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Researchers in finance and macroeconomics are often interested in general equilibrium spillover

effects: how shocks to some firms and households affect other parts of the economy. By quantify-

ing spillovers, researchers can evaluate which general equilibrium channels need to be included in

economic models and to what extent empirical estimates based on microdata are informative about

other levels of aggregation.1 Spillovers are particularly important when researchers study large-

scale financial and macroeconomic shocks because many firms and households are simultaneously

affected and spillovers are often large.

To understand why spillover analysis is helpful, consider two concrete examples at the regional

level. An empirical literature estimates how regional house price shocks affect regional employ-

ment (Mian and Sufi 2014; Giroud and Mueller 2017). But a parameter required to calibrate macro-

finance models is the direct effect of a house price change on an individual household (Guren et al.

2020). To convert regional estimates into the direct effect, one needs to know the magnitude of

regional spillovers after a housing shock. Another literature shows that firms with an unhealthy

bank grow more slowly than other firms in the same region with a healthy bank (Bentolila et al.

2018; Berg 2018). A regional policy maker may wonder how subsidizing the unhealthy bank will

affect the entire regional economy and therefore will need to understand regional spillovers after a

banking shock. In both cases, estimates of regional spillovers would allow one to convert existing

estimates to another level of aggregation, even if direct estimates at the desired level of aggregation

are not readily available.

The traditional approach to measuring spillovers in finance and macroeconomics is to calibrate

a fully specified, general equilibrium model of the economy. Such models can flexibly quantify

spillovers operating among firms and households in the same region, sector, country, or any other

group. A weakness of the model-based approach is that results depend on hard-to-verify assump-

tions about which general equilibrium channels exist. In this paper, I study an alternative empirical

approach: direct estimation of spillovers using quasi-experiments or experiments. This approach is

1I use the terms “general equilibrium spillover effects” and “spillovers” interchangeably. Both refer to the same
concept: namely, the effects of shocks on prices, technology, and other features of the general economic environment.
These effects operate not only at the country level but also at lower levels of aggregation, such as regions, sectors, or
networks. They imply that shocks propagate beyond directly affected entities.
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becoming increasingly popular in finance and macroeconomics. It allows researchers to quantify

spillovers operating within groups of firms and households using a regression framework.

This paper offers econometric guidance on how to implement direct estimation of spillovers. I

describe the general approach and then point out two sources of mechanical bias that are likely to

arise in finance and macroeconomics: the existence of multiple types of spillover and mismeasured

treatment status. I suggest practical methods to detect and overcome these biases. I illustrate the

relevance of the proposed methods with an application to a real-world credit shock and describe

further examples in which the methods would be germane. Finally, I argue that direct estimation

of spillovers allows researchers to calculate the impact of policy and multiplier effects.

The method of spillover estimation

The paper begins with an empirical framework for the direct estimation of spillovers. For sim-

plicity, I henceforth use “firms” to describe the unit of direct treatment, but the framework ap-

plies equally when households or other entities are the directly treated units. A researcher studies

whether a shock to a subset of firms (the “treatment”) generates spillovers onto other firms that are

in the same “group” as treated firms. Firms that belong to the same group are in some way con-

nected, for example, because they are in the same region, production network, technology space,

or any other type of grouping. Direct estimation of spillovers requires identification of a treatment

that is exogenous both across individuals and across groups. A group can even constitute an en-

tire country, so that the estimated spillovers operate at the country level, as long as a researcher

can identify exogenous variation in treatment at the country level and at least one lower level of

aggregation (e.g., regions, sectors, firms, or households).2

To directly estimate spillovers, the researcher includes the average treatment status of all other

firms in the same group in the regression (the “leave-out mean”). For example, if the researcher is

interested in regional spillovers, one regressor is the average treatment status of all other firms in

2Recent work has attempted to identify exogenous country-level variation in fiscal and monetary policy plus varia-
tion at a lower level of aggregation. Examples include variation due to monetary policy abroad (Jiménez et al. 2012),
large political upheavals (Fuchs-Schündeln 2008), or geopolitical developments (Conley et al. 2021). Such settings
may be suitable for a spillover analysis at the country level (see Section 7).
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the region. Direct estimation of spillovers using leave-out means has several attractive features. It

is relatively easy to apply to existing research designs. It allows researchers to directly compare the

magnitude of different types of spillovers by including multiple leave-out means in the regression.

The method estimates a standard error on the spillover, which enables formal inference on whether

spillovers are statistically significant, unlike methods that estimate direct and group-level effects

in separate regressions.

Notwithstanding these advantages, I argue that direct estimation of spillovers raises difficult

and underappreciated empirical challenges. I focus on two challenges that are common when

researchers study large-scale financial and macroeconomic shocks: first, the presence of multiple

types of spillovers and second, mismeasured treatment status due to nonlinearity or measurement

error. These issues can mechanically bias estimates of both spillover and direct effects, even if the

(quasi-)experimental variation defining direct and group treatment status is truly exogenous and if

there are no omitted variables correlated with treatment. Standard (quasi-)experimental tools (e.g.,

testing for sample balance and parallel trends) do not solve these issues. I will discuss the two

issues in turn.

Mechanical bias due to multiple spillover types

First, I consider the case of multiple spillover types. Spillovers operate across multiple groups

after almost all large-scale shocks. A shock to firms can spill over to other firms through factor

markets, product markets, input-output networks, and common lenders, to name a few relevant

groups. Despite this empirical complexity, theoretical models typically do not account for all

relevant spillover channels. For instance, urban models may include only a regional spillover,

whereas industrial organization models may exclusively focus on a sectoral spillover. Motivated by

theory, specialized researchers may then empirically test for only one potential spillover, without

considering the others.

I explore the consequences of testing for only one spillover in situations where the true model

contains multiple spillovers. To simplify the exposition, I consider a shock to firms that simultane-
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ously spills over to two groups: to firms in the same region (e.g., through wages, as directly treated

firms hire more on local labor markets) and to firms in the same sector (e.g., through output prices,

as directly treated firms raise production). Throughout the paper, I use the concrete two-group

example of regions and sectors. However, I do not mean to imply that these two groups cover

all potential spillovers. The lessons apply more generally when the model contains many other

groups.

Using the concrete two-group example, I show that testing for only a sectoral spillover can

severely bias estimates if the true model also contains a regional spillover. In fact, the sectoral

spillover estimate can have the wrong sign, leading to a complete misinterpretation of general

equilibrium forces. The bias is present even if there is zero correlation between the regional and

sectoral leave-out means (i.e., even when firms facing many treated firms in their sector are not

more likely to face many treated firms in their region). In that sense, bias due to multiple spillovers

is distinct from standard concerns about omitting correlated variables and it is not typically consid-

ered in applied papers. Intuitively, the bias occurs because directly treated firms are disproportion-

ately found in regions and sectors with high average treatment, so omitting one relevant spillover

term leaves a correlation between the error term and direct treatment status, biasing all coefficients

in the regression.

Mechanical bias due to mismeasurement and nonlinear effects

The second estimation issue I discuss relates to misspecification of direct treatment status. I ini-

tially consider a modest degree of classical measurement error, as found in standard data sets

(Bound and Krueger 1991). This type of error can generate large spillover estimates, even if

true spillovers are zero, because part of the true direct effect erroneously loads onto the spillover

estimate. Measurement error can bias spillover estimates in either direction, depending on the un-

derlying data-generation process. This bias is therefore distinct from classical measurement error

in settings without spillovers, which always biases coefficients toward zero. I show that mechan-

ical bias due to mismeasurement also applies to the estimation of network effects, which is one
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particular type of spillover (see Internet Appendix A).

A related type of bias arises if true direct effects depend nonlinearly on treatment status. Many

financial shocks have this feature; for example, direct effects often exist only when individuals face

binding liquidity, borrowing, or capital constraints (Brunnermeier and Sannikov 2014; Giroud and

Mueller 2017, 2019; Cloyne et al. 2019). Researchers may not be aware of underlying nonlinearity

and instead misspecify treatment using a linear regressor. For concreteness, imagine a model

where the true spillover is zero and the true direct effect only occurs for observations where the

direct treatment variable is positive. I simulate such models and find that spillover estimates can be

much larger than direct estimates, falsely suggesting that group-level effects are primarily driven

by spillovers rather than direct treatment.

Detecting and overcoming mechanical bias

I turn to detecting and overcoming the sources of mechanical biases discussed so far (due to mul-

tiple spillovers, mismeasurement, and nonlinearities). To detect whether mechanical bias drives

results, I argue that researchers can test for heterogeneous effects. Economic theory often predicts

which firms should be unaffected by a given type of spillover. For example, tradable firms do

not respond to local demand spillovers (Moretti 2010; Mian and Sufi 2014; Giroud and Mueller

2017, 2019). If estimated regional demand spillovers are zero for tradable firms and only exist for

nontradable firms, as theory predicts, spillover estimates are unlikely to be mechanically biased. If

instead estimated spillovers are of similar magnitude for all types of firms, then mechanical bias is

likely an issue.

Solutions to mechanical biases are available. To overcome bias due to multiple spillovers,

researchers can include all relevant group-level leave-out means in the regression. However, this

may be challenging in practice, as not all relevant connections between firms may be observed

in standard data sets, the full set of relevant spillover channels may not be predictable ex ante,

and regressions may be underpowered with many regressors. Researchers can also explore flexible

functional forms to identify nonlinear direct effects. An instrumental variable (IV) that is correlated
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with individual treatment status and uncorrelated with the treatment status of other firms in the

group solves all forms of mechanical bias, but may be difficult to find. Taken together, the findings

on mechanical biases highlight that researchers should interpret spillover estimates with caution

and carefully consider potential solutions.

Application and further examples of spillover estimation

I illustrate the relevance of the biases and solutions using an application. I study an exogenous

credit disruption by a large German bank called Commerzbank (Huber 2018). Direct treatment

status measures whether a firm had a banking relationship with Commerzbank. Directly treated

firms reduced employment when their bank cut credit. Guided by a simple industrial organization

model, I initially only test for spillovers among firms in the same product market. I find a significant

product market spillover of similar magnitude to the direct effect. However, urban models suggest

that local demand and agglomeration forces might also generate spillovers. When I additionally

test for a regional spillover, the product market spillover shrinks and becomes insignificant, while

the regional spillover is large and significant. This result illustrates that the presence of multiple

spillovers can lead to severely misguided conclusions about the nature of spillovers.

These findings leave open the possibility that other, omitted spillover types explain the regional

spillover. I investigate this possibility by testing for heterogeneous effects. I identify a subset of

sectors that, according to theory, are strongly affected by regional spillovers: nontradable sectors

(due to local demand effects) and high-innovation sectors (due to local agglomeration effects).

I find that regional spillovers are only significant for firms in such sectors and insignificant for

other sectors. Mechanical bias would affect all firms, so this heterogeneity suggests that regional

spillovers are not driven by mechanical bias.

Next, I investigate mismeasurement, by introducing measurement error into the direct treatment

variable. The direct effect becomes insignificant and close to zero, while the regional spillover

more than doubles in size. This falsely suggests that the entire regional effect is driven by spillovers,

with directly treated firms not growing any differently to untreated firms. However, the hetero-
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geneity test is particularly useful here. I find that spillovers are large and significant for all types

of firms. This reveals that the spillover estimates based on mismeasured data are partially driven

by mechanical bias and not by the theoretical forces posited in urban models.

I emphasize the usefulness of spillover estimation for policy. Consider a public credit program

that extends loans to firms directly affected by a bank lending cut. A naive calculation based only

on the direct effect suggests that this program would raise regional employment by 0.4 jobs for

US$100,000 of lent funds. In contrast, direct estimation of spillovers implies much larger gains of

1.4 jobs. The calculation requires knowledge of both direct and spillover effects and would not be

possible based on regional estimates only. The application results also offer lessons for models, as

they imply that realistic general equilibrium models need to include strong regional amplification

forces.

In the final section of the paper, I discuss additional examples of shocks hitting firms, house-

holds, and regions that lend themselves to spillover estimation. I describe which types of spillovers

are relevant in different settings and how researchers can overcome mechanical biases in each case.

The examples highlight the broad relevance of spillover estimation and of the issues discussed in

this paper.

Checklist for applied researchers

To summarize this paper’s lessons, I present a checklist for applied researchers seeking to estimate

spillovers.

1. Set up direct estimation of spillovers

(a) Define spillovers of interest that are to be estimated (e.g., spillovers within households

in a region, within firms in a sector, or within regions in a country). To do this, identify

individual units that can be directly affected by shocks as well as groups of individual

units among which spillovers operate. Groups can be any combination of firms or

households (e.g., regions, sectors, countries). Individual units can be any smaller level
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of aggregation contained within groups (e.g., individual households within regions,

firms within sectors, or regions within a country).

(b) Identify an exogenous shock where treatment intensity varies for individual units within

groups as well as across groups.

(c) Estimate direct and spillover effects in the same specification by using direct treatment

status and group-level leave-out means as regressors.

2. Detect mechanical bias using heterogeneity tests

(a) Use theory to understand which mechanisms drive the spillovers of interest (e.g., re-

gional spillovers operate through local demand and agglomeration effects; sectoral

spillovers operate through changes in competition on product markets; spillovers across

regions operate through trade, migration, capital mobility, and country-level policy).

(b) Identify individual units that, according to mechanisms predicted by theory, should be

less affected by spillovers (e.g., tradable firms in low-innovation sectors respond less

to local demand and agglomeration spillovers; firms with high market power react less

to shocks to other firms in their product market; and autark regions are less exposed to

cross-regional spillovers).

(c) Test whether spillover estimates are heterogeneous in line with theory. If spillover

estimates are homogeneous, the results may be driven by mechanical bias and should

be interpreted with caution.

3. Overcome potential mechanical bias

(a) Mechanical bias can be a problem even if the shock is truly exogenous and if there

are no omitted variables correlated with treatment. Omitted spillover types, nonlinear

direct effects, and measurement error can cause mechanical bias. Address each source

of bias in turn.
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(b) To overcome omitted spillover types, try to measure leave-out means for other groups

where spillovers may operate. Include these additional leave-out means in the regres-

sion to test the robustness of spillover estimates. (See Section 7 for which types of

spillovers are likely relevant in different types of analyses.)

(c) To overcome nonlinear direct effects, explore flexible functional forms (e.g., use bins

for different parts of the treatment distribution as regressors).

(d) All forms of mechanical bias can be overcome by finding an instrument that is cor-

related with individual treatment status but uncorrelated with the treatment status of

other firms in the group (e.g., another mismeasured treatment variable can serve as

instrument).

1 Related Literature

This paper relates to the methodological discussion in finance and macroeconomics on how to

convert estimates from microdata to higher or lower levels of aggregation. Most of this literature

relies on structural, model-based approaches (Browning, Hansen, and Heckman 1999; Acemoglu

2010; Nakamura and Steinsson 2018).3 Direct estimation of spillovers using (quasi-)experimental

variation has traditionally not played a large role. For example, no paper published in the leading

economics and finance journals in 2017 jointly analyzes direct and spillover effects using the direct

estimation method.4

In recent years, however, researchers in finance and macroeconomics have started estimating

regional and sectoral spillovers (Dupor and McCrory 2018; Huber 2018; Bernstein et al. 2019;

3Recent examples include Li, Whited, and Wu (2016), Auclert, Rognlie, and Straub (2018); Auclert, Dobbie, and
Goldsmith-Pinkham (2019), Beraja, Hurst, and Ospina (2019), Guren et al. (2020), Chodorow-Reich, Nenov, and
Simsek (2021), and Herreño (2021). Sarto (2018), Adão, Arkolakis, and Esposito (2020), and Wolf (2021) discuss
alternative methods that are less reliant on structural assumptions.

4The journals published 610 papers in 2017 and are: American Economic Review, Econometrica, Journal of Politi-
cal Economy, Quarterly Journal of Economics, Review of Economic Studies, Journal of Finance, Journal of Financial
Economics, and Review of Financial Studies. Seven papers in these journals explicitly analyze some form of spillover
in a quasi-experimental research design. Three of these seven papers are in the subfield of corporate finance and none
is in the other parts of finance and macroeconomics. See Berg, Reisinger, and Streitz (2021) for more discussion on
publications using differences-in-differences and spillover estimation.
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Auerbach, Gorodnichenko, and Murphy 2020; Gathmann, Helm, and Schönberg 2020; Helm 2020;

Verner and Gyöngyösi 2020; Conley et al. 2021). These papers pay little attention to potential

mechanical biases in spillover estimates. While existing papers are well versed in the standard

(quasi-)experimental toolkit (e.g., inspecting the IV exclusion restrictions through balancing tests),

these tools do not overcome mechanical biases.

The contribution of this paper is to offer econometric advice tailored to estimating spillovers

in finance and macroeconomics. I focus on how researchers can design spillover estimation and

on mechanical biases arising from multiple spillover types, mismeasurement, and nonlinearities.

These biases are particularly relevant to researchers studying large-scale financial and macroeco-

nomic shocks. For one, spillovers after such shocks are inherently complex, operate across mul-

tiple overlapping groups, and theory makes no strong predictions about which spillover types are

relevant. In addition, nonlinear effects are common in financial settings (e.g., because ofliquidity

constraints or regulatory capital thresholds) and treatment is often difficult to measure (e.g., bank-

ing relationships). This paper’s focus on actionable solutions to underappreciated methodological

challenges is inspired by influential earlier work in other areas (Petersen 2009; Gormley and Matsa

2014; Chodorow-Reich 2019; Lerner and Seru 2022).

Berg, Reisinger, and Streitz (2021) provide complementary methodological advice on estimat-

ing models with spillovers. Readers may find a brief comparison useful. Berg, Reisinger, and Stre-

itz (2021) focus on how to estimate direct effects in models with a single spillover term, while I em-

phasize how to quantify (potentially multiple) spillover effects and how to use spillovers to inform

policy calculations. In terms of empirical advice, Berg, Reisinger, and Streitz (2021) recommend

that researchers investigate whether spillovers are heterogeneous between directly treated and un-

treated firms, while I show that heterogeneity tests based on theory, multiple spillover terms, flex-

ible functional forms, and instruments can overcome several sources of mechanical bias.5 While

Berg, Reisinger, and Streitz (2021) also show theoretically how spillovers can arise, I focus on

empirical advice. Finally, Berg, Reisinger, and Streitz (2021) and I study the same empirical ap-

5In my application, I find no evidence for heterogeneous spillovers. That means that regional or sectoral spillovers
did not differ between firms directly treated by the Commerzbank credit shock and other firms.
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plication, the Commerzbank credit shock. In another methodological paper, Mian, Sarto, and Sufi

(2022) show theoretically how regional spillovers arise in a general equilibrium model and discuss

identification assumptions in the context of regional credit shocks.6 Gabaix and Koijen (2022)

describe how to estimate spillovers using “granular IV.”

Outside of finance and macroeconomics, several applied papers estimate spillovers directly,

mainly in education (reviews in Epple and Romano 2011; Sacerdote 2011; List, Momeni, and

Zenou 2019), development (RCTs in Miguel and Kremer 2004; Angelucci and De Giorgi 2009;

Janssens 2011; Muralidharan, Niehaus, and Sukhtankar 2017; Cunha, De Giorgi, and Jayachan-

dran 2019; Filmer et al. 2021; Egger et al. forthcoming), and public economics (Blundell et al.

2004; Rincke and Traxler 2011; Crépon et al. 2013; Ferracci, Jolivet, and van den Berg 2014;

Lalive, Landais, and Zweimüller 2015; Gautier et al. 2018; Boning et al. 2020). Mechanical bias

due to multiple spillovers is not discussed in these papers, likely because all relevant spillover

types are ex ante defined and observed by the authors, unlike in typical settings in finance and

macroeconomics.7 Similarly, bias due to nonlinearities is not discussed (except in Angrist 2014),

likely because sharp nonlinear effects are theoretically and empirically more relevant for financial

shocks. Measurement error is a more common problem and has been studied mainly in the context

of educational peer effects (Ammermueller and Pischke 2009).

The classic econometrics literature emphasizes different econometric challenges compared to

this paper, namely, that spillovers violate the stable unit treatment value assumption (Rubin 1980,

1990) and are difficult to estimate in the absence of exogenous variation (Manski 1993; Moffitt

6The estimates in Huber (2018) and Mian, Sarto, and Sufi (2022) lead to remarkably similar conclusions on the
magnitude of regional spillover effects, despite the different settings. Huber (2018, table 11) and this paper (Section
6.4) find that local general equilibrium effects account for roughly 60%–70% of the total regional effect, whereas the
corresponding number in Mian, Sarto, and Sufi (2022) is 80%. The methods differs slightly, as Mian, Sarto, and Sufi
(2022) compare individual-level and region-level regressions, whereas I directly estimate spillovers (and associated
standard errors) using a leave-out mean. However, the mechanical issues discussed in this paper are relevant to all
these methods.

7In education economics, the typical objects of interest are peer effects operating within a classroom or school.
In development economics, units are usually self-contained villages (i.e., “largely closed local economies,” as put
by Egger et al. forthcoming). In public economics, researchers typically focus on a policy that affects well-defined
local labor markets or social groups. In all these setting, spillovers chiefly operate through the predefined group of
interest rather than through other groups, unlike in macroeconomics and finance where cross-regional sectors, financial
markets, input-output chains, etc., play a role.
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2001; Glaeser, Sacerdote, and Scheinkman 2003; Bramoullé, Djebbari, and Fortin 2009). Subse-

quent work develops techniques to optimally estimate spillovers with randomized controlled trials

(Duflo and Saez 2003; Hirano and Hahn 2010; Avitabile 2012; Baird et al. 2018; Vazquez-Bare

forthcoming) and in the absence of data on group membership (Manresa 2016; Breza et al. 2020).

2 Empirical Framework

2.1 Basic model of direct and spillover effects

Consider an economic shock that affects firms or households with varying intensity, as indicated

by their “treatment status.” For example, if the shock is a credit supply disruption, treatment status

is a firm’s dependence on failing banks. If the shock is fiscal stimulus, treatment status measures

whether firms or households receive a stimulus check.

Economic theory suggests that the treatment status of a given firm or household can affect the

outcomes of other firms and households. For instance, if two firms are located in the same region,

they hire on the same local labor market. When one firm is treated, it may change its labor demand,

thereby affecting local wages. If two firms sell substitute products, they are competitors. When a

competitor is treated, product prices may change, affecting all firms in the product market sector. In

general, whenever firms are in some way connected, the treatment status of one firm can generate

spillovers onto other firms. Similarly, whenever households are connected, there can be cross-

household spillovers. For simplicity, I henceforth use “firms” to describe the unit of observation,

but the analysis applies equally when households, regions, sectors, or other entities are directly

treated.

While in reality many channels connect firms, to simplify exposition, I assume that there are

just two: spillovers may operate among firms in the same region and in the same product market

sector. However, the findings on the mechanical biases presented below hold generally for a larger

number of groups as well as for settings in which researchers estimate aggregate spillovers among

firms in the same country (see Section 7).

12



The treatment status of an individual firm i in region r(i) and sector s(i) is given by xi. An

outcome, such as firm investment or employment growth, is given by yi. Assuming linearity, the

relationship between outcome and treatment status of various firms is

yi = β xi+ ∑
j 6=i,r( j)=r(i)

γ
j x j + ∑

k 6=i,s( j)=s(i)
λ

k xk +α + εi. (1)

The first coefficient β is the direct effect of individual treatment (xi) on the outcome. The direct

effect represents by how much the outcome would change if firm i alone was treated. In addition,

there are spillover effects γ j and λ k. Each spillover effect represents by how much outcome yi of

firm i would change if another firm in the same region (firm j with treatment status x j) or in the

same sector (firm k with treatment status xk) was treated.8 Throughout the paper, I assume that

treatment of all firms is exogenous, such that E (xiεi) = 0 ∀i (see below for a detailed discussion).

The superscripts on the coefficients γ j and λ k indicate that spillover effects are firm-specific,

so that spillovers arising from two different firms may not be identical. In practice, however,

it is difficult to estimate one spillover coefficient per firm. To facilitate estimation, researchers

commonly assume that spillovers are homogeneous for firms in the same sector or region:

γ
j =

γ

Nr( j)−1
∀ j, (2)

λ
k =

λ

Ns( j)−1
∀k. (3)

The number of firms in a region and sector is Nr( j) and Ns( j), respectively. Intuitively, the assump-

tions imply that the greater the number of firms in a region or sector, the less important the region-

or sector-level spillovers generated by an individual firm.

Under these assumptions, the outcome depends on only three coefficients: individual treatment

8This equation assumes that spillover effects affect firms equally, i.e., γ j and λ k do not depend on firm i. The
framework can be generalized to account for heterogeneous spillovers by characteristics of firm i, as shown in the
application in Section 6.
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status and two “leave-out means”:

yi = β xi+γ xr(i)+λ xs(i)+α + εi. (4)

The leave-out mean xr(i) is the average treatment status of all other firms in region r(i) apart from

firm i:

xr(i) =
∑ j 6=i,r( j)=r(i) x j

Nr(i)−1
(5)

and xs(i) is defined analogously. The coefficients γ and λ are the region- and sector-level spillovers,

whereas β is the direct effect.

The assumptions in Equations (2) and (3) imply that spillovers are identical across firms in a

group. Alternatively, researchers may prefer assuming that spillovers are activity-weighted (e.g.,

that firms with more workers generate larger spillovers). The framework above can be easily

adapted to incorporate this assumption. Treatment can be defined at the level of individual workers,

so that xpi measures the treatment status of worker p employed at firm i. The direct treatment status

of a firm is then given by the average treatment status of all workers at firm i:

x̃i =
∑p∈i xpi

Ñi
,

where the number of workers at firm i is Ñi. (If treatment is determined at the firm level, xpi is

identical for all workers at firm i, so that x̃i = xi, where xi is simply the treatment status of the firm

from Equation (4).) If we then assume that spillovers are identical for workers in the same sector

or region, the model becomes

yi = β̃ x̃i+γ̃ x̃r(i)+ λ̃ x̃s(i)+ α̃ + ε̃i.

Here, the regional leave-out mean is the average treatment of all workers employed by other firms

in a region:
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x̃r(i) =
∑ j 6=i,r( j)=r(i) xp j

Ñr(i)− Ñi
, (6)

where the total number of workers in the region is Ñr(i). The sectoral leave-out mean x̃s(i) can be

defined analogously.

2.2 Variation in treatment is exogenous

I assume that individual treatment status as well as treatment status of firms in the same region and

sector is exogenous to all other determinants of firm outcomes:

E (xiεi) = 0 ∀i.

In practice, exogenous variation means that researchers have either experimentally randomized

treatment status or identified quasi-random variation. As a result of this assumption, all estima-

tion issues described below are not driven by the usual endogeneity concerns about correlations

between treatment and unobserved errors (as in Manski 1993; Moffitt 2001). As shown below,

the issues I discuss are more subtle and depend on the distribution of treatment across regions and

sectors.

Exogenous variation is a high bar in practice. In many studies, variation in direct treatment

may be exogenous within region and sector, but variation in treatment of firms in the same region

and sector is not. For instance, exposure to failing banks may be exogenous when comparing firms

within regions, but the distribution of failing banks across regions may be correlated with other

shocks to firm growth. In such cases, the group definition fails the exogeneity criterion and cannot

be used to estimate region-level spillover effects.
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2.3 Treatment may vary systematically across regions and sectors

I assume that direct treatment status depends on several random variables:

xi = ur(i)+us(i)+ zi +νi, (7)

where ur(i) is a common factor for all firms in region r(i) and us(i) is a common factor for all

firms in sector s(i). The other components vary at the individual level: zi is an observed variable,

which is uncorrelated within regions and sectors and can serve as instrument for xi, and νi is an

unobserved random error. The variables ur(i), us(i), zi, and νi are uncorrelated with each other and

with the error εi in Equation (4).

If ur(i) is identical across regions and us(i) is identical across sectors, treatment status does

not vary systematically across regions and sectors. However, variation across regions and sectors

is systematic in most research designs. Variation is always systematic in experiments in which

researchers intentionally treat some groups more than others. In most naturally occurring settings,

variation is also systematic. For instance, exposure to the 2008 credit crisis varied systematically

across regions and sectors because banks tend to specialize in certain regions and sectors, rather

than picking borrowers at random (Chodorow-Reich 2014; Bentolila et al. 2018; Huber 2018). As

a result, certain areas and sectors were systematically more exposed to failing banks. Similarly,

fiscal stimulus tends to be concentrated in specific regions (Chodorow-Reich 2019).

On the positive side, systematic variation guarantees a large degree of variation across regions

and sectors when the number of firms per region and sector is large, making it easier to estimate

spillovers. In contrast, when variation across regions and sectors is not systematic, there will be

little variation when groups are large, making it difficult to precisely estimate spillovers.

The challenge is that naturally occurring systematic variation is often not exogenous. The

factors generating systematic variation may also drive differences in firm outcomes across groups.

For example, failing banks might be more likely to operate in regions with low growth potential.

This would generate a correlation between the leave-out mean and other shocks to firm growth
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(correlation between ur(i) and the error term in Equation (4)). For the purpose of this paper, I leave

aside concerns about exogeneity and focus on other issues.

2.4 Setup for the simulations

I investigate the properties of spillover estimates by running simulations. In each simulation, I

randomly sort 5,000 observations (indexed by i) into 500 equally sized regions and 500 equally

sized sectors. In the baseline simulations, I assume that the region and sector terms ur(i) and us(i)

are both independently and lognormally distributed with a mean of zero and a standard deviation of

one. This implies that variation is systematic across regions and sectors in the baseline simulations.

In additional simulations, I assume that variation is not systematic, in which case ur(i) and us(i) are

zero. εi, zi, and νi are normally distributed with a mean of zero and a standard deviation of one.

Throughout the paper, I report coefficients and standard errors averaged over 100 simulations.

3 Interpreting the Magnitude of Spillover Coefficients

Spillover estimates allow researchers to calculate the share of a group-level outcome that is due to

spillover effects versus direct effects. For instance, to calculate the share of a regional outcome

due to spillover effects, researchers can take region-level averages of Equation (4):

yr(i) = (β + γ) xr(i)+λ xs(i)
r(i)+α + ε

r(i), (8)

where the average outcome in region r(i) is yr(i), average treatment status in region r(i) is xr(i), and

the average sectoral leave-out mean in region r(i) is xs(i)
r(i).9 The total effect is the change in the

average regional outcome relative to the change in average regional treatment:

Total E f f ect =
dyr(i)

dxr(i)
= β + γ,

9To derive this equation, note that the average regional leave-out mean in region r(i) is equivalent to the average
treatment status in region r(i). In the notation here, xr(i)

r(i) = xr(i).
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whereas the direct effect is change in the average regional outcome, assuming no spillovers:

Direct E f f ect =
dyr(i)

dxr(i)
| (γ = 0) = β .

The share of the total regional effect due to direct effects is β

β+γ
and the share due to spillovers is

γ

β+γ
. In general, ratios are a useful way to report coefficient magnitudes. Spillover coefficients on

their own often do not have a natural interpretation because they typically do not capture absolute

effects, but rather, effects relative to a control firm for whom direct treatment and spillover effects

are all zero.10

Researchers may find it useful to present results in form of a dollar multiplier, which is the

total effect (β + γ) relative to the average dollar spending by policy makers required to achieve the

direct effect. For instance, imagine that treatment is a policy that spends US$M on the average

firm. Then the regional multiplier is:

Multiplier =
β + γ

M
.

If treatment is already measured in dollar values, then M is simply equal to xr(i), the average

treatment amount received by firms. However, if treatment is not in dollar values, M may need to

be estimated. For instance, if treatment is an indicator for firms exposed to an exogenous decrease

in product demand or credit supply, then researchers may not immediately know the dollar value

needed to offset the initial shock. In such cases, researchers first need to estimate a direct effect on

the decisive dollar outcome (such as firm revenue or credit) and then convert that direct effect into

an average dollar treatment to get M (see the application in Section 6.4).

In some settings, researchers may want to estimate spillover coefficients using an outcome

10To be clear, in the example using regions and sectors, γ and λ measure direct and spillover effects relative to a
firm that was not directly exposed to the shock (xi = 0) and in whose region and sector no other firm was directly
exposed to the shock (xr(i) = xs(i) = 0). This means that the coefficients do not capture the total difference in firm
outcomes relative to a world where the shock did not happen. Instead, they capture the effect of treatment relative to
firms that were treated neither directly nor through spillovers. See Chodorow-Reich (2020) for a formal discussion of
relative versus absolute effects, which is not the focus of this paper.
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measured in percentage changes (e.g., to account for outliers) and then report effects measured in

absolute units (e.g., to relate results to a model or other estimates). For instance, the regression

outcome may be the percentage change in firm employment (which is approximately equal to the

log change or the symmetric growth rate), but researchers may want to know the effect on total

jobs. This conversion is trivial if average firm size is roughly constant. In these cases, researchers

can approximate the total effect on jobs by multiplying the percentage effects with the average

pretreatment size (given by y). The total effect then becomes (β + γ)× y and the direct effect

β × y, with the share of the total effect due to spillovers remaining unchanged.

The conversion from percentage change to absolute effect is more involved if firm size varies

with treatment. I describe a practical conversion method in detail in Internet Appendix B. In short,

the method splits the sample into a number of size bins k and calculates the effect on absolute

values in each bin separately. The absolute total effect on the region is then the weighted average

of absolute effects in each size bin:

Total E f f ect ≈∑
k

[(
β dxk + γ dxr(i)

k
)
× yk×ω

k
]
, (9)

where dxk is the average direct treatment status in k, dxr(i)
k is the average leave-out mean in k,

yk is the average pretreatment outcome of firms in size bin k, and ωk is the fraction of firms in k.

Correspondingly, the absolute direct effect is:

Direct E f f ect ≈∑
k

[
β dxk× yk×ω

k
]
. (10)

Choosing the number of size bins involves a trade-off. A greater number of bins increases the

accuracy of the method, but many small bins lead to measurement error in the averages. Ulti-

mately, researchers should choose as many bins as possible until averages become statistically

indistinguishable.
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4 Bias due to Multiple Spillovers

Having laid out the empirical framework, I highlight practical difficulties that arise when estimat-

ing spillovers. In this section, I show that spillover estimates can be biased if there are multiple

potential spillover types and I suggest ways to detect bias.

4.1 Testing the wrong type of spillover

I assume that no true spillover occurs within sectors, but a spillover occurs within regions with a

coefficient of one. The true data-generating process is thus:

yi = xi+xr(i)+ εi. (11)

Treatment varies systematically across regions and sectors (that is, ur(i) and us(i) in Equation (7)

are not identical across regions and sectors).

Researchers may not include all relevant spillovers in their specification. Theoretical models

often focus on one type of spillover mechanism. For instance, industrial economists focus on

competition, so their research question might only consider spillovers within product markets.

Financial economists study credit reallocation, so they might be interested in spillovers among

borrowers of the same bank only. Based on theory, researchers may be drawn to empirically

investigating only one type of spillover, even if that spillover does not appear in the true model.

Measurement difficulties are another reason researchers may overlook relevant spillover types.

Some economic connections between firms are not recorded in standard data sets. For example,

the default of one firm might generate capital constraints for a lender, but lender identities are often

not observed in the data. In practice, the range of possible spillover channels is large. As a result,

researchers may not be able to include all relevant spillover forces in their specifications.
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4.2 Bias due to testing the wrong type of spillover

Testing for a spillover with zero coefficient while omitting a true spillover biases estimates. The

bias arises even if the included and omitted leave-out means are not correlated. The lack of corre-

lation makes this form of biased spillover estimate less salient and detectable relative to standard

forms of omitted variable bias. In Equation (11), the regional and sectoral leave-out means are un-

correlated by construction, so it is not obvious that the coefficient for the regional leave-out mean

should be biased.

To illustrate the effects of ignoring relevant spillovers, I use the simulated data based on Equa-

tion (11) and run regressions that only contain direct treatment status xi and the sectoral leave-out

mean xs(i). The true ratio of regional spillover to direct effect is a positive 100%. In contrast, the

estimated sectoral spillover coefficient for xs(i) is negative and significant (Table 1, column 1). The

ratio of estimated spillover to direct effect is large at -33%. The focus on the wrong spillover there-

fore changes the sign of estimated spillovers and leads to a severe misinterpretation of economic

forces.

The reason for the bias is the presence of systematic variation across regions and sectors. When

xi and xs(i) are the only regressors, the omitted xr(i) enters the error term. Both xi and the omitted

xr(i) are functions of the regional factor ur(i) (Equation (7)). As a result, xi and the error term are

positively correlated, which biases the estimated coefficient for xi. The spillover estimate is then

also biased because xi and xr(i) are positively correlated (because of the common factor ur(i)).

4.3 Overcoming bias due to testing the wrong type of spillover

How can researchers detect mechanical bias due to multiple spillover types? Note that the bias ap-

pears mechanically in all subgroups of firms and households because of the way leave-out means

are constructed. But in many settings, economic theory predicts that spillovers should not exist

among a certain subgroup. For instance, firms selling nontradable goods are affected by regional

demand shocks, but firms selling tradables are not (Mian and Sufi 2014). The spillover coeffi-

cient for tradable producers should be zero if regional demand drives spillovers. If the estimated
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spillover on tradable producers is indeed zero, researchers can conclude that the nonzero spillover

estimate on other firms is not a mechanical bias due to including the wrong type of spillover. If

instead significant spillovers show up for all firm types, the spillover estimates are likely biased.

An obvious solution to the bias is to control for other potential spillover types by including

additional leave-out means. For instance, including the regional leave-out mean overcomes the

bias (Table 1, column 2).11 Controlling for other spillover types is only possible if data defining

groups are available and if the number of groups is large enough to generate statistical power.

Instrumental variables can also solve the bias, although instruments are difficult to find in prac-

tice. Ideally, researchers identify an instrument at the individual level, such as zi (as in Equation

(7)). The instrument needs to be correlated with individual treatment status xi, but uncorrelated

with the treatment status of other firms in the group (i.e., uncorrelated with ur(i)). The sectoral

leave-out mean zs(i) can then serve as instrument for xs(i). Coefficients based on instrumenting for

xi and xs(i) using zi and zs(i) are consistent (Table 1, column 3). In the absence of an instrument at

the individual level, researchers can still estimate the spillover coefficient consistently by using an

instrument for only the leave-out mean zs(i) and controlling for xi (see also the use of a group-level

instrument in Huber 2018).

Finally, note that multiple spillover types do not lead to bias if there is no systematic group-

level variation (column 4). This requires that both ur and us are identical across regions and

sectors, respectively (Equation (7)). However, this condition is often not met in large-scale shocks,

as outlined in Section 2.3.

4.4 Bias due to multiple nonzero spillovers

The bias is not limited to the case in which a spillover with zero coefficient is included in the

model. In an additional simulation, I assume that spillovers operate within regions and sectors

11If researchers are only interested in estimating a direct effect in a single spillover model, they can weight observa-
tions in the manner suggested by Baird et al. (2018, footnote 23). However, this approach does not estimate spillover
effects and does not easily translate to models with multiple spillovers.
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with a coefficient of one. The true data-generating process is thus:

yi = xi+xr(i)+ xs(i)+ εi. (12)

However, as above, researchers include only the sectoral leave-out mean, possibly because they

follow a model focused on product market competition or because they are unable to observe firm

region. The direct effect is biased upward and sectoral spillover downward (Table 2, column 1).

While the true ratio is 100%, the estimated ratio is 29%. Instrumenting (column 2) and controlling

for all relevant spillover types (column 3) overcome the bias.

5 Bias due to Mismeasurement and Nonlinear Direct Effects

In this section, I outline how misspecification of treatment status biases spillover estimates. I

describe two cases: classical measurement error and mismeasurement due to nonlinear effects.

5.1 Definition of measurement error

To illustrate the role of classical error, I assume that there is only a regional spillover, given by γ ,

so that the true data-generating process is:

yi = βxi + γxr(i)+ εi. (13)

Imagine that direct treatment status xi is measured with error. The observed treatment status is

x∗i = xi +ηi.

Measurement error ηi is normally distributed with a mean of zero and a standard deviation of σ .

It is uncorrelated with εi, ur(i), us(i), zi, and νi. The leave-out mean is constructed from individual-
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level data, so measurement error affects the observed leave-out mean too:

xr(i)
∗ = xr(i)+ηr(i).

The distortion caused by measurement error can be measured using the signal-to-total variance

ratio, which is:

STV =
V [xi]

V
[
x∗i
] .

The greater the standard deviation of the measurement error, the lower the information content of

the observed variable.

5.2 Bias due to measurement error

Using simulated data, I illustrate how estimates of spillovers depend on classical error. I generate

data based on Equation (13), assuming no spillover effect (γ = 0). In the absence of measurement

error (STV = 1), the regression results are consistent. The estimated direct effect (coefficient for

x∗i ) is close to one and significant, whereas the estimated spillover (coefficient for xr(i)
∗) is small

and insignificant (Table 3, panel A, column 1).

With low measurement error (STV = 0.95), the spillover becomes statistically significant. The

ratio of spillover to direct effect rises to 15% (column 2). The greater the measurement error, the

greater the spillover estimate. Bound and Krueger (1991) document that measurement error in

earnings growth in the Current Population Survey leads to STV = 0.7. The ratio of spillover to

direct effect is 101% with STV = 0.7 (column 4). Hence, with an empirically plausible degree

of measurement error, the estimated spillover is more than twice as large as the estimated direct

effect, even though the true spillover is zero.

The intuitive reason for the overestimated spillover is the presence of systematic group-level

variation (i.e., the variation in ur(i)). The individual measurement error is partially averaged out

when calculating xr(i)
∗. As a result, xr(i)

∗ contains relatively less measurement error than x∗i and

relatively more information about the group-level component ur(i). That means some of the true
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direct effect (the part caused by high ur(i)) shows up in the spillover estimate.

5.3 The direction of bias due to measurement error

The examples so far have shown that measurement error can inflate a spillover estimate when the

true spillover is zero. In general, measurement error can cause bias in either direction (Ammer-

mueller and Pischke 2009). Algebraically, the spillover estimate from specification 13 converges

to:

plim γ̂ = βC1 + γC2,

where 0≤C1; 0≤C2 ≤ 1; and C1 = 0 if ur(i) is identical across regions.12

This equation shows that the spillover estimate is always attenuated if variation is not system-

atic (i.e., ur(i) is identical across regions). If there is systematic variation (i.e., ur(i) varies across

regions), the relative magnitude of direct and spillover effects determines the bias. If the true di-

rect effect is nonzero and the true spillover is zero (β 6= 0 and γ = 0), the direction of bias of the

spillover estimate has the sign of the direct effect. If the true direct effect is zero and the true

spillover is nonzero (β = 0 and γ 6= 0), the spillover estimate is attenuated.

To illustrate this result, I generate data where the true direct and spillover effects are both one

(β = γ = 1). Under systematic variation, the spillover is overestimated (Table 3, panel B, column

1). Under random group-level variation (ur(i) = 0), the spillover is attenuated (column 2).

5.4 Bias due to nonlinear direct effects

Nonlinear responses to shocks are common in financial settings. For instance, liquidity-constrained

households extract housing equity when house prices go up, but do not inject equity when house

prices fall (Cloyne et al. 2019). Similarly, large losses in bank capital have disproportionate effects

on lending and real outcomes, relative to small losses (Brunnermeier and Sannikov 2014).

12The full derivation and definitions of C1 and C2 are in Internet Appendix C.
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Researchers may not be aware of the underlying data-generating process, however, and mis-

measure direct treatment status. Standard practice is to use linear regressors. This introduces

a similar bias as classical measurement error. I illustrate this bias by specifying the true data-

generating equation as

yi = wi+εi,

where wi is a nonlinear variable based on an observed xi:

wi =


xi i f xi > 0,

0 otherwise.

The true spillover effects in the model are zero.

If researchers correctly account for the nonlinear relationship between yi and xi, the regression

produces consistent estimates. The estimated direct coefficient for wi is close to one and significant,

whereas the regional spillover coefficient for wr(i) is small and insignificant (Table 4, column 1).

If researchers incorrectly use a linear regressor, the estimated spillover on the linear leave-out

mean is positive and significant (column 2). The ratio of estimated spillover to direct effect is 19%.

This result falsely suggests that spillover effects played an important role in amplifying the effects

of the shock. The ratio of estimated spillover to direct effect rises with the degree of nonlinearity.

For instance, I redefine:

wi =


x2

i i f xi > 0,

0 otherwise.

The correctly specified regressors are still consistently estimated (column 3). However, using the

linear regressors leads to an estimated ratio of 166% (column 4). This estimated ratio incorrectly

implies that the spillover is quantitatively more important than the direct effect.

The reason for the overestimated spillover is that the specification with linear regressors fits

the same coefficient for observations with xi > 0 and for observations with xi ≤ 0. As a result, the

26



direct estimate is too low for observations with xi > 0 (relative to the true effect). With systematic

variation (i.e., ur(i) differs across groups), some of the true direct effect for observations with

xi > 0 (the part that is caused by high ur(i)) loads on the coefficient for the leave-out mean and

generates bias. The bias gets worse with the degree of nonlinearity, as the wedge between true and

estimated direct effect rises. With random variation (i.e., ur(i) identical across groups), using linear

regressors does not produce a biased spillover estimate because no common component in direct

exposure could load onto the leave-out mean (columns 5 and 6).

5.5 Overcoming bias due to mismeasurement and nonlinear effects

Testing for heterogeneous spillovers, based on theory, is a useful tool. If spillovers are only signif-

icant for a subset of firms, for which theory predicts they should be, generic bias due to mismea-

surement across all firm types cannot explain the spillover results.

A solution to nonlinearity is to relax the linearity assumption. For instance, plotting direct

effects by bins of xi should reveal which parts of the distribution of xi are treated. As with multiple

spillovers, instrumenting also overcomes the bias from mismeasurement. Using zi as individual-

level instrument (Equation (7)), the IV estimates are consistent if there is measurement error (Table

3, panel A, column 5) or if direct effects are nonlinear (Table 4, column 7).

6 Application: Estimating Spillovers following a Banking Shock

In this section, I illustrate that mechanical biases (due to multiple spillover types and mismeasure-

ment) can be large in practice, by studying spillovers after a bank credit shock. I then use the

estimated spillovers to inform a policy calculation.

6.1 Empirical setting and data

I analyze a lending cut by Commerzbank, the second-largest German bank in 2008. Commerzbank

primarily lent to German firms and households. It suffered severe losses on its international finan-

cial investments during the financial crisis 2008, having held positions in U.S. mortgage markets
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and failing Icelandic banks. Importantly, the losses were not caused by Commerzbank’s lending

to the German economy. German firms borrowing from Commerzbank were of comparable credit

quality and on similar growth paths compared to firms borrowing from other banks.

Nonetheless, Commerzbank’s crisis affected its German borrowers. As Commerzbank became

financially constrained in 2008, it cut lending to German firms. Finding another lender is difficult

for firms, especially in a time of crisis, as documented by a large literature on relationship banking

(Sharpe 1990; Boot 2000). As a result, firms borrowing from Commerzbank faced a reduction in

their credit supply and grew more slowly after the lending cut. In contrast, aggregate lending by

other German banks actually increased slightly during the crisis.

Recent papers analyze the effect of Commerzbank’s lending cut on firms (Huber 2018; Berg,

Reisinger, and Streitz 2021; Biermann and Huber 2021). The evidence suggests that Commerzbank’s

lending cut was exogenous to the German economy, so that firms, product markets, and regions

with greater dependence on Commerzbank would have grown at the same rates as other firms,

had the lending cut not happened. Firms with a Commerzbank relationship became financially

constrained and grew employment more slowly after the lending cut, compared to firms borrowing

from other banks. In addition, firms grew more slowly when a large share of other firms in the

region had a Commerzbank relationship.

I construct a firm-level data set following Huber (2018). Direct treatment status xi is a binary

indicator for whether a firm had a relationship to Commerzbank in 2006, measured using a con-

fidential record of German firms’ relationship banks by the credit rating agency Creditreform.13

The outcome is the symmetric growth rate of firm employment between 2008 and 2012, calculated

using the database Dafne by Bureau van Dijk.

I calculate leave-out means to test for spillovers at the level of two groups: product markets and

regions. The share of other firms with a Commerzbank relationship (leave-out mean) in the product

13Bank relationships are available for 112,344 firms. German firms and banks usually form long-lasting relation-
ships, as only 1.7% of firms add a new bank per year (Dwenger, Fossen, and Simmler 2015). This system of relation-
ship banking facilitates credit provision during good times, but makes it more difficult to access credit when the bank
cuts lending. Employment growth and the full set of controls (age, export and import shares, and industry) is available
for 45,252 firms, 26% of which had a relationship to Commerzbank in 2006.
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market is xs(i) and the share in the region is xr(i). Regions are defined as administrative counties

(Kreise) where firms are located. Product markets are defined as industry cells (at the level of

two-digit industries in the German WZ classification) for tradable firms and industry-region cells

for nontradable firms (since they sell locally).14

For the purpose of this paper, I take as starting point that firms with a relationship to Com-

merzbank experienced an exogenous shock after Commerzbank’s lending cut. I therefore take as

given the identification assumption, which is that direct treatment status as well as product market

and region leave-out means are uncorrelated with other shocks hitting firms. Detailed arguments

in favor of this assumption are presented in the above-cited papers.

6.2 Bias due to multiple potential spillovers

I begin with an analysis that an economist interested in product markets might conduct. Theory

suggests that firms may benefit from increased market share when firms in the same product market

are treated, but may also suffer from lower technological spillovers (Greenstone, Hornbeck, and

Moretti 2010; Bloom, Schankerman, and Van Reenen 2013; Giroud et al. 2021). To test the net

effect of these opposing channels, I regress firm employment growth between 2008 and 2012 on

direct treatment status and the product market leave-out mean. The coefficients on both direct

treatment and market leave-out mean are statistically significant, negative, and of equal magnitude

(Table 5, column 1). This suggests that the spillover is as large as the direct effect in a market

in which all firms are treated. Taken at face value, the finding supports theoretical models where

reduced technological spillovers play an important role in amplifying crises.

Economic theory suggests that there may be other spillovers, however. At the regional level,

the sign of the spillover is also theoretically ambiguous. Firms may suffer from reductions in local

demand and agglomeration forces when firms in the same region are treated, but may benefit from

lower local wages (Ellison, Glaeser, and Kerr 2010; Moretti 2010; Mian and Sufi 2014; Giroud and

14Following Mian and Sufi (2014), I classify an industry as tradable if it exports at least US$10,000 per worker,
US$500 million in total, or if the industry’s regional Herfindahl index is in the top quartile (using U.S. industry data).
The Herfindahl criterion uses the fact that tradable industries are geographically concentrated because they do not need
to produce where they sell.
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Mueller 2017, 2019). Including the regional leave-out mean in the specification strongly changes

the conclusions. The estimated market spillover shrinks toward zero and becomes statistically

insignificant (column 2). The estimated regional spillover is large and significant, consistent with

models that include strong local demand and agglomeration effects, but inconsistent with large

spillovers through product markets.

These findings highlight that a specification testing only for the market spillover leads re-

searchers to misinterpret spillover forces. Consistent with the earlier conceptual discussion, spillover

estimates are misleading if a relevant spillover is not included in the specification. Unlike in the

case of standard omitted variable bias, such bias can arise even if the different leave-out means

are uncorrelated. This implies that researchers should include all potential spillover forces in their

specification, even when they are orthogonal to the leave-out mean of interest.

However, this poses practical difficulties. Many group connections are not reported. For in-

stance, the data used here do not include information on whether firms use common inputs. Di-

rectly treated firms may generate spillovers onto other firms that use common inputs. The regional

spillover estimate may be biased because the specification does not consider spillovers among

common input users.

To get around this difficulty, researchers can test for heterogeneous spillover effects based

on theory. Regional models predict that nontradable producers and innovative firms with high

R&D are strongly affected by local shocks, whereas other firms are not (Jaffe, Trajtenberg, and

Henderson 1993; Henderson 2003). If regional spillovers are present in equal measure among all

types of firms, it is likely that the estimates are mechanically biased. However, if regional spillovers

are zero for firms in tradable and low-R&D sectors, as theory predicts, spillover estimates are not

driven by a generic mechanical bias. Splitting the sample, I find that the regional spillover is

significant and large for nontradable and high R&D sectors (Table 5, column 3), but it is small

and insignificant for tradable and low-R&D sectors (column 4). This suggest that the regional

spillover is not an artifact of mechanical bias. In general, identifying a placebo category of firms,

where spillovers should be zero, is a useful way for researchers to ensure that spillovers are not
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mechanically biased.

6.3 Bias due to measurement error

Next, I explore the impact of measurement error. Both spillover and direct effects are significant

in a specification without measurement error. The ratio of spillover to direct effect is 4.6 (Table 6,

column 1). Direct treatment status is a binary variable in this application, so I add measurement

error by misclassifying a random subset of the sample: 5% of observations are misclassified with

low measurement error; 10% with medium; and 30% with high. I calculate the regional leave-out

mean based on the mismeasured direct treatment status, as researchers in practice would.

The estimated ratio of spillover to direct effect rises with the magnitude of measurement error,

from 6.7 with low error to 28.4 with high error (columns 2-4). These findings show that the

intuition derived from the simulations has practical relevance. Measurement error attenuates the

direct effect, so part of the direct effect falsely loads onto the spillover coefficient. In fact, with

high error, the direct coefficient becomes insignificant and close to zero (column 4). Researchers

using mismeasured data would erroneously conclude that local general equilibrium forces account

for essentially all of the impact of a shock on a region.

Researchers can explore heterogeneous effects based on theory to test whether mechanical bias

drives the spillover estimate. As above, I split the sample by the degree to which firms should

be affected by local spillovers. With high measurement error, I find that spillovers are large and

significant for both types of firms (columns 5 and 6). This finding should raise concern among

researchers testing for regional spillovers. It suggests that mechanical bias plagues the estimates

and that results are not driven by the theoretical forces described in urban models. Finding an

appropriate instrument is one potential avenue to solving the issue. In the case of classical mea-

surement error, any other variable that measures the same treatment would be an option, even if

this instrument is also measured with error. In the absence of an instrument and heterogeneity tests,

researchers should interpret spillover estimates with caution.
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6.4 Magnitude and policy implications of spillover estimates

The results suggest that an untreated firm in a median region (with 24% of other firms treated)

grew by 2.7 percentage points less solely because of regional spillovers (Table 5, column 2). The

spillover effect in the median region is of equal magnitude to the direct effect, which is also esti-

mated at 2.7 percentage points. Spillovers thus played a first-order role in the regional impact of

the lending cut.

I also calculate how spillovers affected the number of jobs. To convert the estimated percent-

age changes into job growth, I split the sample into four firm size bins (1–49, 50–249, 250–999,

and over 1,000 employees) and record the average direct treatment and leave-out means in each

size bin.15 I then plug these average numbers into Equations (9) and (10), following the method

described in Section 3. The calculation shows that the total regional effect reduced job growth by

roughly 10 jobs at the average firm, whereas the direct effect reduced job growth by roughly 3 jobs

at the average firm. Hence, 30% of the total effect on jobs was due to direct effects and 70% due

to spillovers.

Spillover estimates can be useful in the analysis of government policy. I calculate the dollar

multiplier as the total effect on jobs relative to the dollar spending required to offset the direct

effects of the lending cut (which is equal to M in the notation used in Section 3). The average firm

lost 0.47 million euro in bank debt due to the direct effects of the lending cut.16 The total regional

effect on the average firm was 10 jobs. This implies that a government policy that provides 0.47

million euro in debt to the average firm increases average job growth in the region by 10 jobs.

Converting these figures suggests that 100,000 euro in debt increases average regional job growth

15Average direct treatment increases with firm size, as it is 0.21 in the first bin (average firm size of 15 employees),
0.37 in the second (104 employees), 0.47 in the third (482 employees), and 0.57 in the largest (7,950 employees).
Much of this correlation is driven by the fact that large firms are mechanically more likely to have more banks. In
contrast and unsurprisingly, the average leave-out mean was relatively constant, lying between 0.23 and 0.26 for all
groups.

16To get this figure, note that table 4, column 3 of Huber (2018) shows that the bank debt effect on the average
treated firm is 10.3 percentage points. Average bank debt is 3,798,000 euro in the first bin, 6,883,000 euro in the
second, 27,915,000 euro in the third, and 228,838,000 euro in the largest. Multiplying average bank debt in each bin
with the fraction treated in each bin and taking a weighted average over bins gives the average euro effect on bank
debt.
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by 2.1 jobs and US$100,000 by 1.4 jobs (at the average 2008 exchange rate). In contrast, the direct

effect on its own would imply that US$100,000 in debt generates only 0.4 jobs.

Note that separate estimates of direct and spillover effects are key for this type of policy anal-

ysis. We need an estimate of the direct effect on bank debt to measure the funds required to offset

the initial shock to treated firms. And then we need to know the sum of direct and spillover effects

on employment to get the regional impact. If we only knew the total impact on bank debt, we could

not evaluate a policy targeted at directly treated firms. And if we only knew the direct employment

effect, we would significantly understate the benefit of the policy by ignoring the large spillovers.

It is instructive to compare these estimates to the literature on fiscal stimulus, which often an-

alyzes the effect of fiscal spending on job-years. Commerzbank’s lending cut hit firms hardest in

2009 and the estimates in this paper are growth rates from 2008 to 2012. Depending on when

jobs were lost, this suggests that the effect on job growth needs to be scaled up by a factor of

roughly two or three to match job-years, resulting in job-year estimates of roughly 2.8 to 4.2 per

US$100,000. In comparison, the regional impact of the 2009 American Recovery and Reinvest-

ment Act, averaged across studies, was 2.1 jobs per US$100,000 of stimulus (Chodorow-Reich

2019). However, in contrast to fiscal stimulus, the government would recoup most funds lent to

Commerzbank’s borrowers in subsequent years, because firm delinquencies typically remain be-

low 20% even in severe recessions. This makes such a lending policy relatively efficient from a

net present value perspective.

7 Further Examples of Spillover Estimation

I describe examples for how researchers can directly estimate spillovers and overcome mechanical

bias, using shocks commonly studied in the literature.
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7.1 Spillovers among firms

7.1.1 Relevant spillovers after financing shocks

Many papers investigate how shocks to the supply of financial capital affect firms. These shocks

may be lending cuts by banks, which arise unexpectedly and for reasons exogenous to borrowers’

growth, as in the application above. They also include quasi-random access to government grants

(e.g., Kerr and Nanda 2015; Howell 2017) and changes in firms’ collateral values (e.g., Gan 2007;

Chaney, Sraer, and Thesmar 2012). Researchers studying such shocks often estimate the direct

effect on individual firms; that is, how firm performance changes following a direct financing

shock relative to similar firms whose financing did not change.

To shed light on the propagation of financing shocks and to understand effects at higher levels

of aggregation, researchers can directly estimate spillovers. Researchers’ aims and motivations

determine which types of spillovers are to be estimated. Some researchers may want to inform

practical considerations of policy makers and firm managers. For instance, regional policy makers

may like to know how entire regional economies evolve after financing shocks, while antitrust

authorities and firm managers may wonder how product market competitors are affected. The

leave-out means to estimate such spillovers are relatively easy to construct because region and

product sector are often directly observed.17

Some researchers may be interested in testing general equilibrium models, for example, predic-

tions about the strength of knowledge spillovers or about Keynesian demand spillovers on product

markets (i.e., employees of affected firms earn and consume more). To test knowledge spillovers,

researchers need to form groups of firms that operate in the same technology space and may ben-

efit from knowledge spillovers (e.g., see the method in Bloom, Schankerman, and Van Reenen

2013). To test demand effects, researchers need to observe where employees of directly affected

firms purchase products and then construct leave-out means for this group of “demand-dependent”

firms. Ideally, this approach requires observing where employees of different firms shop (as in An-

17Of course, researchers need to ensure that variation across regions and product markets is credibly exogenous.
Shift-share instruments (as in Greenstone, Mas, and Nguyen 2020) or historical variation (as in Huber 2018) may be
helpful avenues to test group-level exogeneity.
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dersen et al. 2022). If such data are not available, researchers can identify a subgroup of demand-

dependent firms by focusing on producers of nontradable goods operating in the vicinity of directly

affected firms (Mian and Sufi 2014; Huber 2018; Giroud and Mueller 2019).

Of particular interest in the context of financing shocks are spillovers operating through the

banking system. After a positive financing shock, directly affected firms may be more likely to

repay existing loans, thereby strengthening the balance sheet of their banks. This, in turn, can

increase lending by banks with directly affected borrowers. Researchers can estimate this spillover

channel by constructing a leave-out mean at the firm level, namely, the share of directly affected

borrowers at the firms’ relationship banks. If data on banking relationships are not available,

researchers can rely on the fact that banking relationships of small firms are mostly local. A proxy

leave-out mean to capture local banking spillovers could be the weighted average treatment status

of small firms in the area, where weights are the total bank debt of a firm (relative to other small

firms in the region).

7.1.2 Potential mechanical biases after financing shocks.

Mechanical biases likely play a role when researchers estimate spillovers after financing shocks.

First, there exist multiple spillover types, as the discussion above shows. Second, measurement

error may be a problem. Banking relationships and collateral value are often imperfectly measured,

as it is unclear which preexisting lending relationships and which pieces of collateral actually

influence firms’ credit supply. Third, nonlinear direct effects may be an issue. Small changes in

credit are easy to compensate, whereas large changes can have large effects (e.g., Huber 2018).

Similarly, collateral may only matter once firms hit a binding constraint.

To investigate these issues, one may find heterogeneity tests inspired by theoretical models

useful. To be concrete, consider the following heterogeneity tests for the spillover types discussed

above. Theory predicts that regional spillovers are larger among nontradable and high-innovation

firms; product market spillovers among firms with less market power; household demand spillovers

among firms with larger dependence on consumer-facing sales (as opposed to firm-to-firm sales);
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technology spillovers among firms in high-innovation sectors; and banking spillovers among firms

with high leverage and dependence on external credit. To overcome potential bias from multiple

spillover types, researchers should construct as many leave-out means (or proxies) as possible to

test which spillover really drives the estimates.

7.1.3 Spillovers and potential biases after managerial shocks.

Of course, any firm-level shock that generates a direct effect may also generate spillovers. As ad-

ditional example, consider shocks to firm managers, such as managerial turnover or compensation

shocks (Jenter, Matveyev, and Roth 2018; Edmans, Gabaix, and Jenter 2017; Huber, Lindenthal,

and Waldinger 2021). Apart from the spillover channels discussed so far, spillovers onto firms

in the same labor market are more relevant after managerial shocks, whereas spillovers through

lenders are likely less important than for financing shocks. Researchers can construct sector-by-

country groups to proxy for managerial labor markets. Measurement error and nonlinearities are

less of a problem in these cases (at least for large firms in which manager identities and compen-

sation are public information), but multiple spillovers remain a concern.

7.2 Spillovers among households

7.2.1 Spillovers after borrowing and consumption shocks.

Several studies find that shocks to housing wealth affect household borrowing and consumption.

Variation at the household level comes from idiosyncratic fluctuations in collateral values and

house prices, either induced by price regulation or predetermined mortgage choices (e.g., Leth-

Petersen 2010; DeFusco 2018; Cloyne et al. 2019). Similarly, financial education programs that

facilitate household access to loans can raise borrowing and consumption (e.g., education about

student loan applications, as in Mueller and Yannelis 2022).

Household borrowing may generate spillovers onto other households through the health of

lenders. On the one hand, greater lending may raise lender profits, thereby strengthen lenders’

balance sheets, and improve loan conditions to other household borrowers. On the other hand,
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lenders may suffer more delinquencies when highly leveraged borrowers enter the market, which

can worsen loan conditions. To estimate this potential spillover, researchers can construct a leave-

out mean based on the share of borrowers at a household’s set of potential lenders that are directly

affected by the borrowing shock. If the set of potential lenders is not directly observed, researchers

can construct proxies using lenders with local branches and with remote/online services provided

in the region.

Household consumption generates spillovers onto customer-facing firms and their employees.

This type of spillover is generated by the same economic mechanism as the firm-level spillover

on “demand-dependent” firms described in Section 7.1. Researchers can construct similar proxies

as in that section to identify other households that may benefit from an increase in consumption

by directly affected households (e.g., employees of local nontradable firms). Relatedly, there may

be spillovers in the local labor market, as wealth effects due to house prices reduce household

labor supply, raising wages to the benefit of local workers. These labor market spillovers can be

estimated using a leave-out mean for all employees employed in the same labor market.

7.2.2 Potential mechanical biases after borrowing and consumption shocks.

Access to financial education can in principle be well measured, but house prices and collateral

values are difficult to observe accurately, making measurement error a challenge. There are also

nonlinear effects in household responses to house prices, as increases in house prices raise borrow-

ing, but decreases do not reduce borrowing (Cloyne et al. 2019). To detect whether measurement

error and nonlinearities play a role, researchers can conduct heterogeneity tests tailored to the

spillover of interest. Specifically, spillovers through lenders affect households with low liquidity

and asset holdings more strongly; demand spillovers have larger effects on households working in

consumer-facing sectors; and labor market spillovers matter more for working-age individuals. As

usual, researchers can explore bias due to multiple spillover groups by measuring leave-out means

for all spillover types and can overcome bias due to nonlinearities using flexible functional forms.
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7.3 Spillovers among regions

7.3.1 Spillovers and potential biases after banking deregulation.

A large literature shows that U.S. state-level banking deregulation improved real economic out-

comes (starting with Hubbard and Palia 1995 and Jayaratne and Strahan 1996, reviewed by Berger,

Molyneux, and Wilson 2020). While researchers have established direct effects on deregulating

states themselves, there exists less work on how deregulation in one state may have affected other

states. A likely spillover channel is through trade. Researchers can construct groups of states that

trade intensely with each other (e.g., using the Commodity Flow Survey) and construct leave-out

means at the level of state groups. A further relevant spillover channel is through labor markets.

Researchers can group states that experience significant cross-state labor flows to measure leave-

out means.

Researchers should test whether states with larger dependence on cross-state trade and cross-

state migration are more affected by these spillovers. If there is little heterogeneity, spillovers may

be driven by omitted spillover types. Since the deregulation episodes are well documented and

mostly take the form of binary treatment values, measurement error is less likely to be a problem

in these settings.

7.3.2 Spillovers and potential biases after fiscal stimulus.

Another commonly studied regional shock is fiscal stimulus (for a review, see Chodorow-Reich

2019). Cross-regional spillovers through trade and labor markets likely play a role, as in the case

of banking deregulation. These can be estimated by forming groups of states connected through

trade and labor flows.

A unique feature of fiscal stimulus is that there may be exogenous variation at both the state

and the country levels (as discussed in Ramey 2019). For instance, wars lead the U.S. govern-

ment to increase defense spending, which has heterogeneous effects across states depending on

the predetermined locations of military production. Whether there truly is exogenous variation in
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aggregate fiscal stimulus is an active debate in the literature. Here, my aim is not to comment on

this debate, but to point out that, in principle, researchers can use country-level variation in a given

shock to directly estimate a spillover at the country level.18

In the case of fiscal stimulus, researchers would need to regress a state-level outcome on ex-

ogenous spending in the state itself as well as the leave-out mean of exogenous spending in all

other states. The regression could control for state fixed effects (to absorb time-invariant variation

across states), but not for time fixed effects (as country-level stimulus only varies across time).

The coefficient for the leave-out mean would capture the country-level spillover effect of raising

stimulus in other states. In fact, Conley et al. (2021) carries out a spillover estimation in this spirit,

using state- and country-level variation in defense spending induced by geopolitical shocks.

More generally, whenever researchers can identify a source of variation that is exogenous at the

country level as well as at a lower level of aggregation, they can estimate country-level spillovers.

Country-level variation may stem from monetary policy abroad (Jiménez et al. 2012), large politi-

cal upheavals (Fuchs-Schündeln 2008), or idiosyncratic policy decisions (Romer and Romer 2004,

2010).

8 Conclusion

Large-scale macroeconomic and financial shocks affect firms and households through many com-

plex spillover channels. By directly estimating spillovers, researchers can test which general equi-

librium effects need to feature in models and how empirical estimates from one level of aggregation

can inform other levels of aggregation.

Direct estimation of spillovers requires careful implementation. Spillover estimates suffer from

distinct sources of mechanical bias that are not sufficiently discussed in applied research. For ex-

ample, spillover estimates can be of the wrong sign, large, and statistically significant if additional

spillover types operate through channels outside of the empirical model. Measurement error and

nonlinear direct effects can lead to large and significant spillover estimates even if the true model

18Macroeconomists sometimes refer to a country-level spillover as “missing intercept” (Wolf 2021).
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contains zero spillovers.

Mechanical biases are particularly concerning for researchers studying large-scale financial and

macroeconomic shocks because these settings feature many types of spillover channels, nonlinear

effects are common, and measurement of shocks can be difficult. Using an application to a real-

world credit cut, I highlight that mechanical bias can be large in a real-world setting. Researchers

may form completely erroneous judgments about which spillover channels are important, for ex-

ample, by concluding that there are large sectoral spillovers when, in fact, true sectoral spillovers

are zero and regional spillovers are large.

Fortunately, several practical tools allow researchers to detect and overcome mechanical bias.

Testing for heterogeneous effects, flexible functional forms, and instrumental variables can over-

come the problems. The examples discussed in the final section of the paper provide practical

guidance to researchers interested in directly estimating spillovers.
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Tables

Table 1: Testing for the wrong spillover biases estimates

(1) (2) (3) (4)

Coefficient for xi 1.626*** 0.999*** 0.995*** 0.998***
(true coefficient = 1) (0.059) (0.008) (0.037) (0.012)

Coefficient for xs(i) -0.530*** 0.001 -0.012 0.004
(true coefficient = 0) (0.051) (0.009) (0.127) (0.033)

Coefficient for xr(i) 1.000***
(true coefficient = 1) (0.009)

Group-level variation Systematic Random
Estimator OLS OLS IV OLS

The variable xi is the direct treatment status of firm i, which is in sector s(i) and region r(i); and xs(i) and xr(i) are the average
treatment status of all other firms in s(i) and r(i), respectively, apart from firm i (leave-out means). The IV specification in column
3 instruments for xi and xs(i) using zi and zs(i). Systematic variation means that us(i) and ur(i) (from Equation (7)) are lognormally
distributed with a mean of zero and a standard deviation of one. Random variation indicates that us(i) and ur(i) are zero for every
firm. The reported coefficients and standard errors are averaged over 100 simulations.
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Table 2: Testing for just one type of spillover biases estimates

(1) (2) (3) (4)

Coefficient for xi 1.626*** 0.995*** 0.999*** 0.998***
(true coefficient = 1) (0.059) (0.037) (0.008) (0.012)

Coefficient for xs(i) 0.470*** 0.988*** 1.001*** 1.004***
(true coefficient = 1) (0.051) (0.127) (0.009) (0.033)

Coefficient for xr(i) 1.000*** 0.999***
(true coefficient = 1) (0.009) (0.009)

Group-level variation Systematic Random
Estimator OLS IV OLS OLS

The variable xi is the direct treatment status of firm i, which is in sector s(i) and region r(i); and xs(i) and xr(i) are the average
treatment status of all other firms in s(i) and r(i), respectively, apart from firm i (leave-out means). The IV specification in column
2 instrument for xi and xs(i) using zi and zs(i). Systematic variation means that us(i) and ur(i) (from Equation (7)) are lognormally
distributed with a mean of zero and a standard deviation of one. Random variation indicates that us(i) and ur(i) are zero for every
firm. The reported coefficients and standard errors are averaged over 100 simulations.
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Table 3: Mismeasurement due to classical error biases spillover estimates

A: Specifications with zero true spillover effect
(1) (2) (3) (4) (5)

Coefficient for x∗i 0.999*** 0.863*** 0.754*** 0.469*** 1.000***
(true coefficient = 1) (0.009) (0.010) (0.010) (0.009) (0.029)

Coefficient for xr(i)
∗ -0.000 0.129*** 0.229*** 0.474*** 0.001

(true coefficient = 0) (0.011) (0.012) (0.013) (0.019) (0.103)

Measurement error None Low Medium High High
Estimator OLS OLS OLS OLS IV

B: Specifications with true spillover effect
(1) (2)

Coefficient for x∗i 0.521*** 0.700***
(true coefficient = 1) (0.009) (0.011)

Coefficient for xr(i)
∗ 1.365*** 0.693***

(true coefficient = 1) (0.032) (0.045)

Measurement error High High
Estimator OLS OLS
Group-level variation Systematic Random

The variable xi is the direct treatment status of firm i, which is in sector s(i) and region r(i); and xr(i) is the average treatment status
of all other firms in r(i), apart from firm i (leave-out means). An asterisk indicates that the variable is observed and may contain
measurement error. The signal-to-total-variance ratio of xi is 95% for low measurement error, 90% for medium measurement
error, and 70% for high measurement error. The IV specification in panel A, column 5 instruments for x∗i and xr(i)

∗ using zi and
zr(i). Systematic variation means that us(i) and ur(i) (from Equation (7)) are lognormally distributed with a mean of zero and a
standard deviation of one. Random variation indicates that us(i) and ur(i) are zero for every firm. The reported coefficients and
standard errors are averaged over 100 simulations.
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Table 5: Application: Testing for the wrong spillover

(1) (2) (3) (4)

Coefficient for xi -0.030*** -0.027*** -0.031** -0.026***
(0.007) (0.007) (0.013) (0.009)

Coefficient for xs(i) -0.030* -0.015 -0.045 -0.007
(0.018) (0.018) (0.031) (0.024)

Coefficient for xr(i) -0.114** -0.213*** -0.067
(0.051) (0.077) (0.055)

Sectors in sample All sectors Nontradable and Tradable and
high R&D low R&D

Observations 45,252 45,252 14,810 30,442

The variable xi is the direct treatment status of firm i, which is in sector s(i) and region r(i); and xs(i) and xr(i) are the average
treatment status of all other firms in s(i) and r(i), respectively, apart from firm i (leave-out means). All specifications control
for firm log age, export share (fraction of exports out of total revenue), import share (fraction of imports out of total costs), and
fixed effects for four firm size bins (1–49, 50–249, 250–999, and over 1,000 employees), industry fixed effects at the level of the
one-digit WZ classification, and a fixed effect for firms in the former GDR. Standard errors are clustered by region.
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Table 6: Application: Measurement error

(1) (2) (3) (4) (5) (6)

Coefficient for x∗i -0.027*** -0.023*** -0.024*** -0.009 -0.021** -0.004
(0.007) (0.006) (0.006) (0.006) (0.010) (0.007)

Coefficient for xr(i)
∗ -0.123** -0.155*** -0.160*** -0.256*** -0.346*** -0.214**

(0.050) (0.054) (0.058) (0.086) (0.128) (0.094)

Measurement error None Low Medium High High High
Sectors in sample All sectors Nontradable and Tradable and

high R&D low R&D
Observations 45,252 45,252 45,252 45,252 14,810 30,442

The variable x∗i is the observed direct treatment status of firm i in region r(i); and xr(i)
∗ is the average observed treatment status of

all other firms in r(i), apart from firm i (leave-out means). The binary variable is misclassified for a random 5% of observations in
the case of low, 10% in the case of medium, and 30% in the case of high measurement error. All specifications control for firm log
age, export share (fraction of exports out of total revenue), import share (fraction of imports out of total costs) and fixed effects
for four firm size bins (1–49, 50–249, 250–999, and over 1,000 employees), industry fixed effects at the level of the one-digit WZ
classification, and a fixed effect for firms in the former GDR. Standard errors are clustered at the regional level.
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Internet Appendix

Appendix A Estimating Spillover Effects Through Networks

The estimation issues studied in the paper are relevant for researchers using variation at the indi-

vidual and group level to estimate spillovers. In this section, I show that similar issues apply to

the estimation of spillover effects through networks. Network analysis requires slightly different

notation, but the intuition is similar. I then explicitly show how measurement error and nonlinear

direct effects can bias the estimates of network spillovers.

Appendix A.1 Setup of a Network

Researchers often study how networks amplify shocks. For instance, an active literature focuses

on the transmission of firm-level shocks to other firms, through production or financial linkages

(Barrot and Sauvagnat 2016; Boehm, Flaaen, and Pandalai-Nayar 2019; Carvalho and Tahbaz-

Salehi 2019; Carvalho et al. 2021; Tintelnot et al. 2021). For the sake of concreteness, I describe the

following analysis using the language of supply linkages in production networks, but the insights

are more general.

A typical specification to analyze production networks is:

yi = θ xi+δ x(i)+ εi, (A1)

where yi is a firm-level outcome and xi is the direct treatment status of firm i. The average treatment

status of firms that are direct suppliers to firm i is:

x(i) =
∑
j 6=i

(
x j ·1{ j supplies to i}

)
Ni

, (A2)

where 1{ j supplies to i} indicates whether firm j is a supplier to firm i. The number of suppliers

to firm i is Ni. In the general network case and in all simulations below, links are directed, so that

A1



a link from j to i ( j supplies i) does not imply a link from i to j.A1

The key assumption is how direct treatment status is determined. I specify that:

xi = ri +∑
j 6=i

(
r j ·1{ j supplies to i}

)
+ui. (A3)

The first term ri is a random factor associated with firm i. The second term is the sum of all factors

associated with the suppliers to firm i. The third term ui is a random error. The variables ri,εi,and

ui are uncorrelated, and each component is independently distributed across firms.

The second term implies that the treatment status of each firm is correlated with the treatment

status of its suppliers. Such correlated treatment status occurs naturally if the creation of supply

links is correlated with the process determining treatment status. For instance, if firms linked to

the same supplier happen to be located in the same region (as in the case of sectoral clustering) and

if treatment status is regionally concentrated (as in the case of natural disasters), then treatment

status can be approximated by Equation (A3). Note that treatment status is still exogenous (i.e.,

uncorrelated with the error term εi in Equation (A1)). Correlated treatment status simply means

that the process determining treatment status is not exogenous to supply links. In experimental

settings, treatment status is less likely to be correlated with suppliers’ treatment status because

researchers can randomize treatment status independently of regional concentration or other types

of clustering.

Appendix A.2 Effects of Measurement Error on Network Spillover Estimates

To highlight the consequences of measurement error in network analysis, I run 100 simulations. In

each simulation, I generate a random network among 500 firms with density 0.002. This implies

that firms have on average one supplier, with a standard deviation of one. I assume that ri is

lognormally distributed with a mean of zero and a standard deviation of one. The error terms εi

and ui are drawn from a normal distribution with a mean of zero and a standard deviation of 0.1.
A1The model in Equation (A1) can be generalized to include not just the treatment status of direct links, but also the

treatment status of second order links (i.e., the treatment status of a supplier’s supplier) and further higher order links
(as in Carvalho et al. 2021). The intuition below also applies to such higher order analyses.
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I generate data where the true direct effect is one (θ = 1) but the network spillover effect is

zero (δ = 0). If treatment status is measured without error, a regression of the firm outcome on xi

and x(i) produces consistent estimates (Table A.I, column 1). However, with measurement error,

the network spillover effect is positive and significant (column 2).A2 The ratio of network spillover

to direct effect is 24%.

The intuitive reason for the bias in the network analysis is similar to above. There is a common

factor in direct treatment status and supplier’s treatment status. The common factor is relatively

stronger, and measurement error is relatively weaker, in the measure of suppliers’ treatment status.

As a result, some of the true direct effect loads onto the spillover estimate.

Table A.I: Estimates of network spillovers are biased under measurement error and nonlinear direct
effects

(1) (2) (3) (4)

Coefficient for x∗i 1.000 0.656 0.411
(true coefficient = 1) (0.001) (0.042) (0.050)

Coefficient for x(i)∗ 0.000 0.158 0.077
(true coefficient = 0) (0.002) (0.036) (0.021)

Coefficient for wi 1.000
(true coefficient = 1) (0.003)

Coefficient for w(i) 0.000
(true coefficient = 0) (0.004)

Measurement error No Yes No No
True direct effects are nonlinear No No Yes: wi = x2

i i f xi > 0

In columns 1 and 2, the true data-generating equation is yi = xi + εi. The variable x∗i is the observed direct treatment
status of firm i and x(i)∗ is the observed average treatment status over all suppliers of firm i. The variables are measured
correctly in columns 1, 3, and 4. The variables are measured with error in column 2, so that the signal-to-total-variance
ratio of xi is 0.7. In columns 3 and 4, the true data-generating equation is yi = wi + εi, where wi = x2

i i f xi > 0 and
wi = 0 i f xi ≤ 0.The reported coefficients and standard errors are averaged over 100 simulations.

A2The specification of measurement error is the same as in Section 5.1 above. Direct treatment status xi can only be
measured with error, such that x∗i = xi+ηi. Measurement error ηi is drawn from a normal distribution with a mean of
zero and a standard deviation of σ . It is uncorrelated with εi,ri, and ui. I set σ so that the signal-to-total variance ratio
equals 0.7.
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Appendix A.3 Effects of Nonlinear Direct Effects on Network Spillover Estimates

The network spillover estimate can also be biased if the true direct effect is nonlinear. To analyze

the impact of nonlinearity, I define:

wi =


x2

i i f xi > 0,

0 otherwise.

Direct treatment status xi is determined as in Equation (A3) above.A3 I assume that the true direct

effect of wi is one (θ = 1) and the network spillover effect is zero (δ = 0), so that the true data-

generating process is given by:

yi = wi+εi. (A4)

If researchers specify the nonlinear relationship between xi and yi correctly, the regression produces

consistent estimates (Table A.I, column 3). But if researchers use linear regressors, as is standard

practice, the estimates are biased and the ratio of network spillover to direct effect is 19% (column

4).

The reason for the bias is, once again, the factor ri that is common to the direct treatment

status of firm i and suppliers’ treatment status. The coefficient for xi estimates a linear direct

effect. Conditional on this linear effect, there remains a nonlinear correlation between suppliers’

treatment status and the outcome yi, induced by the factor ri in suppliers’ treatment status. This

leads to a significant, large, and inconsistent estimate of the network spillover.

A3The random network and other random terms also follow the calibration above. The only difference is that the
mean of the random error ui is negative for the purpose of this section (equal to the negative of the 90th percentile of
the distribution of ri +∑

j 6=i
(r j ·1{ j supplies to i})). If this mean was not negative, almost all observations would have

positive xi and there would not be a nonlinear direct effect of xi and yi.
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Appendix B Converting Percentage Effects into Absolute Changes

Assume that a researcher uses the percentage change in employment as outcome:

4ni

ni
= β xi+γ xr(i)+λ xs(i)+α + εi, (A5)

and wants to calculate the change in the absolute number of jobs driven by spillovers. The firm-

level change in jobs is:

4ni =
4ni

ni
×ni =

(
β xi + γ xr(i)+λ xs(i)+α + εi

)
×ni, (A6)

where the second equality comes from inserting Equation (A5).

Appendix B.1 Conversion if Firm Size Is Symmetric

Under the assumption that all firms in a region are of roughly equal size before treatment, ni ≈ n,

it is easy to take region-level averages of Equation (A6) to arrive at an approximate equation for

the change in jobs:

4n
r(i) ≈

(
(β + γ) xr(i)+λ xs(i)

r(i)+α + ε
r(i)
)
×n,

The total effect on jobs in the region is then:

Total E f f ect =
d4ni

r(i)

dxr(i)
≈ (β + γ)×n,

whereas the direct effect, in the absence of any regional spillover effects, is:

Direct E f f ect =
d4ni

r(i)

dxr(i)
| (γ = 0)≈ β ×n.

The equalities are approximate because they rely on the assumption that firms are roughly evenly

sized. In the symmetric case, the conversion to jobs has no effect on ratios, since the scaling factor
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n cancels out. The share of the number of jobs due to direct effects remains β

β+γ
and the share due

to spillovers γ

β+γ
.

Appendix B.2 Conversion if Firm Size Varies

If treatment varies with firm size, it is more accurate to calculate the effect on jobs separately for

different parts of the firm size distribution. To do so, assume that all firms in a given size bin k are

of roughly equal size before treatment, so that ni ≈ nk for all firms i in size bin k. Then average

Equation (A6) across all firms in region r(i) and size bin k to get the bin-specific change in jobs:

4n
r(i),k ≈

(
β xr(i),k + γ xr(i)

r(i),k +λ xs(i)
r(i),k +α + ε

r(i),k
)
×nk.

Unlike in the symmetric case, the average direct treatment status of firms and the average regional

leave-out mean are not necessarily equal. Specifically, average treatment status of firms in size bin

k is xr(i),k and the average regional leave-out mean in size bin k (including in the averaging those

firms in other size bins but in the same region) is xr(i)
r(i),k. The average change in the number of

jobs across all firms in region r(i) is then the weighted average of bin-specific changes in jobs:

4n
r(i)

= ∑
k

[
4n

r(i),k×ω
r(i),k

]
,

where ωr(i),k is the fraction of firms in size bin k.

The total regional effect now depends on how treatment differs across different firm size bins.

As a result, treatment is characterized by a vector
−−−→
dxr(i). The vector contains average direct treat-

ment status in each size bin (values of dxr(i),k for each k) and average regional leave-out means in

each size bin (values of dxr(i)
r(i),k for each k).

The total regional effect of treatment is:

Total E f f ect =
d4ni

r(i)

−−−→
dxr(i)

≈∑
k

[(
β dxr(i),k + γ dxr(i)

r(i),k
)
×nk×ω

r(i),k
]
,

whereas the direct effect, in the absence of any regional spillover effects, is:
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Direct E f f ect =
d4ni

r(i)

−−−→
dxr(i)

| (γ = 0)≈∑
k

[
β dxr(i),k×nk×ω

r(i),k
]
.

The ratios of direct and spillover effects now depend on the relative size of treatments affecting

different size bins and cannot be easily simplified.

Since researchers are typically be interested in the effect in a representative region, the region-

specific superscript r(i) can be dropped and averages across the full sample can be used for the

calculation:

Total E f f ect ≈∑
k

[(
β dxk + γ dxr(i)

k
)
× yk×ω

k
]
,

Direct E f f ect ≈∑
k

[
β dxk× yk×ω

k
]
.

Appendix B.3 Example of Conversion

For concreteness, consider a simple example. In each region, there are two size bins (L and M). A

fraction w of firms are in bin L (ωr(i),L = w). Treatment is binary and only firms in the L bin are

directly treated (dxr(i),L = 1 and dxr(i),M = 0). The leave-out mean for M firms is thus simply NL

N−1 ,

whereas the leave-out mean for L firms is NL−1
N−1 . The total effect is composed of the direct effect

and spillovers affecting L firms plus the spillovers affecting M firms:

Total E f f ect ≈
[(

β + γ

(
NL−1
N−1

))
×nL×w

]
+

[
γ

NL

N−1
×nM× (1−w)

]
.

The direct effect affects only L firms:

Direct E f f ect ≈ β ×nL×w.

The setup has so far assumed homogeneous treatment effects across size bins, but the setup here

generalizes to settings where researchers estimate heterogeneous treatment effects across size bins,

i.e., where coefficients β k and γk vary with k.
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Appendix C Derivation of the Bias Due to Measurement Error

The true model is:

yi = βxi+γxr(i)+ εi. (A7)

Direct treatment status xi is measured with error. The observed variables are:

x∗i = xi+ηi = ur(i)+ zi +νi +ηi,

x∗r(i) = xr(i)+ηr(i) = ur(i)+ zr(i)+νr(i)+ηr(i).

I assume that the variables εi, ur(i), zi, and νi are uncorrelated with each other.

The OLS estimator of γ is:

γ̂ =
∑i

(
x∗r(i)− x∗r(i)

)
(yi− yi)∑i

(
x∗i − x∗i

)2−∑i
(
x∗i − x∗i

)
(yi− yi)∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

)
∑i

(
x∗r(i)− x∗r(i)

)2 (
x∗i − x∗i

)2−
(

∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

))2

=
∑i

(
x∗r(i)− x∗r(i)

)(
β (xi− xi)+γ

(
xr(i)− xr(i)

)
+(εi− εi)

)
∑i
(
x∗i − x∗i

)2

∑i

(
x∗r(i)− x∗r(i)

)2 (
x∗i − x∗i

)2−
(

∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

))2

−
∑i
(
x∗i − x∗i

)(
β
(
xi− xr(i)

)
+γ
(
xr(i)− xr(i)

)
+(εi− εi)

)
∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

)
∑i

(
x∗r(i)− x∗r(i)

)2 (
x∗i − x∗i

)2−
(

∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

))2

=
∑i

(
β (xi− xi)

(
x∗r(i)− x∗r(i)

)
+γ
(
xr(i)− xr(i)

)(
x∗r(i)− x∗r(i)

)
+(εi− εi)

(
x∗r(i)− x∗r(i)

))
∑i
(
x∗i − x∗i

)2

∑i

(
x∗r(i)− x∗r(i)

)2 (
x∗i − x∗i

)2−
(

∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

))2

−
∑i
(
β
(
xi− xr(i)

)(
x∗i − x∗i

)
+γ
(
xr(i)− xr(i)

)(
x∗i − x∗i

)
+(εi− εi)

(
x∗i − x∗i

))
∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

)
∑i

(
x∗r(i)− x∗r(i)

)2 (
x∗i − x∗i

)2−
(

∑i

(
x∗r(i)− x∗r(i)

)(
x∗i − x∗i

))2 ,

(A8)

where the first equality is the definition of the OLS estimator with two regressors. The second

equality comes from substituting the true Equation (A7) for yi. The third equality comes from

rearranging terms.
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The probability limit of the OLS estimator is:

plim γ̂ =

(
β Cov

(
xi,x∗r(i)

)
+ γ Cov

(
xr(i),x∗(i)

)
+Cov

(
εi,x∗r(i)

))
V (x∗i )

V
(

x∗r(i)
)

V
(
x∗i
)
−Cov

(
x∗r(i),x

∗
i

)2

−

(
β Cov(xi,x∗i )+ γ Cov

(
xr(i),x∗i

)
+Cov(εi,x∗i )

)
Cov

(
x∗r(i),x

∗
i

)
V
(

x∗r(i)
)

V
(
x∗i
)
−Cov

(
x∗r(i),x

∗
i

)2

=

(
β V
(
ur(i)

)
+ γ

(
V
(
ur(i)

)
+ V (zi)+V (ui)

N−1

))(
V
(
ur(i)

)
+V (zi)+V (ui)+V (ηi)

)
(
V
(
ur(i)

)
+V (zi)+V (ui)+V (ηi)

)(
V
(
ur(i)

)
+ V (zi)+V (ui)+V (ηi)

N−1

)
−V

(
ur(i)

)2

−
(
γ
(
V
(
ur(i)

)
+V (zi)+V (ui)

)
+ γ
(
V
(
ur(i)

)))
V
(
ur(i)

)(
V
(
ur(i)

)
+V (zi)+V (ui)+V (ηi)

)(
V
(
ur(i)

)
+ V (zi)+V (ui)+V (ηi)

N−1

)
−V

(
ur(i)

)2

where the first equality comes from substituting covariances and variances for the probability lim-

its of the individual terms in Equation (A8). The second equality comes from solving for the

covariances and variances. N is the average number of firms per group. Finally, rearranging gives:

plim γ̂ = β

(
N−1

)
V
(
ur(i)

)
V (ηi)

(V (zi)+V (ui)+V (ηi))
2 +NV

(
ur(i)

)
(V (zi)+V (ui)+V (ηi))

+ γ

(
N−1

)
V
(
ur(i)

)
(V (zi)+V (ui)+V (ηi))

(V (zi)+V (ui)+V (ηi))
2 +NV

(
ur(i)

)
(V (zi)+V (ui)+V (ηi))

+ γ
(V (zi)+V (ui))

(
V
(
ur(i)

)
+V (zi)+V (ui)+V (ηi)

)
(V (zi)+V (ui)+V (ηi))

2 +NV
(
ur(i)

)
(V (zi)+V (ui)+V (ηi))

.
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