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Abstract

Linear panel models featuring unit and time fixed effects appear in many ar-

eas of empirical economics. An active literature studies the interpretation of

the ordinary least squares estimator of the model, commonly called the two-

way fixed effects (TWFE) estimator, in the presence of unmodeled coefficient

heterogeneity. We illustrate some implications for the case where the research

design takes advantage of variation across units (say, US states) in exposure to

some treatment (say, a policy change). In this case, the TWFE can fail to esti-

mate the average (or even a weighted average) of the units’ coefficients. Under

some conditions, there exists no estimator that is guaranteed to estimate even

a weighted average. Building on the literature, we note that when there is a

unit totally unaffected by treatment, it is possible to estimate an average effect

by replacing the TWFE with an average of difference-in-differences estimators.

Economists often seek to evaluate the effects of a certain event, such as the adop-

tion of a policy or the arrival of an innovation, on some outcome of interest. For
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Spain. Jesse M. Shapiro is George Gund Professor of Economics and Business Administration,
Harvard University, Cambridge, Massachusetts and Research Associate, National Bureau of Eco-
nomic Research, Cambridge, Massachusetts. Their email addresses are lsun20@berkeley.edu and
jesse shapiro@fas.harvard.edu.
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example, how did the enactment of Medicare (government health insurance for all

elderly Americans) affect total expenditures on health care? How did the historical

arrival of the potato affect population growth across the Old World? Simply compar-

ing outcomes before and after the occurrence of the event risks conflating the effect

of the event with the effect of numerous other coincident changes: think of all the

other things that changed around the start of Medicare (1965) or the beginning of

the Columbian exchange (1492). One way to measure the effect of these coincident

changes is by looking at the outcomes of a control group totally unaffected by the

event. But in some cases it is difficult to find such a pure control—Medicare was

a national policy, and the arrival of the potato likely touched every part of the Old

World in some way.

In such settings, it is common to take advantage of variation across geographic or

other units in the extent of their exposure to the event. Even though all US states

were affected by the introduction of Medicare, some were more affected than others,

for example because they had relatively less well insured elderly populations prior

to Medicare. Likewise, some regions of the Old World were relatively better suited

to potato cultivation, making them better able to take advantage of the new crop’s

arrival.

One model of such a situation holds that the outcome is composed of a unit effect,

a time effect, an interaction between a measure of the event and a measure of the

unit’s exposure, and an error term unrelated to the others. We can write a heuristic

model like this:

Outcome = Unit effect + Time effect + Coefficient (Event× Exposure) + Error.

(heuristic model)

In this linear panel model, the unknown unit effect accounts for features of the unit

(e.g., state or region) that are time-invariant, the unknown time effect accounts for

background changes that may coincide with the event, and the unknown error term

accounts for other unsystematic factors that influence different units at different times.

The observed event variable varies over time and captures the event of interest. The

observed exposure variable varies across units and captures units’ different exposure

to the event. The product of these two variables is the term of greatest interest, as it
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captures the fact that different units are affected differently by the event because of

their different exposure to it.

Linear panel models featuring an interaction between an event variable and an

exposure variable, as in the heuristic model, appear in many areas of economics.

For example, Finkelstein’s (2007, equation 1) model of hospital expenses includes

an interaction between time indicators (around the introduction of Medicare) and a

measure of access to private insurance. Nunn and Qian’s (2011, equation 3) model of

Old World population growth includes an interaction between an indicator for periods

following the introduction of the potato and the log of land area in a country that is

suitable for growing potatoes. Dube and Vargas’ (2013, equation 1) model of violence

in Colombia includes an interaction between the world oil price and a measure of a

region’s baseline oil production intensity.1

Under suitable conditions on the error term, the unknown coefficient in the heuris-

tic model can be estimated via ordinary least squares regression of the outcome on

unit indicators, time indicators, and an interaction between the event variable and

the exposure variable. Because the model involves two sets of fixed effects—one for

units and one for time—this ordinary least squares estimator is sometimes called a

two-way fixed effects (TWFE) estimator.

In this paper we consider the possibility that, in addition to the exposure variable,

the effect of the policy or event itself—the coefficient in the heuristic model—differs

by unit. Heterogeneous effects of this kind can arise for many reasons. For example, a

given change in the fraction of elderly insured might affect expenditures more in states

with a less healthy uninsured population. A given level of potato cultivation might

affect population growth more in regions with better access to trade. Economists have

been interested in heterogeneous effects of this kind for a long time (see, for example,

surveys in Heckman and Vytlacil 2007; Imbens and Wooldridge 2009). Recently, an

especially active literature has studied the effects of this form of coefficient hetero-

geneity on the performance and interpretation of the two-way fixed effects estimator.

We draw heavily on this literature, and especially on work by de Chaisemartin and

1Other examples include Zhang and Zhu’s (2011, equations 2 and 3) model of social influences on
contributions to Chinese Wikipedia, Dafny et al.’s (2012, equation 5) model of the effect of a merger
on health insurance premiums, and Pierce and Schott’s (2016, equation 2) model of the effect of
trade with China on US manufacturing employment.
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D’Haultfœuille (2018), who consider a setting similar to the one we consider here.

We will see that in general the two-way fixed effects estimator can perform very

poorly when effects are heterogeneous, in the sense that it can fail to estimate the

average (or even a weighted average) of the units’ coefficients. This problem can

be so severe that it affects any estimator, not just the TWFE estimator. And we

will look at one situation—a setting with an unaffected unit—in which it is possible

to estimate an average effect by replacing the TWFE with an average of exposure-

adjusted difference-in-differences estimators.

A Motivating Example

To study the issues in more detail we now introduce a concrete example. We base the

example loosely on Finkelstein’s (2007) study of the effect of Medicare, setting aside

much of the richness of Finkelstein’s (2007) original analysis.

We are interested in learning the effect of Medicare on health care expenditures.

Medicare is a US government program introduced in 1965 to provide health insurance

to the elderly. We observe per capita health care expenditures yst on the elderly for

each US state s in each of two time periods t, where we can let t = 0 denote the

period before the introduction of Medicare and t = 1 denote the period after.

Because many things change over time, simply comparing expenditures at time

t = 1 to those at time t = 0 may not give a reliable estimate of the effect of Medicare.

It would be helpful to have a control state that did not adopt Medicare, but since

Medicare was a national policy, such a state does not exist.

Instead, we can take advantage of the fact that states differ in the fraction of the

elderly that were insured prior to Medicare’s introduction. In a New England state,

where the penetration of private insurance among the elderly was relatively high prior

to the introduction of Medicare (Finkelstein 2007, Table 1), Medicare had a relatively

small effect on rates of insurance coverage. In a Pacific state, where the penetration of

private insurance among the elderly was relatively low prior to Medicare (Finkelstein

2007, Table 1), Medicare had a relatively large effect on rates of insurance coverage.

Let xst be the fraction of elderly with health insurance in a given state s at time

t. At time t = 0, before Medicare, we can think of xs0 as measuring the fraction
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of elderly with private or other (non-Medicare) government insurance in state s. At

time t = 1, after Medicare, we can think of xs1 as being equal to 1 for all states s due

to the universal coverage afforded by Medicare.

A linear panel data model of health care expenditures – what we will refer to as

the linear model – might then take the form

yst = αs + δt + βxst + εst. (linear model)

Here αs is a state fixed effect that captures time-invariant state characteristics that

may affect health care expenditures, δt is a time fixed effect that captures state-

invariant time-dependent factors that may affect health care expenditures, and εst

is an error term unrelated to xst.
2 The parameter β measures the causal effect of

insurance coverage on health care expenditure. Specifically, it measures the effect on

per capita health expenditures of going from no coverage (xst = 0) to full coverage

(xst = 1).3

We can rewrite the linear model in a form that resembles the heuristic model.

In particular, because xs1 = 1 for all states s, it is straightforward to show that the

linear model implies that

yst = α̃s + δt + β (1− xs0) t+ εst. (exposure model)

In the exposure model, the term α̃s plays the role of the unknown unit effect from the

heuristic model.4 The term δt plays the role of the unknown time effect. The term εst

plays the role of the unknown error term. The term (1− xs0) is the observed exposure

variable and the term t, which is just an indicator for whether the observation is from

the post-Medicare period, is the observed event variable.

Intuitively, under the exposure model, we can learn about the coefficient β by

looking at whether, following the introduction of Medicare, health care expenditures

2Specifically we assume that each of εs0 and εs1 has mean zero conditional on xs0 and xs1.
3The effect of Medicare on expenditures in state s is given by β (1− xs0), that is, the effect of

insurance coverage on expenditures, β, multiplied by the effect of Medicare on insurance coverage,
(1− xs0).

4To go from the linear model to the exposure model, we have redefined the state fixed effect as
α̃s = αs + βxs0.
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diverge between states with different levels of private insurance before Medicare (dif-

ferent values of xs0). If so, then because different states are affected equally by the

time effect represented by δt, it must be that Medicare is exerting a causal effect on

expenditures.

More practically, we can estimate the unknown coefficient β by regressing health

expenditures on state indicators, a time indicator, and an interaction between the

fraction previously uninsured (1− xs0) and the post-Medicare indicator t. This is a

two-way fixed effects (TWFE) estimator. Call it β̂. The TWFE estimator β̂ has some

appealing properties. For example, if the exposure model holds, and εst is unrelated

to xst, then β̂ is centered around β, in the sense that even though in any given sample

β̂ may be higher or lower than β, across samples β̂ will tend to be equal to β on

average.

The Possibility of Heterogeneous Coefficients

According to the linear model, a given change in the fraction insured has the same

effect on per capita health expenditures in every state s. But it seems plausible that

health expenditures will respond differently to changes in insurance in different states.

For example, a state with a less healthy uninsured population may see expenditures

rise more in response to a given expansion in insurance, compared to a state with a

more healthy uninsured population, because relatively less healthy insurees require

more expensive care.

We can formalize this possibility by imagining that each state s has its own coef-

ficient βs describing the effect of insurance on expenditures in the state, much as it

has its own fixed effect αs describing its baseline level of expenditures. Keeping all

other elements of the linear model yields the following heterogeneous panel model:

yst = αs + δt + βsxst + εst. (heterogeneous model)

Even though we are allowing heterogeneity in the effect of treatment, we are still

maintaining that the error term εst is unrelated to the fraction of elderly with health

insurance xst as before, so absent changes in the insurance levels xst, all states would
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follow identical average trends over time.

Consider a researcher who believes that the effect of insurance may differ across

states as in the heterogeneous model. How reasonable would it be for the researcher to

estimate the effect of added health insurance using the convenient TWFE estimator

that is based on the exposure model, which assumes that all states have the same

coefficient β?

A single estimator β̂, by construction, cannot be centered around each of the

50 different true coefficients for each state βs. But maybe the single estimator β̂ is

centered around a good summary of the true coefficients, such as an average. If so,

β̂ might still be a convenient way to estimate the effect of insurance on expenditures

in a “typical” state.

In certain situations, the estimator β̂ will indeed be centered on an average of the

true state-level coefficients βs. One such situation is where βs is unrelated to (i.e.,

statistically independent of) all the other terms in the heterogeneous model. In this

case, results in the online appendix imply that β̂ is centered around an average of the

coefficients βs, and therefore might still be considered an appealing estimator.

However, the situation where the coefficient βs is unrelated to the other terms in

the model is somewhat special. Suppose, for example, that βs is greater in states with

a less healthy uninsured population. Suppose, further, that the uninsured population

is less healthy in states with greater insurance penetration prior to Medicare, say

because in such states only the least healthy elderly remain uninsured. In this case,

βs will tend to be positively related to xs0. Such a relationship between βs and xs0

can cause the two-way fixed effects estimator β̂ to behave rather badly.

To illustrate, consider a hypothetical numerical example of the heterogeneous

model. In this example, we let the index s of the states run from 1 to 50. We let the

fraction of elderly with insurance before Medicare be given by xs0 = 0.245 + s/100,

so that the fraction runs from 0.255 (s = 1) through 0.745 (s = 50) in increments of

0.01, with an average value of 0.5.

In this numerical example, we also let the coefficient βs vary across states according

to the equation

βs = 1 + 0.5λ− λxs0. (numerical example)

Here, λ is a parameter that governs how much the coefficient βs varies across states,
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and how the state-level coefficient βs is related to the fraction of elderly with insurance

before Medicare. When λ is 0, the coefficient βs is equal to 1 in all states regardless

of prior insurance penetration. When λ is less than 0, states with greater insurance

penetration prior to Medicare have a larger coefficient βs. When λ is greater than 0,

states with greater insurance penetration prior to Medicare have a smaller coefficient

βs.

We have constructed the numerical example so that, no matter the value of λ, the

average value of βs across all states is always 1. By varying λ, we can therefore vary

the relationship between βs and xs0 while holding constant the average value of βs.

Figure 1 illustrates the behavior of the two-way fixed effects estimator β̂ in this

numerical example. The horizontal axis shows the parameter λ, which controls the

strength of the relationship between βs and xs0, and hence the degree of heterogeneity

in the coefficient βs. We consider values of λ ranging from −1 to +1. The shaded

region shows the range of coefficients across the states s for each given value of λ. As

λ departs from zero, this range widens, but remains centered around the average value

of 1, which is illustrated with a dotted line. The solid line shows the value around

which the TWFE estimator β̂ is centered. Specifically, the line shows the average or

expected value of β̂ across repeated samples of the data. Except when λ = 0, this

value, which is derived in the online appendix, does not coincide with the average

value of βs.

Perhaps more surprising, and more concerning, is that, when λ is not equal to zero,

β̂ is centered outside the shaded region that depicts the range of true coefficients βs.

When λ is less than zero, β̂ is centered on a value smaller than any of the true

coefficients βs. When λ is greater than zero, β̂ is centered on a value larger than any

of the true coefficients βs. A researcher using β̂ to estimate an average or typical

effect of insurance on health expenditure would, in these situations, end up with a

very misleading estimate, one that is centered on a value outside the range of the true

coefficients βs.

To understand why the two-way fixed effects estimator behaves this way, consider

the case of λ > 0 and recall that β̂ is the ordinary least squares estimate of the coeffi-

cient β on the interaction term (1− xs0) t in the exposure model. This estimate will

tend to be larger when, following Medicare’s introduction, expenditure grows more
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Figure 1: Expected Value of the Two-way Fixed Effects Estimator Under Coefficient
Heterogeneity
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Source: Illustrative calculations by the authors.
Notes : This figure illustrates the behavior of the two-way fixed effects (TWFE) es-
timator β̂ of the parameter β in the exposure model for a hypothetical numerical
example described in Section “The Possibility of Heterogeneous Coefficients.” The
horizontal axis corresponds to the parameter λ which governs how much and in what
way the coefficient βs in the heterogeneous model varies across states. For each given
value of λ, the shaded region shows the range of coefficients (β1, . . . , β50) across the 50
states, the dotted line shows the average value of βs, and the solid line shows expected
value of the two-way fixed effects estimator, β̂.
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in states that experience a larger increase in insurance coverage, (1− xs0). When

λ > 0, states with a larger increase in insurance coverage, (1− xs0), also have larger

coefficients βs. Following Medicare’s introduction, expenditure therefore grows more

in states with larger (1− xs0) both because these states experience a larger increase

in insurance coverage and because these states experience a larger change in expendi-

ture for a given change in insurance coverage. The exposure model accounts for only

the first of these effects, so the corresponding ordinary least squares estimator β̂ con-

flates them, thus overstating the effect of insurance on expenditure. In the numerical

example, this conflation is so severe that the expected value of the TWFE estimator

falls outside the range of the true coefficients βs.

The numerical example proves that the two-way fixed effects estimator cannot,

in general, be guaranteed to be centered around a value inside the range of the true

coefficients βs in the heterogeneous model. In fact, we prove in the online appendix

that there is no estimator that can be guaranteed, regardless of the coefficients βs

and the pre-Medicare insurance levels xs0, to be centered around a value inside the

range of the true coefficients βs in the heterogeneous model. It follows that there is

no estimator guaranteed to be centered around the average βs across the states. The

proof focuses on the case where xs0 < 1 for all s and so, as in the case of Medicare,

there is no totally unaffected state.

A Difference-in-Differences Perspective

Another way to build intuition about the impact of coefficient heterogeneity is to

consider the behavior of some difference-in-differences type estimators. To relate

to the classical difference-in-differences estimator, imagine that Medicare had been

adopted in one treatment state, say state s, and not adopted in another control state,

say state s′. Imagine further that no one had health insurance to begin with in either

state, so that Medicare increased the fraction of the elderly with health insurance

from 0 to 1 in the treatment state s, and left the fraction at 0 in the control state s′.

In this case, by computing the difference in the change in the outcome y between the

treatment and control states, (ys1 − ys0)− (ys′1 − ys′0), we would, on average, isolate

the effect of Medicare, and arrive at a difference-in-differences estimator centered

10



around the true effect β, much as in Card and Krueger’s (1994) classic study of the

effect of the minimum wage.

In this hypothetical situation, we have one treatment state that is strongly affected

by the introduction of Medicare, and another control state that is totally unaffected.

In the more realistic situation where all states were affected by the introduction of

Medicare, simply comparing the change in the outcome y between a more affected

state s and a less affected state s′ seems incomplete, because such a comparison does

not account for the different changes in insurance rates x induced by Medicare in

the two states. The following exposure-adjusted difference-in-differences estimator

provides one possible way to account for changes in insurance rates:

β̂DID
s,s′ =

(ys1 − ys0)− (ys′1 − ys′0)

(1− xs0)− (1− xs′0)
.

de Chaisemartin and D’Haultfœuille (2018) call β̂DID
s,s′ a Wald-difference-in-differences

estimator because it consists of the ratio of the difference-in-differences estimator for

the outcome (in our case, expenditures) to the one for exposure (insurance).

The estimator β̂DID
s,s′ is intuitive, but suffers from limitations similar to those of the

TWFE estimator. In particular, β̂DID
s,s′ can be centered around a value that is larger

or smaller than both βs, the true coefficient for state s, and βs′ , the true coefficient

for state s′. For a concrete example, if we take s = 1 and s′ = 50 from the earlier

numerical example, and say that λ = 1, then based on the formula we derived, the

estimator β̂DID
s,s′ is centered around the value 1.5, which is greater than both β1 = 1.245

and β50 = 0.755. One way to build an intuition for this behavior is to note that β̂DID
s,s′

is equivalent to the TWFE estimator β̂ in the case where we have only two states in

the sample, s and s′. Just like the TWFE estimator, β̂DID
s,s′ cannot be guaranteed to

be centered around a value inside the range of βs and βs′ .
5

Suppose, though, that in state s′ Medicare had no effect on insurance rates, for

example because all elderly in the state were insured prior to Medicare, xs′0 = 1.

That would take us closer to the classical difference-in-differences setting of Card and

Krueger (1994) and others, and in that case, β̂DID
s,s′ is centered around βs, the true

5In the online appendix, we establish the equivalence of β̂DID
s,s′ and β̂ in the case of two states,

and derive the expected value of β̂DID
s,s′ .
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coefficient for the affected state s. In fact, by taking an average of β̂DID
s,s′ across all

of the affected states s, always treating state s′ as the comparison, we arrive at an

estimator that is centered around the average value of βs across all affected states s.6

The presence of a totally unaffected state therefore makes it possible to construct

an estimator centered around the true coefficient for any affected state, such as β̂DID
s,s′ ,

and one centered around the average of true coefficients for all affected states, such as

the average of β̂DID
s,s′ . It is important to note, however, that the presence of a totally

unaffected state does not repair the problems we highlighted earlier with the TWFE

estimator β̂. Calculations in the online appendix show that even if we add a totally

unaffected state to the sample, the TWFE estimator remains centered outside of the

range of treatment effects βs in the numerical example. Thus, while the presence of a

totally unaffected state means that it is possible to find estimators that are centered

around the average coefficient, it does not guarantee that all estimators are centered

around an average coefficient.

Some economic situations do not feature a totally unaffected unit that can serve

as a comparison for affected units. In such situations, researchers may still be able

to make progress by using economic assumptions to impose further structure on the

coefficients βs. For example, suppose that a researcher is willing to posit a linear

relationship between βs and xs0 of the form in the numerical example, but does not

know the value of the parameter λ that governs this relationship. In this case, it is

possible to substitute the expression for βs into the heterogeneous model to arrive at a

linear panel model whose unknown parameter, λ, can be estimated by a two-way fixed

effects estimator, thus allowing the researcher to estimate averages of the coefficients

βs.

6Because the effect of insurance βs does not vary with time, the heterogeneous model satisfies
the stable treatment effect assumption of de Chaisemartin and D’Haultfœuille (2018). Because the
state s′ is unaffected by Medicare, state s′ satisfies the stable group assumption of de Chaisemartin
and D’Haultfœuille (2018). Theorem 1 of de Chaisemartin and D’Haultfœuille (2018) implies that,

under other standard conditions, the average of β̂DID
s,s′ is centered on the average coefficient among

states affected by the policy change.
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Suggestions for Further Reading

Recently there has been a surge in interest in the role of treatment effect heterogeneity

in the sorts of settings we discuss here, where policies are introduced with different

intensities, or at different times, to different units. This is a very active area and it

is not our intention to survey it fully. However, we can point to some published or

forthcoming articles that readers may find helpful.

de Chaisemartin and D’Haultfœuille (2018) consider a setting closely related to the

one we discuss here. They consider the possibility that treatment effects vary by unit

and over time, and formalize issues that can arise with exposure-adjusted difference-in-

differences estimators. They propose two alternative estimators, one of which corrects

the exposure-adjusted difference-in-differences estimator directly for diverging trends

due to differential exposure. de Chaisemartin and D’Haultfœuille (2020) extend the

analysis to a more general setting with multiple time periods, and again propose a

time-corrected difference-in-differences estimator that can help avoid issues of the sort

we illustrate above.7 The Stata packages fuzzydid and did_multipledgt implement

both alternative estimators. Related to de Chaisemartin and D’Haultfœuille (2020),

Imai and Kim (2020) characterize the relationship between a two-way fixed effects

estimator and the difference-in-differences estimator, and use this to illustrate some

pitfalls of the two-way fixed effects estimator.

A related but distinct setting is one of staggered adoption, where different units

(e.g., US states) adopt a policy (e.g., unilateral divorce) at different times. In this

setting, when policy effects may differ over time or across units based on when they

adopt the policy, the two-way fixed effects estimator experiences issues similar to

those we illustrate above. Goodman-Bacon (2021) proposes diagnostics for the per-

formance of a two-way fixed effects estimator in such situations. The Stata package

bacondecomp implements these diagnostics. Sun and Abraham (2021) propose an

estimator that avoids some of the drawbacks of the two-way fixed effects estimator

by taking advantage of the presence of never-treated units in the sample. The Stata

package eventstudyinteract implements this estimator. Callaway and Sant’Anna

7Both articles by de Chaisemartin and D’Haultfœuille (2018, 2020) include applications to an
earlier paper of Shapiro’s (Gentzkow et al. 2011). So, Shapiro is here to take advice as well as give
it.
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(2021) propose a similar estimator that uses not-yet-treated units as control, and

can efficiently adjust for covariates using approaches developed in Sant’Anna and

Zhao (2020). The Stata package csdid implements this estimator. Athey and Im-

bens (2022) consider the interpretation and variability of the difference-in-differences

estimator in situations in which a unit’s date of adoption is randomly assigned.
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Online Appendix for

A Linear Panel Model with
Heterogeneous Coefficients
and Variation in Exposure

Liyang Sun, UC Berkeley and CEMFI
Jesse M. Shapiro, Harvard University and NBER8

April 2022

This appendix formalizes claims made in the paper.

Claim 1. In the setting of Section “The Possibility of Heterogeneous Coefficients,” the

expected value of the two-way fixed effects (TWFE) estimator of the exposure model,

given the data x = {x10, ..., xS0} for states s ∈ {1, ..., S}, is given by

E
(
β̂|x
)
=

Cov (βs (1− xs0) , (1− xs0))

Var (1− xs0)

where Cov (·, ·) and Var (·) denote the sample covariance and variance, respectively,

and the expectation E
(
β̂|x
)
is taken with respect to the distribution of the errors εst

conditional on the data x = {x10, ..., xS0}.

Proof. With only two time periods the TWFE estimator of the exposure model is

equivalent to an OLS estimator of the first-differenced model

ys1 − ys0 = δ1 − δ0 + β (1− xs0) + εs1 − εs0.

Therefore the TWFE estimator based on the given sample is

β̂ =
Cov (ys1 − ys0, 1− xs0)

Var (1− xs0)
.

8E-mail: lsun20@berkeley.edu, jesse shapiro@fas.harvard.edu.
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From the heterogeneous model we have that

ys1 − ys0 = δ1 − δ0 + βs (1− xs0) + εs1 − εs0

and therefore

β̂ =
Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
+

Cov (εs1 − εs0, 1− xs0)

Var (1− xs0)
.

If (εs1 − εs0) is mean zero conditional on (1− xs0) then the expected value of β̂

conditional on the data x = {x10, ..., xS0} is

E
(
β̂|x
)
=

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
.

Corollary 1. In the setting of Section “The Possibility of Heterogeneous Coefficients,”

if βs is independent of xs0 across states s, then the expected value of the two-way fixed

effects (TWFE) estimator of the exposure model, given the data x = {x10, ..., xS0} for

states s ∈ {1, ..., S}, is given by

E
(
β̂|x
)
= E (βs)

for E (βs) the expected value of βs. Here the expectation E
(
β̂|x
)
is taken with respect

to the distribution of the errors εst and coefficients βs conditional on the data x.

Proof. Based on a similar proof for Claim 1, we have that

E
(
β̂|x
)
=

E (Cov (βs (1− xs0) , 1− xs0))

Var (1− xs0)

where the expectation is now taken with respect to the distribution of the errors εst

as well as βs conditional on the data x = {x10, ..., xS0}. By the independence of βs

and xs0, we have that

E (Cov (βs (1− xs0) , 1− xs0)) = Cov (E (βs) (1− xs0) , 1− xs0) = E (βs)Var (1− xs0) ,
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and therefore that

E
(
β̂|x
)
= E (βs) .

Corollary 2. In the numerical example of Section “The Possibility of Heterogeneous

Coefficients,” the expected value of the two-way fixed effects (TWFE) estimator of the

exposure model, given the data x = {x10, ..., xS0} for states s ∈ {1, ..., S}, lies outside
the range of coefficients [mins βs,maxs βs] if and only if λ ̸= 0. The same continues

to hold when the sample is extended to include a totally unaffected state.

Proof. From Claim 1 we have that

E
(
β̂|x
)
=

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
.

Because in the numerical example βs = 1 + 0.5λ− λxs0, we have that

E
(
β̂|x
)
= 1 + 0.5λ− λC

for

C =
Cov (xs0 (1− xs0) , (1− xs0))

Var (1− xs0)
.

In the setting of Section“The Possibility of Heterogeneous Coefficients,”given the data

x = {x10, ..., xS0} where xs0 = 0.245 + s/100 for s = 1, . . . , 50, by direct calculation

we have that C = 0, which means that

E
(
β̂|x
)
= 1 + 0.5λ.

If we add to the sample a totally unaffected state s = 0 with x00 = 1, and the

remaining states s = 1, . . . , 50 continue to follow xs0 = 0.245 + s/100, by direct

calculation we have that C ≈ 0.087, which means that

E
(
β̂|x
)
≈ 1 + 0.413λ.

Therefore, with or without a totally unaffected state, when λ > 0 we have

E
(
β̂|x
)

> βs for all s because maxs βs = 1 + 0.245λ. Similarly, with or without

a totally unaffected state, when λ < 0 we have E
(
β̂|x
)

< βs for all s because
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mins βs = 1+0.245λ. Finally, with or without a totally unaffected state, when λ = 0

we have E
(
β̂|x
)
= 1 = E (βs) = maxs βs = mins βs.

Claim 2. In the setting of Section “The Possibility of Heterogeneous Coefficients,”

there exists no estimator β̂′ that can be expressed as a function of the data {(xs0, ys0, ys1)}Ss=1

and whose expected value is guaranteed to be contained in [mins βs,maxs βs] for any

heterogeneous model and any {xs0}Ss=1.

Proof. It is sufficient to establish this claim for a special case with S = 2, some xs0’s

with 0 < x20 ≤ x10 < 1, β1 < β2, and δ0 known to be zero. The model for the data is

then

ys0 = αs + βs · xs0 + εs0

ys1 = αs + δ1 + βs + εs1

with parameters θ =
(
{(αs, βs)}2s=1, δ1, Fε|X

)
, for Fε|X the distribution of (εs0, εs1)

conditional on xs0. Pick some estimator β̂′. Given any parameter θ, define the

distinct parameter θ′ =
({(

α
′
s, β

′
s

)}2
s=1

, δ
′
1, Fε|X

)
given by

θ′ =

({(
αs +

∆ · xs0

1− xs0

, βs −
∆

1− xs0

)}2

s=1

, δ1 +∆, Fε|X

)

for some ∆ > (β2 − β1) · (1− x20) > 0.

We show that the two parameter values θ and θ′ are observationally equivalent,

which means the expected value of β̂′ must be the same under θ and θ′. To see this,

note that the distribution of (ys0, ys1) conditional on xs0 is the same under θ and θ′:
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FY0,Y1|X (y0, y1 | xs0 = x; θ)

=Pr {εs0 ≤ y0 − αs − βs · x, εs1 ≤ y1 − αs − δ1 − βs | xs0 = x; θ}

=Pr {εs0 ≤ y0 − αs − βs · x, εs1 − εs0 ≤ y1 − y0 − δ1 − βs (1− x) |xs0 = x; θ}

=Pr

{
εs0 ≤ y0 −

(
αs +

∆·x
1−x

)
−
(
βs − ∆

1−x

)
· x,

εs1 − εs0 ≤ y1 − y0 − (δ1 +∆)−
(
βs − ∆

1−x

)
(1− x)

∣∣∣∣xs0 = x; θ

}

=Pr

{
εs0 ≤ y0 − α′

s − β′
s · x,

εs1 − εs0 ≤ y1 − y0 − δ′1 − β′
s (1− x)

∣∣∣∣xs0 = x; θ′

}
=FY0,Y1|X (y0, y1 | xs0 = x; θ′) .

However, the ∆ is chosen such that β
′
1 = β1 − ∆

1−x10
< β2 − ∆

1−x20
= β

′
2 < β1 < β2.

Therefore the expected value of β̂′ cannot be contained in both [β1, β2] and [β′
1, β

′
2],

because these intervals do not intersect.

Claim 3. In the setting of Section“A Difference-in-Differences Perspective,”the exposure-

adjusted difference-in-differences estimator β̂DID
s,s′ is equivalent to the TWFE estimator

β̂ based on the two states s and s′. Moreover, the expected value of β̂DID
s,s′ , given the

data x = {xs0, xs′0} for states s and s′, is given by

E
(
β̂DID
s,s′ |x

)
=

(1− xs0) βs − (1− xs′0) βs′

xs′0 − xs0

where the expectation E
(
β̂DID
s,s′ |x

)
is taken with respect to the distribution of the

errors εst conditional on the data x = {xs0, xs′0}.

Proof. For the first part of the claim, note that from the proof of Claim 1 we have

β̂ =
Cov (ys1 − ys0, 1− xs0)

Var (1− xs0)

where Cov (·, ·) and Var (·) denote the sample covariance and variance, respectively.
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Since the sample includes only two states s and s′, for the numerator we have

Cov (ys1 − ys0, 1− xs0)

=
1

4
((ys1 − ys0)− (ys′1 − ys′0)) (1− xs0) +

1

4
((ys′1 − ys′0)− (ys1 − ys0)) (1− xs′0)

=
1

4
((1− xs0)− (1− xs′0)) ((ys1 − ys0)− (ys′1 − ys′0))

where the first equality applies the definition of sample covariance and a− a+b
2

= a−b
2
.

Similarly, for the denominator we have

Var (1− xs0) =
1

4
((1− xs0)− (1− xs′0))

2 .

Plugging the above expressions into β̂ gives the equivalence to β̂DID
s,s′ .

Given the equivalence between β̂ and β̂DID
s,s′ when the sample includes only two

states s and s′, we apply Claim 1 to derive the expected value of β̂DID
s,s′ . Specifically,

Claim 1 implies that given the data x = {xs0, xs′0} for states s and s′, we have

E
(
β̂DID
s,s′ |x

)
=

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
.

Based on a similar simplification to the expression of β̂DID
s,s′ , we have

Cov (βs (1− xs0) , 1− xs0) =
1

4
((1− xs0)− (1− xs′0)) ((1− xs0) βs − (1− xs′0) βs′)

and therefore

Cov (βs (1− xs0) , 1− xs0)

Var (1− xs0)
=

(1− xs0) βs − (1− xs′0) βs′

xs′0 − xs0

.
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