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ABSTRACT

Performance pay, through which firms provide workers with incentives for performance, is 
known to be an important source of the variation in wages across workers. Little is known, 
though, about the impact of performance pay on wages over the life cycle or about the sources of 
its variability with workers’ labor market experience. In this paper, we fill this gap by accounting 
for the possibility that incentives for performance also arise implicitly, as often argued, from 
workers’ desire to prove themselves whenever their productivity is uncertain and to accumulate 
human capital when employed. We propose a framework that integrates and extends well-known 
models of dynamic moral hazard and of information and human capital acquisition in the labor 
market. This framework allows us to analytically decompose performance pay into distinct terms 
that capture the basic forces we nest, and is identified under intuitive conditions. We parameterize 
the model using data from foundational papers in personnel economics and find that the most 
important determinants of performance pay are workers’ desire to insure against the wage risk 
due to the uncertainty about their productivity, which explains the relatively low level of 
performance pay, and their incentive to acquire human capital through learning-by-doing. The 
contemporaneous risk-incentive trade-off that much of the literature on performance incentives 
has emphasized is instead less important. Our estimates imply that performance pay is central to 
the dynamics of wages over the life cycle because of its direct impact on the variability of wages 
and its indirect impact on the process of human capital acquisition with experience.
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1 Introduction
To align workers’ incentives to firms’ objectives, firms often link compensation to perfor-

mance on the job through bonuses, commissions, and piece rates, a practice that has become

more prevalent in recent decades (Lemieux et al. [2009]). For most workers, though, per-

formance pay amounts to only a small fraction of pay, which raises the question of whether

incentives for performance are important for the typical worker in practice. For instance,

in the PSID, variable pay accounts for less than 5% of workers’ pay and does not represent

a major component of pay at any point over the life cycle (Frederiksen et al. [2017]).

One reason why performance pay is small is that workers may already face strong

implicit incentives for performance. In particular, they may be motivated to work hard to

convince potential employers, who are likely to be uncertain about their talent, that their

productivity is high. These implicit incentives for effort on the job can then substitute for

the explicit incentives from performance pay. This well-known career-concerns argument

provides a common explanation not only for why performance pay often makes up only a

small portion of pay but also for how performance pay varies over the life cycle. That is, as

workers’ experience accumulates and their productivity becomes better known, the implicit

incentives for performance from career concerns weaken. To compensate for them, explicit

incentives from performance pay should become increasingly more important (Holmström

[1999] and Gibbons and Murphy [1992]). As we document, though, the opposite pattern

is common in the data; namely, relative to total pay, performance pay eventually tends to

decrease with experience. Thus, the questions of whether performance incentives matter

and, if so, why they are so small for the typical worker are very much open ones.

In this paper, we start from the premise that workers face other powerful implicit incen-

tives for effort on the job, as they are also motivated to acquire new skills when employed.

Namely, since the effort to produce output can substitute for the effort to invest in human

capital, as in models of learning-or-doing or on-the-job training (Ben-Porath [1967]), or

complement it, as in models of learning-by-doing (Heckman et al. [1998]), performance

pay influences how much human capital workers accumulate with experience by affecting

their incentives to produce output. We argue that the implicit incentives for performance

induced by career concerns and the opportunity to acquire human capital are key for under-

standing both why performance pay is relatively low and how it varies over the life cycle.
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Specifically, we find that uncertainty about workers’ productivity, which induces corre-

lated wage risk over time, is primarily responsible for the low level of performance pay.

But although small, performance pay crucially shapes life-cycle wages through its indirect

impact on workers’ process of human capital acquisition in the labor market.

We formalize these intuitions by proposing a tractable model for the multiple incen-

tives for workers’ effort on the job that arise from performance pay, career concerns, and

the opportunity to accumulate human capital during employment. Our model thus offers a

unified framework to investigate how these forces together determine the level and dynam-

ics of wages and their fixed and variable (performance-pay) components. In doing so, we

accomplish three goals. First, as this framework allows us to analytically decompose the

returns to effort and the sensitivity of pay to performance into the contribution of the mech-

anisms we nest, we can shed light on the forces governing how performance pay evolves

with experience and so on the specific environments in which alternative life-cycle pro-

files of performance pay emerge. Conversely, we show that performance pay provides rich

information that helps identify the determinants of fixed and variable pay that we integrate.

Second, our model explains why the ratio of performance pay to total pay tends to fol-

low a hump-shaped pattern over the life cycle, contrary to the prediction of leading models

of performance incentives. Human capital considerations are key to this feature of the data.

When human capital is acquired through learning-by-doing so that effort to produce output

also increases human capital, explicit incentives from performance pay naturally comple-

ment the implicit ones from human capital acquisition: they support greater effort and so

human capital accumulation early on, when human capital is most valuable. As accumu-

lating human capital becomes less valuable over time, explicit incentives for performance

correspondingly weaken later on, and thus performance pay eventually decreases relative

to total pay. Third, using our parameterized model, we show that performance pay, through

its direct effect on total pay and its indirect effect on human capital acquisition, plays a

critical role for the growth and dispersion of wages over the life cycle.

Our framework integrates and extends existing models of learning and performance

incentives by building on the notion that workers can exercise effort on simple tasks that

are contractable and complex tasks that are non-contractable, which both contribute to a

worker’s output and human capital—the latter accumulates through learning-or-doing and
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learning-by-doing. We think of different jobs as distinct bundles of simple and complex

tasks.Whereas a worker’s ability is unobserved to all and effort on complex tasks and hu-

man capital are observed only by a worker, effort on simple tasks as well as output or per-

formance are publicly observed—output is then a noisy signal of ability, effort on complex

tasks, and human capital. We assume that firms compete for workers by offering contracts

that allow for variable pay contingent on a worker’s output. Hence, workers face two types

of performance incentives: explicit incentives from wages being linked to performance and

implicit ones from their desire to influence the market’s perception of their ability and hu-

man capital. We can then investigate not only how wages and their components evolve with

experience but also how the allocation of effort across activities that are more or less dif-

ficult to contract varies over time. Our simple micro-foundation of the notion of a job and

the resulting task assignment process can account for the joint dynamics of wages, their

structure, and the types of activities that workers perform in firms as their careers progress.

Our main results are as follows. Through our model, we can decompose performance

pay into distinct terms that capture i) the trade-off between risk and incentives typical of

settings of moral hazard;ii) the career-concerns incentives for performance generated by the

uncertainty about workers’ ability; iii) the insurance firms provide against the wage risk due

to this uncertainty; and iv) the incentives for performance arising from the opportunity to

acquire human capital.We can then determine the primitive conditions that lead to different

life-cycle patterns of performance pay relative to total pay. We find that a human capital

motive for effort rationalizes the hump-shaped life-cycle profile of performance pay that

characterizes well-known firm-level data in personnel economics (Baker et al. [1994a,b]—

henceforth, BGH—and Gibbs and Hendricks [2004]) and public data (PSID and NLSY).In

the absence of human capital considerations, performance pay would rise with experience.

Evaluating the incentive power of wage contracts and, more generally, distinct mech-

anisms for the variability of wages across individuals and over time involves a difficult

measurement exercise, since the underlying sources of the variation in wages are unob-

served and mediated by firm and worker behavior. We do so by first establishing that the

primitive forces we examine can be easily recovered from the life-cycle profile of mean

wages, their covariance structure, and the ratio of variable to total pay under intuitive con-

ditions. We then parameterize our model by matching how mean wages, their variance, and

the ratio of variable to total pay evolve with experience in the BGH data under alternative
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restrictions on the model’s parameters, so as to reduce our model to special cases studied in

the literature. This way, we can measure the strength of the incentives we focus on in typ-

ical data; examine how they shape performance pay and overall wages over the life cycle;

and, by comparing our model to existing ones, assess the extent to which integrating known

frameworks offers novel insights about the impact of performance incentives on wages.

Although workers receive little of their compensation as performance pay, we estimate

that performance pay is central to life-cycle wage growth because it encourages workers to

exert effort, which contributes to both output and the accumulation of human capital—as

we find it to be of the learning-by-doing type. Indeed, according to our baseline parameter-

ization, performance pay accounts for more than 30% of wage growth, once the cumulative

impact of effort on human capital accumulation is taken into account. Performance pay is

also crucial for wage dispersion: it accounts for a large portion of the variability of wages

over the first 10 to 20 years of labor market experience. To the best of our knowledge, these

estimates of the role of performance pay for life-cycle wages are new to the literature.

Interestingly, we find that the insurance against the wage risk due to the uncertainty

about ability, which wage contracts provide through low performance pay, is the primary

force depressing performance pay, rather than the contemporaneous risk-incentive trade-off

that much of the literature on performance incentives has emphasized.From an asset pricing

perspective, the intuition is simple. To reward effort, performance pay is large whenever

output is high and so news about ability, and future pay, are good. But then workers who are

paid according to performance-pay contracts effectively hold a portfolio of state-contingent

claims to output whose value comoves with their perceived ability. Such a portfolio pays

out more in good times—when output and thus signals about ability are high—and less

in bad times—when output and thus signals about ability are low—thereby compounding

the risk that workers already face because their output fluctuates over time. Like any other

risk-averse investor, though, workers would prefer, and are willing to pay a premium for,

assets that diversify their risk. Accordingly, workers demand contracts that reduce the risk

generated by the variability of their output due to the variability of the beliefs about their

ability as learning about it occurs. Performance pay then tends to be small to partially shield

workers against the risk in lifetime wages induced by the uncertainty about their ability.1

1These results extend the intuition of Harris and Holmström [1982] on the insurance provided by wage
contracts to a framework with moral hazard, explicit performance incentives, and human capital acquisition.
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Since uncertainty about ability increases the variability of wages, a natural conjecture—

and a common reading of learning models—is that the variance of wages would be lower

in the absence of such uncertainty. This indeed would be the case if wage contracts did not

respond to changes in uncertainty. But since wage contracts are endogenous, performance

pay increases when uncertainty declines, as workers demand less insurance against the im-

plied wage risk. Higher performance pay, in turn, amplifies any residual productivity risk,

leading, on balance, to much greater wage dispersion. Hence, a trade-off exists between

ex-ante wage risk due to the uncertainty about workers’ productivity and ex-post wage risk

due to the variability in wages induced by performance pay. Such an exercise illustrates

the importance of accounting for the endogeneity of the wage structure when assessing the

role of different sources of wage dispersion, which has implications for the broader debate

on inequality. For instance, in the settings we consider, reducing the dispersion in worker

productivity early in the life cycle—say, through more schooling—may induce firms to

offer wages more sensitive to performance. Then, workers who are more homogeneous in

terms of their initial skills might end up experiencing more wage inequality.

Our paper relates to multiple strands of literature, including work on i) measuring the

impact of uncertainty and learning about ability for wages and job mobility (Arcidiacono

et al. [2010], Kahn and Lange [2014], Aryal et al. [2022], Keane et al. [2017], and Pas-

torino [2024]); ii) assessing the importance of human capital acquisition in the labor mar-

ket for wage growth (Heckman et al. [1998], Gladden and Taber [2009], and Taber and

Vejlin [2020]); iii) exploring the role of incentive pay for wage inequality and produc-

tivity (Lemieux et al. [2009] and Bloom and Van Reenen [2010]); and iv) estimating the

importance of implicit non-monetary incentives for performance and their interaction with

performance pay (Bandiera et al. [2005], Bandiera et al. [2009], and Bandiera et al. [2010]).

Much work has also emphasized the role for wages of persistent unobserved worker hetero-

geneity (Geweke and Keane [2000], Meghir and Pistaferri [2004], Low et al. [2010], and

Adda and Dustmann [2023]), which is at the heart of the incentive mechanisms we study.

The paper proceeds as follows. We discuss the evidence on performance pay in Section

2, introduce the model in Section 3, and characterize equilibrium in Sections 4 and 5. We

show how the model is identified in Section 6 and present our empirical exercises in Section

7. Section 8 concludes. The online appendix contains all omitted details.

5



2 Performance Pay over the Life Cycle
We start by providing evidence on the experience profile of the ratio of variable (perfor-

mance) pay to total pay using proprietary data from the personnel records of two firms

studied in three influential papers in the literature on careers, namely, Baker et al. [1994a,b]

(BGH) and Gibbs and Hendricks [2004] (GH) as well as public data from the PSID, the

NLSY79, and the NLSY97, described in the online appendix. All these data sets contain

information on workers’ fixed fit and variable pay vit—we focus on bonus pay for consis-

tency across them and because it is the most important component of variable pay—which

determine worker i’s wage wit = fit + vit in period t. Note that vit = btyit when variable

pay is proportional to output; also, if firm entry into the labor market is free, then average

wages equal average output—we will maintain both of these assumptions. In this case, the

ratio E[vit]/E[wit] equals the piece rate bt, which measures the sensitivity of pay to per-

formance. We estimate this ratio for men aged 21 to 65 from each dataset and plot it in

Figures 1 and A.1 against experience; see the online appendix for details.

Figure 1: Life-Cycle Ratio of Performance Pay to Total Pay in Proprietary Data

(a) BGH (b) GH

As Figures 1 and A.1 show, using these data spanning multiple years, workers, and

firms, we document that the importance of performance pay relative to total pay eventually

declines with experience, contrary to the prediction of existing models of career concerns

and performance incentives (see Gibbons and Murphy [1992]). The model we present next

is able to account for this pattern together with workers’ wages and tasks over the life cycle.

3 A Model of Learning, Human Capital, and Incentives
We now present the environment, define equilibrium, and discuss our setup.
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3.1 Environment

The labor market consists of heterogeneous risk-averse workers and homogeneous risk-

neutral firms that can freely enter the market. Time is discrete and ranges from 0 to T . We

index workers by i and time by t. Workers differ in their ability, which is subject to persis-

tent shocks and is not observed by any market participant, including workers themselves.

There are two tasks or activities that workers can perform in a firm, a simple task that re-

quires observable and contractable effort and a complex task that requires unobservable and

non-contractable effort—in the remarks below, we discuss how we interpret a worker’s job

as a bundle of these two tasks. Effort in both tasks augments output and influences human

capital acquisition. All firms observe workers’ output and employment contracts, and infer

a worker’s unobserved ability based on this information. Since all firms share the same

information, (employer) learning about workers’ ability is common.2

Production.The output technology, common to all firms, is such that worker i’s output is

yit = θit + ξkkit + ξ1ei1t + ξ2ei2t + εit (1)

in period t, where θit is the worker’s unobserved ability, kit is the worker’s human capital,

ei1t is the worker’s effort in the simple task, ei2t is the worker’s effort in the complex task,

and εit captures idiosyncratic variation in the worker’s output. The parameter ξk describes

the contribution of human capital to output, which we can set to one without loss (see

below), whereas the parameters ξ1 and ξ2 capture the contribution of each type of effort to

output. That the coefficient ξθ multiplying θit in (1) is one is without loss since ξθ can be

incorporated into θit. Worker i’s initial ability θi0 is drawn from a normal distribution with

mean mθ and variance σ2
θ and evolves over time according to the process θit+1 = θit + ζit,

where ζit is an unobserved idiosyncratic shock realized at the end of t. The shocks εit and

ζit are normally distributed with mean zero and variances σ2
ε and σ2

ζ , respectively.

Human Capital.Human capital evolves according to the law of motion

kit+1 = λkit + γ1ei1t + γ2ei2t + βt, (2)

2The labor market considered can be interpreted as one of many segmented by location, occupation, or
industry, each defined by a distribution of worker productivity and common output, learning, and human
capital technologies. What is important for our results is that these markets are sufficiently separate that
employment opportunities in other markets are irrelevant for workers’ and firms’ decisions in a given market.
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where (1−λ) ∈ [0, 1] is the depreciation rate, ki0 ≡ k0 is the initial stock of human capital,

γ1 and γ2 are, respectively, the rates at which effort in the simple and complex tasks affect

human capital, and βt is a time-varying constant.3 We can set ξk = 1 since we can absorb

it into γ1, γ2, and βt, and redefine human capital accordingly.4 This formulation of the

human capital process encompasses the case in which the effort to acquire human capital

complements the effort to produce output in both tasks (γ1, γ2 > 0), as in standard learning-

by-doing models, and the case in which the effort to acquire human capital substitutes the

effort to produce output in both tasks (γ1, γ2 < 0), as in models of learning-or-doing à la

Ben-Porath [1967]. In the first case, the investments in human capital in t are ei1t and ei2t

with corresponding rates of human capital accumulation γ1 and γ2. In the second case,

the investments in t are et − ei1t and et − ei2t with corresponding rates of human capital

accumulation |γ1| and |γ2|, where et is a worker’s endowment of time or efficiency units

in t and we absorb (γ1 + γ2)et into βt. Cases in which the effort to acquire human capital

complements the effort to produce output for one task and substitutes it for the other task are

also possible. Throughout, we refer to γ1 and γ2 as the rates of human capital accumulation.

Worker Preferences.The lifetime utility from period t on of a worker who receives the

wages {wt+τ}T−t
τ=0 and exerts the efforts {e1t+τ}T−t

τ=0 and {e2t+τ}T−t
τ=0 in the simple and com-

plex tasks, respectively, is − exp{−r
∑T−t

τ=0 δ
τ [wt+τ − c(e1t+τ , e2t+τ )]}, where r > 0 and δ

are a worker’s coefficient of (absolute) risk aversion and discount factor, respectively, and

c(e1, e2) = (ρ1e
2
1 +2ηe1e2 + ρ2e

2
2)/2 with ρ1, ρ2 > 0 is the monetary cost of the effort pair

(e1, e2).5 In what follows, we assume that ρ1 = ρ2 = 1 and η = 0, and consider the general

case in the online appendix. There, we show that equilibrium piece rates do not depend on

η and we can renormalize the model parameters to set ρ1 = ρ2 = 1.6

Contracts.Each period firms offer workers one-period employment contracts. A contract

for worker i in period t is a pair (ei1t, wit) consisting of the worker’s period-t effort in

the simple task, ei1t, and wage schedule to incentivize effort in the complex task, wit =

cit + bityit, where cit is the fixed component of worker i’s wage in t and bit is worker i’s

3We can allow for heterogeneous initial stocks of human capital provided that they are observable.
4Indeed, just rewrite (1) and (2) with k̂it = ξkkit, γ̂1 = ξkγ1, γ̂2 = ξkγ2, and β̂t = ξkβt.
5We assume quadratic costs for simplicity. Our equilibrium characterization extends to more general cost

functions, and so do our identification results, provided that the cost function is known.
6The value of η does not affect equilibrium piece rates since effort in the simple task is contractable, so

the provision of incentives for effort in the complex task is not influenced by effort in the simple task. In the
online appendix, we also consider a version of our model in which both tasks feature non-contractable effort.
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piece rate in t.7 Three reasons lead us to consider wage schedules that are linear in output.

First, this assumption is standard and so allows us to compare our framework to existing

ones. Second, contracts are often linear in output or approximately so in practice. Third,

linear contracts allow us to summarize the strength of contractual incentives for effort in

the complex task through a simple one-dimensional continuous measure, the piece rate bit.

3.2 Equilibrium

A worker’s history in t consists of the sequence of the worker’s effort choices in the com-

plex task, employment contracts, and output realizations up to t − 1. A strategy for a

firm specifies contract offers to workers conditional on the public portion of their histories.

A strategy for a worker specifies a choice of contract and effort in the complex task for

each history for the worker and contract offers by firms. We consider pure-strategy perfect

Bayesian equilibria. Free entry of firms together with their risk neutrality implies that in

equilibrium firms make zero expected profits each period. Thus, if (ei1t, wit) is worker i’s

equilibrium contract in period t when the public portion of the worker’s history is Iit, then

cit = (1− bit)E[yit|Iit], where E[yit|Iit] is worker i’s expected output in t given Iit. So,

wit = cit + bityit = (1− bit)E[yit|Iit] + bityit (3)

and worker i’s equilibrium contract in t can be described by the pair (ei1t, bit). By (1),

E[yit|Iit] depends on worker i’s prescribed equilibrium behavior up to t, which pins down

the worker’s human capital and effort choices in t, and on worker i’s conditional expected

ability, E[θit|Iit]. We discuss how the latter term is determined in the next section.

3.3 Discussion

We conclude by discussing some features of our model and dimensions along which it

can be extended; see the online appendix for details. We first note that our model can be

interpreted as the log version of a model in which the output and human capital technologies

are of the standard Cobb-Douglas form, namely, i) the period-t output of a worker with

unobserved ability Θt and human capital Kt who exerts efforts E1t in the simple task and

E2t in the complex task is Yt = ΘtKtE
ξ1
1tE

ξ2
2tΩt, where ξ1 and ξ2 are the parameters in (1)

and Ωt is a mean-one noise term; and ii) the human capital acquired in period t + 1 by a
7Gibbons and Murphy [1992] show that restricting attention to one-period contracts is equivalent to con-

sidering renegotiation-proof long-term contracts. Their proof extends to our environment.
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worker who in period t has human capital Kt and exerts efforts E1t in the simple task and

E2t in the complex task is BtK
λ
t E

γ1
1tE

γ2
2t , where Bt is a positive time-varying constant, and

λ, γ1, and γ2 are the parameters in (2).

As in Gibbons and Murphy [1992], we assume that workers have constant absolute risk

aversion preferences over present-discounted streams of wage payments, net of monetary

effort costs. This preference specification, which is common to models of dynamic moral

hazard for its tractability, allows us to abstract from wealth effects. Since, as is also com-

mon in the literature, output is linear in inputs, wages are linear in output, shocks to ability

are additive, and initial ability, ability shocks, and output shocks are normally distributed,

worker preferences admit a certainty-equivalent representation. This feature, in turn, im-

plies that a worker’s trade-off between consumption or wages and leisure does not depend

on a worker’s history, which enables us to completely characterize equilibrium.

Our model extends existing dynamic moral-hazard models by allowing for multiple

worker activities or tasks so as to micro-found the notion of a worker’s job and the result-

ing assignment process by linking a worker’s job to the content or responsibilities it entails,

which are contractable to different degrees and can change with a worker’s experience. For

instance, in the BGH data we use, as discussed in Section 7.6, workers progress over time to

more complex jobs for which general management duties—such as general administration

or planning—requiring workers to perform activities difficult to contract become increas-

ingly more important, whereas simpler activities easier to contract—such as creating or

selling products—correspondingly decrease in importance.

Our model also nests well-known models of learning about ability, human capital accu-

mulation, and performance incentives. When ability is known and there exists a single task

requiring contractable effort (ξ2 = γ2 = 0), our model reduces to one of dynamic labor

supply and human capital accumulation through investments that can complement or sub-

stitute for the time expended to produce output.8 When effort is not a choice variable, the

model specializes to one of human capital acquisition with experience, which is “passive”

if γ1 > 0 (learning-by-doing) and “active” if γ1 < 0 (learning-or-doing). When there exists

a single task requiring non-contractable effort (ξ1 = γ1 = 0), effort does not contribute to

human capital (γ2 = 0), and ability is not subject to shocks (σ2
ζ = 0), the model simpli-

8The version of our model featuring just the task requiring non-contractable effort, known ability, and no
noise in output is equivalent. In this case, piece rates are one so workers are paid their output.
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fies to the career-concerns model with explicit incentives of Gibbons and Murphy [1992].

Without performance pay, the model further reduces to the career-concerns model of Holm-

ström [1999]. When, in addition, effort is not a choice variable, our model is a symmetric

learning model with ability general across firms as in Farber and Gibbons [1996].9

Finally, our analysis applies essentially unaltered if instead of capturing the entire sur-

plus from their matches with firms, workers capture only a fraction of it, so as to allow for

a wage markdown of workers’ output; see the online appendix. Also, by reinterpreting the

term βt in the law of motion for human capital in (2) as a firm productivity parameter, our

model extends to settings in which firms differ in their productivity. To see how, suppose

that firms are characterized by a productivity level p so that the output of worker i in t when

employed by a firm of productivity p = pit is yit = pit + θit + kit + ξ1ei1t + ξ2ei2t + εit—

in our baseline model with homogeneous firms, p is absorbed in βt. Assume that in each

period, a worker is matched with a set of heterogeneous firms that Bertrand-compete for

workers; see Pastorino [2024]. If the firm at which a worker is most productive changes

over time, say, because of productivity shocks, then the wage equation in our model is

analogous to that in Bagger et al. [2014]. We do not explicitly consider such heterogeneity

in our analysis for simplicity, as we use data from one firm in our empirical exercises.

4 Learning and Effort in the Complex Task
In this section, we present key results for our equilibrium characterization. We first describe

the process of learning about ability. We then determine a worker’s choice of effort in the

complex task—the task with non-contractable effort—for given employment contracts and

characterize how it depends on career concerns and human capital acquisition incentives.

4.1 Learning about Ability

Firms and workers learn about a worker’s ability over time by observing a worker’s output.

Consider worker i in period t, whose equilibrium effort choices and human capital in t

are e∗1t, e
∗
2t, and k∗

t , respectively; we omit the dependence of effort choices and human

capital on i for ease of notation. Let zit = yit − k∗
t − ξ1e

∗
1t − ξ2e

∗
2t be the portion of the

worker’s output in t that is not explained by the worker’s human capital and efforts. By

9When firms can commit to long-term contracts without performance pay, our framework extends that of
Harris and Holmström [1982] to a setting with moral hazard and human capital acquisition.
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(1), zit = θit + εit is the signal about the worker’s ability in t extracted from the worker’s

output. Since initial ability and shocks to ability and output are normally distributed, it

follows that posterior beliefs about a worker’s ability in any period are normally distributed

and so fully described by their mean mit = E[θit|Iit] and variance σ2
it = Var[θit|Iit], with

mi0 = mθ and σ2
i0 = σ2

θ . We refer to mit as worker i’s reputation in t. By standard results,

mit+1 =
σ2
ε

σ2
it + σ2

ε

mit +
σ2
it

σ2
it + σ2

ε

zit and σ2
it+1 =

σ2
itσ

2
ε

σ2
it + σ2

ε

+ σ2
ζ . (4)

The recursions for mit and σ2
it in (4) describe how a worker’s reputation and the variance

of posterior beliefs about a worker’s ability evolve over time. These expressions are valid

even when a worker’s effort in the complex task deviates from the equilibrium path as any

output realization is possible regardless of a worker’s effort choices, so firms cannot use

realized output to infer a worker’s unobservable effort in the complex task. Note that σ2
it

evolves independently of zit and so is common to all workers in t. Thus, we can suppress

the subscript i and simply denote this variance by σ2
t . By iterating on the law of motion for

mit in (4), we can trace out a worker’s reputation as signals about ability accumulate. With

µt ≡ σ2
ε/(σ

2
t + σ2

ε) and the convention that
∏0

k=1 ak = 1 for any sequence {ak}, worker i’s

reputation in period t+ τ with 1 ≤ τ ≤ T − t given reputation mit in period t is

mit+τ =
(∏τ−1

k=0
µt+k

)
mit +

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)zit+s. (5)

4.2 Effort in the Complex Task

As it turns out, the equilibrium is unique, symmetric, and such that effort choices and

piece rates depend only on time. We present here the workers’ problem and decompose the

returns to effort in the complex task into terms capturing the incentives from workers’ desire

to affect their reputation—the career-concerns incentive—and to acquire human capital.

Worker Problem.Suppose workers face a sequence of employment contracts {(e1t, bt)}Tt=0

such that efforts in the simple task and piece rates depend only on time. Consider worker

i’s period-t choice of effort in the complex task, e2t, when the worker’s future effort choices

in this task depend only on time. Let wit+τ be worker i’s wage in period t+τ with 0 ≤ τ ≤

T − t. The worker chooses e2t to maximize Uit(e2t) = E[− exp{−r[Wit − c(e1t, e2t)]}|ht
i],

where Wit =
∑T−t

τ=0 δ
τwit+τ . Note that the expectation in Uit(e2t) is conditional on worker

i’s period-t history ht
i. Yet, as we will see, the choice of e2t that maximizes Uit(e2t) is

12



independent of ht
i; it is also independent of e1t. Since signals about ability are normally

distributed, it follows from (3) and (5) that the wages {wit+τ}T−t
τ=0 are normally distributed,

and so is their present-discounted value Wit. Thus, e2t maximizes Uit(e2t) if, and only if, it

maximizes E[Wit|ht
i]− rVar[Wit|ht

i]/2− e22t/2.10

First-Order Conditions for Effort.Notice that ∂E[wit|ht
i]/∂e2t = ξ2bt by (1) and (3).

Worker i’s choice of effort in the complex task also affects the worker’s future wages

through its impact on the worker’s future reputation—which affects the fixed component

of future pay—and on the worker’s future human capital—which affects both the fixed and

variable components of future pay. Since E[Wit|ht
i] =

∑T−t
τ=0 δ

τE[wit+τ |ht
i] and, as we

show in the online appendix, effort in the complex task does not affect the variance of

future pay, the first-order condition for worker i’s effort in the complex task is

e2t = ξ2bt +
∑T−t

τ=1
δτ

∂E[wit+τ |ht
i]

∂e2t
. (6)

The right side of (6), which describes the marginal benefit of effort in the complex task in

t, consists of two terms. The first term captures the static marginal benefit of effort. The

second term captures its dynamic marginal benefit, which is nonzero as long as t < T .11

Let µ̂t,τ = (
∏τ−1

k=1 µt+τ−k)(1−µt) and define the terms RCC,t and RHK,t to be such that

RCC,t =
∑T−t

τ=1
δτ (1− bt+τ )µ̂t,τ and RHK,t = γ2

∑T−t

τ=1
δτλτ−1(bt+τ +RCC,t+τ ). (7)

In the online appendix, we show that we can express the first-order condition in (6) as

e2t = ξ2bt + ξ2RCC,t +RHK,t. (8)

The terms ξ2RCC,t and RHK,t respectively describe the dynamic marginal benefit of effort

in the complex task arising from its effect on a worker’s reputation and human capital,

which provides implicit incentives for effort through variation in both the fixed and variable

components of pay.12 To understand ξ2RCC,t, note that at the margin, higher e2t increases

the expected period-t signal about worker ability by ξ2. By (5), this increases a worker’s

10Recall that E[exp{rX}] = exp{rµ−r2σ2/2} if X is normally distributed with mean µ and variance σ2.
11As in Gibbons and Murphy [1992], we allow for negative effort so as to use first-order conditions to

characterize workers’ effort choices. We later provide conditions under which effort is positive.
12Note from (8) that effort choices in the complex task depend only on time and are identical across

workers—the mean-variance representation of worker preferences implies that a worker’s trade-off between
wages and effort in the complex task does not depend on a worker’s history. This fact plays a key role in the
proof that the equilibrium is symmetric and such that effort choices and piece rates depend only on time.
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expected reputation in period t+ τ , with 1 ≤ τ ≤ T − t, by ξ2µ̂t,τ . In turn, at the margin, a

higher reputation in t + τ increases the fixed component of the wage in t + τ by 1− bt+τ .

The term RCC,t is the present-discounted value of all these marginal increases. Similarly,

to understand RHK,t, note that at the margin, higher e2t changes worker i’s output t + τ

by γ2λ
τ−1, which amounts to the change in the worker’s stock of human capital in t + τ .

This change in output affects the variable component of the wage in t + τ by bt+τγ2λ
τ−1.

It also affects the magnitude of the signal about the worker’s ability in t + τ by γ2λ
τ−1,

which, by the same argument used to derive RCC,t, increases the present-discounted value

of the fixed component of the wages from t + τ on by γ2λ
τ−1RCC,t+τ . The term RHK,t is

the present-discounted value of all these marginal changes.

5 Equilibrium Characterization and Properties
We first characterize equilibrium and then examine the life-cycle pattern of piece rates,

effort choices, and job assignments implied by it.

5.1 Equilibrium Characterization

Recall that µt = σ2
ε/(σ

2
t+σ2

ε) and
∏0

k=1 ak = 1 for any sequence {ak}. Let {σ2
t }t≥0 be such

that σ0 = σ2
θ and σ2

t+1 = µtσ
2
t + σ2

ζ . By the results in Section 4, the variance σ2
t describes

the uncertainty about a worker’s ability in period t. Since output signals do not perfectly

reveal ability, this uncertainty persists throughout a worker’s career and converges to a non-

negative value σ2
∞, which is positive if σ2

ζ > 0. In particular, the variance σ2
t monotonically

decreases to σ2
∞ if σ2

θ > σ2
∞ and monotonically increases to σ2

∞ if σ2
θ < σ2

∞.13

Proposition 1. In the unique equilibrium, piece rates and effort choices are the same for

all workers and depend only on time. Let e∗1t, e
∗
2t, and b∗t be, respectively, the equilibrium

efforts in the simple and complex tasks and the equilibrium piece rate in t. For each t, let

b0t = 1/[1 + (r/ξ22)(σ
2
t + σ2

ε)], R
∗
CC,t and R∗

HK,t be given by (7) with bt = b∗t for all t, and

H∗
t = σ2

t

∑T−t
τ=1 δ

τ . Then, e∗1t = ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1, e∗2t = ξ2b

∗
t + ξ2R

∗
CC,t +R∗

HK,t, and

b∗t = b0t

(
1 +

γ2
ξ2

∑T−t

τ=1
δτλτ−1 − 1

ξ2
R∗

HK,t −R∗
CC,t −

r

ξ22
H∗

t

)
. (9)

We discussed the expression for e∗2t in Section 4. In any period t, effort in the complex
13One can show that σ2

∞ = [σ2
ζ +(σ4

ζ +4σ2
ζσ

2
ε)

1/2]/2; see Holmström [1999] for a proof of this result and
of the properties of σ2

t . Kahn and Lange [2014] refer to σ2
ζ > 0 as “learning about a moving target” and find

evidence of it from the correlation between performance ratings and wages in the BGH data.
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task equates the marginal cost of effort to its marginal private benefit, which features a static

and a dynamic component. The latter arises from the impact of effort on a worker’s future

reputation and human capital. By contrast, in any period t, effort in the simple task equates

the marginal cost of effort to its marginal social (output) benefit, ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1.14

To understand the expression for equilibrium piece rates, first note that b0t is the piece

rate of canonical static linear-normal models of incentives with quadratic effort costs when

the variance of output is σ2
t + σ2

ε and the coefficient of risk aversion is r/ξ22 . Now, by the

expression for e∗2t, the term 1 + (γ2/ξ2)
∑T−t

τ=1 δ
τλτ−1 − (1/ξ2)R

∗
HK,t − R∗

CC,t is the piece

rate that equates the marginal cost of effort in the complex task to its marginal social benefit

in period t, γ2 + ξ2
∑T−1

τ=1 δ
τλτ−1. As is well known, equilibrium piece rates deviate from

first-best piece rates since risk-averse workers are unwilling to bear all output risk.15 In a

static setting, this distortion results in piece rates being adjusted by the factor b0t < 1. In our

dynamic setting, an additional distortion arises because of the risky process through which

learning about ability occurs: any variation in output in t < T leads to variation not only

in wages in t but also in future wages as the latter depend on a worker’s reputation, which

evolves with a worker’s realized output. The insurance term (r/ξ22)H
∗
t mitigates this risk

by reducing the correlation between a worker’s performance and pay when t < T .16

By re-arranging (9), equilibrium piece rates can be expressed as

b∗t = b0t − b0tR
∗
CC,t − b0t (r/ξ

2
2)H

∗
t + (b0t/ξ2)

(
γ2

∑T−t

τ=1
δτλτ−1 −R∗

HK,t

)
. (10)

This decomposition of piece rates helps illustrate how the economic forces at play in our

model shape the provision of explicit incentives for effort in the complex task over time.

The first term in (10) is the piece rate that firms would offer to workers in a static setting,

whereas the second and third terms in (10) capture the contribution of uncertainty and

learning about ability to piece rates and are familiar from Gibbons and Murphy [1992].

14Note that e∗1t is positive for all t when γ1 ≥ 0. When γ1 < 0, we have that e∗1t is positive for all t if
γ1 > ξ1(λ− 1/δ) and e∗10 is positive. By the expressions for R∗

CC,t and R∗
HK,t, it follows that e∗2t is positive

for all t if γ2 > 0 and piece rates are between zero and one. Moreover, if piece rates are strictly positive and
bounded above by one, then e∗2t is positive even when γ2 < 0 as long as |γ2|/ξ2 is small.

15Indeed, b∗T = 1 if r = 0. This, in turn, implies that R∗
CC,T−1 = 0 and R∗

HK,T−1 = (γ2/ξ2)δ so that
b∗T−1 = 1. By induction, b∗t = 1, R∗

CC,t = 0, and R∗
HK,t = (γ2/ξ2)

∑T−t
τ=1 δ

τλτ−1 for all t. In this case,
implicit incentives for effort arise solely from human capital considerations.

16That the insurance term (r/ξ22)H
∗
t depends only on the uncertainty about ability σ2

t and not on total out-
put risk σ2

t +σ2
ε follows from the fact that the life-cycle wage risk due to uncertainty and learning about ability

is due to the correlation between current and future wages through worker ability. This correlation depends
only on the uncertainty about ability, as output shocks—the other source of output risk—is idiosyncratic.
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The second term lowers the explicit incentives for effort provided by piece rates in light of

the implicit reputational incentives arising from the uncertainty about ability. As discussed

above, the third term in (10) lowers piece rates to provide workers with insurance against

the life-cycle wage risk due to the process of learning about ability.

The last term in (10), which is novel, captures the contribution of human capital acqui-

sition and consists of two further terms. The first term is proportional to γ2
∑T−t

τ=1 δ
τλτ−1,

which is the present-discounted change in lifetime output resulting from the change in a

worker’s human capital following a marginal increase in effort in the complex task in t. The

second term, which is negatively proportional to R∗
HK,t, reflects the implicit incentives for

effort arising from the prospect of human capital acquisition, which substitute for explicit

incentives. This last term in (10) corrects piece rates to better align the private marginal

returns to effort in the complex task with the corresponding social marginal returns.

5.2 Piece Rates and Effort over the Life Cycle

We now discuss how learning about ability and human capital acquisition affect the life-

cycle profile of piece rates and effort choices. We first consider the cases in which either

human capital acquisition or learning are not present, which lead to counterfactual impli-

cations for piece rates, and then turn to the general case, which is consistent with the data.

Learning and Moral-Hazard Case.Suppose that γ1 = γ2 = 0 so workers do not accumu-

late human capital. Furthermore, assume that ξ2 = 1, which is without loss since the case

with ξ2 ̸= 1 is equivalent to the case with ξ2 = 1 and coefficient of risk aversion r′ = r/ξ22 .

Then, (9) becomes b∗t = b0t (1−R∗
CC,t−rH∗

t ). This setup generalizes the model in Gibbons

and Murphy [1992]—under the assumption of quadratic effort costs—in two ways. First,

we endogenize job assignment by allowing workers to perform two tasks, one requiring

contractable effort, the simple task, and one requiring non-contractable effort, the complex

task, whereas in Gibbons and Murphy [1992] workers perform only one task that requires

non-contractable effort. Second, unlike Gibbons and Murphy [1992], we allow ability to

stochastically change over time. As in Gibbons and Murphy [1992], the insurance against

life-cycle wage risk provided by the term rH∗
t can be strong enough that piece rates are

negative. This is the case early in a career if T is large and δ is close enough to one.17

17Also as in Gibbons and Murphy [1992], piece rates are smaller than one. Indeed, b∗t < b0t if R∗
CC,t > 0.

Moreover, b∗T < 1 implies that R∗
CC,T−1 > 0. An induction argument then shows that R∗

CC,t > 0 for all t.
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Since equilibrium piece rates do not depend on ξ1 or γ1, they reduce to the ones in

Gibbons and Murphy [1992] when σ2
ζ = 0 and ability is constant over time. To understand

how shocks to ability affect piece rates, note that a worker’s career-concerns incentive to

exert effort in the complex task increases not only with the uncertainty about the worker’s

ability but also with the worker’s time horizon—the shorter this horizon, the smaller the

gain from a higher reputation, and so the smaller the return from effort in the complex task.

When ability is constant, and so uncertainty about ability decreases monotonically to zero

over time, the two forces shaping implicit incentives for effort in the complex task—the

degree of uncertainty about ability and the length of the remaining working horizon—work

in the same direction and weaken over time. Gibbons and Murphy [1992] shows that in

this case, firms compensate for the decline in implicit incentives for effort by increasing

the strength of explicit incentives over time. In the online appendix, we show that the same

logic applies when σ2
θ ≥ σ2

∞ and uncertainty about ability decreases over time. When,

instead, σ2
θ < σ2

∞ and uncertainty about ability increases over time, the two forces shaping

implicit incentives for effort move in opposite directions. However, if the working horizon

is long enough, then at some point the only force governing the evolution of piece rates

is the decrease in the working horizon, as uncertainty about ability eventually becomes

constant (σ2
t converges to σ2

∞). We thus have the following result.

Lemma 1. Piece rates eventually strictly increase over time if T is large enough. Moreover,

piece rates strictly increase over time if σ2
θ ≥ σ2

∞.

Consider now how workers’ effort choices and, correspondingly, their task allocation

varies over the life cycle. When γ1 = 0, effort in the simple task, e∗1t, is constant over time.

Since e∗2t = b∗t + R∗
CC,t, the life-cycle profile of effort in the complex task is ambiguous,

though. When σ2
θ ≥ σ2

∞, piece rates strictly increase over time, whereas R∗
CC,t strictly

decreases. A similar tension arises when σ2
θ < σ2

∞. Thus, a priori, workers’ task allocation

can change in different ways over the life cycle. When R∗
CC,t is small for all t—the empir-

ically relevant case, as we will discuss—the life-cycle pattern of effort in the complex task

is determined by the pattern of piece rates. In this case, workers progress to more complex

tasks over time in the sense that e∗2t − e∗1t increases strictly with t whenever σ2
θ ≥ σ2

∞.18

18In Section 7.6, we define the task complexity of a worker’s job in period t as (1 + e∗2t)/(1 + e∗1t) or,
equivalently, as ln((1 + e∗2t)/(1 + e∗1t)). When e∗1t and e∗2t are not too large, as we estimate, the pattern of
task complexity over time is governed by the pattern of e∗2t − e∗1t—just note that ln(1 + e) ≈ e.
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Human Capital and Moral-Hazard Case.Suppose now that σ2
θ = σ2

ζ = 0 so there exists

no uncertainty about workers’ ability. In this case, b0t ≡ b0 = 1/[1 + (r/ξ22)σ
2
ε ] and (9)

reduces to b∗t = b0[1+(γ2/ξ2)
∑T−t

τ=1 δ
τλτ−1(1−b∗t+τ )]. Piece rates thus vary over time only

because of firms’ desire to influence workers’ accumulation of human capital. This motive

contributes positively to piece rates when human capital is acquired through learning-by-

doing, that is, γ2 > 0, and piece rates are smaller than one, which holds if γ2 is not too

large.19 Indeed, when effort to produce output in the complex task complements the effort

to acquire human capital and piece rates are smaller than one, workers do not fully capture

the returns to their investments in human capital, γ2
∑T−t

τ=1 δ
τλτ−1, and so their willingness

to exert effort in the complex task is reduced. Piece rates partially offset this undersupply

of effort. More generally, piece rates are positive if γ2 ≥ ξ2(λ − 1/δ). Hence, even when

the effort to produce output in the complex task and the effort to acquire human capital are

rival, that is, γ2 < 0, it is optimal to induce workers to exert more effort for human capital

reasons if the trade-off between output and human capital production is not too severe.

The sign of γ2 also determines the evolution of piece rates over time. When γ2 < 0,

piece rates strictly increase over time. By contrast, when γ2 > 0, piece rates strictly de-

crease over time if γ2 is not too large. Intuitively, firms wish to encourage human capital

acquisition early in a worker’s career, when the return from doing so is largest. When the

effort to produce output in the complex task substitutes for the effort to acquire human cap-

ital, firms can do so by discouraging effort in the complex task early on. On the contrary,

when the effort to produce output in the complex task complements the effort to acquire

human capital, firms support human capital acquisition by encouraging effort in the com-

plex task early on. The reason why γ2 cannot be too large for this latter result to hold is that

equilibrium piece rates in one period decrease with equilibrium piece rates in the following

period when γ2 is positive—intuitively, when γ2 > 0, an increase in piece rates in subse-

quent periods increases the return to investments in human capital, thus reducing the need

to incentivize effort in the current period. Since b∗T−1 = b0[1 + (γ2/ξ2)δ(1 − b0)] linearly

increases with γ2, then b∗T−2 < b∗T−1 if γ2 is above a certain threshold. In this case, piece

rates oscillate over time in that b∗T−1 > b∗T , b∗T−2 < b∗T−1, b∗T−3 > b∗T−2, and so on.

19That piece rates can be greater than one when γ2 is positive and large follows from b∗t linearly increasing
with γ2 whenever

∑T−t
τ=1 δ

τλτ−1(1− b∗t+τ ) is positive.
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Lemma 2. There exists γ2 > 0 such that b∗t ∈ (0, 1) for all t if ξ2(λ − 1/δ) ≤ γ2 ≤ γ2.

Moreover, piece rates strictly increase over time when γ2 < 0, strictly decrease over time

when 0 < γ2 < λξ2[1 + (r/ξ22)σ
2
ε ], and (weakly) oscillate over time otherwise.

As for how efforts in the two tasks evolve over time, since e∗1t = ξ1 + γ1
∑T−t

τ=1 δ
τλτ−1,

effort in the simple task strictly decreases over time if γ1 > 0 and strictly increases over

time if γ1 < 0. Given that γ2
∑T−t

τ=1 δ
τλτ−1b∗t+τ = ξ2 + γ2

∑T−t
τ=1 δ

τλτ−1 − ξ2(b
∗
t/b

0) by (9),

effort in the complex task e∗2t equals ξ2+γ2
∑T−t

τ=1 δ
τλτ−1−(r/ξ2)σ

2
εb

∗
t , the socially optimal

level of effort in this task net of a term proportional to piece rates.20 When piece rates are

small, as in the data, the life-cycle profile of effort in the complex task is largely shaped by

the life-cycle profile of the term γ2
∑T−t

τ=1 δ
τλτ−1. In this case, whether e∗2t − e∗1t increases

or decreases over time depends on whether γ2 is smaller than or greater than γ1; namely,

workers progress towards more complex tasks in the first case and towards simpler tasks in

the second case. In our data, we find the opposite pattern—task complexity increases with

experience and γ1 < γ2—which lends support to the general case we consider next.

General Case.When uncertainty and learning about ability and human capital acquisition

are both present, naturally the stronger of these two forces shapes the experience profile of

piece rates. For instance, when shocks to ability are small enough that ability is effectively

known in the long run, human capital incentives eventually govern piece rates provided

that the working horizon is long enough. Intuitively, at some point the residual uncertainty

about ability becomes so small that learning about it no longer matters for the evolution of

piece rates. Thus, towards the end of workers’ career, piece rates strictly decrease over time

when 0 < γ2 < λξ2[1 + (r/ξ22)σ
2
ε ] and oscillate over time when γ2 > λξ2[1 + (r/ξ22)σ

2
ε ].

21

By contrast, when the importance of human capital for the complex task is small, learning

about ability shapes the life-cycle profile of piece rates. In particular, when the working

horizon is long enough, piece rates eventually strictly increase over time. Proposition 2

below summarizes this discussion.22

20It might appear counterintuitive that effort in the complex task decreases with piece rates. Note, however,
that piece rates help align the private and social marginal returns to effort in the complex task. Then, it is
precisely when workers’ incentives to exert effort are low that piece rates are high.

21For ease of exposition, we ignore the knife-edge case in which γ2 = λξ2[1 + (r/ξ22)σ
2
ε)]. In this case,

piece rates are eventually approximately constant if σ2
ζ is sufficiently small and T is large enough.

22In light of Lemmas 1 and 2, a natural conjecture is that piece rates eventually strictly increase over time
when γ2 < 0, since in this case learning and human capital acquisition influence piece rates in the same way
in the long run. We show in the online appendix that this is true when human capital depreciation is small.
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Proposition 2. For a fixed γ2 > 0, piece rates either eventually strictly decrease over

time, when γ2 < λξ2[1 + (r/ξ22)σ
2
ε ], or eventually oscillate over time, when γ2 > λξ2[1 +

(r/ξ22)σ
2
ε ], provided that σ2

ζ is small enough and T is sufficiently large. By contrast, piece

rates eventually strictly increase over time if |γ2| is small enough and T is sufficiently large.

An implication of Proposition 2 is that as long as the working horizon is long enough,

the fact that piece rates decrease with experience as workers approach the end of their

careers suggests that human capital acquisition matters for the complex task. Furthermore,

when shocks to ability are small—as we estimate—Proposition 2 and the fact that piece

rates eventually decrease with experience suggest that the effort to produce output in the

complex task complements the effort to acquire human capital.

Another consequence of Proposition 2 is that when shocks to ability are sufficiently

small and the working horizon is long enough, piece rates are not maximized at the end

of a worker’s career when the rate at which effort in the complex task increases human

capital is positive but not too large. If, in addition, the initial uncertainty about ability is

not too small and piece rates are between zero and one, then piece rates are not maximized

at the start of a worker’s career either. Indeed, when the initial uncertainty about ability is

not too small, the insurance against life-cycle wage risk at the start of a worker’s career is

strong enough to make piece rates lower than the static ones, and thus lower than the last-

period piece rate—piece rates between zero and one ensure that both the career-concerns

and human capital motives contribute negatively to piece rates, so that they are bounded

above by b0t [1 + (γ2/ξ2)
∑T−t

τ=1 δ
τλτ−1 − (r/ξ22)σ

2
θ

∑T
τ=1 δ

τ ]. Hence, there exist conditions

under which piece rates are maximized at an intermediate level of experience—namely,

they display a hump-shaped pattern with experience, as we observe in the data.

Proposition 3. Let 0 < γ2 < λξ2[1 + (r/ξ22)σ
2
ε ] and suppose that piece rates are between

zero and one. Then, piece rates are maximized at an intermediate level of experience if σ2
θ

is sufficiently large, σ2
ζ is sufficiently small, and T is large enough.

As discussed, that piece rates eventually strictly decrease with experience suggests that

human capital acquisition matters for effort in the complex task. Since, by continuity, σ2
θ

and σ2
ζ small imply that the experience profile of piece rates is shaped by human capital

considerations, which, by Lemma 2, cannot generate a hump-shaped profile, such a profile

in the data also suggests that uncertainty and learning about ability matters for piece rates.

20



We conclude this section by discussing how workers’ effort choices vary over the life

cycle in the general case. Since the life-cycle profile of effort in the simple task depends

only on the sign of γ1, the discussion in the human capital and moral-hazard case applies

here without change. As for effort in the complex task, first note from (9) that ξ2(b∗t/b
0
t ) =

ξ2 + γ2
∑T−t

τ=1 δ
τλτ−1 − R∗

HK,t − ξ2R
∗
CC,t − (r/ξ2)H

∗
t . Thus, since ξ2R

∗
CC,t + R∗

HK,t =

e∗2t − ξ2b
∗
t , it follows that e∗2t = ξ2 + γ2

∑T−t
τ=1 δ

τλτ−1 − (r/ξ2)[(σ
2
t + σ2

ε)b
∗
t + H∗

t ], and

the expression for effort in the complex task is similar to that in the human capital and

moral-hazard case, except that b∗t is now multiplied by σ2
t + σ2

ε and an additional negative

term proportional to H∗
t arises. Intuitively, the life-cycle wage risk due to uncertainty and

learning about ability further depresses effort in the complex task relative to the first-best

level. Since H∗
t strictly decreases with t, the additional negative term slows down the

decrease of effort in the complex task over time compared to the human capital and moral-

hazard case. Hence, unlike in that case, when piece rates are small, workers progress over

time to more complex tasks even when γ2 is greater than γ1, precisely as we estimate.

6 Empirical Content of the Model
Our model is identified from the first and second moments of the distribution of wages and

the ratio of variable to total pay over the life cycle up to the level normalization of mean

ability mθ.23 In establishing this result, we treat the discount factor δ and the sensitivity of

output to effort in the simple and complex tasks, ξ1 and ξ2, as known. We discuss in Section

7.6 how these restrictions can be relaxed. Since we can absorb k0 into mθ, we set k0 = 0.24

Proposition 4. The piece rates {b∗t}Tt=0 and variance parameters (σ2
θ , σ

2
ε , σ

2
ζ ) are identified

from a panel of wages and their components. Once piece rates and (σ2
θ , σ

2
ε , σ

2
ζ ) are identi-

fied, the risk aversion parameter r, the rate of human capital accumulation in the complex

task γ2, and the depreciation rate 1− λ are identified from piece rates. Finally, once piece

rates and (σ2
θ , σ

2
ε , σ

2
ζ , r, γ2, λ) are identified, the rate of human capital accumulation in the

simple task γ1 and the drift terms {βt}T−1
t=0 are identified from average wages up to mθ.

We divide our identification argument into three sequential steps. First, we show how

piece rates and the variance of ability, output shocks, and ability shocks—namely, σ2
θ , σ2

ε ,
23See Margiotta and Miller [2000], Gayle and Miller [2009, 2015], and Golan et al. [2015] on the identifi-

cation of moral-hazard models of executive pay. Unlike these authors, we consider a model that also features
learning about ability and persistent shocks to it, and rely only on information on wages and their structure.

24Indeed, by rewriting (2) with β̂t = βt − (1− λt)k0 in place of βt, we can absorb k0 into mθ.
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and σ2
ζ—are identified. Because wages are linear in output, the ratio of average variable

pay to average total pay identifies piece rates at each level of experience, as argued in

Section 2. Once piece rates are known, the covariance structure of the distribution of wages

identifies σ2
θ , σ2

ε , and σ2
ζ . Next, we show how r, λ, and γ2 are identified. The last-period

piece rate identifies the risk aversion parameter, since once the variance of output, which

is determined by the variance of workers’ ability and output shocks, is recovered, its only

unknown parameter is r. Piece rates in previous periods reflect the depreciation rate of

human capital 1 − λ and the rate γ2 at which effort in the complex task changes human

capital, so they pin down those parameters. Lastly, as for γ1 and {βt}T−1
t=0 , the average wage

in the first period identifies effort in the simple task in this period (up to mθ), which in turn

pins down γ1. Then, effort in the simple task in all subsequent periods is identified so that

average wages in all such periods can be used to back out the evolution of a worker’s human

capital stock, from which {βt}T−1
t=0 can be recovered. Intuitively, any difference between a

worker’s stock of human capital in t and undepreciated stock of human capital from t − 1

that is not explained by effort in the two tasks in t− 1 is due to the drift term βt−1.

We conclude this section with three remarks. First, unlike in the instrumental-variable

approaches common in the literature (Gibbons et al. [2005]), our argument does not require

any exogenous variation. Second, since the parameters of the learning process are identified

independently of those of the human capital process, the recovery of the learning process

is robust to the specification of the human capital process.25 Third, in the online appendix,

we show that a more general version of the model, in which parameters unobservably differ

across workers, is also identified, even when wages are measured with error.

7 The Role of Learning, Human Capital, and Incentives
In this section, we analyze how the incentives provided by performance pay, learning about

ability, and human capital acquisition and the risk implied by them together shape the

life-cycle profile of wages and their structure. Since our model admits a variety of life-

cycle patterns for average wages, their variance, and piece rates, we propose in Section 7.1

three alternative parameterizations. For each of them, we restrict the model to feature only

non-contractable effort so as to focus on the interplay between implicit and explicit incen-
25With performance information, which is often available (Frederiksen et al. [2017]), these results extend

to the case in which human capital evolves nonparametrically with effort. Details are available upon request.
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tives for performance. The first parameterization assumes that piece rates are exogenous,

whereas the second one treats them as endogenous. Although our model is very parsimo-

nious and highly overidentified, both of these parameterized versions of it fit the targeted

moments very well. We also explore a third parameterization that imposes a lower variance

of output shocks and so a higher speed of learning about ability than implied by the first

two, more in line with existing estimates. The drawback of this parameterization is that

its implications for piece rates are clearly rejected by the data. Nevertheless, we think of

it as useful in demonstrating how central the learning process—specifically, the speed of

learning about ability—is to the evolution of wages with experience. The three parameter-

izations clearly illustrate how accounting for performance pay is key to accounting for the

variance of wages over the life cycle.

In Section 7.2, we show how our integrated model compares with four prominent mod-

els in the literature that are nested by it, each of which addresses only some of the aspects

of the data we consider. This section demonstrates the ability of our model to combine

existing frameworks to offer a novel and more comprehensive account of the wage process.

We then explore the implications of the three parameterizations described for lifetime

wage risk and the incentives for effort (Section 7.3), decompose piece rates into their prim-

itive components (Section 7.4), and examine the contribution of performance pay to life-

cycle wage growth and dispersion (Section 7.5). This analysis illustrates how uncertainty

about worker productivity is a powerful force depressing piece rates and how performance

pay is nonetheless central to the dynamics of wages.

In Section 7.6, we explore a final parameterization with both contractable and non-

contractable effort to examine how the allocation of effort towards activities that are easy

(simple tasks) and activities that are difficult (complex tasks) to contract varies over time in

response to the incentives we focus on. We find that the effort paths implied by our model

are in line with the evolution of the complexity of workers’ jobs over their careers at the

BGH firm. Importantly, this exercise shows that even once we incorporate a standard di-

mension of labor supply—contractable effort—performance incentives and the effort they

sustain still play a key role for the growth and dispersion of wages throughout the life cycle.

All our parameterizations are disciplined by the experience profiles of average wages,

the variance of wages, and piece rates from the BGH data introduced in Section 2. Nu-

merous papers—DeVaro and Waldman [2012], Kahn and Lange [2014], Frederiksen et al.
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[2017], Ekinci et al. [2018], and Pastorino [2024] just to name a few—have exploited the

rich information on compensation, jobs, and worker performance in these data.26 All this

work supports the notion that learning about ability matters for careers at the BGH firm,

which is a key assumption of our model. Crucially, wage profiles in the BGH data are com-

parable with those documented based on more representative data sets. For instance, the log

wages of male college-educated workers increase by 0.67 log points (95%) during the first

30 years of labor market experience in the BGH data, which is consistent with the wage

growth of about 1 log point documented by Elsby and Shapiro [2012] from U.S. census

data between 1960 and 2000. Rubinstein and Weiss [2006] find similar estimates using the

PSID between 1968 and 1997 and the NLSY79.

7.1 Three Model Parameterizations

As mentioned, our first three parameterizations assume that all effort is non-contractable

and thus feature ξ1 = γ1 =0. Our first parameterization targets the life-cycle profile of the

variance of wages and average wages from the BGH data using the three learning param-

eters (σ2
θ , σ

2
ε , σ

2
ζ ) and the two parameters (γ2, λ) governing human capital acquisition—its

accumulation rate in the complex task and its depreciation rate, respectively. This first

parameterization simply imposes that piece rates {b∗t} are given by their empirical coun-

terparts in the BGH data. That is, we deliberately choose not to impose the restrictions on

piece rates imposed by optimal contracting. By Section 6, we know that without perfor-

mance pay, we lack crucial information to identify the risk aversion parameter r/ξ22 .

The implied parameter values are reported in column 1 of Table 1. Figure 2 shows how

well the model (red lines) reproduces the life-cycle profile of the variance of wages (panel a)

and of wage growth (panel b) in the data (blue lines) across 40 years of experience. It turns

out that this version of the model fits the data best when σζ=0 so ability is constant over the

life cycle.We estimate a standard deviation of shocks to output σε (per worker) close to half-

a-million dollars and a standard deviation of ability across workers σθ of about 50 thousand

dollars. The remarkably good fit of the model to the profile of the variance of wages derives

from the fact that this variance in any period t, Var[wit]=σ2
θ + tσ2

ζ − σ2
t + (b∗t )

2(σ2
t +σ2

ε),

incorporates piece rates—namely, the square of the period piece rate b∗t multiplied by the
26We thank Michael Gibbs for sharing these data. Frederiksen et al. [2017] report many regularities in terms

of the distribution of wages and performance management systems across the BGH and five other firm-level
data sets. See also Waldman [2012] for the similarity of patterns across the BGH firm and many others.
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variance of output σ2
t + σ2

ε , as shown in Lemma A.2.The large variance of output shocks

σ2
ε implies that the hump-shaped pattern of piece rates in the data leads to a hump-shaped

pattern for the variance of wages. (A high value for σ2
θ would have a similar effect on the

variance of wages late in working life but would counterfactually imply a high variance

early on.) Our model can thus match both the overall level of the variance of wages and

its decline late in working life. This evidence validates that performance pay is central to

understanding the variance of wages over the life cycle.

Table 1: Parameter Estimates Based on BGH Data

Parameters Exogenous Endogenous Faster Learning
Piece Rates Piece Rates (K0=0.2 and K∞=0.05)

(1) (2) (3)
σθ: std. dev. ability (1,000 of 1988 $) 49.1 49.2 28.9
σζ : std. dev. ability shock (1,000 of 1988 $) 0.0 0.0 2.97
σε: std. dev. output shock (1,000 of 1988 $) 439.4 522.9 57.8
γ2: human capital acc. rate (complex task) 0.939 0.804 0.461
λ: human capital depr. rate 0.967 0.991 0.974
r/ξ22 : effective risk aversion N/A 0.00024 N/A

Note: The model in column 1 imposes the observed piece rates. The model in column 2 frees all parame-
ters and endogenizes piece rates. The model in column 3 imposes a speed of learning in t = 0 of K0 = 0.2
and in the limit as t → ∞ of K∞ = 0.05 as additional parameter restrictions. All models feature only non-
contractable effort (ξ1 = γ1 = 0), ξ2 = 1, and T = 40. Parameters are estimated by equally weighted mini-
mum distance at very high levels of precision not reported here; details are available upon request.

Figure 2: Fit of Model with Exogenous Piece Rates

(a) Variance of Wages (b) Wage Growth

Our second parameterization endogenizes piece rates so that we can recover the pa-

rameter r/ξ22 that captures the curvature of workers’ utility with respect to consumption

and effort governing the trade-off between risk and incentives. Endogenizing piece rates

imposes T = 40 additional constraints given by (9), which describes how piece rates vary

as a function of the model parameters and experience. Panel c of Figure 3 shows that our

full model (red line) successfully fits the life-cycle profile of performance pay in the BGH
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data (blue line), although it allows for only one additional parameter, r/ξ22 , relative to the

model with exogenous piece rates. The model still matches the variance of wages and their

growth over the life cycle very well. Except for r/ξ22 , parameter estimates are very similar

to those obtained with exogenous piece rates. Thus, the model with endogenous piece rates

is able to reproduce the data closely so endogenizing piece rates does not compromise the

fit of our model to the remaining moments.

Figure 3: Fit of Model with Endogenous Piece Rates

(a) Variance of Wages (b) Wage Growth

(c) Piece Rates

It is instructive to consider the features of the data behind the large estimate of the

variance σ2
ε of output shocks. For this result, it is not sufficient that piece rates at the

end of working life (T ) are low, since both the variance of output shocks and workers’

degree of risk aversion can account for low piece rates. However, when σ2
ε is small and

output signals are informative about ability so that learning about it is rapid, the life-cycle

wage risk due to the uncertainty about ability would rapidly decrease over the first half of

workers’ careers and hence piece rates would drastically vary over the life cycle, a pattern

that is highly counterfactual. As we discuss below, our third parameterization, which forces

a lower value for σ2
ε , leads to this counterfactual prediction. Instead, a large value for σ2

ε
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is consistent with both the observed level and range of piece rates over the life cycle—

together with the decline of piece rates late in working life, it also helps account for the

hump-shaped pattern of the variance of wages, as argued.

The estimated rates of human capital accumulation and depreciation (γ2, λ) are reported

in columns 1 and 2. That γ2 is positive implies that human capital is acquired through

learning-by-doing—we obtain a positive value since piece rates are declining late in work-

ing life, as established in Section 5.2. The estimated values of 0.939 for γ2 and 0.967 for

λ in column 1 imply that a marginal increase in effort that induces a one-dollar increase in

output this year leads to 0.94 dollars of additional output next year. Over the life cycle, the

resulting increase in the present-discounted value of output amounts to 11.2 dollars. The

estimates for the model with endogenous piece rates in column 1 have similar implications:

they entail large output (social) returns to effort through human capital accumulation.

The wage (private) returns to workers, however, are much smaller due to the risk that

workers face. Recall from (7) that the marginal return to effort due to human capital ac-

quisition, RHK,t = γ2
∑T−t

τ=1 δ
τλτ−1(bt+τ + RCC,t+τ ), captures the impact of an increase

in current effort on future human capital, which affects a worker’s presented-discounted

value of future variable pay, γ2
∑T−t

τ=1 δ
τλτ−1bt+τ , and fixed pay, γ2

∑T−t
τ=1 δ

τλτ−1RCC,t+τ ,

as higher human capital increases (expected) output leading on average to higher beliefs

about ability. Note that the term bt+τ+RCC,t+τ would be equal to one each period if work-

ers were risk neutral, and social and private returns to human capital would coincide. But

since workers are risk averse, ability (σ2
t ) and output (σ2

ε ) risk dampens the benefit to work-

ers of investing in human capital in terms of future wages—the largest value of bt+τ is

about 0.05 and, as shown in panels a and b of Figure 8, the value of RCC,t+τ (red lines) is

small so the term bt+τ+RCC,t+τ is also small. That wage risk is sizable over the life cycle

is not an artifact of the large estimate of σ2
ε under this parameterization. Rather, it is due to

a large portion of this risk being correlated over time because it arises from the uncertainty

about workers’ ability. We return to this point in Section 7.3. See Low et al. [2010] for very

similar results on the role of persistent individual productivity risk for the wage process.27

So far we have shown that our model captures well the life-cycle evolution of the vari-

27Matching a shorter life-cycle horizon (T = 30) or allowing for worker exit from the labor market con-
sidered (which leads to a higher effective discount rate of future wages δ̂ = δs, where s is the exogenous rate
of separation) would imply much lower values for σ2

ε and γ2, due to the lower insurance workers demand,
and a much higher speed of learning than under our baseline. Details are available upon request.
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ance of wages, average wages, and piece rates with only six parameters. Some of our

estimates differ from estimates in the literature on learning, though. In particular, Altonji

and Pierret [1997], Lange [2007], Arcidiacono et al. [2010], and Aryal et al. [2022] sug-

gest that firms are able to learn rapidly about unobserved worker productivity. In addition,

Kahn and Lange [2014] find evidence that worker productivity changes over the life cycle

so that firms continue to learn about this “moving target”. Our parameter estimates, which

are more in line with those in Pastorino [2024], instead imply that firms learn slowly about

worker productivity. In light of these observations, we consider next a parameterization

that forces a faster learning speed about the ability of both young and old workers. In

particular, we impose two additional restrictions on the learning process, namely, that the

speed of learning, defined as the weight Kt = σ2
t /(σ

2
t + σ2

ε) placed on output signals in the

updating of beliefs about ability, is 0.2 at the beginning of a worker’s career (t = 0) and

0.05 at the end of it (t → ∞). A speed of learning of 0.2 early in life is consistent with

Lange [2007] and Aryal et al. [2022], whereas a speed of learning of 0.05 late in life is

consistent with learning continuing throughout the life cycle as in Kahn and Lange [2014].

We then reestimate our model imposing both the exogenous piece rates taken from the data

and the two restrictions K0=σ2
θ/(σ

2
θ + σ2

ε)=0.2 and K∞=σ2
∞/(σ2

∞ + σ2
ε)=0.05. For this

exercise, we target the life-cycle profiles of the variance of wages and average wages.

Figure 4 displays how this version of the model fits the data. Naturally, the fit worsens

when we impose the restrictions described on the speed of learning.Yet, the model fits the

variance of wages and the growth of wages over the life cycle quite well.As panel a of Fig-

ure 4 shows, however, this parameterization does not capture the decline in the variance of

wages over the second-half of the life cycle. That is, it does not produce the observed hump

shape in the variance of wages. Indeed, rapid learning implies that the variance of wages

tends to increase over time. Column 3 of Table 1 reports the resulting estimates, which

imply a smaller rate of accumulation of human capital, γ2. Now, it turns out that impos-

ing these additional restrictions while allowing piece rates to be endogenously determined

as in (9) leads to piece rates vastly different from the observed ones—that is, negative

when workers are young, very large in magnitude, and rapidly increasing with experience.

Intuitively, since learning is fast, much new information is revealed early on. Workers then

demand insurance against the risk that negative output realizations reveal them to be of low
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ability, thus permanently lowering their future wages.They are partially insured against this

risk by firms through negative piece rates when young.28 But as the remaining working life

shortens and posterior beliefs about ability become more precise, lifetime risk decreases

and hence piece rates rapidly increase—all features at odds with the data.

Figure 4: Fit of Model with Faster Learning

(a) Variance of Wages (b) Wage Growth

We have proposed three alternative parameterizations that emphasize different aspects

of the data and incorporate priors on values of the model’s parameters that reflect a number

of estimates in the literature. As such, they offer a useful contrast that underscores the

challenges of matching multiple key features of the dynamics of wages and the ability of

existing frameworks to address them. Below, we will use these parameterizations to provide

substantive answers to the questions about the magnitude of different sources of wage risk

for workers, the determinants of the returns to effort and of piece rates, and the importance

of performance pay. Before we do so, we turn to consider four prominent models in the

literature that are nested by our model, which help isolate the mechanisms we integrate. By

examining them one by one, we can explore the role of these mechanisms in more detail

and illustrate why none of these models in isolation can account for the data.

7.2 Comparison with Leading Models in Labor Economics

Our model nests several models central to labor and personnel economics. We now turn to

estimate four of them in order to illustrate the features of the data that cannot be matched

by these nested models, which helps validate our integrated approach. This exercise also

builds intuition for the features of the data that account for the estimates of the parameters

28Balancing negative piece rates would otherwise require extremely high output returns to human capital
acquisition through γ2, which would lead to counterfactual estimates for wage growth.
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of our model. Table 2 lists the four models, their main features, the parameter restrictions

that reduce our model to them, and the moments that each model does not explicitly account

for. We then reestimate the free parameters of each nested model using the moments it is

designed to match and examine how each one fits the data.

Table 2: Description of Nested Models
Model Economic Content Restriction Untargeted Moments
(1) (2) (3) (4)
Human Capital (HK) Full Information, Investment σε = σθ=0 Wage variance, PP
Learning No Hidden Effort, no HK γ2=e2t=0 Wage growth, PP
Career Concerns (CC) Learning, no PP, no HK γ2=bt=0 Wage growth, PP
CC and Perf. Pay (PP) Learning, PP, no HK γ2=0 Wage growth

Human Capital Model.Consider the pure human capital model with accumulation rate

γ2 and depreciation rate λ; leading references are Ben-Porath [1967] and Becker [1962].

Contrasting panel a of Figure 5 with panel b of Figure 3 reveals that this model fits wage

growth over the life cycle better than our baseline model. A depreciation rate 1−λ of

roughly 4% results in the decline in wage growth late in a worker’s career, whereas an

accumulation rate γ2 of 0.471 generates the rapid growth in wages early on. This result is

not surprising because the parameters (γ2, λ) are free to match the growth of wages over

the life cycle, whereas in our model, they are also constrained to match the life-cycle profile

of the variance of wages and piece rates. In its basic form, the human capital model has no

predictions about the variance of wages—conditional on acquired human capital—or their

structure, so it is silent about the level and life-cycle variability of performance pay.29

Learning Model.Consider the standard model of learning about ability without any ef-

fort choice, human capital acquisition, or contracting on performance. Farber and Gibbons

[1996] propose a tractable log-linear formulation of it to account for the variance of wages

over the life cycle. This learning model allows for heterogeneity in ability but has no im-

plications for wage growth and no prediction for either the level of performance pay or its

variation with workers’ experience (see Table 2). Panel b of Figure 5 shows the fit of this

model (red line) to the variance of wages over the life cycle (blue line), once we estimate

it using the two parameters (σ2
θ , σ

2
ε) governing the variance of ability and output shocks.

The model does quite well at capturing the increase in the variance of wages over the first

half of workers’ careers. Yet, it implies a monotone concave experience profile for it that

29Augmenting this model with heterogeneity in worker productivity would lead to variation in wages across
workers if wages reflect expected output.
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is at odds with the hump-shaped profile observed in the BGH data. These data suggest an

increasing and convex pattern for the variance of wages at low levels of experience (less

than 20 years) with a peak at around 20 years, followed by a period of moderate decline.

As argued, our model improves substantially on this pattern because piece rates exhibit a

hump-shaped pattern with experience and the variance of wages inherits it.

Figure 5: Fit of Nested Models

(a) Human Capital Model: Wage Growth (b) Learning Model: Variance of Wages

Career-Concerns Model.A process of learning about ability also governs the dynamics of

the model of implicit incentives for performance posited by Holmström [1999] in the early

1980s in response to the Fama conjecture. This conjecture holds that a reputation for high

productivity in the labor market can substitute for explicit incentives for performance, thus

eliminating the need for performance pay. Holmström [1999] shows that in the absence of

explicit incentives for performance, effort cannot by sustained over time. The core mecha-

nism of this model is that uncertainty about ability induces workers to exert effort so as to

improve the market’s expectation about their ability. As in our model, however, in equilib-

rium all workers choose the same effort level in any period and so the variance of wages is

entirely determined by the learning process. Thus, the fit of this model to the variance of

wages (unreported) is almost precisely the fit in panel b of Figure 5.

Career-Concerns and Performance-Pay Model.The last model in Table 2 is that of Gib-

bons and Murphy [1992]. As in Farber and Gibbons [1996] and Holmström [1999], it is a

model of uncertainty and learning about ability in which workers unobservably exert effort

when employed, but it also allows for explicit contracting on performance. Such a model

thus explores the interplay between implicit reputational incentives for performance and

explicit incentives from performance pay. We obtain it as a special case of our model by

31



restricting γ2 to zero (and λ to one) and estimate it by matching the profile of the variance of

wages and piece rates over the life cycle. The parameters for this exercise are the variance

of ability and output shocks (σ2
θ , σ

2
ε) and workers’ effective risk aversion r/ξ22 .

Figure 6: Fit of Nested Career-Concerns Model of Gibbons and Murphy [1992]

(a) Variance of Wages (b) Piece Rates

Figure 6 shows the fit of this model (red lines) to the two sets of targeted moments (blue

lines). This standard career-concerns model with explicit contracting is unable to simultane-

ously reproduce the evolution of the variance of wages and piece rates over the life cycle. In

particular, the implications of this model for the level and experience profile of piece rates

are starkly at odds with the data. In the absence of a human capital motive, piece rates are

predicted to start at a negative level (due to the career-concerns and insurance effects by

(10)) and increase rapidly over time as ability is progressively revealed and the wage risk

due to the uncertainty about it decreases. The estimate of the standard deviation of output

shocks σε is 29.4 thousand dollars—much smaller than the estimates for the full model

in columns 1 or 2 of Table 1—so ability is effectively known after just a few years. Both

workers’ career concerns and desire to insure against the risk of low realizations of ability

become less and less important as learning rapidly takes place, which leads workers and

firms to agree to high piece rates since the performance incentive problem becomes easier

to solve. As is common to learning models, workers are characterized by large differences

in ability relative to σε. We estimate the standard deviation of ability σθ to be 17 thousand

dollars. This heterogeneity in ability, the rapid market learning about it, and the variability

of beliefs about ability as information about it is acquired, taken together, impose substan-

tial wage risk on workers. Such risk and firms’ desire to partially insure workers against it

are crucial determinants of the magnitude and variation of performance pay over the life

cycle.We examine next the nature of this risk through the lens of our model.
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7.3 Life-Cycle Wage Risk and Strength of Incentives

We now discuss the implications of our model for workers’ wage risk and returns to effort.

Life-Cycle Wage Risk. The output yt realized in any period t has two effects on a worker’s

present-discounted value (PDV) of wages.First, it determines performance pay in t, namely,

b∗tyt. Second, it leads firms and workers to revise the mean of their beliefs about a worker’s

ability by [σ2
t /(σ

2
t +σ2

ε)]{yt−E[yt|It]}, where yt−E[yt|It] is the signal about ability zt

extracted from yt net of expected output E[yt|It] and σ2
t /(σ

2
t + σ2

ε) is the weight that the

updating process places on new signals by (4). Since beliefs follow a martingale process,

such a change in beliefs persists in expectation over time. Thus, realized output changes the

expected PDV of wages in t by [σ2
t /(σ

2
t + σ2

ε)]
∑T−t

τ=1 δ
τ{yt −E[yt|ht]}. The standard devi-

ations of these two components of the effect of output on future wages are b∗t
√
(σ2

t + σ2
ε)

(static risk) and [σ2
t /(σ

2
t + σ2

ε)](
∑T−t

τ=1 δ
τ )
√

(σ2
t + σ2

ε) (dynamic risk), respectively. They

reflect the variability of the expected PDV of wages in t due to the variability of output,

which affects performance pay, as captured by the first measure, and the information about

workers’ ability and so their future reputation, as captured by the second measure.

Figure 7 shows these two measures for our three parameterizations in Table 1. For all

of them, the wage risk induced by learning about ability is substantially larger than the

wage risk implied by contemporaneous performance pay, at least early in the life cycle.

For the two models in panels a and b that do not impose a fast speed of learning, dynamic

wage risk at t=0 is close to 90 thousand dollars (per year) with exogenous piece rates and

close to 80 thousand dollars with endogenous piece rates. Under both parameterizations,

dynamic wage risk declines fairly linearly over the life cycle. By contrast, static wage risk

never exceeds 25 thousand dollars (per year) and roughly follows the shape of piece rates.

When we impose a fast speed of learning in our third parameterization in column 3 of

the table, we estimate a substantially higher degree of risk associated with learning about

ability, as panel c shows. Specifically, the dynamic risk component early in a worker’s

career amounts to more than 200 thousand dollars. Young workers face such risk because

firms update their beliefs about workers’ ability rapidly early on, which leads to a large

variability in beliefs and so wages. The convex shape of the profile of dynamic risk arises

because beliefs quickly become more precise and less volatile over time given that ability is

learned quickly. Under this parameterization, ability is governed by a random walk process
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and thus learning continues throughout the life cycle. Indeed, sizable dynamic risk persists

even at 20 and 30 years of experience and it is substantially higher than the risk from

contemporaneous performance pay.

Figure 7: Sources of Dispersion in Lifetime Wages

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates

(c) With Faster Learning

To summarize, for all three parameterizations, life-cycle wage risk due to learning about

ability is much larger than contemporaneous wage risk due to performance pay. When

learning is slow, the difference in magnitude between the two types of risk is not quite as

stark. As a large noise in output signals results in a gradual learning process, the persistent

wage risk arising from the uncertainty about ability is nonetheless sizeable. When learning

is fast, highly volatile beliefs lead to an even larger degree of wage risk over the first half

of the life cycle. That dynamic wage risk greatly exceeds static wage risk is then robust

across very different versions of our model, whose common feature is that uncertainty

about ability is a key source of the dynamics of wages over the life cycle.

Returns to Effort in the Complex Task. By (6) and (7), we can decompose the marginal

returns to this effort into its determinants. In Figure 8, we plot them for the three parame-

terizations in Table 1. As the figure shows, across all three of them, the implicit dynamic
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returns from acquiring new human capital exceed those from both career concerns and

performance pay by a large margin over most of a worker’s career. Contrasting panels a

and b with c reveals that this finding is robust to very different values for the speed of

learning about ability, although the parameterization imposing fast learning implies signif-

icantly higher returns to both career concerns RCC,t =
∑T−t

τ=1 δ
τ (1−bt+τ )µ̂t,τ and human

capital RHK,t=γ2
∑T−t

τ=1 δ
τλτ−1(bt+τ+RCC,t+τ )—see the range of the panels—for two rea-

sons. First, effort raises output in expectation and so induces firms to favorably update their

beliefs about a worker’s ability, which increases a worker’s reputation and thus expected

future wages. A higher learning speed amplifies the impact of effort on a worker’s future

reputation, since it increases the weight σ2
t /(σ

2
t + σ2

ε) on new information in the updating

of beliefs about ability by (4), thereby increasing the marginal benefit of effort.

Figure 8: Returns to Effort in the Complex Task

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates

(c) With Faster Learning

Second, when learning is faster, increments to human capital are more rapidly capi-

talized into wages—in fact, any increase in the RCC,t term also increases RHK,t—which

raises the benefit of higher effort. Intuitively, faster learning is associated with a smaller

noise in output signals and so results in a rapidly declining variance of posterior beliefs

about ability, which leads to higher piece rates—b0t increases and H∗
t decreases in (10).
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Higher future piece rates in turn increase the marginal benefit of effort from accumulating

human capital by the first component of RHK,t, γ2
∑T−t

τ=1 δ
τλτ−1bt+τ . Faster learning also

strengthens career concerns due to the impact of effort on a worker’s future reputation, as

just argued, which in turn raises the marginal benefit of effort from accumulating human

capital by the second component of RHK,t, γ2
∑T−t

τ=1 δ
τλτ−1RCC,t+τ . Hence, greater incen-

tives for effort from learning also imply greater incentives for effort from human capital

acquisition. As we show next, that dynamic incentives from human capital matter more

than those from career concerns is a central feature of piece rates as well.

7.4 Decomposing Piece Rates

We have demonstrated that lifetime wage risk due to the uncertainty about ability greatly

exceeds the risk due to performance pay and that the dominant component of the returns to

effort are the returns from human capital. Decomposing piece rates using (10) into distinct

terms representing the incentives that workers face reinforces these findings.

Figure 9 shows the contribution of each such term across 40 years of experience for our

baseline parameterization in column 2 of Table 1, which features endogenous piece rates—

we place the four terms in two panels because of their different scale. Panel a displays

the static piece-rate, b0t , and career-concerns, b0tR
∗
CC,t, terms, both of which account for

a small portion of piece rates and their evolution over time, since the variance of output

shocks is large (σ2
ε ) and uncertainty about ability (σ2

θ ) is relatively small. The human capital,

(b0t/ξ2)(γ2
∑T−t

τ=1 δ
τλτ−1−R∗

HK,t), and insurance (or hedge), b0t (r/ξ
2
2)H

∗
t , terms in panel b

account for the bulk of piece rates at each level of experience. As these two sources of

incentives roughly offset each other, piece rates are on average quite small as in the data.

The fact that dynamic wage risk outweighs static wage risk as discussed in Section 7.3

explains why the insurance term H∗
t = −σ2

t

∑T−t
τ=1 δ

τ is so large (and negative). Because

of the magnitude of life-cycle wage risk, workers have a strong desire to insure against it.

Without markets providing insurance against low output realizations and so the revelation

of low ability, firms partially offer such insurance in the form of low piece rates.

This insurance effect can be interpreted using basic principles in portfolio theory. A

worker in any period t can be thought of as holding two assets. The first asset is perfor-

mance pay, whose payout occurs at the end of t—a performance asset. The variation in its

payout with output depends on the sign and size of the piece rate in t. When piece rates are
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positive, the value of this performance asset increases (respectively, decreases) with pos-

itive (respectively, negative) output realizations. The second asset is expected ability—an

ability asset—whose value increases with output, which is a signal about its worth. With a

high degree of uncertainty about ability and a long remaining career, the risk from holding

the ability asset is large. The term H∗
t is an insurance premium built into piece rates in

response to workers’ preference for assets that correlate little (ideally, negatively) with the

ability asset, which makes workers favor contracts with small or even negative piece rates.

Figure 9: Decomposition of Piece Rates

(a) Static Piece Rate and Career Concerns (b) Human Capital and Insurance

Finally, we find that the human capital term is sizable over the life cycle. Hence, hu-

man capital has an important effect not only on the implicit incentives for effort from higher

future wages but also on the explicit incentives for effort via piece rates. This result fol-

lows, conceptually, from the human capital process being of the learning-by-doing type

and, practically, from the high estimated productivity of effort in terms of human capital

production and the low estimated rate of human capital depreciation. Thus, although piece

rates are small, given the size of the static piece-rate and career-concerns terms, acquired

human capital is key to their determination—acquired human capital offsets the large esti-

mated insurance term H∗
t . As argued in Section 5.2, it is also critical to accounting for the

observed decline in piece rates over the second half of the life cycle, a pattern at odds with

the predictions of standard models of career concerns and performance pay.

7.5 The Importance of Performance Pay

We have demonstrated how workers’ aversion to the wage risk induced by the process of

learning about their ability is an important force governing performance pay, which leads

to small observed piece rates. The question then arises as to whether performance pay can
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be simply abstracted from when studying the wage process. We now argue how such an

approach would miss an important source of the dynamics of wages with experience.

Wage Growth. In our model, average wages change over time as effort in the complex task

and human capital vary, since E[wit]−E[wi1] = (e∗i2t − e∗i21)+(k∗
i2t − k∗

i21). In Figure 10

and panel a of Figure A.2, we show how changes in effort (e∗i2t − e∗i21) and human capital

(k∗
i2t − k∗

i21) contribute to the life-cycle profile of wages under our three parameterizations.

Figure 10: Dynamics of Effort, Human capital, and Wages

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates

Clearly, the accumulation of human capital drives wage growth over the life cycle as

effort tends to decline, although its decline is moderate compared to the increase in human

capital.30 Since effort changes little, it might be tempting to conclude that performance

pay cannot significantly affect wage growth. However, the decomposition in Figure 10 and

panel a of Figure A.2 only traces out the direct effect of effort on wage growth. According

to our model, though, effort is instrumental to accumulating human capital: this is the

key channel through which effort affects wage growth. One way to measure this indirect

effect of effort on wages is to constrain firms to offer contracts without variable pay (b∗t ≡

0) as in the setup of Holmström [1999]. Figure 11 and panel b of Figure A.2 show the

wage profiles obtained with (red lines) and without (blue lines) this restriction for our three

parameterizations. Since our third parameterization assumes that piece rates are exogenous

and, once they are endogenized, has implications for them at odds with the data, we find it

useful to focus on our first two parameterizations for this exercise.

Without performance pay, firms lack an important instrument to reward performance

and thereby encourage workers to exert effort. Relative to the baseline, much less effort is

30Under our third parameterization with a rapid speed of learning (panel a of Figure A.2), learning primar-
ily governs effort so effort declines more rapidly than under the other two, since ability is learned quickly.
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exerted and so much less human capital is acquired. Lower effort and human capital in turn

imply lower wage growth over the life cycle (red line) relative to our baseline (blue line),

as panel a and b of Figure 11 show. By the 20th year of experience, wage growth is at least

30% lower than in the baseline. Critically, although performance pay is small relative to

total pay, it has a substantial impact on life-cycle wage growth through its indirect effect

on workers’ process of human capital accumulation.31

Figure 11: Sensitivity of Wage Growth to Eliminating Performance Pay

(a) With Exogenous Piece Rates (b) With Endogenous Piece Rates

Wage Inequality.To measure how much performance pay contributes to wage dispersion,

we begin by decomposing the variance of wages into the variance of their fixed and variable

components at the estimated parameter values—recall that the variance of performance pay

is (b∗t )
2(σ2

t + σ2
ε) in t. Figure 12 shows this decomposition for our first two parameteriza-

tions. According to our baseline parameterization in column 2 of Table 1, since shocks to

output (σ2
ε ) are large, the variance of performance pay is large relative to the variance of

fixed (or base) pay for most of the life cycle—it accounts for more than 30% of the variance

of wages over the first 30 years in the labor market—as shown in panel b of Figure 12.32

Fixed pay, which is revised each period based on realized output and thus provides implicit

incentives for effort, increases slowly over time as information about ability is revealed.

Similar conclusions can be drawn when piece rates are exogenous from panel a of Figure

12. (Effectively, this panel also offers a decomposition of the variance of wages in the data,

since fixed pay correlates little with performance pay and so its variance can be backed out

as the vertical difference between the blue and green lines.) Thus, despite performance pay
31As discussed, with a rapid speed of learning, learning about ability has a large impact on effort. Corre-

spondingly, performance pay has a relatively small effect on wage growth; see panel b of Figure A.2.
32Relatedly, Lemieux et al. [2009] find in the PSID that the increased prevalence of performance pay from

the 1970s to the 1990s accounts for about 21% of the increase in the variance of (log) wages over this period.
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accounting for only a small fraction of total pay at any time, it is responsible for a large

portion of the variability of wages over the life cycle.33

It turns out that through performance pay b∗tyt, uncertainty about ability is a major

source of wage dispersion, due to its direct impact on the variability of beliefs (σ2
t ) and

so output (σ2
t + σ2

ε ) and, as panel a of Figure A.3 illustrates, its indirect impact on the

level of piece rates b∗t . In that panel, we compare the variance of wages under our baseline

parameterization (blue line) with the counterfactual one that would result at the estimated

piece rates without any heterogeneity in ability (lavender line)—that is, when σ2
θ =σ2

ζ =0—

which is much lower. Intuitively, lower dispersion in ability leads to lower wage dispersion.

Figure 12: Decomposition of the Variance of Wages

(a) With Exogenous Piece Rates
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Such a comparison, however, ignores that firms may offer different contracts in the ab-

sence of uncertainty about ability. Indeed, when we take into account firms’ incentives to

adjust piece rates, the variance of wages becomes six times larger (lavender line) than that

in the baseline model (blue line); see panel b of A.3. As panel c shows, this increase is

due to piece rates becoming much higher in response—up to three times as high (lavender

line) as those in the baseline (blue line). Higher piece rates amplify the residual produc-

tivity risk faced by workers, leading to much higher wage dispersion over most of the life

cycle. Hence, reducing differences in ability among workers ex ante induces firms to offer

contracts with a higher sensitivity of pay to performance ex post, which more than com-

pensates for the lower dispersion in ability giving rise, on balance, to much more variable

wages. So, lower dispersion in ability can actually lead to much higher wage dispersion.
33As panel c of Figure A.2 shows, imposing a fast speed of learning, as we do in our third parameterization,

and thus a low variance of output shocks leads to a small variance of performance pay. In this case, the life-
cycle increase in the variance of wages is almost all due to the increase in the variance of fixed pay, which is
at odds with the data over the first half of the life cycle; see panel a of Figure 12.
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7.6 Task Complexity over the Life Cycle

So far we have focused only on incentives for effort in the complex task.We now consider

the general case of our model in which workers perform both simple and complex tasks,

devoting possibly different amounts of effort to each, respectively ei1t and ei2t in any period

t. By interpreting these two efforts as proxies of the task content of a job, the ratio (1 +

ei2t)/(1 + ei1t) can then be viewed as capturing the task complexity of worker i’s job in t.

In the BGH data, an occupation or job is defined at the very granular level of the oc-

cupation’s job title (there are 276 in the dataset); its nature, and so the complexity of the

tasks it involves, can be inferred from the description of its cost center—the organizational

unit a job belongs to. BGH construct the firm’s job hierarchy based on workers’ transition

across job titles, which are aggregated into eight job levels, and find it to be divided into

two parts: the bottom rungs corresponding to job levels 1 to 4, at which nearly all workers

(managers) start their careers at the firm, and the top rungs corresponding to job levels 5 to

8 (chairperson-CEO). As BGH remark, jobs at higher levels of the job hierarchy, to which

workers progress over time, require “managing large groups, coordinating across business

units, and strategic planning, while lower level jobs depend more on specialized functional

knowledge and performing less complex tasks” (Baker et al. [1994a], p. 893).

At job levels 1 to 4, about 60% of the jobs relate to specific line (revenue-generating)

business units, which correspond to positions that involve direct contact with customers

or creating and selling products. Approximately 35% are overhead positions in areas such

as accounting, finance, or human resources. At job levels 5 and 6, the two percentages of

line business-unit and overhead activities decrease to 45% and 25%, respectively, whereas

general management descriptions such as general administration or planning increase to

about 30%—in practice, job levels 5 and 6 are the highest ones managers reach in our

sample.34 Based on these job descriptions and the definition of a complex task as related

to “managing large groups, coordinating across business units, and strategic planning” as

BGH suggest, we can then measure the degree to which a job engages a worker in non-

contractable effort by the proportion of general management or overhead activities it entails

and in contractable effort by the proportion of specific and easier to monitor activities,

involving direct contact with customers or creating and selling products, it entails.
34At job levels 7 or 8, all activities are general management or planning.
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We then estimate the version of our model augmented with effort in the simple task to

match the variance of wages, average wages, and piece rates over the life cycle, with the

additional parameter γ1 for the rate of human capital accumulation in the simple task—

recall that effort in the simple task affects a worker’s output, human capital, and so wage

by (1), (2), and (3), respectively. We find that this version of our model better fits life-

cycle wage growth; see panel b of Figure A.4. The estimates of the parameters that are

common to the baseline parameterization in column 2 of Table 1 are fairly similar. We

note that the estimate of γ1 is 0.14 and that of γ2, around 0.75, is now only slightly lower,

which confirms that effort in the complex task and performance pay still matter for the

growth and dispersion of wages over the life cycle. This version of our model is in line

with the range of task complexity of workers’ jobs (0.67 to 1.22 in the data and 0.71 to

1.01 in the model) as well as its mean (0.84 in the data and 0.79 in the model) in the BGH

data, although none of these statistics has been targeted. Qualitatively, this richer model

implies that as experience accumulates, workers eventually engage in more complex and

harder to contract activities—our estimated measure of task complexity tends to increase

with workers’ tenure in the data—in line with what BGH document.

We conclude that our model replicates well the intuitive feature that workers progress

over time to jobs that involve more complex tasks. Importantly, this exercise illustrates

that the life-cycle profile of workers’ tasks in our data validates not only our notion of jobs

and the resulting assignment process but also the learning, human capital, and incentive

mechanisms of our model for the wage process at the BGH firm.35

8 Conclusion
We propose a tractable model of the labor market to analyze how performance pay, un-

certainty and learning about ability, and human capital acquisition together determine life-

cycle wages and their components. This framework is flexible in that it both nests a number

of leading models of wage growth and dispersion and can be extended in several directions.

For instance, it is easy to allow for a much richer stochastic process for worker productivity

and for differences among workers in the efficiency of their ability and effort, which give
35We can extend our model to allow workers to be heterogeneous in their efficiency in performing the

complex task, namely, in the rate ξ2 at which their effort in the complex task increases output, and in how
their ability contributes to output, namely, in the rate ξθ at which their ability θ increases output. Both cases
lead to heterogeneous task assignment paths among workers. See the online appendix for details.
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rise to highly heterogeneous effort paths and task assignment profiles, as we show in the on-

line appendix. We find that two motives—namely, workers’ demand for insurance against

the substantial wage risk arising from the uncertainty about their productivity, and their

desire to invest in human capital—have sizable effects of opposite sign on the experience

profile of performance pay relative to total pay—negative and positive ones, respectively.

This tension rationalizes the low level of performance pay observed throughout the life cy-

cle for most workers and, contrary to the prediction of influential models of performance

incentives, its hump-shaped pattern relative to total pay. Although performance pay ac-

counts for a small fraction of pay, our analysis illustrates its centrality to the dynamics of

wages, which is due to its direct impact on the variability of wages and, most importantly,

its indirect impact on the process of human capital acquisition with experience. We hope

our results offer a first step toward richer models of incentives that can shed light on the

sources of wage inequality and its persistence over time.
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A Online Appendix
In this appendix, we begin by describing the data we use (Section A.1). Next, we derive the
equilibrium (Section A.2), prove the results of Section 5.2 concerning the life-cycle profile
of piece rates (Section A.3), and establish our identification results (Section A.4). Then,
we discuss several extensions of our framework: i) the general cost-function case (Section
A.5); ii) the alternative multi-tasking model in which both tasks feature non-contractable
effort (Section A.6); iii) the model with Cobb-Douglas technology (Section A.7); iv) the
model with wage markdowns (Section A.8); v) the model with observable productivity
shocks (Section A.9); and vi) the model with heterogeneous workers, either in their ability
at the complex task or in how their ability increases output (Section A.10). We conclude
by reporting the figures omitted from Section 7 (Section A.11).

A.1 Data Samples
We provide here details about the data we use in our analysis.
Public Data: PSID, NLSY79, and NLSY97.We focus on the main sample of the PSID
(Panel Study of Income Dynamics), excluding the poverty, Latino, and immigrant subsam-
ples, and consider male heads of households aged 21 to 65 observed between 1993 and
2013 with valid education information—that is, with more than zero and up to 17 years
of education, the largest value. We further restrict attention to those who work more than
45 weeks each year in any industry except for the government and the military, have non-
missing positive total labor income, and are not self-employed. The resulting sample con-
sists of more than 24,000 person-year observations. We calculate labor market experience
as potential experience, defined as the difference between an individual’s age (minus six)
and years of education. We refer to an individual’s labor income as the individual’s wage.
Although three measures of variable pay—namely, tips, bonuses, and commissions—are
available in the PSID from 1993 onward, we focus here only on bonus pay for consistency
across the data sets we examine. Bonus pay, though, is by far the most important com-
ponent of variable pay, making up 80% of variable pay in our sample. We regularize the
sample by excluding observations on bonus pay larger than total labor income and by win-
sorizing labor income at the 1st and 99th percentiles and bonus pay at the 99th percentile
of their respective distributions. Finally, we restrict attention to workers who ever receive
variable pay (bonus pay in our case) in their current job, that is, workers in performance-
pay jobs; this definition of a performance-pay job is the same as in Lemieux et al. [2009]. In
the resulting sample of workers in performance-pay jobs, the average salary is $80,000 (in
2009 dollars), with a standard deviation of $67,000, and the average bonus pay is $4,000,
with a standard deviation of $8,000. Panel a of Figure A.1 shows how the sensitivity of
pay to performance follows a hump-shaped pattern with experience. Analogous profiles
emerge if we divide the sample into workers with and without a college degree—the hump
shape of the experience profile of the sensitivity of pay to performance is most pronounced
in the college sample. The PSID data thus suggest that the sensitivity of pay to performance
increases early in the life cycle, peaks around its middle, and then subsequently declines.

We perform an analogous exercise in the NLSY79 (National Longitudinal Survey of
Youth–1979 Cohort) and NLSY97 (National Longitudinal Survey of Youth–1997 Cohort)
by applying the same sample selection criteria applied to the PSID, and find very similar
results—we note that only bonus pay is recorded for both the 1979 and the 1997 cohorts,
as tips and commissions are reported only for the latter cohort. Moreover, the amount
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of bonus pay received by a worker is effectively available in the NLSY79 only from the
2002 to the 2016 waves. The survey is administered biyearly over this period and since the
question about bonus pay is retrospectively asked about the previous year, we can measure
the amount of bonus pay that a worker receives for the years 2001, 2003, and so on, up
to 2015. By virtue of the design of these two data sets, in the NLSY79, we can observe
only individuals with 20 to 39 years of labor market experience. In the NLSY97, we can
observe only individuals with 0 to 19 years of experience. In the sample of workers with
performance-pay jobs, the average salary is $72,000 in the NLSY79 and $48,000 in the
NLSY97, with a standard deviation of $56,000 and $32,000, respectively. Average variable
pay is $3,800 and $2,000, with a standard deviation of $12,000 and $4,000. We note that
the statistics for the NLSY79 and the PSID are very similar. That the mean and standard
deviation of total pay and bonus pay in the NLSY97 are lower than in the NLSY79 one
is intuitive, since the former samples younger workers. Panel b of Figure A.1 shows that
the sensitivity of pay to performance exhibits a hump-shaped pattern in both the NLSY97
and the NLSY79, which is quite similar to the one we document in the PSID—the break in
panel b is due to the different cohorts tracked by the NLSY79 and the NLSY97.

Figure A.1: Life-Cycle Ratio of Performance Pay to Total Pay in Public Data

(a) PSID (b) NLSY97 and NLSY79

Proprietary Data: BGH and GH Data.We also use data from two large U.S. firms studied
in previous work and described in detail by Frederiksen et al. [2017]. As the identities of
these firms cannot be disclosed, we refer to them by the names of the authors who first
analyzed their data and so refer to them as the Baker-Gibbs-Holmström (BGH) firm and
the Gibbs-Hendricks (GH) firm. For both firms, we have information only on white-collar
workers—managers (supervisory workers) in the case of the BGH data. The BGH firm
operates in a service industry, and the data from it cover the period from 1969 to 1988.
Our analysis, however, is limited to the period between 1981 and 1988 because bonus pay,
which is the only form of variable pay that managers receive, is not available before 1981.
The BGH data contain 36,695 person-year observations and 9,800 unique individuals. As
the data cover only supervisory workers, the average salary is fairly high: $55,000 (in 1988
dollars), with a standard deviation of $31,500. On average, bonus pay accounts for almost
$2,000, with a standard deviation of about $7,600. Base salary makes up the remaining
$53,000, with a standard deviation of $27,700. The GH data cover the years from 1989 to
1993. We cannot reveal the industry that the firm belongs to. For the GH firm, we have
information about 15,648 individuals for a total of 47,715 person-year observations. As
these data pertain to all white-collar employees of the firm, the average salary is intuitively
lower than in the BGH data and close to $40,000 (in 1988 dollars), with a standard deviation
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of $28,000. Bonus pay on average accounts for almost $2,000, with a standard deviation of
about $9,300. The two panels of Figure 1 report the experience profile of the sensitivity of
pay to performance in the BGH and GH data, respectively, for managers between 21 to 65
years of age. In both firms, performance pay is hump-shaped relative to total pay, peaking
after about 20 years of experience in the BGH data and 30 years in the GH data. Analogous
patterns emerge if we focus on college-educated or non-college-educated workers.

A.2 Equilibrium Derivation
We first derive effort choices in the complex task for workers facing a sequence of employ-
ment contracts such that effort choices in the simple task and piece rates depend only on
time when workers’ future effort choices in the complex task also depend only on time. We
then determine the equilibrium employment contracts and show that they are the same for
all workers and are as described above. Finally, we derive the equilibrium.

A.2.1 First-Order Conditions for Effort in the Complex Task
We start with the following auxiliary result. Recall that if u and v are vectors in an Eu-
clidean space, then ⟨v, u⟩ denotes their scalar product.

Lemma A.1. Fix {at}Tt=1. For each 0 ≤ t ≤ T − 1,∑T−t

τ=1
δτ (1− bt+τ )

∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)as =

∑T−t

τ=1
δτaτRCC,t+τ .

Proof. The result is trivially true when t = T−1, as RCC,T = 0. Fix 0 ≤ t ≤ T−2, and let
u, v ∈ RT−t−1 be such that u = (at, . . . , aT−t−1) and v =

(
δ2(1−bt+2), . . . , δ

T−t(1−bT )
)
.

Moreover, let A be the square matrix of order T − t − 1 such that Aij = 0 if i < j and
Aij =

(∏i−j
k=1 µt+i+1−k

)
(1− µt+j) if i ≥ j. Then

⟨v, Au⟩ =
∑T−t−1

i=1
δi+1(1− bt+1+i)

∑i

j=1

(∏i−j

k=1
µt+i+1−k

)
(1− µt+j)aj

=
∑T−t

i=1
δi(1− bt+i)

∑i−1

j=1

(∏i−1−j

k=1
µt+i−k

)
(1− µt+j)aj,

where the second equality follows from the change of variable i 7→ i−1 and the fact that the
term i = 1 in the sum is zero. Now let D be the diagonal matrix of order T − t−1 such that
Dii = δi and denote the transpose of a matrix M by M ′. Then, since ⟨v, Au⟩ = ⟨A′v, u⟩,

⟨v, Au⟩ = ⟨(AD−1)′v,Du⟩ = ⟨(D−1)′A′v,Du⟩ = ⟨D−1A′v,Du⟩. (11)

On the other hand, given that (D−1A′v)i = δ−i(A′v)i = δ−i
∑T−t−1

j=1 Ajivj , it follows that

(D−1A′v)i = δ−i
∑T−t−1

j=i

(∏j−i

k=1
µt+j+1−k

)
(1− µt+i)δ

j+1(1− bt+1+j)

=
∑T−t−i

j=1

(∏j−1

k=1
µt+i−k

)
(1− µt+i)δ

j(1− bt+i+j) = RCC,t+i

for each 1 ≤ i ≤ T − t− 1; note the change of variables j 7→ j + i− 1. So, by (11),

⟨v,Au⟩ =
∑T−t−1

i=1
δiaiRCC,t+i =

∑T−t

i=1
δiaiRCC,t+i,

where we again used the fact that RCC,T = 0. This establishes the desired result.
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Suppose workers face a sequence {(e1t, bt)}Tt=0 of employment contracts such that e1t
and bt depend only on time and consider worker i’s choice of period-t effort in the complex
task, e2t, when the worker’s future choices of effort in this task also depend only on time.
We claim that e2t does not affect the variance of future wages. Indeed, since the variance
of signals about ability does not depend on current effort choices, (5) implies e2t does not
affect the variance of future reputations. Moreover, future effort choices and piece rates do
not depend on e2t, being dependent only on time. Finally, a worker’s stock of human capital
has no impact on the variance of output or wages. The argument in the main text then shows
that the first-order condition for worker i’s optimal choice of effort in the complex task in
period t is given by (6); recall that wit+τ and ht

i are, respectively, the worker’s wage in
period t+ τ with 0 ≤ τ ≤ T − t and history in period t. We claim that (6) reduces to (8).

First, by (3), wit+τ = (1− bt+τ )E[yit+τ |Iit+τ ] + bt+τyit+τ for all 1 ≤ τ ≤ T − t, where
yit+τ is worker i’s output in period t+τ and Iit+τ is the public information about the worker
that is available in the same period. Let mit+τ be the worker’s reputation in t+ τ ; note that
mit+τ depends on Iit+τ . Since for each 1 ≤ τ ≤ T − t, the effort e2t affects E[yit+τ |Iit+τ ]
only through its impact on mit+τ , as the other terms in the conditional expectation depend
on the worker’s conjectured effort and stock human capital in t+ τ and the worker’s future
effort choices depend only on time, it follows that

∂E[wit+τ |ht
i]

∂e2t
= (1− bt+τ )

∂E[mit+τ |ht
i]

∂e2t
+ bt+τ

∂E[yit+τ |ht
i]

∂e2t

for all 1 ≤ τ ≤ T − t. Now note that ∂E[yit+τ |ht
i]/∂e2t = γ2λ

τ−1 for all 1 ≤ τ ≤ T − t,
again since worker i’s behavior from t+ 1 on depends only on time. Moreover, from (5),

∂E[mit+τ |ht
i]

∂e2t
=

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

∂E[zit+s|ht
i]

∂e2t

=
(∏τ−1

k=1
µt+τ−k

)
(1− µt)

∂E[zit|ht
i]

∂e2t

+
∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)

∂E[zit+s|ht
i]

∂e2t
,

where zit+s is the signal about worker i’s ability in t + s. Since ∂E[zit|ht
i]/∂e2t = ξ2 and

∂E[zit+s|ht
i]/∂e2t = γ2λ

s−1 for all 1 ≤ s ≤ T − t, we can rewrite (6) as

e2t = ξ2bt + ξ2
∑T−t

τ=1
δτ (1− bt+τ )

(∏τ−1

k=1
µt+τ−k

)
(1− µt)

+ γ2
∑T−t

τ=1
δτ
{
(1− bt+τ )

∑τ−1

s=1

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)λ

s−1 + bt+τλ
τ−1

}
.

The desired result follows from Lemma A.1 with aτ = λτ−1.
Condition (8) is necessary for optimality. It is also sufficient since the marginal benefit

of effort in the complex task—the right side of (8)—is independent of the effort exerted,
while the marginal cost—the left side of (8)—is increasing with the effort exerted.

A.2.2 Equilibrium Employment Contracts
We now solve for the last-period equilibrium employment contracts and then proceed back-
wards to determine the equilibrium employment contracts in previous periods. With this
characterization of employment contracts at hand, we rely on (8) to derive the equilibrium
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choices of effort in the complex task, provided that equilibrium efforts and piece rates de-
pend only on time, which will be the case.
Last-Period Employment Contracts.The absence of dynamic considerations in the last
period implies that a workers’ choice of effort in the complex task is e2 = ξ2b if the piece
rate is b. Then, by the mean-variance representation of worker preferences and free entry of
firms, a worker’s equilibrium employment contract in T is the pair (e1, b) that maximizes
VT = E[wT |IT ] − rVar[wT |IT ]/2 − (e21 + e22)/2, where wT and IT are a worker’s wage
and public information in T , respectively. Competition between firms further implies that
E[wT |IT ] = E[yT |IT ]—this is a consequence of (3) and the law of iterated expectations.
Since Var[wT |IT ] = b2(σ2

T + σ2
ε) and E[yT |IT ] ∝ ξ1e1 + ξ2e2 = ξ1e1 + ξ22b, the pair

maximizing VT is (e1, b) = (e∗1T , b
∗
T ) with e∗1T = ξ1 and b∗T = 1/[1 + (r/ξ22)(σ

2
T + σ2

ε)].
Observe that the employment contract (e∗1T , b

∗
T ) is independent of IT and so the same for all

workers. In turn, this implies that in equilibrium workers’ choices of effort in the complex
task are independent of their private histories and so also the same for all of them.
Employment Contracts in Previous Periods.Let 0 ≤ t < T and suppose that equilibrium
efforts and piece rates from period t+1 on depend only on time; this is true for t = T − 1.
For each 1 ≤ τ ≤ T − t, let b∗t+τ be the equilibrium piece rate in period t + τ , and define
R∗

CC,t and R∗
HK,t as in (7) with bt+τ = b∗t+τ for each τ . Then, a worker’s period-t effort in

the complex task as a function of the piece rate b in t is

e2t = e2t(b) = ξ2b+ ξ2R
∗
CC,t +R∗

HK,t. (12)

Let wt+τ = wt+τ (b) and Wt = Wt(b) respectively be a worker’s wage in period t+ τ with
0 ≤ τ ≤ T − t and the present-discounted value of the wages from period t on as functions
of b. A worker’s equilibrium employment contract in t is the pair (e1, b) that maximizes
Vt = E[Wt|It]−rVar[Wt|It]/2− (e21t+e22t)/2, where It is the public information about the
worker in t. We determine the pair (e1, b) that maximizes Vt in what follows. As it turns
out, this pair is independent of It and so the same for all workers in t.

First, note that
∂E[Wt|It]

∂b
= ξ22 + ξ2γ2

∑T−t

τ=1
δτλτ−1. (13)

Indeed, if yt+τ is the worker’s output in period t+ τ with 0 ≤ τ ≤ T − t, then competition
between firms implies that E[wt+τ |It] = E[yt+τ |It] for all 0 ≤ τ ≤ T − t. By (1) and
(12), ∂E[yt|It]/∂b = ξ2∂e2t/∂b = ξ22 , which corresponds to the first term on the right
side of (13). Regarding the second term on the right side of (13), note that by increasing
effort in the complex task in t by ξ2 units, a marginal increase in b also changes expected
output in t+ τ with 1 ≤ τ ≤ T − t by ξ2γ2λ

τ−1 units, the change in the worker’s stock of
human capital in t+ τ . The second term is the present-discounted value of these expected
output changes. Now observe that since ∂E[yt|It]/∂e1 = ξ1 and, by a similar argument as
above, ∂E[yt+τ |It]/∂e1 = γ1λ

τ−1 for all 1 ≤ τ ≤ T − 1, it follows that ∂E[Wt|It]/∂e1 =
ξ1 + γ1

∑T−t
τ=1 δ

τλτ−1. We show below that

∂Var[Wt|It]
∂b

= 2b(σ2
t + σ2

ε) + 2H∗
t , (14)

where H∗
t = σ2

t

∑T−t
τ=1 δ

τ . The second term in ∂Var[Wt|It]/∂b reflects the fact that output
in t is correlated with future output through worker ability. By increasing b and so the
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correlation between a worker’s wage and ability in t, firms also increase the correlation
between a worker’s wage in t and future wages, thereby increasing Var[Wt|It]. Since
Var[Wt|It] is independent of e2t—this holds for the same reason that effort in the complex
task in t does not affect Var[Wt|It]—and ∂e2t/∂b = ξ2, it then follows that the first-order
conditions for the problem of maximizing Vt are

ξ1 + γ1
∑T−t

τ=1
δτλτ−1 − e1 = 0 and

ξ22 + ξ2γ2
∑T−t

τ=1
δτλτ−1 − rb(σ2

t + σ2
ε)− rH∗

t − ξ2e2t = 0. (15)

We now prove (14). Given that effort in the complex task does not affect the variance
of future wages, Var[Wt|It] depends on b only through its effect on the variance of wt. So,

Var[Wt|It] = Var[wt|It] + 2
∑T−t

τ=1
δτCov[wt, wt+τ |It] + Var0,

where Var[wt|It] = b2(σ2
t +σ2

ε) and Var0 is a term that does not depend on b. We claim that
Cov[wt, wt+τ |It] = bσ2

t for all 1 ≤ τ ≤ T − t, from which (14) follows. Since the worker’s
reputation in t is nonrandom conditional on It, Cov[wt, wt+τ |It] = bCov[yt, wt+τ |It] for all
1 ≤ τ ≤ T − t by (3). Now note, once again from (3), that

Cov[yt, wt+τ |It] = b∗t+τCov[yt, yt+τ |It] + (1− b∗t+τ )Cov[yt,mt+τ |It]

for all 1 ≤ τ ≤ T − t, where mt+τ = mt+τ (b) is a worker’s reputation in t+τ as a function
of the period-t piece rate. Like yt+τ , the reputation mt+τ depends on b only through the
impact of b on the workers’ effort in the complex task in t. Thus, if zt+s = zt+s(b) with
0 ≤ s ≤ T − t is the signal about ability in period t+ s as a function of b, then

Cov[yt, wt+τ |It] = b∗t+τCov[yt, yt+τ |It]

+ (1− b∗t+τ )
∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)Cov[yt, zt+s|It]

for all 1 ≤ τ ≤ T−t by (5). Now note that since Cov[yt, yt+τ |It] = σ2
t for all 1 ≤ τ ≤ T−t,

Cov[yt, zt+s|It] = σ2
t + σ2

ε if s = 0, and Cov[yt, zt+s|It] = σ2
t if 1 ≤ s ≤ T − t,

Cov[yt, wt+τ |It] = σ2
t

[
(1− b∗t+τ )

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s) + b∗t+τ

]
+ σ2

ε(1− b∗t+τ )
(∏τ−1

k=1
µt+τ−k

)
(1− µt).

To conclude, note that σ2
ε(1 − µt) = σ2

tµt and µt

∏τ−1
k=1 µt+τ−k =

∏τ
k=1 µt+τ−k together

imply that Cov[yt, wt+τ |It] is equal to

σ2
t

{
(1− b∗t+τ )

[∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s) +

∏τ

k=1
µt+τ−k

]
+ b∗t+τ

}
.

The desired result follows since the weights in the law of motion for a worker’s reputation
in (5) must sum up to one, so

∑τ−1
s=0

(∏τ−1−s
k=1 µt+τ−k

)
(1 − µt+s) = 1 −

∏τ
k=1 µt+τ−k and

the term in square brackets equals one.

6



The unique solution to (15) is (e1, b) = (e∗1t, b
∗
t ) with e∗1t = ξ1 + γ1

∑T−t
τ=1 δ

τλτ−1 and

b∗t = b0t

(
1 +

γ2
ξ2

∑T−t

τ=1
δτλτ−1 − 1

ξ2
R∗

HK,t −R∗
CC,t −

r

ξ22
H∗

t

)
,

by (12). Clearly, e∗1t is the choice of e1 that maximizes Vt no matter the choice of b. That
b∗t is that choice of b that maximizes Vt follows from the fact that Vt is strictly concave as a
function of b. Note that (e∗1t, b

∗
t ) is independent of It and so the same for all workers. The

pair (e∗1t, b
∗
t ) is the equilibrium employment contract in t under the induction hypothesis

that equilibrium efforts and piece rates from period t+ 1 on depend only on time.
Equilibrium Characterization.The above reasoning shows that if there exists t < T such
that from period t + 1 on, equilibrium piece rates and effort choices are the same for all
workers and depend only on time, then equilibrium employment contracts in period t are
such that piece rates and effort choices in the simple task are the same for all workers. In
turn, by (12), equilibrium choices of effort in the complex task are the same for all workers,
and thus depend only on t. Since last-period equilibrium piece rates and effort choices are
the same for all workers and (trivially) depend only on T , it then follows by induction that
the equilibrium piece rates and effort choices are the same for all workers and depend only
on time. From this, it further follows that the equilibrium is characterized by Proposition 1.

A.3 Piece Rates over the Life Cycle
We now prove the results in Section 5.2 concerning the life-cycle profile of piece rates.

A.3.1 Proof of Lemma 1
Consider first the case in which σ2

θ ≥ σ2
∞ and σ2

t is nonincreasing with t. Since H∗
T−1 > 0

and R∗
CC,T−1 = δ(1− b∗T )(1− µT−1) > 0, b∗T−1 = b0T−1(1−R∗

CC,T−1 − rH∗
T−1) < b0T−1 ≤

b0T = b∗T . Suppose, by induction, that there exists 1 ≤ t ≤ T−1 with R∗
CC,t+τ > R∗

CC,t+τ+1

and b∗t+τ < b∗t+τ+1 for all 0 ≤ τ ≤ T − t−1; the induction hypothesis is true for t = T −1.
Therefore,

R∗
CC,s >

∑T−s−1

τ=1
δτ (1− b∗s+τ )

(∏τ−1

k=1
µs+τ−k

)
(1− µs)

>
∑T−s−1

τ=1
δτ (1− b∗s+1+τ )

(∏τ−1

k=1
µs+τ−k

)
(1− µs),

where the first inequality follows since b∗T ∈ (0, 1) and µt ∈ (0, 1) for 0 ≤ t ≤ T and the
second inequality follows since b∗s+1+τ > b∗s+τ for all 1 ≤ τ ≤ T − s− 1 by the induction
hypothesis. Holmström [1999] shows that (1 − µs)

∏τ−1
k=1 µs+τ−k is a decreasing function

of µs (see argument in p. 174). Given that µs+1 ≥ µs, we then have that

R∗
CC,s >

∑T−s−1

τ=1
δτ (1− b∗s+1+τ )

(∏τ−1

k=1
µs+1+τ−k

)
(1− µs+1) = R∗

CC,s+1 = R∗
CC,t.

Now note that 1−R∗
CC,t − rH∗

t − b
[
1 + r(σ2

t + σ2
ε)
]
≤ 0 if b ≥ b∗t . Since R∗

CC,s > R∗
CC,t,

H∗
s ≥ H∗

t , and σ2
s ≥ σ2

t , it then follows that b ≥ b∗t implies that

1−R∗
CC,s − rH∗

s − b
[
1 + r(σ2

s + σ2
ε)] < 0.

We know from our equilibrium derivation that the first-order conditions in (15) are neces-
sary and sufficient for the equilibrium employment contracts. Hence, b∗s = b∗t−1 < b∗t and
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equilibrium piece rates strictly increase over time by induction. This concludes the first
part of the proof.

Now consider the case in which σ2
θ < σ2

∞. Fix T0 ≥ 0 and let T > T0; we pin down T0

below. Moreover, let µ∞ = σ2
ε/(σ

2
∞ + σ2

ε) and consider the difference equation

b∞t =
1

1 + r(σ2
∞ + σ2

ε)

[
1−

∑T−t

τ=1
δτ (1− b∞t+τ )µ

τ−1
∞ (1− µ∞)− rσ2

∞

∑T−t

τ=1
δτ
]

for T0 ≤ t ≤ T . By construction, b∞t is the equilibrium piece rate in period T0 ≤ t ≤ T if
uncertainty about ability from period T0 on were constant and equal to σ2

∞. We claim that
limσ2

T0
→σ2

∞
b∗t = b∞t for all such t. First note that limσ2

T0
→σ2

∞
b∗T = b∞T as σ2

T0
< σ2

T < σ2
∞.

Now suppose, by induction, that there exists T0 < t ≤ T such that limσ2
T0

→σ2
∞
b∗t+τ = b∞t+τ

for all 0 ≤ τ ≤ T − t; the induction hypothesis is true for t = T . The desired result holds
if limσ2

T0
→σ2

∞
b∗s = b∞s for s = t − 1. Given that σ2

T0
≤ σ2

s+τ < σ2
∞ for all 0 ≤ τ ≤ T − s,

it then follows that limσ2
T0

→σ2
∞
σ2
s+τ = σ2

∞, and thus limσ2
T0

→σ2
∞
µs+τ = µ∞, for all such τ .

This, in turn, implies that

lim
σ2
T0

→σ2
∞

b∗s =
1

1 + r(σ2
∞ + σ2

ε)

[
1−

∑T−s

τ=1
δτ (1− b∞s+τ )µ

τ−1
∞ (1− µ∞)− rσ2

∞

∑T−s

τ=1
δτ
]

by the induction hypothesis and the fact that the piece rate b∗s is jointly continuous in
(b∗s+1, . . . , b

∗
T , σ

2
s , µs, . . . , µT ). To conclude, note that since b∞t is strictly increasing with t

for all T0 ≤ t ≤ T by the first case in the proof, there exists η > 0 such that if |b∗t −b∞t | ≤ η
for all T0 ≤ t ≤ T , then b∗t is also strictly increasing with t for all such t. The desired result
follows since limT0→∞ σ2

T0
= σ2

∞ and limσ2
T0

→σ2
∞
b∗t = b∞t for all T0 ≤ t ≤ T , and so, by

taking T0 large enough, we can ensure that |b∗t − b∞t | ≤ η for all T0 ≤ t ≤ T .

A.3.2 Proof of Lemma 2
Let γ2 = ξ2(1 − δλ)rσ2

ε/δ. We claim that b∗t ∈ (0, 1) for all t if ξ2(λ − 1/δ) ≤ γ2 ≤ γ2.
Suppose, by induction, that there exists 1 ≤ t ≤ T such that b∗t+s ∈ (0, 1) for all 0 ≤ s ≤
T − t; the induction hypothesis is true if t = T . We are done if b∗s ∈ (0, 1) for s = t − 1.
First note that if γ2 ≤ γ2, then

b∗s < b0
[
1 +

γ2

ξ2

∑T−s

τ=1
δτλτ−1

]
< b0

[
1 +

γ2

ξ2

δ

1− δλ

]
= 1,

where the first inequality follows since b∗t > 0 for all s < t ≤ T by the induction hypothesis
and the equality follows from the definition of γ2. Moreover, if γ2 ≥ ξ2(λ− 1/δ), then

b∗s > b0
[
1 +

(
λ− 1

δ

)∑T−s

τ=1
δτλτ−1

]
> 0,

where the first inequality follows since b∗t < 1 for all s < t ≤ T by the induction hypothesis
and the second inequality follows because (λ− 1/δ)

∑T−s
τ=1 δ

τλτ−1 ≥ −1.
We now establish the properties of the experience profile of piece rates given γ2. Since

b∗t = b0
[
1 +

γ2
ξ2
δ(1− b∗t+1) +

γ2
ξ2

∑T−t

τ=2
δτλτ−1(1− b∗t+τ )

]
.
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and (γ2/ξ2)
∑T−t

τ=2 δ
τλτ−1(1− b∗t+τ ) = δλ(b∗t+1/b

0 − 1), we have that

b∗t = b0
(
1− δλ+

γ2
ξ2
δ

)
+ δb∗t+1

(
λ− b0

γ2
ξ2

)
(16)

for all 0 ≤ t ≤ T −1. Given that b∗T−1 = b0[1+ (γ2/ξ2)δ(1− b∗T )] < b0 = b∗T when γ2 < 0,
it follows from (16) that b∗t strictly increases with t in this case—just note from (16) that
b∗T−2 < b0[1 − δλ + (γ2/ξ2)δ] + δb∗T (λ − b0γ2/ξ2) = b∗T−1 and apply a straightforward
induction argument. Consider now the case in which γ2 > 0. As b∗T−1 > b∗T when γ2 > 0
and the coefficient of b∗t+1 in (16) is positive (respectively, negative) when γ2 < γ̃2 =
λξ2[1 + (r/ξ22)σ

2
ε ] (respectively, γ2 > γ̃2), it then follows by induction that b∗t is strictly

decreasing (respectively, oscillating) with t when γ2 < γ̃2 (respectively, γ2 > γ̃2).

A.3.3 Proof of Proposition 2 and Extension
Let γ2 > 0 and, for simplicity, assume that σ2

ζ = 0. Since the equations for the equilibrium
piece rates depend continuously on σ2

ζ and σ2
t eventually becomes small when σ2

ζ is small,
we can extend the argument to the case in which σ2

ζ is positive but small. Fix T0 > 0 and
let T > T0; we pin down T0 below. Now consider the difference equation

bhct =
1

1 + rσ2
ε

[
1 + γ2

∑T−t

τ=1
δτλτ−1(1− bhct+1)

]
for T0 ≤ t ≤ T . By definition, bhct is the piece rate in period T0 ≤ t ≤ T if only human
capital acquisition were present. The same argument as that in the proof of Lemma 1 shows
that limσ2

T0
→0 b

∗
t = bhct for all T0 ≤ t ≤ T . Since, by Lemma 2, bhct either strictly decreases

with t or oscillates with t for all T0 ≤ t ≤ T and limT0→∞ σ2
T0

= 0, it then follows that we
can choose T0 ≥ 0 so that b∗t behaves in the same way as a function of t for all T0 ≤ t ≤ T .

We now show that there exist T0 ≥ 0 such that if T > T0, then b∗t is strictly increasing
with t for all T0 ≤ t ≤ T provided that |γ2| is sufficiently small. Fix T0 ≥ 0 and let T > T0.
By Lemma 1, if γ2 = 0, then piece rates are strictly decreasing with t for all T0 ≤ t ≤ T
provided that T0 is large enough. Since the equations for equilibrium piece rates depend
continuously on γ2, we can adapt the argument in the proof of Lemma 1 to show that if |γ2|
is sufficiently small, then piece rates are also strictly increasing with t for all T0 ≤ t ≤ T .
This concludes the proof of Proposition 2.

We now extend the second part of Proposition 2 to show that when γ2 < 0, piece rates
eventually strictly increase when the depreciation rate of human capital is sufficiently small
provided that T is large enough. Suppose λ = 1; since the equations for the equilibrium
piece rates depend continuously on λ, the argument extends to the case in which λ is suffi-
ciently close to one. Given that

∑τ1
s=0

(∏τ−1−s
k=1 µt+τ−k

)
(1− µt+s) = 1−

∏τ
k=1 µt+τ−k, as

the coefficients in the law of motion for a worker’s reputation in (5) sum up to one, and so∑τ−1
s=1

(∏τ−1−s
k=1 µt+τ−k

)
(1µt+s) = 1−

∏τ−1
k=1 µt+τ−k by straightforward algebra, it follows

from Lemma A.1 that∑T−t

τ=1
δτ (1− b∗t+τ −R∗

CC,t+τ ) =
∑T−t

τ=1
(1− b∗t+τ )

∏τ−1

k=1
µt+τ−k = (1− µt)

−1R∗
CC,t.

Therefore,

b∗t = b0t

(
1 +

γ2
ξ2
(1− µt)

−1R∗
CC,t −R∗

CC,t −
r

ξ22
H∗

t

)
.
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Now let T0 ≥ 0, suppose T > T0, and consider the difference equation

b∞t =
1

1 + r(σ2
∞ + σ2

ε)

[
1− ξ̂

∑T−t

τ=1
δτ (1− b∞t+τ )µ

τ−1
∞ (1− µ∞)− r̂σ2

∞

∑T−t

τ=1
δτ
]

for all T0 ≤ t ≤ T , where ξ̂ = 1 + |γ2|/ξ2(1 − µ∞) > 0, r̂ = r/ξ22 , and σ2
∞ and µ∞ are

as in the proof of Lemma 1. By construction, b∞t is the equilibrium piece rate in period
T0 ≤ t ≤ T if uncertainty about ability from period T0 on were constant and equal to σ2

∞.
It follows from Lemma 1 that b∞t is strictly increasing with t for T0 ≤ t ≤ T . Indeed, by
redefining δ appropriately, we can absorb ξ̂ into δ. Then, by adjusting r̂ appropriately, the
equation for b∞t becomes that of the equilibrium piece rates in the pure learning case when
σ2
θ = σ2

∞, which strictly decrease over time by Lemma 1. The same argument as that in
the proof of Lemma 1 shows that limσ2

T0
→σ2

∞
b∗t = b∞t . So, by taking T0 large enough that

σ2
T0

≈ σ2
∞, we have that b∗t strictly increases with t for T0 ≤ t ≤ T .

A.3.4 Proof of Proposition 3
Let 0 < γ2 < λξ2(1 + rσ2

ε). We know from Proposition 2 that piece rates eventually
strictly decrease over time, and thus are not maximized at the end of a worker’s career, if
σ2
ζ is sufficiently small and T is large enough. Now assume that piece rates are between

zero and one, so that R∗
HK,t and R∗

CC,t are non negative for all t. Since λ ≤ 1, it follows
from (9) that b∗0 < b00[1+(γ2/ξ2−rσ2

θ/ξ
2)
∑T

τ=1 δ
τ ]. Thus, b∗0 < b00 provided that σ2

θ is large
enough. By increasing σ2

θ further if necessary, we can ensure that σ2
t strictly decreases with

t, and so b∗0 < b0T = b∗T and piece rates are also not maximized at the start of a worker’s
career. This completes the proof of the proposition.

A.4 Identification
Here, we prove Proposition 4 and extend our identification results to the case in which there
is unobserved heterogeneity and measurement error. We start with the following result.

Lemma A.2. For all 0 ≤ t ≤ T and 1 ≤ s ≤ T−t, Var[wit] = σ2
θ+tσ2

ζ−σ2
t+(b∗t )

2(σ2
t+σ2

ε)
and Cov[wit, wit+s] = σ2

θ + tσ2
ζ − σ2

t + b∗tσ
2
t .

Proof. Note from (3) that wit = wit+rit, where rit = (1−b∗t )E[θit|Iit]+b∗t (θit+εit) is the
random part of wit. Since we can incorporate mθ into wit, it is without loss to assume that
E[θit] ≡ 0, so that E[rit] ≡ 0. Thus, Var[wit] = E[r2it] and Cov[wit, wit+s] = E[ritrit+s].
Also note that E[θit|Iit] ⊥ θit − E[θit|Iit], as the conditional expectation is an orthogonal
projection. We make use of this fact in what follows.
Variances of Wages.Since rit = E[θit|Iit] + b∗t

(
θit − E[θit|Iit] + εit

)
, we have that

Var[wit] = Var[rit] = Var[E[θit|Iit]] + (b∗t )
2Var[θit − E[θit|Iit]] + (b∗t )

2σ2
ε . (17)

Now note that Var[θit − E[θit|Iit]] = Var[θit] − Var[E[θit|Iit]]. Indeed, Var[A − B] =
Var[A] + Var[B] − 2Cov[A,B] and Cov[θit,E[θit|Iit]] = Var[E[θit|Iit]]. Moreover, since
θit|Iit is normally distributed with mean E[θit|Iit = ιt] and variance σ2

t when Iit = ιt, the
random variable (θit−E[θit|Iit])|Iit is normally distributed with mean zero and variance σ2

t .
Thus, Var[θit−E[θit|Iit]] = E[Var[θit−E[θit|Iit]]|Iit] = σ2

t , and so, as Var[θit] = σ2
θ + tσ2

ζ ,
it follows that Var[E[θit|Iit]] = σ2

θ + tσ2
ζ − σ2

t . The desired result follows from (17).
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Covariances of Wages.Let ηsit = E[θit+s|It+s]− E[θit|It]. Since

rit+s = E[θit|Iit] + b∗t+s(θit + ζit + · · ·+ ζit+s−1 − E[θit|Iit] + εit+s) + (1− b∗t+s)η
s
it,

we then have that

Cov[wit, wit+s] = Var[E[θit|Iit]] + (1b∗t+s)E
[
E[θit|Iit]ηsit

]
+ b∗t b

∗
t+sVar[θit − E[θit|Iit]]

+ (1− b∗t+s)b
∗
tE[(θit − E[θit|Iit] + εit)η

s
it]

= σ2
θ + tσ2

ζ − σ2
t + b∗t b

∗
t+sσ

2
t + (1− b∗t+s)b

∗
tE[(θit + εit)η

s
it]

+ (1− b∗t )(1− b∗t+s)E[E[θit|Iit]ηsit].

We are done if we show that E[E[θit|Iit]ηsit] = 0 and E[(θit + εit)η
s
it] = σ2

t . First, note that

ηsit =
∑s−1

k=0

(∏s−1−k

j=1
µt+s−j

)
(1− µt+k)(θit+k + εit+k − E[θit|Iit])

by (5). Since θit+k = θit + ζit + · · ·+ ζit+k−1, we have that E[E[θit|Iit]ηsit] = 0. Moreover,

(θit + εit)η
s
it = (θit + εit) (θit + εit − E[θit|Iit])

(∏s−1

j=1
µt+s−j

)
(1− µt)

+ θit (θit − E[θit|Iit])
∑s−1

k=1

(∏s−1−k

j=1
µt+s−j

)
(1− µt+k) + Λs

t ,

where Λs
t is a zero-mean random variable. As E[(θit+ εit)(θit+ εit−E[θit|Iit])] = σ2

t +σ2
ε

and E[θit(θit − E[θit|Iit])] = σ2
t , it then follows from (σ2

t + σ2
ε)(1− µt) = σ2

t that

E[(θit + εit)η
s
it]

= (σ2
t + σ2

ε)(1− µt)
(∏s−1

j=1
µt+s−j

)
+ σ2

t

∑s−1

k=1

(∏s−1−k

j=1
µt+s−j

)
(1− µt+k)

= σ2
t

{∏s−1

j=1
µt+s−j +

∑s−1

k=1

(∏s−1−k

j=1
µt+s−j

)
(1− µt+k)

}
.

The desired result follows from the fact that the term in braces is one.

We now turn to the proof of Proposition 4.
Piece Rates and Variances.The wage of worker i in period t can be expressed as wit =
fit + vit, where fit and vit are its fixed and variable components, respectively. Since com-
petition among firms implies that E[wit] = E[yit] and vit = b∗tyit, as contracts are linear
in output, b∗t = E[vit]/E[wit].36 With piece rates recovered, the variances (σ2

θ , σ
2
ε , σ

2
ζ ) are

identified as follows. First, σ2
θ and σ2

ε are identified from b∗0, Var[wi0], and Cov[wi0, wi1].
In turn, σ2

ζ is identified from Var[wi1], b∗1, σ2
θ , and σ2

ε , since σ2
1 = σ2

ζ + σ2
θσ

2
ε/(σ

2
θ + σ2

ε).
Risk Aversion, Human Capital in Complex Task, and Depreciation.First note that if
{b∗t}Tt=0, σ

2
θ , σ2

ε , and σ2
ζ are identified, so are σ2

t , R∗
CC,t, and H∗

t for all t. Thus, r is identified
from b∗T , σ2

T and σ2
ε , as b∗T = 1/[1 + (r/ξ22)(σ

2
T + σ2

ε)], and so b0t is identified for all t from
r, σ2

t , and σ2
ε , as b0t = 1/[1+ (r/ξ22)(σ

2
t +σ2

ε)]. In turn, γ2 is identified from b∗T−1, b
0
T−1, b∗T ,

R∗
CC,T−1, and H∗

T−1, since b∗T−1 = b0T−1[1 + (γ2/ξ2)δ(1− b∗T )− R∗
CC,T−1 − (r/ξ22)H

∗
T−1].

To conclude, λ is identified from b∗T−2, b
0
T−2, γ2, b∗T−1, R∗

CC,T−1, b∗T , R∗
CC,T−2, and H∗

T−2, as
b∗T−2 = b0T−2{1+(γ2/ξ2)[δ(1−b∗T−1−R∗

CC,T−1)+δ2λ(1−b∗T )]−R∗
CC,T−2−(r/ξ22)H

∗
T−2}.

36The fact that E[wit] = E[yit] follows from (3) and the law of iterated expectations.
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Human Capital in Simple Task and Drift Terms.Note that once {b∗t}Tt=0, σ2
θ , σ2

ε , σ2
ζ ,

r, γ2, and λ are identified, so is R∗
HK,t for all t, and thus is e∗2t for all t, since e∗2t =

ξ2b
∗
t + ξ2R

∗
CC,t +R∗

HK,t. Hence, e∗10 is identified from E[wi0] and e∗20 up to mθ, as E[wi0] =

mθ + ξ1e
∗
10 + ξ2e

∗
20. In turn, γ1 is identified from e∗10 and λ, as e∗10 = ξ1 + γ1

∑T
τ=0 δ

τλτ−1,
and so e∗1t = ξ1+γ1

∑T−t
τ=1 δ

τλτ−1 is identified for all t. Now, human capital k∗
t in 1 ≤ t ≤ T

is identified from E[wit], e∗1t, and e∗2t up to mθ, since E[wit] = mθ + k∗
t + ξ1e

∗
1t + ξ2e

∗
2t for

all such t. We can then identify the terms {βt}T−1
t=0 from {k∗

t }Tt=1, {e∗1t}T−1
t=0 , {e∗2t}T−1

t=0 , λ, γ1,
and γ2, as k∗

t+1 = λk∗
t + γ1e

∗
1t + γ2e

∗
2t + βt for all such t.

We now consider the case of unobserved heterogeneity. Suppose there exist J ≥ 1
types of workers who differ in their distributions of initial ability, shocks to output, and
shocks to ability; their degree of risk aversion; and their human capital process. The model
parameters for each type j are observable to model agents but not to the econometrician.
Denote the probability that a worker is type j by πj , and let σ2

jθ, σ
2
jε, σ

2
jζ , rj , 1 − λj , γj1,

γj2, and βjt be, respectively, the variance of the initial distribution of ability, the variance
of the output shocks, the variance of the ability shocks, the risk aversion parameter, the
depreciation rate of human capital, the rate of human capital accumulation in the simple
task, the rate of human capital accumulation in complex task, and the period-t drift term
in the human capital process for type-j workers. Proposition 1 holds for each worker type.
Let e∗j1t, e

∗
j2t, and b∗jt be, respectively, the effort in the simple task, effort in the complex

task, and piece rate in period t for type-j workers, and let k∗
jt be the human capital of such

workers in t. By (3), the wage of worker i of type j with ability θijt in t is wijt = fijt+vijt,
where fijt = (1− b∗jt)E[θijt + k∗

jt + ξ1e
∗
j1t + ξ2e

∗
j2t|Iit] and vijt = b∗jt(θijt + k∗

jt + ξ1e
∗
j1t +

ξ2e
∗
j2t+εijt) are its fixed and variable components. Thus, wijt is normally distributed by (5)

and the distribution of wages in each period is a finite mixture of normal distributions. As
such mixtures are identifiable (Teicher [1963]), both the mixture weights {πj}j∈J and the
component distributions are identified in each period, and so are their component means
{Ej[wijt]}j∈J . Since vijt is normally distributed as well, the distribution of the variable
component of wages in each period is also a finite mixture of normal distributions with the
same component weights as the corresponding mixture distribution of wages. Hence, for
each worker type j and period t, mean variable wages Ej[vijt] are identified as well so that
the piece rate of type-j workers in t is identified as b∗jt = Ej[vijt]/Ej[wijt].37 The rest of
the argument is as in the proof of Proposition 4 for each type j.

Proposition A.1. Suppose that each worker is one of J ≥ 1 types. For each worker type
j, the piece rates {b∗jt}Tt=0 and the variance parameters (σ2

jθ, σ
2
jε, σ

2
jζ) are identified from

a panel of wages and their variable components. Once piece rates and (σ2
jθ, σ

2
jε, σ

2
jζ) are

identified, the risk aversion parameter rj , the rate of human capital accumulation γj2, and
the depreciation rate 1 − λj are identified from piece rates. Finally, once piece rates and
(σ2

jθ, σ
2
jε, σ

2
jζ , rj, γ2j, λj) are identified, the rate of human capital accumulation γj1 and the

drift terms {βjt}T−1
t=0 are identified from average wages up to mjθ.

Proposition A.1 immediately extends to the case in which wages and their fixed and
variable components are measured with error, provided that this error is additive and nor-
mally distributed. Note that through this latent-type formulation in which workers differ

37The correct pairing of the components of the mixtures of total and variable wages in each t is possible by
their mixing weights, since the weights of these mixtures are identical type by type. Then, simply imposing
the constraint that types be ordered—say, by the size of their mixing weights—not only resolves the usual
label ambiguity of finite mixture models but also allows for such pairings.
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in their ability distribution and human capital process in an unrestricted way, the model
accommodates alternative settings in which workers of higher ability may be more or less
efficient at acquiring new skills. This more general setup thus relaxes the impact of our
functional-form assumptions by leading to a flexible dependence of wages on ability, un-
certainty about it, human capital, risk, and workers’ risk attitudes.

A.5 Extension: General Cost Function
Now we consider the case in which c(e1, e2) = (ρ1e

2
1 + 2ηe1e2 + ρ2e

2
2)/2 with ρ1, ρ2 > 0.

By redefining e1 as e1/
√
ρ1 and e2 as e2/

√
ρ2, this case is equivalent to the one in which

c(e1, e2) = (e21 + 2η̂e1e2 + e22)/2 with η̂ = η/
√
ρ1ρ2, the rates at which effort in the

simple and complex tasks increase output are ξ1
√
ρ1 and ξ2

√
ρ2, respectively, and the rates

of human capital accumulation in the simple and complex tasks are γ1
√
ρ1 and γ2

√
ρ2,

respectively. Thus, we set ρ1 = ρ2 = 1 in what follows. We also assume that η2 < 1.38

Learning about Ability and Effort in the Complex Task.The process of learning about
ability is the same as in the baseline model (η = 0). Likewise, the equilibrium is unique,
symmetric, and such that effort choices and piece rates depend only on time. Suppose
workers face a sequence {(e1t, bt)}Tt=0 of employment contracts in which effort choices in
the simple task and piece rates depend only on time and consider a worker’s choice of
effort in the complex task in period t, e2t, when the worker’s future effort choices in this
task depend only on time. Since now the marginal cost of effort e2 in the complex task
when effort in the simple task is e1 is e2 + ηe1, the necessary and sufficient first-order
condition for the optimal choice of e2t is e2t+ ηe1t = ξ2bt+ ξ2RCC,t+RHK,t, where RCC,t

and RHK,t are still given by (7).
Equilibrium Employment Contracts.As in the baseline model, we use a backward in-
duction argument to derive the equilibrium employment contracts and show that they are
symmetric across workers and such that efforts in the simple task and piece rates depend
only on time. Here, we only discuss the induction step in the derivation of the equilibrium
employment contracts. It is straightforward to adapt the induction step to derive the equi-
librium employment contracts in the last period and show that efforts in the simple task and
pieces rates are the same for all workers and (trivially) depend only on T .

Let 0 ≤ t < T and suppose the equilibrium efforts and piece rates from period t + 1
on depend only on time. For each 1 ≤ τ ≤ T − t, let b∗t+τ be the equilibrium piece rate
in period t + τ , and define R∗

CC,t and R∗
HK,t as in the baseline model. Then, a worker’s

effort in the complex task in period t when the period-t employment contract is (e1, b) is
e2 = −ηe1 + ξ2b + ξ2R

∗
CC,t + R∗

HK,t. A worker’s equilibrium employment contract in t is
the pair (e1, b) maximizing Vt = E[Wt|It]− (r/2)Var[Wt|It]− (e21+2ηe1e2+e22)/2, where
Wt and It are as before. We determine the pair (e1, b) maximizing Vt in what follows. As
in the baseline model, this pair is independent of It and so the same for all workers.

The expression for ∂E[Wt|It]/∂b is the same as in the baseline model, since it is still
the case that ∂e2/∂b = ξ2. Now note that

∂E[Wt|It]
∂e1

= ξ1 + γ1
∑T−t

τ=1
δτλτ−1 +

∂e2
∂e1

[
ξ2 + γ2

∑T−t

τ=1
δτλτ−1

]
= ξ1 − ηξ2 + (γ1 − ηγ2)

∑T−t

τ=1
δτλτ−1;

38When η2 ≥ 1, the complementarity or substitutability between tasks is strong enough that a change in
the effort in one task changes the marginal cost of effort in the other task by more than it changes the marginal
cost in the task itself, making the worker’s problem ill-behaved.
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unlike in the baseline case, effort in the simple task now affects effort in the complex task
(∂e2/∂e1 = −η ̸= 0), and this has an impact on ∂E[Wt|It]/∂e1. As effort in any task does
not affect the variance of current or future wages, the fact that now effort in the complex
task responds to changes in effort in the simple task does not affect the partial derivatives
∂Var[Wt|It]/∂b and ∂Var[Wt|It]/∂e1. Finally, since dc(e1, e2)/db = (ηe1 + e2)∂e2/∂b =
ξ2(ηe1 + e2) and dc(e1, e2)/de1 = e1 + η(e2 + e1∂e2/∂e1) + e2∂e2/∂e1 = (1 − η2)e1, it
follows that the necessary and sufficient conditions for the problem of maximizing Vt are
ξ1 − ηξ2 + (γ1 − ηγ2)

∑T−t
τ=1 δ

τλτ−1 − (1− η2)e1 = 0 and

ξ22 + γ2ξ2
∑T−t

τ=1
δτλτ−1 − rb(σ2

t + σ2
ε)− rH∗

t − ξ2
(
ξ2b+ ξ2R

∗
CC,t +R∗

HK,t

)
= 0.

The unique solution to the above first-order conditions is (e1, b) = (e∗1t, b
∗
t ) with e∗1t =

(1− η2)−1[ξ1 − ηξ2 + (γ1 − ηγ2)
∑T−t

τ=1 δ
τλτ−1] and b∗t given by (9), the equilibrium piece

rate in the baseline model; the pair (e∗1t, b
∗
t ) is the equilibrium employment contract in t. To

understand why η does not affect equilibrium piece rates, it is useful to recall why in multi-
tasking models such as in Holmström and Milgrom [1991] the degree of substitutability (or
complementarity) between effort choices matters for equilibrium piece rates. In such mod-
els, all effort choices are non-contractable and so must be incentivized by output-contingent
contracts. Thus, increasing incentives for effort in one task affects the power of contracts
to incentivize effort in other tasks. In our model, since effort in one of the tasks is con-
tractable, the provision of incentives for effort in the task with non-contractable effort is
not affected by the level of effort in the task with contractable effort. In the next appendix,
we extend our analysis to the case in which effort in both tasks in non-contractable.

A.6 Extension: Alternative Multi-Tasking Model
We now consider a version of our model in which effort in both tasks is non-contractable,
so that both effort choices must be incentivized by output-contingent contracts. In this case,
the degree of substitutability between effort choices will matter for the incentive power of
contracts. The model we consider here also differs from the baseline model— namely, the
model in the main text—in that it allows a worker’s ability and human capital to contribute
differently to each task.

A.6.1 Setup
Each task has its own output and firms care about a worker’s total output. The output of
worker i in task ℓ ∈ {1, 2} in period t is yiℓt = ξℓθθi + ξℓkkit + ξℓeeiℓt + εiℓt, where θi is
the worker’s time-invariant unobserved ability, kit is the worker’s human capital, eiℓt is the
worker’s effort in task ℓ, and εiℓt is an idiosyncratic noise term. The parameter ξℓθ captures
the contribution of ability to output in task ℓ, the parameter ξℓk captures the contribution
of human capital to output in task ℓ, and the parameter ξℓe captures the contribution of
effort to output in task ℓ. Worker i’s ability is draw from normal distribution with mean mθ

and variance σ2
θ and εiℓt is normally distributed with mean zero and variance σ2

ℓε. The law
of motion for workers’ stock of human capital is the same as in the baseline model, and
so are worker preferences. In particular, the cost of the effort pair (e1, e2) is c(e1, e2) =
(e21/2 + ηe1e2 + e22/2) with η2 < 1. Now, an employment contract for worker i in period t
consists of a wage schedule wit = cit + bi1tyi1t + bi2tyi2t, where cit is the fixed component
of worker i’s wage in t and biℓt is worker i’s piece rate for task ℓ in t; as in the baseline
model, we consider short-term employment contracts with linear wage schedules. We again
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consider pure-strategy perfect Bayesian equilibria. Free entry of firms together with their
risk neutrality implies that cit = (1− bi1t)E[yi1t|Iit] + (1− bi2t)E[yi2t|Iit], where Iit is the
public portion of worker i’s history in t. Thus, employment contracts can be described by
a pair of piece rates, one for each task.
Remarks.The assumption that worker ability is constant over time is done for simplicity.
In what follows, we also assume that ξ1e = ξ2e = 1; we can easily extend our analysis to
the case in which, as in the baseline model, the contribution of effort to output differs across
tasks. We assume that worker ability is common across tasks but can matter differently for
each task; we can extend the model to allow for task-specific abilities. Human capital is also
common across tasks and it can also matter differently for each task. A more general model
allowing for task-specific human capital is possible. Such an extension is straightforward
and does not affect the substance of our results. We can also extend the model to the case
in which output shocks are correlated across tasks.

A.6.2 Equilibrium Characterization
We now characterize the equilibrium.
Learning about Ability.Consider worker i in period t, whose equilibrium effort choices
and human capital in t are e∗1t, e

∗
2t, and k∗

t , respectively; as in the main text, we omit
the dependence of effort choices and human capital on i for ease of notation. Let ziℓt =
(yiℓt − ξℓkk

∗
t − e∗ℓt)/ξℓθ be the part of the worker’s period-t output in task ℓ ∈ {1, 2} that is

not explained by the worker’s human capital and effort in ℓ. Then, ziℓt = θ+ ε̃iℓt with ε̃iℓt =
εiℓt/ξℓθ is the signal about the worker’s ability extracted from the worker’s output in task ℓ.
As in the baseline model, it then follows that posterior beliefs about a worker’s ability in
any period are normally distributed and so fully described by their conditional mean mit,
namely, the worker’s reputation, and variance σ2

it. Now let σ2
ε = σ2

1εσ
2
2ε/(ξ

2
2θσ

2
1ε + ξ21θσ

2
2ε),

ω1 = ξ21θσ
2
2ε/(ξ

2
2θσ

2
1ε + ξ21θσ

2
2ε), ω2 = ξ22θσ

2
1ε/(ξ

2
2θσ

2
1ε + ξ21θσ

2
2ε), and zit = ω1zi1t + ω2zi2t.

One can show that the laws of motion for mit and σ2
it are39

mit+1 =
σ2
ε

σ2
it + σ2

ε

mit +
σ2
it

σ2
it + σ2

ε

zit and σ2
it+1 =

σ2
itσ

2
ε

σ2
it + σ2

ε

.

Note that if ξ1θ = 0, and ability does not matter for output in task 1, then ω1 = 0, ω2 = 1,
and σ2

ε = σ2
2ε/ξ

2
2θ, the variance of ε̃i2t. In this case, the above formulas reduce to the ones in

(4) if ξ2θ = 1. This result is expected, as in this case firms can learn about a worker’s ability
only through the worker’s performance in task 2 and the rate at which ability contributes
to output in task 2 is one. Similar results hold if ξ2θ = 0 and ξ1θ = 1. Also note that σ2

ε

strictly decreases with both ξ1θ and ξ2θ. Intuitively, increasing the importance of ability for
either task makes workers’ performance more informative about ability.

As in the baseline model, since σ2
it evolves independently of zit, and so is common for

all workers in t, we can suppress the subscript i and denote this variance by σ2
t . For each

0 ≤ t ≤ T and 0 ≤ τ ≤ T − t, let Σt+τ = σ2
t /(τσ

2
t + σ2

ε). Iterating on the law of motion
for mit, we obtain that worker i’s reputation in period t+ τ given reputation mit in t is

mit+τ =
σ2
ε

τσ2
t + σ2

ε

mit + Σt+τ

∑τ−1

s=0
zit+s.

39Since noise terms are independent across tasks, we can break the belief-updating process in any period
into two parts. First, agents update their beliefs about a worker’s ability θ by using zi1t, then they update their
beliefs about θ using zi2t. We obtain the above formulas by applying the formulas used in the baseline case.
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Effort Choices.As in the baseline model, the equilibrium is unique, symmetric, and such
that effort choices and employment contracts depend only on time. Suppose workers face a
sequence {(b1t, b2t}Tt=0 of employment contracts in which pieces depend only on time and
consider a worker’s choices of effort in tasks 1 and 2 in period t, e1t and e2t, when the
worker’s future effort choices in both tasks depend only on time. Define the terms RCC,ℓt

and RHK,ℓt, with ℓ ∈ {1, 2}, to be such that

RCC,ℓt =
∑T−t

τ=1
δτ [ξ1θ(1− b1t+τ ) + ξ2θ(1− b2t+τ )] (ωℓ/ξℓθ)Σt+τ ; and

RHK,ℓt = γℓ
∑T−t

τ=1
δτλτ−1 [ξ1k(b1t+τ +RCC,1t+τ ) + ξ2k(b2t+τ +RCC,2t+τ )] ,

where γℓ is the rate of human capital accumulation in task ℓ. The necessary and sufficient
first-order conditions for effort are

e1t + ηe2t = b1t +RCC,1t +RHK,1t; and
e2t + ηe1t = b2t +RCC,2t +RHK,2t.

These equations state that for each task, the marginal cost of effort in the task is equal to its
marginal benefit.

To understand the term RCC,ℓt, note that, at the margin, higher eℓt increases the expected
period-t signal about a worker’s ability resulting from the worker’s performance in task ℓ by
1/ξℓθ. From the law of motion for a worker’s reputation given above, at the margin, a higher
signal about ability resulting from performance in task ℓ increases a worker’s expected
reputation in period t+ τ , with 1 ≤ τ ≤ T − t, by ωℓΣt+τ . Thus, at the margin, higher eℓt
increases a worker’s expected reputation in t+ τ by (ωℓ/ξℓθ)Σt+τ . Now note that the signal
about ability in one task influences future fixed pay in both tasks and that the importance
of this signal for task ℓ is proportional to the importance of ability for performance in ℓ as
measured by ξℓθ. To understand the term RHK,ℓt, note that effort in task ℓ changes human
capital at rate γℓ and that the importance of human capital for ℓ is proportional to ξℓk—as in
the baseline model, higher human capital affects both the variable component of a worker’s
future wages and the future signals about the worker’s ability.

Solving the above system of equations for e1t and e2t, we obtain that

e1t =
1

1− η2
[b1t +RCC,1t +RHK,1t − η (b2 +RCC,2t +RHK,2t)] ; and (18)

e2t =
1

1− η2
[b2t +RCC,2t +RHK,2t − η (b1 +RCC,1t +RHK,1t)] . (19)

Note that ∂eℓt/∂bℓt = 1/(1−η2) > 0 and ∂eℓt/∂b−ℓt = −η/(1−η2) for ℓ ∈ {1, 2}, where,
for ease of notation, we use the subscript −ℓ to denote the task other than task ℓ. Thus,
an increase in a task’s piece rate increases effort in the task. Whether such an increase
increases or decreases effort in the other task depends on whether tasks are complements
(η < 0) or substitutes (η > 0). If tasks are complements, then increasing the piece rate at
one task increases effort at the other task. If tasks are instead substitutes, then increasing
the piece rate for one task decreases effort in the other task.
Equilibrium Employment Contracts.As in the baseline model, we use a backward in-
duction argument to derive the equilibrium employment contracts and show that they are
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symmetric across workers and such that piece rates in both tasks depend only on time.
Here, we only discuss the induction step in the derivation of the equilibrium employment
contracts. Since in the last period our multi-tasking model reduces to the static multi-
tasking model of Holmström and Milgrom [1991], last-period employment contracts and
effort choices are the same for all workers and (trivially) depend only on T .

Let 0 ≤ t < T and suppose the equilibrium employment contracts and effort choices
from period t + 1 on depend only on time. For each 1 ≤ τ ≤ T − t and ℓ, let b∗ℓt+τ be
the equilibrium piece rate for task ℓ in period t + τ . Moreover, let R∗

CC,ℓt and R∗
HK,ℓt be

respectively given by RCC,ℓt and RHK,ℓt with bℓt+τ = b∗ℓt+τ for all 1 ≤ τ ≤ T − t and ℓ.
Therefore, a worker’s effort in task ℓ in period t when the period-t employment contract is
(b1, b2) is defined implicitly by eℓ = −ηe−ℓ+bℓ+R∗

CC,ℓt+R∗
HK,ℓt. If we let wt is a worker’s

wage in t and Wt =
∑T−t

τ=0 δ
τwt+τ , then a worker’s equilibrium employment contract in t

is the pair (b1, b2) maximizing Vt = E[Wt|It] − (r/2)Var[Wt|It] − c(e1, e2), where It has
the same definition as in the baseline model. We determine the pair (b1, b2) maximizing Vt

in what follows. In the same way as in the baseline model, this pair is independent of It
and so the same for all workers.

First note that since workers capture the entire value of their matches with firms, then

∂E[Wt|It]
∂bℓ

=
∑

i=1,2

∂ei
∂bℓ

[
1 + γi(ξ1k + ξ2k)

∑T−t

τ=1
δτλτ−1

]
.

Now note that

Var[Wt|It] = b21(ξ
2
1θσ

2
t + σ2

1ε) + b22(ξ
2
2θσ

2
t + σ2

2ε) + 2b1b2ξ1θξ2θσ
2
t

+2
∑T−1

τ=1
δτCov[wt, wt+τ |It] + Var0,

where Var0 is independent of (b1, b2), and, as in the baseline case, Cov[wt, wt+τ |It] is linear
in b1 and b2. Thus,

∂Var[Wt|It]
∂bℓ

= 2bℓ(ξ
2
ℓθσ

2
t + σ2

ℓε) + 2b−ℓξ1θξ2θσ
2
t + 2H∗

ℓt,

where H∗
ℓt =

∑T−1
τ=1 δ

τ−1∂Cov[wt, wt+τ |It]/∂bℓ is independent of b1 and b2. Since

∂c(e1, e2)

∂bℓ
=

(
bℓ +R∗

CC,ℓt +R∗
HK,ℓt

) ∂eℓ
∂bℓ

+
(
b−ℓ +R∗

CC,−ℓt +R∗
HK,−ℓt

) ∂e−ℓ

∂bℓ
,

the necessary and sufficient first-order conditions for the problem of maximizing Vt are∑
ℓ=1,2

∂eℓ
∂b1

[
1 + γℓ(ξ1k + ξ2k)

∑T−1

τ=1
δτλτ−1 −R∗

HK,ℓt −R∗
CC,ℓt

]
−b1

[
∂e1
∂b1

+ r(ξ21θσ
2
t + σ2

1ε)

]
− b2

(
∂e2
∂b1

+ rξ21θξ
2
2θσ

2
t

)
− rH∗

1t = 0;∑
ℓ=1,2

∂eℓ
∂b2

[
1 + γℓ(ξ1k + ξ2k)

∑T−1

τ=1
δτλτ−1 −R∗

HK,ℓt −R∗
CC,ℓt

]
−b2

[
∂e2
∂b2

+ r(ξ22θσ
2
t + σ2

2ε)

]
− b1

(
∂e1
∂b2

+ rξ21θξ
2
2θσ

2
t

)
− rH∗

2t = 0.
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To finish, b0ℓt = 1/[1+ r(1−η2)(ξ2ℓθσ
2
t +σ2

ℓε)] and Wℓt = 1+γℓ(ξ1k+ ξ2k)
∑T−1

τ=1 δ
τλτ−1−

R∗
HK,ℓt − R∗

CC,ℓt. Given that ∂e−ℓ/∂bℓ = −η∂eℓ/∂bℓ, we can rewrite the above first-order
conditions as

b1 = b01t
[
W1t − η(W2t − b2)− r(1− η2)(H∗

1t + b2ξ1θξ2θσ
2
t )
]
;

b2 = b02t
[
W2t − η(W1t − b1)− r(1− η2)(H∗

2t + b1ξ1θξ2θσ
2
t )
]
.

This last system of equations admits a unique solution (b∗1t, b
∗
2t), which is independent of It

and is the equilibrium employment contract in t. Note that the expression for H∗
ℓt does not

matter for the derivation of equilibrium piece rates. One can show that H∗
ℓt is equal to

ξℓθσ
2
t

∑T−t

τ=1
δτ−1

[
ξ1θb

∗
1t+τ + ξ2θb

∗
2t+τ + (1− b∗1t+τ − b∗2t+τ )

τ(ω1ξ1θ + ω2ξ2θ)σ
2
t + σ2

ε

τσ2
t + σ2

ε

]
.

In particular, if ξ1θ = ξ2θ = 1, then H∗
ℓt = σ2

t

∑T−t
τ=1 δ

τ−1.
By definition, Wℓt is the wedge in period t between the marginal social benefit of effort

in task ℓ and the marginal private benefit of effort in the same task. A piece rate for task ℓ
in period t equal to Wℓt would induce workers to exert the first-best level of effort in ℓ. As
in the baseline case, the piece rate for task ℓ in period t is proportional to Wℓt minus a term,
r(1− η2)(H∗

ℓt + b∗−ℓtξ
2
1θξ

2
2θσ

2
t ), that reflects the insurance workers demand against the life-

cycle wage risk due to uncertainty and learning about ability. Also as in the baseline model,
the constants of proportionality b01t and b02t capture the standard risk-incentives trade-off.
In contrast to the baseline model, the insurance component of the piece rate for task ℓ in t
features an additional term that depends on the period-t piece rate for the other task. This is
intuitive. Because ability is common across tasks, uncertainty about ability implies that an
increase in the piece rate in a task increases the risk associated with (the contemporaneous)
performance in the other task. Another difference from the baseline model is that the piece
rate for task ℓ in period t features an additional term proportional to −η(W−ℓt− b−ℓt). This
term captures both the interdependence in the human capital accumulation process across
tasks—by exerting effort in one task, workers affect their productivity in both tasks—and
the fact that providing incentives for effort in one task affects the incentives for effort in the
other task. When tasks are substitutes, this term tends to depress piece rates.

A.7 Extension: Cobb-Douglas Technology
We now show how our model can be viewed as the log version of a model in which the
output and human capital technology are of the standard Cobb-Douglas form.

A.7.1 Setup
We begin by describing the setup. To keep the exposition brief, we just detail what changes
in the setup relative to the baseline model.
Production.The output of worker i in period t is Yit = ΘiKitE

ξ1
i1tE

ξ2
i2tΩit, where Θi is the

worker’s unobserved ability, which we assume is time-invariant for simplicity, Ei1t is the
worker’s effort in the simple task, Ei2t is the worker’s effort in the complex task, Kit is
the worker’s human capital, Ωit is an idiosyncratic noise term, and ξ1 and ξ2 are positive
constants. The ability Θi and the noise terms Ωit are drawn from log-normal distributions
with parameters (mθ, σ

2
θ) and (0, σ2

ε), respectively.
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Human Capital.The human capital of workers evolves over time according to the law of
motion Kit+1 = BtK

λ
itE

γ1
i1tE

γ2
i2t, where Bt is a positive constant, 1 − λ ∈ [0, 1], γ1 and γ2

are constants, and Ki0 ≡ K0 is the worker’s initial stock of human capital.
Preferences.The lifetime utility of a worker who, from period t on, receives the wages
{Wt+τ}T−1

τ=0 and exerts the efforts {E1t+τ}T−t
τ=0 and {E2t+τ}T−t

τ=0 in the simple and complex
tasks, respectively, is

∑T−t
τ=0 δ

τ (ln(Wt+τ )− ln(E1t+τ )
2/2− ln(E2t+τ )

2/2).40

Contracts and Equilibrium.An employment contract for worker i in period t is a pair
(Ei1t,Wit), where Wit is the worker’s wage schedule in t. We assume that Wit = CitY

bit
it

with Cit ∈ R+ and bit ∈ R. Note that bit = (Yit/Wit)dWit/dYit, the elasticity of wage
payments with respect to output. Therefore, we can interpret bit as a piece rate. As in the
baseline model, in equilibrium firms make zero expected profits in every period. Hence, if
(Ei1t,Wit) is worker i’s equilibrium contract in period t when the public information about
the worker is Iit, then E[Yit|Iit] = E[Wit|Iit] = CitE[Y bit

it |Iit], so ln(Cit) = ln(E[Yit|Iit])−
ln(E[Y bit

it |Iit]). We determine the implications of this fact for (log) wages below.

A.7.2 Equilibrium Characterization
We now characterize the equilibrium and show it is the same as in the baseline model when
the workers’ (effective) coefficient of risk aversion is 1/ξ22 .
Learning about Ability.Let yit = ln(Yit), θi = ln(Θi), kit = ln(Kit), ei1t = ln(Ei1t),
ei2t = ln(Ei2t), and εit = ln(ωit). Moreover, let Iit be the public information about worker
i in period t. Given that yit = θi + kit + ξ1ei1t + ξ2ei2t + εit and εit is normally distributed
with mean 0 and variance σ2

ε , it follows from the argument in the main text that θi|Iit is
normally distributed with mean mit and variance σ2

t , where mit = E[θit|Iit] and σ2
t have

the same expressions as in the baseline model when σ2
ζ = 0.

Effort in the Complex Task.We first derive the consequences of free entry of firms for
(log) wages. Since in any period t, the posterior belief about θi is normally distributed with
mean E[θit|Iit] and variance σ2

t , E{exp[a(θi+εit)]|Iit} = exp (aE[θi|Iit] + a2(σ2
t + σ2

ε)/2)
for all a ∈ R, and so E[Y a

it |Iit] = E[exp(ayit)|Iit] = exp (aE[yit|Iit] + a2(σ2
t + σ2

ε)/2).
Hence, ln(Cit) = (1− bit)E[yit|Iit] + (1− b2it)(σ

2
t + σ2

ε)/2, and so

wit = ln(Wit) = (1− bit)E[yit|Iit] + bityit + (1− b2it)(σ
2
t + σ2

ε)/2. (20)

Thus, as in the baseline model, employment contracts are completely described by the pair
(ei1t, bit). Note, however, that the expression for ln(Wit) differs from the expression for wit

in (3) by the term (1− b2it)(σ
2
t + σ2

ε)/2. We determine the implications of this below.
As in the baseline model, the equilibrium is unique, symmetric, and has the property

that (log) effort choices and piece rates depend only on time. Suppose workers face a
sequence {(e1t, bt)}Tt=0 of employment contracts in which efforts in the simple task and
piece rates depend on time. Consider worker i’s period-t choice of effort in the complex
task, e2t, when the worker’s future effort choices in this task depend only on time. The
worker chooses e2t to maximize

∑T−t
τ=0 δ

τE[wit+τ |ht
i] − e22t/2, where ht

i is the worker’s
history in period t and wit+τ is given by (20) with bit+τ ≡ bt+τ for all 0 ≤ τ ≤ T − t. Since

40Note that unlike in the baseline model, where it is a present-discounted sum of wage payments, here Wt is
a wage. Our analysis extends to the case in which the payoff to a worker from wages {Wt+τ}T−1

τ=0 and efforts

{E1t+τ}T−t
τ=0 and {E2t+τ}T−t

τ=0 is − exp
{
−r

[∑T−t
τ=0 δ

τ
(
ln(Wt+τ )− ln(E1t+τ )

2/2− ln(E2t+τ )
2/2

)]}
,

where r > 0. The parameter r is not the workers’ coefficient of risk aversion, though.
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the terms (1 − b2t+τ )(σ
2
t + σ2

ε) in wit+τ are deterministic and the law of motion for (log)
human capital is the same as the law of motion in (2) with βt = ln(Bt), it follows that the
optimal choice of e2t is the same as in the baseline model.
Equilibrium Employment Contracts.We again proceed by backward induction to com-
pute the equilibrium employment contracts. As in the baseline model, a worker’s choice of
(log) effort in the complex task in period T is e2 = ξ2b if the worker’s piece rate is b. Free
entry of firms implies that a worker’s employment contract in T is the pair (e1, b) that max-
imizes VT = E[wT |IT ]− (e21 + e22)/2, where IT is as before.41 Since, by (20), E[wT |IT ] =
E[yT |IT ] + (1 − b2)(σ2

T + σ2
ε)/2 ∝ ξ1e1 + ξ22b + (1 − b2)(σ2

T + σ2
ε)/2, it follows that the

pair maximizing VT is (e1, b) = (e∗1T , b
∗
T ) with e∗1T = ξ1 and b∗T = 1/[1+ (1/ξ22)(σ

2
T +σ2

ε)].
Now let 0 ≤ t < T and suppose that equilibrium piece rates and (log) efforts from

period t + 1 on depend only on time. For each 1 ≤ τ ≤ T − t, let b∗t+τ be the equilibrium
piece rate in t + τ and once again define R∗

CC,t and R∗
HK,t as in (7) with bt+τ = b∗t+τ for

each 1 ≤ τ ≤ T − t. Then, a worker’s period-t effort in the complex task as a function of
the piece rate b in t is e2 = ξ2b+ ξ2R

∗
CC,t +R∗

HK,t and a worker’s equilibrium employment
contract in t is the pair (e1, b) maximizing Vt =

∑T−t
τ=0 δ

τ−1E[wt+τ |It]− (e21+ e22)/2, where
It is as before. Since E[wt|It] = E[yt|It] + (1− b2)(σ2

t + σ2
ε)/2 and, for all 1 ≤ τ ≤ T − t,

E[wt+τ |It] = E[yt+τ |It] + w0
t+τ , where w0

t+τ is a constant term, it follows that

∑T−t

τ=0
δτ

∂E[wt+τ |It]
∂b

= ξ22 + ξ2γ2
∑T−t

τ=0
δτλτ−1 − b(σ2

t + σ2
ε).

and that
∑T−t

τ=0 ∂E[wt+τ |It]/∂e1 = ξ1 + γ1
∑T−t

τ=0 δ
τλτ−1. Thus, the pair (e1, b) maximizing

Vt is (e1, b) = (e∗1t, b
∗
t ), where e∗1t = ξ1 + γ1

∑T−t
τ=0 δ

τλτ−1 and b∗t is the period-t piece rate
in the baseline model when the workers’ (effective) coefficient of risk aversion is 1/ξ22 .42

A.8 Extension: Wage Markdowns
We now extend our model to the case in which workers capture a fraction α ∈ (0, 1] of the
surplus from their matches with firms; our baseline model corresponds to α = 1. We omit
most of the details in what follows, as derivations for this more general model follow very
closely derivations for the baseline model.

A.8.1 Setup
The setup is the same as the baseline model except that now workers capture a fraction
α ∈ (0, 1] of the surplus from their matches with firms. Consider worker i in period t. The
expected value of the match between the worker and a firm is E[yit|Iit]. So, if Πit is the
expected flow profit of the firm that employs i in t, then Πit = (1−α)E[yit|Iit]. On the other
hand, since wit = cit + bityit, we have that Πit = E[yit −wit|Iit] = (1− bit)E[yit|Iit]− cit.
Thus, cit = (α− bit)E[yit|Iit], and so wit = (α− bit)E[yit|Iit] + bityit.

A.8.2 Equilibrium Characterization
The process of learning about ability is as in the baseline model. Thus, posterior beliefs
about a worker’s ability are normally distributed with mean and variance that evolve ac-
cording to the laws of motion in (4), and the evolution of workers’ reputation is as in (5).

41The variance of (log) wages does not show up in VT given our preference specification.
42With the more general preference specification of Footnote 40, one can show that the equilibrium is as

in the baseline model when the workers’ coefficient of risk aversion is (1 + r)/ξ22 .
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As in the baseline model, the equilibrium is unique, symmetric, and such that effort
choices and piece rates depend only on time. If workers face a sequence {(e1t, bt)}Tt=0 of
employment contracts such that efforts in the simple task and piece rates depend only on
time, then effort in the complex task in period t is e2t = ξ2bt + ξ2RCC,t + RHK,t, where
RCC,t =

∑T−t
τ=1 δ

τ (α− bt+τ )(
∏τ−1

k=1 µt+τ−k)(1− µt) and RHK,t has the same expression as
in the baseline model. The intuition for this result is simple. The derivation of RHK,t does
not depend on the surplus-sharing rule, so its expression does not change. The expression
for RCC,t follows from the fact that the fixed component of a worker’s wage in period t+ τ
with 0 ≤ τ ≤ T − t is now a fraction α− bt+τ of the worker’s expected output in t+ τ .

The derivation of equilibrium employment contracts follows the same steps as those in
the baseline case. Since workers now capture only a fraction α of their expected output,
∂E[Wt|It]/∂b = α(ξ22+ξ2γ2

∑T−t
τ=1 δ

τλτ−1) and ∂E[Wt|It]/∂e1t = α(ξ1+γ1
∑T−t

τ=1 δ
τλτ−1).

One can adapt the argument in the baseline case to show that Cov[wt, wt+τ |It] = αbσ2
t for

all 0 ≤ t ≤ T and 1 ≤ τ ≤ T − t, so ∂Var[Wt|It]/∂b = 2b(σ2
t + σ2

ε) + 2αH∗
t . Finally, for

the same reason as in the baseline case, ∂Var[Wt|It]/∂e1 = 0. From this, it follows that
the period-t employment contract is (e∗1t, b

∗
t ) with e∗1t = α(ξ1 + γ1

∑T−t
τ=1 δ

τλτ−1) and

b∗t = b0t

[
α

(
1 +

γ2
ξ2

∑T−t

τ=1
δτλτ−1

)
− 1

ξ2
R∗

HK,t −R∗
CC,t −

rα

ξ22
H∗

t

]
,

where R∗
CC,t and R∗

HK,t are the expressions RCC,t and RHK,t given above with b∗t in place
of bt for each period t, and b0t and H∗

t are the same as in the baseline model.

A.8.3 Identification
The share α is pinned down by the ratio of firm wages to revenues. Since now E[wit] =
αE[yit], it follows that b∗t = E[vit]/E[yit] = αE[vit]/E[wit]. Thus, piece rates are identified
from α and a panel of wages and their variable components. To identify the variance pa-
rameters (σ2

θ , σ
2
ε , σ

2
ζ ), note that the wage residual in period t is now rit = (α−b∗t )E[θit|Iit]+

b∗t (θit + εit). The same steps as those in the derivation of the second moments of the wage
distributions in the baseline model show that Var[wit] = α2(σ2

θ+tσ2
ζ −σ2

t )+(b∗t )
2(σ2

t +σ2
ε)

and Cov[wit, wit+s] = α2(σ2
θ + tσ2

ζ − σ2
t ) + αb∗tσ

2
t . The rest of the identification argument

is the same as in the baseline model.

A.9 Extension: Productivity Shocks
We now consider an extension of our model that allows for observable productivity shocks.

A.9.1 Environment and Equilibrium
The environment is the same as in the baseline model, except that yit = ηit + θit + kit +
ξ1ei1t + ξ2ei2t + εit, where ηit is an idiosyncratic productivity shock to worker i in period
t that is observed after firms offer employment contracts to workers. We assume that ηit is
normally distributed with mean zero and variance σ2

η .43 Let ŷit = yit − ηit be worker i’s
output in period t net of the productivity shock ηit. By definition, ŷit is worker i’s period-t
output in the baseline model. Free entry of firms implies that wit = (1 − bit)E[yit|Iit] +
bityit = (1−bit)E[ŷit|Iit]+bit(ŷit+ηit), as E[ηit] = 0. As productivity shocks are observed,
they do not affect the process of learning about ability; they only increase the variance of
output, and so wage risk. Thus, the equilibrium is as in the baseline model except that now
that static period-t piece rate is b0t = 1/[1 + (r/ξ22)(σ

2
t + σ2

ε + σ2
η)].

43The assumption that ηit is zero mean is without loss as we can absorb E[ηit] into θit.
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A.9.2 Identification
As in the baseline model, piece rates are identified from the ratio of variable to total pay.
The parameters (σ2

θ , σ
2
ε , σ

2
ζ , σ

2
η) are identified from the second moments of the wage dis-

tributions as follows. Since the productivity shocks ηit are idiosyncratic, the covariances
of the wage distributions are the same as in the baseline model. The same argument as
in the baseline model shows that Var[wit] = σ2

θ + tσ2
ζ − σ2

t + (b∗t )
2(σ2

t + σ2
ε + σ2

η);
the sum of variances σ2

ε + σ2
η plays the role of σ2

ε in the baseline model. Thus, σ2
θ is

identified from b∗0 and Cov[wi0, wi1] = b∗0σ
2
θ . In turn, σ2

ε + σ2
η is identified from b∗0,

σ2
θ , and Var[wi0] = (b∗0)

2(σ2
θ + σ2

ε + σ2
η). Next, σ2

1 is identified from b∗1, σ
2
ε + σ2

η , and
Cov[wi1, wi2] − Var[wi1] = (b∗1)

2(σ2
1 + σ2

ε + σ2
η) − b∗1σ

2
1 , and so σ2

ζ is identified from b∗1,
σ2
θ , σ2

1 , and Cov[wi1, wi2] = σ2
θ + σ2

ζ − σ2
1 + b∗1σ

2
1 . Finally, σ2

ε is identified from σ2
θ , σ2

ζ , and
σ2
1 = σ2

θσ
2
ε/(σ

2
θ + σ2

ε) + σ2
ζ and thus σ2

η is identified from σ2
ε and σ2

ε + σ2
η . The rest of the

identification argument is as in the baseline model.

A.9.3 Remarks
We considered the case of idiosyncratic productivity shock for simplicity. We can extend
our analysis to the case in which productivity are serially correlated by assuming that they
behave over time according to the following process: ηit = νit, with νi0 = µi0 and νit+1 =√
ρνit+µit+1 for all t ≥ 0, where ρ ∈ [0, 1] and µit is an idiosyncratic shock that is normally

distributed with mean zero and variance σ2
µ for all t ≥ 0. This case reduces to the case

of idiosyncratic productivity shocks when ρ = 0; productivity shocks are permanent when
ρ = 1 and mean-reverting otherwise. The equilibrium characterization is the same as above
except that now the static period-t piece rate is b0t = 1/[1 + (r/ξ22)(σ

2
t + σ2

ε + σ2
ηt)], where

σ2
ηt = Var[ηit] = (1 − ρt+1)σ2

µ/(1 − ρ). Because of the serial correlation of productivity
shocks, this model admits a more general variance-covariance structure of wages.

A.10 Extension: Heterogeneous Workers
In the last extension we consider, we allow workers to be either heterogeneous in their
ability to perform at the complex task or heterogeneous in how their ability contributes to
output. Since the analysis of both cases is very similar, we focus on the first case, briefly
discussing the second in our remarks at the end.

A.10.1 Setup and Equilibrium
Workers are heterogeneous in the rate at which their effort in the complex task affects
output, being homogeneous in all other model parameters. There are J ≥ 1 such types
of workers. Let πj ∈ (0, 1) be the fraction of workers of type j ∈ {1, . . . , J} and ξj2
be the rate at which effort in the complex task affects output for type-j workers, with
0 ≤ ξ12 < ξ22 < · · · < ξJ2. The rates {ξj2}Jj=1 are observable to agents in the model but
not to the econometrician. As workers are homogeneous with respect to ξ1, equilibrium
efforts in the simple task are the same for all workers and given by the equilibrium efforts
in the baseline model. For type-j workers, equilibrium piece rates and effort choices in the
complex task are as in the baseline model with ξ2 = ξj2.

Let e∗1t be the period-t effort in the simple task and e∗j2t and b∗jt be, respectively, the
period-t effort in the complex task and period-t piece rate for workers of type j. By the
same argument as in the baseline model, it follows that e∗j2t = ξj2 + γ2

∑T−t
τ=1 δ

τλτ−1 −
(r/ξj2)[(σ

2
t + σ2

ε)b
∗
jt +H∗

t ], where σ2
t and H∗

t are as in the baseline model. Now let s∗jt =
(1 + e∗j2t)/(1 + e∗1t) be the task complexity of the job that workers of type j perform in

22



period t. When piece rates are small, as we observe in the data, s∗jt is approximately equal
to [1+ξj2+γ2

∑T−t
τ=1 δ

τλτ−1−(r/ξj2)H
∗
t ]/[1+ξ1+γ1

∑T−t
τ=1 δ

τλτ−1], which strictly increases
with j; that is, at every experience, workers with higher productivity in the complex task
are assigned to higher-complexity jobs.

A.10.2 Identification
Assume that δ and ξ1 are known and suppose that in addition to information on total and
variable pay, we have information on a worker’s job as defined by its complexity; see
Section 7.6. Let wijt and vijt be, respectively, the total and variable pay of worker i of type
j in period t. Since wijt and vijt are normally distributed for each type j, the distributions
of total and variable pay in each period are a finite mixture of normal distributions. By the
same argument as in Appendix A.4, the mixture weights {πj}Jj=1 and the mean total and
variable pay, E[wijt] and E[vijt], are identified for each type j and period t. Therefore, as in
the baseline model, the piece rate of type-j workers in t is identified as b∗jt = E[vijt]/E[wijt],
and we can identify the parameters (σ2

θ , σ
2
ε , σ

2
ζ ), and so the variances σ2

t for all t, from the
piece rates and the second moments of the wage distributions of a given type of workers.44

Since s∗jT = (1 + ξj2b
∗
jT )/(1 + ξ1) increases strictly with j, and so the type-J workers and

only them occupy the highest-level job in period T , it follows that ξ2T is identified from
b∗JT and s∗JT . Then, r is identified from σ2

T , σ2
ε , and b∗T = 1/[1 + (r/ξ2JT )(σ

2
T + σ2

ε)]. From
this, it follows that for each 1 ≤ j ≤ J , the parameter ξj2 is identified from r, σ2

T , σ2
ε , and

b∗jT = 1/[1 + (r/ξ2jT )(σ
2
T + σ2

ε)]. The rest of the identification argument for each type j of
worker is the same as in the baseline model.

A.10.3 Remarks
We can also extend our analysis to a setup in which workers are heterogeneous in the
rate ξθ at which their ability θ affects output—our baseline model is such that ξθ = 1 for
all workers. Since we can redefine worker ability to absorb the rate ξθ into it, this setup
is equivalent to one in which workers are heterogeneous in the uncertainty σ2

θ about their
ability. Intuitively, a higher ξθ means that a worker’s performance is more informative about
their ability, which is equivalent to a higher σ2

θ . The equilibrium in this model is such that
workers are heterogeneous in their piece rates, and thus on their effort in the complex task.
One can show that when piece rates are small, effort in the complex task strictly increases
with σ2

θ , as a higher σ2
θ translates into a smaller σ2

t for all t. Thus, as above, workers with
higher productivity in the complex task are assigned to higher-complexity jobs at every
experience. Identification of this setup proceeds along the same lines as above.

A.11 Omitted Quantitative Exercises
We present here figures omitted from the main text that are referenced in Section 7.

44By this argument, it would be straightforward to allow these parameters to vary across types of workers.
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Figure A.2: Results for Parameterization with Faster Learning

(a) Wage Growth Decomposition (b) Perf. Pay and Wage Growth (c) Wage Variance
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Figure A.3: Variance of Wages and Piece Rates without Uncertainty about Ability

(a) Variance (Fixed P. Rates) (b) Variance (Endogenous P. Rates) (c) Endogenous P. Rates

Figure A.4: Fit of Model with Endogenous Piece Rates and Multidimensional Effort

(a) Variance of Wages (b) Wage Growth (c) Piece Rates
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