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1 Introduction

In the last several decades, governments around the world have enacted regulation intended

to improve environmental quality. These protections benefit individuals through improved

health, recreation, and other amenities. However, more stringent regulation of pollution may

impose substantial costs on firms and workers. Understanding the total impact of these

policies is difficult since it requires information on abatement costs and damages together

with a model that captures equilibrium responses, pollution transport across space, and

heterogeneity across sectors and locations.

In this paper, we develop a novel quantitative framework to overcome these challenges

that combines an Eaton and Kortum (2002)-style spatial equilibrium model with a benchmark

integrated assessment model for air pollution (Mendelsohn and Muller, 2013).1 Our model

captures important features in economic geography and what we call physical geography. The

economic geography in the model includes costly trade of goods and imperfectly mobile labor

across locations and between sectors. Physical geography in our model allows for endogenous

emissions and non-uniform atmospheric transport of local air pollution, which non-uniformly

affects local mortality risk and thus local amenities. Accounting for endogenous responses

and spatial transport of pollution is essential for understanding aggregate and distributional

welfare impacts as both mechanisms distribute the costs and benefits of environmental

regulation beyond places directly subject to regulation.

We use the model to study the equilibrium impact of the primary air quality regulation

in the United States: the National Ambient Air Quality Standards (NAAQS) under the

Clean Air Act (CAA). The NAAQS are standards for ambient concentrations of several

criteria pollutants. If criteria air pollution concentrations within a county exceed any of these

standards, the county is out of compliance and designated as in “nonattainment.” Polluting

plants in nonattainment counties must adopt costly abatement technologies and comply with

other burdensome requirements. In our model, emissions are a function of nonattainment

status, which captures the link between environmental regulation, the incentive to reduce

emissions, and firm costs. This allows us to map regulation-induced changes in emissions to

changes in local ambient pollution and local amenities across counties in the United States,

while also accounting for endogenous responses to environmental regulation that drive further

1Holland, Mansur, Muller and Yates (2016) and Holland, Mansur, Muller and Yates (2019) use the same
air quality integrated assessment model to estimate impacts of electric vehicle adoption and second-best
policy design, Muller and Mendelsohn (2009) and Tschofen, Azevedo and Muller (2019) use the model for
environmental economic accounting and to measure mortality damages, while Clay, Jha, Muller and Walsh
(2019) use the model to measure external costs of shipping oil. Our contribution is to combine this same
integrated assessment model with a quantitative spatial equilibrium model that covers the entire economy
and allows for fully endogenous pollution responses.
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changes in emissions, amenities, and prices.

To take the model to data, we estimate the effect of the NAAQS on emissions. To do

this, we leverage quasi-experimental variation stemming from the 1990 CAA amendments,

which increased regulatory scrutiny and costs to polluting firms by introducing a new

class of pollutants under the NAAQS – particulate matter smaller than 10 micrometers in

diameter (PM10) – and scheduling a re-evaluation of the existing nonattainment designations.2

Specifically, we estimate the impact of nonattainment on what we call the regulatory shadow

price of emissions, which is the implicit marginal cost firms face for emitting each of five

particulate matter precursors. We do so by comparing pollutant-specific emissions intensities

before versus after the new nonattainment designations in attainment versus nonattainment

counties. We find that the regulatory shadow price of emitting the five pollutants included

in our model increases by an average of 60 percent with significant heterogeneity across

pollutants.3

We then use our quantitative model to evaluate the impact of different sets of nonattain-

ment designations as well as the first-best emissions pricing policy. In our main counterfactual

experiment, we use the model to calculate the change in welfare, sectoral employment, and

county population under the actual 1997 nonattainment designations relative to a coun-

terfactual scenario in which no county was in nonattainment.4 The results indicate that

nonattainment designations led to a 0.66 percent increase in welfare from improved amenities

through lower fine particulate concentrations and a 0.08 percent decrease from lower real

wages driven by higher prices and lower nominal wages. Overall, welfare increased by 0.57

percent or $40 billion per year (1997 $). In present value terms at a 3 percent discount rate,

total benefits are over $1 trillion.

To understand the forces driving the aggregate effects of the 1997 nonattainment designa-

tions we use the model to decompose the effects across sectors and space. Workers in both

polluting and nonpolluting sectors are better off under the 1997 nonattainment designations,

but to different degrees.5 Workers in the polluting manufacturing sector suffer real wage losses

2Previous work provides reduced form evidence that nonattainment designations make it more costly for
polluting firms to enter, induces exit of incumbent firms, and negatively affects the polluting sectors’
workforce, output, and productivity (Henderson, 1996; Becker and Henderson, 2000; Greenstone, 2002;
Walker, 2013).

3 The five pollutants are ammonia (NH3), nitrogen oxides (NOx), fine particulate matter (PM2.5), sulfur
dioxide (SO2), and volatile organic compounds (VOC). They are all precursors to PM2.5, a subset of the
newly regulated PM10. One reason for heterogeneity in the effect on the regulatory shadow price of emissions
would be heterogeneity in how a given quantity of the precursor pollutants translates into the ultimate
regulated pollutant.

4We use 1997 as the benchmark year since it is just prior to the update of the ozone NAAQS and the
introduction of PM2.5 as a new NAAQS criteria pollutant.

5The heterogeneity is fundamentally driven by mobility costs. In a frictionless world, indirect utility would
be equalized across space and sectors.
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of 0.40 percent, offsetting most of the welfare gains from improved amenities. Nonattainment

reduces demand for manufacturing labor and nominal manufacturing wages. In addition,

higher manufacturing costs under nonattainment raise the price of manufactured goods which

further depresses real wages.

In contrast, workers in the nonpolluting nonmanufacturing sector experience smaller

decreases in real wages and larger increases in amenities, which results in larger welfare gains.

The decrease in real wages is due to two equilibrium forces: the increase in manufactured goods

prices, and the decline in nominal wages from the endogenous reallocation of manufacturing

workers into the nonmanufacturing sector. Nonmanufacturing workers experience larger

amenity gains than manufacturing workers for two reasons. First, nonmanufacturing workers

are more likely to originally be located in counties that went into nonattainment and

experienced the largest amenity gains. Second, nonmanufacturing workers are more likely to

migrate from attainment to nonattainment counties to enjoy improved amenities because

nonattainment designations do not directly negatively affect the nonmanufacturing sector.

The welfare effects of the 1997 nonattainment designations are also unequal across

space. Gains accrue to a small number of high-population, urban counties that went into

nonattainment and experienced improved amenities through reductions in emissions. In these

areas, the effect of better amenities dominates the reduction in real wages. Neighboring

counties – which may be designated as in attainment and in compliance with the NAAQS –

also experienced improved amenities due to avoided atmospheric transportation of pollution.

Places farther from urban centers have smaller welfare effects that may be negative due

to the combination of lower real wages due to in-migration of manufacturing workers from

nonattainment counties and modest improvements in amenities given their substantial distance

from nonattainment-induced emissions reductions.

We also take advantage of the quantitative model to simulate the outcomes under a

counterfactual policy that never occurred: first-best location-differentiated emissions prices.

Implementing first-best emissions pricing would nearly triple welfare gains relative to the

1997 nonattainment designations. The gains are primarily through further improvements in

amenities, but emissions pricing also results in smaller negative effects on real wages than

the 1997 nonattainment designations.

To highlight the importance of allowing for a spatial dimension in a quantitative model,

we simulate the impact of the 1997 nonattainment designations while ignoring the role of

economic and physical geography. This is a model-based analogue to an ideal reduced form

evaluation of the NAAQS where attainment counties are appropriate counterfactuals for

nonattainment counties, and that attainment counties are not affected by nonattainment
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through general equilibrium channels or spatial transport of pollution.6 We find that a

model without economic and physical geography understates the aggregate benefits by 75%,

incorrectly finds that manufacturing workers are worse off in the aggregate, and misses billions

of dollars of gains that accrue to workers in attainment counties.

Finally, we use the model to better understand the specific role of geography in shaping

the aggregate impact and distributional consequences of the NAAQS. The gains and losses

from labor reallocation in some counties can be substantial and the same order of magnitude

as the aggregate effects of regulation. Migration allows workers in the nonpolluting, non-

manufacturing sector to move into nonattainment counties and benefit from the improved

air quality. In addition, migration allows workers in the polluting, manufacturing sector

to move out of nonattainment counties to places with higher wages. Labor reallocation

does impose costs on workers: incumbents in location-sectors with large influxes of labor

are worse off from lower nominal wages and higher local consumption good prices. In the

aggregate, reallocation of labor across sectors and space has little effect. The reallocation of

production through changing trade patterns offsets about a quarter of the regulation-induced

decline in consumption. There is less variation in the effects of trade reallocation across

counties compared to labor reallocation since the welfare impact of changing wages and goods

prices tend to be dominated by the change in the amenity value of pollution. Accounting for

cross-county transportation of pollution explains the majority of the aggregate difference in

welfare gains in a model with geography versus one without. Mitigating cross-county pollution

is a significant component of the total amenity improvement and ignoring how emissions

reductions in one state reduces ambient pollution in another leads to an underestimate

of nonattainment benefits. These results highlight the importance of accounting for both

economic and physical processes when evaluating environmental policy.

Our paper contributes to three main areas of research. First, our work is related to

the recent literature using economic geography models to examine the consequences of

environmental change (Hanlon, 2020; Balboni, 2021; Heblich, Trew and Zylberberg, 2021;

Cruz and Rossi-Hansberg, 2021; Nath, 2021; Rudik, Lyn, Tan and Ortiz-Bobea, 2021). We

add to this literature by studying the impact of environmental regulation. We combine a

benchmark economic geography model with a workhorse air pollution integrated assessment

model which allows us to capture endogenous changes in emissions and how this translates

into changes in local amenities. Our work is most closely related to Aldeco, Barrage and

Turner (2019), who study the global impact of particulate emissions and the equilibrium

6However, our quantitative results show that attainment counties are not proper counterfactuals for nonat-
tainment counties because they experience spillover effects from nonattainment, violating the Stable Unit
Treatment Value Assumption.
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efficacy of policy responses.7 Our finding that welfare gains are concentrated around a few

major cities highlights the role of environmental regulation in improving urban amenities

and the revitalization of American cities in the last few decades (Kahn and Walsh, 2015;

Baum-Snow and Hartley, 2020; Couture and Handbury, 2020).8

Second, we contribute to the literature on the impact of environmental regulation and,

more specifically, the Clean Air Act and NAAQS. On the one hand, the NAAQS have

well-documented air quality and health benefits (Chay et al., 2003; Auffhammer et al., 2009;

Isen et al., 2017) and these benefits are capitalized into housing values and rents (Chay and

Greenstone, 2005; Grainger, 2012; Bento et al., 2015). On the other hand, several papers

document negative effects: on firms due to higher costs and reduced competitiveness; on

workers through lower wages, and increased rates of nonemployment and costly job transitions

(Becker and Henderson, 2000; Greenstone, 2002; Greenstone et al., 2012; Walker, 2013).9

Our paper provides a connection between these two strands of the literature. We develop

a nationwide economic geography model that accounts for the direct costs and benefits of

the NAAQS targeted by partial equilibrium analyses, as well as equilibrium adjustments in

response to improved amenities and lower wages. This allows us to provide a comprehensive,

spatially detailed, and internally consistent evaluation of the NAAQS. We find that equilibrium

responses and geography captured by our model-based approach are critical for understanding

the distribution of welfare impacts. Ignoring these features overestimates costs to workers in

regulated industries, misses pecuniary costs imposed on workers in unregulated sectors, and

underestimates spillover benefits to workers in attainment counties.

We also contribute to research emphasizing general equilibrium responses to environmental

policy. This literature examines the efficiency and incidence of different policies, mostly in

stylized settings (Bovenberg and Goulder, 1996; Goulder, Parry, Williams III and Burtraw,

1999; Fullerton and Heutel, 2007; Bento, Goulder, Jacobsen and Von Haefen, 2009; Fullerton

and Heutel, 2010, 2011; Goulder, Hafstead and Williams III, 2016; Hafstead and Williams III,

2018). Our paper is closely related to Shapiro and Walker (2018), which uses a quantitative

trade model to show that environmental regulation has been the primary cause of the large

decline in emissions from US manufacturing over the last several decades.10 We complement

7In a related line of work, Larson, Liu and Yezer (2012) and Colas and Morehouse (2022) use spatial urban
models linked to models of energy demand to explore the implications of transportation policy and land use
for energy consumption and greenhouse gas pollution.

8See Kyriakopoulou (2021) for a review of the literature on the impact of air pollution in cities.
9There is also a related, hedonic literature valuing air quality and temperature using migration and housing
prices (Bayer et al., 2009; Bajari et al., 2012; Kuminoff et al., 2013; Albouy et al., 2016). In the appendix
we use a similar approach to validate the structure and results of our quantitative model using cross-county
migration flows.

10Earlier empirical work showed that reductions in emissions intensity of manufacturing output, rather
than changes in sectoral scale or composition, were responsible for the vast majority of pollution declines
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this work by focusing on the spatial and sectoral impact of the primary air pollution regulation

in the United States as well as the first-best emissions pricing policy.

The remainder of this paper is organized as follows. The next section provides an overview

of the Clean Air Act with a focus on the 1990 amendments and the institutional details that

inform our methodological choices. Section 3 describes the theoretical framework. Section

4 discusses the data. Section 5 describes our empirical strategy and the estimation results

for the direct effects of nonattainment designations on emissions. Section 6 presents the

quantitative results. Section 7 concludes.

2 Institutional Setting

Originally passed in 1963, the Clean Air Act established several programs to address air

pollution, including research, monitoring, and abatement. Since its implementation, there

have been three major sets of amendments in 1970, 1977, and 1990 to enhance the ability

of the federal and state governments to regulate and restrict emissions. Currie and Walker

(2019) provide an overview of the economic impact of the Clean Air Act in recent decades.

The main air pollution regulations under the Clean Air Act are the National Ambient

Air Quality Standards (NAAQS) introduced as part of the 1970 amendments. The original

NAAQS set federal standards on ambient concentrations for five criteria air pollutants:

ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and total

suspended particulates (TSP). States were required to enforce these standards through their

own abatement programs under the 1970 amendments. States were mandated to regulate

plant-level sources of pollutants in counties found to be in nonattainment – that is, those

counties that violated the standards set for any particular pollutant.

The 1977 amendments introduced additional regulations. After a county is given a

nonattainment designation, a state is required to create a state implementation plan (SIP)

outlining how it will bring that county into attainment. Following approval of a SIP, the

Environmental Protection Agency is empowered to use sanctions as a means of enforcement.

In addition, the 1977 amendments limit entry of new pollution sources in nonattainment

areas and impose costs on existing pollution sources.

Any new or modified source of criteria pollution is mandated to be at the lowest achievable

emissions rate (LAER) in nonattainment counties; by contrast, new or modified sources in

attainment counties are required to use only the best available control technology (BACT).

(Levinson, 2015). In addition, Sieg et al. (2004) examine household willingness to pay for ozone reductions
in Southern California and find that using a general equilibrium rather than partial equilibrium analysis
affects the distribution of benefits across households.
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Existing plants in nonattainment counties must adopt a Reasonably Available Control

Technology (RACT). Despite the absence of uniform standards for these technologies, LAER

is generally acknowledged to be the strictest level of emission reductions under the NAAQS.

In nonattainment counties under LAER, abatement expenditures and total operating costs of

plants tend to be higher (Becker and Henderson, 2001; Becker, 2005). Nonattainment status

also decreases new plant openings and leads plants to move to counties that were historically

in attainment (Henderson, 1996; Becker and Henderson, 2000). This suggests an important

role for spatial reallocation in response to nonattainment.

The most recent amendments in 1990 replaced TSP as a criteria pollutant with particulate

matter with a diameter 10 micrometers or less (PM10), began regulating toxics, introduced

new cap and trade programs, modified gasoline standards, and reviewed nonattainment desig-

nations across air regions (Currie and Walker, 2019). We exploit variation in nonattainment

status due to heightened regulatory scrutiny following passage of these amendments and

their subsequent enforcement (Grainger, 2012; Walker, 2013; Bento et al., 2015). Although

the amendments were passed in 1990, counties newly in nonattainment were only formally

designated in 1991 (United States Federal Register, 1993). We take this timing into account

in our empirical analysis.

3 Model

In this section, we develop a Ricardian model of interregional trade for the United States

in the spirit of Eaton and Kortum (2002).11 In the model there are N locations indexed by

i, j as subscripts, K sectors indexed by k, l as superscripts, and P pollutants indexed by p

as superscripts. When necessary for clarity in expressions with summations, we introduce a

third set of indices to be summed over: n for locations, m for sectors, and q for pollutants.

To quantify the model we use the approximately 3,000 US counties as locations and

two sectors – polluting (manufacturing) and nonpolluting (nonmanufacturing) – that are

defined in Section 4.3 below. We allow for nonemployment to capture potential permanent

transitions out of work. Firms use labor, capital, and emissions as inputs to a Cobb-Douglas

production function. This production structure is isomorphic to one in which the firm uses a

production technology with labor and capital as inputs, emissions as a byproduct, and the

use of an abatement technology for emissions (Copeland and Taylor, 2013). Emissions are

not traded in markets, but firms face a shadow cost on emissions imposed by the prevailing

11We abstract away from offshoring dirty production outside the United States. Previous work indicates that
declining emissions rates in US manufacturing rather than offshoring is responsible for the overall decline
in US manufacturing emissions (Kahn, 2003; Levinson, 2009, 2015; Shapiro and Walker, 2018).
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set of local environmental regulations such as the NAAQS. Labor is imperfectly mobile across

locations and sectors, while capital is perfectly mobile so that the rental rate is equalized

across locations. Differences in the regulatory shadow price of emissions across counties

and sectors affect the allocation of labor and emissions and, hence, the spatial and sectoral

distribution of economic activity. Nonattainment designations affect the regulatory shadow

price of emissions in the polluting sector.

A key assumption in our model is that nonattainment designations are taken to be

exogenous and permanent. This is primarily because of tractability and data availability.

Nonattainment thresholds are relatively complicated and difficult to represent within the

model. For example, a county is designated in nonattainment for NO2 if the 98th percentile

of 1-hour daily maximum concentrations, averaged over 3 years, is above 100 parts per

billion, while the AP3 model restricts us to translating emissions into averages. The

exogeneity assumption precludes us from capturing two types of potentially endogenous

changes to nonattainment. The first is emissions leaking to other counties, increasing these

counties’ pollutant concentrations and putting them into nonattainment. As we show later

we find leakage is relatively small and actually goes in the opposite direction, given our model

structure and calibration. The second is nonattainment-induced emissions reductions bringing

a county back into attainment. Appendix Figure E1 provides evidence that most counties

remain in nonattainment for several years. For example, after the 1990 amendments, more

than half of counties newly in nonattainment were still in nonattainment in 2001, indicating

that nonattainment is often long-lasting.

3.1 Households

There is a mass Ll
j of households in each location j and sector l where the total number of

households is L =
∑N

j=1

∑K
l=0 L

l
j. We call (j, l) location-sector pairs markets. Households

in each market (j, l) maximize a Cobb-Douglas utility function by choosing a single market

(i, k) to work and live, potentially choosing to be nonemployed (k = 0):

U l
j = max

i∈1,...,N,k∈0,...,K
Bk

i δ
lk
ji

K∏

m=1

(
Ckm

i

)αm

.

Households in (i, k) consume a local final sectoral good, Ckm
i , from sector m. The parameter

αm is the expenditure share of sector m where
∑K

m=1 α
m = 1. δlkji ∈ (0, 1] is the cost of

moving from market (j, l) to market (i, k) in consumption terms and Bk
i captures amenities

in location i for sector k workers. The price index in county i for the aggregate Cobb-Douglas
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bundle of final sectoral goods is given by:

Pi ≡

K∏

m=1

(Pm
i /α

m)α
m

where Pm
i is the price index of goods purchased from sector m for final consumption in county

i, defined below. A consumer’s indirect consumption utility V k
i is their real wage if employed,

and is equal to home production bi if nonemployed:12

V k
i =





∏K
m=1

(
Ckm

i

)αm

=
wk

i

Pi
if k = 1, . . . , K

bi if k = 0
(1)

Location-specific amenities Bk
i are determined by a host of local factors including ambient

pollution concentrations. Local ambient pollution ai is a function of emissions in all locations:

ai = Ai(e) where e = (e11, . . . , e
1
N , e

2
1, . . . , e

2
N , . . . , e

P
1 , . . . , e

P
N) is a vector of emissions epj of

pollutant p = 1, . . . , P in location j = 1, . . . , N .13 This setup reflects two features that

are relevant in our empirical setting. First, different emitted pollutants may contribute to

the ultimate formation of ambient pollution ai. For example, ammonia, nitrogen oxides,

sulfur dioxide, and volatile organic compounds are precursors to ambient particulate matter.

Second, emissions can move across counties, and therefore affect ambient concentrations and

amenities in other locations, imposing cross-county externalities.

We specify the function Ai as the atmospheric transportation model in the Air Pollution

Emission Experiments and Policy Version 3 (AP3) model (Muller and Mendelsohn, 2009;

Muller, Mendelsohn and Nordhaus, 2011; Tschofen, Azevedo and Muller, 2019; Clay, Jha,

Muller and Walsh, 2019), a widely used integrated assessment model for measuring the

economic damages from emissions of air pollutants. The atmospheric transportation model

in AP3 simulates how one ton of pollutant p emitted in any county i translates into changes

in ambient concentrations of fine particulate matter (PM2.5) in all counties in the United

States.14 The left panel of Figure 1 provides an example to illustrate the geographic structure

of Ai. The figure shows how one thousand metric tons of emissions of nitrogen oxides, a

PM2.5 precursor, affects nationwide PM2.5 concentrations when emitted in St. Louis. The

figure shows that the effect of emissions on concentrations declines roughly exponentially in

space, significantly increasing concentrations near St. Louis but essentially having no effect

12Home production can be thought of as nonemployment benefits. Here we model it as a consumption utility
payoff for simplicity following Caliendo et al. (2019).

13In this formulation, we focus on a single ambient pollutant. However, it is straightforward to incorporate
multiple types of ambient pollution.

14In AP3 PM2.5 concentrations in a county i are given as a linear combination of emissions from all counties.
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on the West Coast.

Moving from emissions to amenities requires translating changes in concentrations into

consumption-equivalent terms. We do this by drawing on the concentration-damage model in

AP3 that maps changes in local ambient pollution ai into monetized per capita damages di as a

function di = D(ai). This function combines a concentration-mortality risk relationship from

the epidemiology literature with an estimate of the value of a statistical life to put impacts

in dollar terms.15 ,16 We focus on damages caused by mortality from particulate matter

exposure because it accounts for over 90 percent of the estimated damage from pollution

sources that are regulated by the NAAQS. Other pollutants (e.g., ozone) and non-mortality

forms of damage (e.g., hospitalizations, effects on agriculture, and recreation) account for

the remainder (US Environmental Protection Agency, 1999, 2011, p. 7-15). The right panel

of Figure 1 shows how per capita damages would change if the one thousand metric tons

of nitrogen oxides were to be emitted in Los Angeles instead of St. Louis. Gains and losses

are concentrated near the two counties of interest, however there are non-negligible impacts

across the entire United States.

The atmospheric transportation model and concentration-response functions allow us to

express the marginal damage caused by one ton of pollutant p emitted in county j on one

worker in county i in dollar terms as mdpij := ∂di
∂epj

= ∂D(ai)
∂ai

∂Ai(e)
∂epj

. We translate monetized

damages into consumption-equivalent terms by expressing damages as a fraction of real wages

or home production. Specifically, amenities are given by:

Bk
i = B̄i

[
1−

∑N
n=1

∑P
p=1md

p
ine

p
n

V k
i

]
(2)

where B̄i is the baseline level of amenities in the absence of pollution, the second term

captures the reduction in amenities caused by pollution, and we assume that the marginal

damage term mdpin is constant. Since we do not observe home production bi = V 0
i , we

assign V 0
i to be the population-weighted average real wage in location i for the purpose of

15The county-specific concentration-damage relationship in AP3 is a function of baseline mortality rates,
an age-specific dose-response parameter that multiplicatively maps changes in pollution to changes into
age-specific mortality, and the change in pollution. We model prime aged workers in this paper. We allow
for workers to have a different baseline mortality rate depending on the county they live in (e.g., because
of heterogeneity in healthcare quality), but we assume workers have a common pollution dose-response
that is representative of the national age distribution of prime aged individuals in United States in 1997.
We obtain data to construct the national distribution from the 1997 Surveillance, Epidemiology, and End
Results population dataset. We obtain data on county-specific mortality rates of prime aged individuals in
1997 from the Centers for Disease Control and Prevention’s Wonder database. Our approach abstracts
away from how age heterogeneity across counties may generate heterogeneity in the pollution dose-response
and how the distribution of different ages across counties may change in response to changes in pollution.

16Muller and Mendelsohn (2007) provide a detailed description of an earlier version of the model.
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Figure 1: Comparison of PM2.5 concentrations and air quality damages of emissions from St.
Louis and Los Angeles.

Note: The left map shows changes in PM2.5 concentrations caused by one thousand metric tons of nitrogen
oxides emissions in St. Louis County, MO. The units for the change in PM2.5 is micrograms per cubic meter.
The right map shows changes in damages per capita from moving 1000 metric tons of nitrogen oxide emissions
from St. Louis County, MO to Los Angeles County, CA.

computing changes in amenities within the quantitative model.

Labor is mobile across counties and sectors, but moving from (j, l) to (i, k) incurs a utility

cost δlkji ∈ (0, 1] where δlljj = 1 for all j = 1, . . . , N and l = 0, . . . , K.17 Moving costs have a

deterministic component δ̄lkji and an idiosyncratic random component ε:

δlkji = δ̄lkjiε

where ε is drawn from a Fréchet distribution with shape parameter ι:

F (ε) = exp
(
−z−ι

)
. (3)

Larger values of ι imply less dispersion in the distribution of idiosyncratic shocks that

households face when considering different mobility options. Given the Fréchet distribution

for ε, the share of households that move from (j, l) to (i, k) is:

πlk
ji =

(
V k
i B

k
i δ̄

lk
ji

)ι
∑N

n=1

∑K
m=1

(
V m
n Bm

n δ̄
lm
jn

)ι . (4)

A household is more likely to move from (j, l) to (i, k) if (i, k) has higher indirect utility

from consumption and amenities after accounting for moving costs, relative to all other

locations. The value of consumption and amenities in each location will be determined by the

endogenous reallocation of labor and emissions across space. Notice that the denominator is

17Moving costs can be interpreted as capturing actual expenditures for moving locations or jobs as well as
other costs like temporary unemployment (Walker, 2013).
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constant across all potential destinations for origin (j, l), and that then ι can be interpreted

as a migration elasticity that tells us how responsive migration is to a one percent change in

destination (i, k)’s real wage and amenities payoffs, net of bilateral moving costs.

We note two important features of our mobility model. First, its structure captures

endogenous “permanent” changes to location and sectoral employment. A larger ι means

migration is more elastic with respect to real wages or amenities, consistent with a longer

time horizon implicit in our model. Second, it does not capture the option for households to

live in a different location from where they work. This commuting choice problem, standard

in the quantitative urban literature, would provide another margin for households to adjust

to changes in pollution and nonattainment designations.

In Section B of the appendix, we use a version of equation (4) to estimate household

migration responses to nonattainment as a way to validate that labor observes and responds

to nonattainment-induced changes in ambient pollution. First, we show that, conditional on

real wages, households are more likely to move into a county that goes into nonattainment

relative to a county that does not. This suggests that households are responding to the

impact of nonattainment on pollution. Second, we show that this estimate captures the total

reduced form effect of a county’s nonattainment status on its own amenities. Conditional

on real wages, variation in migration captures all of the possible pathways through which

nonattainment status improves local amenities (e.g. improved foliage and visibility from

better air quality). This provides an upper bound on the size of the local amenities’ effect in

our quantitative exercises. Consistent with this intuition, we find the reduced form estimate

is noisy but larger than our quantitative results for amenity improvements.

3.2 Production

Intermediates Competitive intermediate firms use a constant returns to scale Cobb-Douglas

technology to produce goods by combining labor Lk
i (ω), capital K

k
i (ω), and emissions ekpi (ω)

of pollutant p:

qki (ω) = zki (ω)

[
P∏

p=1

(
ekpi (ω)

)ξkp
]
[
(Kk

i (ω))
1−γ(Lk

i (ω))
γ
]1−∑P

p=1
ξkp

where ω ∈ [0, 1] denotes different sector k varieties,18 p = 1, . . . , P indexes different pollutants,

γ ∈ [0, 1] is the labor share of value added, 1− γ is the capital share of value added, zki (ω) is

the productivity of variety ω, and capital is perfectly mobile across space and sectors. The

18Varieties can be thought of as particular kinds of differentiated sectoral goods, while the final sectoral good
used for consumption (described below) is a bundle of these goods.
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parameter ξkp is the sector-specific elasticity for pollutant p which is zero for nonpolluting

sectors. For the polluting sectors, one unit of output generates one unit of emissions subject

to the appropriate normalization of units.19 To simplify the exposition, going forward we

omit ω from the notation whenever the mathematics remain clear.

Emissions from Polluting Intermediate Production In equilibrium, expenditures by

intermediate firms on emissions are a constant share of revenues, ηkpi e
kp
i (ω) = ξkppki (ω)q

k
i (ω),

which we can rearrange to get an expression for equilibrium emissions intensity per unit of

output:

ekpi (ω)

qki (ω)
=
ξkppki (ω)

ηkpi
(5)

where pki (ω) is the price of variety ω, and ηkpi is the exogenously given regulatory shadow

price of emissions faced by firms for pollutant p.20 ηkpi represents the impact of all existing

environmental regulations on the firms’ operating costs. For all ηkpi ≤ ξkppki , we let
ekpi
qki

= 1

since that is the unconstrained emission intensity in the absence of an emission price. We

parameterize ηkpi to be a function of nonattainment status Ni ∈ {0, 1} as well as other

overlapping environmental regulations that disincentivize emissions. Formally, we let:

ηkpi (Ni) = η̄kpi exp
(
βp
ηNi

)

where η̄kpi captures the impact of forces other than nonattainment. We will estimate βp
η ,

which is the effect of entering nonattainment on the emissions price in percentage terms.

Local Sectoral Final Goods A local sectoral final good in location-sector (i, k) is produced

as a constant elasticity of substitution aggregate of intermediate sectoral varieties sourced

19ekpi /qki = 1 implies that we can substitute qki into the right-hand side of the production function and recover
a standard capital-labor input production function. Emissions abatement thus reduces emissions below qki
and acts to reduce output.

20Dropping variety notation, we could alternatively have obtained this expression by equating the marginal
revenue product of emissions of some pollutant p̃ to its marginal cost (regulatory shadow price):

pki z
k
i ξ

kp̃
(
ekp̃i

)ξkp̃−1
[∏P

p 6=p̃

(
ekpi

)ξkp] [
(Kk

i )
1−γ(Lk

i )
γ
]1−∑

P
p=1

ξkp

= ηkp̃i , and then multiplying by ekp̃i . This

alternative expression is convenient because it is also the firm’s optimality condition for abatement. This
makes clear that the marginal abatement cost is just the forgone marginal revenue product of emissions,
and the marginal benefit of abatement is the avoided regulatory shadow price.
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from all locations with elasticity of substitution σk:

Qk
i =

[∫ 1

0

[
q̃ki (ω)

]σk
−1

σk dω

] σk

σk
−1

where q̃ki (ω) is the quantity of variety ω demanded by the final good producer in location-sector

(i, k). The local sectoral aggregate is only used for local consumption so that Ck
i = Qk

i .
21

Productivity of Intermediate Producers For each market, zki (ω) is the productivity

or efficiency of ω, so that productivity varies across producers within a market. Following

Eaton and Kortum (2002), we assume that zki (ω) takes on a Fréchet distribution:

F k
i (z) = exp

(
−T k

i z
−θk

)
(6)

where the shape parameter θk > 1 is the trade elasticity common across all counties and

measures the level heterogeneity in productivity. Smaller values of θk generate more dispersion,

more heterogeneity in productivity, and a greater role for comparative advantage. T k
i measures

fundamental productivity, where higher values increase the probability of larger efficiency

draws zki (ω) and indicates (i, k) has greater absolute advantage.

3.2.1 Prices, Trade, and Market Clearing

The unit price of an input bundle for intermediate firms in market (i, k) is:

cki = Ω

[
P∏

p=1

(
ηkpi

)ξkp
]
[
(rki )

1−γ (wk
i )

γ
]1−∑P

p=1
ξkp

, (7)

where Ω is a constant, rki is the capital rental rate and the assumption of perfect capital

mobility implies that rki = r in all markets (i, k). The cost of producing one unit of

intermediate variety ω is then cki /z
k
i (ω).

Trade costs take the iceberg form, which requires shipping τ kij ≥ 1 units of the good from

county j to county i for one unit to be delivered and we assume that τ ljj = 1 for all j, l. The

final goods producer in market (i, k) procures each variety ω from the cheapest source across

all origin counties, inclusive of trade costs:

pki (ω) = min
j=1,...,N

{
ckj τ

k
ij

zkj (ω)

}
.

21Note that the aggregate is composed of goods procured from all locations so the aggregate only being used
for local consumption does not imply there is no trade.
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The Fréchet distribution assumption for productivity gives us that the price index of the

final sectoral good is:

P k
i = κ1

(
N∑

n=1

T k
n

[
cknτ

k
in

]−θk

)−1/θk

(8)

where κs will denote constants. A transformation of the price index, (P k
i )

−θk
, is called con-

sumer market access (CMAk
i ) and captures county i’s access to cheaper products. Intuitively,

the more productive sellers are (T k
n ), the lower their input bundle costs are (ckn), or the

lower the trade barriers are (τ kin), the greater access consumers in i have to cheaper products.

Bilateral trade flows of sector k goods from j to i is labeled Xk
ij and is given by:

Xk
ij = κ2T

k
j X

k
i

[
ckj τ

k
ij

P k
i

]
−θk

= κ2T
k
j X

k
i

[
ckj τ

k
ij

]
−θk

CMAk
i

(9)

where Xk
i is location i’s total expenditures on sector k goods. Let Y k

j denote total income in

market (j, k). Summing equation (9) over destinations i and recognizing that the left-hand

side is then income in market (j, k) gives:

Y k
j =

N∑

i=1

Xk
ij = κ2

[
ckj
]−θk

T k
j

N∑

i=1

[
τ kij

]
−θk

CMAk
i

Xk
i

︸ ︷︷ ︸
FMAk

j

(10)

where the last term, labeled FMAk
j , is firm market access. Firm market access is analogous

to consumer market access and captures firms’ access to markets with larger buyers (Xk
i ),

lower trade barriers (τ kij), and less stiff competition from other sellers (CMAk
i ). Substituting

equation (10) into equation (8) allows us to express consumer market access as a function of

firm market access:

CMAk
i = κ3

N∑

j=1

(
τ kij

)
−θk

FMAk
j

Y j
k . (11)

These definitions of market access will play a key role in our market access-based approach

to solving the quantitative model (Donaldson and Hornbeck, 2016).

We define trade shares as the fraction of i’s sector k expenditures on j which takes on a
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gravity structure:

λkij =
T k
j

(
ckj τ

k
ij

)
−θk

∑N
n=1 T

k
n

(
ckj τ

k
in

)
−θk

. (12)

where i spends more on sector k goods from j if j is more productive, has lower input costs,

or has lower trade barriers relative to all other counties. Equation (12) also illustrates the

role of the trade elasticity. A larger θk amplifies the role of trade costs and input costs – such

as nonattainment designations – relative to productivity in determining trade flows.

Finally, market clearing requires that labor income in (i, k) is the labor share of total

expenditures on (i, k) goods:

wk
i L

k
i = γ

(
1−

P∑

p=1

ξkp

)
N∑

n=1

Xk
ni. (13)

Equilibrium Definition: Given model primitives T k
i , B̄i, τ

k
ij, δ̄

kl
ij , Ni, η̄

kp
i , and βp

η , an

equilibrium is a vector of wages wk
i , rental rates r, prices P

k
i , emissions ekpi , and labor Lk

i for

i = 1, . . . , N , j = 1, . . . , N , k = 1, . . . , K, l = 1, . . . , K, and p = 1, . . . , P such that equations

(4) through (13) are satisfied.

4 Data

The data for the empirical analysis and quantitative exercises include information on nonat-

tainment status and emissions, the wage bill, employment by sector and total nonemployment,

and geographic and sectoral mobility. We also use new data on trade costs via the highway

network to calculate market access for the quantitative simulations. We collect this informa-

tion for US counties with consistently defined geographic boundaries over our sample period.

Data for our quantitative simulations all correspond to 1997.

4.1 Nonattainment Status

Data on the NAAQS and county nonattainment status come from the US Environmental

Protection Agency Greenbook. The Greenbook reports which counties are in nonattainment

under a given regulatory standard in each year. The data include whether a county is in full

or partial nonattainment under the standards set for O3, NO2, SO2, CO, PM10, and PM2.5.
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We treat full and partial nonattainment status as equivalent when assigning treatment status.

Consistent nonattainment designations are available from 1978 to the present.

4.2 Emissions

Data on emissions come from the National Emissions Inventory (NEI). The NEI reports

emissions of a wide range of pollutants at point sources. We limit our focus to emissions

from the manufacturing sector of ammonia (NH3), nitrogen oxides (NOx), particulate matter

smaller than 2.5 micrometers (PM2.5), sulfur dioxide (SO2), and volatile organic compounds

(VOCs). These are the pollutants that are reported in the NEI and accounted for in the AP3

model as precursors of particulate matter. Our main estimates for effects of nonattainment

on emissions use data in 1990 and between 1996 and 2001. The gap reflects the years in which

NEI data are not available. In Appendix D, we use shorter panels to examine robustness.

4.3 Economic Activity by Sector

We draw on data from the Bureau of Economic Analysis to capture county-level economic

activity by sector. Specifically, we use information on payroll and employment by sector.

We aggregate the sector-level data to groups that encompass polluting and nonpolluting

sectors. For the polluting sector, we focus on manufacturing and exclude utilities. For the

nonpolluting sector, we include sectors outside of both manufacturing and utilities, which are

primarily services. Fossil fuel power plants emit a wide range of criteria pollutant precursors,

but are a primary focus of the the Acid Rain Program – another regulation under the 1990

CAA amendments that is not the focus of our analysis.

4.4 Migration and Mobility Across Industries

We compute cross-county mobility shares using tax return data from the Internal Revenue

Service’s (IRS) SOI Tax Stats data. The IRS has reported tax return level counts of bilateral

county-to-county flows each year starting in 1990 (US Internal Revenue Service, 2021). We

use returns as our measure of workers rather than exemptions so that we avoid counting

dependents as workers. One limitation is that the IRS data do not contain information on

mobility across sectors. We compute cross-sector mobility shares using data from the Public

Use Microdata Sample of the Current Population Survey (US Census Bureau, 2021). The

Current Population Survey reports monthly individual-level data on the sector of employment,

including nonemployment, among other variables. The Current Population Survey follows

individuals for four months, and then for another four months with an eight-month gap in
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between the two spells. We use the sector of employment in the first month of each four-month

spell for each individual, and then aggregate this up to a national level to compute national

mobility shares across the polluting and nonpolluting sectors, and nonemployment.

For the counterfactual simulations, we construct the full mobility share matrix by taking

the Kronecker product of the county migration matrix and the sectoral mobility matrix – as

in Caliendo et al. (2019) and Rudik et al. (2021) – from annual averages between 1995 and

1999. The lack of a combined migration and sectoral mobility data requires us to implicitly

assume that movers and stayers have the same probabilities of changing their sectors of

employment.

4.5 Bilateral Trade Costs

To capture spatial linkages between counties due to interregional trade, we use a measure

of trade costs constructed following the approach in Combes and Lafourcade (2005). We

first find the routes with the shortest travel times between all county pairs in 1980, 1990,

and 2000 via the highway network. To do this we combine newly digitized shapefiles of the

US highway network in 1980 and 1990 with readily available shapefiles for the US highway

network in 2000 (US Department of Transportation, 2021); we then use Djikstra’s algorithm

to find the quickest route between all county pairs in each year. We record travel time (in

hours) and distance (in miles) associated with each route. See Appendix A for more detail

regarding the use of the highway shapefiles.

To construct trade costs for a given year we assign the travel times and distances from

the closest year (e.g., highway data from 1980 is assigned to 1982, highway data from 1990

is assigned to 1987, etc.) as well as fuel costs measured by the national fuel price and

contemporary vehicle efficiency and labor costs measured by the hourly wage of a truck

driver in each year. To convert these monetary values into iceberg trade costs we divide by

the average value of a shipment from the Commodity Flow Survey in 2012. This yields a

symmetric matrix of bilateral trade costs between all county pairs.

5 The Effect of Nonattainment on Emissions

The model in Section 3 allows us to estimate the impact of nonattainment on the local

regulatory shadow price of emissions in an internally consistent way. To start, we use equation
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(5) together with the labor share of firm revenues to obtain the following expression:

log

(
ekpi
wk

i L
k
i

)

︸ ︷︷ ︸
emissions intensity

= −βp
ηNi︸ ︷︷ ︸

nonattainment

− log
(
η̄kpi

)

︸ ︷︷ ︸
base regulatory shadow

price of emissions

+ log


 ξkp

γ
(
1−

∑P
q=1 ξ

kq
)




︸ ︷︷ ︸
emissions elasticities

(14)

where the dependent variable is emissions intensity, i.e., emissions divided by the wage bill.

On the right-hand side, the first term captures the effect of nonattainment status on the

regulatory shadow price of emissions, the second term is the base regulatory shadow price

of emissions in the absence of a nonattainment designation, and the third term includes

emissions elasticities and the labor share.

We estimate difference-in-difference specifications that exploit county-level variation in

the change in nonattainment status due to the 1990 amendments to the Clean Air Act.22

Our preferred approach is to use a specification that captures pollutant-specific effects of

nonattainment status since there is significant heterogeneity in the marginal damage and

response to nonattainment of each pollutant.23 We estimate specifications of the form:

log

(
epi,t

wi,tLi,t

)
= −βp

ηNi,t + ψi + νpt + εpi,t (15)

where t indexes time to reflect the panel structure of our data. The coefficient of interest

is βp
η , which captures the direct effect of nonattainment status under the NAAQS on the

price of emissions. In addition, we include county (ψi) and pollutant-year (νpt ) fixed effects

to control for the unobserved base implicit emissions price induced by other overlapping

environmental regulations. Standard errors are clustered at the state level.

The main threat to identification is from potential non-random assignment of nonat-

tainment status, i.e., counties enter nonattainment due to factors that affect the regulatory

shadow price of emissions, are correlated with the emissions intensity, and only imperfectly

captured by county and pollutant-year fixed effects.24 To address this concern we follow

the previous literature by focusing on the quasi-experimental assignment of nonattainment

status caused by the 1990 CAA amendments (Grainger, 2012; Walker, 2013; Bento et al.,

22More specifically, we estimate two-way fixed effects models, which are equivalent to a difference-in-difference
specifications when treatment timing is not staggered. In our setting, all treated (nonattainment) counties
newly enter nonattainment during the NEI report gap from 1991 to 1995 and are considered to be treated
thereafter.

23We also consider specifications that estimate the combined effect across all pollutants.
24For example, if emissions increase because of a change in another regulation that makes polluting more
attractive, firms may emit more intensively and cross the nonattainment threshold, causing nonattainment.
The 1990 CAAAs generate an exogenous shock to the regulatory shadow prices of emissions which allows
us to estimate the parameters of interest.
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2015). In this setting, the identifying variation for the effect of nonattainment status comes

from comparing emissions in attainment and nonattainment counties, before and after a new

nonattainment designation under the 1990 amendments.25

Table 1 reports our estimates based on equation (15) using Poisson pseudo maximum

likelihood (PPML) to address the fact that about a fifth of our county-year-pollutant

observations have zero emissions. Panel A reports the average effect on our five emitted

pollutants of any nonattainment designation. Columns 1 and 3 include county, pollutant,

and year fixed effects. Columns 2 and 4 replace the pollutant fixed effects and year fixed

effects with pollutant-year fixed effects. Columns 1 and 2 use the level of emissions as the

outcome. Columns 3 and 4 instead use emissions intensity, consistent with the model.26 The

results across all four columns are highly consistent. The emissions intensity specifications

indicate that nonattainment raises the regulatory shadow price of emissions by 60 percent.

Panel B repeats the same exercise as Panel A, but reports estimates for the pollutant-

specific effects of a nonattainment designation. The pollutant-specific effects in Panel B

highlight the heterogeneity in the effects of nonattainment on emissions of different pollutants:

the price of emissions on ammonia goes up five-fold, the price of fine particulates doubles,

the price of volatile organic compounds goes up 75 percent, and the prices of nitrogen oxides

and sulfur dioxide go up 50 percent.

6 Results

In this section, we simulate counterfactual scenarios using the quantitative model. The

values for model parameters are summarized in Table 2. The βp
η terms are taken from our

newly estimated effects of nonattainment on the regulatory shadow price of emissions from

Column 4 of Panel B of Table 1. The expenditure share parameters and labor share of value

added parameter can be obtained from expenditure data. We follow Rudik et al. (2021) for

and obtain the expenditure share using data from the World Input-Output database for the

United States, and we obtain the labor share of value added using value added data from the

Bureau of Labor Statistics. We calibrate the remaining model parameters to values estimated

elsewhere in the literature. Estimating the trade elasticity in a model-consistent way would

25By focusing on emissions intensity rather than the level of emissions we also circumvent SUTVA issues
that may arise due to reallocation. Emissions intensity is only a function of the regulatory shadow price of
emissions and production function parameters while the level of emissions depends on other endogenous
variables, such as wages, which are affected by nonattainment status in all counties. This can be seen in
equations (9) and (13) where wages depend on bilateral expenditures everywhere, which depends on unit
input costs (and thus nonattainment) everywhere.

26Note that since the estimates are large, the percentage effect is given by exp(β)− 1, and the small value
approximation of βp

η is not valid.
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Table 1: Estimated effect of nonattainment on the regulatory shadow price of emissions.

(1) (2) (3) (4)

Emissions (log ekpi ) Emissions Intensity
(
log

ekpi
wk

i L
k
i

)

A. Combined

βp
η 0.35∗ 0.35∗ 0.48∗∗ 0.48∗∗

(0.21) (0.21) (0.24) (0.24)

B. By Emitted Pollutant

Ammonia (βNH3

η ) 1.7∗∗∗ 1.6∗∗∗ 1.7∗∗ 1.6∗∗

(0.38) (0.39) (0.75) (0.76)

Nitrogen Oxides (βNOx
η ) 0.47∗∗∗ 0.50∗∗∗ 0.37∗∗ 0.40∗∗

(0.18) (0.18) (0.16) (0.16)

Fine Particulates (βPM2.5
η ) 0.17 0.18 0.66∗ 0.68∗

(0.18) (0.18) (0.36) (0.35)

Sulfur Dioxide (βSO2

η ) 0.24 0.23 0.43∗ 0.42

(0.24) (0.24) (0.26) (0.26)

Volatile Organics (βV OC
η ) 0.42 0.40 0.59 0.57

(0.37) (0.37) (0.45) (0.46)

Observations 70,225 70,225 70,225 70,225

County FEs Yes Yes Yes Yes

Year FEs Yes Yes Yes No

Pollutant FEs Yes No Yes No

Pollutant-Year FEs No Yes No Yes

Note: The table shows estimates for versions of equation (15). Each coefficient can be interpreted as a
semi-elasticity. Panel A reports estimates of the coefficient on nonattainment status. Panel B reports estimates
of the coefficient on nonattainment status interacted with a dummy variable for each pollutant. Columns 1
and 3 only include county, year, and pollutant fixed effects; Columns 2 and 4 replace the year and pollutant
fixed effects with pollutant-year fixed effects. Columns 3 and 4 convert the emissions outcome variable to the
theoretically-consistent emissions intensity relative to labor costs. The coefficients are estimated using data
from 1990 and 1996–2001. The 1991–1995 gap reflects years in which NEI data are not available. Robust
standard errors clustered at the state level are reported in parentheses. * p < 0.10 , ** p < 0.05 , *** p < 0.01.
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require bilateral county trade flows which we do not observe. We circumvent this by taking

the value from Simonovska and Waugh (2014). We calibrate the manufacturing pollution

elasticities to the values estimated in Shapiro and Walker (2018), which uses administrative

plant-level data and a similar model-based approach to how we estimate our βp
η parameter.

Finally we calibrate the migration elasticity to the value in Jaworski et al. (2023). We test

the robustness of our results to different parameter values in Section D.

We quantify steady state welfare impacts for several policies relative to a counterfactual

steady state where no counties are in nonattainment. First, we consider the welfare impact

of the 1997 nonattainment designations shown in Figure 2. Second, we consider the welfare

impact of the same 1997 nonattainment designations, but removing economic and physical

geography from our model. Specifically, we remove physical geography by zeroing-out

the transportation of pollution across county borders in the AP3 atmospheric transport

model,27 we remove labor reallocation by holding mobility shares and the distribution of

labor fixed between 1997 nonattainment and no counties in nonattainment, and we remove

trade reallocation by holding market access – and thus prices – fixed. These “no geography”

results highlight the contribution of using a quantitative model to understand the aggregate

and distributional consequences of the NAAQS versus other approaches that do not leverage

a model. Third, we quantify the change in welfare from the set of location-differentiated

first-best emissions prices.28 Fourth, we examine the effect of sequentially tightening NAAQS

thresholds for determining nonattainment in 1997.

To solve for the equilibrium under each policy (or absence of policy), we first recover the

regulatory shadow prices of emissions (ηkpi ) and productivity (T k
i ) for each market under

the 1997 nonattainment designations using observed data on input costs, emissions, and

trade costs, along with the equations governing the model equilibrium. We then use our

empirical estimates from Table 1 to obtain the base regulatory shadow price of emissions

in the absence of nonattainment for all markets. Once we have productivity and the base

regulatory shadow price of emissions, we can then use the equilibrium conditions of the model

solve for the new equilibrium without any counties in nonattainment, under any particular

set of nonattainment designations, and under the first-best location-differentiated emissions

27The AP3 atmospheric transport model boils down to a source-receptor matrix. We shut down physical
geography by zeroing out the off-diagonal elements.

28We compute the first-best emission price policy as the spatially differentiated tax equal to the damage
caused by a unit of emissions in a county, above the base regulatory shadow price of emissions which
captures other regulations besides CAA-induced nonattainment. The tax accounts for worker mobility
across counties and sectors and how it interacts with damages from emissions. Appendix C contains
additional details on how we simultaneously compute the prices and model equilibrium through an iterative
process.
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Table 2: Parameter values for quantitative model.

Parameter Value

Expenditure Share (α) 0.2740

Labor Share (γ) 0.4810

Trade Elasticity (θ) 4.0000

Migration Elasticity (ι) 1.0000

Manufacturing Pollution Elasticities (ξp)

NH3 0.0023

NOx 0.0038

PM2.5 0.0023

SO2 0.0028

VOC 0.0068

Effect of Nonattainment on Emissions Prices (βp
η)

NH3 1.6000

NOx 0.4000

PM2.5 0.6800

SO2 0.4200

VOC 0.5700

Notes: The expenditure share comes from Rudik et al. (2021) and is computed using the United States
data from the World Input Output Database. Workers in both sectors have the same expenditure share.
The labor share comes from Bureau of Labor Statistics (2017). The trade elasticity is from Simonovska and
Waugh (2014). The migration elasticity is from Jaworski et al. (2023). The pollution elasticities are drawn
from Shapiro and Walker (2018). Pollution elasticities for nonmanufacturing are all zero. The effects of
nonattainment on the marginal cost of emissions are our preferred estimates from Section 5.

price.29,30 Appendix C provides more detail on how we solve for counterfactual outcomes

and compute welfare.

We report welfare in consumption-equivalent terms. When reported in percent, welfare for

a particular county-sector pair reflects the percent change in real wages that would generate

the same welfare impact as the nonattainment shock for incumbent workers in that particular

county-sector pair.31 When aggregating welfare to higher levels than county-sector, we take

population-weighted averages. We also report welfare in dollars by translating the percentage

effects using local real wages. Welfare in dollar terms therefore does not account for the

impact on nonemployed workers who do not receive market wages.

29We also shock productivity in two of our robustness checks in Table D2.
30Note that our model precludes saying anything about transitional dynamics. One other critical assumption
is the Cobb-Douglas production technology. This generates a proportional response of emissions intensity
to nonattainment designations as made clear in equation (14), however the level of emissions may respond
more flexibly.

31Thus, a manufacturing worker in Los Angeles County, California who transitions into nonmanufacturing or
nonemployment, or who migrates to Harris County, Texas, is counted in the manufacturing welfare for Los
Angeles County.
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Table 3: Welfare impacts of the 1997 nonattainment designations with and without physical
and economic geography, and the welfare impact of implementing first-best emissions pricing.

Total Amenity Consumption

% Billion $ % Billion $ % Billion $

A. 1997 Nonattainment

Aggregate 0.57 40 0.66 51 -0.08 -11

Manufacturing 0.18 0 0.45 7 -0.4 -7

Nonmanufacturing 0.63 40 0.7 44 -0.05 -4

Nonemployed 0.6 - 0.62 - - -

Attainment Counties 0.36 10 0.26 6 0.09 4

Nonattainment Counties 0.78 30 1.04 45 -0.25 -15

B. No Economic/Physical Geography

Aggregate 0.16 10 0.24 22 -0.08 -11

Manufacturing -0.52 -8 0.17 3 -0.69 -11

Nonmanufacturing 0.26 19 0.26 19 0 0

Nonemployed 0.21 - 0.21 - - -

Attainment Counties 0 0 0 0 0 0

Nonattainment Counties 0.32 10 0.48 22 -0.16 -11

C. First-Best Emissions Pricing

Aggregate 1.65 111 1.71 117 -0.06 -6

Manufacturing 1.21 15 1.15 17 -0.09 -2

Nonmanufacturing 1.7 97 1.79 101 -0.07 -4

Nonemployed 1.77 - 1.76 - - -

Attainment Counties 1.52 38 1.46 35 0.05 3

Nonattainment Counties 1.77 73 1.95 82 -0.16 -9

Note: Welfare is computed as the equivalent variation of (A) the observed nonattainment status in 1997, (B)
the observed nonattainment status in 1997 if mobility share are held fixed, market access is held fixed, and
pollution crossing county borders is ignored, or (C) first-best emissions pricing, relative to a counterfactual in
which no counties are in nonattainment or face emissions pricing. The simulations in (A) and (C) account
for labor reallocation, trade, and atmospheric transport of pollution. The first-best result sets the optimal
location-specific nonnegative emission prices. Welfare is measured in 1997 dollars. Numbers may not sum up
fully due to rounding.
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Figure 2: Counties in nonattainment in 1997.

Notes: The map indicates in red all counties in nonattainment in 1997.

6.1 Aggregate Impact

The main aggregate quantitative results are reported in Table 3. Panel A reports the welfare

gains associated with the 1997 nonattainment designations relative to no counties being in

nonattainment. The first two columns report the total effect; welfare was 0.57 percent ($40

billion) higher due to the actual 1997 nonattainment designations. The remaining columns

decompose the total effect by source. There is an increase of 0.66 percent (or $51 billion) due

to better amenities and a decrease of 0.08 percent (or $11 billion) due to lost consumption

from lower real wages. The second row shows that workers in the polluting, manufacturing

sector are better off, but have lower consumption. The third row shows that workers in

the nonpolluting, nonmanufacturing sector experience gains of 0.70 percent (or $44 billion)

due to larger amenity gains and smaller losses in consumption. The fourth row shows that

nonemployed workers are better off because they benefit from improved amenities. The last

two rows of the panel show that nonattainment counties obtain most of the benefits, however

attainment counties have improvements in both amenities and consumption. Since attainment

counties are not directly affected by nonattainment, this result suggests an important role for

physical and economic geography in transmitting the effect of nonattainment across counties.
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To highlight the benefits of using a quantitative model, Panel B reports the welfare gains

associated with the 1997 nonattainment designations relative to no counties in nonattainment,

but omit the explicit features of economic and physical geography (i.e., cross-county pollution

transport, labor reallocation, and trade reallocation) captured by the baseline model. This

panel shows, in the aggregate, an quantification of what is missed if one were to ignore

equilibrium adjustments and cross-county pollution transport. The welfare gains from the 1997

nonattainment designations ignoring economic and physical geography are 0.16 percent, under

one-third the welfare gain when accounting for geography. Ignoring geography also results in

a different distribution of welfare gains across sectors and counties. Across sectors, it gives the

opposite sign for the effect on manufacturing welfare, while understating nonmanufacturing

gains by half and reporting zero effect of nonattainment on nonmanufacturing consumption.

Across county types, it suggests there is zero effect on attainment counties while also

understating the benefits to nonattainment counties.

Why does ignoring physical and economic geography matter for measuring the welfare

impacts through amenities and consumption? For amenities, omitting physical geography

and the dispersion of pollution underestimates the direct amenity benefits to those outside

the county where emissions are reduced, while leaving out economic geography and the ability

of workers to reallocate across space misses how workers adjust to take advantage of the

non-uniform improvements in amenities. For consumption, omitting economic geography

overestimates the declines in real wages for manufacturing workers since it omits how they

can move across space to attainment counties or across sectors into nonmanufacturing to

maintain higher real wages; for nonmanufacturing workers it omits the increased competition

in the labor market from manufacturing workers changing jobs and also omits the increase

in consumption good prices as nonattainment increases the costs of manufactured goods.

Overall, this shows that incorporating economic and physical geography is important for

quantifying the aggregate impact of the Clean Air Act and suggests it will be important

understanding its full distributional consequences, which we explore further in Section 6.2.

In Panel C, we consider the effect of imposing an emissions pricing scheme in which the

county-specific emissions prices ηkpi are set equal to county-specific marginal damages. The

welfare gains are 1.65 percent (or $111 billion), which are more than twice as large as the

benefits stemming from the 1997 nonattainment designations. The gains from improved

amenities are substantial at 1.71 percent (or $117 billion) and are only marginally offset by

the negative effects from lower consumption. Notably, manufacturing workers are better

off in consumption terms from a policy of county-specific emissions pricing relative to the

observed 1997 nonattainment designations.

Next we explore the implications of making the NAAQS thresholds for nonattainment more
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stringent than their actual levels in 1997. We perform a series of counterfactual experiments

where we compute the equilibrium outcomes of the economy if the pollution threshold for

putting a county into nonattainment ranged from the actual threshold levels in 1997 down to

a level where every county with a pollution monitor would be put into nonattainment. We

then compare the outcomes of these simulations to the equilibrium outcome of an economy

where no counties are in nonattainment as in the previous results.

Figure 3 reports the results. To start, the points on the far left side give the total

welfare gain, amenity welfare gain, and consumption welfare gain of imposing nonattainment

designations using the actual thresholds in 1997, relative to no counties in nonattainment.

Moving to the right in Figure 3 increases the stringency of the NAAQS concentration

thresholds uniformly across all pollutants. The counterfactual pollutant thresholds as a

fraction of the actual thresholds is given by the x-axis at the bottom and the number of

counties that would be put into nonattainment under these counterfactual thresholds is given

by the x-axis at the top. For example, in the middle of the figure, the NAAQS thresholds

are set to 50 percent of the actual thresholds (i.e., twice as stringent) which would result

in putting about 550 counties into nonattainment. The points on the far right side indicate

thresholds that puts every county with a pollution monitor in nonattainment. Note that

this experiment does not force pollution to be zero in the model, but instead simulates that

counties adopt technologies and practices mandated by a nonattainment designation.32

The points on the far left side reiterate the gains associated with the actual 1997 nonattain-

ment designations reported in Panel A of Table 3: welfare increases by 0.57 percent relative

to a counterfactual with no counties in nonattainment, while amenity welfare increases by

0.66 percent and consumption welfare decreases by 0.08 percent. Moving to points farther to

the right shows that increasing the stringency of the NAAQS increases welfare until nonat-

tainment thresholds are about one-fifth of their 1997 level. More stringent nonattainment

thresholds at one-fifth of the 1997 levels increase welfare by up to 0.17 percentage points

(or $12 billion) over the actual thresholds.33 After this point, additional gains for amenities

and losses for consumption are negligible as the marginal nonattainment county becomes

increasingly rural and less populated.

Appendix Table D2 examines the sensitivity of these results to alternative values of the

trade and migration elasticities, the consumption and labor share parameters, the pollution

elasticities, congestion and agglomeration, and allowing for marginal damages to increase

32Most counties do not have NAAQS pollution monitors. Since we do not observe pollution concentrations in
these counties, we cannot determine when they should be put into nonattainment in this counterfactual
exercise.

33Another framing of this result is that a severe tightening of the thresholds only improved upon the actual
thresholds by a fifth (0.74% welfare gains versus 0.57% welfare gains).
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Figure 3: Aggregate welfare impact of 1997 nonattainment designations and more stringent
thresholds for assigning nonattainment.

Note: Each point in the figure reports welfare under alternative counterfactual thresholds for nonattainment
that range from the actual nonattainment designations (on the left) to every county with a pollution monitor
in nonattainment (on the right), relative to the scenario in which no counties are in nonattainment. Welfare
is calculated as equivalent variation; it is reported in consumption-equivalent terms. The left y-axis reports
welfare results for total welfare and amenity welfare. The right y-axis reports welfare results for consumption.
The bottom x-axis is the counterfactual pollution-concentration thresholds for nonattainment relative to
the actual thresholds. The top x-axis indicates the number of counties in nonattainment. Moving to the
right reduces the threshold (increases the stringency) of the counterfactual NAAQS. The solid black line
reports total welfare. The dashed blue line reports amenity welfare. The dotted red line reports consumption
welfare. Results presented in this figure only put counties with monitors in nonattainment; we do not observe
pollution concentrations in counties without monitors.
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in income. The most important parameters for the aggregate quantitative results are the

trade and migration elasticities, and the emissions elasticities for the manufacturing sector in

particular. Aggregate welfare is always positive for reasonable trade and migration elasticities,

and manufacturing welfare is only negative for the highest value of the trade elasticity or if

nonattainment induces a significant total factor productivity decline in addition to making

emissions more costly to produce. The sign of manufacturing welfare only changes after at

least doubling the estimated elasticities from Shapiro and Walker (2018).

6.2 The Spatial Effect of Nonattainment and the Role of Geogra-

phy

In this section we highlight the spatial distribution of the impacts of the 1997 nonattainment

designations, as well as how geography shapes the impact of nonattainment designations.

The geography results provide an evaluation of how reallocation can help workers adjust to

the costs and benefits of the NAAQS, but also illustrate the potential errors in quantifying

welfare effects using approaches that cannot capture these features.

6.2.1 The Spatial Effect of Nonattainment

Figure 4 shows the spatial distribution of the welfare impacts of 1997 nonattainment designa-

tions across all counties in our sample.34 The areas in blue experience welfare gains while areas

that experience losses are shown in red. The map reveals substantial heterogeneity within

nonattainment counties with welfare impacts ranging from around zero in some Wisconsin

nonattainment counties to over 4 percent in areas elsewhere in the Midwest and California.

In addition, the map makes clear that attainment counties nearby those in nonattainment in

the Rust Belt and South also see substantial welfare improvements.

Figure 5 decomposes the welfare results along two margins. The top panels show the

welfare impact on manufacturing and nonmanufacturing workers. Manufacturing workers are

marginally worse off in most nonattainment counties despite large amenities improvements

because nonattainment has large, negative effects on their real wages. In nonattainment

counties with large emissions reductions – such as those around Chicago, New Orleans,

or St. Louis – the amenity improvements dominate the real wage reductions resulting in

welfare gains of over 1 percent. In attainment counties, manufacturing workers mostly

experience welfare gains. Manufacturing workers in attainment counties experience amenity

34The model is fundamental for understanding the spatial distribution of welfare since a perfect mobility
assumption will ensure that welfare, and thus welfare gains, are uniform across space. In reality, workers
face frictions moving across space and sectors, prohibiting equalization of welfare.
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Figure 4: Change in county welfare from nonattainment in 1997.

Note: The change in welfare is the difference between the welfare calculated by the model using the 1997
nonattainment status provisions relative to the welfare calculated under a counterfactual scenario in which
no counties are in nonattainment. Welfare is calculated as equivalent variation; it is reported in consumption-
equivalent terms. Counties outlined in a dark border were in nonattainment in 1997. Dark gray counties are
those that were omitted from the simulations due to missing data.
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improvements from avoided pollution transport, but also higher real wages from reduced

competition in the labor market. The geography of nonmanufacturing welfare appears similar

to the results in Figure 4 because nonmanufacturing workers account for a majority of the

workforce. Nonmanufacturing workers experience a small negative effect on consumption and

large amenity improvements.

The bottom panels show the decomposition of aggregate welfare impact into amenity

improvements and changes in consumption and real wages. The bottom left map shows

that every county has an improvement in amenities. These benefits largely come from the

significant decline in emissions that occur in nonattainment counties – leading to lower

pollution concentrations everywhere. Highly-populated nonattainment areas, such as St.

Louis, Houston, or Los Angeles have the largest amenities improvements. Two factors

contribute to this result. The first is that manufacturing activity, in level terms, is heavily

concentrated in cities and thus generates large amounts of emissions and ambient pollution

in cities.35 The second is that the majority of nonattainment counties either contain a city or

are nearby one. So cities, instead of more rural areas, tend to have more emissions reductions

themselves and in other nearby counties, and thus the largest amenities improvements even

in percentage terms.

A major concern with spatially incomplete regulation of pollution is that more strin-

gent regulation in one location will cause emissions to “leak” and increase in unregulated

jurisdictions. We find the opposite. Emissions in attainment counties actually decrease,

a phenomenon called “negative leakage” hypothesized by Baylis et al. (2014). The idea

behind negative leakage is that the increase in the price of emissions drives nonattainment

counties to substitute away from emissions toward labor and capital. This substitution effect

increases wages and rental rates in attainment counties (e.g. higher average real wages and

consumption in attainment counties in Table 3), raising marginal costs of production, and

shrinking manufacturing output and emissions in attainment counties.36 Negative leakage

generally accounts for 0.1–1.0 percent of the aggregate emissions decline, depending on the

pollutant.

The bottom right map shows the change in welfare caused by changes in real wages and

35Cities like Los Angeles may not be thought of as manufacturing hubs because manufacturing is not be a
large share of the local economy in these cities. However, because these cities are large, manufacturing is
large in level terms and thus accounts for significant amounts of emissions and local ambient pollution.

36 For tractability we have assumed Cobb-Douglas production, but the extent of leakage critically depends
on the elasticity of substitution between factors in production. If factors are more substitutable, then firms
in nonattainment counties will more strongly reallocate from emissions to capital and labor, amplifying the
wage and rental rate increases, as well as emissions decreases, in attainment counties. Note that equation
(5) shows that emissions intensity in attainment counties does not change even though the level of emissions
does because of changes in output.
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consumption. Consumption decreases on average in nonattainment counties but increases in

most attainment counties due to the increase in nominal wages that also caused negative

leakage. Taken together, these maps make clear that the welfare improvements for the largest

beneficiaries of the NAAQS are driven by improved amenities.

6.2.2 The Role of Economic and Physical Geography

Figure 6 shows the geography of labor mobility. The top left map shows the aggregate change

in population caused by nonattainment designations. Most attainment and nonattainment

counties experience a decrease in population, indicating an increased concentration of workers

in a few areas. Indeed, the map shows that nonattainment induced workers to move to the

small set of cities that experienced the largest amenities improvements. Counties in the plains

also experience a large relative influx of workers, but from a small baseline as these areas

have small populations.

The top right map shows the welfare value of incumbent workers in these counties

being able to change mobility patterns. In the aggregate, labor reallocation has a near-zero

aggregate effect, but the map shows that this masks significant heterogeneity. Less populous

nonattainment counties outside major urban areas, such as California’s Central Valley, tend

to benefit from labor reallocation. Local amenities in these areas only moderately improve

from emissions reductions, and incumbent workers are able to move to places with better

real wages. Being able to move improves welfare for these workers by up to a third of a

percent. Conversely, highly-populated nonattainment areas, such as St. Louis, Houston, or

Los Angeles are worse off from labor reallocation. The amenities improvement in these areas

makes incumbent workers better off, but it also makes the location more attractive to outside

workers and induces in-migration. This intensifies labor market competition and depresses

incumbent real wages which dominates the amenities improvements.37 These results highlight

that ignoring labor reallocation substantially overstates welfare improvements to incumbents

in major urban areas where labor market competition intensifies and understates welfare

gains elsewhere because workers can move into counties with improved air quality or better

wages.

The bottom two maps break down the population changes into manufacturing and

nonmanufacturing workers. Some nonattainment counties have population increases because

of an influx of nonmanufacturing workers attracted by improved amenities shown in Figure 5.

Workers leaving nonattainment counties – primarily in manufacturing – migrate to counties

37In our model, there are no ex ante differences in labor quality (e.g., by skill or demographic group). These
quantitative results are consistent with a large empirical literature that finds reduced wages in response to
in-migration of similar types of labor from international (e.g., Card, 2001; Borjas, 2003) or internal (e.g.,
Kleemans and Magruder, 2018) migrants across local labor markets.
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in the Plains and to about 30 nonattainment counties with large amenity improvements.38

This influx of workers depresses real wages in these areas and leads to the decrease in welfare

for incumbent workers shown in Figure 4. This differential movement of manufacturing

versus nonmanufacturing workers as well as differences in their initial county of residence,

is why nonmanufacturing workers reap larger amenity gains than manufacturing workers.

Nonmanufacturing workers are more likely to move to nonattainment counties with improved

amenities, while manufacturing worker movement is more split between attainment and

nonattainment counties due to the negative manufacturing wage impact of nonattainment.

Initially, 66 percent of nonmanufacturing workers are in nonattainment counties compared

to 59 percent of manufacturing workers, so even without migration, the aggregate amenity

benefits to nonmanufacturing workers may be larger.

In addition to the reallocation of workers across space shown in Figure 6, there is also

reallocation of workers across sectors. In the aggregate, we find that 1997 nonattainment

designations reduced manufacturing employment by 1 percent. Manufacturing workers

changed jobs and entered the nonmanufacturing sector to get higher real wages, despite costs

of switching their sector of employment, with a small share entering nonemployment.

Figure 7 shows the effect of the remaining two aspects of geography, trade in goods and

cross-county transport of pollution. The left panel plots the welfare value of being able to

adjust to nonattainment through changing trade patterns in response to changes in goods

prices. In total, adjustments through trade offset aggregate losses by 0.02 percentage points,

which amounts to about a quarter of the aggregate consumption welfare loss. The magnitude

of the largest county-specific effects of trade tends to be smaller than for labor reallocation,

which is consistent with amenities accounting for the bulk of the impact of nonattainment as

previously shown in Table 3, and trade not directly allowing households to adjust to changes

in amenities.

The right panel of Figure 7 plots the welfare effect of accounting for physical geography.

The map shows the effect of 1997 nonattainment designations in a model accounting for

pollution crossing county borders, versus one where this pollution is unaccounted for in

welfare calculations and in household mobility decisions. The difference in gains are highest in

counties that are nearby major emitter counties.39 These counties reap significant amenities

improvements from large reductions in cross-county pollution externalities under the 1997

nonattainment designations. The vast majority of counties have non-negligible welfare gains.

At the median, accounting for physical geography increases a county’s welfare by 0.29pp. In

38Note that some of the Plains counties experience significant gains in population, which reflects their small
size.

39These counties may be in nonattainment themselves.
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the aggregate, physical geography accounts for the majority of the combined welfare difference

from capturing economic and physical geography.

Appendix E provides additional geographic results. In particular, we show the impact of

accounting for potential congestion and agglomeration externalities, the impact of accounting

for potential productivity effects of nonattainment beyond raising emissions costs, and the

benefits of the first-best location-specific pricing policy versus the actual set of nonattainment

designations. To summarize: (1) accounting for congestion and agglomeration decreases

welfare gains in major cities because congestion effects tend to dominate agglomeration effects

such that in-migration further reduces welfare for incumbents, (2) negative productivity

effects consistent with the reduced form literature or positive productivity effects reflecting

the strong version of the Porter hypothesis have small effects in nonattainment counties and

smaller spillover effects into attainment counties, and (3) using emissions pricing improves

welfare in every county relative to the 1997 nonattainment designations.

7 Conclusion

In this paper we develop an integrated spatial general equilibrium model to study the impact

of environmental regulation. The model features economic geography forces that govern the

spatial distribution of economic activity, the direct effects of regulation on emissions, and

endogenous changes in amenities driven by endogenous emissions choices by firms. We use

the model to quantify the aggregate and distributional consequences of National Ambient

Air Quality Standards (NAAQS) under the Clean Air Act. We find that the NAAQS delivers

net benefits of over $40 billion annually, which substantially reflects the positive effect on

amenities relative to the negative effects on real wages. In present value terms, this amounts

to total benefits of over $1 trillion.

We use the model to consider counterfactual policies and find that increasing threshold

stringency could improve welfare by billions of dollars per year and that further gains are

possible through emissions pricing. In addition, we use the model to study the mechanisms

underlying these effects. Specifically, workers are imperfectly mobile across sectors and

locations, the spread of emissions is non-uniform across space and affected by atmospheric

transport, and interregional trade is subject to iceberg trade costs. All of these factors shape

the response to changes in environmental regulation. Our results indicate that accounting

for atmospheric pollution transport and labor reallocation is particularly important for the

level and distribution of welfare effects. This emphasizes how analyses that do not account

for how regulation induces equilibrium reallocation of pollution and workers – potentially

into unregulated areas – may misquantify or entirely mis-sign the effects of environmental
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regulation for subsets of the population.

A drawback of our approach is that the model is static so that we do not consider

the possibility that technological change (or other shocks) reduce the cost of enforcement

or compliance over time and we are not able to study the transition between the steady

states. In addition, other factors not in our model that may contribute to the welfare

impact of environmental regulation include market structure, heterogeneous preferences

across households, and nonhomothetic preferences over housing or consumption. We leave

these promising directions for future research.
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A Calculating Trade Costs

To construct trade costs, we utilize new data on the extent of the highway network in each

year.40 For 2000 and 2010, we use shapefiles maintained by the federal government. Prior to

1994, the federal government did not maintain shapefiles of the highway network, thus, for

earlier periods, we construct our own network databases. To do this, we begin with the year

2000 shapefiles. We then overlay scans of the 1990 Rand McNally Road Atlas in ArcGIS,

where we then re-code, edit, or delete segments of the 2000 network to generate the 1990

network. We follow this same procedure, overlaying the 1980 Rand McNally Road Atlas on

the 1990 shapefiles. Thus, we have a harmonized panel data of the highway network from

1980 to 2010 that includes state highways, US federal highways, and Interstate highways.

Additionally, we construct a set of “access” roads between each county centroid and its

neighboring county centroid to ensure that all origins and destinations are connected to the

network.41 In Figure A1, Panels (a) through (d), we highlight the different components of

the network for 1990.

We assign travel speeds to each type of segment based on its classification, 10 miles per

hour (access roads), 35 miles per hour (state highways), 55 miles per hour (US Highways), and

70 miles per hour (Interstate Highways). These speeds are then used to construct the time cost

associated with each segment. We represent each county in space by its geographic centroid

and compute the minimum travel time through the network for each origin-destination pair

using Dijkstra’s Algorithm. For each route, we compute the travel time and distance traversed.

Following Combes and Lafourcade (2005), we construct τij by monetizing the travel time and

distance using the hourly wage of a truck driver and national fuel prices for that year and

fuel efficiency of a truck in the given year and normalizing by the average value of a shipment

in the 2012 commodity flow survey. To construct market access, we then solve the system of

equations outlined in Section 4.

40For our period of study we focus on trade costs via the highway network given that truck-only transportation
accounted for more than 80 percent of the value of domestic trade (excluding the movement of parcels by
the United States Post Office or by courier) according to the Commodity Flow Survey in 2002.

41Jaworski and Kitchens (2019) show that the choice of geographic or population-weighted centroid makes
little difference empirically.
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Figure A1: Components of Highway Network.

(a) Access Roads (b) State Highways

(c) US Highways (d) Interstate Highway System

Note: The figure shows the four components of the US highway network used to calculate travel time and
trade costs. Panel (a) shows the access road network with an assigned speed of 10 miles per hour, Panel
(b) shows the state highway network with an assigned speed of 35 miles per hour, Panel (c) shows the US
highway network with an assigned speed of 55 miles per hour, and Panel (d) shows the Interstate Highway
System with an assigned speed of 70 miles per hour.
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B Amenities in Reduced Form

In the quantitative model we model the relationship between nonattainment, emissions,

and the spatial transport of pollution. The model assumes that households have perfect

information and reallocate across space in response to changes in the spatial distribution of

pollution. To validate this assumption and to gauge the size of our model estimates of welfare

impacts through amenities, we estimate a reduced form relationship between nonattainment

and amenities using the households’ spatial equilibrium conditions.

In general, we can represent amenities similarly to how we represent the regulatory shadow

price of emissions ηkpi in the main text:

Bi = B̄i exp (βBNi,t) . (16)

B̄i is the county’s baseline level of amenities, and exp (βBNi,t) captures how nonattainment

status Ni affects local amenities. βB can be interpreted as the percent change in amenity-

related welfare from imposing nonattainment.

We obtain our equation of interest by manipulating equation (4) to obtain an expression

for the log share of workers who migrate to j relative to those who stay in i log(πij/πii):

log

(
πij
πii

)
= log

(
VjBjδij
ViBiδii

)
= log

(
wj/Pj

wi/Pi

)
+ log(δij) + log(B̄j/B̄i) + βB (Nj −Ni)

where δii = 1. We drop sector superscripts because we do not observe sector of employment in

the county-to-county migration data. Next, rearrange this expression to obtain an equation

with data on the left-hand side as a function of parameters to estimate and capture with

fixed effects:

log

(
πij
πii

)
= βB (Nj −Ni) + log(B̄j/B̄i) + log

(
wj/Pj

wi/Pi

)
+ log(δij). (17)

The difference in the share of people in i who migrate to j relative to those who stay in i is

equal to the difference in amenities, differences in real wages, and migration costs.

Assuming amenities are common across workers in both sectors, we use a difference-in-

differences approach:

log

(
πij,t
πii,t

)
= βB (Nj,t −Ni,t) + log

(
wj/Pj

wi/Pi

)
+ φij + νt + εij,t (18)

where migration costs are absorbed by the origin-destination fixed effect φij and εij,t is the

error term. Standard errors are clustered two ways at the origin and destination counties.
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This reduced form estimate of nonattainment’s effects on amenities provides two important

benefits. First, the estimate is identified off of variation in migration flows and quasi-

experimental regulatory variation. If our model assumption that households observe and

respond to pollution is incorrect, it will show up as a zero estimate here. Second, this approach

allows us to be agnostic about the precise ways in which nonattainment status can induce

improvements in amenities. In addition to reductions in air emissions reducing mortality,

there may be other benefits not captured in our quantitative model such as reductions in

noise, or improved foliage from better air quality. This, along with the fact that we are not

capturing all pollutants, suggests that the reduced form impact on amenities should exceed

the model-based estimates and gives us another sanity check on our model. We note that this

is a rough test since the IRS data do not report wages, and so we must use county average

real wages as an alternative.

B.1 The Effect of Nonattainment on Amenities

Table B1 shows the results from estimating models building up to our preferred specification

in equation (18). Column 1 presents results with origin-by-destination and year fixed effects,

the real wage control omitted, and forcing the coefficients on origin nonattainment status

and destination nonattainment status to be identical. Column 1 suggests that nonattainment

status improves local amenities such that, on average, utility increases by 2.3 percent. Column

2 adds in the real wage control and fixes the coefficient on real wages to equal one to be

consistent with the model. Column 3 further allows nonattainment status to have differential

effects depending on whether its the origin or destination county. All specifications generate

relatively noisy estimates that nonattainment status improves utility between about 1.5 and

2.5 percent, holding real wages fixed. This is slightly larger than the amenities estimates

from our model as hypothesized.
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C Simulating Counterfactuals

C.1 Solution Algorithm

To simulate our counterfactual we first need to invert the model and solve for the level of

productivity T k
i and the regulatory shadow price of emissions ηkpi . We will not need to solve

for the level of amenities Bk
i since observed mobility shares are effectively sufficient statistics

for the composition of moving costs and differences in base amenities across locations.42

C.1.1 Solving for ηkpi and T k
i

First we solve for the regulatory shadow price of emissions using observed data under the 1997

nonattainment designations. To recover ηkpi we use the equilibrium condition for emissions

intensity in equation (5) and recognizing that with Cobb-Douglas technology, labor is paid a

fixed share: wk
i L

k
i = γ

(
1−

∑P
q=1 ξ

kq
)
Y k
i to obtain:

ηkpi =
ξkp

γ
(
1−

∑P
q=1 ξ

kq
)w

k
i L

k
i

eki

where wk
i , L

k
i , and e

k
i are data and the remaining variables are calibrated constants. This

allows us to identify the regulatory shadow price of emissions. Using our empirical estimates

for βp
η and the observed set of nonattainment designations, we can then recover the base

regulatory shadow price of emissions:

η̄kpi = ηkpi exp
(
−βp

ηNi

)
.

This gives us the shadow price that firms face for emissions in the absence of nonattainment

or first-best emissions pricing.

Next we solve for productivity. From equation (10) we have that:

Y k
i = κ2

[
cki
]−θk

T k
i FMAk

i (19)

We can manipulate equation (19) and expand out the unit cost term cki to obtain an expression

42If we observed county-level trade flows we could simulate counterfactuals without solving for Ti or estimating
τji.
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that gives us T k
i up to a normalization:

T k
i = ρ1

Lk
i

[
wk

i

]((1+θkγ(1−
∑P

q=1
ξkq))∏P

q=1(η
kq
i )ξ

kqθk

FMAk
i

. (20)

In equation (20) we still need to identify the firm market access variables FMAk
i to obtain

productivity T k
i for k = 1, . . . , K. We can do so by performing function iteration on the

system of equations that implicitly define firm market access and consumer market access

from Section 3:

FMAk
i =

N∑

j=1

(
τ kji

)
−θk

CMAk
j

Xk
j (21)

CMAk
i = κ3

N∑

j=1

(
τ kij

)
−θk

FMAk
j

Y k
j (22)

where Y k
i =

wk
i L

k
i

γ(1−
∑P

q=1
ξkq)

, and Xk
i = αk

∑K
l=1w

l
iL

l
i. Iterating on these equations yields both

market access vectors up to a normalization. Next we insert the recovered FMAk
i terms into

equation (20) and use the observed 1997 data on labor, wages, and nonattainment status to

recover T k
i .

C.1.2 Simulating the Model Under Different Scenarios

Now that we have recovered the regulatory shadow price under the 1997 nonattainment

designations ηkpi , the base regulatory shadow price η̄kpi , and productivity T k
i , we can simulate

the welfare effects of changing the regulatory shadow price of emissions through different

nonattainment designations or first-best emissions pricing. Consider the case of computing

the equilibrium outcomes under some set of counterfactual regulatory shadow prices of

emissions ηkpi
′

, which may be the base regulatory shadow prices in the case of no counties in

nonattainment, the first-best emissions prices, or any other choice. Other primed variable

indicate endogenous quantities under ηkpi
′

.

0a. Solve for the 1997 price indices Use the observed labor and wages from 1997 in

equations (21) and (22) to solve for consumer market access and thus the price indices for

the observed 1997 nonattainment designations that generate the regulatory shadow prices of

emissions ηkpi .
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0b. Initial guess Guess a vector of market wages and the labor distribution across markets

under the counterfactual ηkpi
′

.

1. Solve for the counterfactual price indices Use these guesses in equations (21) and

(22) to solve for consumer market access and thus the price indices under the counterfactual

nonattainment designations.

2. Solve for the change in amenities Compute the level of manufacturing emissions

using the expression for relative expenditures on inputs for a Cobb-Douglas producer:

epi
′ =

wk
i
′

Lk
i
′

ηkpi
′

ξkp

γ
(
1−

∑P
q=1 ξ

kq
) ,

where nonmanufacturing emissions are always zero. Then, along with the 1997 wages, the

counterfactual wage guess, and the price indices from steps 0a and 1, solve for the change

in amenities in equation (2) from going from the 1997 designations to the counterfactual

designations.

Bl′
j

Bl
j

=
B̄j

B̄j︸︷︷︸
=1

[(
1−

∑N
n=1

∑P
p=1md

p
ine

p′
n

V k′
i

)/(
1−

∑N
n=1

∑P
p=1md

p
ine

p
n

V k
i

)]
.

We assume that baseline, non-pollution component of amenities B̄j does not change in

response to nonattainment.43

3. Solve for the counterfactual mobility shares and labor distribution Manipulating

equation (4), we can obtain the counterfactual mobility shares and labor distribution as a

function of the wage and labor guesses; the observed wages, labor, and mobility shares under

1997 nonattainment; the computed 1997 and counterfactual price indices; and the computed

change in amenities:

πkl′
ij =

[
V l′
j Bl′

j

V l
jB

l
j

]ι
πkl
ij

∑K
m=1

∑N
n=1

[
V m′

n Bm′

n

V m
n Bm

n

]ι
πkm
in

(23)

Lk′
i =

K∑

m=1

N∑

n=1

πmk′
ni L

m′

n (24)

43 We are not able to recover the level of amenities, but we can recover the change in amenities given a
change in the set of nonattainment statuses from the structure of equation (2).
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where the V terms are real wages, V 0′
n = V 0

n so that nonattainment does not change the

payoff from nonemployment. The Lm
n

′ terms on the right-hand side of equation (24) are the

guesses while the left-hand side is the newly updated labor distribution guess.

4. Solve for wages We can then use the solved counterfactual labor distribution from

step 3, counterfactual market access from step 1, counterfactual regulatory shadow prices of

emissions, and the fundamental productivity in equation (20) to back out a new guess for

the counterfactual level of wages.

5. Iterate on steps 1-4 until convergence We then repeat the process of solving for

new distributions of labor, amenities changes, prices, and wages until the vector of real wages

converges, where we define convergence to be that the sup norm of the relative change in real

wages between two different iterations of step 4, is sufficiently small.

We run the solution algorithm with ηkpi
′

= η̄kpi to recover our baseline of no counties in

nonattainment.

In the case of first-best emissions pricing, we iterate on ηkpi
′

in a loop outside of the

main algorithm. Specifically, we set the initial guess of ηkpi
′

equal to the county-specific

marginal damages of emissions that corresponds to the initial labor and wage distribution

guess. After iterating through Steps 1–4 above once and getting a new labor and wage

distribution, we then re-compute ηkpi
′

equal to the county-specific marginal damages under

these new distributions. We then continue to iterate on Steps 1–4 and the update of ηkpi
′

based on the updated labor and wage distributions until the sup norm of the relative change

in ηkpi
′

is sufficiently small.

Finally we compute the equilibrium outcomes under tighter nonattainment thresholds by

setting ηkpi
′

= η̄kpi exp(βp
ηÑ

T
i ) where Ñ

T
i is equal to 1 if the observed level of pollution in 1997

is above some counterfactual nonattainment threshold T and zero otherwise.

C.2 Welfare Derivation

With the model solutions in hand we can now compute the welfare consequences of changes

in the regulatory shadow price of emissions. Let variables with primes be associated with

a vector ηkpi
′

, while unprimed variables be associated with ηkpi . Recall that indirect utility

from consumption and amenities is given by V k
i B

k
i and that mobility shares are governed by

πkl
ij =

(V l
jB

l
j δ̄

kl
ij )

ι

∑K
m=0

∑N
n=1

(V m
n Bm

n δ̄kmin )ι
. Rearrange and take the log of the expression for own-mobility

54



shares to get:

ι log V k
i B

k
i − log πkk

ii = log

[
K∑

m=0

N∑

n=1

(V m
n Bm

n δ̄
km
in )ι

]
. (25)

Let Wi be the expected total welfare for a household in location i net of moving costs:

W k
i =

1

ι
log

[
K∑

m=1

N∑

n=1

(V m
n Bm

n δ̄
km
in )ι

]

which is a function of unobserved moving costs. Next rearrange equation (25) and solve for

Wi:

W k
i = log

(
V k
i B

k
i

)
−

1

ι
log µkk

ii .

Define the equivalent variation at some market (i, k) to be χk
i where:

W k′
i = W k

i + logχk
i .

Let x̂ := x′/x for some variable x. The consumption-equivalent welfare under ηkpi
′

relative to

ηkpi is χi:

χk
i =

V̂ k
i B̂

k
i(

µ̂kk
ii

)1/ι .
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D Robustness Checks

Sample Periods for Estimation Table D1 presents robustness checks of the effect of

nonattainment on emissions prices with respect to the sample period. Our estimates are

highly robust to the chosen years of inclusion.

Alternative Quantitative Parameters Table D2 reports the total welfare effect of

1997 nonattainment relative to no counties in nonattainment, but under different calibrated

parameter values and structural assumptions.

The first row reports the base welfare outcomes in the main text. Panel A shows the effect

of changing parameter values. The first two rows vary the trade elasticity θ and show that the

quantitative values are sensitive to it, but the qualitative takeaways remain the same. Why

do the welfare impacts of 1997 nonattainment designations decline in θ? First, recall that the

trade elasticity governs the dispersion in productivities within a location-sector: the larger

this value is, the less variation there is in productivity across firms within a location-sector.

Second, recall that consumer market access CMAi, a measure of consumers’ access to cheap

suppliers, was proportional to
∑N

n=1 T
k
n

[
cknτ

k
in

]
−θk

. The expression for consumer market

access makes clear that under a larger trade elasticity, consumer market access becomes more

sensitive to producer cost shocks driven by nonattainment designations, which is reflected in

lower welfare.

The next four rows vary the expenditure share parameter α and the labor share parameter

γ. The quantitative results are insensitive to their values.

The next two rows vary the migration elasticity parameter ι. The smaller of the two

values is similar to annual elasticities estimated for US workers in Artuc et al. (2010) and

Caliendo et al. (2019).44 This value for ι generates similar results to our baseline.

In general, a larger ι leads to smaller aggregate gains from 1997 nonattainment. The

decline in welfare gains is slightly larger for nonattainment counties compared to attainment

counties, and the decline is borne by nonmanufacturing. Nonmanufacturing welfare gains

are smaller because if ι is larger, the idiosyncratic shock to the household ε is less dispersed,

making it less likely they get a large positive draw to overcome moving costs that prohibit

them from moving to nonattainment counties to take advantage of the improved amenities.

Since nonmanufacturing is a majority of the working population, this leads aggregate welfare

gains to be smaller with a larger migration elasticity.

The last three rows of the panel change the pollution elasticity parameters ξp by halving,

doubling, or quadrupling them. Greater pollution elasticities tend to worsen the effect of

44These papers estimate the inverse migration elasticity and recover values of around 2.
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nonattainment designations on manufacturing workers. Larger pollution elasticities mean that

production is more emissions intensive and amplifies the importance of the costs of emissions

for firms. Thus, nonattainment has greater negative effects, leading to larger decreases in

nominal manufacturing wages and manufacturing welfare.

Alternative Quantitative Structure Panel B shows the effect of making structural

changes to the model. The first row of the panel introduces congestion and agglomeration

externalities. With congestion externalities, amenities can be written as:

B̃k
i = Bk

i L
ζc

i

where Bk
i is amenities without congestion, and ζc is the congestion elasticity and equal to

−0.3 following Allen and Arkolakis (2014). With agglomeration externalities, variety-specific

productivity can be written as:

z̃ki (ω) = zki (ω)
[
Lk
i (ω)

]ζa
.

where ζa = 0.2 following Allen and Arkolakis (2014). The existence of congestion and

agglomeration slightly raises the aggregate benefits of nonattainment because of higher gains

to nonmanufacturing.

The second row allows for marginal damages to depend on income, recognizing that richer

people are willing to pay more to avoid mortality risk. Here we re-specify marginal damages

as:

m̂d
k

ij = mdij

(
wk

i

w̄k
i

)ǫ

where ǫ = 0.4 is the EPA’s value of the income-elasticity of the value of a statistical life

(VSL), and w̄k
i is median household income. Marginal damages remain the same for the

median household, but are increasing in income. Allowing for the VSL and marginal damages

to be income-elastic decreases the benefits of the NAAQS by a quarter, relatively uniformly

across sectors and county types.

The final two rows show the effect of nonattainment additionally increasing or decreasing

productivity ( T k
i ) by 3 percent. 3 percent is about the productivity effect estimated in

the prior literature (Greenstone et al., 2012) which does not distinguish between declines

in productivity and increases in the cost of emissions. A decrease would be consistent with

nonattainment making capital or labor less productive because, for example, workers must now

tend to abatement technology in addition to their regular tasks. An increase is consistent with

the strong Porter hypothesis where environmental regulation leads to increased innovation
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and firm competitiveness. 3 percent changes in productivity has little effect in the aggregate,

however it does increase or decrease manufacturing welfare by 0.25pp because productivity

shocks directly affect demand for manufacturing labor and manufacturing wages.
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Table D1: Difference-in-differences estimates of the effect of nonattainment on the implicit
emissions price varying the sample period.

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

βp
η 0.51** 0.50** 0.33** 0.50** 0.49** 0.48**

(0.23) (0.21) (0.17) (0.22) (0.23) (0.24)
Observations 19,005 28,940 38,890 49,245 59,610 70,225
County FE Yes Yes Yes Yes Yes Yes
Year FE No No No No No No
Pollutant FE No No No No No No
Pollutant-Year FE Yes Yes Yes Yes Yes Yes
Latest Year 1996 1997 1998 1999 2000 2001

Note: The coefficients are estimated using data from 1990, and from 1996 to the year listed
in the Latest Year row. The 1991–1995 gap reflects years in which NEI data are not available.
Robust standard errors are clustered at the state level.
p < 0.1, ** p < 0.05, *** p < 0.01
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E Supporting Results

Exogenous Nonattainment and the Length of Nonattainment Designations Figure

E1 plots the share of counties that remaining in nonattainment over a 10 year period from

1992–2001 amongst the set of counties that were induced to go into nonattainment under the

1990 amendments. In the first full year, 1992, all of the counties are in nonattainment. Five

years later, only one-third of counties exited nonattainment, and ten years later less than half

of these counties exited nonattainment. This indicates that nonattainment designations are

generally long-lasting and supports our assumption that nonattainment designations persist

into a new equilibrium.

Congestion and Agglomeration Figure E2 plots the change in welfare gains if the model

accounts for congestion and agglomeration effects. Similar to reallocation, congestion and

agglomeration have highly heterogeneous welfare effects. Congestion effects tend to dominate

agglomeration effects given our parameterization from Allen and Arkolakis (2014). Thus,

incumbents in places where people are migrating to tend to be worse off with congestion and

agglomeration while incumbents in places they are leaving tend to be better off.

Productivity Effects Figure E3 plots the change in the welfare impact of nonattainment if,

in addition to its effect on emissions prices, it also has either a negative 3 percent or positive

3 percent effect on manufacturing productivity. Incorporating potential productivity effects

has welfare impacts in nonattainment counties about one-tenth the size of the productivity

effect, but does not meaningfully change the geography of the results as the magnitudes of

the effects are relatively small.

First-Best Versus Actual 1997 Nonattainment Welfare Figure E4 plots the welfare

benefits of moving from the 1997 nonattainment designations to the first-best emission price

policy. Counties in the east benefit most from emissions pricing and all counties are better

off.

First-Best Emission Prices Figure E5 plots the emission prices under the first-best

emission pricing policy. Recall that these prices are on top of the base regulatory shadow

price of emissions from other prevailing regulations besides CAA nonattainment. Prices

are highly heterogeneous across space and pollutants. Prices tend to be highest around

urban areas and for PM2.5 and SO2. Notice that first-best prices are near-zero in some

nonattainment counties and are substantially positive in some attainment counties. The
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figure also shows why counties in the east benefit the most from first-best pricing: the price

that firms face for emissions is too low.

Across all pollutants, the regulatory shadow price of emissions is too high in nonattainment

counties and too low in attainment counties. For example, for PM2.5, the average difference

between the regulatory shadow price and the first-best price in nonattainment counties is

nearly $250,000/ton, while in attainment counties it is -$800/ton. These kinds of mismatches

between first-best prices and the regulatory shadow price of nonattainment are why first-best

pricing leads to significant welfare gains, it corrects a mispricing of emissions under the

NAAQS.

Reallocation Under First-Best Figure E6 shows the welfare gain from endogenous labor

reallocation under the first-best pricing scheme. Notice that this looks substantially different

than the gains under nonattainment shown in Figure 6. Under 1997 nonattainment, the

value of labor reallocation is highest in nonattainment counties and the counties nearby as

manufacturing workers can switch jobs or move to avoid the real wage penalty of nonat-

tainment, and nonmanufacturing workers can move into nonattainment counties to reap the

improved amenities. Under the first-best, reallocation is most valuable in the Southeast where

emissions are underpriced by the prevailing nonattainment designations, while reallocation

actually has negative consequences in the West. This is because workers in the Southeast

move westward in response to first-best pricing, depressing incumbents’ real wages in the

West. In terms of sectoral reallocation, the aggregate changes in the share of workers across

manufacturing, nonmanufacturing, and nonemployment are largely similar between the 1997

nonattainment outcomes and the first-best. The first-best results in a slightly smaller share

of workers transitioning out of manufacturing, however the difference between the two is only

0.07pp, under one-tenth of the transition caused by 1997 nonattainment.
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Figure E1: The share of new nonattainment counties remaining in nonattainment by year
1992–2001.

Note: Each point denotes the share of counties, amongst the set that newly went into nonattainment after
the 1990 amendments, that remain in nonattainment each year.
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Figure E2: The change in welfare gains from 1997 nonattainment from congestion and
agglomeration.

The change in welfare is the difference between the welfare calculated by the model using the 1997 nonattain-
ment status provisions relative to the welfare calculated under a counterfactual scenario in which no counties
are in nonattainment, with congestion and agglomeration effects versus without. Welfare is calculated as
equivalent variation; it is reported in consumption-equivalent terms. Counties outlined in a dark border
were in nonattainment in 1997. Dark gray counties are those that were omitted from the simulations due to
missing data.

Figure E3: The change in welfare gains from 1997 nonattainment from if there are ±3 percent
effects on total factor productivity in manufacturing.

Note: The left panel decreases manufacturing productivity by 3 percent on top of the emissions price effects.
The right panel increases manufacturing productivity by 3 percent on top of the emissions price effects. The
change in welfare is the difference between the welfare calculated by the model using the 1997 nonattainment
status provisions relative to the welfare calculated under a counterfactual scenario in which no counties are in
nonattainment, with the productivity effect versus without. Welfare is calculated as equivalent variation; it is
reported in consumption-equivalent terms. Counties outlined in a dark border were in nonattainment in 1997.
Dark gray counties are those that were omitted from the simulations due to missing data.
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Figure E4: Change in county welfare from first-best relative to 1997 nonattainment.

Note: The change in welfare is the difference between the first-best relative to the model with the 1997
nonattainment status in effect. Welfare is calculated as equivalent variation; it is reported in consumption-
equivalent terms. Counties outlined in a dark border are in nonattainment in 1997. Grayed-out counties
are omitted from the simulations due to missing data. The model includes impacts on emissions prices and
allows for trade and labor mobility across counties and sectors.
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