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The U.S. headline inflation reached 7 percent during 2021, vastly exceeding the Fed’s

stated average inflation target. Similar inflation gaps were observed all around the world.

These gaps emerged primarily from the clash between the brisk recovery in aggregate

demand, supported by expansionary policies, and a weaker recovery in aggregate supply,

due to Covid-related bottlenecks. The static picture was one of overheating, which trig-

gered widespread concern that central banks were falling behind the curve. Throughout

most of 2021, major central banks were reluctant to heed the advice to tighten monetary

policy, arguing that the supply bottlenecks were only temporary, and hence unlikely to

generate lasting overheating.

In this note, we characterize the optimal monetary policy response to a temporary

supply contraction. As a benchmark, observe that in the standard New Keynesian (NK)

model, the optimal policy in response to a supply shock is to raise interest rates by enough

to bring aggregate demand down to the lower aggregate supply. Only once aggregate

supply recovers, it is optimal to lower the interest rate and boost aggregate demand.

Set against this benchmark, we analyze the optimal policy with two realistic frictions.

First, we assume aggregate demand inertia: past spending decisions affect future spending.

This type of inertia can emerge from several frictions, e.g., habit formation or infrequent

spending adjustments. Second, we assume expansionary policy constraints: when the

output gap is negative, the central bank cannot instantly raise aggregate demand to its

desired level. This might be because the central bank cannot cut the interest rate suffi -

ciently (e.g., due to the zero lower bound) or because it prefers to adjust the interest rate

gradually due to frictions such as policy uncertainty or concerns with financial stability

(see, e.g., Bernanke (2004)).

Our main result is that the interaction between aggregate demand inertia and (antic-

ipated) expansionary policy constraints implies that it is optimal for the central bank to

run the economy hot during a temporary supply contraction. When aggregate demand has

inertia, overheating the economy in the low-supply phase ensures that the economy has

higher aggregate demand once aggregate supply recovers. Having a higher aggregate de-

mand in the high-supply phase is useful because it alleviates the anticipated constraints on

expansionary policy and accelerates the recovery (a form of “backward guidance”). The

optimal policy balances the costs of positive output gaps during the low-supply phase with

the benefits of faster recovery and less negative output gaps in the high-supply phase.

Our analysis does not suggest that monetary policy should remain loose throughout

the low-supply phase. Tempering our main result, we find that the optimal policy quickly

normalizes interest rates once the output gap reaches its desired (positive) level. This

second result is also driven by the inertia in aggregate demand. With inertia, the initial
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expansionary monetary policy creates aggregate demand momentum, which keeps the

output gap close to its desired (positive) level without the need for low interest rates.

Keeping the interest rates “too low for too long” overheats the economy beyond the

optimal output gap. Overall, when the initial aggregate demand is relatively low, the

goal is to frontload the interest rate cuts to raise demand in anticipation of the recovery

of supply.

While our baseline model assumes fully sticky prices, our main results also hold when

prices are partially flexible and inflation responds to output gaps. When inflation is de-

termined according to the standard New-Keynesian Phillips Curve (NKPC), our analysis

is mostly unchanged. In a temporary supply contraction, the central bank (typically)

induces positive inflation gaps along with positive output gaps. Once aggregate supply

recovers, the inflationary pressure flips sign and the central bank fights disinflation and

negative output gaps. As before, the central bank runs the economy hot in the low-supply

phase, to mitigate the future negative gaps it expects in the high-supply phase.

When inflation is determined by an inertial Phillips curve (e.g., because price setters

have backward-looking expectations), the optimal policy features richer dynamics. With

inflation inertia, the central bank initially overheats the economy and gradually cools it

down while it waits for the aggregate supply recovery. As the recovery is delayed, inflation

gradually builds up and the central bank faces a more severe trade-off between inflation

and output gaps. Running the economy hot becomes increasingly costly and the optimal

policy “undoes”some of the overheating it has initially induced.

Literature. This note applies and extends our earlier analysis in Caballero and Simsek

(2021). In that paper, we use a Calvo-type consumption adjustment model to generate the

inertial behavior of aggregate demand that we assume in this paper. We characterize the

optimal monetary policy with inertial aggregate demand, and show that a central bank

facing a negative output gap frontloads interest rate cuts and “overshoots”asset prices.

In an appendix, we also show that the central bank might preemptively overshoot asset

prices when it expects aggregate demand to be below potential output in the future, e.g.,

because of a temporary supply shock. Here, we focus on temporary supply shocks and

characterize the optimal policy in greater detail. We also use a more standard model (a

minor modification of the textbook New-Keynesian model) and we focus on the optimal

path of output, inflation, and interest rates– rather than on the path of asset prices.

Our note is related to a New-Keynesian literature that investigates the policy trade-offs

induced by aggregate supply shocks. Blanchard and Galí (2007) focus on supply shocks in

an environment with real wage rigidities. In this context, a contractionary supply shock
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reduces the second-best output (with real rigidities but no nominal rigidities) more than

the first-best output (without any rigidity). The central bank can replicate the second-best

output by stabilizing inflation, but this is not optimal. The central bank faces a trade-

off between allowing for some inflation and stabilizing the “excessive”decline in output.

More recently, and motivated by the Covid-19 episode, Guerrieri et al. (2021) show that

reallocation shocks can also induce policy trade-offs similar to supply shocks. They study

a multisector economy with downward wage rigidity subject to an asymmetric shock that

shifts demand between sectors. The contracting sectors experience high unemployment

but no wage or price decline, due to the downward rigidity, while the expanding sectors

experience positive output gaps with high inflation. Under some conditions, the central

bank might overheat the economy to accelerate the reallocation process.1

We also focus on supply shocks but we uncover a different policy trade-off and of-

fer a complementary rationale for running the economy hot. In our model, the central

bank faces an intertemporal trade-off between allowing for positive output gaps in the

low-supply state and shrinking the negative output gaps that it expects to emerge once

aggregate supply recovers. This intertemporal trade-off arises even in the limit case with

extreme price stickiness, and implies that the central bank is more likely to accommodate

supply shocks that it perceives to be more temporary.

A central feature of our model is aggregate demand inertia. This type of inertia

emerges from various sources, such as infrequent adjustment of spending decisions or

habit formation. An extensive literature documents the infrequent adjustment of durables

consumption and investment (see Bertola and Caballero (1990) for an early survey). There

is also a literature that emphasizes infrequent re-optimization for broader consumption

categories– due to behavioral or informational frictions– and uses this feature to explain

the inertial behavior of aggregate consumption (e.g., Caballero (1995); Reis (2006)) as

well as asset pricing puzzles (e.g., Lynch (1996); Marshall and Parekh (1999); Gabaix and

Laibson (2001)). Habit formation also introduces inertia into aggregate spending (see

Woodford (2005) for an exposition). Fuhrer (2000); Amato and Laubach (2004) embed

habit formation into standard business cycle models used for monetary policy analysis.

We contribute to this line of work by analyzing the optimal monetary policy response to

a temporary supply shock when there is demand inertia.

The rest of this note is organized as follows. Section 1 introduces our baseline model,

with fixed prices. Section 2 characterizes the optimal monetary policy in this environment

1See Aoki (2001); Benigno (2004); Woodford (2005); Rubbo (2020); Fornaro and Romei (2022) for
other analyses of how sectoral heterogeneity affects optimal monetary policy. The common theme in this
literature is that monetary policy is also concerned with relative prices.
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and establishes our main results. Section 3 extends our baseline model to add partially

flexible prices and inflation. This section corroborates the monetary policy implications of

the simpler model and establishes additional results when the inflation block of the model

also features inertia. Section 4 provides final remarks. The online appendices contain the

omitted proofs and results, the extensions of the baseline model, and the parameters used

for the numerical examples.

1. A simple model with aggregate demand inertia

In this section, we describe our model’s environment. It features a temporary supply

shock, inertial aggregate demand, and constraints on expansionary policy in the high-

supply state. We also characterize the equilibrium in a benchmark case with no reason

for overheating the economy during the low-supply phase. For our baseline model, we

assume that goods’ prices are fixed. In this inflationless context, overheating simply

means a positive output gap.

IS curve with inertial aggregate demand. Consider a discrete time model and let yt =

log Yt denote log output, which is determined by aggregate demand. Suppose the log-

linearized IS curve is given by

yt = ηyt−1 + (1− η) (− (it − ρ) + Et [yt+1]) , (1)

where ρ is the households’discount rate and it is the interest rate at time t (the nominal

and real interest rates are the same since prices are fixed). When η = 0, this reduces to

the standard IS curve of the benchmark New Keynesian model. We assume η > 0, which

captures inertia in spending decisions. This kind of inertia in the IS curve is broadly

found in, e.g., models with consumption habits (see, e.g., Woodford (2005)), or in models

with sluggish consumption adjustment (see, e.g., Caballero and Simsek (2021)).2 Our IS

curve is parsimonious and abstracts from many other factors that might affect aggregate

demand (see the final remarks for how fiscal policy would affect our analysis).

Temporary supply shocks. There are two states st ∈ {L,H} with potential outputs y∗L <
y∗H . The economy starts in state L and transitions to state H with probability λ in each

period. Once the economy is in state H, it stays there (i.e., H is an absorbing state).

2Large-scale New-Keynesian models, e.g., the Fed’s FRB/US model, assume inertia because it helps
match the observed gradual response of spending to a variety of exogenous shocks (see Brayton et al.
(2014)).
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Constraints on expansionary monetary policy. The second key ingredient in our model is a

constraint on the central bank’s ability to cut interest rates and implement expansionary

policy. In Appendix B, we conduct our analysis assuming the central bank is subject to

a zero lower bound (ZLB) constraint: that is, it ≥ 0. However, this realistic constraint

generates analytical complexity that is not central to our main points. Thus, in the main

text we simplify the analysis by assuming an alternative lower bound constraint:

it ≥ it (yt) = ρ+ φ (yt − y∗H) . (2)

Here, ρ is the long-run “rstar”for this economy. The central bank can lower the policy

rate below ρ, but this is costly and the central bank will do so only if output falls below

its long-run potential. The parameter φ > 0 captures the sensitivity of the policy rate to

the output gap when the constraint binds. This constraint simplifies the analysis because

it implies a standard Taylor rule after the economy switches to the high-supply state.

Central bank’s problem. We consider a central bank with a mandate to close the output

(and inflation) gap. Formally, the central bank minimizes the present discounted value

of quadratic output gaps, Et

[∑∞
h=0 β

h

(
yt+h−y∗st+h

)2
2

]
. We assume the central bank sets

the policy interest rate without commitment. We can then formulate the policy problem

recursively as

Vst (yt−1) = max
it,yt
−
(
yt − y∗st

)2
2

+ βEt
[
Vst+1 (yt)

]
(3)

s.t. yt = ηyt−1 + (1− η)
(
− (it − ρ) + Et

[
Yst+1 (yt)

])
it ≥ it (yt) .

Here, Ys (y−1) and Vs (y−1) denote the output and the central bank’s value, respectively,

when the current state is s ∈ {H,L} and the most recent output is y−1. The central bank
takes its future decisions as given and sets the current interest rate and output to minimize

quadratic gaps, subject to the inertial IS curve and the constraint on expansionary policy.

Benchmark without constraints on expansionary policy. Let us start with a

“first-best”benchmark case in which the central bank faces no constraints on expansionary

policy (it (yt) = −∞). In this benchmark, the central bank can achieve a zero output
gap in every period and state, yt = y∗st , since there is always a feasible interest rate that

ensures a zero output gap. Let us solve for these interest rates.
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Consider the high-supply state H. Using yt = yt+1 = y∗H , the IS curve (1) implies

it,H = ρ− η

1− η (y∗H − yt−1) . (4)

If aggregate demand has recently been weak, yt−1 < y∗H , the interest rate needs to be cut

below its steady-state level to ensure the economy operates at its potential. In particular,

for the first period in which the economy transitions to the high-supply state, we obtain

itran,H = ρ− η

1− η (y∗H − y∗L) . (5)

The central bank needs to cut the rate by a greater amount after the transition when

aggregate demand has more inertia (higher η), and when the temporary supply shock is

more severe (larger y∗H − y∗L).
Next consider the temporary supply shock state L. Using yt = y∗L and E [yt+1] =

λy∗H + (1− λ) y∗L, the IS curve (1) implies

it,L = ρ+ λ (y∗H − y∗L)− η

1− η (y∗L − yt−1) . (6)

When recent output is equal to potential, yt−1 = y∗L, the interest rate in state L is above

its steady-state level, ρ. Since supply is temporarily low but is expected to recover (and

this expectation raises current demand), the central bank raises the interest rate to ensure

that current demand is in line with the reduced supply. When yt−1 6= y∗L, the interest rate

also accounts for the inertia in aggregate demand.

These interest rate expressions hint that constraints on expansionary policy have the

potential to cause problems (especially) during the transition from state L to state H.

We next turn to our main case.

2. Overheating with inertia and constrained expan-

sionary policy

In this section, we establish our main result that the optimal policy overheats the economy

during the temporary supply shock state. When the initial demand is low, the central

bank achieves this by frontloading interest rate cuts, which generates aggregate demand

momentum. The reason for optimally overheating the economy in the supply-shock phase

is to increase the starting level of aggregate demand once supply constraints dissipate and
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the expansionary policy constraints become binding (a form of “backward guidance”).

We start by characterizing the equilibrium in the high-supply state s = H.

Lemma 1. Suppose the economy has switched to the high-supply state, s = H, with past

output yt−1 < y∗H . Then, the expansionary policy constraint binds:

it = ρ+ φ (yt − y∗H) . (7)

The output gap converges to zero at a constant rate:

YH (yt−1)− y∗H = γH (yt−1 − y∗H) , (8)

where γH ∈ (0, 1) is the smaller root of the polynomial P (x) = x2 − x
(

1
1−η + φ

)
+ η

1−η .

The central bank’s value function is given by

VH (yt−1) = −θH
(yt−1 − y∗H)2

2
, where θH =

γ2H
1− βγ2H

. (9)

Current output is increasing in past output, dYH(yt−1)
dyt−1

= γH > 0. In addition, the

parameters γH and θH are increasing in η: more inertia makes the output and the value

function more sensitive to past output.

In the high-supply state, the interest rate constraint binds and the policy effectively

follows a Taylor rule. Output eventually reaches its potential level, y∗H . However, the

convergence is not immediate and output is influenced by demand. Importantly, output

is increasing in past output. Intuitively, the recent decline in output along with inertia

keeps current demand low. The policy is constrained and cannot immediately bring

demand back to potential. A greater past output increases current demand, accelerates

the recovery, and increases the central bank’s value. These effects are stronger when

aggregate demand has more inertia.

Next consider the equilibrium in the low-supply state s = L. Suppose past output

yt−1 is not too low so that the expansionary policy constraint does not bind in the low-

supply state (see Appendix A.1.2 for the case with the binding constraint). Using (9)

(and assuming there is an interior solution), we can rewrite problem (3) as

VL (yt−1) = max
yt<y∗H

−(yt − y∗L)2

2
+ β

(
(1− λ)VL (yt)− λθH

(yt − y∗H)2

2

)
. (10)

We dropped the IS curve, which determines the interest rate the central bank needs to
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set to implement the optimal output level. Note that the value function does not depend

on past output: VL (yt−1) ≡ VL is constant. The optimality condition is:

yL − y∗L = βλθH (y∗H − yL) . (11)

This leads to our main result. To state the result, let yL ∈ (y∗L, y
∗
H) denote the solution

to (11) and assume the initial output satisfies:

yt−1 ≥ yL = yL −
1− η
η

(λ (1− γH) + φ) (y∗H − yL) . (12)

Proposition 1. Suppose the economy is in the temporary supply shock state, s = L, with

past output yt−1 that satisfies (12). Then the expansionary policy constraint does not bind

in s = L. The central bank implements the constant output level yL ∈ (y∗L, y
∗
H) that solves

(11). The central bank induces positive output gaps in the current low-supply state (current

overheating), yL > y∗L, and negative output gaps after transition to the high-supply state

(future demand shortages), YH (yL) < y∗H .

The central bank targets the optimal output by setting the interest rate

it,L = ρ+ λ (YH (yL)− yL)− η

1− η (yL − yt−1) . (13)

If y−1 < yL, we have i0,L < it,L ≡ iL for t ≥ 1, where iL = ρ + λ (YH (yL)− yL). The

central bank initially sets a relatively low interest rate and then normalizes the interest

rate and keeps it at a constant level until the transition to the high-supply state.

The first part of the result characterizes the optimal output choice in the low-supply

state. For intuition, observe that the left side of (11) captures the marginal cost of

overheating and the right side of (11) captures the marginal benefit from overheating.

When output is at its potential level, yL = y∗L, the marginal cost of overheating is zero

but the marginal benefit is strictly positive. Therefore, the central bank optimally induces

some overheating. Overheating in the current period mitigates the demand shortage and

accelerates the recovery in future periods after the transition to high supply. Observe also

that the marginal benefit from overheating declines as yL rises toward y∗H and it becomes

zero when yL = y∗H . Therefore, there is a unique interior optimum yL ∈ (y∗L, y
∗
H). The

central bank stops short of overheating to the point that the economy would have no

(negative) output gaps after the transition to the high-supply state.

The second part of Proposition 1 shows that the central bank does not keep the interest

rate low throughout the low-supply phase. Rather, the central bank frontloads the interest
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rate cuts and then quickly normalizes the interest rate once the output gap reaches its

target level (yL). This feature is also driven by the inertia in aggregate demand. Recall

the IS curve (1)

yt = ηyt−1 + (1− η) (− (it − ρ) + Et [yt+1]) .

With inertia (η > 0), a greater past output yt−1 supports a greater current output yt
for any given interest rate it (and expected output Et [yt+1]). Therefore, once the central

bank raises output to its target level, it does not need to keep the interest rate low to

keep the output at this level. The initial expansionary monetary policy creates aggregate

demand momentum. This demand momentum keeps the output gap close to its desired

(positive) level without the need for low interest rates. Keeping the interest rates “too

low for too long”would overheat the economy beyond the optimal output gap.

Remark 1 (Overheating vs overlooking supply shocks). Proposition 1 considers the case
in which the initial demand is relatively low, y−1 < yL. This is arguably relevant for

highly disruptive supply shocks (such as pandemics) that reduce output as well as potential

output. For less disruptive supply shocks (such as oil shocks), the initial demand can be

relatively high, y−1 ∈ (yL, y
∗
H ]. In this case, the central bank initially sets a relatively high

interest rate to bring aggregate demand down to yL– but not all the way down to y∗L. The

central bank “partially overlooks the supply shock”as opposed to deliberately overheating

the economy. The robust result that applies in both cases is that the central bank “runs

the economy hot”and targets positive output gaps while the supply is temporarily low.

Remark 2 (Backward guidance). The optimal policy features “backward guidance” in
the sense that it resembles the “forward guidance”policies analyzed by a large literature.

With forward guidance, the central bank promises to keep future output above its potential,

which raises current output via forward-looking expectations. With backward guidance, the

central bank keeps past output above its potential, which raises current output via demand

inertia.

Numerical illustration. Figure 1 illustrates the equilibrium. In this simulation, the

economy starts in the temporary low-supply state with a relatively low level of initial

demand (y−1 < yL). The economy transitions to the high-supply state in period four.

The (blue) solid lines plot the equilibrium characterized in Proposition 1, where the

central bank faces the constraint on expansionary policy. The policy induces overheating in

the low-supply state. The policy achieves this by cutting the rate in the first period while

the economy is in the low-supply state. Once the policy brings output in the low-supply

state to the optimal level of overheating, yL > y∗L, it raises the interest rate to keep output
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Figure 1: A simulation of the equilibrium starting in the low-supply state, s0 = L, with
initial output that satisfies y−1 ∈ [yL, yL). The solid lines correspond to the equilibrium
with optimal policy. The dotted lines correspond to a first-best benchmark case without
expansionary policy constraints. The dashed lines correspond to a myopic benchmark case
in which the policy minimizes the current output gap. The dash-dotted lines correspond to
the equilibrium with a smaller inertia parameter (η). See Appendix C for the parameters
used.
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constant until the economy transitions to the high-supply state. After the transition, the

policy cuts the interest rate once again to raise aggregate demand toward the higher

aggregate supply level. Due to the constraint on expansionary policy, the recovery in the

high-supply state takes several periods to complete.

Why does the optimal policy cut the interest rates in the low-supply state and induce

overheating? As Figure 1 illustrates, the central bank anticipates that the transition to

the high-supply state will start with low aggregate demand. Because aggregate demand

has inertia, the central bank recognizes that a greater aggregate demand in the low-supply

state will accelerate the recovery after the economy transitions to the high-supply state.

The optimal policy induces positive output gaps in the low-supply state, but it also shrinks

the negative output gaps that emerge when the economy switches to the high-supply state.

The remaining lines in the figure correspond to alternative scenarios that illustrate

various properties of the optimal policy. The (black) dotted lines plot the first-best

benchmark case, where the central bank does not face any constraints on expansionary

monetary policy. In this benchmark, as illustrated by Eqs. (5− 6), the policy sharply

raises the interest rate in the initial period and sharply cuts the interest rate in the first

period after transition to high supply. Compared to this benchmark, the (constrained)

optimal policy frontloads the interest rate cuts and avoids large interest rate changes.

The (red) dashed lines plot a myopic benchmark case in which the central bank focuses

on closing current gaps: formally, the central bank solves problem (3) with the period-

by-period objective function −(yt−y∗L)
2

2
. In this benchmark, the central bank keeps output

in the low-supply state equal to its potential. Consequently, the economy transitions to

high supply with a lower aggregate demand and the recovery takes longer. Compared to

this benchmark, the optimal policy features overheating in the low-supply phase and a

faster recovery after transition to high supply.

Finally, the (magenta) dash-dotted lines plot the equilibrium with less inertia (smaller

η). In this case, after the supply recovers, output converges to its potential faster (see

Lemma 1). Since the central bank anticipates smaller negative gaps after transition to

high supply, it overheats the economy by a smaller amount in the low-supply phase.

Compared to this scenario, the optimal policy with more inertia features greater output

gaps (in absolute value) both before and after the supply recovery. These comparisons

highlight that our results are driven by the interaction of aggregate demand inertia and

expansionary policy constraints.
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3. Overheating with inflation

In this section we extend our setup to allow for partially flexible prices and an inflation

rate that is responsive to overheating. We start with the textbook case in which inflation

is determined by a New-Keynesian Phillips Curve (NKPC) without inflation inertia. In

this case, our substantive conclusion remains the same: the central bank overheats the

economy in the temporary supply shock state to fight the negative output gaps and the

disinflation that it expects to emerge after the supply recovers. We then assume that

the inflation block of the model also features inertia. This case leads to richer dynamics

within the temporary supply shock state: With inflation inertia, the central bank initially

overheats the economy, as before, but gradually cools it down as the supply contraction

continues.

We first modify the baseline setup in Section 1 to incorporate inflation. Let Pt denote

the nominal price level and πt = log (Pt/Pt−1) denote (log) inflation. With inflation, the

IS curve (1) becomes

yt = ηyt−1 + (1− η) (− (rt − ρ) + Et [yt+1]) (14)

where rt = it − Et [πt+1] .

Here, rt denotes the real interest rate.

To simplify the exposition, we also modify the expansionary policy constraint in (2).

Recall that the constraint implied that the policy follows a Taylor rule after transition

to the high-supply state (see Eq. (7)), but it is unconstrained in the low-supply state

(except for a case we relegated to the appendix). With inflation, we directly assume the

policy follows a (generalized) Taylor rule only in the high-supply state,

it = ρ+ φy (yt − y∗H) + φππt if st = H. (15)

The policy responds to both output and inflation gaps– the deviation of inflation from

its target. We normalize the inflation target to zero so that the inflation gap is the same

as inflation. The parameters φy, φπ > 0 capture the sensitivity of the policy rate to the

corresponding gap. For simplicity, the policy is unconstrained in the low-supply state.

Finally, we adjust the central bank’s objective function to incorporate the costs of

inflation gaps:

Et

 ∞∑
h=0

βh

−
(
yt+h − y∗st+h

)2
2

− ψ
π2t+h

2


 . (16)
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Here, ψ denotes the relative welfare weight for the inflation gaps.

We next describe the inflation block and characterize the optimal policy. We consider

two specifications that differ on whether the Phillips curve features inertia or not.

3.1. Overheating with the New-Keynesian Phillips curve

First, suppose inflation is determined by the standard NKPC (see Galí (2015) for a deriva-

tion):

πt = κ
(
yt − y∗st

)
+ βEt [πt+1] . (17)

Inflation depends on the current output gap, yt−y∗st, as well as the expectations for future
inflation. The coeffi cient κ captures the extent of price flexibility. The equation does not

feature inertia because inflation expectations are rational and forward-looking.

Consider the first-best benchmark without any constraints on expansionary policy. As

before, the central bank achieves zero output gaps throughout. In view of Eq. (17), this

implies zero inflation throughout. In this benchmark, the central bank can simultaneously

stabilize output and inflation– a result known as the “divine coincidence”of monetary

policy. Therefore, introducing inflation does not change the analysis.

Next, suppose the central bank faces the expansionary policy constraint (15) in the

high-supply state. The analysis closely parallels the baseline analysis in Section 2. There-

fore, we relegate the formal results to Appendix A.2.1 and discuss the intuition.

In the high-supply state, s = H, the equilibrium is characterized by the IS curve (14),

the NKPC (17), and the policy rule (15). Under appropriate parametric restrictions,

output and inflation gaps eventually converge to zero (see Lemma 2 in the appendix).

However, the convergence is not immediate. Starting with yt−1 < y∗H , the economy

experiences a period of negative output gaps and disinflation. As before, increasing yt−1
mitigates these gaps and increases the value function.

In the low-supply state, s = L, the central bank solves a modified version of prob-

lem (10). Proposition 4 in the appendix characterizes the solution and shows that our

main result extends to this setup. The central bank chooses a level of output that in-

duces positive output gaps in the low-supply state (current overheating), yt,L ≡ yL > y∗L,

and negative output gaps and disinflation after transition to the high-supply state (future

demand shortages), YH (yL) < y∗H ,ΠH (yL) < 0.

Figure 2 illustrates this result in a numerical example. As before, the economy starts

in the low-supply state and with a relatively low initial demand (y−1 < yL). The solid
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Figure 2: A simulation of the equilibrium in which inflation is determined acording to the
NKPC. The solid lines show the equilibrium with optimal policy. The dotted lines illus-
trate a first-best benchmark case without expansionary policy constraints. See Appendix
C for the parameters used.
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lines show the equilibrium with the optimal policy. Compared to the first-best benchmark

(the dotted lines), the optimal policy frontloads interest rate cuts to bring output above

its potential level and inflation above its target level. Similar to before, the central

bank anticipates that the recovery will start with low aggregate demand and disinflation.

Therefore, the central bank temporarily overheats the economy to ensure that the recovery

starts with a greater aggregate demand and a smaller inflation gap.

As the figure shows, the central bank implements a relatively low inflation despite the

fact that it sets a positive output gap. This aspect is driven by the forward looking nature

of the NKPC. Price setters recognize that the supply recovery will start with negative

output gaps and disinflation. The expected disinflation puts downward pressure on current

inflation. While this result makes overheating relatively less costly, empirical studies of

the Phillips curve suggest that inflation is not influenced by the rationally expected future

output gaps as much as predicted by the NKPC (see, e.g., Rudd and Whelan (2005)).

We next turn to an alternative setup in which inflation is backward-looking.

3.2. Overheating with an inertial Phillips curve

Next suppose inflation is determined by an inertial Phillips curve:

πt = κ
(
yt − y∗st

)
+ bπt−1. (18)

Here, b ∈ (0, 1) is a parameter that captures the strength of inflation inertia. In theory,

inflation inertia can emerge from several frictions, e.g., backward-looking indexation of

prices or wages (e.g., Galıand Gertler (1999)) or adaptive inflation expectations (e.g.,

Blanchard (2016)). For analytical tractability, we assume inflation is fully backward-

looking.

First, consider the first-best benchmark setup without constraints on expansionary

policy. As long as the central bank does not inherit past inflation, π−1 = 0, it is easy to

check that the equilibrium is the same as before. In particular, the central bank achieves

zero output gaps and zero inflation throughout. As long as π−1 = 0, the divine coincidence

still applies with a backward-looking Phillips curve.

Next, consider the main setup in which the policy is constrained to follow the Taylor

rule (15) in the high-supply state. To simplify the exposition, suppose also that the

Taylor rule coeffi cient on inflation satisfies φπ = b. With this assumption, Lemma 3 in

the appendix shows that there is an equilibrium in which the output gaps converge to
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zero at a constant rate γH . Along this equilibrium path, the value function satisfies

VH (yt−1, πt−1) = −θH
2

(yt−1 − y∗H)2 − ΨH

2
π2t−1 − IH (yt−1 − y∗H) πt−1.

Here, θH ,ΨH , IH > 0 are derived coeffi cients given by Eqs. (A.18) in Appendix A.2.2. In

this case, the value function depends on the past inflation, πt−1, in addition to the past

output gap, yt−1 − y∗H [cf. Eq. (9)].

In the low-supply state, s = L, the central bank solves a version of problem (10):

VL (yt−1, πt−1) = max
yt,πt
−(yt−1 − y∗H)2

2
− ψ

π2t−1
2

+ β ((1− λ)VL (yt, πt) + λVH (yt, πt))

πt = κ (yt − y∗L) + bπt−1 (19)

Our main result characterizes the optimal policy and extends Proposition 1 to this setting.

To state the result, we define the following derived parameters:

A = 1 + βλ (θH + κIH) (20)

B = κψ + βλ (IH + κΨH)

C = β (1− λ) b (1 + βλθH)

D = β (1− λ) bβλIH
E = βλ [θH + κIH − β (1− λ) bθH ] .

Proposition 2. Consider the setup with an inertial Phillips curve. Suppose φπ = b and

φy > κ. Let A,B,C,D,E > 0 given by (20). The polynomial P (x) = x2 − A+Bκ+bC
C+Dκ

x +
Ab

C+Dκ
has a single root in the interval (0, b), which we denote with γL. As long as the econ-

omy remains in the low-supply state, the optimal choice of output and inflation, (yt, πt),

converge to a steady-state, (yL, πL), where

yL = y∗L +
E

A− C + (B −D) κ
1−b

(y∗H − y∗L) ∈ (y∗L, y
∗
H) (21)

πL =
κ

1− b (yL − y∗L) > 0. (22)

Along the transition path, the optimal output and inflation are given by

yt − yL = −b− γL
κ

(πt−1 − πL) (23)

πt − πL = γL (πt−1 − πL) . (24)
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The associated real and nominal interest rates are given by (A.21− A.22) in the appendix.

Starting with zero past inflation, π−1 = 0, the central bank implements a relatively high

initial output gap, y0 > yL > y∗L. Absent transition to the high supply state, the central

bank gradually decreases the output gap toward its steady state value, yt − y∗L ↓ yL − y∗L,
and increases the inflation toward its steady state value, πt ↑ πL.

With inertia in the Phillips curve, the central bank still implements high output gaps in

the low-supply state, as before, but it also reduces the output gaps as the supply recovery is

delayed. For intuition, note that the output gaps increase inflation. With inflation inertia,

past inflation shifts the Phillips curve and worsens the trade-off between increasing the

output (to accelerate the future recovery) and raising inflation. As time passes and the

recovery is delayed, it becomes increasingly costly to induce positive output gaps. The

central bank optimally “undoes”some of the overheating it has initially induced.

Figure 3 illustrates the result in a numerical example. The (blue) solid lines show the

equilibrium with optimal policy. As before, the central bank frontloads interest rate cuts

and brings output above its potential level. As time passes and the recovery is delayed,

this policy raises inflation. To keep inflation under control, the central bank gradually

brings output closer to its potential– undoing some of the initial overheating.

The last two panels of the figure show the nominal and real interest rates the central

bank targets. As before, after the initial interest rate cut, the central bank raises the

interest rate. Unlike before, the nominal rate can exceed its long-run neutral level (cf.

Figures 1 and 2). In this model, the level of the nominal interest rate is also influenced

by expected inflation. As inflation increases over time, expected inflation increases (we

assume consumers’ inflation expectations are rational and forward looking). Thus, the

central bank raises the nominal rate to keep the real rate relatively stable.

4. Final Remarks

Summary. In this note, we developed a model to address two substantive questions:

Should central banks tolerate some degree of overheating during a temporary supply con-

traction? And if the answer is yes, as we find, does this imply that optimal monetary

policy should remain ultra-loose throughout the supply constrained phase?

Our answers to these questions build on the realistic modeling ingredient that aggre-

gate demand has inertia. Inertia implies that the level of aggregate demand in the future,

once aggregate supply recovers, is increasing in the level of aggregate demand in the
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Figure 3: A simulation of the equilibrium in which inflation is determined acording to
an inertial Phillips curve. The solid lines show the equilibrium with optimal policy. The
dotted lines illustrate a first-best benchmark case without expansionary policy constraints.
See Appendix C for the parameters used.
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current low-supply state. This dynamic linkage across states implies that a policymaker

that anticipates being constrained and facing a negative output gap in the future, once

aggregate supply recovers, overheats the economy in the current low-supply state (a form

of “backward guidance”).

Aggregate demand inertia also implies that, within the low-supply phase, the optimal

policy frontloads the interest rate cuts and then quickly normalizes the interest rate.

The reason is that the initial expansion generates aggregate demand momentum. This

momentum supports aggregate demand and ensures that output stays at the optimal level

of overheating without the initially low interest rate. In this context, keeping the interest

rate “too low for too long”overheats the economy beyond the optimal level.

If the inflation block of the model also features inertia, then the optimal policy features

richer dynamics. The initial expansion in the low supply state gradually increases inflation,

which makes it increasingly costly to run the economy hot. As the recovery is delayed, the

central bank optimally “undoes”some of the initial overheating. The build-up of inflation

also raises expected inflation, which might induce the central bank to raise the nominal

interest rate above its long-run neutral level. In this context, adjusting the nominal

interest rate too slowly lowers the real interest rate and overheats the economy beyond

the optimal level.

Clarifications and extensions. We assumed that potential output immediately re-

covers to a high level once the temporary supply contraction ends. This feature is meant

to capture a Covid-19 style shock, where supply remains depressed mainly due to virus-

related developments (e.g., whether there will be a new variant) and can be expected to

recover rapidly once the virus is under control. For other supply shocks, where the ex-

pected supply recovery is more gradual, the first-best benchmark implies smaller interest

rate cuts during the recovery, which also reduces the need for frontloading interest rate

cuts (see Figure 1). In this sense, our results are more relevant for temporary supply

shocks driven by highly disruptive but short-lived events, such as epidemics, wars, or

political conflicts.

We also assumed that potential output is exogenous. Our policy conclusions would

be even stronger if potential output is endogenous to aggregate demand, as in Benigno

and Fornaro (2018); Fornaro and Wolf (2021). In that setting, running the economy hot

in the low-supply phase would increase future potential output, which would make future

output gaps more negative and justify further overheating during the supply disruption.

We abstracted from fiscal policy and focused on the optimal path of monetary policy.

However, fiscal and monetary policy are substitutes in terms of their impact on aggregate
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demand, which suggests that our results can also speak to the optimal timing of fiscal

policy. In particular, aggregate demand inertia provides a rationale for frontloading fiscal

policy, especially if monetary policy is constrained in the early stages of the low supply

state, as in the Covid-19 episode. We leave a more complete analysis of the optimal fiscal

policy response to temporary supply shocks for future work.

Finally, it is important to emphasize that the optimal policy in our model is driven by

the anticipation of a binding policy constraint once supply recovers. We assumed there is

no uncertainty, which implies that the constraint always binds after the supply recovery.

In a more realistic model with uncertainty, our results on optimal policy would still hold

ex ante, but the constraint might not bind ex post, e.g., if the supply recovery is weaker

than expected, as in the Covid-19 episode.
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Online Appendices for:

A Note on Temporary Supply Shocks with

Aggregate Demand Inertia

Ricardo J. Caballero Alp Simsek

A. Omitted Proofs

This appendix contains the results and the derivations omitted from the main text.

A.1. Omitted proofs and extensions for Section 2

We first present the proofs omitted from Section 2. We then characterize the equilibrium

for the remaining case in which the expansionary policy constraint might bind also in the

low-supply state.

A.1.1. Omitted proofs

Proof of Lemma 1. Suppose the economy switched to the high-supply state s = H

with yt−1 < y∗H . We verify that the conjectured allocation is an equilibrium.

We first show that the expansionary policy constraint in (2) binds along the conjec-

tured equilibrium path. Suppose the constraint does not bind. Then, the central bank

would target a zero gap, yt = y∗H , by setting the interest rate in (4),

it = ρ− η

1− η (y∗H − yt−1) .

Along the conjectured path, we have yt−1 < y∗H and the required interest rate satisfies,

it < ρ. However, since the policy targets a zero output gap, yt = y∗H , the policy constraint

implies it ≥ ρ. This provides a contradiction and implies that the policy constraint binds.

In particular, the policy effectively follows the Taylor rule in (7).

We next characterize the evolution of output. Combining the IS curve in (1) and the

Taylor rule in (7), output follows the difference equation,

yt = ηyt−1 + (1− η) (−φ (yt − y∗H) + yt+1) .
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We drop the expectations since there is no (residual) uncertainty. Let ỹt = yt−y∗H denote
the output gap. Then, we can rewrite the difference equation as,

ỹt = ηỹt−1 + (1− η) (−φỹt + ỹt+1) .

In matrix notation, we have the system,[
ỹt+1

ỹt

]
= M

[
ỹt

ỹt−1

]
where M =

[
1
1−η + φ − η

1−η

1 0

]
.

The characteristic polynomial of the matrix M is given by

P (x) = x2 − x
(

1

1− η + φ

)
+

η

1− η .

This polynomial has two roots that satisfy

0 < γ1 < 1 < γ2.

Since ỹt−1 is predetermined and ỹt is not, this condition ensures the system is saddle

path stable. Moreover, letting γH ≡ γ1 ∈ (0, 1) denote the stable eigenvalue, the solution

converges to zero at a constant rate:

ỹt+h = γH ỹt+h−1 = γh+1H ỹt−1.

This proves (8).

We can then solve for the value function over the region yt−1 < y∗H as

VH =

∞∑
h=0

−βh (ỹt+h)
2

2
=

∞∑
h=0

−βh
(
γh+1H ỹt−1

)2
2

= − γ2H
1− βγ2H

(ỹt−1)
2

2
.

This establishes (9).

Note that dθH
dη

> 0 as long as dγH
dη

> 0. To establish the latter inequality, let η̃ = η
1−η

and note that γH is the solution to the following equation over the range (0, 1):

P (x, η̃, φ) = x2 − x (1 + η̃ + φ) + η̃ = 0.
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Implicitly differentiating with respect to η̃ and evaluating around x = γH , we obtain

dx

dη̃
= − ∂P/∂η̃

∂P/∂x

∣∣∣∣
x=γH

=
1− γH

1 + η̃ + φ− 2γH
> 0.

Here, the inequality follows since γH < 1 and 2γH < γ1 + γ2 = 1 + η̃ + φ (since γH is the

smaller of the two roots γ1, γ2). Since η̃ = η
1−η is increasing in η, we also have

dx
dη
> 0.

This completes the proof.

For completeness, consider also the case in which the initial output is above its po-

tential yt−1 ≥ y∗H . In this case, the expansionary policy constraint does not bind and

output converges to its potential immediately. The central bank sets the policy rate,

it = ρ − η
1−η (y∗H − yt−1), and implements yt = y∗H . The interest rate constraint does not

bind because it > ρ and it (yt) = ρ + φ (yt − y∗H) = ρ. Over this range (yt−1 ≥ y∗H), the

value function satisfies VH (yt−1) = 0.

Proof of Proposition 1. Suppose yt−1 is suffi ciently high that the expansionary con-
straint does not bind in state L. Then, we can write the central bank’s problem as

VL = max
yt
−(yt − y∗L)2

2
+ β ((1− λ)VL − λθHVH (yt)) (A.1)

where VH (yt) =

 −(yt−y∗H)
2

2
if yt < y∗H

0 if yt ≥ y∗H
.

The second line combines the two cases analyzed in Lemma 1. This is a concave optimiza-

tion problem. Any yt that satisfies the first order optimality condition is an optimum. In

the main text, we show that an interior solution (with yL < y∗H) satisfies the optimality

condition in (11). Solving this condition, we obtain

yL =
y∗L + βλθHy

∗
H

1 + βλθH
∈ (y∗L, y

∗
H) .

It follows that the optimum output is interior and given by yL. This also implies that

solving problem (A.1) is equivalent to solving problem (10) in the main text.

Next consider the interest rate that implements this output level. The IS curve (1)

implies

it,L = ρ+ λ (YH (yt)− yt,L) + (1− λ) (yt+1,L − yt,L)− η

1− η (yt,L − yt−1) .

After substituting yt+1,L = yt,L = yL, we obtain (13).
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We also need to verify that this rate does not violate the expansionary policy constraint

in (2). Using Lemma 1, we obtain YH (yL) = γHyL + (1− γH) y∗H . Substituting this into

(13), we have

it = ρ+ λ (1− γH) (y∗H − yL)− η

1− η (yL − yt−1) .

Since yt = yL, the policy constraint holds as long as:

it ≥ ρ+ φ (yL − y∗H) .

Combining these observations, we verify that the constraint holds as long as the past

output gap satisfies the condition in (12),

yt−1 ≥ yL = yL −
1− η
η

(λ (1− γH) + φ) (y∗H − yL) .

This completes the proof of the proposition.

A.1.2. Omitted extensions

Proposition 1 characterizes the equilibrium when the past output is not too low so that

the expansionary constraint does not bind in the low-supply state. We next characterize

the equilibrium in the other case in which the expansionary constraint binds for at least

one period. In this case, the output gradually converges to the target level yL after finitely

many periods (absent transition to the high-supply state). Once the output reaches yL,

the equilibrium is the same as in Proposition 1.

Proposition 3. Suppose the economy is in the temporary supply shock state, s = L,

with past output yt−1 that violates (12), that is: yt−1 < yL.Then the expansionary policy

constraint binds in s = L for at least one period. The initial interest rate is constrained,

it = ρ + φ (yt − y∗H), and the initial output is below its unconstrained level, YL (yt−1) <

yL. The output function YL (y−1) is continuous, piecewise linear, and strictly increasing.

Absent a transition to the high-supply state, output converges to the target level yL after

finitely many periods.

Proof of Proposition 3. Suppose yt−1 < yL. Then, the interest rate is given by

it = ρ + φ (yt − y∗H). Using (1) and YH (yt) = y∗H + γH (yt − y∗H) [see Lemma 1], output

26



follows the recursive equation:

yt = ηyt−1 + (1− η) (φ (y∗H − yt) + λYH (yt) + (1− λ) yt+1) (A.2)

= ηyt−1 + (1− η) (φ (y∗H − yt) + λ (y∗H + γH (yt − y∗H)) + (1− λ) yt+1)

After rearranging terms, this implies

yt =
ηyt−1 + (1− η) (φy∗H + λ (1− γH) y∗H + (1− λ) yt+1)

1 + (1− η) (φ− λγH)
. (A.3)

Let yL,−1 = yL and yL,0 = yL < yL. We recursively define a sequence of cutoffs
{
yL,k

}
as

follows: given yL,k−1 and yL,k, let yL,k+1 denote the unique solution to:

yL,k =
ηyL,k+1 + (1− η)

(
φy∗H + λ (1− γH) y∗H + (1− λ) yL,k−1

)
1 + (1− η) (φ− λγH)

.

Using (A.3), the output function maps a lower cutoff into the higher cutoff:

YL
(
yL,k+1

)
= yL,k. (A.4)

By induction, we can also show that the cutoffs satisfy yL,k+1 < yL,k − 1−η
η
φ (y∗H − yL).

Therefore, there exists KL such that yL,KL
< 0. Then, the cutoffs

{
yL,k

}KL

k=−1 cover the

entire region [0, yL].

We can then define the output function recursively over the intervals
[
yL,k, yL,k−1

]
.

Let YL,0 (y−1) = yL and define a sequence of functions with:

YL,k (y−1) =
ηy−1 + (1− η) (φy∗H + λ (1− γH) y∗H + (1− λ)YL,k−1 (YL,k (y−1)))

1 + (1− η) (φ− λγH)
. (A.5)

These functions are uniquely defined, linear, and strictly increasing over [0, yL]. Then,

Eq. (A.4) implies that for each interval the output function agrees with the corresponding

function in the sequence

YL (y−1) = YL,k (y−1) for y−1 ∈
[
yL,k, yL,k−1

]
.

In particular, the output function is the piecewise-linear function that maps each interval[
yL,k, yL,k−1

]
into the higher interval

[
yL,k−1, yL,k−2

]
. This implies that, absent transition

to the high-supply state, output converges to the target level yL after finitely many periods

(at most KL + 1 periods). This completes the proof of the proposition.
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A.2. Omitted results and proofs for Section 3

We first consider the case with the NKPC and present the formal results omitted from

Section 3.1 along with their proofs. We then consider the case with an inertial Phillips

curve analyzed in Section 3.2 and present the omitted results and proofs.

A.2.1. Overheating with a New-Keynesian Phillips Curve

Suppose inflation is determined according to the NKPC (17)

πt = κ
(
yt − y∗st

)
+ βEt [πt+1] .

Let Πs (yt−1) , Ys (yt−1) , Vs (yt−1) denote the inflation, the output, and the value function

level when the current state is s ∈ {H,L}, and the most recent output is yt−1.
We first characterize the equilibrium in the high supply state s = H. To state the

result, we define the polynomial:

P (x) = x3−x2
(

1

1− η + φy +
1 + κ

β

)
+x

((
1

1− η + φy

)
1

β
+ φπ

κ

β
+

η

1− η

)
− 1

β

η

1− η .

(A.6)

Lemma 2. Consider the setup with inflation determined by the NKPC (17). Suppose

the polynomial in (A.6) has exactly one stable root that satisfies γH ∈ (0, 1) (a suffi cient

condition is φy (1− β) + (φπ − 1)κ > 0 and βφπ ≤ 1). Suppose the economy has switched

to the high-supply state, s = H, with past output yt−1. Then, the output gap and the

inflation functions are given by:

YH (yt−1)− y∗H = γH (yt−1 − y∗H) (A.7)

ΠH (yt−1) = πh (yt−1 − y∗H) where πh =
κγH

1− βγH
. (A.8)

The output gap and inflation both converge to zero at a constant rate γH . The value

function is given by

VH (yt−1) = −θH
(yt−1 − y∗H)2

2
where θH =

γ2H
1− βγ2H

(
1 + ψ

(
κ

1− βγH

)2)
. (A.9)

In the high-supply state, the equilibrium is determined by the IS curve, the NKPC,

and the Taylor rule in (15). Under appropriate parametric conditions, the Taylor rule

ensures that the output and inflation gaps converge to zero. As before, the convergence is
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not immediate. Due to inertial demand, past output, yt−1, affects the output and inflation

gaps in the high-supply state.

Next consider the equilibrium in the low supply state s = L. Using Lemma 2, the

central bank solves the following version of problem (10):

VL (yt−1) = max
yt,πt
−(yt − y∗L)2

2
− ψπ

2
t

2
+ β

(
(1− λ)VL (yt)− λθH

(yt − y∗H)2

2

)
(A.10)

s.t. πt = κ (yt − y∗L) + β ((1− λ) ΠL (yt) + λπH (yt − y∗H)) .

Here, the functions, VL (yt−1) and ΠL (yt−1) ≡ πL, are also both independent of yt−1.

Using this observation, the optimality condition is given by

yL − y∗L + ψ
dπt
dyt

πL = βλθH (y∗H − yL)

where
dπt
dyt

= κ+ βλπH

and πL =
κ (yL − y∗L) + βλπH (yL − y∗H)

1− β (1− λ)
.

Here, the last line uses the NKPC to solve for the inflation in the low-supply state.

Combining these observations, the optimum is given by the unique solution to:

[
1 +

ψ (κ+ βλπH)κ

1− β (1− λ)

]
(yL − y∗L) = βλ

[
θH +

ψ (κ+ βλπH)πH
1− β (1− λ)

]
(y∗H − yL) . (A.11)

This leads to the following result, which generalizes Proposition 1 to this setting.

Proposition 4. Consider the setup with inflation determined by the NKPC (17) and the

parametric conditions described in Lemma 2. Suppose the economy is in the temporary

supply shock state, s = L, with past output yt−1. The central bank implements the constant

output level yL ∈ (y∗L, y
∗
H) that solves (A.11) along with the constant inflation

πt,L = πL ≡
κ (yL − y∗L) + βλπH (yL − y∗H)

1− β (1− λ)
. (A.12)

The associated real and nominal interest rates are given by

rt,L = ρ+ λ (YH (yL)− yL)− η

1− η (yL − yt−1) (A.13)

it,L = rt,L + λΠH (yL) + (1− λ)πL. (A.14)
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The central bank chooses a level of output that induces positive output gaps in the current

low-supply state (current overheating), yL > y∗L, and negative output gaps and disinflation

after transition to the high-supply state (future demand shortages), YH (yL) < y∗H and

ΠH (yL) < 0.

Comparing (A.11) and (11) shows that inflation affects the policy trade-off in two

ways. On the one hand, positive output gaps in the low-supply phase increase current

inflation. This raises the cost of overheating, captured by the second term inside the

brackets on the left side of (A.11). On the other hand, negative output gaps expected

in the future high-supply phase reduce current inflation. Since overheating helps shrink

future gaps, this effect raises the benefit of overheating, captured by the second term

inside the brackets on the right side of (A.11). It follows that inflation affects the cost

as well as the benefit of overheating, but it does not change the qualitative aspects of

optimal policy.

The equilibrium with the NKPC has one subtlety: The central bank does not nec-

essarily induce positive inflation in the low-supply state: that is, πL is not necessarily

positive (even though yL > y∗L). This effect is driven by the forward-looking term in the

NKPC, together with the fact that the economy experiences disinflation after transition

to the high-supply state, πH (yL − y∗H) < 0 (see (A.12)). Nonetheless, in our simulations

this effects is typically weak and the central bank implements πL > 0 along with yL > y∗L.

Proof of Lemma 2.Combining the NKPC, the IS curve, and the Taylor policy rule, the
dynamic system that characterizes the equilibrium is given by

yt = ηyt−1 + (1− η)
(
−φy (yt − y∗H)− φππt + Et [πt+1] + Et [yt+1]

)
πt = κ (yt − y∗H) + βEt [πt+1] .

We drop the expectations since there is no (residual) uncertainty. Let ỹt = yt−y∗H denote
the output gap. Then, we can rewrite the system as

ỹt = ηỹt−1 + (1− η)
(
−φyỹt − φππt + πt+1 + ỹt+1

)
πt = κỹt + βπt+1.

In matrix notation, we have ỹt+1

πt+1

ỹt

 = M

 ỹt

πt

ỹt−1

 where M =


1
1−η + φy + κ

β
φπ − 1

β
− η
1−η

−κ
β

1
β

0

1 0 0

 .
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The characteristic polynomial of the matrix M is

P (x) = − det




1
1−η + φy + κ

β
− x φπ − 1

β
− η
1−η

−κ
β

1
β
− x 0

1 0 −x




= x3 − x2
(

1

1− η + φy +
1 + κ

β

)
+ x

((
1

1− η + φy

)
1

β
+ φπ

κ

β
+

η

1− η

)
− 1

β

η

1− η .

This is the polynomial we define in (A.6). We assume the parameters are such that

this polynomial has a single stable root that satisfies γH ∈ (0, 1). The conditions in the

propositions are suffi cient (but not necessary). To check suffi ciency, note that we have

P (0) < 0. We also have

P (1) =
φy (1− β) + (φπ − 1)κ

β
> 0

in view of the first part of the suffi cient condition, φy (1− β) + (φπ − 1)κ. We also have

P

(
1

β

)
= − κ

β3
+ φπ

κ

β2
≤ 0

in view of the second part of the suffi cient condition, βφπ ≤ 1. Thus, with these conditions

the roots of the polynomial satisfy

0 < γ1 < 1 < γ2 ≤
1

β
≤ γ3.

In particular, the polynomial has exactly one stable root that satisfies γH ≡ γ1 ∈ (0, 1).

Since ỹt−1 is predetermined but ỹt, πt are not, the system is saddle path stable. More-

over, the solution converges to zero at the constant rate γH ∈ (0, 1), that is:

ỹt+h = γH ỹt+h−1 = γh+1H ỹt−1

π̃t+h = γH π̃t+h−1.

This establishes (A.7). To solve for the initial inflation, we use the NKPC to obtain

πt =

∞∑
h=0

βhκỹt+h =
∞∑
h=0

βhγhHκγH ỹt−1 =
κγH ỹt−1
1− βγH

.

This establishes (A.8).
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Finally, we calculate the value function as:

VH = −
∞∑
h=0

βh
(
ỹ2t+h

2
+ ψ

πt+h
2

2

)
= −

∞∑
h=0

(
βγ2H

)h( ỹt2
2

+ ψ
πt
2

2

)

= − 1

1− βγ2H

(
γ2H + ψ

(
κγH

1− βγH

)2)
ỹt−1

2

2
.

Here, the second line uses the fact that inflation and the output gap converge to zero at

rate γH ∈ (0, 1) and the last line substitutes ỹt and πt in terms of the past output gap

ỹt−1. This establishes (A.9) and completes the proof of the lemma.

Proof of Proposition 4. The proof is mostly presented earlier in the section. To solve
for the real interest rate, note that the IS curve (14) implies

rt,L = ρ+ λ (YH (yt)− yt,L) + (1− λ) (yt+1,L − yt,L)− η

1− η (yt,L − yt−1) .

After substituting yt,L = yt+1,L = yL, this implies (A.13). The nominal interest rate is

then

it,L = rt,L + Et [πt+1] = rt,L + λΠH (yL) + (1− λ)πL.

This establishes (A.14) and completes the proof.

A.2.2. Overheating with an inertial Phillips Curve

Suppose inflation is determined according to the inertial Phillips curve (18)

πt = κ
(
yt − y∗st

)
+ bπt−1.

Suppose also that the parameters satisfy the simplifying assumptions described in the

main text. We first state the lemma that characterizes the equilibrium in the high supply-

state s = H. We then present the proof of Proposition 2, which characterizes the optimal

policy in the low-supply state s = L.

Lemma 3. Consider the setup with an inertial Phillips curve. Suppose the parameters
satisfy φπ = b and φy > κ.

Suppose the economy has switched to the high-supply state, s = H, with past output

yt−1. Let γH ∈ (0, 1) denote the smaller root of the polynomial P (x) = (1 + κ)x2 −

32



(
1
1−η + φy

)
x+ η

1−η . Then the output gap and the inflation functions are given by:

YH (yt−1, πt−1)− y∗H = γH (yt−1 − y∗H) (A.15)

ΠH (yt−1, πt−1) = κγH (yt−1 − y∗H) + bπt−1. (A.16)

The value function in the first period after transition (with st−1 = L) is given by:

VH (yt−1,πt−1) = −θH
2

(yt−1 − y∗H)2 − ΨH

2
π2t−1 − IH (yt−1 − y∗H) πt−1, (A.17)

where the coeffi cients ΨH , IH , θH are given by

ΨH =
b2

1− βb2ψ (A.18)

IH =
γHb

1− βγHb
(ψ + βΨH)κ

θH =
γ2H

1− βγ2H

(
1 + (ψ + βΨH)κ2 + 2βIHκ

)
.

Proof of Lemma 3. Combining the inertial Phillips curve, the IS curve, and the Taylor
policy rule, the dynamic system that characterizes the equilibrium is given by

yt = ηyt−1 + (1− η)
(
−φy (yt − y∗H)− φππt + Et [πt+1] + Et [yt+1]

)
πt = κ (yt − y∗H) + bπt−1.

We drop the expectations since there is no (residual) uncertainty. Let ỹt = yt−y∗H denote
the output gap. Then, we can rewrite the system as

ỹt = ηỹt−1 + (1− η)
(
−φyỹt − φππt + πt+1 + ỹt+1

)
πt = κỹt + bπt−1.

After rewriting the second equation and substituting the first equation, we obtain

ỹt+1 =
1

1 + κ

(
ỹt − ηỹt−1

1− η + φyỹt + (φπ − b) πt
)

πt = κỹt + bπt−1.

This system is in general complicated, because there are two state variables ỹt−1, πt−1.

However, in the special case φπ = b, inflation drops out of the first equation and the system
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becomes block-recursive. In particular, the output gap satisfies the difference equation:

ỹt+1 =
1

1 + κ

((
1

1− η + φy

)
ỹt −

η

1− η ỹt−1
)
.

This is a standard difference equation with the characteristic polynomial given by

P (x) = (1 + κ)x2 −
(

1

1− η + φy

)
x+

η

1− η = 0.

Note that P (0) > 0 and P (1) < 0 in view of the parametric condition φy > κ. Thus, the

polynomial has a single stable root that satisfies γH ∈ (0, 1). It follows that the output

gap converges to zero at a constant rate

ỹt+h = γH ỹt+h−1 = γh+1H ỹt−1.

This establishes (A.15). Substituting ỹt into the inertial Phillips curve, we solve for

inflation as:

πt = κỹt + bπt−1 = κγH ỹt−1 + bπt−1.

This establishes (A.16).

Finally, consider the value function. The value function satisfies the recursive relation

VH (yt−1,πt−1) = −1

2
ỹ2t −

ψ

2
π2t + βVH (yt, πt)

where ỹt = γH ỹt−1

and πt = κγH ỹt−1 + bπt−1.

We conjecture that the value function has the quadratic functional form in (A.17). After

substituting the functional form, and dropping the H subscripts, we obtain:

−θỹ2t−1 −Ψπ2t−1 − 2I ỹt−1πt−1 = −ỹ2t − ψπ2t + β
(
−θỹ2t −Ψπ2t − 2I ỹtπt

)
= − (1 + βθ) ỹ2t − (ψ + βΨ)π2t − 2βI ỹtπt

=

 − (1 + βθ) (γỹt−1)
2

− (ψ + βΨ) (κγỹt−1 + bπt−1)
2

−2βI (γỹt−1) (κγỹt−1 + bπt−1)



=

 − (1 + βθ + (ψ + βΨ)κ2 + 2βIκ) γ2ỹ2t−1

− (ψ + βΨ) b2π2t−1

− (2βI + 2 (ψ + βΨ)κ) γbỹt−1πt−1

 .
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Here, the third line substitutes ỹt, πt in terms of ỹt−1, πt−1 and the last line collects terms.

After matching the coeffi cients for the terms ỹ2t−1, π
2
t−1, ỹt−1πt−1, we obtain

θ =
(
1 + βθ + (ψ + βΨ)κ2 + 2βIκ

)
γ2

Ψ = (ψ + βΨ) b2

I = (βI + (ψ + βΨ)κ) γb.

Solving these equations and substituting back the H subscripts, we establish (A.18),

completing the proof.

Proof of Proposition 2. Consider problem (19), which we replicate here

VL (yt−1, πt−1) = max
yt,πt
−(yt − y∗L)2

2
− ψπ

2
t

2
+ β ((1− λ)VL (yt, πt) + λVH (yt, πt))

πt = κ (yt − y∗L) + bπt−1

In this case, the value function VL (yt−1, πt−1) depends on past inflation, πt−1, but it is

still independent of past output, yt−1. Using this observation, we can write the problem

as

VL (πt−1) = max
πt

F (πt−1, πt) + β (1− λ)VL (πt)

where F (πt−1, πt) = −(πt − bπt−1)2

2κ2
− ψπ

2
t

2
+ βλVH

(
y∗L +

πt − bπt−1
κ

, πt

)
.

This is a standard dynamic optimization problem. The first order condition is given by

the Euler equation:

∂F (πt−1, πt)

∂πt
+ β (1− λ)

∂F (πt, πt+1)

∂πt
= 0. (A.19)

We calculate the derivatives as:

∂F (πt−1, πt)

∂πt
= −(πt − bπt−1)

κ2
− ψπt + βλ

(
∂VH (yt, πt)

∂yt

1

κ
+
∂VH (yt, πt)

∂πt

)
,

∂F (πt, πt+1)

∂πt
=

b

κ

(
πt+1 − bπt

κ
− βλ∂VH (yt+1, πt+1)

∂yt+1

)
.

Combining these observations, and using yt − y∗L = πt−bπt−1
κ

, the Euler equation (A.19)
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implies

yt − y∗L + κψπt − βλ
(
∂VH (yt, πt)

∂yt
+ κ

∂VH (yt, πt)

∂πt

)
= β (1− λ) b

(
yt+1 − y∗L − βλ

∂VH (yt+1, πt+1)

∂yt+1

)
.

We next use Eq. (A.17) to calculate the partial derivatives of VH (yt, πt) as follows:

∂VH (yt,πt)

∂yt
= −θH (yt − y∗H)− IHπt

= −θH (yt − y∗L)− IHπt + θH (y∗H − y∗L)

and
∂VH (yt,πt)

∂πt
= −ΨHπt − IH (yt − y∗H)

= −ΨHπt − IH (yt − y∗L) + IH (y∗H − y∗L) .

Substituting these expressions into the Euler equation, we obtain

yt − y∗L + κψπt + βλ

 (θH + κIH) (yt − y∗L)

+ (IH + κΨH) πt

− (θH + κIH) (y∗H − y∗L)



= β (1− λ) b

 (1 + βλθH) (yt+1 − y∗L)

+βλIHπt+1
−βλθH (y∗H − y∗L)

 .
Rearranging terms, we have

A (yt − y∗L) +Bπt = C (yt+1 − y∗L) +Dπt+1 + E (y∗H − y∗L) where

A = 1 + βλ (θH + κIH)

B = κψ + βλ (IH + κΨH)

C = β (1− λ) b (1 + βλθH)

D = β (1− λ) bβλIH
E = βλ [θH + κIH − β (1− λ) bθH ] .

Here A,B,C,D,E > 0 are the derived parameters in (20). Note also that A > C and

B > D.
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Combining the equation for yt with the NKPC, we obtain the system:

A (yt − y∗L) +Bπt = C (yt+1 − y∗L) +Dπt+1 + E (y∗H − y∗L) (A.20)

πt = κ (yt − y∗L) + bπt−1.

We next calculate the steady-state, denoted by (yL, πL). From the second equation, the

steady-state inflation satisfies πL =
κ(yL−y∗L)

1−b . Substituting this into the first equation, we

solve for the steady-state output as:

yL − y∗L =
E (y∗H − y∗L)

A− C + (B −D) κ
1−b
.

Note that yL > y∗L (and thus πL > 0) since E > 0, A > C, and B > D. This establishes

(21− 22).

We next characterize the transition dynamics away from the steady-state. Let ỹt =

yt − yL and π̃t = πt − πt denote the deviations from the steady state (these variables are

different than the output and inflation gaps). With this notation, we write (A.20) as

Aỹt +Bπ̃t = Cỹt+1 +Dπ̃t+1

π̃t = κỹt + bπ̃t−1.

After substituting π̃t+1 = κỹt+1 + bπ̃t and π̃t = κỹt + bπ̃t−1 in the first equation, we can

write this system as

(C +Dκ) ỹt+1 = (A+ (B −Db)κ) ỹt + (B −Db) bπ̃t−1
π̃t = κỹt + bπ̃t−1.

In matrix notation, we have[
ỹt+1

π̃t

]
=

[
A+(B−Db)κ

C+Dκ
(B−Db)b
C+Dκ

κ b

][
ỹt

π̃t−1

]
.
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The characteristic polynomial is given by

P (x) = det

([
A+(B−Db)κ

C+Dκ
− x (B−Db)b

C+Dκ

κ b− x

])

= x2 −
(
A+ (B −Db)κ

C +Dκ
+ b

)
x+

Ab

C +Dκ

= x2 − A+Bκ+ bC

C +Dκ
x+

Ab

C +Dκ
.

Note that P (0) > 0 and

P (b) = b2 − A+Bκ+ bC

C +Dκ
b+

Ab

C +Dκ

= −(B − bD)

C +Dκ
κb < 0.

This implies there is a stable root that satisfies γL ≡ γ1 ∈ (0, b). We also claim that

P (1) < 0, which holds iff

P (1) =
(C − A) (1− b) + (D −B)κ

C +Dκ
< 0.

The inequality holds because A > C and B > D. This inequality implies that there is

also an unstable root that satisfies γ2 > 1.

These observations prove that the system is saddle path stable. Starting with the

inflation deviation π̃t−1, both the output deviation and inflation deviation converge to

zero at a constant rate γL

ỹt+1 = γLỹt and π̃t = γLπ̃t−1 for each t.

To characterize the output in terms of past inflation, note the Phillips curve implies

π̃t = γLπ̃t−1 = κỹt + bπ̃t−1 =⇒ ỹt = −
(
b− γL
κ

)
π̃t−1.

This establishes (23− 24).

Finally, we calculate the interest rate the central bank needs to set to implement the

optimal output and inflation path. First consider the real interest rate. Using the IS

38



curve (14),

rt = ρ+ Et [yt+1]−
yt

1− η +
η

1− ηyt−1

= ρ+ λYH (yt) + (1− λ) yt+1 −
yt

1− η +
η

1− ηyt−1

= ρ+ λ (YH (yt)− yt) + (1− λ) (yt+1 − yt)−
η

1− η (yt − yt−1) . (A.21)

Here, yt+1 denote the future output if the economy stays in the low-supply state (charac-

terized earlier). Likewise, the nominal interest rate is given by

it = Et [πt+1] + rt

=
λΠH (yt) + (1− λ)πt+1+

ρ+ λ (YH (yt)− yt) + (1− λ) (yt+1 − yt)− η
1−η (yt − yt−1) .

(A.22)

Here, πt+1 is the inflation if the economy stays in state L. This completes the proof.

B. Alternative model with a ZLB constraint

In the main text, we formalize the expansionary policy constraints by assuming that the

central bank is subject to a Taylor-rule type lower bound on the nominal interest rate

(see (2)). In this appendix, we analyze an alternative model in which the central bank is

subject to a zero lower bound (ZLB) constraint. We show that our main result holds also

in this more realistic scenario. We relegate the proofs to the end of the appendix.

Environment with a ZLB constraint. Consider the setup in Section 1 with the

difference that the lower bound on the interest rate is zero [cf. (2)]

it ≥ it (yt) = 0. (B.1)

As before, the central bank sets policy without commitment, and it minimizes the present

discounted value of quadratic output gaps. We can then formulate the policy problem

recursively as

Vst (yt−1) = max
it,yt
−
(
yt − y∗st

)2
2

+ βEt
[
Vst+1 (yt)

]
(B.2)

s.t. yt = ηyt−1 + (1− η)
(
− (it − ρ) + Et

[
Yst+1 (yt)

])
it ≥ 0.
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As in our main setup, Ys (y−1) and Vs (y−1) denote the central bank’s optimal output

choice and optimal value, respectively, when the current state is s ∈ {H,L} and the most
recent output is y−1. The central bank takes its future interest rate decisions and output

choices as given and sets the current interest rate and output to minimize quadratic gaps,

subject to the inertial IS curve and the ZLB constraint.

Overheating with a ZLB constraint. Recall that, in the first-best benchmark with-

out expansionary policy constraints, the central bank sets a relatively low interest rate in

the first period after transition to the high-supply state [see (5)]. We assume the para-

meters are such that this interest rate is negative: In the first-best benchmark, the ZLB

constraint is violated in the first period after transition. Thus, a central bank that is

subject to a ZLB constraint cannot achieve zero gaps in all periods and states.

Assumption 1. ρ− η
1−η (y∗H − y∗L) < 0.

Our first result characterizes the equilibrium after the economy transitions to the

absorbing state s = H.

Lemma 4. Suppose Assumption 1 holds and the economy has switched to the high-supply
state, s = H, with past output y−1 ≡ yt−1. Let yH = y∗H − 1−η

η
ρ ∈ (y∗L, y

∗
H).

• If y−1 ≥ yH , then the ZLB constraint does not bind and the central bank can achieve

zero gaps, YH (y−1) = y∗H and VH (y−1) = 0. The interest rate is given by

it,H = ρ− η

1− η (y∗H − yt−1) . (B.3)

• If y−1 < yH , then the ZLB constraint binds and the output gap is negative for at least

one period, YH (y−1) < y∗H and VH (y−1) < 0. The output and the value functions

are characterized in the proof and satisfy the following:

—YH (y−1) ≥ y−1 is continuous, strictly increasing, and piecewise linear (it is lin-

ear except for a finite number of kink points). Output converges to the effi cient

level y∗H after finitely many periods.

—VH (y−1) is continuous, strictly concave and increasing, and piecewise differen-

tiable. At the ZLB cutoff, y−1 = yH , the value function is differentiable with a

zero derivative, dVH(yH)
dy−1

= 0.

Lemma 4 says that, after the supply recovers, the ZLB constraint binds when output

is suffi ciently low relative to potential. Technically, the ZLB constraint introduces a
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finite number of kink points into the solution, but the optimal output and the value

function satisfy intuitive properties. Starting with a suffi ciently low output level, the

output gradually recovers and eventually reaches its potential level, y∗H . Similar to our

baseline analysis in Lemma 1, a greater past output increases the current output as well

as the value function (over the relevant range y−1 < yH).

We next establish the analogue of our main result (Proposition 1) in this alternative

setup with a ZLB constraint. Consider the optimal policy in the temporary low-supply

state, s = L. For now, suppose past output y−1 is high enough so that the ZLB constraint

does not bind in the low-supply state (we consider the case with a binding ZLB in this

state subsequently). Then, we can rewrite problem (3) as

VL (y−1) = max
y
−(y − y∗L)2

2
+ β ((1− λ)VL (y) + λVH (y)) . (B.4)

The value function in the future low-supply state does not depend on past output, VL (y) ≡
VL (as long as the ZLB does not bind, which we will verify). The value function in the

future high-supply state VH (y) is concave. Therefore, the optimality condition is

y − y∗L = βλδ; where δ ∈ ∇VH (y) . (B.5)

Here, δ is a subgradient of the value function. It is equal to the derivative, except possibly

at kink points, where it lies in an interval between the left and the right derivatives. Let

yL denote the optimum that solves (B.5).

Eq. (B.5) establishes our main result with the ZLB constraint: the (unique) optimum

satisfies yL ∈ (y∗L, yH) and thus yL > y∗L and YH (yL) < YH (yH) = y∗H . In the temporary

low-supply state, the central bank chooses a level of output that induces positive output

gaps in the current low-supply state (current overheating), and negative output gaps after

transition to the high-supply state (future demand shortages). The intuition is the same

as in Section 2. As before, the central bank overheats the current output to accelerate

the recovery in future periods after transition to high supply.

We can now solve for the associated interest rate:

it = ρ+ λ (YH (yL)− yL)− η

1− η (yL − yt−1) . (B.6)

Recall that YH (yL) > yL. This shows that the ZLB constraint does not bind in the low-

supply state (it > ρ > 0) when past output is already equal to the target level, yt−1 = yL.

However, there is a suffi ciently low level of past output (yt−1) below which the ZLB
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constraint binds in the low-supply state for at least one period:

yL = yL −
1− η
η

(ρ+ λ (YH (yL)− yL)) . (B.7)

The following proposition summarizes the discussion in this appendix and completes the

characterization of equilibrium in s = L.

Proposition 5. Suppose Assumption 1 holds and the economy is in the temporary supply
shock state, s = L, with past output y−1 ≡ yt−1. Let yL be given by (B.7).

• If y−1 ≥ yL, then the ZLB constraint does not bind in s = L and the central

bank chooses the output level yL that is the unique solution to (B.5). The output

choice satisfies yL ∈ (y∗L, yH). In the temporary supply shock state, the economy

experiences overheating, yL > y∗L. At the transition to the high-supply state, the

economy experiences demand shortages, YH (yL) < YH (yH) = y∗H . The interest rate

in s = L is given by (B.6).

• If y−1 < yL, then the ZLB constraint binds in s = L for at least one period. The

initial interest rate is zero, it = 0, and the initial output is below its unconstrained

level, YL (y−1) < yL. The output function YL (y−1) (characterized in the appendix)

is continuous and strictly increasing. Absent a transition to the high-supply state,

output converges to the target level yL after finitely many periods.

Numerical illustration. Figure B.1 simulates the equilibrium for a numerical example.

The figure resembles Figure 1 in the main text. The solid lines plot the equilibrium

with the ZLB constraint and illustrate the main result. As before, the optimal policy

induces overheating in the low-supply state. The policy achieves this by cutting the rate

aggressively in the earlier periods while the economy is in the low-supply state. In fact, in

this simulation the policy runs into the ZLB constraint in the first period. Once the policy

brings the output in the low-supply state to a target level above the potential (denoted

by yL > y∗L in the figure), it raises the interest rate to keep the output constant until the

economy transitions to the high-supply state. After the transition, the policy cuts the

interest rate once again to raise aggregate demand toward the higher aggregate supply

level. However, the policy runs into the ZLB constraint. Due to the binding ZLB, the

recovery in the high-supply state takes several periods to complete.

The figure illustrates several other cases to illustrate different properties of the equi-

librium with the optimal policy. Compared to the first-best benchmark without the ZLB
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constraint (dotted lines), the optimal policy frontloads the interest rate cuts. Compared

to the myopic benchmark where the central bank closes the current output gaps (the

dashed line), the optimal policy generates some overheating in the low-supply phase but

accelerates the recovery once the economy transitions to the high-supply phase. Finally,

compared to a case with less inertia (dash-dotted line), the baseline case with higher in-

ertia results in higher gaps both before and after transition to the supply recovery. These

comparisons highlight that our results in this section (as in the main text) are driven by

the interaction of the aggregate demand inertia and expansionary policy constraints.

Proof of Lemma 4. If y−1 ≥ yH , then the central bank can achieve a zero gap,

YH (y−1) = y∗H and VH (y−1) = 0. Using the IS curve (1) with yt = yt+1 = y∗H , the interest

rate is given by (B.3). The interest rate is nonnegative, it,H ≥ 0. In this case, the ZLB

constraint does not bind.

In contrast, if y−1 < yH , then the ZLB constraint binds and the output gap is negative

for at least one period, YH (y−1) < y∗H and VH (y−1) < 0.

Consider the constrained range, y−1 ≤ yH . In this range, the IS curve with it,H = 0

implies that output satisfies the recursive relation

YH (y−1) = ηy−1 + (1− η) (ρ+ YH (YH (y−1))) . (B.8)

We first solve this relation over a sequence of cutoff points for past output. Given

yH,−1 ≡ y∗H and yH,0 = yH , we recursively define a sequence of cutoffs with:

yH,k+1 = yH,k −
1− η
η

(
ρ+ yH,k−1 − yH,k

)
. (B.9)

Using (B.8), it is easy to check that the output function maps a lower cutoff into the

higher cutoff:

YH
(
yH,k+1

)
= yH,k. (B.10)

Note also that the cutoffs satisfy yH,k+1 ≤ yH,k −
(1−η)ρ
η
. Therefore, there exists KH such

that yH,KH
< 0. Then, the cutoffs

{
yH,k

}KH

k=−1 cover the entire region [0, y∗H ].

We next extend the solution to the intervals,
[
yH,k, yH,k−1

]
. Specifically, we claim

that the output function is piecewise linear and strictly increasing. That is, there exist

{ak, bk}KH

k=0 such that

YH (y−1) = aky−1 + bk for y−1 ∈
[
yH,k, yH,k−1

]
. (B.11)
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Figure B.1: A simulation of the equilibrium with a ZLB constraint starting in the low-
supply state, s0 = L, with the most recent output that satisfies y−1 < yL. The solid lines
correspond to the equilibrium with the optimal policy. The dotted lines correspond to a
first-best benchmark case without the ZLB constraint. The dashed lines correspond to
a myopic benchmark case in which the policy minimizes the current output gap. The
dash-dotted lines correspond to the equilibrium with a smaller inertia parameter (η). See
Appendix C for the parameters used.
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We also claim that the slope coeffi cients satisfy ak > ak−1 ≥ 0 and ak < min
(

1, η
1−η

)
.

Using the characterization for the unconstrained region, the claim holds for k = 0 with

the coeffi cients

a0 = 0 and b0 = y∗H . (B.12)

Suppose the claim holds for k − 1 and consider it for k. Using Eq. (B.8), we have

aky−1 + bk = ηy−1 + (1− η) (ρ+ ak−1 (aky−1 + bk) + bk−1) .

After rearranging terms, we obtain a recursive characterization for the coeffi cients

ak = η + (1− η) ak−1ak (B.13)

=⇒ ak =
η

1− (1− η) ak−1
bk = (1− η) (ρ+ ak−1bk + bk−1)

=⇒ bk =
(1− η) (ρ+ bk−1)

1− (1− η) ak−1
= ak

1− η
η

(ρ+ bk−1) .

Note that ak−1 < 1 implies ak = η
1−(1−η)ak−1 ∈ (0, 1). Likewise, ak−1 <

η
1−η implies

ak = η
1−(1−η)ak−1 <

η
1−η . We also need to check ak = η

1−(1−η)ak−1 > ak−1. Note that this is

equivalent to P (ak−1) > 0 where P (x) = x2− 1
1−ηx+ η

1−η . This polynomial has roots
η
1−η

and 1. Since ak−1 < min
(

1, η
1−η

)
, we have P (ak−1) > 0 and thus ak > ak−1. This proves

the claim in (B.11) by induction.

Eqs. (B.10) and (B.11) imply that the output function maps each interval[
yH,k, yH,k−1

]
into the higher interval

[
yH,k−1, yH,k−2

]
. This establishes the claim in the

proposition that output converges to y∗H after finitely many periods (at most KH + 1

periods).

We next consider the value function VH (y−1). Following similar steps, we can define

the value function recursively over the intervals
[
yH,k, yH,k−1

]
. Let VH,0 (y−1) = 0 and

define a sequence of functions with:

VH,k (y−1) = −1

2
(aky−1 + bk − y∗H)2 + βVH,k−1 (aky−1 + bk) . (B.14)

For each interval, the value function agrees with the corresponding function in the se-

quence:

VH (y−1) = VH,k (y−1) for y−1 ∈
[
yH,k, yH,k−1

]
.
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Note also that the functions in the sequence are differentiable with derivatives that satisfy:

dVH,k (y−1)

dy−1
= − (aky−1 + bk − y∗H) ak + β

dVH,k−1 (aky−1 + bk)

dy−1
ak. (B.15)

Therefore, inside each interval, the value function is differentiable and its derivative agrees

with the derivative of the corresponding function in the sequence:

dVH (y−1)

dy−1
=
dVH,k (y−1)

dy−1
for y−1 ∈

(
yH,k, yH,k−1

)
.

At each cutoff yH,k, the value function is left and right-differentiable with derivatives

respectively given by
dVH,k+1(yH,k)

dy−1
and

dVH,k(yH,k)
dy−1

.

We next prove that the value function, VH (y−1), is strictly concave over the constrained

range, y−1 ≤ yH,0. For the interior points,
(
yH,k, yH,k−1

)
, it is easy to check that the

derivative, dVH(y−1)
dy−1

, is strictly decreasing. Consider the cutoff points, yH,k. It suffi ces to

check that the left derivative is greater than the right derivative:

dVH,k+1
(
yH,k

)
dy−1

>
dVH,k

(
yH,k

)
dy−1

.

This claim is true for k = 0. Suppose it is true for k − 1. Using Eq. (B.15), we have

dVH,k+1
(
yH,k

)
dy−1

= −
(
yH,k−1 − y∗H

)
ak+1 + β

dVH,k
(
yH,k−1

)
dy−1

ak+1

dVH,k
(
yH,k

)
dy−1

= −
(
yH,k−1 − y∗H

)
ak + β

dVH,k−1
(
yH,k−1

)
dy−1

ak.

Since
dVH,k(yH,k−1)

dy−1
>

dVH,k−1(yH,k−1)
dy−1

and ak+1 > ak, we also have
dVH,k+1(yH,k)

dy−1
>

dVH,k(yH,k)
dy−1

.

This proves the claim and shows that VH (y−1) is strictly concave over the constrained

range.

Finally, we prove that the value function is differentiable at the cutoff point at which

starts to bind, y−1 = yH = yH,0, with derivative equal to zero,
dVH(yH,0)

dy−1
= 0. The right

derivative is zero since VH,0 (y−1) = 0. Recall that YH
(
yH,0

)
= y∗H . Therefore, using Eq.

(B.15) for k = 1, we have

dVH,1
(
yH,0

)
dy−1

= −
(
YH
(
yH,0

)
− y∗H

)
a1 = 0.

This completes the proof of the proposition. Note also that Eqs. (B.9−B.15) enable a
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numerical characterization of equilibrium in the high-supply state.

Proof of Proposition 5. The case y−1 > yL is analyzed before the proposition. Suppose

y−1 < yL so that the ZLB constraint binds. In this case, the IS curve with it,L = 0 implies

the output function satisfies the recursive relation

YL (y−1) = ηy−1 + (1− η) (ρ+ λYH (YL (y−1)) + (1− λ)YL (YL (y−1))) . (B.16)

The analysis follows similar steps as in the proof of Lemma 4. Given yL,0 = yL and

yL,−1 ≡ yL, we recursively define a sequence of cutoffs with:

yL,k+1 = yL,k −
1− η
η

(
ρ+ λYH

(
yL,k

)
+ (1− λ) yL,k−1 − yL,k

)
. (B.17)

Using (B.16), it is easy to check that the output function maps a lower cutoff into the

higher cutoff:

YL
(
yL,k+1

)
= yL,k. (B.18)

Using YH (yL) > yL, we also obtain yL,k+1 < yL,k −
(1−η)ρ
η
. Therefore, there exists KL

such that yL,KL
< 0. Then, the cutoffs

{
yL,k

}KL

k=−1 cover the entire region [0, yL].

We can then define the output function recursively over the intervals
[
yL,k, yL,k−1

]
.

Let YL,0 (y−1) = yL and define a sequence of functions with:

YL,k (y−1) = ηy−1 + (1− η)

(
ρ+ λYH (YL,k (y−1))

+ (1− λ)YL,k−1 (YL,k (y−1))

)
for y−1 ∈

[
yL,k, yL,k−1

]
.

(B.19)

These functions are uniquely defined and increasing over [0, yL] (since the output function

in the high-supply state, YH (·), is piecewise linear with slopes strictly less than one, as
we characterized earlier). Then, Eq. (B.18) implies that for each interval the output

function agrees with the corresponding function in the sequence

YL (y−1) = YL,k (y−1) for y−1 ∈
[
yL,k, yL,k−1

]
.

In particular, the output function maps each interval
[
yL,k, yL,k−1

]
into the higher interval[

yL,k−1, yL,k−2
]
. This establishes the claim in the proposition that, absent transition to

the high-supply state, output converges to the target level yL after finitely many periods

(at most KL + 1 periods). This completes the proof of the proposition. Note also that

Eqs. (B.17−B.19) enable a numerical characterization of equilibrium in the low-supply

state.
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C. Parameters for the numerical examples

This appendix describes the parameters used for the numerical examples plotted in Figures

1-3 and B.1.

C.1. Parameters for Figure 1

We think of each period as a year. For the baseline model (analyzed in Section 2 and

illustrated in Figure 1), we set the following parameters:

Discount rate: β = exp (−0.02)

Inertia: η = 0.8

Potential output in states H,L: y∗H = 1, y∗L = 0.95

Probability of transition to H: λ = 0.5

Taylor rule coeffi cient: λ = 0.5

Initial past output: y−1 = yL = 0.96.

These parameters are relatively standard. We set the discount rate so that the long-run

real interest rate (“rstar”) is about 2%. To make our results stark, we set the inertia

parameter to a relatively high level, η = 0.8. The (magenta) dash-dotted lines in Figure 1

plot the equilibrium for an alternative case with lower inertia where we set, η̃ = 0.5. We

set λ = 0.5, which corresponds to expected supply recovery in about two years. In Figure

1 (as well as in other figures), the actual recovery is delayed relative to expectations and

takes place in year four. We set the output gap coeffi cient in the Taylor rule to a relatively

high level, φ = 1 (see (2)). Finally, we start the economy with past output equal to the

threshold level below which the lower bound constraint binds, y−1 = yL < yL (see (12)).

C.2. Parameters for Figure 2

For the model with inflation determined by the NKPC (analyzed in Section 3.1 and

Appendix A.2.1 and illustrated in Figure 2), we adopt the same parameters in the previous

Section 1 (except for φ). For the parameters specific to this model, we set:

Inflation sensitivity to output gap: κ = 0.5

Generalized Taylor rule coeffi cients: φy = 1, φπ = 1

Relative welfare weight on inflation gaps: ψ = 1.
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The inflation sensitivity to output gap is in line with the standard calibrations of the

Phillips curve. For the Taylor rule, the coeffi cient on the output gap is the same as

before, φy = φ = 1. The coeffi cient on inflation, φπ = 1, ensures the Taylor condition

(marginally) holds. Finally, we assume the central bank puts the same welfare weight on

inflation and output gaps, ψ = 1 (see (16)).

C.3. Parameters for Figure 3

For the model with inertial inflation (analyzed in Section 3.2 and Appendix A.2.2 and

illustrated in Figure 3), we adopt the parameters in the previous Section 3, except for φπ.

We reset this parameter to satisfy the simplifying assumption in Lemma 3, φπ = b. For

the parameters specific to this model, we set:

Inflation inertia: b = 0.9

Initial past inflation: π−1 = 0.

We set the inertia in the Phillips curve to a relatively high level, b = 0.9, to make our

results stark (see (18)). We start the economy with past inflation equal to zero.

C.4. Parameters for Figure B.1

For the model with the zero lower bound constraint (analyzed in Section B and illustrated

in Figure B.1), we adopt the same parameters in Section 1 for the baseline model with a

Taylor rule constraint.
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