NBER WORKING PAPER SERIES

NEAR-RATIONAL EQUILIBRIA IN HETEROGENEOUS-AGENT MODELS:
A VERIFICATION METHOD

Leonid Kogan
Indrajit Mitra

Working Paper 30111
http://www.nber.org/papers/w30111

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
June 2022

We thank Santiago Bazdresch (discussant), Jack Favilukis (discussant), Ken Judd, Aubhik Khan, Jonathan
Parker, Tony Smith (discussant), Julia Thomas, and seminar participants at City University of Hong
Kong, Hong Kong University, INSEAD, MIT, Nanyang Technological University, Ohio State University,
UC Berkeley, UCLA, University of Michigan, and at the Duke AP conference, Minnesota Macro-Asset
Pricing conference, MIT Capital Markets Workshop, Society for Economic Dynamics Annual Meeting,
SITE Stanford, and the Western Finance Association Meeting for comments. We thank Anton Petukhov
for excellent research assistance. The views expressed here are ours and not necessarily those of the
Federal Reserve Bank of Atlanta, the Federal Reserve System, or the National Bureau of Economic
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2022 by Leonid Kogan and Indrajit Mitra. All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.



Near-Rational Equilibria in Heterogeneous-Agent Models: A Verification Method
Leonid Kogan and Indrajit Mitra

NBER Working Paper No. 30111

June 2022

JEL No. C02,C18,C63,C68,E00,E37,G1

ABSTRACT

We propose a general simulation-based procedure for estimating quality of approximate policies
in heterogeneous-agent equilibrium models, which allows to verify that such approximate
solutions describe a near-rational equilibrium. Our procedure endows agents with superior
knowledge of the future path of the economy, while imposing a suitable penalty for such
foresight. The relaxed problem is more tractable than the original, and results in an upper bound
on agents’ welfare. Our method is general, straightforward to implement, and can be used in
conjunction with various solution algorithms. We illustrate our approach in two applications: the
incomplete-markets model of Krusell and Smith (1998) and the heterogeneous firm model of
Khan and Thomas (2008).

Leonid Kogan

MIT Sloan School of Management
100 Main Street, E62-636
Cambridge, MA 02142

and NBER

Ikogan@mit.edu

Indrajit Mitra

Federal Reserve Bank of Atlanta
1000 Peachtree Street N.E.
Atlanta, GA 30309
indrajit.mitra@atl.frb.org



1 Introduction

Cross-sectional heterogeneity among households and firms is at the heart of many important
economic phenomena. In general, it is impossible to aggregate a cross-section of agent
characteristics in dynamic heterogenous-agent economies, especially in the presence of con-
straints (e.g., financial constraints) or un-hedgeable sources of risk (e.g., idiosyncratic labor
income shocks). In such models, endogenous quantities, such as risk premia, depend on the
cross-sectional distribution of agent characteristics, such as household wealth or firm capital.
Since the cross-sectional distribution is an infinite dimensional state-variable, it is typically
impossible to solve exactly for equilibrium in this class of models. Under the common solution
approach, introduced in the highly influential paper by Krusell and Smith (1998), agents
follow relatively simple approximate policies that avoid the burden of solving a dynamic
optimization problem with a high-dimensional state space. Specifically, agents summarize the
state of the economy by a low-dimensional state vector, typically keeping track of only a few
cross-sectional moments.! The approximate solution of the original model can be viewed as
an exact equilibrium in a near-rational economy, in which agents pursue suboptimal policies
(see Krusell and Smith (1998), page 874). If agents suffer small welfare losses from failing to
fully optimize, expanding further resources on improving the policies is unproductive, and
approximate policies are plausible as a description of near-rational behavior. This argument
is in the spirit of modeling economic agents as satisficing rather than optimizing, as in Simon
(1978).

Do approximate solutions thus constructed describe near-rational equilibria? A significant
limitation of the commonly used approaches, including the one by Krusell and Smith, is that
currently there are no reliable general methods for verifying the degree of welfare loss under
candidate near-rational equilibria in heterogeneous-agent models. We discuss the limitations
of one common approach, based on Euler equation errors, in Section 2. In this paper we
propose a general method for bounding welfare losses due to suboptimality of policies under

the approximate solution. Our technique allows one to compute provable bounds on the

IThis approximation method is widely used, see e.g., Heathcote, Storesletten, and Violante (2009) and
Guvenen (2011) for a survey of the solution methodology and applications.



degree of welfare loss under approximate policies. It is straightforward to implement and has
general applicability, being usable in conjunction with various approximation algorithms.

The key to tractability of our approach is that it establishes an upper bound on the
agents’ welfare loss without computing the optimal policies. This is essential when dealing
with infinite-dimensional models, where optimal individual policies are infeasible to compute,
even in a candidate near-rational equilibrium. The main idea of our approach is the following.
We alter the original problem of an agent by enlarging her information set to allow for perfect
knowledge of the future path of prices (more generally, the aggregate state process of the
economy), while simultaneously penalizing the agent’s objective for such foresight. The
modified problem is much more tractable than the original problem, because the aggregate
state of the economy in the modified problem follows a deterministic process. Moreover, if
the penalty for perfect foresight is chosen properly (we discuss the precise requirement in the
main body of the paper), the value function of the modified problem is always higher than
the value function of the original problem. We thus obtain an upper bound on the agent’s
welfare. The lower bound results from following the sub-optimal policy prescribed by the
approximate solution. The gap between the two bounds limits the agent’s welfare loss from
above. A narrow gap indicates that the degree of sub-optimality is economically small, and
the approximate equilibrium is indeed near-rational. A large gap does not necessarily imply
that the sub-optimal policy is grossly inefficient, as it may result from the value function
of the modified problem being significantly higher than the value function of the original
problem.

To illustrate the potential of our method, we apply it to two well-known models, which
feature an approximate equilibrium with aggregate uncertainty. First, we consider the
incomplete markets model of Krusell and Smith (1998). This is a stochastic growth model
in which individual agents face uninsurable labor income risk as well as aggregate shocks
to the productivity of capital. Krusell and Smith compute an approximate equilibrium by
summarizing the cross-sectional distribution of wealth among the agents using only the
average per capita level of wealth. Our second application of the information relaxation

approach is to the model of Khan and Thomas (2008). Their model features a heterogeneous



cross-section of firms in general equilibrium. In the approximate equilibrium, Khan and
Thomas summarize the cross-sectional distribution by the mean capital stock of all firms in
the economy. We provide accompanying code which shows our approach applied to these two
models and to the simpler illustrative examples in Section 2 and Section 3 of this paper.?

We quantify the degree of sub-optimality of agents’ policies under both models. We
establish that in both settings the original solutions imply relatively low individual welfare
losses for most initial configurations of the economy. Thus, for the calibrated models under
consideration, our method confirms that their approximate solutions describe a near-rational
equilibrium. This is especially important for the model of Khan and Thomas (2008), because
we are able to show that the key finding of that paper that non-linearities in individual firm
policies do not have a quantitatively large effect on aggregate dynamics is not a result of
firms adopting grossly sub-optimal policies.

Next, we stress-test the approximation algorithms in the above applications by introducing
transitional dynamics in an economy perturbed away from its steady state. Since the standard
solution methods, such as that of Krusell-Smith, are not intended to approximate equilibrium
dynamics accurately when the economy is away from its steady state, it is not clear a-priori
how well such methods may perform. For both models, we consider the following two
transitional dynamics experiments. Starting from the steady-state of the model, we consider:
(i) an unanticipated permanent increase in the volatility of aggregate productivity shocks (we
consider two-fold and five-fold increases); or, (ii) an unanticipated 50% reduction in capital
stock of all agents in the Krusell-Smith economy and a similar reduction in capital stock of
every firm in the Khan-Thomas economy. In the first case, the economy transitions to a new
steady state following a permanent regime shift. In the second case, the economy reverts
to the original steady state following a large transient shock. Our methodology shows the
welfare bound in each experiment to be larger than in the steady-state case, in some instances

rising by more than an order of magnitude, thus indicating potentially large welfare losses.

2See https://www.dropbox.com/sh/rqe859kstso6vk0/AACBZNNuxCIqUY7BZRJfqtida?dl=0.



Related literature

The basic idea of using information relaxations and martingale multipliers to formulate a
dual stochastic optimization problem can be traced back to Bismut (1973) (in a continuous-
time setting) and Rockafellar and Wets (1976) and Pliska (1982) (in the discrete-time finite
horizon setting). Back and Pliska (1987) apply this technique to single-agent problems in
financial economics. Most of the existing applications of information relaxations deal with
the optimal stopping problems, typically in the context of pricing American or Bermudan
options, e.g., Davis and Karatzas (1994), Rogers (2002), Haugh and Kogan (2004), and
Andersen and Broadie (2004). Rogers (2007) and Brown, Smith, and Sung (2010) extend
the information-relaxation idea to general dynamic optimization problems. We use the
formulation in Brown et al. (2010), which incorporates both perfect and partial information
relaxations and derives penalty processes from the value function of the original problem.
Our paper is the first to apply the information relaxation approach to approximate solutions
of heterogeneous-agent equilibrium models.

The existing literature on approximate solutions of equilibrium models uses several
approaches to evaluating approximate solutions. One common approach is to compare
forecasts of aggregate states of the economy with actual realizations from the simulation,
and to judge the approximation quality by the accuracy of the forecasts, e.g., their R2. A
well-known limitation of this approach is that a high forecast R? does not guarantee that the
approximation quality is high (den Haan, 2010). Krusell and Smith (1998) evaluate multi-
period forecasts as a more stringent test, and den Haan (2010) develops a yet more stringent
procedure for comparing the law of motion used to formulate agents’ policy functions to the
true law of motion implied by the approximate solution of the model. These approaches have
two main limitations relative to the method we propose in this paper: they do not provide a
guarantee of approximation quality and do not describe the welfare cost of approximation
€rrors.

Another popular approach, due to den Haan and Marcet (1994), evaluates Euler equation
errors of the approximate solution along the simulated path of the economy. Under the null

hypothesis that the agent’s policies are optimal, the £2 norm of the Euler equation errors is
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distributed as a x? random variable, and a standard hypothesis test can be carried out. The
limitation of this method is that small Euler equation errors do not imply low welfare loss.
As we show in Section 2, Euler equation errors can be small while sub-optimal policies are
infinitely costly in welfare terms. The inadequacy of Euler equation errors as a measure of the
approximation quality of equilibrium solutions is also highlighted in Kubler and Schmedders
(2003).

Santos (2000) shows that small Euler equation errors do imply small policy function
errors for a restricted class of models — importantly, this result is limited to the models
in which equilibria correspond to the solution of the central planner’s problem. In more
general models, theoretical guarantees on the accuracy of policy functions are not available.
In such situations, our approach allows one to compute a generally applicable bound on the
approximation accuracy of agents’ policies. Kubler and Schmedders (2005) propose a method
of error analysis where the quality of the approximation to the equilibrium is judged by its
proximity to an exact equilibrium in a close-by economy. In contrast to this approach, our
method establishes an upper bound on the welfare loss in the original economy, which is due
to agents following suboptimal policies.

In the language of numerical analysis, estimates of the errors in equilibrium policies, as in
Santos (2000), represent forward error analysis — where the quality of the approximation is
judged by how close the approximate solution (including agents’ policies and endogenous
processes, such as prices) is to the exact solution. In comparison, Kubler and Schmedders
(2005) use the logic of backward error analysis, where one evaluates how much the inputs
of the model need to be modified to make the approximate solution satisfy all equilibrium
conditions exactly. Omne can view our method as a form of forward error analysis with
provable guarantees of approximation quality, where the distance between the approximate
and exact solution is measured in economic terms — in terms of individual welfare loss under
approximate policies. Judd, Maliar, and Maliar (2017) provide a complementary view of the
solution quality. They establish a lower bound on the (forward) error of an approximate
solution to an equilibrium model. While our approach provides a sufficient condition for the

accuracy of an approximate solution, the lower bound provides a necessary condition since



the true errors are larger than the lower bound.

The rest of the paper is organized as follows. In Section 2 we show that the method
of Euler equation errors can fail to detect sub-optimal policies with large utility losses. In
Section 3 we formulate the relaxed problem and outline the construction of penalty functions.
To illustrate our approach, we apply it to a model for which the optimal policy is known in
closed form. In Sections 4 and 5, we apply our method to the Krusell-Smith model and the

model of Khan-Thomas, respectively. Section 6 concludes.

2 Shortcomings of the Euler equation errors approach

We use two examples to show that the method of Euler equation errors can fail to detect
sub-optimal policies with large utility losses. In the first example, the agent incurs infinite
loss in expected utility from adopting a sub-optimal policy; however, the Euler equation
errors remain finite. In the second example, a finite sample test based on Euler equation
errors fails to reject the null hypothesis of policy optimality, even though the welfare loss
associated with the policy is substantial. We describe the setting for both of our examples
next.

Consider an investor with time-0 wealth wy and log utility over consumption . The agent
has access to a risk-free bond with a constant rate of return R” and a stock whose distribution
of time ¢ 4 1 return R, depends on the time ¢ value of a state variable X. Assume that X
follows an n state Markov process and takes n possible values X7, X5, -+, X,, with a time

independent transition probability P;; = Prob (X4 = X;|X; = X;). The investor solves

sup [E Btlogey , (1)
Ct>0,¢t ;
subject to the budget constraint:

wepr = (wp = &) (9B + (1= 6)R”) . 2)



In (1), 8 is the time-preference parameter, ¢; is time-t consumption, and ¢; is the share of
the investor’s wealth in the stock at time-t.

The optimal consumption policy ¢} is to consume a constant fraction of wealth:
i = (1= Puw. (3)

The optimal portfolio policy is to choose ¢; to maximize the certainty equivalent of the

one-period return on wealth, that is,

QS: = arg SupB(¢t7Xt)7 (4>

where B(¢, X;) is the certainty equivalent of the one-period return on wealth:

B(¢y, Xy) = E [log (thRf-&-l + (1 - th)RB) |Xt} . (5)

The expectation in equation (5) is over the distribution of stock returns Ry, conditional
on the time-t realization of the state variable X. We derive the policies (3) and (4) in
Appendix A.1.

Next, consider the suboptimal policy resulting from the investor having incorrect beliefs
about the distribution of stock returns. Specifically, instead of the true transition probabilities
P,;, the investor supposes that the transition probability is f)ij = Prob (X411 = X;|X; = X)).

The investor solves

sup Eo Y B'loge, (6)

(Purcu)u>0 —0
subject to the budget constraint (2), where the expectation Eo in (6) is taken under the
investor’s beliefs. Since the agent’s consumption policy is independent of portfolio returns
(the agent has log-utility), the investor still consumes the same fraction of wealth as in
equation (3), that is,
o =(1- P (7)



The investor’s portfolio policy g/bgt is
¢t = arg SUPE [log (¢Rt+1 +(1— Cb)RB) |Xt} : (8)

Euler equation errors. To quantify deviations from optimality, den Haan and Marcet
(1994), henceforth DM, proposed a hypothesis test based on deviations from the first-order
optimality conditions. In our example, the investor’s first-order optimality equations are
1=E[R"? (copr /)™ | X:] and 1 =E [R}, (copr /)™ | X;]. Deviations from these first-order

conditions, that is, the Euler equation errors, are defined as:

e =1-E [RP/ (6RS, + (1 - O)R) |X.|. & =1-BRE,/ (GRE, + (1 00R") X, |
(9)

where we used equation (2) to express consumption growth in terms of the portfolio return

in the Euler equation. DM show that under the null hypothesis that the policy is optimal,

the test statistics constructed from the £2 norm of the Euler equation errors

()T, (10)

SBEZ(QB)Z/T, 57 =

T T
t=1 —
approach a y? distribution with one degree of freedom as T' approaches infinity.

We follow DM in implementing their test: we simulate N paths of stock returns (each of
length 7) and compute the values of the statistics s® and s° along each sample path. Using
many paths minimizes the likelihood of not rejecting the null hypothesis due to luck. Finally,
we compute the fraction of times these statistics fall in the upper and lower critical 5% region
of a x? distribution with one degree of freedom. If these realized fractions are substantially
different from 5%, we have evidence that the policy being examined is not optimal.

To test the reliability of the DM approach, we explicitly compute the investor’s loss
in expected utility from adopting the policies (7) and (8) relative to adopting the opti-
mal policies (3) and (4). We report this welfare loss as a fractional certainty equivalent
loss, which we define as follows. Let U ((¢y, ¢t)i>0; Wo, Xo) be the investor’s expected util-

ity from adopting policies ¢; and ¢; for ¢ > 0, for initial wealth W, and initial state



Xp. For each Wy and X, we first compute the expected utility under the optimal policy
U (¢}, ¢)i>0; Wo, Xo). Next, we compute the initial wealth W, that is needed to achieve this
utility from adopting the potentially suboptimal policy. That is, we solve for ﬁ/\g from the
equation U ((¢F, ¢ )03 Wo, Xo) = U ((ggt,/c})tzo; /WO, X0>. We define the fractional certainty

equivalent loss as: .
Wy — Wy
Wy

7 (11)

2.1 Finite Euler equation residuals, unbounded welfare loss

Consider the special case in which stock returns are independent and identically distributed.
In this case, the certainty equivalent of the single period ahead portfolio return is a constant
B(¢) = Elog (¢R;,, + (1 — ¢)RP). Therefore, the optimal portfolio is a constant ¢*, where

¢* = argsup B(¢). The suboptimal portfolio policy (8) also implies a constant ngS where

¢ = arg s1;pE [log (¢Rf,, + (1 — ¢)R")] . (12)
We prove in Appendix A.2; that the fractional certainty equivalent loss from adopting the
suboptimal policy is

0= (25 (B0 - 5@)) -1 (13)

Equation (13) shows that if qg = ¢*, then the welfare loss becomes arbitrarily large as the
time preference parameter 5 approaches unity. However, we see from equation (9) that the
magnitude of Euler equation errors does not increase as  approaches one; indeed, these errors
are independent of 5. The Euler equation errors do not blow up because these errors are
based on deviations from the one-period ahead Euler equations, which fail to aggregate the
effect of such deviations over multiple periods. In terms of utility loss, however, a sufficiently
patient investor who puts non-negligible weight to utility loss far into the future suffers a
very large utility loss, even though the single-period deviation from the suboptimal policy

appears small.



2.2 Low-probability persistent disasters

In this section we use the setting from Section 2 to show that the finite-sample test based on
Euler equation errors may fail to reject suboptimal policies. The key feature of our example
is the presence of a rare but persistent disaster state. The investor underestimates the
persistence of this state. Since the state is rare, the investor’s mistake is infrequently realized,
and therefore a finite-sample test may fail to detect a policy associated with significant welfare
loss.

Specifically, we consider the case in which the state variable X takes three values X7,
X5, and X3; the realized stock returns in these states are 1.3, 0.91, and 0.7, respectively.
The true transition probability matrix is shown in Panel A of Table 1. The investor believes
(incorrectly) that the transition probability matrix is the one shown in Panel B of Table 1.
Comparing the transition matrices, we see that the investor underestimates the persistence
of the disaster state X3. Note that even though the investor makes large errors in the
conditional dynamics of the state variable X, these errors are much milder unconditionally.
For example, while the true relative frequencies of occurrence of X, Xo, and X3 are 49.45%,
49.45%, and 1.1%, respectively, the investor believes these frequencies to be 49.5%, 49.5%,
and 1%, respectively. Similarly, while the true average stock return and volatility are 10.05%
and 19.84%, respectively, the investor believes these quantities to be 10.09% and 19.82%,
respectively. Finally, we choose the investor’s time preference parameter = 0.99 and the
risk-free rate R? = 1.04.

As a result of underestimating the persistence of X3, the investor overinvests in the stock
in this state relative to the optimal portfolio by a significantly large amount. While the
optimal policy is to invest ¢*(X3) = 0.52, the investor chooses $(X3) = 1.73. The first row of
Table 2 shows the investor’s welfare loss in each state as a result of adopting the suboptimal
policy (12). We see that the fractional certainty equivalent loss is substantial: 4.09% in states
X, and X5 and 8.39% in the state Xj.

Next, we use the DM test using Euler equation errors to assess evidence against the null
hypothesis (that the investor’s policy is optimal). The stringency of the DM test depends

on the length of the time series T" used. As DM point out, a low value of T increases the
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likelihood of a Type II error (i.e., the test fails to detect a suboptimal policy), whereas if T is
sufficiently large, every approximate solution will be rejected. DM suggest choosing 7" to be
“substantially bigger than the length of the empirical series...”. In their example, they choose
the series to be 20 times the length of the empirical series. We assume that the model of
Section 2 is being used to analyze consumption-portfolio choices using the post-War data.
Similar to DM, we choose T" = 6000, which is close to twenty times the length of the quarterly
consumption series in post-War data. We simulate N = 10, 000 paths of stock returns and we
compute the values of s® and s along each sample path. Finally, we compute the fraction of
times s” and s° fall in the upper and lower critical 5% region of a y? distribution with one
degree of freedom.

Rows 2 through 4 in Panel A of Table 2 show the results. We see that no entry is
substantially different from 5%; hence according to this test, we would fail to reject the null in
spite of the fact that the investor incurs substantial welfare loss from adopting these policies.
In order to detect evidence against the null, we have to choose a much longer time series.
This can be seen from Panel B of Table 2, where we use 7" = 100, 000. In this case, both s
and s° appear in the 5% critical region 43.12% of the time when the initial state is Xj.

Our example highlights a weakness of the approach of using Euler equation errors (see
also the related discussion in den Haan and Marcet (1994)). Both examples in Section 2.1
and Section 2.2 underscore the need for a reliable test to detect suboptimal policies. We

propose and discuss such a test next.

3 Information relaxation: The main idea

In our analysis of approximate equilibria, we apply the information relaxation method
proposed in Brown et al. (2010). We introduce the main ideas of this method in this section,
and refer the readers to Brown et al. (2010) for full technical details.

Consider a standard finite-horizon consumption-savings problem. Time is discrete, t =
(0,---,T). Each period the agent receives a random labor income which takes two possible

values {yg,yr} with yg > y;. The probability of receiving yg is p each period. The agent
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chooses consumption ¢; and stores the rest in a risk-free asset with constant total return R.
We denote the agent’s feasible consumption policy by C = (co, ¢1, ..., cr).

At each date ¢, the agent observes the history of income shocks realized up to and including
this date (but not the future shocks). We denote this history by y* = (yo, y1, ..., y:). All
feasible consumption policies must be adapted to the information structure of the agent, i.e.,
consumption choices are functions of the observed past histories of income shocks. Thus,
making the agent’s information structure explicit, C' = (co(y°), c1(y), ..., er(y?)).

The agent has a time-separable constant relative risk aversion utility function with
curvature 7. Let w; denote the agent’s wealth at the beginning of period ¢, including the
realized income in the current period. The agent solves the dynamic optimization problem:

Zﬁr] , (14)

t=0 v

sup [Eg
{C:ci<wy}

where the agent’s wealth and consumption satisfy the dynamic budget constraint:
wy = (w1 — ci-1) R+ ye. (15)

We denote the value function of the above problem by V;(wy):

i ﬂsft (C;)l_v

Vt(wt) =, 1—~

, (16)

s=t
where C* is the optimal consumption policy.

We formulate a relaxed problem by allowing the agent to have access to information about
the future realizations of income shocks. The name “information relaxation” reflects the
notion that this formulation relaxes information constraints placed on the agent. Specifically,
consider a complete information relaxation, whereby we allow the agent to condition her
consumption choices on the knowledge of the entire future sequence of income shocks. To
distinguish the feasible policies of the relaxed problem from those of the original problem, we
denote the former by C* = (c¥(y"), R (y?), ..., K (y")).

While providing the agent with such informational advantage compared to that in the

12



original problem, we impose a penalty on the objective function, designed to offset the
effect of information relaxation. The penalty is a stochastic process \;, which depends on
the consumption policy and the entire path of income shocks, y*: \,(C®,y?). The only
requirement we impose on the penalty process is that if the consumption process is chosen to
depend only on the information available to the agent, the resulting penalty is non-positive
in expectation, i.e.,

Eo [X (CR,y")] < 0. (17)

It is easy to see that the value function of the relaxed problem:

Zﬁt (% - )\t(CRayT>>] g (18)

t=0

‘/OR (w(] ) = sup ]EO

{CR: F<w]}

subject to the dynamic budget constraint:

wZz = (wﬁl - CZZ)R + Yt (19)
is at least as high as the value function of the original problem. The reason is that the
consumption policy C*, optimal under the agent’s original problem (14-15), is also a feasible
policy for the relaxed problem (18-19), and the expected penalty under such policy adds a

non-negative term to the agent’s expected utility, according to (17). Thus, we establish that:
VE(w0) = V(wo). (20)

Next, consider a feasible but suboptimal consumption policy C. Under this suboptimal

policy, the expected utility of the agent is given by:

Zﬁtm] : (21)

‘70(1110) =g

which results in a welfare loss of Vj — ‘A/O. To estimate this welfare loss resulting from a
suboptimal strategy, we use the inequality (20) to conclude that the agent’s welfare loss is

bounded above by the difference between the value function of the relaxed problem (18-19)
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and the expected utility under the suboptimal policy ¢ (y'):

Vo(wo) = Vo(wn) < V*(wp) — Va(wo) (22)

We thus have a framework for computing bounds on welfare loss resulting from sub-optimal
strategies: define a valid penalty process for the relaxed problem, and then compare the
expected utility of the agent under information relaxation with her expected utility under
the suboptimal policy of interest. This approach is especially useful where it is infeasible to
solve for the optimal policies of the original problem.?

While this formulation is rather general, it is only useful as long as the resulting bound is
relatively tight, i.e., as long as the value function of the relaxed problem V;* is not much
higher than the expected utility of the agent under the optimal consumption policy, Vj.
Brown et al. show that it is possible to make the difference V;* — Vp, i.e. the duality gap
arbitrarily small. In particular, they show (using backwards induction) that under an ideal
penalty, V& — Vp = 0.

The definition of an ideal penalty by Brown et al. adopted to our example is as follows.
The penalty is defined for each possible sequence of income shocks, and each possible sequence
of consumption choices, without requiring the consumption policy to be non-anticipating.
Specifically, consider an arbitrary path of income shocks y?, and a budget-feasible positive

T = (¢cg,c1, -+ ,er). Note that ¢! is not a consumption

sequence of consumption choices ¢
policy, it denotes a sequence of positive real numbers representing a particular path of
consumption. The corresponding values of agent’s wealth (wg, wq, - - -, wr) satisfy the dynamic
budget constraint equation (19). To develop intuition of how an ideal penalty may look, we
first consider a somewhat restricted version of information relaxation: suppose that at time ¢,
the decision maker is able to anticipate perfectly the state next period, and must use the

original information structure starting from the following period, i.e., perfect foresight is

there for a single period only. In this case, the Bellman equation of the relaxed problem at

3For complete information relaxation, the relaxed problem is deterministic and hence easy to solve.
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time ¢ takes the form:

CR 1—y .
R = s T ¢ il - R ). (29
{cff: e <we} -

In the above expression, V;;; is the value function of the original problem, which coincides
with the value function of the relaxed problem starting at ¢t + 1, given our assumption of a
single-period relaxation at time ¢. There is no expectation operator in the Bellman equation,
because the agent anticipates income at time t + 1, y; 11, perfectly. A5 (cF, y'*1) is the penalty
term, to be determined, which depends on the realization of income next period, and the
current choice of consumption under the single-period perfect foresight, ¢X, which is also
allowed to dependent on next-period income. Compare the above expression to the Bellman

equation of the original consumption choice problem:

Vi(wy) = sup (Ct)lﬂ + PE [Vt+1((wt — )R+ §t+1>|?ﬂ' (24)

{ct:ce<wi} 1— Y

The second term on the right in (24) is the standard expectation of Vi, over the possible
values of 7;,1, taking the realizations of income shocks g, - - - ,y; as given. In order for the
optimal consumption policy of the relaxed problem to be the same as for the original problem,

we set the penalty to equalize expressions in equations (23) and (24):
N (et y™h) = BV ((we = )R+ yig1) = BE [V ((wr — )R+ Gen)|y']. - (25)

Brown et al. (2010) show, using mathematical induction, that the above expression for the
ideal penalty is valid in general, and not just for single-period information relaxations (for
completeness, we reproduce their proof in the context of our problem in Appendix A.3).
Given the current portfolio value of the relaxed problem, w?, the general form of the ideal

penalty is
N(C™y") = BV (0 = )R+ 1) = BE[Vipa (wf — )R+ Gesn) [y']. (26)

Y1 in the above expression is not a random variable. It is the value of the income shock at
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time t 4 1 from the particular path of shocks y” for which we are defining the ideal penalty.
In contrast, the labor income shock at time ¢ 4 1, i.e., 9,11, is a random variable. The second
term on the right in (26) is a conditional expectation of V;i; over the possible values of
Urr1, taking the realizations of income shocks yg, - ,3; as given. Thus, the second term
depends only on (CR)t and y’, and so the penalty A} depends on (cR)t and y**1. In particular,
N (C®,yT) depends on the contemporaneous consumption choice ¢ and the future income
shock y;11 explicitly, and on the earlier consumption choices (CR)F1 and income shocks 7
implicitly, through w® and the dynamic budget constraint. Going forward, we use more

concise notation for the penalty:

MN(CT, ") = B (Vi (wiy) — Ee [V (wiy)]) - (27)

To visualize how the penalty affects the solution of the relaxed problem, consider the
dependence of the ideal penalty on the contemporaneous consumption choice ¢;. For this
numerical example, we choose the parameters shown in Table 3. The time-1 penalty A}, is
shown in Figure 1. It depends on ¢y, the income in the following period ¥, and current
wealth wy, where w; captures the dependence of the penalty on prior consumption choices
and income shocks. We plot the penalty for two different levels of current wealth, w, = 4
and w; = 5, in Panels A and B of Figure 1, respectively. Each line in these figures shows the
penalty as a function of ¢; and the two possible values of y,: the solid line corresponds to
Yo = Yy, while the dash-dot line corresponds to yo = yy.

To see how the penalty discourages the agent from using information about future income,
consider a relaxed problem with the agent observing the time-2 income shock in advance and
using this information in his time-1 consumption decision. Without the penalty, the agent
can take advantage of his knowledge of the future. In particular, if the agent knows that the
time-2 income shock is high, i.e., yo = yp, it is optimal to choose higher time-1 consumption
than if yo = y. Figure 1 shows that the ideal penalty discourages such behavior. If the agent
chooses higher consumption in the ys = yy state relative to the y, = y, state, the expected

penalty is positive (shown by the solid line). An ideal penalty has the property that the
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benefit of perfect foresight is exactly offset by the negative effect of the penalty, and the
agent finds it optimal to chose a non-anticipative consumption policy while knowing future
realizations of income shocks. As long as the consumption choice is non-anticipating, i.e., ¢;
does not depend on 7, the expected value of the penalty is zero (shown by the dash line),
and the welfare of the agent is not impaired by the penalty.

Next we show how the ideal penalty discourages the agent from conditioning the time-0
consumption choice on knowledge of y, to achieve a smoother consumption path. To see this
compare panels A and B of Figure 1. From these figures we see that for both realizations of s,
the gradient of the penalty A} is larger in absolute value for w; = 4 than for w; = 5. Selecting
higher ¢y in the yo = yg state relative to the y, = y,, state raises the expected penalty term
A}, making it positive even if the consumption choice at time 1 is non-anticipative. This
illustrates the inter-temporal connections between various penalty terms and consumption
choices.

An ideal penalty is as difficult to compute as the solution of the original problem. We

therefore define the penalty based on an approximation to the value function:

MCR ") = B (Ve (whi) = Be [V (wfy)] ) - (28)

where we define Vt to be the expected utility resulting from the agent’s consumption policy.
This is a feasible penalty because it satisfies equation (17). However, this penalty choice
results in an upward biased estimate of the actual welfare loss of the agent. We see this from
Panel A of Figure 2. In this figure, the value function of the relaxed problem V™ (w) (shown
by the dot-dash line), is greater than the value function V(w) (shown by the dashed line).
This duality gap arises from a sub-optimal choice of penalty; had we used the ideal penalty,
A, the two value functions would have coincided and the duality gap would have been zero.
The solid line in this figure is the expected utility of the agent ‘A/(w), from adopting the
sub-optimal policy. We estimate it by simulating many paths of shocks and computing the
sample mean of realized utilities from adopting the agent’s policy. The information relaxation
approach provides us with an estimate of the difference V= (w) — V(w); this difference is an

upper bound on the actual welfare loss V(w) — V(w) (see equation (22)).
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Panel B of Figure 2 shows an estimate of the upper bound on welfare loss of an agent
using sub-optimal policies and compares this with the actual welfare loss. The agent uses a
consumption policy based on the optimal solution of the model with the probability of the
high state equal to p = 0.89, whereas the true probability is p = 0.9. We report welfare loss

of an agent as a fractional certainty equivalent loss, 7, defined similar to equation (11):

/

Wy — Wo
o) = . (29)
where wy, is computed by solving:
Vo(wp) = V¥ (wo). (30)

The numerator of 7 in equation (29) is therefore the additional amount of time-0 wealth, wy,
needed by an agent following a sub-optimal policy to obtain the level of expected utility equal
to the value function of the relaxed problem with time-0 wealth equal to wy, keeping all other
state variables the same. The solid line in Figure 2 shows an estimate of the upper bound
on welfare loss of the agent 7, computed using the information relaxation approach. We
obtain this estimate in three steps: (i) by simulating 500 paths of income shocks, (ii) solving
the relaxed problem (i.e., equations (18) and (19)) along each path thereby obtaining an
estimate of V*(w,y”) along each path, and (iii) taking the sample mean, V%(w) over all 500
paths.? For this simple, partial equilibrium example, since we are able to solve for the actual
welfare loss, we plot it in the same figure (the dot-dash line) alongside the upper-bound in
panel B of Figure 2. We define the actual welfare loss, *, using the value function Vj(w)
instead of VR (w), i.e. w) in equation (29) is the root of the equation Vo(w)) = Vo(wp) instead
of equation (30). In this example, the agent’s welfare loss relative to the optimal policy is
less than 0.27% in certainty equivalent terms. Information relaxation bounds the maximum
welfare loss at less than 0.3%.

In order for information relaxation to be useful, it is necessary that the duality gap

4We do not show the 5% and 95% confidence intervals for the estimated upper bound on welfare loss in
this example because this estimate is so precise that the confidence band is not visible separately from the
estimated mean.
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between V% (w) and Vy(w) be small. Put differently, applying a more sub-optimal penalty
results in a larger duality gap and a less informative upper bound on welfare loss. To see this,
consider a penalty function that is identically zero, for example. In other words, the agent is
not penalized for foresight. Note that a zero penalty is a feasible penalty since it satisfies
equation (17). We see from Panel C of Figure 2 that when we re-estimate the maximum
welfare loss with a zero penalty, the upper bound on welfare loss is quite inflated. With this
sub-optimal penalty choice, information relaxation bounds the maximum welfare loss at less
than 65%, whereas the actual welfare loss is less than 0.27%.

Next, we vary the degree of sub-optimality of policies adopted by the agent and we
estimate the welfare loss for each of these policies. In particular, we compare the welfare loss
to the agent from adopting policies corresponding to p = 0.87, p = 0.88, and p = 0.89 and
report both the upper bound (solid line) and the actual welfare loss (dot-dash line) in panels
A, B, and C, respectively of Figure 3. From these figures we see that the upper bound on
welfare loss declines as the agent’s policy approaches the optimal policy. For example, the
maximum value of the upper bound on welfare loss is less than 2.3% when p = 0.87, while it
is less than 0.3% when p = 0.89.

Comparing across Panels A through C of Figure 3, we see that the duality gap between
VR(w) and V(w) decreases as the agent’s policy approaches the optimal policy. This is
because when the agent adopts a policy that is closer to the optimal policy, the expected
utility 17(10) improves and approaches the value function V(w). This, in turn, implies that the
penalty A\ approaches the ideal penalty A*, and therefore, the duality gap decreases. In other
words, the estimated upper bound on welfare loss declines as the agent’s policy approaches
the optimal policy both because of a decline in the actual welfare loss and also because of a
decline in the duality gap.

The general information relaxation approach follows the same logic as the basic example
above, with a multivariate state vector potentially replacing the wealth of the agent as an
argument in the value function, and multiple choice variables potentially replacing the single
choice variable, ¢. In addition, the general approach allows for partial information relaxations,

where the agent receives some but not complete information about the future. Formally,

19



we describe the structure of the agent’s information as a filtration F = {Fy, Fi,...Fr}, and
the information set of the relaxed problem as a finer filtration G = {Gy, Gi,...Gr}, where
F; € Gy C Fr. Then, we define the relaxed problem under the information structure G, and

we define the penalty process as:

A = B (Be[V(2130)|Ge] — Ee [V (2e)|F]) (31)

where the two expectation operators above are conditional on the corresponding information
sets, and x4, denotes the time-(¢ 4 1) state vector (to avoid introducing more notation, we
suppress the dependence of the penalty process on the choice variables and the exogenous
shocks).

Before we apply the information relaxation approach to specific models, we note that, in
general, there are two potential sources of numerical error in the solution of an equilibrium
model. First, errors are introduced by approximating a high dimensional state space of a
problem with a lower dimensional proxy. A second source of error arises when a continuous
state space is approximated by a finite number of points on a discrete grid. Our focus in
this paper is on the former, i.e., we provide an approach to obtain an upper bound on errors

introduced by the curse of dimensionality.’

4 Application 1: imperfect insurance with aggregate
uncertainty
We demonstrate the potential of the information relaxation methodology by computing

bounds on the welfare loss of individual agents in the incomplete market model of Krusell

and Smith (1998) (henceforth, KS). This model is a canonical example of a model with an

®Discretization of a continuous state variable introduces a subtlety. Strictly speaking, our method produces
an upper bound only if the dual problem can be solved exactly. Otherwise, the welfare loss resulting from
discretization no longer guarantees that the value function of the discrete approximation of the relaxed problem
is an upward biased estimate of the value function of the original problem. Therefore, the dual problem has
to be solved exactly to obtain a provable upper bound of the welfare loss from adopting heuristic policies.
This can be achieved by providing the agent with perfect foresight and solving the resulting deterministic
problem exactly.
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infinite dimensional state space. We review the model, the equilibrium concept, and their

solution approach briefly. We refer the reader to the original paper for details.

4.1 The model

The KS model is the Aiyagari model (Aiyagari, 1994) with aggregate uncertainty. Time is
discrete, t = (0,1,--- ,00). There is a continuum of agents of unit measure with identical

constant relative risk aversion preferences:

o0 Ct1_7
E, {Z Bt—] : (32)

There is a single consumption good produced using a Cobb-Douglas production function:
Yt = Ztk’talg_a7 (33)

where the capital share parameter, 0 < a < 1, k and [ are capital and labor inputs, respectively,
and z is aggregate productivity. All agents are exposed to the aggregate shock z, which takes
one of two values z = {z;, 2/} (with 2z, > z/) and follows a Markov chain. Each period’s
output is partly used for consumption and partly added to the next-period capital stock,

resulting in the capital accumulation constraint:
kt = (1 - 5)kt—1 + Yt—1 — C¢—1 - (34)

where ¢ is the capital depreciation rate.

Households collect capital rent and labor income each period. Individual labor income is
exposed to idiosyncratic employment shocks, ;. We assume that each agent supplies [ units
of labor if employed (g, = 1), and zero units if unemployed (¢; = 0). Employment shocks
are cross-sectionally independent, conditionally on the aggregate productivity shock. Thus,
based on the law of large numbers, the unemployed fraction of the population depends only
on the aggregate state. We denote the equilibrium unemployment rate conditional on z;, and
21 by up, and wu;, respectively. Then the aggregate labor supply in the two states u;, and u;

are given by Lj, = (1 —uy)l and L; = (1 — w;)l, respectively.
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We look for a competitive recursive equilibrium. Let v (k, €) denote the cross-sectional
distribution function at time ¢, defined over individual capital stock and employment status.
Aggregate output depends on the aggregate capital stock, K; = [ (k,e)dkde, and the
aggregate supply of labor. Input prices in competitive equilibrium are determined by their
marginal product, hence the capital rent » and the wage rate w are given by:

Ky

E)a_l, WKy, L, ) = (1 — oz)zt<Kt>a- (35)

r(KtuLtazt> = 0421&( f
t

Individuals optimize their consumption-investment policies under rational expectations
about market prices, i.e., we assume that they correctly forecast the law of motion of the

equilibrium cross-sectional distribution of agents, denoted by:

Ve = H(r1,2-1) - (36)

Thus, optimal individual policies depend on the cross-sectional distribution of capital.

The value function of the agents satisfies the Bellman equation:

1—y
c
Vilke,er, z,0) = sup L— + BE, Vi1 (kig, €641, 21, Yigr)]
ct>0,ki41>0 -7
where ki1 = (1 =047k +wle; — cp,
Y1 = H(%ﬁ Zt)7 (37)

The main difficulty in computing the competitive equilibrium arises because of the dependence
of equilibrium prices on the cross-sectional distribution of agents. Thus, to solve for the

equilibrium, we must determine the law of motion, 111 = H (¢, 2¢).

Solution approach. To make the problem tractable, KS use a low-dimensional approxi-
mation to the infinite-dimensional cross-sectional distribution ;. This approach, introduced
in Krusell and Smith (1998), approximates all relevant information about the cross-sectional
distribution by its first K moments, {my, ma,- -, mg}. This results in a low-dimensional
fixed-point problem. In particular, in their analysis, KS restrict their attention to the cross-

sectional mean m;. For notational simplicity, from now on, we omit the sub-script in m; and
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denote the distribution’s mean simply by m. To speed up computation further, KS posit an

approximate law of motion for m that is log-linear:
H logm 1 = a® + b* logmy , z2={zg, %} (38)

In an approximate equilibrium, the equilibrium dynamics of the cross-sectional distribution
of capital in the economy must conform closely to the assumed law of motion, equation (38).

To solve the fixed-point problem, we start with an initial guess for the four constants
{a®,b*}. The individual optimization problem, i.e., equation (37), is solved for optimal policies
ki1 (ke, €, 2¢,my). With these policies, we simulate a long time series of the cross-sectional
distribution using a large sample cross-section of agents and compute the time-series of the
cross-sectional mean, m.% Next, we compute the ordinary least squares regression estimates
of {a*, b*} based on equation (38). We re-solve the individual problem, i.e., equation (37),
with these updated estimates of {a*, b*}, and the new optimal policies are used to simulate a
new time-series of m. This is used to update {a?, b}, and this process is continued till the
system converges.” In solving for the approximate equilibrium, we use parts of the code in

Maliar, Maliar, and Valli (2010).

4.2 The relaxed problem

We apply the approach that we described in Section 3 to compute an upper bound on the
welfare loss of individual agents by relaxing the information set of the agents. In particular, we
start with an initial cross-sectional distribution of capital across agents and draw a sequence
of aggregate shocks 2y, --- , zr_1 and a panel of idiosyncratic employment shocks. Given the
aggregate and individual shocks in each period, we use the approximate equilibrium policies
of the agents and compute their choice of capital stock for the following period, which, in

turn, gives us the cross-sectional mean of the distribution of capital stock in the following

6See also, Young (2010), who uses a histogram over the capital grid to obtain the time-series of m, instead
of the simulating the path of m using a cross-section. While this approach speeds up the computation, the
equilibrium is approximate since agents approximate the cross-sectional distribution by its mean.

"We stop when the maximum change in the policy function k;,1 between successive iterations is less than
1078, and the change in the norm of the vector {a*,b*} between successive iterations is less than 1075.
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period, myy;. Using equation (35), we compute the prices, i.e., capital returns r and wages
w, corresponding to the realized sequence of aggregate shocks. To minimize the gap between
the value function of the relaxed problem and the value function of the original problem of
the agent, we apply a partial relaxation, revealing only future aggregate shocks but not the
agent’s idiosyncratic employment shocks.

We define the penalty according to equation (31):

M= B (B [Via(hesn, B, 20 me)IGe] = Bl Vi (b, 81, Zema)I R ) . (39)

where G, denotes the information set of the agent. In equation (39), G; contains the following
period’s realization of the aggregate shock z;,; and the cross-sectional mean of capital m; 1,
but not £;,1. Therefore, we average over possible employed and un-employed future states.
Knowledge of the transition probabilities for z and e allows us to compute both the terms in
(39) above explicitly as a function of the decision variables of the relaxed problem, (k% ,, cf)

Finally, we use the budget constraint to eliminate k. Along a particular path, the penalty

)¢ is then a function of consumption ¢ only.

4.3 Results

We carry out our baseline analysis using the same parameters as in Krusell and Smith (1998).
The preference parameters are 5 = 0.99, and v = 1. On the production side, the parameters
are: the capital share a = 0.36, the depreciation rate § = 0.025, aggregate productivity
shocks take values z, = 1.01, z; = 0.99, and the corresponding aggregate unemployment rates
are up, = 0.04, u; = 0.10. The transition probability matrix for (z,¢) is in Table 4.

All of our simulation results use a sample cross-section of N = 10° agents. Sample paths
are T' = 10% long, and we average over 500 paths to compute unbiased estimates of the value
function of the relaxed problem, V*. In choosing the number of paths, we face a trade-
off—using more paths provides more precise estimates of V', but increases the computational
time since the relaxed problem is solved path-by-path. We use a simulation-based approach to
estimate the expected utility, ‘A/, under the sub-optimal policy of the agent in the approximate

equilibrium. In particular, we simulate 10° future paths of aggregate and idiosyncratic shocks.
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For each path, we compute realized prices r and w, as well as the realized utility. The sample
mean of the realized utilities is our estimate of V.

As in Section 3, we report the welfare loss as a fractional certainty equivalent. The
definition is analogous to equation (11):

ki, — ko
ko

n(ko) = (40)

where kj, is the root of the equation 170(143(’)) = V¥ (ko). The numerator of 7 is the extra capital
needed by an agent following a sub-optimal policy to obtain the level of expected utility
equal to the value function of the relaxed problem with initial capital kg, keeping all other

state variables the same.

Baseline results

The welfare loss of an agent depends on the current state: the agent’s capital stock, em-
ployment status, and the state of the aggregate economy captured by the realization of the
aggregate shock and the cross-sectional distribution of capital across the agents. In our
baseline results, we report welfare loss for an agent in a typical state of the economy, i.e.,
where the cross-sectional distribution of capital corresponds to the stochastic steady state.
Figure 4 summarizes the results. Panels A and B correspond to the state in which the
agent is unemployed (i.e., ¢ = 0) and employed (i.e., € = 1), respectively. The aggregate
shock z is low. We see from both figures that individual welfare losses are small, especially
for high levels of initial capital. For example, an agent who is unemployed (Panel A) and has
capital stock equal to the bottom 5% of the distribution of capital stock, suffers a welfare loss
that is at most 0.13% in fractional certainty equivalent terms. This number drops to 0.04%
for an agent whose capital stock is equal to the distribution’s median. These numbers are
similar for an agent who is currently employed (Panel B). Thus, our results verify that the
approximation of Krusell and Smith based on moment truncation, produces an approximate
equilibrium in which agents come very close to fully optimizing their objectives when the

economy is in a typical initial state.
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Transitional dynamics

Next, we consider how accurately the approximate solutions describe the transitional dynamics
of the economy following an unanticipated aggregate shock. The transitional dynamics of
equilibrium models is often of great interest. Yet the standard solution methods, such as that
of K8, are not intended to approximate equilibrium dynamics accurately when the economy
is away from its steady state. It is therefore unclear a priory how well such approximation
approaches perform under such experiments. This becomes an important issue when drawing
conclusions about transitional dynamics of the economy based on approximate numerical
solutions. The information relaxation approach is useful in this context because it provides a
provable upper bound which quantifies the approximation accuracy of numerical solutions in
such experiments.

We illustrate this approach using two examples in which we compute the transitional
dynamics of the KS economy following two kinds of unanticipated shocks. In our first
experiment, the economy experiences a large transitory shock: a sudden loss of 50% of capital
stock of every agent. Such large shocks are considered in the disaster risk literature (see
e.g., Gourio 2012). The second shock is a regime change: the economy gradually transitions
from its baseline equilibrium to the new stochastic steady state following an unanticipated
permanent increase in the volatility of the aggregate shock z. We consider two values for this
increase: a two-fold and a five-fold increase in volatility.

Figure 5 shows the result for the scenario in which all agents suddenly lost half of their
capital stock. We assume that every agent knows that the economy has experienced the shock
which has depleted the aggregate capital stock of the economy to half its value. In other
words, they observe the mean m decline. Accordingly, they adopt the policy corresponding
to the new value of m, in the period in which the shock is realized. Since all structural
parameters of the economy have stayed unchanged, agents rebuild their capital stock over
the next several periods. Panels A and B correspond to the welfare loss of an agent who
is unemployed and employed, respectively, in the period in which the unanticipated shock
arrives. From these two figures we see that the upper bound to the welfare loss is larger

relative to the baseline scenario. For example, an agent who is unemployed (Panel A) and
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has capital stock equal to the bottom 5% of the distribution, suffers a welfare loss that is at
most 0.30% in fractional certainty equivalent terms. The corresponding value was 0.13% in
the stochastic steady-state. Comparing Panels A and B, we see that the welfare losses are
similar in magnitude. Thus, our information relaxation method establishes that, following
the shock to capital stock, the moment truncation approximation generates relatively low
individual welfare loss.

Next we use the information-relaxation algorithm to quantify how well the Krusell-Smith
algorithm performs following a permanent increase in the volatility of the aggregate shock,
z. We assume that agents re-optimize and immediately switch to new policies following the
regime change. Figure 6 shows the result. Panels A and B correspond to the welfare loss
of an agent following a two-fold and five-fold increase in aggregate volatility, respectively.
In both cases the agent is initially employed and the aggregate state of the economy is low.
Panel A shows that for the two-fold increase in volatility, the upper bound to the welfare loss
is not much larger than the baseline scenario. However, panel B shows that the welfare loss
is potentially larger by an order of magnitude for the five-fold increase in volatility compared
to the welfare loss in the stochastic state. For example, an agent who has capital stock
equal to the bottom 5% of the distribution, suffers a welfare loss that is at most 3.0% in
fractional certainty equivalent terms. The corresponding value was 0.13% in the stochastic
steady-state. Thus, our information relaxation method establishes that the quality of the KS
approximation approach continues to be good following an increase in aggregate volatility,

unless the shock is extremely large.

5 Application 2: heterogeneous firms with aggregate

uncertainty

In this section we apply our method to the general equilibrium model of Khan and Thomas
(2008). This model features a heterogeneous cross-section of firms facing non-convex adjust-
ment costs and exposed to persistent aggregate and firm-specific productivity shocks. We use

information relaxation to estimate the upper bound to the loss in firm value from following
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suboptimal investment policies. We briefly outline the model using the notation of Khan and

Thomas (2008). We refer the reader to the original paper for more details.

5.1 The model

A continuum of firms of unit mass use a decreasing returns to scale technology with production
function:

Ui = Ztgtk?ntyv (41)

where 0 < o < 1 and a4+ v < 1. Productivity has an aggregate component z and a
firm-specific component ¢. Both follow a Markov process, where z; € {z!,...,2":} and
Pz = 2|z = 2') = myj, ey € {e',...,e™e} and P(eyqy = €']ey = ') = ©;.® The firm hires
labor n; in period t after observing that period’s productivity. The capital accumulation

constraint is:

/th—l—l = (]_ — 6)kt + it y (42)

where i; is investment, ¢ is the depreciation rate of capital, and ~ is a constant which
captures the growth rate of labor-augmenting technological progress. Firms face non-convex
adjustment cost of capital: there are no adjustment costs if investment is within a small
range i; € [aky, bky|, where the parameters a < 0 < b. However, if investment is outside this
range, then the adjustment cost is equal to &w;, where w; is the real wage rate and &; is a

uniformly distributed random variable £ ~ [0, £] that is independent across firms and over

time.

8These transition probabilities are computed using the discretization method of Rouwenhorst (1995)
applied to the AR(1) processes: logz’ = p,logz + 7. and loge’ = p.logz + 1., where n ~ N(O,U%z) and
nL o~ N(O,O’%E).
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Each period a firm chooses labor and investment to maximize its net present value:

Vl(En ke & 2o i) = sup [(thtk‘g”ty —winy — 1y — wi&y {1y & [aky, bk }) py

it€R, nt >0
N, N¢
5 m ]
+ 55 7Tz‘j§ TimV (€™ ki 27, o)
=1 =1

M1 = H(Mm Zt)

3
V(&e,kt;zt,/lt) = /flvl(gt,kt,f;zt,,ut)df, (43)
0

where I{} is the indicator function, V(e ks, &; 24, j1¢) is the present value of a firm with
idiosyncratic productivity ¢, and realized adjustment cost &, V (e, ky; 2, j1¢) is the present
value of the firm prior to the realization of the adjustment cost &, p; is the price at which
current output is valued, and p is the cross-sectional distribution over individual firms’ capital
stock and idiosyncratic shocks. The presence of non-convex adjustment costs and persistent
differences in firm-productivity lead to non-linear firm policies. This prevents aggregation of
the cross-section of firms into a representative firm. Equilibrium prices, therefore, depend on
the cross-sectional distribution of capital stock and idiosyncratic shocks p; of all firms in the
economy, in addition to current aggregate productivity z;. Firms optimize under rational
expectations about market prices, i.e., we assume that firms correctly forecast the equilibrium
law of motion of the distribution, g1 = H(p, 2¢)-

The model is closed by assuming that a representative household owns all firms in the
economy. The household maximizes expected lifetime utility over consumption C; and labor

Lt:
E, [Z BtU(Ch, Lt)] =, {Z B (log C; — @Lt)} . (44)
t=0 t=0
An exact solution of equilibrium policies is infeasible in this model because of the
dependence of prices on the cross-sectional distribution of capital ;. Khan and Thomas (2008)

adopt the solution approach of Krusell and Smith (1998) and approximate the cross-sectional

distribution by its mean. To solve the model, they make two more approximations. First,
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they assume that the mean m follows a log-linear law of motion:
H :logm1 = a* + b* logmy z={z' ... 2N} (45)
Second, they assume that the dependence of the price p; on the mean takes the form:
log pr = a,, + by log my z={ .., 2N}, (46)

The solution algorithm iteratively solves for optimal firm policies and the constants {a?, b?, az, by 5;1
such that the decision rules of individual firms are consistent with the aggregate savings and
leisure decisions of the representative household. For exact details see Khan and Thomas

(2008).

5.2 The relaxed problem

To compute the value function V¥ (e, k; 2, 110) of the relaxed problem for a particular initial
state of the economy (zo, o), we simulate paths of the economy starting from this state. The
relaxed information set contains the realization of all future aggregate productivity shocks;
however, it does not include future realizations of idiosyncratic productivity and adjustment

costs shocks. We define the penalty in the relaxed problem according to equation (31):

A = B (Et [‘7t+1(€t+17kt+1;zt+laﬁt+1)’gt} —E, [‘Z+1(5t+1,kt+1;Zz,ﬁt+1)|ft})

Ne N, N¢
= (Z TV (E Bt 2o, mun) = Yy > 7, VI(E ks 2, mm)) . (47)
J=1 =1

m=1

Along a particular path zg, zq,---, zr of the aggregate shock z, the time-t penalty \; is
therefore a function of the control k,. We solve for the optimal control of this relaxed
problem and obtain a single realization of the value function of the relaxed problem. We
repeat this over many simulated paths of aggregate shocks; the sample mean over these paths

is our estimate of VJ*(e, k; 20, pto)-
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5.3 Results

We carry out our baseline analysis using the same parameters as in Khan and Thomas
(2008) (see Table 5 of this paper). We choose the number of states for the aggregate and
idiosyncratic shocks equal N, = 11 and N. = 15, respectively, as in their original paper. All
of our simulation results use a sample cross-section of N = 10° firms. Sample paths are
T = 10° long, and we average over 15000 paths to compute unbiased estimates of the value
function of the relaxed problem, V®(e, k; 29, ). Similar to our approach for the KS model in
Section 4, we use a simulation-based approach to estimate the expected utility, ‘7(5, k; 20, 10),
under the sub-optimal policy of the firm in the approximate equilibrium. In particular, we
simulate 10° future paths of aggregate and idiosyncratic shocks, and compute the realized
utility along each path. The sample mean of the realized utilities is our estimate of V. Since
there are no optimizations involved, this step is fast.

As in Section 3, we report the welfare loss as a fractional certainty equivalent. The
definition is analogous to equation (29):

ki — ko
ko

n= (48)

where kj is the root of the equation ‘//\O(k(’]) = V®(ko). The numerator of 7 in equation (48),
is the extra capital needed by a firm following a sub-optimal policy to obtain the level of
expected utility equal to the value function of the relaxed problem with initial capital ko,

keeping all other state variables the same.

Baseline Results

The loss in firm value depends on the aggregate state of the economy, i.e. the realization of
the aggregate shock and the cross-sectional distribution u, as well as the firm’s current state,
i.e. the capital stock k£ and the idiosyncratic shock €. In our baseline results, we report the
loss in firm value in a typical state of the economy, i.e., where the cross-sectional distribution
corresponds to the stochastic steady state. In Figure 7 we present upper bounds on the loss

in firm value in three different idiosyncratic productivity states: the lowest state e = ! in
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Panel A, the middle state e = £® in Panel B, and the highest state € = ¢! in Panel C, all as
functions of the firm’s capital stock, k.

We see from Figure 7 that information relaxation bounds the welfare losses from following
sub-optimal policies in the near-rational equilibrium to be economically negligible. For
example, comparing across Panels A through C, we see that the upper bound is largest in
Panel A, corresponding to the state ¢ = ¢!. Even in this state, a firm with capital stock
equal to the bottom 5% of the distribution suffers a welfare loss that is at most 0.02% in
fractional certainty equivalent terms. In the same figure we see that a firm with capital stock
equal to the median of the distribution suffers a welfare loss that is less than 0.01%. For
higher firm-specific shocks, the upper bound is even smaller. In Panel C which corresponds
to e = £'?, for example, the loss is essentially zero. In sum, this shows that firms do not incur
significant loss by following suboptimal policies under circumstances they typically encounter

in the near-rational equilibrium.

Transitional Dynamics

Next, we test the efficiency of the suboptimal policies by considering transitional dynamics
of the economy away from the stochastic steady-state. As in Section 4, we consider two
unanticipated shocks. In our first experiment, the economy experiences a large transitory
shock: a sudden destruction of 50% of capital stock of every firm in the economy. The second
shock is a regime change: the economy gradually transitions from its baseline equilibrium
to the new stochastic steady state following an unanticipated permanent increase in the
volatility of the aggregate shock z. We consider two shock sizes—a two-fold increase and also
an extremely large shock corresponding to a five-fold increase in aggregate volatility.
Figure 8 shows the upper bound on welfare loss for the unanticipated destruction of 50%
of capital stock of firms. We see from these figures that the upper bound is now larger than
in the stochastic steady-state. For example, in Panel A which corresponds to the state ¢ = &*,
a firm with capital stock equal to the bottom 5% of the distribution suffers a welfare loss
that is bounded at 1% in fractional certainty equivalent terms. The corresponding value in

the stochastic steady-state was 0.02%. The potential losses to firm value are even larger in
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Panels B and C of Figure 8.

Figure 9 shows the upper bound on welfare loss for the unanticipated increase in the
volatility of aggregate productivity. Panel A corresponds to a doubling of aggregate volatility;
we see that the upper bound is similar to the stochastic steady-state in this case. Panel
B corresponds to a five-fold increase in aggregate volatility. We see from this figures that
the upper bound is much larger than in the stochastic steady-state. For example, a firm
with capital stock equal to the bottom 5% of the distribution suffers a welfare loss which is
bounded from above by our information relaxation approach at 0.5% in fractional certainty
equivalent terms. The corresponding value in the stochastic steady-state is about an order
of magnitude smaller at 0.07%. The results of these two transitional dynamics experiments
therefore indicate potentially large losses in firm value in the Khan and Thomas economy

when the economy experiences very large, unanticipated shocks.

6 Conclusion

Our analysis shows that information relaxation techniques can be effectively used to establish
the accuracy of approximate solutions for equilibria in heterogeneous-agent models. This
methodology is general, easy to implement, and has a wide range of potential applications
beyond the scope of this paper. For instance, information relaxation could be used to evaluate
the accuracy of solutions obtained using perturbation techniques. The latter approach is
widely used for DSGE models (for a recent application, see Mertens and Judd (2012) and
Mertens (2011)) because of its ability to handle models with high-dimensional state vectors,
and is supported by the computational software Dynare. More recently, Boppart, Krusell,
and Mitman (2018) and Auclert, Barddczy, Rognlie, and Straub (2020) introduce an efficient
method to solve for the approximate equilibrium of a large class of heterogenous agent
models using a first-order perturbation around the stochastic steady-state. They assume
that the equilibrium is well approximated as a linear system in the space of perfect-foresight
shock sequences of finite length. Our method can be used to guarantee the quality of the

linearization assumption when their method is applied to solve for the equilibrium of a
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particular model. Yet another natural application of our approach is to evaluating welfare
loss resulting from heuristic policies motivated by behavioral biases of the agents.

Finally, our objective has been to establish near-rationality of individual policies under
approximate solutions of equilibrium models, as measured by the associated welfare loss. A
small welfare loss implies that individual agents have little to gain by refining their strategies.
However, there is no guarantee that price dynamics in such a near-rational economy is similar
to that in an exact equilibrium of the original model. Small mistakes by individual agents may
potentially lead to large differences in equilibrium outcomes (e.g., Akerlof and Yellen (1985),
Jones and Stock (1987), Naish (1993), Krusell and Smith (1996), Hassan and Mertens (2011)).
An important and challenging task for future research is to develop general quantitative tools
for evaluating the effect of small deviations from individual rationality on equilibrium price

dynamics.
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Appendix

A Proofs related to Section 2

A.1 Optimal policies

The investor’s problem (1) implies the Bellman equation:

V(w, X)) = sup loge + BEV (wiy1, Xiy1), (A.1)
ct>0,0¢

where V' (wy, X¢) is the investor’s value function, w; is the time-t wealth of the investor, and the
investor’s wealth evolves according to equation (2). The value function satisfies

V (wy, Xy) = log wy + v(X4). (A.2)

1
1-p
Equations (A.1) and (A.2), together with the budget constraint (2), imply

V (wy, X¢) = sup 10gct+/8Et<

P log (wy — ¢;) + log (¢ Ryyy + (1 — ¢ )R”) + U(Xt+1)> :
ct>0,0¢

(A.3)
The first order conditions for optimal consumption (3) and optimal portfolio choice (4) follow from

(A.3).

1
1-p

A.2 Derivation of expected utility loss equation (13)
The optimal and suboptimal consumption policies in Section 2.1 both have the form
ct = (1 — B)wy. (A.4)

That is ¢; = ¢ = (1 — B)w; for the optimal policy and ¢; = ¢; = (1 — B)wy for the suboptimal policy.
This implies that the time-t consumption ¢; is given by

t—1
o = (1— Byuo [T 22 (4.5)
s=0 $

In the setting of Section 2.1, since stock returns are independent and identically distributed, both
the optimal and the suboptimal portfolio are time-invariant. Let us denote the share of the investor’s
wealth in the stock for both the optimal and the suboptimal portfolio choices by ¢ (i.e., ¢ = ¢* for
the optimal portfolio and ¢ = $ for the suboptimal portfolio). Combining the budget constraint (2)
with the consumption policy (A.4), the return on wealth under both the optimal and the suboptimal
policies is given by

Dbl B (¢RS,, + (1 - ¢)RP). (A.6)

S

Combining equations (A.5) and (A.6), taking logs we get

t—1

log ¢; = log(1 — ) 4 log wg + tlog 5 + Zlog (¢R§+1 +(1— qb)RB) . (A.7)
s=0
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Equation (A.7) implies that

t—1

Z/BtlogCt _ log(l__ ﬂ) i log_wO + Bl_OgBQ +Zﬁtzlog (¢RSS+1 + (1 o (Z))RB) (AS)
t=0 1 B 1 B (1 /8) t=0 s=0

where we used the identities > ;0. 8" = 1/(1 — B) and Y ;2 tB" = B/(1 — B)?. Finally, taking
the time-0 expectation of both sides of equation (A.8), and using the definition of the certainty
equivalent of the one-period return on wealth equation (5), we get

>0 log(1—B) logwy , Blogf |
E ftloge ] = + + + Y BB(¢),
R e A >

log(1—p)  logwy  Blogp B
+ B(¢), A9
15 18 wopr e A9
where we used the identity > ;°, 8 = 8/(1 — 8)? in going from the first to the second equality.
Equation (A.9) implies that the expected utility from adopting the optimal consumption and
portfolio policy is

loguy  log(l—pf) flogf B
1-p 1-p 1-5)? (1-p)>’

where ¢* is given by equation (8). Similarly, the expected utility under the suboptimal policy is

logwg  log(1—p)  Blogp ~ B
515 Ta-pe PO

U (¢*7 (cz()tZO; wo, XO) =

+ B(¢Y) (A.10)

U (6, @)iz0: Wo, Xo ) = (A.11)

where $ is given by equation (12). Note that the true distribution of returns is used in computing
B(¢) in equation (A.11). Using the definition of the fractional certainty equivalent welfare loss
equation (11), we get that the fractional certainty equivalent loss from adopting the suboptimal
policy is

1 = exp <& (B(¢*) - B($)>> -1
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A.3 Duality gap for the ideal penalty

Proposition 1 (Ideal penalty) Let Vi(w;) and VJ¥(w]X) be the time-t value functions of the
original problem (14) and the relaxed problem (18), respectively. Then,

Vo(wo) = V< (wo), (A.12)
if the penalty process A, in equation (18) is chosen to be equal to \f, where
N (CRy") = B8 (Vi (0 = Q)R + yes1) = E[Vira (0 = )R+ Ges)[y']) - (A.13)

Proof. We prove Proposition 1 by adapting the proof in Brown et al. (2010) in the context of
the problem in Section 3. As in that section, we assume complete information relaxation.
The Bellman equation for the original problem is

I—y

C
Vi(wg) = _Os<up< t_ 5 + BE [Vig1 (wes1)[y'] (A.14)

where w1 1s given by equation (15). The Bellman equation for the relaxed problem is

Ry
C
VRWR) = sup D) OR Ty 4 VR (k) (A1)

Ri0<cR<wR 1=

where wl | and Xf(C®,yT) are given by equations (19) and (A.13), respectively.

The penalty (A.13) is feasible since it trivially satisfies the condition (17). The proof of equation
(A.12) follows from using mathematical induction. To see this, note that the terminal value functions
of the original and relaxed problems are both identical and equal to zero, that is, Vi1 (wpyq) =0
and Vﬁl(w%ﬂ) = 0. For the inductive step, we show that if the value functions are the same
function of wealth at time t + 1, that is, if

Visi(wirn) = Vi (wep), (A.16)

then the time-t value functions for the original and relazed problems must also be the same function
of wealth: Vi(wy) = ngl (wy). Indeed, this follows from noting that the right-hand side of equation
(A.15) reduces to the right-hand side of (A.14), after using equation (A.16) and the expression for
the ideal penalty (A.13) in (A.15). m
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Table 1: Transition matrix for the portfolio choice problem in Section 2.2.

A. Objective probabilities B. Subjective probabilities
X1 XQ X3 X1 XQ X3
X; 0495 0.495 0.01 X: 0495 0.495 0.01
Xy 0495 0.495 0.01 Xo 0495 0.495 0.01
X3 045 045 0.1 X3 0495 0.495 0.01

Table 2: Welfare loss and Euler equation errors for the portfolio choice problem
in Section 2.2 for two different lengths of time series 7'.

A. T = 6000 B. T = 100, 000
X X X X X X3
Fractional C.E. lossp  4.09 4.09 8.39 Fractional C.E. lossn 4.09 4.09 8.39
Lower 5%, Bond 4.76 5.31 4.59 Lower 5%, Bond 412 4.54 1.02
Upper 5%, Bond 5.14 4.8 6.49 Upper 5%, Bond 531 3.71 43.12
Lower 5%, Stock 4.76 5.31 4.59 Lower 5%, Stock 412 4.54 1.02
Upper 5%, Stock 5.14 4.8 6.49 Upper 5%, Stock 531 3.71 43.12

Table 3: Parameter values used in the consumption-saving problem of Section 3.

Parameter Symbol Value
Probability of high state P 0.9
Labor income, high state YH 4
Labor income, low state YL 1
Risk-free interest rate R 1.02
Agent’s time-preference parameter 6] 0.9
Agent’s risk aversion vy 5
Horizon T 100

Table 4: Transition matrix for the model of Krusell and Smith in Section 4.

2y 6/2/7 ¢ (va 0) (Zb7 1) (ng O) (Zg’ 1)

(2,0) 0.525000 0.350000 0.031250 0.093750
(2, 1) 0.038889 0.836111 0.002083 0.122917
(24,0) 0.093750 0.031250 0.291667 0.583333
(z4,1) 0.009115 0.115885 0.024306 0.850694
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Table 5: Baseline parameters of the Khan and Thomas (2008) model.

i B o a v ¢ Pz O, Pe O b §
1.016 0.977 0.069 0.256 0.640 2.400 0.859 0.014 0.859 0.022 0.011 0.0083
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Figure 1: Ideal penalty. The ideal penalty A} for the consumption-saving problem of Section 3,
plotted as a function of time-1 consumption choice ¢;. We use the parameters shown in Table 3.
The agent believes the probability of yz is 0.89. Panel A corresponds to the time-1 wealth wy = 4,
while Panel B corresponds to w; = 5. The solid line is the penalty function in the state yo = yp,
while the dash-dot line is the penalty in the state yo = yr. The dash line shows the expected value
of the penalty over the two possible realizations of 5. This expectation is identically equal to zero.
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A. Value functions

B. Penalty using 14

,‘—'N~

20

C. No penalty

Figure 2: Welfare loss, upper bound. Panel A shows the relative ordering of the upper bound
VR, the agent’s value function under the optimal policy V, and an unbiased estimate of the agent’s
expected utility from adopting sub-optimal policies V. While the true probability p of a high income
shock, yg is 0.9, the sub-optimal policies correspond to the optimal policy for realization of yy that
equals p = 0.89. The solid line in Panel B shows the upper bound of certainty equivalent loss from
adopting the sub-optimal policy, while the dot-dash line shows the actual certainty equivalent loss.
The upper bound is computed using V. Panel C shows the upper bound and the actual certainty
equivalent loss with no penalty for foresight. We use the parameters shown in Table 3.
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Figure 3:

20

Certainty equivalent loss for different sub-optimal policies. Panels A, B, and C
correspond to the certainty equivalent loss from adopting policies with varying degrees of sub-
optimality. While the true probability p of a high income shock, yzr is 0.9, the sub-optimal policies
in panels A, B, and C correspond to the optimal policy where the agent’s belief for realization of
yg equals p = 0.87, p = 0.88, and p = 0.89, respectively. We use the parameters shown in Table 3.
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Figure 4: Upper bound on welfare loss: Model of Krusell and Smith, stochastic steady-state.
Panels A and B show the upper bound of an agent’s welfare loss as a function of his capital stock,
k, when he is unemployed and employed, respectively. The welfare loss is measured as a fractional
certainty equivalent loss 7, which is defined in equation (40). The aggregate state of the economy
is low. The value function of the relaxed problem is estimated by averaging over 500 paths of
aggregate shocks. The shaded area shows the cross-sectional distribution of capital and corresponds

to the stochastic steady-state distribution. Dashed lines are 95% Monte Carlo confidence bounds.
All parameters values are identical to those in Krusell and Smith (1998).
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Figure 5: Upper bound on welfare loss: Model of Krusell and Smith, transitional dynamics
following 50% destruction of capital stock of all agents. Panels A and B show the upper bound of
an agent’s welfare loss as a function of his capital stock, &, when he is unemployed and employed,
respectively. The welfare loss is measured as a fractional certainty equivalent loss 7, which is defined
in equation (40). The aggregate state of the economy is low. The area under the shaded curve shows
the cross-sectional distribution of capital after the permanent shock is realized. The value function
of the relaxed problem is estimated by averaging over 500 paths of aggregate shocks. Dashed lines

are 95% Monte Carlo confidence bounds. All parameters values are identical to those in Krusell and
Smith (1998).
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Figure 6: Upper bound on welfare loss: Model of Krusell and Smith, transitional dynamics
following a permanent increase in aggregate volatility. Panels A and B show the upper bound of
an agent’s welfare loss as a function of his capital stock, k, following a two-fold and five-fold increase
in aggregate volatility, respectively. In both cases the agent is initially employed and the aggregate
state of the economy is low. The welfare loss is measured as a fractional certainty equivalent loss
7, which is defined in equation (40). The area under the shaded curve shows the cross-sectional
distribution of capital in the stochastic steady-state. The value function of the relaxed problem
is estimated by averaging over 500 paths of aggregate shocks. Dashed lines are 95% Monte Carlo
confidence bounds. All parameters values are identical to those in Krusell and Smith (1998).
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Figure 7: Upper bound on welfare loss: Model of Khan and Thomas, stochastic steady-state.
Panels A, B, and C show the upper bound of loss in firm value as a function of the firm’s capital
stock, k, for three different idiosyncratic shocks, e = 1, ¢ = 8, and € = 15, respectively. The loss is
measured as a fractional certainty equivalent loss 7, which is defined in equation (48). The aggregate
state of the economy is low. The area under the shaded curve shows the cross-sectional distribution
of capital in the stochastic steady-state, conditional on e. The value function of the relaxed problem
is estimated by averaging over 15000 paths of aggregate shocks. Dashed lines are 95% Monte Carlo

confidence bounds. All parameters values are identical to those in Khan and Thomas (2008) and
are also reported in Table 5.
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Figure 8: Upper bound on welfare loss: Model of Khan and Thomas, transitional dynamics
following 50% destruction of capital stock of all firms. Panels A, B, and C show the upper bound
of loss in firm value as a function of the firm’s capital stock, k, for three different idiosyncratic
shocks, ¢ = 1, ¢ = 8, and ¢ = 15, respectively. The loss is measured as a fractional certainty
equivalent loss 7, which is defined in equation (48). The aggregate state of the economy is low.
The area under the shaded curve shows the cross-sectional distribution of capital immediately after
the economy-wide capital loss is realized. The value function of the relaxed problem is estimated
by averaging over 15000 paths of aggregate shocks. Dashed lines are 95% Monte Carlo confidence

bounds. All parameters values are identical to those in Khan and Thomas (2008) and are also
reported in Table 5.
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Figure 9: Upper bound on welfare loss: Model of Khan and Thomas, transitional dynamics
following a permanent increase in aggregate volatility. Panels A and B show the upper bound of
loss in firm value as a function of the firm’s capital stock, k, for a two-fold and five-fold unanticipated
increase in aggregate volatility, respectively. In both cases, the idiosyncratic shock € = 8. The
loss is measured as a fractional certainty equivalent loss 1, which is defined in equation (48). The
aggregate state of the economy is low. The area under the shaded curve shows the cross-sectional
distribution of capital in the stochastic steady-state, conditional on €. The value function of the
relaxed problem is estimated by averaging over 15000 paths of aggregate shocks. Dashed lines are
95% Monte Carlo confidence bounds. All parameters values are identical to those in Khan and
Thomas (2008) and are also reported in Table 5.
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