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1 Introduction

Cross-sectional heterogeneity among households and firms is at the heart of many important

economic phenomena. In general, it is impossible to aggregate a cross-section of agent

characteristics in dynamic heterogenous-agent economies, especially in the presence of con-

straints (e.g., financial constraints) or un-hedgeable sources of risk (e.g., idiosyncratic labor

income shocks). In such models, endogenous quantities, such as risk premia, depend on the

cross-sectional distribution of agent characteristics, such as household wealth or firm capital.

Since the cross-sectional distribution is an infinite dimensional state-variable, it is typically

impossible to solve exactly for equilibrium in this class of models. Under the common solution

approach, introduced in the highly influential paper by Krusell and Smith (1998), agents

follow relatively simple approximate policies that avoid the burden of solving a dynamic

optimization problem with a high-dimensional state space. Specifically, agents summarize the

state of the economy by a low-dimensional state vector, typically keeping track of only a few

cross-sectional moments.1 The approximate solution of the original model can be viewed as

an exact equilibrium in a near-rational economy, in which agents pursue suboptimal policies

(see Krusell and Smith (1998), page 874). If agents suffer small welfare losses from failing to

fully optimize, expanding further resources on improving the policies is unproductive, and

approximate policies are plausible as a description of near-rational behavior. This argument

is in the spirit of modeling economic agents as satisficing rather than optimizing, as in Simon

(1978).

Do approximate solutions thus constructed describe near-rational equilibria? A significant

limitation of the commonly used approaches, including the one by Krusell and Smith, is that

currently there are no reliable general methods for verifying the degree of welfare loss under

candidate near-rational equilibria in heterogeneous-agent models. We discuss the limitations

of one common approach, based on Euler equation errors, in Section 2. In this paper we

propose a general method for bounding welfare losses due to suboptimality of policies under

the approximate solution. Our technique allows one to compute provable bounds on the

1This approximation method is widely used, see e.g., Heathcote, Storesletten, and Violante (2009) and
Guvenen (2011) for a survey of the solution methodology and applications.

1



degree of welfare loss under approximate policies. It is straightforward to implement and has

general applicability, being usable in conjunction with various approximation algorithms.

The key to tractability of our approach is that it establishes an upper bound on the

agents’ welfare loss without computing the optimal policies. This is essential when dealing

with infinite-dimensional models, where optimal individual policies are infeasible to compute,

even in a candidate near-rational equilibrium. The main idea of our approach is the following.

We alter the original problem of an agent by enlarging her information set to allow for perfect

knowledge of the future path of prices (more generally, the aggregate state process of the

economy), while simultaneously penalizing the agent’s objective for such foresight. The

modified problem is much more tractable than the original problem, because the aggregate

state of the economy in the modified problem follows a deterministic process. Moreover, if

the penalty for perfect foresight is chosen properly (we discuss the precise requirement in the

main body of the paper), the value function of the modified problem is always higher than

the value function of the original problem. We thus obtain an upper bound on the agent’s

welfare. The lower bound results from following the sub-optimal policy prescribed by the

approximate solution. The gap between the two bounds limits the agent’s welfare loss from

above. A narrow gap indicates that the degree of sub-optimality is economically small, and

the approximate equilibrium is indeed near-rational. A large gap does not necessarily imply

that the sub-optimal policy is grossly inefficient, as it may result from the value function

of the modified problem being significantly higher than the value function of the original

problem.

To illustrate the potential of our method, we apply it to two well-known models, which

feature an approximate equilibrium with aggregate uncertainty. First, we consider the

incomplete markets model of Krusell and Smith (1998). This is a stochastic growth model

in which individual agents face uninsurable labor income risk as well as aggregate shocks

to the productivity of capital. Krusell and Smith compute an approximate equilibrium by

summarizing the cross-sectional distribution of wealth among the agents using only the

average per capita level of wealth. Our second application of the information relaxation

approach is to the model of Khan and Thomas (2008). Their model features a heterogeneous
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cross-section of firms in general equilibrium. In the approximate equilibrium, Khan and

Thomas summarize the cross-sectional distribution by the mean capital stock of all firms in

the economy. We provide accompanying code which shows our approach applied to these two

models and to the simpler illustrative examples in Section 2 and Section 3 of this paper.2

We quantify the degree of sub-optimality of agents’ policies under both models. We

establish that in both settings the original solutions imply relatively low individual welfare

losses for most initial configurations of the economy. Thus, for the calibrated models under

consideration, our method confirms that their approximate solutions describe a near-rational

equilibrium. This is especially important for the model of Khan and Thomas (2008), because

we are able to show that the key finding of that paper that non-linearities in individual firm

policies do not have a quantitatively large effect on aggregate dynamics is not a result of

firms adopting grossly sub-optimal policies.

Next, we stress-test the approximation algorithms in the above applications by introducing

transitional dynamics in an economy perturbed away from its steady state. Since the standard

solution methods, such as that of Krusell-Smith, are not intended to approximate equilibrium

dynamics accurately when the economy is away from its steady state, it is not clear a-priori

how well such methods may perform. For both models, we consider the following two

transitional dynamics experiments. Starting from the steady-state of the model, we consider:

(i) an unanticipated permanent increase in the volatility of aggregate productivity shocks (we

consider two-fold and five-fold increases); or, (ii) an unanticipated 50% reduction in capital

stock of all agents in the Krusell-Smith economy and a similar reduction in capital stock of

every firm in the Khan-Thomas economy. In the first case, the economy transitions to a new

steady state following a permanent regime shift. In the second case, the economy reverts

to the original steady state following a large transient shock. Our methodology shows the

welfare bound in each experiment to be larger than in the steady-state case, in some instances

rising by more than an order of magnitude, thus indicating potentially large welfare losses.

2See https://www.dropbox.com/sh/rqe859kstso6vk0/AACBZNNuxCIqUY7BZRJfqti4a?dl=0.
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Related literature

The basic idea of using information relaxations and martingale multipliers to formulate a

dual stochastic optimization problem can be traced back to Bismut (1973) (in a continuous-

time setting) and Rockafellar and Wets (1976) and Pliska (1982) (in the discrete-time finite

horizon setting). Back and Pliska (1987) apply this technique to single-agent problems in

financial economics. Most of the existing applications of information relaxations deal with

the optimal stopping problems, typically in the context of pricing American or Bermudan

options, e.g., Davis and Karatzas (1994), Rogers (2002), Haugh and Kogan (2004), and

Andersen and Broadie (2004). Rogers (2007) and Brown, Smith, and Sung (2010) extend

the information-relaxation idea to general dynamic optimization problems. We use the

formulation in Brown et al. (2010), which incorporates both perfect and partial information

relaxations and derives penalty processes from the value function of the original problem.

Our paper is the first to apply the information relaxation approach to approximate solutions

of heterogeneous-agent equilibrium models.

The existing literature on approximate solutions of equilibrium models uses several

approaches to evaluating approximate solutions. One common approach is to compare

forecasts of aggregate states of the economy with actual realizations from the simulation,

and to judge the approximation quality by the accuracy of the forecasts, e.g., their R2. A

well-known limitation of this approach is that a high forecast R2 does not guarantee that the

approximation quality is high (den Haan, 2010). Krusell and Smith (1998) evaluate multi-

period forecasts as a more stringent test, and den Haan (2010) develops a yet more stringent

procedure for comparing the law of motion used to formulate agents’ policy functions to the

true law of motion implied by the approximate solution of the model. These approaches have

two main limitations relative to the method we propose in this paper: they do not provide a

guarantee of approximation quality and do not describe the welfare cost of approximation

errors.

Another popular approach, due to den Haan and Marcet (1994), evaluates Euler equation

errors of the approximate solution along the simulated path of the economy. Under the null

hypothesis that the agent’s policies are optimal, the L2 norm of the Euler equation errors is
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distributed as a χ2 random variable, and a standard hypothesis test can be carried out. The

limitation of this method is that small Euler equation errors do not imply low welfare loss.

As we show in Section 2, Euler equation errors can be small while sub-optimal policies are

infinitely costly in welfare terms. The inadequacy of Euler equation errors as a measure of the

approximation quality of equilibrium solutions is also highlighted in Kubler and Schmedders

(2003).

Santos (2000) shows that small Euler equation errors do imply small policy function

errors for a restricted class of models – importantly, this result is limited to the models

in which equilibria correspond to the solution of the central planner’s problem. In more

general models, theoretical guarantees on the accuracy of policy functions are not available.

In such situations, our approach allows one to compute a generally applicable bound on the

approximation accuracy of agents’ policies. Kubler and Schmedders (2005) propose a method

of error analysis where the quality of the approximation to the equilibrium is judged by its

proximity to an exact equilibrium in a close-by economy. In contrast to this approach, our

method establishes an upper bound on the welfare loss in the original economy, which is due

to agents following suboptimal policies.

In the language of numerical analysis, estimates of the errors in equilibrium policies, as in

Santos (2000), represent forward error analysis – where the quality of the approximation is

judged by how close the approximate solution (including agents’ policies and endogenous

processes, such as prices) is to the exact solution. In comparison, Kubler and Schmedders

(2005) use the logic of backward error analysis, where one evaluates how much the inputs

of the model need to be modified to make the approximate solution satisfy all equilibrium

conditions exactly. One can view our method as a form of forward error analysis with

provable guarantees of approximation quality, where the distance between the approximate

and exact solution is measured in economic terms – in terms of individual welfare loss under

approximate policies. Judd, Maliar, and Maliar (2017) provide a complementary view of the

solution quality. They establish a lower bound on the (forward) error of an approximate

solution to an equilibrium model. While our approach provides a sufficient condition for the

accuracy of an approximate solution, the lower bound provides a necessary condition since
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the true errors are larger than the lower bound.

The rest of the paper is organized as follows. In Section 2 we show that the method

of Euler equation errors can fail to detect sub-optimal policies with large utility losses. In

Section 3 we formulate the relaxed problem and outline the construction of penalty functions.

To illustrate our approach, we apply it to a model for which the optimal policy is known in

closed form. In Sections 4 and 5, we apply our method to the Krusell-Smith model and the

model of Khan-Thomas, respectively. Section 6 concludes.

2 Shortcomings of the Euler equation errors approach

We use two examples to show that the method of Euler equation errors can fail to detect

sub-optimal policies with large utility losses. In the first example, the agent incurs infinite

loss in expected utility from adopting a sub-optimal policy; however, the Euler equation

errors remain finite. In the second example, a finite sample test based on Euler equation

errors fails to reject the null hypothesis of policy optimality, even though the welfare loss

associated with the policy is substantial. We describe the setting for both of our examples

next.

Consider an investor with time-0 wealth w0 and log utility over consumption . The agent

has access to a risk-free bond with a constant rate of return RB and a stock whose distribution

of time t+ 1 return RS
t+1 depends on the time t value of a state variable X. Assume that X

follows an n state Markov process and takes n possible values X1, X2, · · · , Xn with a time

independent transition probability Pij ≡ Prob (Xt+1 = Xj|Xt = Xi). The investor solves

sup
ct>0,φt

E0

∞∑
t=0

βt log ct , (1)

subject to the budget constraint:

wt+1 = (wt − ct)
(
φtR

S
t+1 + (1− φt)RB

)
. (2)
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In (1), β is the time-preference parameter, ct is time-t consumption, and φt is the share of

the investor’s wealth in the stock at time-t.

The optimal consumption policy c?t is to consume a constant fraction of wealth:

c?t = (1− β)wt . (3)

The optimal portfolio policy is to choose φt to maximize the certainty equivalent of the

one-period return on wealth, that is,

φ?t = arg supB(φt, Xt), (4)

where B(φt, Xt) is the certainty equivalent of the one-period return on wealth:

B(φt, Xt) ≡ E
[
log
(
φtR

S
t+1 + (1− φt)RB

)
|Xt

]
. (5)

The expectation in equation (5) is over the distribution of stock returns RS
t+1 conditional

on the time-t realization of the state variable X. We derive the policies (3) and (4) in

Appendix A.1.

Next, consider the suboptimal policy resulting from the investor having incorrect beliefs

about the distribution of stock returns. Specifically, instead of the true transition probabilities

Pij, the investor supposes that the transition probability is P̂ij = Prob (Xt+1 = Xj|Xt = Xi).

The investor solves

sup
(φu,cu)u≥0

Ê0

∞∑
t=0

βt log ct , (6)

subject to the budget constraint (2), where the expectation Ê0 in (6) is taken under the

investor’s beliefs. Since the agent’s consumption policy is independent of portfolio returns

(the agent has log-utility), the investor still consumes the same fraction of wealth as in

equation (3), that is,

ĉt = (1− β)ct. (7)
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The investor’s portfolio policy φ̂t is

φ̂t = arg sup
φ

Ê
[
log
(
φRS

t+1 + (1− φ)RB
)
|Xt

]
. (8)

Euler equation errors. To quantify deviations from optimality, den Haan and Marcet

(1994), henceforth DM, proposed a hypothesis test based on deviations from the first-order

optimality conditions. In our example, the investor’s first-order optimality equations are

1 = E
[
RB (ct+1/ct)

−1 |Xt

]
and 1 = E

[
RS
t+1 (ct+1/ct)

−1 |Xt

]
. Deviations from these first-order

conditions, that is, the Euler equation errors, are defined as:

εBt ≡ 1−E
[
RB/

(
φ̂RS

t+1 + (1− φ̂)RB
)
|Xt

]
, εSt ≡ 1−E

[
RS
t+1/

(
φ̂tR

S
t+1 + (1− φ̂t)RB

)
|Xt

]
,

(9)

where we used equation (2) to express consumption growth in terms of the portfolio return

in the Euler equation. DM show that under the null hypothesis that the policy is optimal,

the test statistics constructed from the L2 norm of the Euler equation errors

sB ≡
T∑
t=1

(
εBt
)2
/T, sS ≡

T∑
t=1

(
εSt
)2
/T, (10)

approach a χ2 distribution with one degree of freedom as T approaches infinity.

We follow DM in implementing their test: we simulate N paths of stock returns (each of

length T ) and compute the values of the statistics sB and sS along each sample path. Using

many paths minimizes the likelihood of not rejecting the null hypothesis due to luck. Finally,

we compute the fraction of times these statistics fall in the upper and lower critical 5% region

of a χ2 distribution with one degree of freedom. If these realized fractions are substantially

different from 5%, we have evidence that the policy being examined is not optimal.

To test the reliability of the DM approach, we explicitly compute the investor’s loss

in expected utility from adopting the policies (7) and (8) relative to adopting the opti-

mal policies (3) and (4). We report this welfare loss as a fractional certainty equivalent

loss, which we define as follows. Let U ((φt, ct)t≥0;W0, X0) be the investor’s expected util-

ity from adopting policies φt and ct for t ≥ 0, for initial wealth W0 and initial state
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X0. For each W0 and X0, we first compute the expected utility under the optimal policy

U ((φ?t , c
?
t )t≥0;W0, X0). Next, we compute the initial wealth Ŵ0 that is needed to achieve this

utility from adopting the potentially suboptimal policy. That is, we solve for Ŵ0 from the

equation U ((φ?t , c
?
t )t≥0;W0, X0) = U

(
(φ̂t, ĉt)t≥0; Ŵ0, X0

)
. We define the fractional certainty

equivalent loss as:

η ≡ Ŵ0 −W0

W0

. (11)

2.1 Finite Euler equation residuals, unbounded welfare loss

Consider the special case in which stock returns are independent and identically distributed.

In this case, the certainty equivalent of the single period ahead portfolio return is a constant

B(φ) = E log
(
φRS

t+1 + (1− φ)RB
)
. Therefore, the optimal portfolio is a constant φ?, where

φ? = arg supB(φ). The suboptimal portfolio policy (8) also implies a constant φ̂ where

φ̂ = arg sup
φ

Ê
[
log
(
φRS

t+1 + (1− φ)RB
)]
. (12)

We prove in Appendix A.2, that the fractional certainty equivalent loss from adopting the

suboptimal policy is

η = exp

(
β

1− β

(
B(φ?)−B(φ̂)

))
− 1. (13)

Equation (13) shows that if φ̂ 6= φ?, then the welfare loss becomes arbitrarily large as the

time preference parameter β approaches unity. However, we see from equation (9) that the

magnitude of Euler equation errors does not increase as β approaches one; indeed, these errors

are independent of β. The Euler equation errors do not blow up because these errors are

based on deviations from the one-period ahead Euler equations, which fail to aggregate the

effect of such deviations over multiple periods. In terms of utility loss, however, a sufficiently

patient investor who puts non-negligible weight to utility loss far into the future suffers a

very large utility loss, even though the single-period deviation from the suboptimal policy

appears small.
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2.2 Low-probability persistent disasters

In this section we use the setting from Section 2 to show that the finite-sample test based on

Euler equation errors may fail to reject suboptimal policies. The key feature of our example

is the presence of a rare but persistent disaster state. The investor underestimates the

persistence of this state. Since the state is rare, the investor’s mistake is infrequently realized,

and therefore a finite-sample test may fail to detect a policy associated with significant welfare

loss.

Specifically, we consider the case in which the state variable X takes three values X1,

X2, and X3; the realized stock returns in these states are 1.3, 0.91, and 0.7, respectively.

The true transition probability matrix is shown in Panel A of Table 1. The investor believes

(incorrectly) that the transition probability matrix is the one shown in Panel B of Table 1.

Comparing the transition matrices, we see that the investor underestimates the persistence

of the disaster state X3. Note that even though the investor makes large errors in the

conditional dynamics of the state variable X, these errors are much milder unconditionally.

For example, while the true relative frequencies of occurrence of X1, X2, and X3 are 49.45%,

49.45%, and 1.1%, respectively, the investor believes these frequencies to be 49.5%, 49.5%,

and 1%, respectively. Similarly, while the true average stock return and volatility are 10.05%

and 19.84%, respectively, the investor believes these quantities to be 10.09% and 19.82%,

respectively. Finally, we choose the investor’s time preference parameter β = 0.99 and the

risk-free rate RB = 1.04.

As a result of underestimating the persistence of X3, the investor overinvests in the stock

in this state relative to the optimal portfolio by a significantly large amount. While the

optimal policy is to invest φ?(X3) = 0.52, the investor chooses φ̂(X3) = 1.73. The first row of

Table 2 shows the investor’s welfare loss in each state as a result of adopting the suboptimal

policy (12). We see that the fractional certainty equivalent loss is substantial: 4.09% in states

X1 and X2 and 8.39% in the state X3.

Next, we use the DM test using Euler equation errors to assess evidence against the null

hypothesis (that the investor’s policy is optimal). The stringency of the DM test depends

on the length of the time series T used. As DM point out, a low value of T increases the

10



likelihood of a Type II error (i.e., the test fails to detect a suboptimal policy), whereas if T is

sufficiently large, every approximate solution will be rejected. DM suggest choosing T to be

“substantially bigger than the length of the empirical series...”. In their example, they choose

the series to be 20 times the length of the empirical series. We assume that the model of

Section 2 is being used to analyze consumption-portfolio choices using the post-War data.

Similar to DM, we choose T = 6000, which is close to twenty times the length of the quarterly

consumption series in post-War data. We simulate N = 10, 000 paths of stock returns and we

compute the values of sB and sS along each sample path. Finally, we compute the fraction of

times sB and sS fall in the upper and lower critical 5% region of a χ2 distribution with one

degree of freedom.

Rows 2 through 4 in Panel A of Table 2 show the results. We see that no entry is

substantially different from 5%; hence according to this test, we would fail to reject the null in

spite of the fact that the investor incurs substantial welfare loss from adopting these policies.

In order to detect evidence against the null, we have to choose a much longer time series.

This can be seen from Panel B of Table 2, where we use T = 100, 000. In this case, both sB

and sS appear in the 5% critical region 43.12% of the time when the initial state is X3.

Our example highlights a weakness of the approach of using Euler equation errors (see

also the related discussion in den Haan and Marcet (1994)). Both examples in Section 2.1

and Section 2.2 underscore the need for a reliable test to detect suboptimal policies. We

propose and discuss such a test next.

3 Information relaxation: The main idea

In our analysis of approximate equilibria, we apply the information relaxation method

proposed in Brown et al. (2010). We introduce the main ideas of this method in this section,

and refer the readers to Brown et al. (2010) for full technical details.

Consider a standard finite-horizon consumption-savings problem. Time is discrete, t =

(0, · · · , T ). Each period the agent receives a random labor income which takes two possible

values {yH , yL} with yH > yL. The probability of receiving yH is p each period. The agent
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chooses consumption ct and stores the rest in a risk-free asset with constant total return R.

We denote the agent’s feasible consumption policy by C = (c0, c1, ..., cT ).

At each date t, the agent observes the history of income shocks realized up to and including

this date (but not the future shocks). We denote this history by yt = (y0, y1, ..., yt). All

feasible consumption policies must be adapted to the information structure of the agent, i.e.,

consumption choices are functions of the observed past histories of income shocks. Thus,

making the agent’s information structure explicit, C = (c0(y0), c1(y1), ..., cT (yT )).

The agent has a time-separable constant relative risk aversion utility function with

curvature γ. Let wt denote the agent’s wealth at the beginning of period t, including the

realized income in the current period. The agent solves the dynamic optimization problem:

sup
{C: ct≤wt}

E0

[
T∑
t=0

βt
c1−γ
t

1− γ

]
, (14)

where the agent’s wealth and consumption satisfy the dynamic budget constraint:

wt = (wt−1 − ct−1)R + yt. (15)

We denote the value function of the above problem by Vt(wt):

Vt(wt) = Et

[
T∑
s=t

βs−t
(c?s)

1−γ

1− γ

]
, (16)

where C? is the optimal consumption policy.

We formulate a relaxed problem by allowing the agent to have access to information about

the future realizations of income shocks. The name “information relaxation” reflects the

notion that this formulation relaxes information constraints placed on the agent. Specifically,

consider a complete information relaxation, whereby we allow the agent to condition her

consumption choices on the knowledge of the entire future sequence of income shocks. To

distinguish the feasible policies of the relaxed problem from those of the original problem, we

denote the former by CR = (cR0 (yT ), cR1 (yT ), ..., cRT (yT )).

While providing the agent with such informational advantage compared to that in the
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original problem, we impose a penalty on the objective function, designed to offset the

effect of information relaxation. The penalty is a stochastic process λt, which depends on

the consumption policy and the entire path of income shocks, yT : λt(C
R, yT ). The only

requirement we impose on the penalty process is that if the consumption process is chosen to

depend only on the information available to the agent, the resulting penalty is non-positive

in expectation, i.e.,

E0

[
λt
(
CR, yT

)]
≤ 0. (17)

It is easy to see that the value function of the relaxed problem:

V R0 (w0) = sup
{CR: cRt ≤wRt }

E0

[
T∑
t=0

βt

((
cRt
)1−γ

1− γ
− λt(CR, yT )

)]
, (18)

subject to the dynamic budget constraint:

wRt = (wRt−1 − cRt−1)R + yt, (19)

is at least as high as the value function of the original problem. The reason is that the

consumption policy C?, optimal under the agent’s original problem (14-15), is also a feasible

policy for the relaxed problem (18-19), and the expected penalty under such policy adds a

non-negative term to the agent’s expected utility, according to (17). Thus, we establish that:

V R0 (w0) ≥ V0(w0). (20)

Next, consider a feasible but suboptimal consumption policy Ĉ. Under this suboptimal

policy, the expected utility of the agent is given by:

V̂0(w0) = E0

[
T∑
t=0

βt
(ĉt)

1−γ

1− γ

]
, (21)

which results in a welfare loss of V0 − V̂0. To estimate this welfare loss resulting from a

suboptimal strategy, we use the inequality (20) to conclude that the agent’s welfare loss is

bounded above by the difference between the value function of the relaxed problem (18-19)
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and the expected utility under the suboptimal policy ĉt(y
t):

V0(w0)− V̂0(w0) ≤ V R0 (w0)− V̂0(w0) . (22)

We thus have a framework for computing bounds on welfare loss resulting from sub-optimal

strategies: define a valid penalty process for the relaxed problem, and then compare the

expected utility of the agent under information relaxation with her expected utility under

the suboptimal policy of interest. This approach is especially useful where it is infeasible to

solve for the optimal policies of the original problem.3

While this formulation is rather general, it is only useful as long as the resulting bound is

relatively tight, i.e., as long as the value function of the relaxed problem V R0 is not much

higher than the expected utility of the agent under the optimal consumption policy, V0.

Brown et al. show that it is possible to make the difference V R0 − V0, i.e. the duality gap

arbitrarily small. In particular, they show (using backwards induction) that under an ideal

penalty, V R0 − V0 = 0.

The definition of an ideal penalty by Brown et al. adopted to our example is as follows.

The penalty is defined for each possible sequence of income shocks, and each possible sequence

of consumption choices, without requiring the consumption policy to be non-anticipating.

Specifically, consider an arbitrary path of income shocks yT , and a budget-feasible positive

sequence of consumption choices cT = (c0, c1, · · · , cT ). Note that cT is not a consumption

policy, it denotes a sequence of positive real numbers representing a particular path of

consumption. The corresponding values of agent’s wealth (w0, w1, · · · , wT ) satisfy the dynamic

budget constraint equation (19). To develop intuition of how an ideal penalty may look, we

first consider a somewhat restricted version of information relaxation: suppose that at time t,

the decision maker is able to anticipate perfectly the state next period, and must use the

original information structure starting from the following period, i.e., perfect foresight is

there for a single period only. In this case, the Bellman equation of the relaxed problem at

3For complete information relaxation, the relaxed problem is deterministic and hence easy to solve.
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time t takes the form:

V Rt (wt) = sup
{cRt : cRt ≤wt}

(cRt )1−γ

1− γ
− λ?t (cRt , yt+1) + βVt+1((wt − cRt )R + yt+1). (23)

In the above expression, Vt+1 is the value function of the original problem, which coincides

with the value function of the relaxed problem starting at t+ 1, given our assumption of a

single-period relaxation at time t. There is no expectation operator in the Bellman equation,

because the agent anticipates income at time t+ 1, yt+1, perfectly. λ?t (c
R
t , y

t+1) is the penalty

term, to be determined, which depends on the realization of income next period, and the

current choice of consumption under the single-period perfect foresight, cRt , which is also

allowed to dependent on next-period income. Compare the above expression to the Bellman

equation of the original consumption choice problem:

Vt(wt) = sup
{ct: ct≤wt}

(ct)
1−γ

1− γ
+ βE

[
Vt+1((wt − ct)R + ỹt+1)|yt

]
. (24)

The second term on the right in (24) is the standard expectation of Vt+1 over the possible

values of ỹt+1, taking the realizations of income shocks y0, · · · , yt as given. In order for the

optimal consumption policy of the relaxed problem to be the same as for the original problem,

we set the penalty to equalize expressions in equations (23) and (24):

λ?t (c
R
t , y

t+1) = βVt+1((wt − cRt )R + yt+1)− βE
[
Vt+1((wt − cRt )R + ỹt+1)|yt

]
. (25)

Brown et al. (2010) show, using mathematical induction, that the above expression for the

ideal penalty is valid in general, and not just for single-period information relaxations (for

completeness, we reproduce their proof in the context of our problem in Appendix A.3).

Given the current portfolio value of the relaxed problem, wRt , the general form of the ideal

penalty is

λ?t (C
R, yT ) = βVt+1((wRt − cRt )R + yt+1)− βE

[
Vt+1((wRt − cRt )R + ỹt+1)|yt

]
. (26)

yt+1 in the above expression is not a random variable. It is the value of the income shock at
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time t+ 1 from the particular path of shocks yT for which we are defining the ideal penalty.

In contrast, the labor income shock at time t+ 1, i.e., ỹt+1, is a random variable. The second

term on the right in (26) is a conditional expectation of Vt+1 over the possible values of

ỹt+1, taking the realizations of income shocks y0, · · · , yt as given. Thus, the second term

depends only on
(
cR
)t

and yt, and so the penalty λ?t depends on
(
cR
)t

and yt+1. In particular,

λ?t (C
R, yT ) depends on the contemporaneous consumption choice cRt and the future income

shock yt+1 explicitly, and on the earlier consumption choices
(
cR
)t−1

and income shocks yt

implicitly, through wRt and the dynamic budget constraint. Going forward, we use more

concise notation for the penalty:

λ?t (C
R, yT ) = β

(
Vt+1(wRt+1)− Et

[
Vt+1(wRt+1)

])
. (27)

To visualize how the penalty affects the solution of the relaxed problem, consider the

dependence of the ideal penalty on the contemporaneous consumption choice ct. For this

numerical example, we choose the parameters shown in Table 3. The time-1 penalty λ?1, is

shown in Figure 1. It depends on c1, the income in the following period y2, and current

wealth w1, where w1 captures the dependence of the penalty on prior consumption choices

and income shocks. We plot the penalty for two different levels of current wealth, w1 = 4

and w1 = 5, in Panels A and B of Figure 1, respectively. Each line in these figures shows the

penalty as a function of c1 and the two possible values of y2: the solid line corresponds to

y2 = yH , while the dash-dot line corresponds to y2 = yL.

To see how the penalty discourages the agent from using information about future income,

consider a relaxed problem with the agent observing the time-2 income shock in advance and

using this information in his time-1 consumption decision. Without the penalty, the agent

can take advantage of his knowledge of the future. In particular, if the agent knows that the

time-2 income shock is high, i.e., y2 = yH , it is optimal to choose higher time-1 consumption

than if y2 = yL. Figure 1 shows that the ideal penalty discourages such behavior. If the agent

chooses higher consumption in the y2 = yH state relative to the y2 = yL state, the expected

penalty is positive (shown by the solid line). An ideal penalty has the property that the
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benefit of perfect foresight is exactly offset by the negative effect of the penalty, and the

agent finds it optimal to chose a non-anticipative consumption policy while knowing future

realizations of income shocks. As long as the consumption choice is non-anticipating, i.e., c1

does not depend on y2, the expected value of the penalty is zero (shown by the dash line),

and the welfare of the agent is not impaired by the penalty.

Next we show how the ideal penalty discourages the agent from conditioning the time-0

consumption choice on knowledge of y2 to achieve a smoother consumption path. To see this

compare panels A and B of Figure 1. From these figures we see that for both realizations of y2,

the gradient of the penalty λ?1 is larger in absolute value for w1 = 4 than for w1 = 5. Selecting

higher c0 in the y2 = yH state relative to the y2 = yL state raises the expected penalty term

λ?1, making it positive even if the consumption choice at time 1 is non-anticipative. This

illustrates the inter-temporal connections between various penalty terms and consumption

choices.

An ideal penalty is as difficult to compute as the solution of the original problem. We

therefore define the penalty based on an approximation to the value function:

λt(C
R, yT ) = β

(
V̂t+1(wRt+1)− Et

[
V̂t+1(wRt+1)

])
, (28)

where we define V̂t to be the expected utility resulting from the agent’s consumption policy.

This is a feasible penalty because it satisfies equation (17). However, this penalty choice

results in an upward biased estimate of the actual welfare loss of the agent. We see this from

Panel A of Figure 2. In this figure, the value function of the relaxed problem V R(w) (shown

by the dot-dash line), is greater than the value function V (w) (shown by the dashed line).

This duality gap arises from a sub-optimal choice of penalty; had we used the ideal penalty,

λ?, the two value functions would have coincided and the duality gap would have been zero.

The solid line in this figure is the expected utility of the agent V̂ (w), from adopting the

sub-optimal policy. We estimate it by simulating many paths of shocks and computing the

sample mean of realized utilities from adopting the agent’s policy. The information relaxation

approach provides us with an estimate of the difference V R(w)− V̂ (w); this difference is an

upper bound on the actual welfare loss V (w)− V̂ (w) (see equation (22)).

17



Panel B of Figure 2 shows an estimate of the upper bound on welfare loss of an agent

using sub-optimal policies and compares this with the actual welfare loss. The agent uses a

consumption policy based on the optimal solution of the model with the probability of the

high state equal to p̂ = 0.89, whereas the true probability is p = 0.9. We report welfare loss

of an agent as a fractional certainty equivalent loss, η, defined similar to equation (11):

η(w0) =
w′0 − w0

w′0
, (29)

where w′0 is computed by solving:

V̂0(w′0) = V R0 (w0) . (30)

The numerator of η in equation (29) is therefore the additional amount of time-0 wealth, w′0,

needed by an agent following a sub-optimal policy to obtain the level of expected utility equal

to the value function of the relaxed problem with time-0 wealth equal to w0, keeping all other

state variables the same. The solid line in Figure 2 shows an estimate of the upper bound

on welfare loss of the agent η̄, computed using the information relaxation approach. We

obtain this estimate in three steps: (i) by simulating 500 paths of income shocks, (ii) solving

the relaxed problem (i.e., equations (18) and (19)) along each path thereby obtaining an

estimate of V R0 (w, yT ) along each path, and (iii) taking the sample mean, V R0 (w) over all 500

paths.4 For this simple, partial equilibrium example, since we are able to solve for the actual

welfare loss, we plot it in the same figure (the dot-dash line) alongside the upper-bound in

panel B of Figure 2. We define the actual welfare loss, η?, using the value function V0(w)

instead of V R0 (w), i.e. w′0 in equation (29) is the root of the equation V̂0(w′0) = V0(w0) instead

of equation (30). In this example, the agent’s welfare loss relative to the optimal policy is

less than 0.27% in certainty equivalent terms. Information relaxation bounds the maximum

welfare loss at less than 0.3%.

In order for information relaxation to be useful, it is necessary that the duality gap

4We do not show the 5% and 95% confidence intervals for the estimated upper bound on welfare loss in
this example because this estimate is so precise that the confidence band is not visible separately from the
estimated mean.
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between V R0 (w) and V0(w) be small. Put differently, applying a more sub-optimal penalty

results in a larger duality gap and a less informative upper bound on welfare loss. To see this,

consider a penalty function that is identically zero, for example. In other words, the agent is

not penalized for foresight. Note that a zero penalty is a feasible penalty since it satisfies

equation (17). We see from Panel C of Figure 2 that when we re-estimate the maximum

welfare loss with a zero penalty, the upper bound on welfare loss is quite inflated. With this

sub-optimal penalty choice, information relaxation bounds the maximum welfare loss at less

than 65%, whereas the actual welfare loss is less than 0.27%.

Next, we vary the degree of sub-optimality of policies adopted by the agent and we

estimate the welfare loss for each of these policies. In particular, we compare the welfare loss

to the agent from adopting policies corresponding to p̂ = 0.87, p̂ = 0.88, and p̂ = 0.89 and

report both the upper bound (solid line) and the actual welfare loss (dot-dash line) in panels

A, B, and C, respectively of Figure 3. From these figures we see that the upper bound on

welfare loss declines as the agent’s policy approaches the optimal policy. For example, the

maximum value of the upper bound on welfare loss is less than 2.3% when p̂ = 0.87, while it

is less than 0.3% when p̂ = 0.89.

Comparing across Panels A through C of Figure 3, we see that the duality gap between

V R(w) and V (w) decreases as the agent’s policy approaches the optimal policy. This is

because when the agent adopts a policy that is closer to the optimal policy, the expected

utility V̂ (w) improves and approaches the value function V (w). This, in turn, implies that the

penalty λ approaches the ideal penalty λ?, and therefore, the duality gap decreases. In other

words, the estimated upper bound on welfare loss declines as the agent’s policy approaches

the optimal policy both because of a decline in the actual welfare loss and also because of a

decline in the duality gap.

The general information relaxation approach follows the same logic as the basic example

above, with a multivariate state vector potentially replacing the wealth of the agent as an

argument in the value function, and multiple choice variables potentially replacing the single

choice variable, c. In addition, the general approach allows for partial information relaxations,

where the agent receives some but not complete information about the future. Formally,
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we describe the structure of the agent’s information as a filtration F = {F0,F1, ...FT}, and

the information set of the relaxed problem as a finer filtration G = {G0,G1, ...GT}, where

Ft ⊆ Gt ⊆ FT . Then, we define the relaxed problem under the information structure G, and

we define the penalty process as:

λt = β
(
Et
[
V (xt+1)|Gt

]
− Et

[
V (xt+1)|Ft

])
, (31)

where the two expectation operators above are conditional on the corresponding information

sets, and xt+1 denotes the time-(t+ 1) state vector (to avoid introducing more notation, we

suppress the dependence of the penalty process on the choice variables and the exogenous

shocks).

Before we apply the information relaxation approach to specific models, we note that, in

general, there are two potential sources of numerical error in the solution of an equilibrium

model. First, errors are introduced by approximating a high dimensional state space of a

problem with a lower dimensional proxy. A second source of error arises when a continuous

state space is approximated by a finite number of points on a discrete grid. Our focus in

this paper is on the former, i.e., we provide an approach to obtain an upper bound on errors

introduced by the curse of dimensionality.5

4 Application 1: imperfect insurance with aggregate

uncertainty

We demonstrate the potential of the information relaxation methodology by computing

bounds on the welfare loss of individual agents in the incomplete market model of Krusell

and Smith (1998) (henceforth, KS). This model is a canonical example of a model with an

5Discretization of a continuous state variable introduces a subtlety. Strictly speaking, our method produces
an upper bound only if the dual problem can be solved exactly. Otherwise, the welfare loss resulting from
discretization no longer guarantees that the value function of the discrete approximation of the relaxed problem
is an upward biased estimate of the value function of the original problem. Therefore, the dual problem has
to be solved exactly to obtain a provable upper bound of the welfare loss from adopting heuristic policies.
This can be achieved by providing the agent with perfect foresight and solving the resulting deterministic
problem exactly.
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infinite dimensional state space. We review the model, the equilibrium concept, and their

solution approach briefly. We refer the reader to the original paper for details.

4.1 The model

The KS model is the Aiyagari model (Aiyagari, 1994) with aggregate uncertainty. Time is

discrete, t = (0, 1, · · · ,∞). There is a continuum of agents of unit measure with identical

constant relative risk aversion preferences:

E0

[ ∞∑
t=0

βt
ct

1−γ

1− γ

]
. (32)

There is a single consumption good produced using a Cobb-Douglas production function:

yt = ztk
α
t l

1−α
t , (33)

where the capital share parameter, 0 < α < 1, k and l are capital and labor inputs, respectively,

and z is aggregate productivity. All agents are exposed to the aggregate shock z, which takes

one of two values z = {zh, zl} (with zh > zl) and follows a Markov chain. Each period’s

output is partly used for consumption and partly added to the next-period capital stock,

resulting in the capital accumulation constraint:

kt = (1− δ)kt−1 + yt−1 − ct−1 . (34)

where δ is the capital depreciation rate.

Households collect capital rent and labor income each period. Individual labor income is

exposed to idiosyncratic employment shocks, εt. We assume that each agent supplies l̄ units

of labor if employed (εt = 1), and zero units if unemployed (εt = 0). Employment shocks

are cross-sectionally independent, conditionally on the aggregate productivity shock. Thus,

based on the law of large numbers, the unemployed fraction of the population depends only

on the aggregate state. We denote the equilibrium unemployment rate conditional on zh and

zl by uh and ul, respectively. Then the aggregate labor supply in the two states uh and ul

are given by Lh = (1− uh)l̄ and Ll = (1− ul)l̄, respectively.
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We look for a competitive recursive equilibrium. Let ψt(k, ε) denote the cross-sectional

distribution function at time t, defined over individual capital stock and employment status.

Aggregate output depends on the aggregate capital stock, Kt =
∫
ψ(k, ε)dkdε, and the

aggregate supply of labor. Input prices in competitive equilibrium are determined by their

marginal product, hence the capital rent r and the wage rate w are given by:

r(Kt, Lt, zt) = αzt

(
Kt

Lt

)α−1

, w(Kt, Lt, zt) = (1− α)zt

(
Kt

Lt

)α
. (35)

Individuals optimize their consumption-investment policies under rational expectations

about market prices, i.e., we assume that they correctly forecast the law of motion of the

equilibrium cross-sectional distribution of agents, denoted by:

ψt = H(ψt−1, zt−1) . (36)

Thus, optimal individual policies depend on the cross-sectional distribution of capital.

The value function of the agents satisfies the Bellman equation:

Vt(kt, εt, zt, ψt) = sup
ct≥0,kt+1≥0

[
c1−γ
t

1− γ
+ βEt [Vt+1(kt+1, εt+1, zt+1, ψt+1)]

]
where kt+1 = (1− δ + rt)kt + wtl̄εt − ct,

ψt+1 = H(ψt, zt), (37)

The main difficulty in computing the competitive equilibrium arises because of the dependence

of equilibrium prices on the cross-sectional distribution of agents. Thus, to solve for the

equilibrium, we must determine the law of motion, ψt+1 = H(ψt, zt).

Solution approach. To make the problem tractable, KS use a low-dimensional approxi-

mation to the infinite-dimensional cross-sectional distribution ψt. This approach, introduced

in Krusell and Smith (1998), approximates all relevant information about the cross-sectional

distribution by its first K moments, {m1,m2, · · · ,mK}. This results in a low-dimensional

fixed-point problem. In particular, in their analysis, KS restrict their attention to the cross-

sectional mean m1. For notational simplicity, from now on, we omit the sub-script in m1 and
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denote the distribution’s mean simply by m. To speed up computation further, KS posit an

approximate law of motion for m that is log-linear:

Ĥ : logmt+1 = az + bz logmt , z = {zg, zb} . (38)

In an approximate equilibrium, the equilibrium dynamics of the cross-sectional distribution

of capital in the economy must conform closely to the assumed law of motion, equation (38).

To solve the fixed-point problem, we start with an initial guess for the four constants

{az, bz}. The individual optimization problem, i.e., equation (37), is solved for optimal policies

kt+1(kt, εt, zt,mt). With these policies, we simulate a long time series of the cross-sectional

distribution using a large sample cross-section of agents and compute the time-series of the

cross-sectional mean, m.6 Next, we compute the ordinary least squares regression estimates

of {az, bz} based on equation (38). We re-solve the individual problem, i.e., equation (37),

with these updated estimates of {az, bz}, and the new optimal policies are used to simulate a

new time-series of m. This is used to update {az, bz}, and this process is continued till the

system converges.7 In solving for the approximate equilibrium, we use parts of the code in

Maliar, Maliar, and Valli (2010).

4.2 The relaxed problem

We apply the approach that we described in Section 3 to compute an upper bound on the

welfare loss of individual agents by relaxing the information set of the agents. In particular, we

start with an initial cross-sectional distribution of capital across agents and draw a sequence

of aggregate shocks z0, · · · , zT−1 and a panel of idiosyncratic employment shocks. Given the

aggregate and individual shocks in each period, we use the approximate equilibrium policies

of the agents and compute their choice of capital stock for the following period, which, in

turn, gives us the cross-sectional mean of the distribution of capital stock in the following

6See also, Young (2010), who uses a histogram over the capital grid to obtain the time-series of m, instead
of the simulating the path of m using a cross-section. While this approach speeds up the computation, the
equilibrium is approximate since agents approximate the cross-sectional distribution by its mean.

7We stop when the maximum change in the policy function kt+1 between successive iterations is less than
10−8, and the change in the norm of the vector {az, bz} between successive iterations is less than 10−8.
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period, mt+1. Using equation (35), we compute the prices, i.e., capital returns r and wages

w, corresponding to the realized sequence of aggregate shocks. To minimize the gap between

the value function of the relaxed problem and the value function of the original problem of

the agent, we apply a partial relaxation, revealing only future aggregate shocks but not the

agent’s idiosyncratic employment shocks.

We define the penalty according to equation (31):

λt = β
(
Et
[
V̂t+1(kt+1, ε̃t+1, zt+1,mt+1)|Gt

]
− Et

[
V̂t+1(kt+1, ε̃t+1, z̃t+1,mt+1)|Ft

])
, (39)

where Gt denotes the information set of the agent. In equation (39), Gt contains the following

period’s realization of the aggregate shock zt+1 and the cross-sectional mean of capital mt+1,

but not ε̃t+1. Therefore, we average over possible employed and un-employed future states.

Knowledge of the transition probabilities for z and ε allows us to compute both the terms in

(39) above explicitly as a function of the decision variables of the relaxed problem, (kRt+1, c
R
t ).

Finally, we use the budget constraint to eliminate kRt+1. Along a particular path, the penalty

λt is then a function of consumption cRt only.

4.3 Results

We carry out our baseline analysis using the same parameters as in Krusell and Smith (1998).

The preference parameters are β = 0.99, and γ = 1. On the production side, the parameters

are: the capital share α = 0.36, the depreciation rate δ = 0.025, aggregate productivity

shocks take values zh = 1.01, zl = 0.99, and the corresponding aggregate unemployment rates

are uh = 0.04, ul = 0.10. The transition probability matrix for (z, ε) is in Table 4.

All of our simulation results use a sample cross-section of N = 105 agents. Sample paths

are T = 103 long, and we average over 500 paths to compute unbiased estimates of the value

function of the relaxed problem, V R. In choosing the number of paths, we face a trade-

off—using more paths provides more precise estimates of V R, but increases the computational

time since the relaxed problem is solved path-by-path. We use a simulation-based approach to

estimate the expected utility, V̂ , under the sub-optimal policy of the agent in the approximate

equilibrium. In particular, we simulate 105 future paths of aggregate and idiosyncratic shocks.
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For each path, we compute realized prices r and w, as well as the realized utility. The sample

mean of the realized utilities is our estimate of V̂ .

As in Section 3, we report the welfare loss as a fractional certainty equivalent. The

definition is analogous to equation (11):

η(k0) =
k′0 − k0

k′0
, (40)

where k′0 is the root of the equation V̂0(k′0) = V R0 (k0). The numerator of η is the extra capital

needed by an agent following a sub-optimal policy to obtain the level of expected utility

equal to the value function of the relaxed problem with initial capital k0, keeping all other

state variables the same.

Baseline results

The welfare loss of an agent depends on the current state: the agent’s capital stock, em-

ployment status, and the state of the aggregate economy captured by the realization of the

aggregate shock and the cross-sectional distribution of capital across the agents. In our

baseline results, we report welfare loss for an agent in a typical state of the economy, i.e.,

where the cross-sectional distribution of capital corresponds to the stochastic steady state.

Figure 4 summarizes the results. Panels A and B correspond to the state in which the

agent is unemployed (i.e., ε = 0) and employed (i.e., ε = 1), respectively. The aggregate

shock z is low. We see from both figures that individual welfare losses are small, especially

for high levels of initial capital. For example, an agent who is unemployed (Panel A) and has

capital stock equal to the bottom 5% of the distribution of capital stock, suffers a welfare loss

that is at most 0.13% in fractional certainty equivalent terms. This number drops to 0.04%

for an agent whose capital stock is equal to the distribution’s median. These numbers are

similar for an agent who is currently employed (Panel B). Thus, our results verify that the

approximation of Krusell and Smith based on moment truncation, produces an approximate

equilibrium in which agents come very close to fully optimizing their objectives when the

economy is in a typical initial state.
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Transitional dynamics

Next, we consider how accurately the approximate solutions describe the transitional dynamics

of the economy following an unanticipated aggregate shock. The transitional dynamics of

equilibrium models is often of great interest. Yet the standard solution methods, such as that

of KS, are not intended to approximate equilibrium dynamics accurately when the economy

is away from its steady state. It is therefore unclear a priory how well such approximation

approaches perform under such experiments. This becomes an important issue when drawing

conclusions about transitional dynamics of the economy based on approximate numerical

solutions. The information relaxation approach is useful in this context because it provides a

provable upper bound which quantifies the approximation accuracy of numerical solutions in

such experiments.

We illustrate this approach using two examples in which we compute the transitional

dynamics of the KS economy following two kinds of unanticipated shocks. In our first

experiment, the economy experiences a large transitory shock: a sudden loss of 50% of capital

stock of every agent. Such large shocks are considered in the disaster risk literature (see

e.g., Gourio 2012). The second shock is a regime change: the economy gradually transitions

from its baseline equilibrium to the new stochastic steady state following an unanticipated

permanent increase in the volatility of the aggregate shock z. We consider two values for this

increase: a two-fold and a five-fold increase in volatility.

Figure 5 shows the result for the scenario in which all agents suddenly lost half of their

capital stock. We assume that every agent knows that the economy has experienced the shock

which has depleted the aggregate capital stock of the economy to half its value. In other

words, they observe the mean m decline. Accordingly, they adopt the policy corresponding

to the new value of m, in the period in which the shock is realized. Since all structural

parameters of the economy have stayed unchanged, agents rebuild their capital stock over

the next several periods. Panels A and B correspond to the welfare loss of an agent who

is unemployed and employed, respectively, in the period in which the unanticipated shock

arrives. From these two figures we see that the upper bound to the welfare loss is larger

relative to the baseline scenario. For example, an agent who is unemployed (Panel A) and
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has capital stock equal to the bottom 5% of the distribution, suffers a welfare loss that is at

most 0.30% in fractional certainty equivalent terms. The corresponding value was 0.13% in

the stochastic steady-state. Comparing Panels A and B, we see that the welfare losses are

similar in magnitude. Thus, our information relaxation method establishes that, following

the shock to capital stock, the moment truncation approximation generates relatively low

individual welfare loss.

Next we use the information-relaxation algorithm to quantify how well the Krusell-Smith

algorithm performs following a permanent increase in the volatility of the aggregate shock,

z. We assume that agents re-optimize and immediately switch to new policies following the

regime change. Figure 6 shows the result. Panels A and B correspond to the welfare loss

of an agent following a two-fold and five-fold increase in aggregate volatility, respectively.

In both cases the agent is initially employed and the aggregate state of the economy is low.

Panel A shows that for the two-fold increase in volatility, the upper bound to the welfare loss

is not much larger than the baseline scenario. However, panel B shows that the welfare loss

is potentially larger by an order of magnitude for the five-fold increase in volatility compared

to the welfare loss in the stochastic state. For example, an agent who has capital stock

equal to the bottom 5% of the distribution, suffers a welfare loss that is at most 3.0% in

fractional certainty equivalent terms. The corresponding value was 0.13% in the stochastic

steady-state. Thus, our information relaxation method establishes that the quality of the KS

approximation approach continues to be good following an increase in aggregate volatility,

unless the shock is extremely large.

5 Application 2: heterogeneous firms with aggregate

uncertainty

In this section we apply our method to the general equilibrium model of Khan and Thomas

(2008). This model features a heterogeneous cross-section of firms facing non-convex adjust-

ment costs and exposed to persistent aggregate and firm-specific productivity shocks. We use

information relaxation to estimate the upper bound to the loss in firm value from following
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suboptimal investment policies. We briefly outline the model using the notation of Khan and

Thomas (2008). We refer the reader to the original paper for more details.

5.1 The model

A continuum of firms of unit mass use a decreasing returns to scale technology with production

function:

yt = ztεtk
α
t n

ν
t , (41)

where 0 < α < 1 and α + ν < 1. Productivity has an aggregate component z and a

firm-specific component ε. Both follow a Markov process, where zt ∈ {z1, ..., zNz} and

P (zt+1 = zj|zt = zi) = πij, εt ∈ {ε1, ..., εNε} and P (εt+1 = εj|εt = εi) = πεij.
8 The firm hires

labor nt in period t after observing that period’s productivity. The capital accumulation

constraint is:

γkt+1 = (1− δ)kt + it , (42)

where it is investment, δ is the depreciation rate of capital, and γ is a constant which

captures the growth rate of labor-augmenting technological progress. Firms face non-convex

adjustment cost of capital: there are no adjustment costs if investment is within a small

range it ∈ [akt, bkt], where the parameters a ≤ 0 ≤ b. However, if investment is outside this

range, then the adjustment cost is equal to ξtωt, where ωt is the real wage rate and ξt is a

uniformly distributed random variable ξ ∼ U [0, ξ̄] that is independent across firms and over

time.

8These transition probabilities are computed using the discretization method of Rouwenhorst (1995)
applied to the AR(1) processes: log z′ = ρz log z + η′z and log ε′ = ρε log z + η′ε, where η′z ∼ N(0, σ2

ηz) and
η′ε ∼ N(0, σ2

ηε).
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Each period a firm chooses labor and investment to maximize its net present value:

V 1(εt, kt, ξt; zt, µt) = sup
it∈R, nt≥0

[
(ztεtk

α
t n

ν
t − ωtnt − it − ωtξt I{it /∈ [akt, bkt]}) pt

+ β
Nz∑
i=1

πij

Nε∑
l=1

πεlmV (εm, kt+1; zj, µt+1)

]
µt+1 = H(µt, zt)

V (εt, kt; zt, µt) =

ξ̄∫
0

ξ̄−1 V 1(εt, kt, ξ; zt, µt) d ξ , (43)

where I{} is the indicator function, V 1(εt, kt, ξt; zt, µt) is the present value of a firm with

idiosyncratic productivity εt and realized adjustment cost ξt, V (εt, kt; zt, µt) is the present

value of the firm prior to the realization of the adjustment cost ξt, pt is the price at which

current output is valued, and µ is the cross-sectional distribution over individual firms’ capital

stock and idiosyncratic shocks. The presence of non-convex adjustment costs and persistent

differences in firm-productivity lead to non-linear firm policies. This prevents aggregation of

the cross-section of firms into a representative firm. Equilibrium prices, therefore, depend on

the cross-sectional distribution of capital stock and idiosyncratic shocks µt of all firms in the

economy, in addition to current aggregate productivity zt. Firms optimize under rational

expectations about market prices, i.e., we assume that firms correctly forecast the equilibrium

law of motion of the distribution, µt+1 = H(µt, zt).

The model is closed by assuming that a representative household owns all firms in the

economy. The household maximizes expected lifetime utility over consumption Ct and labor

Lt:

E0

[ ∞∑
t=0

βtU(Ct, Lt)

]
= E0

[ ∞∑
t=0

βt(logCt − ϕLt)
]
. (44)

An exact solution of equilibrium policies is infeasible in this model because of the

dependence of prices on the cross-sectional distribution of capital µ. Khan and Thomas (2008)

adopt the solution approach of Krusell and Smith (1998) and approximate the cross-sectional

distribution by its mean. To solve the model, they make two more approximations. First,
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they assume that the mean m follows a log-linear law of motion:

Ĥ : logmt+1 = az + bz logmt , z = {z1, ..., zNz} . (45)

Second, they assume that the dependence of the price pt on the mean takes the form:

log p̂t = azp + bzp logmt , z = {z1, ..., zNz} . (46)

The solution algorithm iteratively solves for optimal firm policies and the constants {az, bz, azp, bzp}Nz
z=1

such that the decision rules of individual firms are consistent with the aggregate savings and

leisure decisions of the representative household. For exact details see Khan and Thomas

(2008).

5.2 The relaxed problem

To compute the value function V R0 (ε, k; z0, µ0) of the relaxed problem for a particular initial

state of the economy (z0, µ0), we simulate paths of the economy starting from this state. The

relaxed information set contains the realization of all future aggregate productivity shocks;

however, it does not include future realizations of idiosyncratic productivity and adjustment

costs shocks. We define the penalty in the relaxed problem according to equation (31):

λt = β
(
Et
[
V̂t+1(εt+1, kt+1; zt+1, µ̂t+1)|Gt

]
− Et

[
V̂t+1(εt+1, kt+1; z′t, µ̂t+1)|Ft

])
= β

(
Nε∑
m=1

πεlmV̂ (εl, kt+1; zt+1,mt+1)−
Nz∑
j=1

πij

Nε∑
m=1

πεlmV̂ (εl, kt+1; zi,mt+1)

)
. (47)

Along a particular path z0, z1, · · · , zT of the aggregate shock z, the time-t penalty λt is

therefore a function of the control kRt+1. We solve for the optimal control of this relaxed

problem and obtain a single realization of the value function of the relaxed problem. We

repeat this over many simulated paths of aggregate shocks; the sample mean over these paths

is our estimate of V R0 (ε, k; z0, µ0).
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5.3 Results

We carry out our baseline analysis using the same parameters as in Khan and Thomas

(2008) (see Table 5 of this paper). We choose the number of states for the aggregate and

idiosyncratic shocks equal Nz = 11 and Nε = 15, respectively, as in their original paper. All

of our simulation results use a sample cross-section of N = 105 firms. Sample paths are

T = 103 long, and we average over 15000 paths to compute unbiased estimates of the value

function of the relaxed problem, V R(ε, k; z0, ψ0). Similar to our approach for the KS model in

Section 4, we use a simulation-based approach to estimate the expected utility, V̂ (ε, k; z0, ψ0),

under the sub-optimal policy of the firm in the approximate equilibrium. In particular, we

simulate 105 future paths of aggregate and idiosyncratic shocks, and compute the realized

utility along each path. The sample mean of the realized utilities is our estimate of V̂ . Since

there are no optimizations involved, this step is fast.

As in Section 3, we report the welfare loss as a fractional certainty equivalent. The

definition is analogous to equation (29):

η =
k′0 − k0

k′0
, (48)

where k′0 is the root of the equation V̂0(k′0) = V R0 (k0). The numerator of η in equation (48),

is the extra capital needed by a firm following a sub-optimal policy to obtain the level of

expected utility equal to the value function of the relaxed problem with initial capital k0,

keeping all other state variables the same.

Baseline Results

The loss in firm value depends on the aggregate state of the economy, i.e. the realization of

the aggregate shock and the cross-sectional distribution µ, as well as the firm’s current state,

i.e. the capital stock k and the idiosyncratic shock ε. In our baseline results, we report the

loss in firm value in a typical state of the economy, i.e., where the cross-sectional distribution

corresponds to the stochastic steady state. In Figure 7 we present upper bounds on the loss

in firm value in three different idiosyncratic productivity states: the lowest state ε = ε1 in
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Panel A, the middle state ε = ε8 in Panel B, and the highest state ε = ε15 in Panel C, all as

functions of the firm’s capital stock, k.

We see from Figure 7 that information relaxation bounds the welfare losses from following

sub-optimal policies in the near-rational equilibrium to be economically negligible. For

example, comparing across Panels A through C, we see that the upper bound is largest in

Panel A, corresponding to the state ε = ε1. Even in this state, a firm with capital stock

equal to the bottom 5% of the distribution suffers a welfare loss that is at most 0.02% in

fractional certainty equivalent terms. In the same figure we see that a firm with capital stock

equal to the median of the distribution suffers a welfare loss that is less than 0.01%. For

higher firm-specific shocks, the upper bound is even smaller. In Panel C which corresponds

to ε = ε15, for example, the loss is essentially zero. In sum, this shows that firms do not incur

significant loss by following suboptimal policies under circumstances they typically encounter

in the near-rational equilibrium.

Transitional Dynamics

Next, we test the efficiency of the suboptimal policies by considering transitional dynamics

of the economy away from the stochastic steady-state. As in Section 4, we consider two

unanticipated shocks. In our first experiment, the economy experiences a large transitory

shock: a sudden destruction of 50% of capital stock of every firm in the economy. The second

shock is a regime change: the economy gradually transitions from its baseline equilibrium

to the new stochastic steady state following an unanticipated permanent increase in the

volatility of the aggregate shock z. We consider two shock sizes—a two-fold increase and also

an extremely large shock corresponding to a five-fold increase in aggregate volatility.

Figure 8 shows the upper bound on welfare loss for the unanticipated destruction of 50%

of capital stock of firms. We see from these figures that the upper bound is now larger than

in the stochastic steady-state. For example, in Panel A which corresponds to the state ε = ε1,

a firm with capital stock equal to the bottom 5% of the distribution suffers a welfare loss

that is bounded at 1% in fractional certainty equivalent terms. The corresponding value in

the stochastic steady-state was 0.02%. The potential losses to firm value are even larger in
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Panels B and C of Figure 8.

Figure 9 shows the upper bound on welfare loss for the unanticipated increase in the

volatility of aggregate productivity. Panel A corresponds to a doubling of aggregate volatility;

we see that the upper bound is similar to the stochastic steady-state in this case. Panel

B corresponds to a five-fold increase in aggregate volatility. We see from this figures that

the upper bound is much larger than in the stochastic steady-state. For example, a firm

with capital stock equal to the bottom 5% of the distribution suffers a welfare loss which is

bounded from above by our information relaxation approach at 0.5% in fractional certainty

equivalent terms. The corresponding value in the stochastic steady-state is about an order

of magnitude smaller at 0.07%. The results of these two transitional dynamics experiments

therefore indicate potentially large losses in firm value in the Khan and Thomas economy

when the economy experiences very large, unanticipated shocks.

6 Conclusion

Our analysis shows that information relaxation techniques can be effectively used to establish

the accuracy of approximate solutions for equilibria in heterogeneous-agent models. This

methodology is general, easy to implement, and has a wide range of potential applications

beyond the scope of this paper. For instance, information relaxation could be used to evaluate

the accuracy of solutions obtained using perturbation techniques. The latter approach is

widely used for DSGE models (for a recent application, see Mertens and Judd (2012) and

Mertens (2011)) because of its ability to handle models with high-dimensional state vectors,

and is supported by the computational software Dynare. More recently, Boppart, Krusell,

and Mitman (2018) and Auclert, Bardóczy, Rognlie, and Straub (2020) introduce an efficient

method to solve for the approximate equilibrium of a large class of heterogenous agent

models using a first-order perturbation around the stochastic steady-state. They assume

that the equilibrium is well approximated as a linear system in the space of perfect-foresight

shock sequences of finite length. Our method can be used to guarantee the quality of the

linearization assumption when their method is applied to solve for the equilibrium of a
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particular model. Yet another natural application of our approach is to evaluating welfare

loss resulting from heuristic policies motivated by behavioral biases of the agents.

Finally, our objective has been to establish near-rationality of individual policies under

approximate solutions of equilibrium models, as measured by the associated welfare loss. A

small welfare loss implies that individual agents have little to gain by refining their strategies.

However, there is no guarantee that price dynamics in such a near-rational economy is similar

to that in an exact equilibrium of the original model. Small mistakes by individual agents may

potentially lead to large differences in equilibrium outcomes (e.g., Akerlof and Yellen (1985),

Jones and Stock (1987), Naish (1993), Krusell and Smith (1996), Hassan and Mertens (2011)).

An important and challenging task for future research is to develop general quantitative tools

for evaluating the effect of small deviations from individual rationality on equilibrium price

dynamics.
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Appendix

A Proofs related to Section 2

A.1 Optimal policies

The investor’s problem (1) implies the Bellman equation:

V (wt, Xt) = sup
ct>0,φt

log ct + βEtV (wt+1, Xt+1) , (A.1)

where V (wt, Xt) is the investor’s value function, wt is the time-t wealth of the investor, and the
investor’s wealth evolves according to equation (2). The value function satisfies

V (wt, Xt) =
1

1− β
logwt + v(Xt). (A.2)

Equations (A.1) and (A.2), together with the budget constraint (2), imply

V (wt, Xt) = sup
ct>0,φt

log ct + βEt
(

1

1− β
log (wt − ct) + log

(
φtR

S
t+1 + (1− φt)RB

)
+ v(Xt+1)

)
.

(A.3)
The first order conditions for optimal consumption (3) and optimal portfolio choice (4) follow from
(A.3).

A.2 Derivation of expected utility loss equation (13)

The optimal and suboptimal consumption policies in Section 2.1 both have the form

ct = (1− β)wt. (A.4)

That is ct = c?t = (1− β)wt for the optimal policy and ct = ĉt = (1− β)wt for the suboptimal policy.
This implies that the time-t consumption ct is given by

ct = (1− β)w0

t−1∏
s=0

ws+1

ws
. (A.5)

In the setting of Section 2.1, since stock returns are independent and identically distributed, both
the optimal and the suboptimal portfolio are time-invariant. Let us denote the share of the investor’s
wealth in the stock for both the optimal and the suboptimal portfolio choices by φ (i.e., φ = φ? for
the optimal portfolio and φ = φ̂ for the suboptimal portfolio). Combining the budget constraint (2)
with the consumption policy (A.4), the return on wealth under both the optimal and the suboptimal
policies is given by

ws+1

ws
= β

(
φRSs+1 + (1− φ)RB

)
. (A.6)

Combining equations (A.5) and (A.6), taking logs we get

log ct = log(1− β) + logw0 + t log β +
t−1∑
s=0

log
(
φRSs+1 + (1− φ)RB

)
. (A.7)
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Equation (A.7) implies that

∞∑
t=0

βt log ct =
log(1− β)

1− β
+

logw0

1− β
+

β log β

(1− β)2
+

∞∑
t=0

βt
t−1∑
s=0

log
(
φRSs+1 + (1− φ)RB

)
(A.8)

where we used the identities
∑∞

t=0 β
t = 1/(1 − β) and

∑∞
t=0 tβ

t = β/(1 − β)2. Finally, taking
the time-0 expectation of both sides of equation (A.8), and using the definition of the certainty
equivalent of the one-period return on wealth equation (5), we get

E0

[ ∞∑
t=0

βt log ct

]
=

log(1− β)

1− β
+

logw0

1− β
+

β log β

(1− β)2
+
∞∑
t=0

βttB(φ),

=
log(1− β)

1− β
+

logw0

1− β
+

β log β

(1− β)2
+

β

(1− β)2
B(φ), (A.9)

where we used the identity
∑∞

t=0 β
tt = β/(1− β)2 in going from the first to the second equality.

Equation (A.9) implies that the expected utility from adopting the optimal consumption and
portfolio policy is

U (φ?, (c?t )t≥0;w0, X0) =
logw0

1− β
+

log(1− β)

1− β
+

β log β

(1− β)2
+B(φ?)

β

(1− β)2
, (A.10)

where φ? is given by equation (8). Similarly, the expected utility under the suboptimal policy is

U
(
φ̂, (ĉt)t≥0; Ŵ0, X0

)
=

logw0

1− β
+

log(1− β)

1− β
+

β log β

(1− β)2
+B(φ̂)

β

(1− β)2
, (A.11)

where φ̂ is given by equation (12). Note that the true distribution of returns is used in computing
B(φ̂) in equation (A.11). Using the definition of the fractional certainty equivalent welfare loss
equation (11), we get that the fractional certainty equivalent loss from adopting the suboptimal
policy is

η = exp

(
β

1− β

(
B(φ?)−B(φ̂)

))
− 1.
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A.3 Duality gap for the ideal penalty

Proposition 1 (Ideal penalty) Let Vt(wt) and V R0 (wRt ) be the time-t value functions of the
original problem (14) and the relaxed problem (18), respectively. Then,

V0(w0) = V R0 (w0), (A.12)

if the penalty process λt in equation (18) is chosen to be equal to λ?t , where

λ?t (C
R, yT ) = β

(
Vt+1((wRt − cRt )R+ yt+1)− E

[
Vt+1((wRt − cRt )R+ ỹt+1)|yt

])
. (A.13)

Proof. We prove Proposition 1 by adapting the proof in Brown et al. (2010) in the context of
the problem in Section 3. As in that section, we assume complete information relaxation.

The Bellman equation for the original problem is

Vt(wt) = sup
ct: 0<ct≤wt

c1−γ
t

1− γ
+ βE

[
Vt+1(wt+1)|yt

]
, (A.14)

where wt+1 is given by equation (15). The Bellman equation for the relaxed problem is

V Rt (wRt ) = sup
cRt : 0<cRt ≤wRt

(
cRt
)1−γ

1− γ
− λ?t (CR, yT ) + βV Rt+1(wRt+1) (A.15)

where wRt+1 and λ?t (C
R, yT ) are given by equations (19) and (A.13), respectively.

The penalty (A.13) is feasible since it trivially satisfies the condition (17). The proof of equation
(A.12) follows from using mathematical induction. To see this, note that the terminal value functions
of the original and relaxed problems are both identical and equal to zero, that is, VT+1(wT+1) = 0
and V RT+1(wRT+1) = 0. For the inductive step, we show that if the value functions are the same
function of wealth at time t+ 1, that is, if

Vt+1(wt+1) = V Rt+1(wt+1), (A.16)

then the time-t value functions for the original and relaxed problems must also be the same function
of wealth: Vt(wt) = V Rt+1(wt). Indeed, this follows from noting that the right-hand side of equation
(A.15) reduces to the right-hand side of (A.14), after using equation (A.16) and the expression for
the ideal penalty (A.13) in (A.15).
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Table 1: Transition matrix for the portfolio choice problem in Section 2.2.

A. Objective probabilities B. Subjective probabilities
X1 X2 X3

X1 0.495 0.495 0.01
X2 0.495 0.495 0.01
X3 0.45 0.45 0.1

X1 X2 X3

X1 0.495 0.495 0.01
X2 0.495 0.495 0.01
X3 0.495 0.495 0.01

Table 2: Welfare loss and Euler equation errors for the portfolio choice problem
in Section 2.2 for two different lengths of time series T .

A. T = 6000 B. T = 100, 000
X1 X2 X3

Fractional C.E. loss η 4.09 4.09 8.39
Lower 5%, Bond 4.76 5.31 4.59
Upper 5%, Bond 5.14 4.8 6.49
Lower 5%, Stock 4.76 5.31 4.59
Upper 5%, Stock 5.14 4.8 6.49

X1 X2 X3

Fractional C.E. loss η 4.09 4.09 8.39
Lower 5%, Bond 4.12 4.54 1.02
Upper 5%, Bond 5.31 3.71 43.12
Lower 5%, Stock 4.12 4.54 1.02
Upper 5%, Stock 5.31 3.71 43.12

Table 3: Parameter values used in the consumption-saving problem of Section 3.

Parameter Symbol Value
Probability of high state p 0.9
Labor income, high state yH 4
Labor income, low state yL 1
Risk-free interest rate R 1.02
Agent’s time-preference parameter β 0.9
Agent’s risk aversion γ 5
Horizon T 100

Table 4: Transition matrix for the model of Krusell and Smith in Section 4.

z, ε/z′, ε′ (zb, 0) (zb, 1) (zg, 0) (zg, 1)
(zb, 0) 0.525000 0.350000 0.031250 0.093750
(zb, 1) 0.038889 0.836111 0.002083 0.122917
(zg, 0) 0.093750 0.031250 0.291667 0.583333
(zg, 1) 0.009115 0.115885 0.024306 0.850694
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Table 5: Baseline parameters of the Khan and Thomas (2008) model.

γ β δ α ν φ ρz σηz ρε σηε b ξ̄
1.016 0.977 0.069 0.256 0.640 2.400 0.859 0.014 0.859 0.022 0.011 0.0083

1 2 3

-4

-2

0

1

1 2 3

-4

-2

0

1

Figure 1: Ideal penalty. The ideal penalty λ?1 for the consumption-saving problem of Section 3,
plotted as a function of time-1 consumption choice c1. We use the parameters shown in Table 3.
The agent believes the probability of yH is 0.89. Panel A corresponds to the time-1 wealth w1 = 4,
while Panel B corresponds to w1 = 5. The solid line is the penalty function in the state y2 = yH ,
while the dash-dot line is the penalty in the state y2 = yL. The dash line shows the expected value
of the penalty over the two possible realizations of y2. This expectation is identically equal to zero.
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Figure 2: Welfare loss, upper bound. Panel A shows the relative ordering of the upper bound
V R, the agent’s value function under the optimal policy V , and an unbiased estimate of the agent’s
expected utility from adopting sub-optimal policies V̂ . While the true probability p of a high income
shock, yH is 0.9, the sub-optimal policies correspond to the optimal policy for realization of yH that
equals p̂ = 0.89. The solid line in Panel B shows the upper bound of certainty equivalent loss from
adopting the sub-optimal policy, while the dot-dash line shows the actual certainty equivalent loss.
The upper bound is computed using V̂ . Panel C shows the upper bound and the actual certainty
equivalent loss with no penalty for foresight. We use the parameters shown in Table 3.
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Figure 3: Certainty equivalent loss for different sub-optimal policies. Panels A, B, and C
correspond to the certainty equivalent loss from adopting policies with varying degrees of sub-
optimality. While the true probability p of a high income shock, yH is 0.9, the sub-optimal policies
in panels A, B, and C correspond to the optimal policy where the agent’s belief for realization of
yH equals p̂ = 0.87, p̂ = 0.88, and p̂ = 0.89, respectively. We use the parameters shown in Table 3.
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Figure 4: Upper bound on welfare loss: Model of Krusell and Smith, stochastic steady-state.

Panels A and B show the upper bound of an agent’s welfare loss as a function of his capital stock,
k, when he is unemployed and employed, respectively. The welfare loss is measured as a fractional
certainty equivalent loss η, which is defined in equation (40). The aggregate state of the economy
is low. The value function of the relaxed problem is estimated by averaging over 500 paths of
aggregate shocks. The shaded area shows the cross-sectional distribution of capital and corresponds
to the stochastic steady-state distribution. Dashed lines are 95% Monte Carlo confidence bounds.
All parameters values are identical to those in Krusell and Smith (1998).
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Figure 5: Upper bound on welfare loss: Model of Krusell and Smith, transitional dynamics

following 50% destruction of capital stock of all agents. Panels A and B show the upper bound of
an agent’s welfare loss as a function of his capital stock, k, when he is unemployed and employed,
respectively. The welfare loss is measured as a fractional certainty equivalent loss η, which is defined
in equation (40). The aggregate state of the economy is low. The area under the shaded curve shows
the cross-sectional distribution of capital after the permanent shock is realized. The value function
of the relaxed problem is estimated by averaging over 500 paths of aggregate shocks. Dashed lines
are 95% Monte Carlo confidence bounds. All parameters values are identical to those in Krusell and
Smith (1998).
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Figure 6: Upper bound on welfare loss: Model of Krusell and Smith, transitional dynamics

following a permanent increase in aggregate volatility. Panels A and B show the upper bound of
an agent’s welfare loss as a function of his capital stock, k, following a two-fold and five-fold increase
in aggregate volatility, respectively. In both cases the agent is initially employed and the aggregate
state of the economy is low. The welfare loss is measured as a fractional certainty equivalent loss
η, which is defined in equation (40). The area under the shaded curve shows the cross-sectional
distribution of capital in the stochastic steady-state. The value function of the relaxed problem
is estimated by averaging over 500 paths of aggregate shocks. Dashed lines are 95% Monte Carlo
confidence bounds. All parameters values are identical to those in Krusell and Smith (1998).
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Figure 7: Upper bound on welfare loss: Model of Khan and Thomas, stochastic steady-state.

Panels A, B, and C show the upper bound of loss in firm value as a function of the firm’s capital
stock, k, for three different idiosyncratic shocks, ε = 1, ε = 8, and ε = 15, respectively. The loss is
measured as a fractional certainty equivalent loss η, which is defined in equation (48). The aggregate
state of the economy is low. The area under the shaded curve shows the cross-sectional distribution
of capital in the stochastic steady-state, conditional on ε. The value function of the relaxed problem
is estimated by averaging over 15000 paths of aggregate shocks. Dashed lines are 95% Monte Carlo
confidence bounds. All parameters values are identical to those in Khan and Thomas (2008) and
are also reported in Table 5.
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Figure 8: Upper bound on welfare loss: Model of Khan and Thomas, transitional dynamics

following 50% destruction of capital stock of all firms. Panels A, B, and C show the upper bound
of loss in firm value as a function of the firm’s capital stock, k, for three different idiosyncratic
shocks, ε = 1, ε = 8, and ε = 15, respectively. The loss is measured as a fractional certainty
equivalent loss η, which is defined in equation (48). The aggregate state of the economy is low.
The area under the shaded curve shows the cross-sectional distribution of capital immediately after
the economy-wide capital loss is realized. The value function of the relaxed problem is estimated
by averaging over 15000 paths of aggregate shocks. Dashed lines are 95% Monte Carlo confidence
bounds. All parameters values are identical to those in Khan and Thomas (2008) and are also
reported in Table 5.
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Figure 9: Upper bound on welfare loss: Model of Khan and Thomas, transitional dynamics

following a permanent increase in aggregate volatility. Panels A and B show the upper bound of
loss in firm value as a function of the firm’s capital stock, k, for a two-fold and five-fold unanticipated
increase in aggregate volatility, respectively. In both cases, the idiosyncratic shock ε = 8. The
loss is measured as a fractional certainty equivalent loss η, which is defined in equation (48). The
aggregate state of the economy is low. The area under the shaded curve shows the cross-sectional
distribution of capital in the stochastic steady-state, conditional on ε. The value function of the
relaxed problem is estimated by averaging over 15000 paths of aggregate shocks. Dashed lines are
95% Monte Carlo confidence bounds. All parameters values are identical to those in Khan and
Thomas (2008) and are also reported in Table 5.
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