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ABSTRACT
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Over time, the death toll from floods is declining. Cities protected by dams experience faster 
population growth. Using lights at night to measure short run urban economic dynamics, we 
document that floods cause less damage to richer cities and cities with protective dams. Cities 
with more past experience with floods suffer less from flooding.

Sahil Gandhi
The University of Manchester
sahil.gandhi@manchester.ac.uk

Matthew E. Kahn
Department of Economics 
University of Southern California 
3620 South Vermont Ave. 
Kaprielian (KAP) Hall, 300 
Los Angeles, CA 90089-0253 
and NBER
kahnme@usc.edu

Rajat Kochhar
University of Southern California
rajatkoc@usc.edu

Somik Lall
The World Bank
Slall1@worldbank.org

Vaidehi Tandel 
University of Reading 
Henley Business School 
United Kingdom 
vaidehi.tandel@gmail.com



1 Introduction

Rising greenhouse gas emissions raise the likelihood of more extreme precipitation events that in-
crease the risk of local flooding (Trenberth, 2005; AghaKouchak et al., 2020). Such floods often kill,
displace people, and destroy capital. Areas that experience such disasters suffer from a disruption
in economic activity (Hsiang and Jina, 2014; Elliott et al., 2015; Kocornik-Mina et al., 2020). Roughly
2,600 floods took place each year from 2012 to 2018, leading to an estimated 31,000 total deaths and
US $240 billion in damages (Guha-Sapir et al., 2016).

Households and firms are not passive victims in the face of such natural disasters. People
can adapt through three different strategies. First, they can invest in self-protection by avoiding
living in increasingly risky areas and by investing in strategies to reduce their place based risk
exposure (see Collado and Wang, 2020; Douglas et al., 2008). Second, government can invest in
local public goods to offset risk (Kousky et al., 2006). Third, they canpurchase insurance or demand
public insurance such that they receive financial transfers if a disaster does take place (Ehrlich and
Becker, 1972). Economic theory emphasizes that these strategies can sometimes be regarded as
complements, and at other times as substitutes. Publicly provided insurance for flood damage or
fire damage can crowd out purchase of private insurance. Similarly, public investment in resilience
infrastructure can crowd out private self protection strategies (Kousky et al., 2006). On the other
hand, a complementary strategywould involve the government adopting amatching grant formula
such that for every private dollar invested in resilience, the government spends a dollar on local
public goods. At a given point in time, an urban population’s risk exposure and the place’s risk
exposure depends on the complex interplay of these various factors.

We use both time series and cross-sectional approaches to test several natural disaster adap-
tation hypotheses. We use a global city data set of 9,468 cities, complemented by data on night
lights and disasters from 2012 to 2018, to shed light on the net effects for cities of private self pro-
tection efforts and public investment in resilience. We first analyse the population growth rate in
flood prone cities to test if people are migrating away from vulnerable areas. Second, we study the
death toll from flood events across different cities, and ask if deaths per disaster have been declin-
ing over time. Third, we examine the impact of floods on economic activity, as proxied by intensity
of night lights1, and how that differs across developed and developing nations. Additionally, we
test whether geographical and topographical characteristics of cities matter in determining the ex-
tent of impact. Fourth, we analyse the pattern of recovery in the aftermath of a flood to ascertain
how long it takes for cities to come back to their pre-disaster level of night lights. Finally, we test
three different flood adaptation hypotheses —whether higher income or productivity helps a city
to mitigate the effect of floods; whether repeated exposure to flooding reduces the negative impact
of subsequent events (the novelty factor as defined by Guiteras et al. (2015)); and if flood protection
infrastructure does in fact attenuate the effect of floods. Places with a higher likelihood of flooding
can invest in costly infrastructure, such as dams, to offset risk. Such public investments may attract
more people to move to the city because the area is now perceived to be safer. They may also re-

1A growing number of studies use night lights intensity as a proxy for economic activity (Henderson et al., 2011;
Donaldson and Storeygard, 2016).
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duce the marginal effect on economic activity of a flood in such a city. We quantify these effects
using data from four major nations – China, India, Mexico, and the United States.

We report three main findings. First, we document that urban population growth is signifi-
cantly lower in cities that experienced more severe floods in the recent past (categorised as Risky

cities). The results hold when we separately analyse high income and low income countries, but
are only significant for the former group. However, the effects are small, with population growth
in risky cities lower by 0.4-0.5 percentage points. This provides suggestive evidence that cities with
recurrent floods do lose some of their desirability for potential and current residents. Furthermore,
deaths from urban floods are lower (1.1 percent) in risky cities, but only for high income countries.
For vulnerable cities in low income countries, the death rate is actually 2.7 percent higher.

Second, usingmonthly night lights data, we show that floods have a significant negative impact
on economic activity. The effect is unsurprisingly higher in cities in low income countries, with
night lights falling by 8.3 percent, as opposed to 1.4 percent in high income countries. Importantly,
we find that high altitude cities suffer more, but only in low income countries. Our findings are
robust to using extreme precipitation events as a measure of floods. In addition, the recovery
dynamic results indicate that economic activity is restored to pre-disaster levels within one month
in cities in high income countries. However, it takes two months for night lights to recover in low
income countries, with the effect size still a significantly negative 4.9 percent after the first month.

Third, we find some evidence of adaptation and resilience to climate shocks. Richer cities, as
measured by city level GDP per capita, experience a lower fall in night lights during a flood event,
controlling for country specific income. Specifically, the effect of floods on low income cities is
9.3 percent, but the same is attenuated by 75-86 percent in the case of medium and high income
cities, respectively. Furthermore, high risk cities or cities that experienced recurrent severe floods
in the past suffer less from flooding by almost half than cities that don’t face recurrent floods.
Lastly, cities protected by dams suffer more floods, but the effect of each flood is mitigated by
a substantial 40 percent. Thus, flood protection infrastructure does aid in reducing the negative
impact on economic activity. In terms of population growth, we find that high risk cities with dams
experience a fall in population growth, but low risk cities with dams experience a 9.5 percentage
point increase in growth over cities with no dams. Together, our various pieces of empirical work
support the adaptation progress.

Our work is most closely related to Kocornik-Mina et al. (2020), who study the short-run effects
of 53 large flood events around the world. They use flood maps from 2003 to 2008 for 1,868 cities
located primarily in developing countries. They find that urban economic activity tends to con-
centrate in low-lying areas and is vulnerable to flood risks. Using annual lights at night data, they
document that large floods lead to a decline in the intensity of night lights by 2 to 8 percent in the
year of the flood. However, economic activity recovers to pre-flood levels in the year immediately
following the flood event. Finally, they document that economic activity does not relocate to safer
areas in the aftermath of floods, with the exception of newly populated parts of cities.

We build on their work by focusing on adaptation, and expanding the scope and extent of the
analysis in five different ways. First, our study is based on a large, globally representative sam-
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ple of 9,468 cities from 175 countries. Second, we focus on a more recent time period from 2012
to 2018, and include the universe of floods (18,420) during this time period in our study. Third,
we proxy economic activity using monthly night lights data from Visible and Infrared Imaging
Suite (VIIRS) instruments, which have a higher spatial and radiometric resolution than its prede-
cessors.2 Importantly, the monthly frequency of the night lights data allows us to study short run
effects and recovery dynamics, which is not possible with data at an annual frequency. Fourth, we
look at the heterogeneous effects of floods based on income classification of countries, which gives
us an insight into the differential impact and recovery from disasters based on economic develop-
ment. Finally, our major focus is adaptation, and we study the role of income, infrastructure and
familiarity in mitigating the impact of disasters.

Our paper contributes to three strands of literature. First, we contribute to the literature on
adaptation to climate shocks. Desmet and Rossi-Hansberg (2015) have shown using a dynamic
spatial model that the consequences of global warming can be mitigated by the ability of agents
and goods to move across space. Therefore, migration is an important and effective adaptation
method to limit the negative economic impact of climate change, and many studies have exten-
sively documented the same. Boustan et al. (2012) use US migration data from 1920’s and 1930’s
to document evidence of private self protection by men who move away from tornado hit areas.
Hornbeck (2012) analyzes the aftermath of American Dust Bowl in 1930’s, and finds that the main
margin of economic adjustment was out-migration from affected areas. Strobl (2011) analyses the
economic impact of hurricanes between 1970-2005 in the US, and estimates that a quarter of the
economic effect of an average hurricane is due to richer people moving out as a consequence of
the hurricane. In contrast, Deryugina (2011) looks at the effects of hurricanes in the 1980’s and
1990’s in the US, and finds no impact on population. Similarly, Kocornik-Mina et al. (2020) find
little evidence of adaptation, at least in the sense of a relocation of economic activity away from the
most vulnerable locations, except for newly populated parts of cities.

Migration, however, is just one instrument in the adaptation toolbox.3 Barreca et al. (2016) study
the effect of high temperatures on mortality in the US, and find that the diffusion of residential air
conditioning has helped facilitate a decline in hot day–related fatalities by 75 percent since 1960’s.
Likewise, Park et al. (2020) show that heat inhibits learning and that school air conditioning helps
mitigate this effect. Bunten andKahn (2017) argue in favor of building less durable structures as an
adaptation technique to preserve an option value to walk away from areas facing a higher climate
risk. Aragón et al. (2021) examine the adaptation response of Peruvian farmers to extreme heat.
They document that the farmers adapt by increasing the area planted, using more domestic labor
on the farm, and changing the crop mix to attenuate the effect of extreme heat on output.

Hsiang andNarita (2012) estimate the extent of adaptation to tropical cyclones using the global
cross-section of countries. They find evidence that countries with more intense tropical cyclone
climates suffer lower marginal losses from an actual event, indicating adaptation to climatologi-
cal risk. Burke and Emerick (2016) study adaptation in the context of agriculture in the US, and

2See Section 3 for a detailed discussion on night lights.
3See Klein et al. (2015) for an extensive survey of the key adaptation opportunities available in response to climate

change.
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find that longer run adaptation only partially mitigate the adverse impacts of heat on agricultural
productivity. Our paper extends the scale of the analysis to the entire globe, and indicates that
migration is an adaptation tool, but it is more pertinent in high income countries. Additionally,
evidence of richer countries adapting can also be seen in the form of lower deaths per flood. More-
over, productive cities are better adept at mitigating the impact of floods. Familiarity with floods
also helps as a tool to reduce the impact, and dams are an effective infrastructure to reduce the
effect of floods.

Second, we contribute to the nascent literature on Climate Justice which predicts that disrup-
tions from extreme weather will disproportionately affect the developing world, particularly the
poor andmost vulnerable (Mendelsohn et al., 2000;World Bank et al., 2003; Mendelsohn et al., 2006;
Stern, 2006; Tol, 2009). Various reports by the Intergovernmental Panel on Climate Change (IPCC)
(Portner et al., 2022; Houghton et al., 2001) estimate that poor countries will suffer the bulk of the
damages from climate change, with economic damages per capita from climate change for devel-
oping countries higher as a fraction of income. This is mainly due to the economic importance of
climate-sensitive sectors for these countries. Moreover, the limited capacity to anticipate and re-
spond to climate change can also impact adaptation in poor nations. Our results tend to support
this discouraging hypothesis. We don’t find any significant movement of people away from vul-
nerable cities in low income countries, even though the death rate is higher. Also, the economic
impact as measured by fall in night lights is 6 times higher (8.3 percent as opposed to 1.4 percent).
Furthermore, economic activity in low income nations take longer to return to pre-flood levels post
a disaster (two months versus one). Low income nations also tend to be have a large proportion
of low productivity cities, and we find that these cities are worse affected during floods. Thus, we
do find strong evidence of disproportionate effects of floods on low income countries, and slower
adaptation progress.

A key equation in global Integrated AssessmentModels is the “climate damage function” (Bar-
rage, 2019; Nordhaus, 2019). This function relates changing climate conditions, often proxied for
by using the world’s average temperature, to economic outcomes. Most of these parametric mod-
els do not incorporate adaptation progress over time as they assume a stationary climate damage
function. Our paper’s third contribution, by documenting that the flood damage function flattens
over time, is to this emerging empirical literature.

Section 2 introduces rising place based natural disaster risk in a spatial equilibrium where in-
dividuals and locations can invest in adaptation strategies. Section 3 discusses the data used in
this paper. Section 4 reports our population growth regressions and Section 5 looks at the death
toll from flood regressions. Section 6 studies night light dynamics. Section 7 reports additional
adaptation hypothesis tests based on the night light dynamics. Section 8 concludes.

2 Adaptation to Place Based Shocks

Cities differ with respect to their local amenities and physical features. In the hedonic spatial equi-
librium, more people will live in a city and its real estate rent will be higher if the area is more
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productive and features better amenities (Henderson, 1974; Roback, 1982). If an area’s quality of
life declines because of extreme weather, the afflicted area will suffer population loss and home
prices will decline (Glaeser and Gyourko, 2005).

Revealed preference logic teaches us that if people choose to locate in ”harm’s way”, there
must be offsetting factors that attracted them to the location. Such individuals can protect them-
selves either by avoiding risky areas or bymaking private and local public investments to offset the
risks. Whether private self protection and defensive public goods investments are complements
or substitutes plays a key role in determining how natural risks actually impact people and the
local economy (Kousky et al., 2006). Some cross-country studies find that richer countries are at
some advantage in terms of coping with natural disasters (Kahn, 2005; Kellenberg and Mobarak,
2008). Kocornik-Mina et al. (2020) document surprisingly little adaptation (defined as movement
within cities from riskier to safer areas) in the aftermath of floods. Mård et al. (2018) find that high
protection levels (in the form of dams and levees) in flood-prone urban areas in rich countries
are effective in mitigating the damage in the aftermath of floods. On the other hand, a study by
Ferdous et al. (2020) finds that flood fatalities are higher in areas in the floodplains where flood
protection measures like building levees were undertaken.

We do not observe the individual level, city level, and national expenditures on disaster risk
offsetting. Such cost data is both difficult to collect and will depend on many location specific and
microeconomic factors. Given this data challenge, we proceed with a reduced form approach that
captures the net effects of a variety of choices that people, firms and governments have made that
together determines an urban population’s disaster exposure risk and ex-post damage realizations.

We test several place based adaptation hypotheses as we study the circumstances such that
flooding and extreme rainfall causes less economic damage. Our unit of analysis is either the
city/year or the city/year/month. The benefit of our aggregate approach is that we can track how
different places cope with shocks. Some places will be better able to cope because they are richer.
Other places may be better able to cope due to their geography and the investments in the place’s
infrastructure. Other places may have central governments who can act faster both ex-ante and ex-
post after a disaster hits to invest in resilience strategies. We assume that the quality of government
is directly related to the nation’s degree of economic development.

3 Data

In this section, we first explain what is our unit of analysis and how we measure economic activ-
ity. Next, we discuss how we measure flood events and the data sources used to measure public
investment in flood protection infrastructure

A Cities

To conduct our longitudinal analysis, we must define the boundary of each city around the world.
The Global Human Settlement Urban Center Database (GHS-UCDB), created in 2015, applies one

5



such definition to identify urban centers and their boundaries. This definition uses “contiguous
grid cells with a density of at least 1,500 inhabitants per km2 of permanent land or with a built-up surface
share on permanent land greater than 0.5, and has at least 50,000 inhabitants in the cluster with smoothed
boundaries.” (Florczyk et al., 2019, p.3). The urban extent of cities so identified include the city
centres and suburbs. FigureA.1 shows the urban extents using thismethod for the cities ofMumbai
and Los Angeles. The GHS-UCDB database covers 13,135 cities having 50,000 people or more in
2015 and provides data on population for the years 1975, 1990, 2000, and 2015. Further, we only
include cities that had at least 10,000 people in 1990 and 2000. This gives us a sample of 9,468 cities
from 175 countries belonging to high-, middle-, and low-income groups.4

The GHS-UCDB database uses underlying data on built-up areas and population from the
Global Human Settlement Layer (GHSL) database. TheGHSL primarily uses satellite remote sens-
ing to identify built-up area grids and thus delineate the physical extent of settlements(Florczyk
et al., 2019). The GHSL combines the built-up area of settlements with countries’ official census
data to produce absolute population at a grid of 1 km resolution. This is done for four points in
time: 1975, 1990, 2000, and 2015. Summing up the population over all grids within the urban ex-
tent boundaries gives the total population of cities for each of four periods. The city GDP in the
GHS-UCDB database is calculated by summing up the total GDP value (in PPP values expressed
in US dollars in 2007) for each grid cell provided in Kummu et al. (2018) over all the grids within
the urban extent.

B Night Lights

Our key outcome variable for measuring economic dynamics is night lights (NTL). Night light
data are collected by satellites at a uniform and disaggregated spatial scale for the whole world.
This allows for a comparison of economic activity across time and place at a finer spatial scale and
circumvents the issue of poorly measured or missing estimates of GDP at a local level. For these
reasons, a number of studies use night lights as a proxy for economic activity (Henderson et al.,
2011; Donaldson and Storeygard, 2016; Henderson et al., 2018). Research studies make use of two
major sources of night lights data: Defence Meteorological Satellite Program (DMSP) and Visible
Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band on the Suomi satellite. The DMSP
night light data has been shown to have some flaws. The values are top coded, leading to saturation
in core cities (Hsu et al., 2015), and the data do not correlate well with output in less dense areas
(Chen and Nordhaus, 2011). While some of the issues were rectified in an updated Radiance
Calibrated Nighttime Light data set, the data are only available annually and only for seven years
up until 2010. We use VIIRS night lights data5, which have been calibrated and do not feature top
coding (Elvidge et al., 2017). The data have been shown to be accurate and reliable (Gibson et al.,
2021). It has a spatial resolution of 465m X 465m (grids) and provides monthly frequency since
April 2012. This measure is a proxy for urban economic activity, population/ density, and built-up

4Throughout this study, we use the country income groups and regional classifications as defined by theWorld Bank.
5The data are provided by the Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines
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Figure 1: Night Lights Before and After Floods in Wuhan: 2016

(a) April 2016 (b) May 2016
Notes: Average monthly night light intensity in Wuhan of Hubei province, China. Wuhan suffered from major floods
between May-July 2016, causing economic losses estimated to be greater than $350m. Figure 1a and 1b show the light
intensity in April and May of 2016, respectively.

area.6

Figure 1 shows VIIRS night light forWuhan before and during the months the city faced floods
in 2016. The light is dimmer for the month of May when it was hit with floods (see Figure 1b).

In the aftermath of a flood, lights at night can dim for several reasons that include temporary
power failures, disruption of essential services, damage to property, temporary closure of offices
and factories. If a specific geographic neighborhood is evacuated in the aftermath of a flood, this
displacement effect may increase economic activity in another part of the city where the people
move to. Our city level aggregate measures will capture this if the people remain within the geo-
graphic boundary as we have defined them.7

C Flood Events

Our flood data are fromTheGeocodedDisasters (GDIS) dataset, which is an open-source database
that providesGIS locations andpolygons for disaster-affected areas in the EmergencyEventsDatabase
(EM DAT). It includes the dominant geophysical, meteorological, hydrological, and climatologi-
cal disaster types: floods, storms, earthquakes, volcanic activity, extreme temperatures, landslides,
droughts, and (dry) mass movements. This dataset includes all disasters between 1960 and 2018.
Our main focus is on storms and floods, which are the majority of total disasters during the time
period of the study for our sample cities. EM DAT classifies storms as meteorological disasters
“caused by short-lived, micro- to meso-scale extreme weather and atmospheric conditions that last from min-

6There are two caveats to note. First, low lit areas could have negative pixel values if the areas are darker than the
background light that is subtracted from them (Beyer et al., 2022). Second, monthly data are missing for high-latitude
countries during summer months because the data are contaminated by solar illumination. Data could also be affected
due to heavy cloud coverage (Beyer et al., 2022).

7Economic activity can be displaced by a shock to areas outside the city’s boundaries. In this case, people adapt
to the shock but the place’s lights at night metric shrinks and will not recover if this economic activity is permanently
displaced.
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utes to days” and floods as hydrological disasters “caused by the occurrence, movement, and distribution
of surface and subsurface freshwater and saltwater”.8 Previous studies have used EM-DAT data at the
nation level to explore various issues related to the impact of natural disasters (see for example
Cavallo et al., 2013; Kahn, 2005).

The GDIS provides geolocation information at various levels of administrative divisions – city
level, province or state level, and country level. However, as our analysis is at the city level, us-
ing administrative divisions that are larger than the city poses a risk of misclassifying a flood as
having taken place in a city where it did not take place. To address this issue, we conducted an
extensive Google search for newspaper articles, government reports, maps by aid agencies, etc. to
find the cities affected by the disaster amongst all urban areas in the larger administrative division.
However, when no clear information was available from the search, we classified all cities in our
database that fell within the affected administrative division as being hit by the disaster.

D Precipitation

Precipitation intensity data allow us to create a metric of the severity of a natural disaster based on
a consistent criteria. To measure rainfall intensity, we use data from TerraClimate, which provides
monthly climate and climatic water balance for global terrestrial surfaces from 1958-2019. All data
have a monthly temporal resolution and a c.4-km (1/24th degree) spatial resolution.

We use the TerraClimate data to create a distribution of precipitation for each city. We classify
months that witnessed a precipitation greater that 95th or 90th percentile of the city specific distri-
bution as an extreme precipitation event. In the results we report below, we document the positive
correlation between flood events and extreme rainfall and we report results where our measure
of a disaster is an extreme rainfall event. This shock’s intensity is city specific as we measure an
outlier event based on the city’s past empirical distribution of rainfall.9

E Elevation

We calculate the mean elevation for each city by averaging the elevation (in meters) for all 30
arc second grids (which is approximately one kilometre) in a city. The data are available in the
GTOPO30 dataset.10

F Dams

We identify cities that were protected by dams in four major countries; China, India, Mexico and
the United States. Due to the time costs of accurately identifying cities protected by dams and

8https://www.emdat.be/classificationHydrologicals
9Due to the topography and hydrology of cities and due to their investments in dam flood protection, there may

not be a one to one mapping of extreme local rainfall events with local flooding. The water may accumulate in nearby
geographic areas (see Guiteras et al. (2015))

10https://developers.google.com/earth-engine/datasets/catalog/USGSGTOPO30 This data has been compiled with
the help of a number of organizations. The team was led by U.S. Geological Survey’s Center for Earth Resources Obser-
vation and Science (EROS).
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the requirement of having comprehensive country maps of rivers, we focus on these four major
nations. For the location of dams, we rely on a comprehensive geocoded global database of 7,320
large dams.11

Identifying cities in our sample that are downstream from a dam involved first identifying the
rivers on which the dams were built and then identifying whether a city was near a river. We used
four different sources for geocoded maps of rivers for each of the four countries.12 We assume that
the dam was built before 2013.

We define a dam as protecting a city if the following two conditions are satisfied; first, the dam
is located upstream of ”the nearby rivers” of this city. If the distance from any point of a river to the
geometric center of a city is greater than 15km, we consider this river is not near the city; otherwise,
this river is near the city. Second, the distance between the upstream dam and the geometric center
of the city is less than or equal to 100km. If a city has one or more dam that has protection power,
it is a city ”protected by dams”; otherwise, this city is ”not protected by dams.”

11Thedamsdatabase is compiled by theGlobalWater SystemProject as part of theGlobal Reservoir andDamDatabase
(GRanD) which is available at: https://hub.arcgis.com/datasets/panda::global-dams-and-reservoirs/about?layer=2.

12Mexico from ArcGIS hub(https://hub.arcgis.com/), the US from Esri ArcGIS online (https://www.esri.com/en-
us/arcgis/products/arcgis-online/overview), India from Stanford Lib Earthworks and China from 1998 China River
Location Map(downloaded in a Chinese website)
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Table 1: Summary Statistics

Variable All Cities High Income Cities Low Income Cities

Coastal Inland Low
Elevation

High
Elevation

All High
Income Cities Coastal Inland Low

Elevation
High

Elevation
All Low

Income Cities
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A

Number of Cities
(% of Total)

9,468 777
(8.21)

4,325
(45.68)

2,859
(30.19)

2,243
(23.69)

5,102
(53.89)

437
(4.62)

3,929
(41.49)

1,947
(20.56)

2,419
(25.55)

4,366
(46.11)

Mean Elevation (m) 370.53
[514.41]

38.59
[45.00]

426.96
[564.29]

55.15
[44.30]

766.35
[610.78]

385.54
[557.99]

35.28
[47.25]

388.84
[470.89]

54.39
[46.68]

594.17
[499.20]

354.49
[462.75]

Night Lights (nW/cm2/sr) 14.23
[16.12]

27.43
[22.30]

20.21
[16.83]

20.69
[18.24]

22.08
[17.56]

21.31
[17.96]

8.84
[12.71]

5.63
[6.89]

6.49
[8.24]

5.52
[7.27]

5.95
[7.73]

GDP per capita (US$) 8,237.39
[9,156.55]

17,966.07
[14,380.46]

11,470.26
[9,249.45]

13,791.01
[11,200.41]

10,761.95
[9,163.29]

12,459.52
[10,460.82]

4,305.93
[4,311.26]

3,192.04
[2,750.52]

3,919.16
[3,326.65]

2,808.02
[2,527.03]

3,303.53
[2,962.48]

Population Growth (%) 20.51
[38.01]

19.71
[34.50]

12.86
[27.52]

13.15
[27.38]

14.86
[30.49]

13.90
[28.793]

35.26
[78.53]

27.46
[39.89]

23.76
[49.63]

31.84
[41.18]

28.24
[45.32]

Built-up Area (%) 34.68
[18.15]

45.99
[14.04]

44.41
[16.02]

46.52
[15.16]

42.28
[16.15]

44.65
[15.75]

25.20
[13.61]

22.78
[13.06]

22.52
[12.91]

23.43
[13.30]

23.03
[13.13]

Panel B

Number of Floods
(% of Total)

18,420 958
(5.20)

10,726
(58.23)

6,183
(33.57)

5,501
(29.86)

11,684
(63.43)

585
(3.18)

6,151
(33.39)

3,033
(16.46)

3,703
(20.10)

6,736
(36.57)

Avg. Floods 1.95
[3.08]

1.23
[1.85]

2.48
[3.85]

2.16
[3.24]

2.45
[4.09]

2.29
[3.64]

1.34
[1.72]

1.57
[2.24]

1.56
[2.01]

1.53
[2.33]

1.54
[2.19]

Extreme Precip. Events
(% of Total)

32,946 3,177
(9.64)

13,450
(40.82)

9,617
(29.19)

7,007
(21.27)

16,627
(50.47)

1,874
(5.69)

14,445
(43.84)

7,050
(21.40)

9,269
(28.13)

16,319
(49.53)

Avg. Extreme Precip. Events 3.48
[2.31]

4.09
[2.08]

3.11
[2.19]

3.36
[2.21]

3.12
[2.21]

3.26
[2.21]

4.29
[3.01]

3.68
[2.31]

3.62
[2.62]

3.83
[2.20]

3.74
[2.40]

Notes: Column 1 provides the summary statistics for all 9,468 cities, while columns (2)-(6) and (7)-(11) provide summary statistics for High Income and Low Income cities, respectively. High Income and Low Income cities have been further classified into
coastal or inland cities (columns (2)-(3) and (7)-(8)), and low elevation and high elevation cities (columns (4)-(5) and (9)-(10)). Columns (6) and (11) provide summary statistics for the universe of High Income and Low Income cities, respectively. The
sum of coastal and inland cities equals the total number of cities in the respective income group, as do the sum of low and high elevation cities. Panel A provides information on geographical and economic characteristics, while Panel B focuses on floods
and extreme precipitation events. GDP per capita is measured in PPP 2015 US$. Population Growth is computed as the change in the population of a city between years 2015 and 2000. Built-up Area is defined as the percentage of the total area of the city (km2)
that contains built-up structures. Polity is a continuous variable computed by subtracting the Autocracy score from the Democracy score. The resulting unified polity scale ranges from +10 (strongly democratic) to -10 (strongly autocratic).Both the Autocracy
and theDemocracy scores are an additive eleven-point scale (0-10). The operational indicators of Autocracy andDemocracy are derived from codings of the competitiveness of political participation, the openness and competitiveness of executive recruitment,
and constraints on the chief executive. Since Polity scores are only available at a country level, we cannot calculate them separately based on the geography of the city. Extreme Precipitation Events are a a dummy indicating whether the precipitation in the
monthm and year y in city c in country j (between the years 2012-2018) was greater than the 95th percentile of the city-specific distribution of precipitation, which was created using data from 1958-2018. The Average Floods and Average Extreme Precipitation
Events refer to the average number of such events during the years 2012-2018. Standard deviation for all variables are reported in brackets.
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Table 1 reports the summary statistics. The upper panel reports the count of cities in our data
set overall and divided into high income and low income nations. We also report the count of
cities in different geographic categories including coastal cities and inland cities and cities at high
elevation. The bottom panel of Table 1 reports the flood disaster conditional means. In our sample
of cities, over 18,000 flood events took place and roughly 63 percent took place in richer nations.
The average city experienced two floods during our sample period. Below we will discuss how
this fact affects our econometric estimation strategy.

4 Adaptation by Migrating Away from Flood Prone Cities

We test whether cities that have experienced more floods in recent years experience lower popula-
tion growth.

We report population growth regressions using data from 2000-2015. Our regression specifi-
cation takes the following form:

∆ Populationcj = α+ β1 Riskycj + β2 ln(GDP/capita)cj + β3 ln(Builtup Area)cj+

β4 ln(Population)cj + δc + ξcj (1)

where, the dependent variable∆ Populationcj is the population growth (in percent) between years
2000 and 2015 in city c in country j. The variable of interest is Riskycj , which is a proxy for the
vulnerability of the city. It is a continuous variable that measures the number of extreme precip-
itation events between 2000-15, where we define an extreme event based on two different cutoffs.
For each city, we construct a distribution of monthly rainfall between 1958-2015, and then sum the
total number of 90th (or 95th) percentile events that struck the city between 2000-15. Thus, a city
that was frequently hit with extreme events, relative to its own distribution, over the course of the
first 15 years of the new millennium will have a higher value for the Riskycj variable. We control
for baseline economic opportunity measured by the the natural log of the year 2000 values of GDP
per capita, built-up area (per square km.), and population of the city, and also include country
fixed effects (δc) to account for time-invariant country characteristics. Table 2 presents the results,
first at the aggregate level, and then divided by income groups.

We find that cities that experienced higher frequency of extreme events between 2000-15 saw
lesser growth in population in the same period (columns 1-2 in Table 2). This is only significant
for cities in high-income countries (column 4) and not for cities in low-income countries (columns
5-6). The effect is quantitatively small as the percentage change in population in high flood risk
cities is .5 percent lower than cities facing less flood risk.

Recent empirical research studying localized shocks such as bombings generally does not find
strong evidence of population decline in shocked areas. Studies set in Japan and Vietnam have
documented that cities bombed during war time have proved to be resilient in the face of extreme
shocks in the long run (Davis and Weinstein, 2002; Miguel and Roland, 2011).
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Table 2: Effect of Extreme Events on Population Growth

Dependent Variable: ∆ Populationcj

All High Income Low Income
(1) (2) (3) (4) (5) (6)

Risky (90th Perc)cj −0.004∗ −0.003 −0.005

(0.002) (0.002) (0.004)

Risky (95th Perc)cj −0.005∗ −0.004∗ −0.006

(0.003) (0.002) (0.005)
GDP/capita (2000)cj 0.033∗∗ 0.033∗∗ 0.061∗∗∗ 0.061∗∗∗ 0.015 0.016

(0.014) (0.014) (0.013) (0.013) (0.016) (0.016)
Builtup Area (2000)cj −0.038∗ −0.039∗∗ −0.018 −0.020 −0.050∗∗ −0.049∗∗

(0.020) (0.019) (0.023) (0.022) (0.024) (0.023)
Population (2000)cj −0.020∗∗ −0.020∗∗ −0.024∗∗∗ −0.024∗∗∗ −0.018 −0.017

(0.009) (0.009) (0.009) (0.009) (0.017) (0.017)

Fixed Effects
Country ! ! ! ! ! !

Num. obs. 9,468 9,468 5,102 5,102 4,366 4,366
Adj. R2 0.261 0.261 0.328 0.329 0.193 0.193

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
The dependent variable in all regressions, ∆ Populationcj , refers to the population growth between years 2000 and 2015 in city c in country j.
Riskycj is a continuous variable that measures the number of extreme precipitation events in city c in country j between years 2000 and 2015,
where extreme precipitation is a dummy indicating whether the precipitation in the month m and year y in city c in country j fell in the 90th (or
95th) percentile of the distribution of rainfall in the said city. The distribution was created using precipitation data from 1958-2015. Log values of
GDP per capita, Builtup Area (per sq. km), and Population pertain to the year 2000. Models (3) and (4) only include observations from High Income
andUpper Middle Income countries, whereas models (5) and (6) only include observations from Low Income and Lower Middle Income countries. All
standard errors are clustered by country.

Unlike bombed areas, natural disasters prone areas are likely to be repeatedly shocked. Such
a time series persistence should act as a tax on investing in capital in the affected area because
investors expect that the area will be struck again. Given this logic it is surprising that recent
empirical work on disasters has found that incumbents tend to remain in the shocked area unless
their housing is destroyed (Boustan et al., 2012; Kocornik-Mina et al., 2020). This could be explained
by positive migration costs and built up local social capital. Existing residents, especially the poor,
may find it difficult to finance the migration costs to move to a safer city. Shocks can trigger huge
federal transfer payments in richer nations. The expectation of such ex-post relief can create a
moral hazard effect that acts to anchor people to risky places.

Recent empirical studies (Deryugina et al., 2018; Nakamura et al., 2016) have documented a
”silver lining” such that people displaced from their origin due to a natural disaster actually enjoy
an improvement in their material standard of living in subsequent years. Access to family and
social capital may anchor people to risky places (Glaeser et al., 2002). If the poor are less likely to
”vote with their feet” to move to higher ground, then environmental justice issues are exacerbated
as climate changewill cause the poor to be exposed to greater risks but their rents for living in such
places will be lower.
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5 The Death Toll from Floods

One important natural disaster adaptation metric is the death count. During our sample period,
this is a highly skewed variable with many zero counts and some truly deadly disasters.

To test whether floods cause less deaths in richer cities, or in cities with more past experience
with flood events, we run the following regression:

ln(Deaths per disastercjr) = α+ β1 Riskycjr + β2 ln(GDP/capita)cjr + β3 ln(Population)cjr+

Xcjr + δr + ξcjr (2)

Here, the dependent variable is the natural log of the ratio of total deaths caused by floods and the
total number of floods between the years 2010 and 2018, for each city c in country j and region r.
Cities that suffered no disasters between 2010-18 were dropped from the analysis13. The indepen-
dent variable Riskycjr reflects vulnerability, but we slightly change its definition as compared to
Equation (1). Firstly, the distribution of monthly rainfall is constructed using data between 1958-
2018, and secondly, we sum the number of extreme precipitation events between 1970-2010. Thus,
cities that have been most affected by natural disasters over the course of the 40 years between
1970-2010 will have a higher value for Riskycjr. We control for city characteristics as measured by
the natural log of the year 2015 values of GDP per capita and population.

We add in a vector of city-specific time-invariant dummies (Xcjr) for geography and topog-
raphy. The first, High Elevationcjr, indicates whether city c in country j has an elevation14 that
falls in the top 50th percentile of the distribution of elevations across all the 9,468 cities. The sec-
ond, Coastalcj , signifies whether the city has a coast line. We also control for Capitalcj , which is
a dummy that indicates whether city c is the capital of country j. Finally, we add in World Bank
region15 fixed effects (δr) to control for any time invariant heterogeneity between cities in differ-
ent regions. Standard errors are clustered at the World Bank region level. Results are presented in
Table 3.16

Wefind that cities in high-income countries having higher frequency of extreme events between
1970-2010 saw fewer deaths per disaster between 2010-2018 (columns 3-4 in Table 3). Conversely,
cities in low-income countries that had a higher number of extreme events in the past saw higher
deaths per disaster (columns 5-6). Cities in high-income countries have been able adapt to recur-

13For cities with disasters but no deaths, the dependent variable is log
(

1+deaths
total disasters

)
.

14Calculated as median elevation across all 30 arc second grids in a city.
15There are 7 World Bank regions, namely East Asia & Pacific, Europe & Central Asia, Latin America & Caribbean,

Middle East & North Africa, North America, South Asia, and Sub-Saharan Africa.
16One caveat related to the death toll results is the measurement error in the dependent variable. EM DAT provides

deaths and injuries for each disaster, and not the affected cities therein. This is not a concern if the administrative unit
affected by the disaster comprises a single city. However, when the death toll is provided for an administrative unit
larger than the city, we have made the assumption that total deaths were divided equally between all the cities in our
sample that are located within the disaster zone. This implies a certain degree of measurement error in the regressand,
as there is bound to be variation in deaths between cities in the same region. However, it is important to note that this
only makes the estimates less precise, but the coefficients would still remain unbiased.
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Table 3: The Death Toll from Floods

Dependent Variable: ln(Deaths per disastercjr)
All High Income Low Income

(1) (2) (3) (4) (5) (6)
Risky (90th Perc)cjr 0.008 −0.008∗∗ 0.017∗∗

(0.006) (0.003) (0.005)
Risky (95th Perc)cjr 0.011 −0.011∗∗ 0.027∗∗

(0.009) (0.003) (0.008)
GDP/capita (2015)cjr −0.097∗∗∗ −0.095∗∗∗ −0.042∗ −0.043∗ −0.036∗∗ −0.035∗

(0.014) (0.015) (0.018) (0.019) (0.014) (0.014)
Population (2015)cjr 0.074∗∗∗ 0.074∗∗∗ 0.055∗∗∗ 0.055∗∗∗ 0.094∗∗∗ 0.093∗∗∗

(0.014) (0.013) (0.015) (0.015) (0.006) (0.007)
High Elevcjr −0.075 −0.073 0.050 0.052 −0.215∗ −0.212

(0.102) (0.102) (0.038) (0.036) (0.101) (0.105)
Capitalcjr 0.424 0.415 0.171 0.188 0.703∗ 0.719∗

(0.279) (0.281) (0.166) (0.158) (0.303) (0.288)
Coastalcjr 0.209∗∗ 0.210∗∗ 0.024 0.026 0.418∗ 0.425∗

(0.061) (0.063) (0.045) (0.044) (0.171) (0.175)

Fixed Effects
WB Region ! ! ! ! ! !

Num. obs. 7,032 7,032 3,874 3,874 3,158 3,158
Adj. R2 0.131 0.131 0.137 0.137 0.113 0.114

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
The dependent variable in all regressions, ln(deaths per disaster)cjr , refers to the natural log of deaths per disaster for each city c in country j and region r

between the years 2010 and 2018. Riskycj is a continuous variable that measures the number of extreme precipitation events in city c in country j between
years 1970 and 2015, where extreme precipitation is a dummy indicating whether the precipitation in the month m and year y in city c in country j fell
in the 90th (or 95th) percentile of the distribution of rainfall in the said city. The distribution was created using precipitation data from 1958-2018. Log
values of GDP/capita and Population pertain to the year 2015. High Elevcj is a dummy indicating whether city c in country j has a median elevation that
ranks in the top 50th percentile of the distribution of the median elevation across all cities. Coastalcj and Capitalcj are dummies that indicate whether city
c in country j is a coastal or capital city, respectively. Models (3) and (4) only include observations fromHigh Income andUpper Middle Income countries,
whereas models (5) and (6) only include observations from Low Income and Lower Middle Income countries. All standard errors are clustered by World
Bank Region.

ring shocks of extreme flooding in the past. This could be due to people moving to safer areas
in high-income countries as seen in Table 2. India, which is classified as a lower middle-income
country, has far fewer large cities than what the Zipf’s law would suggest (Chauvin et al., 2017).

We find that GDP/capitacjr has a negative relationship to deaths per disaster in both high-
and low-income countries. Comparing the coefficient values in columns (3) and (6), we find that
the negative impact of GDP/capitacjr on deaths per disaster is marginally greater in high-income
countries than in low-income countries. This result supports the hypothesis that the relationship
between income and damage caused by flooding is non-linear and depends on the stage of devel-
opment (see Kellenberg and Mobarak, 2008).

We include a time trend to capture overall trends in adaptation (see Table B.1). Many Inte-
grated AssessmentModels (IAM) assume that the climate damage function is stationary over time
(Pindyck, 2013). We reject this pessimistic hypothesis as we find that richer cities suffer less death
and the death gradient with respect to flood events flattens over time.17

17We also test if deaths from disasters are declining over time. We run a regression of the log of deaths per disaster
on a linear and quadratic function of time, with city and country-month fixed effects. The sample only includes city-

14



6 Urban Resilience and Flood Shocks

We now turn to presenting our findings on how flood shocks affect economic activity as based on
lights at night dynamics. Floods could lead to temporary power failures, disruption of essential
services, damage to property, temporary closure of offices and factories, and in all cases will affect
the normal functioning of economic life for sometime. The flood’s impact on economic activity
depends on the resilience of the city’s core infrastructure. Richer cities should have more resilient
infrastructure. We now test whether cities in high income countries suffer less from floods than
cities in low income countries and we test for whether cities in low income countries take longer
to bounce back after flood events.

Figure 2: Pre-Trend Analysis of Night Lights Intensity for All Cities

(a) Floods (b) Extreme Precipitation
Notes: Figure 2a show the 6 month lag and 2 month lead around a flood event. The coefficients in the plot is estimated by running
a regression of ln(Night Lights)cjmy , which is the natural log of mean light intensity in city c in country j in month m of year y,
on the contemporaneous and 8 month leads and lags of the flood dummy, where Floodcjmy is a dummy indicating whether city c
in country j was hit by a flood in month m of year y. The model includes the controls Stormcjmy and Landslidecjmy , dummies
indicating whether city c in country j was hit by a storm or landslide, respectively, in monthm of year y. 8 month leads and lags for
these two disaster types have also been included as controls. Figure 2b show the 6 month lag and 2 month lead around an extreme
precipitation event, which is a dummy indicating whether the precipitation in the month m and year y in city c in country j was
greater than the 95th percentile of the city-specific distribution of precipitation, which was created using data from 1958-2018. The
shaded ribbons in each plot represent the 95th confidence interval band. In all regressions, observations include city-country-month-
year observations which had a non-zero value of nightlights. Each observation was weighted by the mean of the cloud free coverage
for the city-country-month-year observation. Standard errors are clustered at the city and month-year level.

A The Effect of Floods on Economic Activity

We examine the impact of floods on economic outcomes by running the following regression:

ln(Night Lightscjmy) = α+

2∑
i=−2

(
βi Floodcj{m+i}y

)
+ γ1 Floodcjmy ×High Elevcj+

γ2 Floodcjmy × Coastalcj + γ3 Floodcjmy × Capitalcj +Xcjmy + δc + Γjmy + ϵcjmy (3)

month combinations in which there was a flood. Clustering the standard errors at the city level, we find a negative
and significant coefficient on the time trend. Running the same regression separately for cities in high income and low
income countries yields a negative and significant coefficient for the former, but a positive and insignificant coefficient
for the latter.
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where ln(Night Lights)cjmy refers to the natural log of the average value of night lights in city c in
country j in monthm and year y. This is calculated as the mean of the radiance values of all grids
within the city in a given month and year. Floodcjmy is a dummy variable that equals 1 if city c

in country j was hit by a flood in month m of year y. We include two month lags and leads of
the flood dummy to account for (i) early flood warning or heavy rainfall prior to floods affecting
economic outcomes, and (ii) recovery dynamics post floods. Similar to the death toll regressions,
we add in a dummy for capital cities, and use High Elevcj and Coastalcj as controls for city-specific
time-invariant dummies for geography and topography. Xcjmy represents a vector of city-specific
controls, specifically whether the city was affected by storms or landslides in month m of year y,
and the corresponding two month lags and leads. δc and Γjmy represent city, and country-month-
year fixed effects, respectively. Finally, to account for possible noise in the measurement of night
lights intensity in the city due to cloud cover, we weight each observation by the proportion of
cloud free cover images used to create a monthly composite for the city. To account for spatial and
temporal correlation, we cluster the standard errors at the city and month-year level. The results
are presented in columns (1) and (2) of Table 4.

We find that on average cities that suffer from floods see a decline in mean night lights by
around 3%. This decline is associated with disruptions to economic activity caused due to floods.
Counter-intuitively, the effect is attenuated for cities located on coasts compared to cities located
away from the coast. Similarly, cities in low elevation areas on average see a smaller decline in
mean night lights.

Table 4: Effect of Floods on Economic Activity

Dependent Variable: ln(Night Lightscjmy)

All High Income Low Income
(1) (2) (3) (4) (5) (6)

Floodcjmy −0.034∗∗∗ −0.070∗∗∗ −0.014∗∗ −0.020 −0.083∗∗∗ −0.162∗∗∗

(0.009) (0.017) (0.007) (0.027) (0.021) (0.041)
Floodcjmy ×High Elevcj −0.019∗∗∗ −0.002 −0.049∗∗∗

(0.007) (0.011) (0.014)
Floodcjmy × Coastalcj 0.029∗∗∗ 0.027∗∗ 0.032

(0.009) (0.011) (0.023)
Floodcjmy × Capitalcj 0.005 −0.006 0.049

(0.028) (0.017) (0.076)
Floodcjmy × Time Trendmy 0.002∗ 0.000 0.003∗

(0.001) (0.001) (0.002)

Fixed Effects
City ! ! ! ! ! !

Country × Month × Year ! ! ! ! ! !

Num. obs. 663,161 663,084 341,899 341,822 321,262 321,262
Adj. R2 0.952 0.952 0.935 0.935 0.930 0.930

Notes: two-way clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
The dependent variable in all regressions, ln(NightLights)cjmy , is the natural log of mean light intensity in city c in country j in month m of year y. Floodcjmy is a dummy
indicating whether city c in country j was hit by a flood in month m of year y. High Elevcj is a dummy indicating whether city c in country j has a median elevation that
ranks in the top 50th percentile of the distribution of the median elevation across all cities. Coastalcj and Capitalcj are dummies that indicate whether city c in country j is a
coastal or capital city, respectively. Time Trendmy is a continuous variable that takes the value from 1 to 81, with 1 representing the first month of the sample (April 2012), and
81 representing the last month (September 2018. Models (3) and (4) only include observations from High Income and Upper Middle Income countries, whereas models (5) and
(6) only include observations from Low Income and Lower Middle Income countries. All regressions include the controls Stormcjmy and Landslidecjmy , dummies indicating
whether city c in country j was hit by a storm or landslide, respectively, in month m of year y. One month lead and two month lags for all three disaster types have also been
included in controls. Observations include all city-country-month-year observations which had a non-zero value of nightlights. Each observation was weighted by the mean of
the cloud free coverage for the city-country-month-year observation. Standard errors are clustered at the city and month-year level.

We posit that richer cities suffer less from floods than poorer cities. To test this, we ran Equa-
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tion (3) separately for high income and low income countries. The results are presented in columns
(3)-(6). We find cities in both high and low income countries see, on average, a decline in night
lights after being hit by a flood. Further, the coefficients for cities in high income countries aremuch
lower compared to the coefficients for cities in low income countries, which are around 0.05-0.08
(columns 5-6 in Table 4).

We plot the estimated coefficients of the effect of floods on night lights for all cities six months
prior and two months after a flood event in Figure 2a. We observe no pre-existing trend prior to
the flood event and a negative effect in the month of the flood followed by an upward trend in the
months after the flood event. Figures for high income and low income countries are available in
appendix A.2a and A.2c respectively.

B The Effect of Extreme Rain on Economic Activity

In this section, we change the specification and now examine the impact of extreme rainfall events
on lights at night dynamics. To construct the variable, we first calculate the city specific distribu-
tion of rainfall for each of the 9,468 cities in our sample, using monthly precipitation data from
TerraClimate for the time period 1958-2018. Next, for each city, we classify all months with pre-
cipitation greater than the 95th percentile of the city specific distribution as having experienced an
extreme event. This gives us a list of months for each city when it experienced precipitation that
was extreme relative to its recent 60 year history.

The regression specification is the same as in Equation (3), except that the regressor isExtreme Raincjmy,
and we don’t include the vector of controls, Xcjmy. Results from this specification are presented
in Table 5, with the estimates broken down by high income countries (columns 3 and 4) and low
income countries (columns 5 and 6).

The coefficient for all cities are negative and significant and, at 4%. Extreme rain affect cities in
both rich and poor nations. For cities in high income countries, extreme rain is associated with a
5% decline on mean night lights — higher than the average impact of flood events. Given that our
variable for precipitation measures extreme events, the results show that high income countries
are also vulnerable to such disasters.

We plot the coefficient estimates of the effect of extreme rain on night lights for all cities six
months prior and two months after a flood event in Figure 2b. We observe no pre-existing trend
prior to the flood event and a negative coefficient in the month of the extreme precipitation event
followed by an upward trend in the months after the flood event. Pre-trends figures for high in-
come and low income countries are available in appendix A.2b and A.2d respectively.

C Recovery Dynamics From Floods

In the aftermath of a flood, how many months does it take for the city to recover? In Figure 3a,
we report one case study. Chennai, a major city in India, suffered from major floods between
November-December 2015. Figure 3a shows the light intensity in October before the flood events.

17



Table 5: Effect of Extreme Rain on Economic Activity

Dependent Variable: ln(Night Lightscjmy)

All High Income Low Income
(1) (2) (3) (4) (5) (6)

Extreme Raincjmy −0.051∗∗∗ −0.081∗∗∗ −0.046∗∗∗ −0.037∗∗∗ −0.059∗∗∗ −0.144∗∗∗

(0.010) (0.008) (0.009) (0.009) (0.018) (0.016)
Extreme Raincjmy ×High Elevcj −0.022∗∗∗ −0.012∗∗ −0.033∗∗∗

(0.005) (0.005) (0.009)
Extreme Raincjmy × Coastalcj 0.013∗∗ 0.022∗∗∗ −0.016

(0.006) (0.006) (0.014)
Extreme Raincjmy × Capitalcj −0.039 −0.019 −0.096

(0.026) (0.020) (0.075)
Extreme Raincjmy × Time Trendmy 0.003∗∗∗ 0.001 0.005∗∗∗

(0.000) (0.000) (0.001)

Fixed Effects
City ! ! ! ! ! !

Country ×Month × Year ! ! ! ! ! !

Num. obs. 663,161 663,084 341,899 341,822 321,262 321,262
Adj. R2 0.952 0.952 0.935 0.935 0.930 0.930

Notes: two-way clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
The dependent variable in all regressions, ln(Night Lights)cjmy , is the natural log of mean light intensity in city c in country j in month m of year y. Extreme Raincjmy is a dummy
indicating whether the precipitation in the month m and year y in city c in country j was greater than the 95th percentile of the city-specific distribution of precipitation, which was
created using data from 1958-2018. High Elevcj is a dummy indicating whether city c in country j has a median elevation that ranks in the top 50th percentile of the distribution of the
median elevation across all cities. Coastalcj and Capitalcj are dummies that indicate whether city c in country j is a coastal or capital city, respectively. Time Trendmy is a continuous
variable that takes the value from 1 to 81, with 1 representing the first month of the sample (April 2012), and 81 representing the last month (September 2018) Models (3) and (4) only
include observations fromHigh Income andUpper Middle Income countries, whereas models (5) and (6) only include observations from Low Income and Lower Middle Income countries. One
month lead and twomonth lags for the Extreme Rain dummy have been included as controls. Observations include all city-country-month-year observations which had a non-zero value of
nightlights. Each observation was weighted by the mean of the cloud free coverage for the city-country-month-year observation. Standard errors are clustered at the city and month-year
level.

This intensity reduced during the themonths of flooding (Figure 3b& Figure 3c). By January 2016,
the intensity of lights in Chennai started recovering to pre-flood levels (see 3d).

In this section, we analyse the pattern of recovery following a flood event, i.e. the length of
time it takes cities to recover from floods on average. To test for this, we estimate the following
regression:

ln(Night Lightscjmy) = α+

3∑
i=−6

(
βi Floodcj{m+i}y

)
+Xcjmy + δc + Γjmy + ϵcjmy (4)

where Floodcj{m+i}y is a dummy that equals 1 if there was a flood in month {m+ i}.

The coefficient on this variable can, thus, be interpreted as the effect of a flood inmonth {m+ i}
on night lights in month m. We include lags for six months, allowing us to trace the economic
recovery immediately after the flood event. Xcjmy represents a vector of city-specific controls,
specifically whether the city was affected by storms or landslides in month m of year y, and the
corresponding lags and leads.

The results are presented in Panel A of Table 6. As a robustness check, we also test for recovery
dynamics after extreme rain events, with results presented in Panel B. In the interest of brevity, we
have only presented the estimates on lags of floods and extreme rain for three months. However,
the coefficients on leads and the remaining lags for all the specifications are insignificant.

We see that negative impact of floods persist for at least one month after the disaster and is
more severe for low-income countries relative to high-income countries.
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Figure 3: Night Lights Before and After Floods in Chennai: 2015-16

(a) October 2015 (b) November 2015

(c) December 2015 (d) January 2016
Notes: Average monthly night light intensity in Chennai, capital of Tamil Nadu state, India. Chennai suffered from
major floods betweenNovember-December 2015, with economic losses estimated to beUS$1bn. Figure 3a and 3b show
the light intensity in October and November of 2015, respectively, whereas Figure 3c and 3d show the light intensity
in December 2015 and January 2016, respectively.

7 Testing Flood Adaptation Hypotheses

We have found that economic activity in cities declines in the immediate aftermath of floods and
extreme rain and that poorer nations suffermore. In this section, we test several resilience hypothe-
ses. We ask: Are richer cities with productive capital resilient to shocks? Does past experiencewith
extreme events result in better preparedness for future disasters? Do investments in protective in-
frastructure such as flood control dams reduce the effect of floods?

A Do Richer Cities Suffer Less?

Cities that are economically productive have better infrastructure and resources to cope with ex-
treme events. We hypothesize that richer cities, as measured by their per capita GDP, will be less
affected by disasters. We test this using the following regression equation:
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Table 6: Recovery Dynamics for Floods and Extreme Rain

Dependent Variable: ln(Night Lightscjmy)

All High Income Low Income
Panel A

Floodcj{m}y −0.033∗∗∗ −0.016∗∗ −0.079∗∗∗

(0.009) (0.007) (0.021)
Floodcj{m−1}y −0.017 −0.002 −0.049∗

(0.011) (0.009) (0.025)
Floodcj{m−2}y 0.010 0.007 0.016

(0.011) (0.009) (0.028)
Floodcj{m−3}y 0.020 0.013∗ 0.029

(0.013) (0.008) (0.030)
Panel B

Extreme Raincjmy −0.049∗∗∗ −0.047∗∗∗ −0.052∗∗∗

(0.011) (0.009) (0.018)
Extreme Raincj{m−1}y −0.022∗∗∗ −0.014∗∗ −0.034∗∗

(0.007) (0.006) (0.014)
Extreme Raincj{m−2}y 0.003 0.001 0.005

(0.008) (0.007) (0.015)
Extreme Raincj{m−3}y 0.011 0.015∗∗ 0.007

(0.009) (0.006) (0.017)

Fixed Effects
City ! ! !

Country × Month × Year ! ! !

Num. obs. 606,353 311,287 295,066
Adj. R2 0.953 0.938 0.932

Notes: two-way clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05;
∗p < 0.1.
The dependent variable in all regressions, ln(Night Lights)cjmy , is the natural log ofmean light
intensity in city c in country j in monthm of year y. Floodcj{m−t}y (Extreme Raincj{m−t}y)
indicates whether city c in country j was hit by a flood (extreme precipitation) event tmonths
prior. Extreme Raincjmy is a dummy indicating whether the precipitation in the month m

and year y in city c in country j was greater than the 95th percentile of the city-specific distri-
bution of precipitation, which was created using data from 1958-2018. Observations include
all city-country-month-year observations which had a non-zero value of nightlights. Panel A
presents the recovery dynamics for floods, and Panel B focuses on extreme precipitation. All
regressions in Panel A include the controls Stormcjmy and Landslidecjmy , dummies indi-
cating whether city c in country j was hit by a storm or landslide, respectively, in monthm of
year y. The controls in Panel B include 7 lags and 3 leads for each of the three disaster types.
Controls in Panel B include 7 lags and 3 leads for extreme precipitation events. Each obser-
vation was weighted by the mean of the cloud free coverage for the city-country-month-year
observation. Standard errors are clustered at the city and month-year level.

ln(Night Lightscjmy) = α+

2∑
i=−2

βi Floodcj{m+i}y +
∑

k∈{mid,high}

γk Floodcjmy × GDP/capitakcj

+Xcjmy + δc + Γjmy + ϵcjmy (5)

We divide the log of per capita GDP into three quantiles, namely Low (omitted category),Medium
andHigh. Thus,GDP/capitakcj is a factor variable that representswhether the log of per capita GDP
of city c in country j in 2015 fell into the kth quantile. The coefficient of interest in Equation (5)
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is γk, which represents the mitigating effect of being in the kth income group on the impact of
floods. The result is presented in column (1) of Table 7. Cities in middle income and high income
categories see a much lower effect of floods on night light intensity compared to cities that have
low incomes.

Table 7: Heterogeneous Effect of Floods based on Wealth and Risk

Dependent Variable: ln(Night Lightscjmy)

All
(1) (2)

Floodcjmy −0.093∗∗∗ −0.042∗∗∗

(0.017) (0.010)
Floodcjmy ×Medium GDP/capitacj 0.070∗∗∗

(0.015)
Floodcjmy ×High GDP/capitacj 0.080∗∗∗

(0.020)
Floodcjmy ×High Riskcj 0.020∗

(0.010)

Fixed Effects
City ! !

Country × Month × Year ! !

Num. obs. 663,161 663,161
Adj. R2 0.952 0.952

Notes: two-way clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05;
∗p < 0.1.
The dependent variable in all regressions, ln(Night Lights)cjmy , is the natural log of mean light
intensity in city c in country j in monthm of year y. Floodcjmy is a dummy indicatingwhether
city c in country j was hit by a flood in month m of year y. ln(GDP/capita)cj , measured
in PPP US$ (2007), pertains to the year 2015. To create factor variables, ln(GDP/capita)cj
was divided into three quantiles of equal size, with the omitted category in regressions being
quantile 1, i.e. Low GDP/capitacj . High Riskcj is a dummyvariable that equals 1 if the number of
extreme precipitation events in city c in country j, between years 1970 and 2011, were greater
than the median number of extreme events across all 9,468 cities. Extreme precipitation is a
dummy indicatingwhether the precipitation in themonthm and year y in city c in country j fell
in the 90th percentile of the distribution of rainfall in the said city. The distribution was created
using precipitation data from 1958-2018. All regressions include the controls Stormcjmy and
Landslidecjmy , dummies indicatingwhether city c in country jwas hit by a storm or landslide,
respectively, in month m of year y. Two month leads and lags for all three disaster types have
also been included as controls. Observations include all city-country-month-year observations
which had a non-zero value of nightlights. Each observation was weighted by the mean of the
cloud free coverage for the city-country-month-year observation. Standard errors are clustered
at city and month-year level.

B Does Repeated Experience with Flooding Reduce the Marginal Effect of the Next Flood?

In the previous sections, we focus on the occurrence of a flood event without considering whether
the city had previous experience of such flood events. The impact of a disaster could also depend
on whether it was an unexpected event or something that people were used to dealing with in the
past (Guiteras et al., 2015).

Cities that are faced with recurring weather shocks may be better able to cope with future
shocks. Public authorities and citizens with past experience with extreme weather events know
what to expect and can plan better for future events. An alternative hypothesis is that places that
face repeat flooding experience disinvestment as the repeat events act as a tax on capital investment.
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To test whether cities facing recurring extreme disasters in the past have become resilient, we
estimate the following regression equation:

ln(Night Lightscjmy) = α+
2∑

i=−2

βi Floodcj{m+i}y + β2 Floodcjmy ×High Riskcj

+Xcjmy + δc + Γjmy + ϵcjmy (6)

where High Riskcj is a dummy variable that equals 1 if the number of extreme precipitation events
in city c in country j between 1970 to 2012 were above the median number of extreme precipitation
events across all cities in the sample. To determine the number of extreme precipitation events
that struck a city, we construct a distribution of monthly rainfall between 1958-2015 for each city,
and then sum the total number of 90th percentile events between 1970-2012. The assumption here
is that the extreme precipitation events led to flooding, and therefore, a higher number of events
between 1970-2012 would indicate recurrent shocks which we hypothesize should enable a city to
adapt.

The result is presented in column (2) in Table 7. Cities that had flood events in the past see a
lower impact of floods relative to cities that had no such prior experience.

C Does Flood Protection Infrastructure Protect Cities?

Using data on dams for four countries – China, India, Mexico, and the United States – we examine
whether cities protected by dams are more likely to experience flood events, higher population
growth, and importantly, if dams help to mitigate the impact of a flood shock. The four countries
include 3,820 cities out of our total sample of 9,468 cities.

First, we analyse the heterogeneity in the number of dams between different countries. China
and US, which fall in the high income category, have 71 percent and 67 percent of their river cities
protected by a dam.18 Surprisingly, India, which is classified as a low income country, has the exact
same percentage of cities with dams as the US. Only for Mexico does this number drop slightly to
58 percent. In terms of new dams that were built during the time period of our analysis, i.e. post
2012, the numbers are negligible with 10 new dams in China, 3 in India, 2 in Mexico, and none
in the US. Thus, most of the cities in these countries already had an established flood protection
infrastructure before the time period of our analysis.

There are some interesting differences within countries between cities with and without a pro-
tective dam. We provide summary statistics in Table A.2 on country specific geographical, eco-
nomic, and disaster related characteristics, classified based on the presence or absence of a pro-
tective dam. Cities with protective dams in high income countries have experienced a lower pop-
ulation growth as compared to cities without dams in these countries. However, for India and
Mexico, the difference in population growth in cities with and without dams is minimal. Indian
cities without dams are considerably richer than cities with dams, with GDP per capita 25 percent

18We define a city as protected by a dam if the river flowing though the city has a dam upstream of the city and the
geodesic distance between the city, and the dam is less than or equal to 100 kilometers
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Table 8: Dams and Adaptation

Floodcjmy ∆ Populationcj ln(Night Lightscjmy)
(1) (2) (3) (4) (5)

Damscj 0.003∗∗ −0.015∗∗ 0.095∗∗

(0.001) (0.007) (0.037)
Riskycj −0.002

(0.002)
Riskycj × Damscj −0.006∗∗∗

(0.002)
Floodcjmy −0.042∗∗∗

(0.006)
Extreme Raincjmy −0.071∗∗∗

(0.005)
Floodcjmy × Damscj 0.017∗∗

(0.008)
Extreme Raincjmy × Damscj −0.008

(0.006)

Fixed Effects
City ! !

Country ! ! !

Month × Year !

Country ×Month × Year ! !

Num. obs. 292,459 3,820 3,820 277,179 277,179
Adj. R2 0.107 0.123 0.132 0.919 0.919

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
The dependent variable in column (1) is Floodcjmy , a dummy indicating whether city c in country j was hit by a flood in monthm of year y. The
regression includes log values of GDP per capita, Builtup Area (per sq. km), and Population pertaining to the year 2015 as controls. The dependent
variable in columns (2) and (3), ∆ Populationcj , refers to the population growth between years 2000 and 2015 in city c in country j. Riskycj is a
continuous variable that measures the number of extreme precipitation events in city c in country j between years 2000 and 2015, where extreme
precipitation is a dummy indicating whether the precipitation in the month m and year y in city c in country j fell in the 90th percentile of the
distribution of rainfall in the said city. The distribution was created using precipitation data from 1958-2015. Both regressions include log values
of GDP per capita, Builtup Area (per sq. km), and Population pertain to the year 2015 as controls. The dependent variable in columns (5) and (6),
ln(NightLights)cjmy , is the natural log of mean light intensity in city c in country j in month m of year y. Both regressions include the controls
Stormcjmy and Landslidecjmy , dummies indicating whether city c in country j was hit by a storm or landslide, respectively, in month m of
year y. Two month lead and lags for all three disaster types have also been included as controls. Observations include all city-country-month-
year observations which had a non-zero value of nightlights. Each observation in the two regressions was weighted by the mean of the cloud free
coverage for the city-country-month-year observation. Standard errors are clustered at the city level.

higher in the former. Another sharp distinction between high and low income nations exists in
terms of number of flood events. While cities protected by dams in high income countries faced
twice as many floods as cities without dams, in low income countries, the ratio was close to 1.

To analyse these differences more formally, we run the following regression:

Floodcjmy = α+ β1 Damscj + β2 ln(GDP/capita)cj + β3 ln(Builtup Area)cj+

β4 ln(Population)cj + δj + Γmy + ϵcjmy (7)

whereDamscj is a dummy that equals 1 if the river flowing through city c in country j has a dam
upstreamwithin a 100km radius. We control for GDP per capita, built-up area and population, and
also include country and month-year fixed effects. The coefficient of interest is β1 which signifies
the likelihood of floods in cities with dams. Results are presented in Table 8.
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Column (1) presents the correlation between cities with dams and flood events. As expected
based on the summary statistics (see Table A.2), cities with dams face a higher number of floods,
and this result is primarily driven by the high income countries. This is not surprising given that
dams are more likely to be placed in areas at greater risk. Columns (2) and (3) report popula-
tion growth regressions and use a similar cross-section specification to the one in Equation (1)
except that we add the covariate Damscj , and interact it with the proxy for vulnerability of the
city (Riskycj). The coefficient on Damscj in column (2) informs us about the population growth
in cities with dams, while the coefficient on the interaction term (Riskycj × Damscj) in column
(3) indicates whether vulnerable cities with dams have a differential population growth rate as
compared to low risk cities with dams. On average, cities protected by dams have a significant 1.5
percentage point lower population growth rate (column 2). The summary statistics indicate that
this result too is being driven mostly by cities in high income countries. However, as column (3)
shows, this masks considerable heterogeneity between high risk and low risk cities. Low risk cities
with dams actually experience a higher population growth rate, and it is the risky cities with dams
which experience a lower population growth.

The final two columns focus on adaptation, as we explore the extent to which dams mitigate
the impact of floods and extreme rain. To estimate this, in column (4) we run a regression similar
to Equation (3) without the geography and capital dummies, and add Damscj and its interaction
with the contemporaneous flood dummy as regressors of interest. The coefficient on the interaction
term signifies the magnitude by which the effect of the floods on economy activity is mitigated by
the presence of a dam within a 100km radius. Finally, we replace Floodcjmy with Extreme Raincjmy

in column (5). Our results suggest that cities protected by dams experience a lesser decline in
night lights during floods. As column 4 shows, the effect of floods is negative and significant, with
night lights falling by a 4.2 percent in the case of a flood. However, the effect is attenuated by 1.7
percentage points in cities with dams. Surprisingly, we do not observe any mitigating effect of
dams during extreme precipitation events. We hypothesize that dams are beneficial in mitigating
the effects of riverine flooding which may be caused by factors upstream. This is not the case with
extreme precipitation, which falls directly on the city, and may cause waterlogging in low-lying
areas. This last result, therefore, represents a puzzle that merits future research.

8 Conclusion

Climate change raises the risk of extreme weather events such as floods. The damage caused by
these events can be partially offset through adaptation investments at the individual and govern-
ment level. We have studied the correlates of flood adaptation progress by estimating how thou-
sands of flood events that have occurred around the world from 2012 to 2018 have affected urban
population growth rates, the death count from such shocks, and lights at night dynamics. We find
that floods cause a decline in short term economic activity, with a larger negative effect in poorer
nations. Though these floods also lead to a higher death rate in vulnerable cities in low income
countries, we do not find evidence of significant out-migration from such cities. Cities in poorer
nations take a longer time to recover from these disasters, relative to disasters in high income coun-
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tries. However, the damage caused by flooding in poor nations is declining over time.

Using a global panel of cities, this paper provides evidence of flood adaptation taking place.
Cities are becoming more resilient with time. Repeated experience with floods does tend to re-
duce the marginal economic impact of subsequent floods, while flood protection infrastructure,
specifically dams, also helps mitigate a significant portion of the negative impact. The reasons for
the differential impact of disasters across cities in low income and high income countries merits
further research. Shi et al. (2015) point out that strong political leadership, high municipal ex-
penditures, and awareness about climate change are associated with adaptation planning among
environmentally progressive cities.

Poorer nations also suffer from poor urban planning and lack of investment in infrastructure.
A large proportion of the urban population in poorer nations lives in slum settlements. These
countries are also seeing more growth in settlements in flood-risk areas (Rentschler et al., 2022).
Much of the urban population growth in developing countries over the last two decades has been
in slums (Marx et al., 2013). Slums featuremore low quality buildings and are located in areasmost
vulnerable to climate risk and hence suffer more due to flooding. All these factors could poten-
tially contribute to the large income based heterogeneity of the impact of floods that we document.
Detailed floodmaps coupled with knowledge of high and low income areas within each city could
help to shed light on the mechanisms behind the differences.

A fruitful area of further research involves analysing the interplay between how private and
public decisions jointly determines disaster resilience. In this regard, the Ehrlich and Becker (1972)
framework offers amodel for improving our understanding of producing resilience. In caseswhere
governments anticipate that resilience infrastructure investments could actually encourage greater
risk taking by the public, the crowding out effect induced by ”climate proofing” an area, the gov-
ernment must consider introducing complementary policies to limit this substitution effect.
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A Appendices

Figure A.1: Urban Extent

(a) Los Angeles map (b) Los Angeles GHS-UCDB extent

(c) Mumbai map (d) Mumbai GHS-UCDB extent
Notes: Figure A.1a and Figure A.1c show the extent of Los Angeles region and Mumbai Metropolitan region. The
shaded region in Figure A.1b and Figure A.1d shows the polygons used to define the urban boundaries of these cities
in our analysis. Hence, our geographic coverage includes the core city and also covers a large part of the suburban
areas.
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Figure A.2: Pre-Trend Analysis of Night Lights Intensity for high- & low-income countries

(a) High Income Cities: Floods (b) High Income Cities: Extreme Precip.

(c) Low Income Cities: Floods (d) Low Income Cities: Extreme Precip.
Notes: FigureA.2a andA.2c show the 6month lag and 2month lead around a flood event for cities in high- and low-income countries.
The coefficients in the two plots are estimated by running a regression of ln(Night Lights)cjmy , which is the natural log of mean light
intensity in city c in country j in month m of year y, on the contemporaneous and 8 month leads and lags of the flood dummy,
where Floodcjmy is a dummy indicating whether city c in country j was hit by a flood in month m of year y. All three models
include the controlsStormcjmy andLandslidecjmy , dummies indicatingwhether city c in country jwas hit by a storm or landslide,
respectively, inmonthm of year y. 8month leads and lags for these twodisaster types have also been included as controls. FigureA.2b
and A.2d show the 6 month lag and 2month lead around an extreme precipitation event for cities in high- and low-income countries,
which is a dummy indicating whether the precipitation in the month m and year y in city c in country j was greater than the 95th
percentile of the city-specific distribution of precipitation, which was created using data from 1958-2018. The shaded ribbons in
each plot represent the 95th confidence interval band. In all regressions, observations include city-country-month-year observations
which had a non-zero value of nightlights. Each observation was weighted by the mean of the cloud free coverage for the city-
country-month-year observation. Standard errors are clustered at the city and month-year level.

31



Table A.1: List of countries and share of cities

Country name # of
cities

% Country name # of
cities

% Country name # of
cities

%

Afghanistan 25 0.26 Gambia 4 0.04 North Macedonia 7 0.07
Albania 6 0.06 Georgia 5 0.05 Norway 4 0.04
Algeria 92 0.97 Germany 87 0.92 Oman 11 0.12
Angola 42 0.44 Ghana 48 0.51 Pakistan 168 1.77
Argentina 70 0.74 Greece 10 0.11 Palestine, State of 7 0.07
Armenia 3 0.03 Guatemala 39 0.41 Panama 6 0.06
Australia 27 0.29 Guinea 17 0.18 Papua New Guinea 8 0.08
Austria 6 0.06 Guinea-Bissau 3 0.03 Paraguay 8 0.08
Azerbaijan 15 0.16 Guyana 2 0.02 Peru 41 0.43
Bahamas 1 0.01 Haiti 21 0.22 Philippines 90 0.95
Bahrain 1 0.01 Honduras 13 0.14 Poland 46 0.49
Bangladesh 80 0.84 Hungary 11 0.12 Portugal 9 0.10
Barbados 1 0.01 Iceland 1 0.01 Puerto Rico 3 0.03
Belarus 14 0.15 India 1563 16.51 Qatar 3 0.03
Belgium 12 0.13 Indonesia 311 3.28 Romania 27 0.29
Belize 1 0.01 Iran 172 1.82 Russian Federation 204 2.15
Benin 20 0.21 Iraq 69 0.73 Rwanda 7 0.07
Bolivia 12 0.13 Ireland 5 0.05 Saudi Arabia 43 0.45
Bosnia & Herzegovina 5 0.05 Israel 9 0.1 Senegal 29 0.31
Botswana 7 0.07 Italy 91 0.96 Serbia 13 0.14
Brazil 347 3.66 Jamaica 4 0.04 Sierra Leone 9 0.10
Brunei Darussalam 1 0.01 Japan 109 1.15 Singapore 1 0.01
Bulgaria 7 0.07 Jordan 9 0.10 Slovakia 6 0.06
Burkina Faso 27 0.29 Kazakhstan 27 0.29 Slovenia 2 0.02
Burundi 10 0.11 Kenya 38 0.40 Solomon Islands 1 0.01
Cabo Verde 1 0.01 Korea DPR 76 0.80 Somalia 18 0.19
Cambodia 8 0.08 Korea Republic of 39 0.41 South Africa 77 0.81
Cameroon 45 0.48 Kosovo 7 0.07 South Sudan 13 0.14
Canada 48 0.51 Kuwait 4 0.04 Spain 72 0.76
Central African Republic 6 0.06 Kyrgyzstan 9 0.10 Sri Lanka 20 0.21
Chad 23 0.24 Lao 4 0.04 Sudan 52 0.55
Chile 33 0.35 Latvia 3 0.03 Suriname 1 0.01
China 1776 18.76 Lebanon 7 0.07 Sweden 12 0.13
Colombia 87 0.92 Lesotho 1 0.01 Switzerland 16 0.17
Comoros 2 0.02 Liberia 5 0.05 Syrian Arab Republic 24 0.25
Congo 114 1.20 Libya 15 0.16 Taiwan 21 0.22
Congo 4 0.04 Lithuania 6 0.06 Tajikistan 14 0.15
Costa Rica 3 0.03 Luxembourg 1 0.01 Tanzania 38 0.40
Côte d’Ivoire 35 0.37 Madagascar 6 0.06 Thailand 41 0.43
Croatia 6 0.06 Malawi 8 0.08 Timor-Leste 1 0.01
Cuba 19 0.20 Malaysia 36 0.38 Togo 13 0.14
Curaçao 1 0.01 Mali 16 0.17 Trinidad and Tobago 4 0.04
Cyprus 3 0.03 Malta 1 0.01 Tunisia 26 0.27
Czechia 12 0.13 Mauritania 4 0.04 Turkey 129 1.36
Denmark 4 0.04 Mauritius 1 0.01 Turkmenistan 10 0.11
Djibouti 1 0.01 Mexico 157 1.66 Uganda 23 0.24
Dominican Republic 16 0.17 Moldova 5 0.05 Ukraine 78 0.82
Ecuador 30 0.32 Mongolia 1 0.01 United Arab Emirates 5 0.05
Egypt 182 1.92 Montenegro 1 0.01 United Kingdom 138 1.46
El Salvador 9 0.10 Morocco 59 0.62 Uruguay 6 0.06
Equatorial Guinea 2 0.02 Mozambique 38 0.40 USA 324 3.42
Eritrea 2 0.02 Myanmar 86 0.91 Uzbekistan 56 0.59
Estonia 2 0.02 Namibia 2 0.02 Venezuela 73 0.77
Eswatini 2 0.02 Nepal 9 0.10 Viet Nam 128 1.35
Ethiopia 86 0.91 Netherlands 37 0.39 Yemen 15 0.16
Fiji 1 0.01 New Zealand 8 0.08 Zambia 35 0.37
Finland 6 0.06 Nicaragua 14 0.15 Zimbabwe 19 0.20
France 76 0.80 Niger 23 0.24 Total 9468 100
Gabon 3 0.03 Nigeria 376 3.97
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Table A.2: Summary Statistics: Dams

Variable Countries
China India Mexico United States

Dams
(1)

No Dams
(2)

Dams
(3)

No Dams
(4)

Dams
(5)

No Dams
(6)

Dams
(7)

No Dams
(8)

Panel A

Number of Cities
(% of Total)

1,043
(58.72)

733
(41.28)

967
(61.87)

596
(38.13)

61
(38.85)

96
(61.15)

216
(66.67)

108
(33.33)

Mean Elevation (m) 279.36
[421.26]

390.49
[569.15]

312.77
[268.43]

196.26
[227.60]

1187.82
[940.51]

1022.15
[863.07]

287.05
[395.34]

208.35
[294.17]

Night Lights (nW/cm2/sr) 8.97
[5.67]

10.05
[7.17]

6.37
[4.21]

6.03
[4.80]

26.56
[12.03]

23.72
[15.98]

29.14
[8.89]

29.74
[12.21]

GDP per capita (US$) 8,275.40
[3,393.87]

8,755.00
[5,333.17]

3,521.91
[2,042.96]

4,399.99
[3,583.61]

10,075.30
[4,307.90]

10,298.21
[11,502.46]

32,977.64
[4,610.90]

31,979.21
[4,839.27]

Population Growth (%) 3.27
[17.09]

5.70
[19.37]

14.50
[17.02]

14.43
[25.63]

31.44
[25.64]

33.76
[31.35]

18.21
[22.02]

23.67
[29.12]

Built-up Area (%) 38.60
[13.37]

39.99
[14.27]

19.13
[8.98]

19.73
[10.67]

52.57
[14.03]

49.29
[11.66]

66.24
[6.82]

62.99
[8.97]

Panel B

Number of Floods
(% of Total)

5,978
(66.70)

2,985
(33.30)

1,228
(50.74)

1,192
(49.26)

20
(52.63)

18
(47.37)

152
(66.38)

77
(33.62)

Average Floods 5.73
[4.92]

4.07
[4.27]

1.27
[1.41]

2.00
[2.13]

0.33
[0.79]

0.19
[0.47]

0.70
[1.09]

0.71
[1.15]

Extreme Precip. Events
(% of Total)

4,147
(63.15)

2,420
(36.85)

3,346
(61.93)

2,057
(38.07)

302
(39.58)

461
(60.42)

626
(61.61)

390
(38.39)

Avg. Extreme Precip. Events 3.98
[2.14]

3.30
[2.27]

3.46
[1.63]

3.45
[1.66]

4.95
[1.63]

4.80
[1.62]

2.90
[1.86]

3.61
[2.31]

Notes: This table provides summary statistics for cities with and without dams for four countries - China, India, Mexico, and the US. We classify the cities in each country based on whether
they are protected by a dam. A city is defined as protected by a dam if the river flowing though the city has a dam upstream of the city and the geodesic distance between the city, and the
dam is less than or equal to 100 kilometers. Panel A provides information on geographical and economic characteristics, while Panel B focuses on floods and extreme precipitation events. GDP
per capita is measured in PPP 2015 US$. Population Growth is computed as the change in the population of a city between years 2015 and 2000. Built-up Area is defined as the percentage of the
total area of the city (km2) that contains built-up structures. Extreme Precipitation Events is a a dummy indicating whether the precipitation in the month m and year y in city c in country j
(between the years 2012-2018) was greater than the 95th percentile of the city-specific distribution of precipitation, which was created using data from 1958-2018. The Average Floods and Average
Extreme Precipitation Events refer to the average number of such events during the years 2012-2018. Standard deviation for all variables are reported in brackets.
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B Additional Results

Table B.1: Effect of Floods on Economic Activity over Time

Dependent Variable: ln(Night Lightscjmy)

All High Income Low Income
(1) (2) (3) (4) (5) (6)

Floodcjmy −0.079∗∗∗ −0.018 −0.200∗∗∗

(0.017) (0.026) (0.040)
Floodcjmy × Time Trendmy 0.002∗∗ 0.000 0.004∗∗

(0.001) (0.001) (0.002)
Extreme Raincjmy −0.062∗∗∗ −0.021∗∗∗ −0.136∗∗∗

(0.006) (0.007) (0.013)
Extreme Raincjmy × Time Trendmy 0.001∗∗∗ −0.001 0.004∗∗∗

(0.000) (0.000) (0.001)

Fixed Effects
City ! ! ! ! ! !

Country × Month × Year ! ! ! ! ! !

Num. obs. 663,161 663,161 341,899 341,899 321,262 321,262
Adj. R2 0.952 0.952 0.935 0.935 0.930 0.930

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
The dependent variable in all regressions, ln(Night Lights)cjmy , is the natural log of mean light intensity in city c in country j in month m of year y. Extreme Raincjmy is a dummy
indicating whether the precipitation in the monthm and year y in city c in country j was greater than the 90 extsuperscriptth percentile of the city-specific distribution of precipitation,
which was created using data from 1958-2018. Time Trendmy is a continuous variable that takes the value from 1 to 81, with 1 representing the first month of the sample (April 2012),
and 81 representing the last month (September 2018). Models (1), (3) and (5) include the controls Stormcjmy and Landslidecjmy , dummies indicating whether city c in country
j was hit by a storm or landslide, respectively, in month m of year y. Two month leads and lags for all three disaster types have also been included as controls in the three models.
Models (2), (4) and (6) include the two month lags and leads for Extreme Rain. The contemporaneous disaster dummy has been interacted with the linear and quadratic time trend in
all models. Models (3) and (4) only include observations from High Income and Upper Middle Income countries, whereas models (5) and (6) only include observations from Low Income
and Lower Middle Income countries. Observations include all city-country-month-year observations which had a non-zero value of nightlights. Each observation was weighted by the
mean of the cloud free coverage for the city-country-month-year observation. Standard errors are clustered at the city level.

Table B.2: Effect of Floods based on Productivity

Dependent Variable: ln(Night Lightscjmy)

All High Income Low Income
(1) (2) (3) (4) (5) (6)

Floodcjmy −0.089∗∗∗ −0.078∗∗ −0.043 −0.018 −0.161∗∗∗ −0.118∗∗∗

(0.031) (0.036) (0.033) (0.056) (0.057) (0.043)
Floodcjmy × Productivitycj 0.012∗∗ 0.004 0.029∗

(0.006) (0.006) (0.017)
Floodcjmy ×Medium Productivitycj 0.029 −0.016 0.036

(0.037) (0.056) (0.052)
Floodcjmy ×High Productivitycj 0.055 −0.005 0.112∗

(0.037) (0.058) (0.060)

Fixed Effects
City ! ! ! ! ! !

Country ×Month × Year ! ! ! ! ! !

Num. obs. 61,636 61,636 32,967 32,967 28,669 28,669
Adj. R2 0.953 0.953 0.926 0.926 0.936 0.936

Notes: two-way clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
The dependent variable in all regressions, ln(Night Lights)cjmy , is the natural log of mean light intensity in city c in country j in month m of year y. Floodcjmy is a
dummy indicating whether city c in country j was hit by a flood in month m of year y. Productivitycj refers to the average height of the city’s buildings within 2 kms of
the highest point in the said city. To create factor variables, Productivitycj was divided into three quartiles of equal size, with the omitted category in regressions being
quartile 1, i.e. LowProductivitycj . All regressions include the controls Stormcjmy and Landslidecjmy , dummies indicating whether city c in country j was hit by a
storm or landslide, respectively, in month m of year y. Two month leads and lags for all three disaster types have also been included as controls. Models (3) and (4) only
include observations fromHigh Income andUpper Middle Income countries, whereas models (5) and (6) only include observations from Low Income and Lower Middle Income
countries. Observations include all city-country-month-year observations which had a non-zero value of nightlights. Each observation was weighted by the mean of the
cloud free coverage for the city-country-month-year observation. Standard errors are clustered at the city and month-year level.
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C Robustness Checks based on the New Difference-in-Difference Lit-
erature

Our empirical methodology involves using two-way fixed effects (TWFE) regression specification
to estimate the effect of floods on economic activity. If we assume that the treatment effects are
heterogeneous across time or units, the coefficients froma standard TWFEmodelmay not be robust
due to a negative weighting problem (see Roth et al., 2022, for a review of this literature). This is a
valid concern for our setting as we have 9,468 groups (each group is a city) and 81 periods (each
month, fromApril 2012 to December 2018, is a period). As long as the effect of a flood varies across
cities and/or changes over time, the standard common trends assumption may be violated, which
makes it plausible that β̂fe may not be robust to heterogeneous effects.

To address this, we first report the number of negativeweights attached to the two-way fixed ef-
fects regressions for each specification using the TwoWayFEWeights package in R. Second, we report
the degree of heterogeneity in treatment effects that would be necessary for the estimated treat-
ment effect to have the wrong sign. Specifically, as shown by De Chaisemartin and d’Haultfoeuille
(2020), the ratio of the absolute value of the expectation of β̂fe and the standard deviation of the
weights corresponds to the minimal value of the standard deviation of the treatment effect across
the treated groups and time periods under which beta and the average treatment effect on the
treated (ATT) could be of opposite signs. A large number signifies that the beta and the ATT can
only be of opposite signs if there is substantial treatment effect heterogeneity across groups and
time periods. A low number, on the other hand, implies that beta and the ATT can be of oppo-
site signs even if there is not a lot of treatment effect heterogeneity. In that case, treatment effect
heterogeneity would be a serious concern for the validity of that coefficient.
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