂Tβ + qT , (76)

where

qT =
1

T

T∑
t=1

S ′t,1εt+1 (77)

and

Ψ̂Tβ = Ψ̂T,1β1 + Ψ̂T,2β2

where

Ψ̂T,k =
1

T

T∑
t=1

S ′t,1St,k, k = 1, 2 ,

Therefore,

β̂ = (zI + Ψ̂T,1)−1(Ψ̂T,1β1 + Ψ̂T,2β2 + qT ) . (78)

Using this identity and Assumption 4, we have (using that εt are independent of St and have
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zero means) that

E[β′S ′tSt,1β̂]

= E[(β′1Ψ1,1 + β′2Ψ2,1)(zI + Ψ̂T,1)−1(Ψ̂T,1β1 + Ψ̂T,2β2)]

= trE[Ψ1,1 (zI + Ψ̂T,1)−1Ψ̂Tββ
′]

+ E[β′1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2β2]

+ E[β′2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,1β1]

+ E[β′2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2β2]

= {by Lemma 1}
prob→ b∗ P

−1 trE[Ψ1,1 (zI + Ψ̂T,1)−1Ψ̂T,1] + P−1b∗ trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2] .

(79)

The first term is

P−1 trE[Ψ1,1 (zI + Ψ̂T,1)−1Ψ̂T,1]

= P−1 trE[Ψ1,1 (zI + Ψ̂T,1)−1(zI + Ψ̂T,1 − zI)] → c1

c
(ψ∗,1 − c−1

1 zξ1,1(z)) .
(80)

To compute the second term in (79), we will need the following lemma.

Lemma 9

1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2] → c−1ξ2,1(z)/(1 + ξ1,1(z)) (81)

Proof of Lemma 9. We have that, by symmetry over time, and using the Sherman-Morrison
formula (29), we get

1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1 1

T

T∑
t=1

St,1S
′
t,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1St,1S

′
t,2]

=
1

P
trE[Ψ2,1

(
(zI + Ψ̂T,1,t)

−1

− 1

T
(zI + Ψ̂T,1,t)

−1St,1(I +
1

T
S ′t,1(zI + Ψ̂T,1,t)

−1St,1)−1S ′t,1(zI + Ψ̂T,1,t)
−1
)
St,1S

′
t,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1St,1S
′
t,2]

− 1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1St,1(I + CT )−1CTS
′
t,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1Ψ′2,1]

− 1

P
E[S ′t,2Ψ2,1(zI + Ψ̂T,1,t)

−1St,1(1 + CT )−1CT ]

(82)
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where we have defined

CT =
1

T
S ′t,1(zI + Ψ̂T,1,t)

−1St,1

By Lemma 2 and (36),

CT =
1

T
S ′t,1(zI + Ψ̂T,1,t)

−1St,1 → ξ1,1(z)

in probability. Furthermore, (1 + CT )−1CT is uniformly bounded.
By a similar argument,

1

T
S ′t,2Ψ2,1(zI + Ψ̂T,1,t)

−1St,1 → ξ2,1(z) (83)

in probability, and these variables have uniformly bounded L2 norms. We will need another
auxiliary lemma.

Lemma 10 Suppose that XT − X → 0 and YT − Y → 0 in L2, and all variables have
uniformly bounded L2 norms. Then, E[XTYT ]− E[XY ]→ 0.

Proof. We have

E[XTYT ]− E[XY ] = E[(XT −X)YT ] + E[X(YT − Y )]

and the claim follows from the Cauchy-Schwarz inequality. �

Thus,

1

P
trE[Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T,2]

=
1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1Ψ′2,1]

− 1

P
trE[Ψ2,1(zI + Ψ̂T,1,t)

−1St,1(I + CT )−1CTS
′
t,2]

→ c−1ξ2,1(z) − c−1ξ2,1(z)ξ1,1(z)/(1 + ξ1,1(z))

= c−1ξ2,1(z)/(1 + ξ1,1(z)) ,

(84)

The proof of Lemma 9 is complete. �

Lemma 8 follows now from (79) �

Lemma 11 We have

L(z) = lim tr(Ψ1,1E[β̂β̂′])

=
c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + (1 + b∗P

−1 tr Ψ2,2)(ξ1,1(z) + zξ′1,1(z))

+ b∗(1 + ξ(z))−2c−1
1 ξ̂2,1

− 2b∗(ξ1,1(z) + zξ′1,1(z))(1 + ξ1,1(z))−1c−1
1 ξ2,1(z)

(85)
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Proof of Lemma 11. Let Ψ̂T (1, :) be the first row in the 2× 2 block representation of Ψ̂.
Then,

tr(Ψ1,1E[β̂β̂′])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)β + qT )(Ψ̂T (1, :)β + qT )′(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T )−1(Ψ̂T (1, :)β + qT )(β′Ψ̂T (1, :)′ + q′T )(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)ββ′Ψ̂T (1, :)′ + qT q
′
T )(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)ββ′Ψ̂T (1, :)′ + qT q
′
T )(zI + Ψ̂T,1)−1])

(86)

Formula (47) still holds with Ψ̂ replaced by Ψ̂1,1 and calculations in (48) imply

tr(Ψ1,1E[(zI + Ψ̂T,1)−1qT q
′
T (zI + Ψ̂T,1)−1]) → ξ1,1(z) + zξ′1,1(z) . (87)

It remains to deal with

tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T (1, :)ββΨ̂T (1, :))(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T,1β1β1Ψ̂T,1)(zI + Ψ̂T,1)−1])

+ tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂T,1,2β2β2Ψ̂T,1,2)(zI + Ψ̂T,1)−1])

prob→ P−1b∗ tr(Ψ1,1E[(zI + Ψ̂T,1)−1Ψ̂2
T,1(zI + Ψ̂T,1)−1])

+ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1,2Ψ̂T,1,2(zI + Ψ̂T,1)−1]

(88)

by Lemmas 1 and 3. The same calculations as above imply that

P−1b∗ tr(Ψ1,1E[(zI+Ψ̂T,1)−1Ψ̂2
T,1(zI+Ψ̂T,1)−1]) → c1

c
b∗(ψ∗,1(q)−2zc−1

1 ξ1,1(z)−z2c−1
1 ξ1,1(z)) .

(89)

Thus, it remains to deal with the second term in (88). We have

P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1,2Ψ̂T,1,2(zI + Ψ̂T,1)−1]

= P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1,2Ψ̂T,1,2(zI + Ψ̂T,1)−1]

= P−1b∗
1

T 2
trE[Ψ1,1(zI + Ψ̂T,1)−1

∑
t1,t2

St1,1S
′
t1,2
St2,2S

′
t2,1

(zI + Ψ̂T,1)−1]

= P−1b∗
1

T 2
trE[Ψ1,1(zI + Ψ̂T,1)−1

(
TSt1,1S

′
t1,2
St1,2S

′
t1,1

+ T (T − 1)St1,1S
′
t1,2
St2,2S

′
t2,1

)
(zI + Ψ̂T,1)−1]

= Term1 + Term2 .

(90)
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Here,

Term1 = P−1b∗
1

T
trE[Ψ1,1(zI + Ψ̂T,1)−1St1,1S

′
t1,2
St1,2S

′
t1,1

(zI + Ψ̂T,1)−1] (91)

and

Term2 = (1− T−1)P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1St1,1S
′
t1,2
St2,2S

′
t2,1

(zI + Ψ̂T,1)−1] . (92)

Using the Sherman-Morrison formula (29) and defining CT = S ′t,1(zI + Ψ̂T,1,t)
−1St,1, we get

(zI + Ψ̂T,1)−1St1,1 = (zI + Ψ̂T,1,t)
−1St1,1(1 + CT )−1 , (93)

and therefore

Term1

= P−1b∗
1

T
trE[Ψ1,1(zI + Ψ̂T,1,t)

−1St1,1(1 + CT )−1

× S ′t1,2St1,2(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t)
−1]

= P−1b∗
1

T
trE[S ′t1,1(zI + Ψ̂T,1,t)

−1Ψ1,1(zI + Ψ̂T,1,t)
−1St1,1S

′
t1,2
St1,2(1 + CT )−2]

(94)

Now, Lemmas 2, and 3, and the Vitali Theorem together with the fact that S ′t is independent
of Ψ̂T,1,t imply that

1

T
S ′t,1(zI+Ψ̂T,1,t)

−1Ψ1,1(zI+Ψ̂T,1,t)
−1St,1 →

1

T
E[tr(Ψ1,1(zI+Ψ̂T,1,t)

−1Ψ1,1(zI+Ψ̂T,1,t)
−1)]

(95)

in L2, whereas

P−1S ′t1,2St1,2(1 + CT )−2 → P−1 tr Ψ2,2/(1 + ξ1,1(z))2

in L2. Therefore, Lemma 10 implies that

Term1→ b∗ξ̂1,1(z)P−1 tr Ψ2,2/(1 + ξ1,1(z))2 (96)

where we have defined

ξ̂1,1,T (z) =
1

T
E[tr(Ψ1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1)]

We will now need the following lemma.

Lemma 12 We have

1

T
E[tr(Ψ1,1(zI+Ψ̂T,1)−1Ψ1,1(zI+Ψ̂T,1)−1)] → ξ̂1,1(z) = (ξ1,1(z)+zξ′1,1(z))(1+ξ1,1(z))2 (97)
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Proof of Lemma 12. We have

1

T
trE[Ψ1,1(zI + Ψ̂T,1,t)

−1] → ξ1,1(z)

by (11) and therefore

1

T
trE[(zI + Ψ̂T,1,t)

−1Ψ1,1(zI + Ψ̂T,1,t)
−1] =

1

T
trE[Ψ1,1(zI + Ψ̂T,1,t)

−2] → −ξ′1,1(z) .

Lemmas 2, and 3, and the Vitali Theorem imply that

1

T
S ′t1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1,t)

−1S ′t1,1

− 1

T
trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1] → 0

(98)

is probability. In the next equation, to simplify the expressions, we will use XT ≈ YT to
denote the fact that XT − YT → 0 as T →∞. By (93) and (98),

ξ1,1(z) ≈ 1

T
trE[Ψ1,1(zI + Ψ̂T,1)−1]

=
1

T
trE[(zI + Ψ̂T,1)(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

≈ −zξ1,1(z) +
1

T
trE[Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

= {Ψ̂T,1 = T−1
∑
t

St,1S
′
t,1}

= −zξ′1,1(z) +
1

T 2

∑
t

trE[St,1S
′
t,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

= −zξ′1,1(z) +
1

T
trE[St,1S

′
t,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1]

= −zξ′1,1(z) +
1

T
trE[(zI + Ψ̂T,1)−1St,1S

′
t,1(zI + Ψ̂T,1)−1Ψ1,1]

= −zξ′1,1(z)

+
1

T
trE[(zI + Ψ̂T,1,t)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1)−1Ψ1,1]

= −zξ′1,1(z)

+
1

T
trE[(1 + CT )−2S ′t1,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1,t)

−1St1,1]

≈ −zξ′1,1(z) + (1 + ξ1,1(z))−2ξ̂1,1(z)

(99)

and the claim follows. The proof of Lemma 12 is complete. �
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Thus, it remains to deal with Term2 in (90). By (93),

Term2 ≈ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1St1,1S
′
t1,2
St2,2S

′
t2,1

(zI + Ψ̂T,1)−1]

= P−1b∗ trE[S ′t2,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1St1,1S
′
t1,2
St2,2]

≈ P−1b∗ trE[(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t2)
−1

×Ψ1,1(zI + Ψ̂T,1,t1)
−1St1,1(1 + CT )−1S ′t1,2St2,2]

≈ P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1

)

×Ψ1,1

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1

)

×Ψ1,1

(
(zI + Ψ̂T,1,t1,t2)

−1 − 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

− 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1

− (zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

+
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= Term21 + Term22 + Term23 + Term24 .

(100)

Note that the different 1 + CT factors differ from each other slightly, but we will abuse
the notation and treat them as identical. Dealing with them separately requires minor
modifications in the proofs. By direct calculation,

E[S ′t2,1QSt2,2|St2 ] = tr(QΨ2,1) (101)
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for any Q independent of St2 . Thus,

Term21 = P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−2S ′t2,1QSt2,2]

= b∗E[(1 + CT )−2P−1 tr(QΨ2,1)] ,

(102)

where we have defined

Q =

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1S

′
t1,2

.

By a modification of Lemmas 2 and 3, we get

P−1 tr(QΨ2,1) = P−1 tr

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

Ψ2,1

)

= P−1 tr

(
S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1

)
prob→ P−1 trE[Ψ1,2Ψ2,1

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1

)
] ,

(103)

where, as we explain in the main text, we pass to a subsequence if necessary to ensure the
limit exists. Thus, by (11),

Term21→ b∗(1 + ξ(z))−2c−1
1 ξ̂2,1 . (104)

Proceeding to the next term in (100), we get

Term22

= P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
− 1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

(105)
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We have

1

T
S ′t1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1

→ 1

T
trE[Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1]

= ξ̂1,1(z)

(106)

is probability by Lemmas 2 and 3 and the Vitali Theorem. Hence,

Term22

→ P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
− (zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1ξ̂1,1(z)

)
(1 + CT )−1St1,2S

′
t2,2

]

→ −b∗ξ̂1,1(z)(1 + ξ1,1(z))−3 trE[Ψ2,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

]

→ −b∗ξ̂1,1(z)(1 + ξ1,1(z))−3c−1
1 ξ2,1(z) ,

(107)

where we have used Lemma 10 to pass to the limit.46 Proceeding to the next term in (100),
we get

Term23 ≈ P−1b∗E[(1 + CT )−1S ′t2,1(
− (zI + Ψ̂T,1,t1,t2)

−1Ψ1,1
1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1(1 + CT )−1S ′t1,2St2,2]

= −b∗E[XTYT ]

(108)

where we have defined

XT = −(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1

and

YT = P−1(1 + CT )−2S ′t1,2St2,2S
′
t2,1

(zI + Ψ̂T,1,t1,t2)
−1St1,1 .

By Lemma 12 and (11), XT → (1+ξ1,1(z))−1ξ̂(z) in L2, whereas YT has a bounded L2-norm.
Then, a small modification of Lemma 10 implies that

E[XTYT ] − (1 + ξ1,1(z))−1ξ̂(z)E[YT ] → 0

46Note that it may seem that we need six bounded moments for the signals. But, in fact, the normalization
by 1 + CT ensures all the necessary terms stay bounded.
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Integrating over St2 gives

E[YT ] = E[P−1(1 + CT )−2S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)
−1St1,1]

and Lemmas 2 and 3 imply that

E[YT ] → c−1
1 (1 + ξ1,1(z))−2ξ2,1(z) .

Thus, Term23 in (100) satisfies.

Term23 → −b∗ξ̂1,1(z)(1 + ξ1,1(z))−3c−1
1 ξ2,1(z) . (109)

Finally, the last term in (100) is given by

Term24 = P−1b∗ trE[(1 + CT )−1S ′t2,1

×

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1(1 + CT )−1S ′t1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1(1 + CT )−1S ′t2,1(zI + Ψ̂T,1,t1,t2)
−1

)
× St1,1(1 + CT )−1S ′t1,2St2,2]

= P−1b∗ trE[(1 + CT )−4St2,2S
′
t2,1

×

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1S
′
t2,1

(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1S

′
t1,2

]

(110)

We will need the following lemma.

Lemma 13 Consider the block matrix decomposition

Q1 =

(
Q1,1

Q2,1

)
, Q2 =

(
Q1,2

Q2,2

)
, Ψ1/2 =

(
Q1,1 Q1,2

Q2,1 Q2,2

)
Then,

E[St,2S
′
t,1ZSt,1S

′
t,1]

= Ψ2,1(Z + Z)Ψ1,1 + (Q2 diag((E[X4]− 3)Q1ZQ1)Q2 + tr(ZΨ1,1)Ψ2,1)
(111)

for any matrix Z. If Z is uniformly bounded, then the matrices Q2 diag(Q1ZQ1)Q2 have
uniformly bounded trace norms.

Proof of Lemma 13. By linearity, it suffices to prove the formula for a rank-one matrix
A = βγ′. Then, S ′t = X ′tΨ

1/2 and we will decompose Ψ1/2 into (Q1, Q2), so that S ′t,k = X ′tQk.
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Then,

E[St,2S
′
t,1βγ

′St,1S
′
t,1] = E[Q2XtX

′
tQ1βγ

′Q′1XtX
′
tQ1] (112)

Define β̃ = Q1β, γ̃ = Q1γ. Then, if k1 6= k2, we have

E[XtX
′
tβ̃γ̃

′XtX
′
t]k1,k2 = E[

∑
l1,l2

Xk1Xl1 β̃l1 γ̃l2Xl2Xk2 ]

= E[X2
k1
X2
k2

](β̃k1 γ̃k2 + β̃k2 γ̃k1) +
∑
`

β̃`γ̃`E[Xk1Xk2X
2
` ]

= β̃k1 γ̃k2 + β̃k2 γ̃k1

(113)

At the same time,

E[XtX
′
tβ̃γ̃

′XtX
′
t]k1,k1 = E[

∑
l1,l2

X2
k1
Xl1 β̃l1 γ̃l2Xl2 ]

=
∑
`

β̃`γ̃`E[X2
k1
X2
` ]

= β̃k1 γ̃k1(E[X4
k1

]− 1) + β̃′γ̃

(114)

Summarizing,

E[XtX
′
tβ̃γ̃

′XtX
′
t] = β̃′γ̃I + β̃γ̃′ + γ̃β̃′ + diag(β̃γ̃(E[X4]− 3))

Thus, by formula (112), we get

E[S ′t,2St,1βγ
′S ′t,1St,1] = Q′2Q1(βγ′+γβ′)Q′1Q1+(Q′2 diag((E[X4]−3)β̃k1 γ̃k1)Q2+(β̃′γ̃)Q′2Q1) ,

(115)

whereas β̃′γ̃ = β′Q′1Q1γ. Now,

Q1 =

(
Q1,1

Q2,1

)
, Q2 =

(
Q1,2

Q2,2

)
, Ψ1/2 =

(
Q1,1 Q1,2

Q2,1 Q2,2

)
.

Thus,

Ψ =

(
Q′1Q1 Q′1Q2

Q′2Q1 Q′2Q2

)
=

(
Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

)
(116)

and hence we get the required.
�

Since the kurtosis terms have uniformly bounded trace norms, it is straightforward to
show that their contributions to asymptotic expectations get annihilated by 1/T and 1/P
factors. Hence, from now on, we will be assuming in our calculations that E[X4

i,t] = 3.
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Applying Lemma 13, we can integrate over St2
47. Define

Z =

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1S ′t1,1St1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1

)

Then, we can rewrite (110) as

Term24 = P−1b∗ trE[(1 + CT )−4St2,2S
′
t2,1

×

(
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× 1

T
(zI + Ψ̂T,1,t1,t2)

−1St2,1S
′
t2,1

(zI + Ψ̂T,1,t1,t2)
−1

)
St1,1S

′
t1,2

]

= P−1b∗ trE[(1 + CT )−4E[St2,2S
′
t2,1
ZSt2,1S

′
t2,1
|St1 ](zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,2

]

(117)

Applying Lemma 13, we get

E[St2,2S
′
t2,1
ZSt2,1S

′
t2,1
|St1 ] = Ψ2,1(Z + Z ′)Ψ1,1 + tr(ZΨ1,1)Ψ2,1)

Substituting this expression into (117), we get that everything reduces to computing two
expectations:48

Expectation1 = P−1 trE[Ψ2,1ZΨ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

] (118)

and

Expectation2 = P−1 trE[Ψ2,1 tr(ZΨ1,1)(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

] (119)

For Expectation2, we have

Expectation2 = P−1 trE[Ψ2,1 tr(ZΨ1,1)(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

]

= P−1 trE[S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)
−1St1,1 tr(ZΨ1,1)] .

(120)

We know that the quantities

1

T
S ′t1,2Ψ2,1(zI + Ψ̂T,1,t1,t2)

−1St1,1

47Using the fact that St2 and St1 are independent.
48Computing Expectation1 with Z ′ instead of Z is similar.
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and

1

T
tr

(
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1

)

=
1

T
tr

(
S ′t1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1(zI + Ψ̂T,1,t1,t2)
−1(zI + Ψ̂T,1,t1,t2)

−1St1,1

) (121)

both converge to finite numbers in L2 by Lemmas 2 and 3. Thus, when multiplied by P−1,
the expectation of the product of these two quantities converges to zero. Thus, Expectation2
converges to zero. To compute Expectation1, we use

Expectation1 = P−1 trE[Ψ2,1ZΨ1,1(zI + Ψ̂T,1,t1,t2)
−1St1,1S

′
t1,2

]

= P−1 trE[St1,2S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1Z

′Ψ1,2]

= P−1 trE[St1,2S
′
t1,1

(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

×

(
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1
1

T
(zI + Ψ̂T,1,t1,t2)

−1St1,1S
′
t1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1

)
Ψ1,2]

(122)

We can now once again apply Lemma 13 and get

E[S ′t1,2St1,1(zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

× (zI + Ψ̂T,1,t1,t2)
−1Ψ1,1

1

T
(zI + Ψ̂T,1,t1,t2)

−1S ′t1,1St1,1]

= Ψ2,1(Ẑ + Ẑ ′)Ψ1,1 + tr(ẐΨ1,1)Ψ2,1

(123)

where

Ẑ = (zI + Ψ̂T,1,t1,t2)
−1Ψ1,1(zI + Ψ̂T,1,t1,t2)

−1Ψ1,1
1

T
(zI + Ψ̂T,1,t1,t2)

−1 (124)

Therefore,

Expectation1 = P−1 trE[

(
Ψ2,1(Ẑ + Ẑ ′)Ψ1,1 + tr(ẐΨ1,1)Ψ2,1

)
1

T
(zI + Ψ̂T,1,t1,t2)

−1Ψ1,2]

(125)

First, by Lemma 3 and the Vitali Theorem, tr(ẐΨ1,1) converges to a finite, non-random
number, and hence the second term in this expression converges to zero. Second, the first
term also converges to zero by a similar argument, due to the P−1(T )−2 factor. Thus,
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Term24 converges to zero. Gathering the terms, we get

tr(Ψ1,1E[β̂β̂′])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂T + qT q

′
T )(zI + Ψ̂T,1)−1])

= tr(Ψ1,1E[(zI + Ψ̂T,1)−1Ψ̂T (1, :)ββ′Ψ̂T (1, :)′(zI + Ψ̂T,1)−1]) + ξ1,1(z) + zξ′1,1(z)

prob→ P−1b∗ tr(Ψ1,1E[(zI + Ψ̂T,1)−1Ψ̂2
T,1(zI + Ψ̂T,1)−1])

+ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2,1Ψ̂′T,2,1(zI + Ψ̂T,1)−1] + ξ1,1(z) + zξ′1,1(z)

=
c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + ξ1,1(z) + zξ′1,1(z)

+ P−1b∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2,1Ψ̂′T,2,1(zI + Ψ̂T,1)−1]

=
c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + (1 + b∗P

−1 tr Ψ2,2)(ξ1,1(z) + zξ′1,1(z))

+ Term21 + Term22 + Term23 + Term24

→ c1

c
b∗(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z)) + (1 + b∗P

−1 tr Ψ2,2)(ξ1,1(z) + zξ′1,1(z))

+ b∗(1 + ξ(z))−2c−1
1 ξ̂2,1 − 2b∗(ξ1,1(z) + zξ′1,1(z))(1 + ξ1,1(z))−1c−1

1 ξ2,1(z)

(126)

The proof of Lemma 11 is complete.
�

C Computing Second Moment V of the Efficient Portfolio

We will need the following lemma.

Lemma 14 Suppose that St = XtΨ
1/2. Then, under the decomposition Ψ1/2 = (Q1, Q2),

E[S ′t,2St,1ZS
′
t,1St,2]

= Ψ2,1(Z + Z ′)Ψ1,2

+ ((κ− 2)Q′2 diag(Q1ZQ
′
1)Q2 + tr(ZΨ1,1)Ψ2,2)

(127)

for any matrix Z.

Proof of Lemma 14. By linearity, it suffices to prove the formula for a rank-one matrix
A = βγ′. Then, St = XtΨ

1/2 and we will decompose Ψ1/2 into (Q1, Q2), so that St,k =
Σ1/2XtQk. Then,

E[S ′t,2St,1βγ
′S ′t,1St,2] = E[Q′2X

′
tXtQ1βγ

′Q′1X
′
tXtQ2] (128)
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Define β̃ = Q1β. Then,

E[S ′t,2St,1βγ
′S ′t,1St,2] =

(Q′2Q1βγ
′Q′1Q2 +Q′2Q1γβ

′Q′1Q2)

+ ((κ− 2)Q′2 diag(β̃k1 γ̃k1)Q2 + (β̃′γ̃)Q′2Q2)

(129)

whereas β̃′γ̃ = β′Q′1Q1γ. Now,

Q1 =

(
Q1,1

Q2,1

)
, Q2 =

(
Q1,2

Q2,2

)
, Ψ1/2 =

(
Q1,1 Q1,2

Q2,1 Q2,2

)
Thus,

Ψ =

(
Q′1Q1 Q′1Q2

Q′2Q1 Q′2Q2

)
=

(
Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

)
(130)

and hence we get the required.
�

As above, all expectations in this section are conditional on β̂. We have since β1β
′
2 → 0

in probability that

E[(Rπ
t+1)2] = E[β̂′1S

′
t,1Rt+1R

′
t+1St,1β̂1] = E[β̂′1S

′
t,1((St,1β1 + St,2β2)(St,1β1 + St,2β2)′ + I)St,1β̂1]

→ E[β̂′1S
′
t,1Rt+1R

′
t+1St,1β̂1] = E[β̂′1S

′
t,1(St,1β1β

′
1S
′
t,1 + St,2β2β

′
2S
′
t,2 + I)St,1β̂1]

→ E[β̂′1Ψ1,1β̂1] + E[β̂′1S
′
t,1St,1β1β

′
1S
′
t,1St,1β̂1] + P−1b∗E[β̂′1S

′
t,1St,2S

′
t,2St,1β̂1]

= L + Term2 + Term3 .

(131)

Recall that we are using the notation

Ψ̂T =
1

T

T∑
t=1

S ′t,1St ∈ RP1×P . (132)

and we decompose

Ψ̂T = Ψ̂T,1 + Ψ̂T,2 (133)
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C.0.1 Term3

We have

Term3 = P−1b∗E[β̂′1S
′
t,1St,2S

′
t,2St,1β̂1]

= P−1b∗ trE[(Ψ̂Tβ + qT )′(zI + Ψ̂T,1)−1S ′t,1St,2S
′
t,2St,1(zI + Ψ̂T,1)−1(Ψ̂Tβ + qT )]

= P−1b∗ trE[S ′t,2St,1(zI + Ψ̂T,1)−1(Ψ̂Tβ + qT )(Ψ̂Tβ + qT )′(zI + Ψ̂T,1)−1S ′t,1St,2]

→ P−1b∗ trE[S ′t,2St,1(zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1S ′t,1St,2]

(134)

in probability because

E[qT q
′
T |S] =

1

T
Ψ̂T,1 . (135)

By Lemma 14, we get

Term3 → P−12 tr(ZTΨ1,2Ψ2,1)

+ P−1 tr((κ− 2)Q′2 diag(Q1ZTQ
′
1)Q2) + P−1 tr(ZTΨ1,1) tr(Ψ2,2)

(136)

with

ZT = (zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂′T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1 . (137)

Thus,

tr(ZTΨ1,1) = tr((zI + Ψ̂T,1)−1(Ψ̂Tββ
′Ψ̂′T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1Ψ1,1)

= L
(138)

by (86). At the same time,

P−1 tr(ZTΨ1,2Ψ2,1) → b∗P
−2 tr(Ψ̂′T (zI + Ψ̂T,1)−1Ψ1,2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T )

+ P−1T−1 tr((zI + Ψ̂T,1)−1(Ψ̂T,1 + zI − zI)(zI + Ψ̂T,1)−1Ψ1,2Ψ2,1)

→ P−1b∗c
−1ξ̃2,1(z) + P−1(ξ2,1(z)− zξ′2,1(z)) → 0 .

(139)

where

ξ̃2,1(z) = tr(Ψ̂′T (zI + Ψ̂T,1)−1Ψ1,2Ψ2,1(zI + Ψ̂T,1)−1Ψ̂T ) = O(P ) .

Similarly,

P−1 tr((κ− 2)Q′2 diag(Q1((zI + Ψ̂T,1)−1(P−1Ψ̂T Ψ̂′T + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1)Q′1)Q2)

≤ K P−1 tr(ZT ) → 0
(140)

Thus, we get

Term3 → b∗ tr(Ψ2,2)P−1L (141)
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C.0.2 Term2

By a slight modification of Lemma 14,

E[S ′t,1St,1β1β
′
1S
′
t,1St,1]

= 2Ψ1,1β1β
′
1Ψ1,1 + ((κ− 2)Ψ

1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + tr(β1β

′
1Ψ1,1)Ψ1,1)

≈ 2Ψ1,1β1β
′
1Ψ1,1 + ((κ− 2)Ψ

1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1)

(142)

and therefore

E[β̂′1S
′
t,1St,1β1β

′
1S
′
t,1St,1β̂1]

= trE[2Ψ1,1β1β
′
1Ψ1,1

+ ((κ− 2)Ψ
1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1)β̂1β̂
′
1]

= trE[

(
2Ψ1,1β1β

′
1Ψ1,1

+ ((κ− 2)Ψ
1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1)

)
× (zI + Ψ̂T,1)−1(Ψ̂Tβ + qT )(Ψ̂Tβ + qT )′(zI + Ψ̂T,1)−1]

→ trE[

(
2Ψ1,1β1β

′
1Ψ1,1 + b∗c

−1c1ψ∗,1(q)Ψ1,1

)
× (zI + Ψ̂T,1)−1(Ψ̂T,1β1β

′
1Ψ̂T,1 + Ψ̂T,2β2β

′
2Ψ̂′T,2 + T−1Ψ̂T,1)(zI + Ψ̂T,1)−1]

= 2T1 + 2T2 + 2T3

+ b∗c
−1c1ψ∗,1(q)T4 + b∗c

−1c1ψ∗,1(q)T5 + b∗c
−1c1ψ∗,1(q)T6

(143)

where we have used the fact that the cross-terms involving β1β
′
2 converge to zero and that

the kurtosis terms (those involving κ− 2) also converge to zero.49

We now analyze each term separately. The first term in (143) gives

T1 = trE[(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1ββ

′Ψ̂T,1]

= E[β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ(zI + Ψ̂T,1)−1Ψ̂T,1β1]

= E[(β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1iβ1)2] → (b∗c
−1c1(ψ∗,1(q)− zc−1

1 ξ1,1(z)))2

(145)

49For example, defining β̃1 = Ψ
1/2
11 β1 and A = Ψ

−1/2
1,1 Ψ̂T,1(zI + Ψ̂T,1)−1Ψ

1/2
1,1 and assuming for simplicity

that Ψ
−1/2
1,1 is bounded, we get

trE[β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ
1/2
1,1 diag(Ψ

1/2
1,1 β1β

′
1Ψ

1/2
1,1 )Ψ

1/2
1,1 Ψ(zI + Ψ̂T,1)−1Ψ̂T,1β1]

= E[β̃′1Adiag(β̃1β̃
′
1)A′β̃1]

= E[
∑
i,j,k

β̃iAi,j β̃
2
jAk,j β̃k] = E[

∑
i,j

β̃2
iA

2
i,j β̃

2
j ] ≈ P−2 trE[AA′] → 0

(144)

because A is bounded.
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in probability by Proposition 2 because all variables are uniformly bounded because ‖β‖
stays bounded almost surely. Namely, first we notice that

β′Ψ̂T,1(zI + Ψ̂T,1)−1Ψβ − b∗
1

M
tr(Ψ̂T,1(zI + Ψ̂T,1)−1Ψ) → 0

is probability. And second,

1

P
tr(Ψ̂T,1(zI+Ψ̂T,1)−1Ψ) =

1

P
tr((Ψ̂T,1+zI−zI)(zI+Ψ̂T,1)−1Ψ) → c−1c1(ψ∗,1(q)−zc−1

1 ξ1,1(z))

almost surely by Proposition 2.
Then,

T2 = trE[(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2β2β

′
2Ψ̂′T,2]

= P−1b∗E[β′1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2(zI + Ψ̂T,1)−1Ψ1,1β1]

→ P−2b2
∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2(zI + Ψ̂T,1)−1Ψ1,1]

≤ ‖Ψ1,1‖P−2b2
∗ trE[Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2(zI + Ψ̂T,1)−1] → 0

(146)

by the proof of Lemma 11. Then,

T3 = trE[(zI + Ψ̂T,1)−1Ψ1,1β1β
′
1Ψ1,1(zI + Ψ̂T,1)−1 1

T
Ψ̂T,1]

= E[β′1Ψ1,1(zI + Ψ̂T,1)−1 1

T
Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1β1]

≤ b∗K/T → 0

(147)

for some constant K because (zI + Ψ̂T,1)−1 and Ψ2
1,1 are uniformly bounded and where we

have used that

(zI + Ψ̂T,1)−1 1

T
Ψ̂T,1(zI + Ψ̂T,1)−1 ≤ 1

T
(zI + Ψ̂T,1)−1

is the sense of positive semi-definite order.
Then,

T4 = trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β1β
′
1Ψ̂T,1]

= E[β′Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β]
(148)

where

β′1Ψ̂T,1(zI+Ψ̂T,1)−1Ψ1,1(zI+Ψ̂T,1)−1Ψ̂T,1β1 − b∗
1

P
tr(Ψ̂T,1(zI+Ψ̂T,1)−1Ψ1,1(zI+Ψ̂T,1)−1Ψ̂T,1) → 0

in probability. Now, since the matrices Ψ̂T,1 and (zI + Ψ̂T,1)−1 commute, we get

tr(Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1) = tr(Ψ1,1(zI + Ψ̂T,1)−2Ψ̂2
T,1) .

91



Using the identity

Ψ̂2
T,1 = (Ψ̂T,1 + zI)2 − 2z(Ψ̂T,1 + zI) + z2 ,

we get

1

P
tr(Ψ1,1(zI + Ψ̂T,1)−2((Ψ̂T,1 + zI)2 − 2z(Ψ̂T,1 + zI) + z2))

=
1

P
tr(Ψ1,1 − 2zΨ1,1(zI + Ψ̂T,1)−1 + z2Ψ1,1(zI + Ψ̂T,1)−2) .

(149)

By Proposition 2,

1

P1

tr(Ψ1,1(zI + Ψ̂T,1)−1) → c−1
1 ξ1,1(z) .

Then, standard arguments for analytic functions (ξ1,1(z) is analytic for z for <z > 0)50 imply
that

1

P1

tr((zI + Ψ̂T,1)−2Ψ1,1) → −c−1ξ′1,1(z) . (150)

Thus,

T4 = trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β1β
′
1Ψ̂T,1]

= E[β′1Ψ̂T,1(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,1β1]

∼ b∗c
−1c1P

−1
1 tr(Ψ1,1 − 2zΨ1,1(zI + Ψ̂T,1)−1 + z2Ψ1,1(zI + Ψ̂T,1)−2)

= b∗c
−1c1ψ∗,1(q) − b∗2zc

−1c1P
−1
1 tr(Ψ1,1(zI + Ψ̂T,1)−1) + b∗c

−1c1P
−1
1 z2 tr(Ψ1,1(zI + Ψ̂T,1)−2)

∼ b∗c
−1c1(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z))

(151)

because

1

P1

tr(Ψ1,1(zI + Ψ̂T,1)−1) → c−1
1 ξ1,1(z) (152)

implies

1

P1

tr(Ψ1,1(zI + Ψ̂T,1)−2) → −c−1
1 ξ′1,1(z) . (153)

50For analytic functions, uniform boundedness plus convergence on an open set implies converges of
derivatives by the Cauchy integral formula.
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Now, since β2β
′
2 ∼ P−1IP2×P2 , we get by the proof of Lemma 11 that

T5 = trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2β2β
′
2Ψ̂′T,2]

→ P−1 trE[(zI + Ψ̂T,1)−1Ψ1,1(zI + Ψ̂T,1)−1Ψ̂T,2Ψ̂′T,2]

→ tr(Ψ2,2)

P
b∗ξ̂1,1(z)(I + ξ1,1(z))−2

+ b∗((I + ξ1,1(z))−1)2c−1ξ̂2,1(z)

− 2b∗ξ̂1,1(z)((I + ξ1,1(z))−1)c−1ξ2,1(z)(I + ξ1,1(z))−2

(154)

Finally,

T6 =
1

T
trE[(zI + Ψ̂T,1)−1Ψ(zI + Ψ̂T,1)−1Ψ̂T,1]

=
1

T
trE[(zI + Ψ̂T,1)−1Ψ(zI + Ψ̂T,1)−1(zI + Ψ̂T,1 − zI)]

∼ (ξ1,1(z) + zξ′1,1(z))

(155)

where we have used that

trE[(zI + Ψ̂T,1)−2Ψ] = trE[(zI + Ψ̂T,1)−1Ψ(zI + Ψ̂T,1)−1]

Putting all the terms together, we finally get from (131) that

E[(Rπ
t+1)2] = L + Term2 + Term3

= L + tr(Ψ2,2)P−1︸ ︷︷ ︸
Term3 by (141)

+ 2T1 + 2T2 + 2T3

+ b∗c
−1c1ψ∗,1(q)T4 + b∗c

−1c1ψ∗,1(q)T5 + b∗c
−1c1ψ∗,1(q)T6︸ ︷︷ ︸

by (143)

= L + tr(Ψ2,2)P−1L

+ 2
(

(b∗c
−1c1(ψ∗,1(q)− zc−1

1 ξ1,1(z)))2
)

+ b∗c
−1c1ψ∗,1(q)

(
b∗c
−1c1(ψ∗,1(q)− 2zc−1

1 ξ1,1(z)− z2c−1
1 ξ′1,1(z))

)
+ b∗c

−1c1ψ∗,1(q)∆(z)

+ b∗c
−1c1ψ∗,1(q)

(
ξ1,1(z) + zξ′1,1(z)

)
= L(z) + tr(Ψ2,2)P−1L(z) + 2E(z)2

+ b∗c
−1c1ψ∗,1(q)L(z)

= L(z)
(

1 + b∗
tr(Ψ)

P

)
+ 2E(z)2

(156)
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D Proof of Theorem 7 and Optimal Shrinkage

Defining k = 1 + b∗
tr(Ψ2,2)

P
, we get that

2E − L = 2b∗qν − qb∗ν̂ + cqν ′k

= limP−1 tr

(
(2b∗qΨ̂(zI + Ψ̂)−1 − cq(1 + k)Ψ̂(zI + Ψ̂)−2 − qb∗Ψ̂2(zI + Ψ̂)−2)Ψ

)
(157)

Consider the function

f(z) = 2b∗x(z + x)−1 − c(1 + k)x(z + x)−2 − x2(z + x)−2 . (158)

for any x > 0. Then,

f ′(z) = −2b∗x(z + x)−2 + 2c(1 + k)x(z + x)−3 + 2b∗x
2(z + x)−3 . (159)

Then, f ′(z) = 0 is equivalent to −2b∗x(z + x) + 2c(1 + k)x+ 2b∗x
2 = 0 implying that

z∗ = c(1 + k)/b∗ (160)

Furthermore,

f(z∗) =
b∗x

2 + 2b∗xz∗ − c(1 + k)x

(z∗ + x)2
=

b∗x
2 + b∗xz∗

(z + x)2
= b∗

x

x+ z
(161)

implying that

2E(z∗)− L(z∗) = E(z∗) = b∗ν(z∗)

Similarly,

E2(z)

L(z)
= lim

(b∗q)
2(tr(Ψ̂(zI + Ψ̂)−1Ψ))2

q tr((c(1 + k)Ψ̂ + b∗Ψ̂2)(zI + Ψ̂)−2Ψ)
(162)

Define

f(z) =
(tr(Ψ̂(zI + Ψ̂)−1Ψ))2

tr((c(1 + k)Ψ̂ + b∗Ψ̂2)(zI + Ψ̂)−2Ψ)

Diagonalizing Ψ̂ and defining a measure weighted by the eigenvalues of Ψ, we can rewrite it
as

f(z) =
E[X(z +X)−1]2

E[(aX + bX2)(z +X)−2]
.
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Then,

f ′(z) =

(
− 2E[X(z +X)−1]E[X(z +X)−2]E[(aX + bX2)(z +X)−2]

+ 2E[X(z +X)−1]2E[(aX + bX2)(z +X)−3]

)
/E[(aX + bX2)(z +X)−2]2 .

(163)

with a = c(1 + k), b = b∗. Thus, f ′(z) ≥ 0 if and only if

E[X(z +X)−2]E[(aX + bX2)(z +X)−2] ≤ E[X(z +X)−1]E[(aX + bX2)(z +X)−3] .

(164)

Changing the measure to X(z +X)−1/E[X(z +X)−1], we can rewrite it as

E[(z +X)−1]E[(a+ bX)(z +X)−1] ≤ E[(a+ bX)(z +X)−2] . (165)

The function (z + X)−1 is decreasing in X, while (a + bX)(z + X)−1 is decreasing in X if
and only if z < a/b. Thus, f(z) is increasing for z < z∗ and decreasing otherwise. The proof
is complete.

To prove the virtue of complexity, it remains to consider

ν(z∗) = q ψ∗,1 − z∗c−1ξ(z∗; cq) (166)

where

ξ(z, cq) =
1− zm(−z; cq)

(cq)−1 − 1 + zm(−z; cq)
= −1 +

(cq)−1

(cq)−1 − 1 + zm(−z; cq)
. (167)

Theorem 8 implies

zm(−z) =

∫
zdH(x)

x(1− c+ czm) + z
,

and, hence,

m̃(−z; c) = (1− c)z−1 + cm(−z; c) , (168)

is the unique positive solution to

z =

∫
(1− (c− 1)m̃x) dH(x)

m̃(1 + m̃ x)
(169)

Furthermore,

ν(z∗) = qψ∗,1 − b−1
∗ ξ(c/b∗, cq) = c−1(cqψ∗,1 − z∗ξ(z∗; cq))
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Thus, our goal is to show that

cψ∗,1 − zξ(z; c)

is monotone increasing in c for any z > 0. We have

ξ = −1 +
z−1

(1− c)z−1 + cm
= −1 +

z−1

m̃

and hence we need

f(c) = cψ∗,1 −
1

m̃

to be monotone increasing in c. That is, we need the inequality

f ′(c) = ψ∗,1 +
m̃′(c)

m̃2
≥ 0 . (170)

We have

0 =

∫
(−m̃x− (c− 1)m̃′(c)x)m̃(1 + m̃x)− (1− (c− 1)m̃x)(m̃′(1 + m̃x) + m̃m̃′x)

m̃2(1 + m̃x)2
dH(x)

(171)

so that

m̃′(c) =
−
∫ xdH(x)

1+m̃x∫ (c−1)xm̃(1+m̃x)+(1−(c−1)m̃x)(1+2m̃x)
m̃2(1+m̃x)2

dH(x)
, (172)

We start with the observation that the denominator in this fraction is always non-negative.
Indeed, (169) implies that

(c− 1)

∫
m̃xdH(x)

m̃(1 + m̃x)
=

∫
dH(x)

m̃(1 + m̃x)
− z . (173)

Multiplying by m̃ > 0, we get that

(c− 1)

∫
m̃xdH(x)

(1 + m̃x)
=

∫
dH(x)

(1 + m̃x)
− zm̃ (174)
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which implies

(c− 1)

∫
(m̃x)2dH(x)

(1 + m̃x)2
= (c− 1)

∫
m̃x(−1 + 1 + m̃x)dH(x)

(1 + m̃x)2

=

∫
dH(x)

(1 + m̃x)
− zm̃− (c− 1)

∫
m̃xdH(x)

(1 + m̃x)2

= −zm̃ +

∫
(1 + (2− c)m̃x)dH(x)

(1 + m̃x)2

(175)

Thus,∫
(c− 1)xm̃(1 + m̃x) + (1− (c− 1)m̃x)(1 + 2m̃x)

m̃2(1 + m̃x)2
dH(x)

=

∫
−(c− 1)(xm̃)2 + 1 + 2m̃x

(1 + m̃x)2
dH(x)

= zm̃ +

∫
cm̃xdH(x)

(1 + m̃x)2

(176)

so that (7) is equivalent to∫
xdH(x)

(
zm̃ +

∫
cm̃x

(1 + m̃x)2

)
≥
∫
xdH(x)

1 + m̃x
(177)

It is straightforward to show that this inequality holds as identify in the limit as c→∞.
We can rewrite

(c− 1)

∫
m̃xdH(x)

(1 + m̃x)
=

∫
dH(x)

(1 + m̃x)
− zm̃ . (178)

as

c− 1 + zm̃− c
∫

dH(x)

(1 + m̃x)
= 0 . (179)

When c→∞, m̃→ 0 and we get

1− c−1 + c−1zm̃−
∫

(1− m̃x+ m̃2x2)dH(x) ≈ 0 . (180)

Furthermore, optimal z = c y for some y > 0. Substituting m = ac−1 + bc−2 gives

−c−1 + c−1ycac−1 + E[x](ac−1 + bc−2)− E[x2]a2c−2 = 0 (181)

implying

a = (E[x] + y)−1 ,
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and

E[x]b− E[x2](E[x] + y)−2 = 0

so that

b = E[x2]E[x]−1(E[x] + y)−2 .

Thus,∫
xdH(x)

(
zm̃ +

∫
cm̃x

(1 + m̃x)2

)
−
∫
xdH(x)

1 + m̃x

= E[x]

(
z(ac−1 + bc−2) +

∫
c(ac−1 + bc−2)x(1− 2m̃x− (m̃x)2 + 4(m̃x)2)

)
−
∫
xdH(x)(1− m̃x+ (m̃x)2) + O(c−3)

= E[x]

(
cy(ac−1 + bc−2) +

∫
(a+ bc−1)(x− 2(ac−1 + bc−2)x2 + 3(ac−1)2x3)

)
−
∫
dH(x)(x− (ac−1 + bc−2)x2 + (ac−1)2x3) + O(c−3)

= E[x]byc−1 + bE[x]2c−1 − 2E[x]a2c−1E[x2] + ac−1E[x2] + O(c−2)

= E[x]E[x2]E[x]−1(E[x] + y)−2yc−1 + E[x2]E[x]−1(E[x] + y)−2E[x]2c−1

− 2E[x](E[x] + y)−2c−1E[x2] + (E[x] + y)−1c−1E[x2] + O(c−2)

=
2E[x2]y

(E[x] + y)2
> 0 .

(182)

Thus complete the proof, it suffices to show that the function −1/m̃ is concave in c.
Differentiating (179) with respect to c, we get

m̃′(c) = −
∫

m̃x

1 + m̃x
dH(x)/(z + c

∫
xdH(x)

(1 + m̃x)2
) , (183)

and

m̃′′(c) =
2c
∫ x2(m̃′)2dH(x)

(1+m̃x)3
− 2

∫ m̃′xdH(x)
(1+m̃x)2

z + c
∫ xdH(x)

(1+m̃x)2

. (184)

Our goal is to show that −1/m̃ is concave, which is equivalent to the inequality

m̃′′(c)m̃(c) < 2 (m̃′)2 . (185)

Substituting (183) and (184), we can rewrite the desired inequality as

c(−m̃′)
∫

x2dH(x)

(1 + m̃x)3
+

xdH(x)

(1 + m̃x)2
<

x

(1 + m̃x)
(186)
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which is equivalent to

c(−m̃′)
∫

x2dH(x)

(1 + m̃x)3
<

∫
m̃x2

(1 + m̃x)2
(187)

From (183) we get

−cm̃′(c) ≤
∫

m̃x

1 + m̃x
dH(x)/

∫
xdH(x)

(1 + m̃x)2
. (188)

and hence the desired inequality (187) holds if∫
x

1 + m̃x
dH(x)

∫
x2dH(x)

(1 + m̃x)3
<

∫
x2

(1 + m̃x)2

∫
xdH(x)

(1 + m̃x)2
(189)

Changing the measure to x
1+m̃x

dH(x)/
∫

x
1+m̃x

dH(x), we can rewrite it as

E[
x

(1 + m̃x)2
] ≤ E[

x

(1 + m̃x)
]E[

1

(1 + m̃x)
] ,

which follows because the function x
(1+m̃x)

is monotone increasing while 1
(1+m̃x)

is monotone
decreasing in x.

E Linear Kitchen Sink

Proposition 9 Let

π̂Gt (z) = G′t(zI + Ψ̂G)−1 1

T

∑
t

GtRt+1 with Ψ̂G =
1

T

∑
t

GtG
′
t (190)

be the prediction of the linear kitchen sink regression on Gt. Then, in the limit as P → ∞,
π̂t = S ′tβ̂(z) based on random linear features (??) converges almost surely to π̂Gt (z).

Proposition 9 shows that when γ is sufficiently small, the random feature regression is
equivalent to a standard linear regression.

Proof of Proposition 9. In this case,

StS
′
t = Ω′GtG

′
tΩ (191)

and hence, defining

Ψ̂G =
1

T

∑
t

GtG
′
t , (192)

we get that

Ψ̂ = T−1
∑
t

StS
′
t = Ω′Ψ̂G Ω (193)
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and hence

β̂(z) = (zI + Ω′Ψ̂G Ω)−1Ω′Xt, Xt =
1

T

∑
t

GtRt+1 . (194)

while the portfolio strategy is given by

π̂t(z) = β̂(z)′Ω′Gt = X ′tΩ(zI + Ω′Ψ̂G Ω)−1Ω′Gt (195)

We now make the following observation.

Lemma 15 When P →∞, we have with probability one

Ω(zI + Ω′Ψ̂G Ω)−1Ω′ → (zI + Ψ̂G)−1 (196)

Proof. Without loss of generality, we assume that Ψ̂G is non-degenerate. Let Ω̃ = (Ψ̂G)1/2Ω.
Then, the columns of Ω̃ are independent, identically distributed 15-dimensional Gaussian
vectors, ω̃i ∼ N(0, Ψ̂G). Therefore,

(Ψ̂G)1/2Ω(zI + Ω′Ψ̂G Ω)−1Ω′(Ψ̂G)1/2 = Ω̃(zI + Ω̃′Ω̃)−1Ω̃′ (197)

By the Woodbury matrix identity,

(zI + Ω̃′Ω̃)−1 = z−1I − z−2Ω̃′(I + z−1Ω̃Ω̃′)−1Ω̃ (198)

We have by the law of large numbers that

Q = Ω̃Ω̃′ → Ψ̂G (199)

almost surely. Therefore,

Ω̃(zI+Ω̃′Ω̃)−1Ω̃′ = z−1Q − z−2Q(I+z−1Q)−1Q → z−1Ψ̂G− z−2Ψ̂G(I+z−1Ψ̂G)−1Ψ̂G (200)

almost surely. By direct calculation, this expression coincides with Ψ̂
1/2
G (zI + Ψ̂G)−1Ψ̂

1/2
G .

The proof is complete. �

The proof is complete. �
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F Additional Exhibits

Panel A: R2 Panel B: ‖β̂‖

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 5 10 195 200

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 195 200

Panel C: Expected Return Panel D: Volatility
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Figure 12: Out-of-sample Market Timing Performance With 60-month Training Window

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 60 months and predictor count P (or cT ) ranges from 2
to 12,000. Predictors are RFFs generated from 15 Goyal and Welch (2008) predictors with γ = 2.
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Figure 13: Out-of-sample Market Timing Performance With 120-month Training Window

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 120 months and predictor count P (or cT ) ranges from 2
to 12,000. Predictors are RFFs generated from 15 Goyal and Welch (2008) predictors with γ = 2.
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Figure 14: Out-of-Sample R2 Detail

Note. Out-of-sample prediction accuracy for empirical analysis described in Section 6.3. Training window
is T = 12, 60, or 120 months and predictor count P (or cT ) ranges from 2 to 12,000. Predictors are RFFs
generated from 15 Goyal and Welch (2008) predictors with γ = 2.
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Figure 15: Normalized Volatility of Predictors in 12-Month Windows

Note. Bars show (normalized) average predictor volatility in 12-month windows, calculated by first scaling
each predictor by its full sample volatility, then calculating the rolling 12-month volatility of each predictor,
and finally calculating the time series average of those 12-month volatilities. In this calculation, an iid
variable will have average 12-month volatility of about one because its volatility over any window should,
on average, equal its unconditional volatility. For persistent variables, this value will be closer to 0 since it
takes longer for such a variable to realize its total unconditional volatility.

Table 2: Comparison With Univariate Timing Strategies

Note. Information ratio (and associated alpha t-statistic) of the high-complexity strategy on the linear
univariate timing strategy of each predictor. The univariate timing strategy is defined as the product of
a predictor at time t with the market return at t + 1. We also report the information ratio versus all 15
univariate strategies simultaneously (“All”), based on the out-of-sample tangency portfolio of the 15 timing
strategies scaled to have an expected volatility of 20%.

dfy infl svar de lty tms tbl dfr
IR 0.41 0.46 0.46 0.33 0.41 0.33 0.44 0.47
t 3.9 4.4 4.3 3.1 3.9 3.1 4.2 4.5

R2 3.6% 0.9% 0.3% 11.3% 6.0% 8.5% 3.5% 0.0%

dp dy ltr ep bm ntis lag-mkt All
IR 0.31 0.31 0.46 0.35 0.38 0.45 0.48 0.32
t 2.9 2.9 4.3 3.3 3.6 4.3 4.5 2.9

R2 13.6% 13.4% 0.6% 11.0% 6.4% 3.4% 5.9% 11.4%
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Figure 16: Nonlinear Prediction Effects

Note. Panels show marginal nonlinear return prediction patterns associated with each of the 15 predictors.
To trace the impact of predictor i on expected returns, we fix the prediction model estimated from a given
training sample and fix the values of all variables other than i at their values at the time of the forecast.
Next, we vary the value of the ith predictor from its full sample min (corresponding to −1 on the plots) to
its full sample max (corresponding to +1) and record how the return prediction varies. Then we average
this prediction response function across all training windows and plot the result. Training window is T = 12
with P = 12, 000, z = 103, and γ = 2.
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Panel E: Information Ratio Panel F: Alpha t-statistic
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Figure 17: Out-of-sample Market Timing Performance With Un-standardized Returns

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2 to
12,000. Predictors are RFFs generated from 15 Goyal and Welch (2008) predictors with γ = 2. In contrast
to our main analysis, returns are not volatility-standardized in this figure.
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Panel C: Expected Return Panel D: Volatility
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Figure 18: Out-of-sample Market Timing Performance With Bandwidth γ = 1

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2
to 12,000. Predictors are RFFs generated from 15 Goyal and Welch (2008) predictors with γ = 1.
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Figure 19: Out-of-sample Market Timing Performance With Bandwidth γ = 0.5

Note. Out-of-sample prediction accuracy and portfolio performance estimates for empirical analysis
described in Section 6.3. Training window is T = 12 months and predictor count P (or cT ) ranges from 2 to
12,000 using a range of P . Predictors are RFFs generated from 15 Goyal and Welch (2008) predictors with
γ = 0.5.
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Figure 20: Out-of-sample Performance by Subsample (T = 12)

Note. Subsample analysis of 1930–1974 and 1975–2020. See notes in Figures 7 and 8.
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Figure 21: Out-of-sample Performance by Subsample for (T = 60)

Note. Subsample analysis of 1930–1974 and 1975–2020. See notes in Figures 7 and 8.
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Figure 22: Out-of-sample Performance by Subsample for (T = 120)

Note. Subsample analysis of 1930–1974 and 1975–2020. See notes in Figures 7 and 8.



G Comparison With Momentum

We begin by rewriting the forecast from a linear model as a weighted sum of training sample
returns. In particular, consider making a forecast at time T for the return at time T + 1.
Estimation is performed in a 12-month training window ending at date T . The regression
forecast is:

S ′Tβ = S ′T

(
T∑

t=T−11

St−1S
′
t−1

)−1 T∑
t=T−11

rtSt−1

=
T∑

t=T−11

rt

S ′T
(

T∑
t=T−11

St−1S
′
t−1

)−1

St−1


︸ ︷︷ ︸

wt

=
T∑

t=T−11

rtwt

The equation states that, in general, rolling out-of-sample return predictions amount to a
sequence of moving averages of past returns. It follows that if the predictors are static in
the training window, wt will equally weight the training returns—in other words, it will
behave like time series momentum Moskowitz et al. (2012). Since some of the Goyal and
Welch (2008) predictors are highly persistent, we wish to rule out the possibility that the
high-complexity model simply captures a time-series momentum effect.

The most direct approach to this question is to put the high-complexity market timing
strategy with a 12-month training window (“VoC” for short) head-to-head with a timing
strategy based on 12-month momentum. Define the high-complexity strategy as

Rvoc,t+1 = πvoc,tRm,t+1,

where Rm is the market return and πvoc,t is the out-of-sample prediction Êt[Rm,t+1] from our
rolling 12-month random features model.51 Define the momentum strategy as

Rmom,t+1 = πmom,tRm,t+1,

where

πmom,t =
1
12

∑11
j=0Rm,t−j√

1
12

∑11
j=0

(
Rm,t−j − ( 1

12

∑11
k=0Rm,t−k)

)2

After construction, we normalize both of these to have identical sample volatility of 20% so
that means/alphas are directly comparable.

51For this analysis, we use the raw market return without volatility standardization, to remain directly
comparable with the momentum strategy. However, πvoc,t is the position from the main paper, and is trained
on volatility-standardized returns.
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The annualized out-of-sample performance of these two strategies from the sample 1931–
2020 is:

Mean Vol SR IR vs. Rm

Rvoc 8.40% 20% 0.42 0.32
Rmom 6.39% 20% 0.32 0.33

Both strategies have similar gross performance and information ratios in a spanning regres-
sion against the market.

Next, we run spanning regressions of each strategy on the other:

Rvoc on Rmom Rmom on Rvoc

α 5.77% 2.93%
t(α) 2.99 1.51
R2 0.17 0.17

These results tease apart the differences in the strategies. First, from the 17% R2, we see
the strategies are 42% correlated. Second, VoC has a significant monthly alpha of 5.8% per
annum versus momentum (t = 3.0). Momentum has positive alpha versus our strategy, but
it is smaller (2.9%) and insignificant (t = 1.5).

Next, we see that the strategies are only partially correlated because they take different
bets. The clearest way to illustrate their difference is by plotting their timing weights:

Timing Bets: 12-Month Window

The two sets of bets have a 49% correlation. We see from the plot that they indeed share some
common episodes of large positive bets. But momentum is clearly a different strategy, taking
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some big bets when VoC does not. Furthermore, momentum bets on market downturns in
times when VoC does not.

The differences between the two strategies are perhaps unsurprising in light of Section 6.5,
which shows that many of the Goyal and Welch (2008) predictors have very low persistence,
and these low persistence predictors are, in fact, the main drivers of VoC performance.

Other important evidence comes from our comparison of VoC and the Goyal-Welch linear
“kitchen sink” regression in Table 1. The rationale that a 12-month regression with persistent
regressors will recover 12-month momentum also applies to the linear regression (it too is
conducted in rolling 12-month training windows). The best-performing linear strategy (that
with penalty z = 103) is highly correlated with 12-month momentum (92.4%), and its
annualized alpha versus 12-month momentum is 0.63% per annum with a t-stat of 0.86 (an
information ratio of 0.09). In other words, the linear regression turns out to be 12-month
momentum, more or less. Yet VoC has a significant alpha of 4.40% (t = 2.5) over this
linear model (an information ratio of 0.26, shown in Table 1). The comparison between the
complex nonlinear VoC model and the linear kitchen sink is apples-to-apples because the
momentum effect due to short training with persistent regressors will affect both strategies.
Nonetheless, VoC significantly improves over the linear model. We interpret this evidence
as saying that the linear model cannot find a good way to use the variation in fast-moving
predictors, so it leans more heavily on the static predictors. Meanwhile, VoC learns to take
advantage of the fast predictors in nonlinear ways.

To sum up, momentum explains only 17% of the variation in the VoC strategy and 31%
of its performance (1 − 5.77%/8.40%). The evidence suggests that momentum is not the
primary driver of VoC performance.
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