NBER WORKING PAPER SERIES

SOVEREIGN-DEBT RENEGOTIATIONS REVISITED

Raquel Fernandez

Robert W. Rosenthal

Working Paper No. 2981

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 1989

Research supported by the National Science Foundation Grant No. SES88-08362.
This paper is part of NBER's research program in International Studies. ' Any
opinions expressed are those of the authors not those of the National Bureau
of Economic Research.



NBER Working Paper #2981
May 1989

SOVEREIGN-DEBT RENEGOTIATIONS REVISITED

ABSTRACT

The sovereign—debt literature has often implicitly assumed that all
the power in the bargaining game between debtor and creditor lies with the
latter. An earlier paper provided a game-theoretic basis for this contention,
in that all the subgame-perfect equilibria of the game modeled have an extreme
form in which the game’s surplus is captured by the creditor. Two related
games are analyzed here. Equilibria in which the debtor captures some of the
surplus are shown to exist in one of them but not the other, and the roles of
various assumptions in all three games is examined.

Raquel Fernandez
Robert W. Rosenthal
Department of Economics
Boston University

270 Bay. State Road
Boston, MA 02215



-1-

1. Incroduction

The purpose of this paper is to gain further understanding of sovereign-
debt renegotiations by continuing to explore those features of debt
negotiations that can be explained by incentivesbto repay that come from
sources external to the creditor—-debtor relationship (e.g., the debtor’'s
credit rating). A first step in this endeavor was undertaken in [FR]| where we
analyze a game-theoretic model of sovereign—debt renegotiations. = There we
argue that the knowledge that banks prefer countries to repay some portion of
their debts rather than defaulting completely, and that countries prefer to
have their credit records clear, makes for a kind of bargaining game.

In our version of that game, the two players, a creditor bank and its
sovereign debtor, bargain implicitly over time by taking actions having
economic consequences. The actions taken by the creditor are partial
forgivenesses of the outstanding debt. The actions of the debtor are
consumption, investment, and debt-service decisions. If and when the
unforgiven part of the debt together with accrued interest is finally repayed,
the game ends with the sovereign receiving a "bonus". An interpretation of
the bonus is the value of the country’s improved credit rating that results
from satisfaction of the creditor’s claims. This is over and above the
present value to the (former) debtor of continuing optimally from the capital
stock with which the game ends. If there is no final repayment, the game pgoes
on forever and the debtor simply continues to accrue the utility it associates
with its consumption decisions. Two other critical assumptions in [FR] are:
(1) The creditor discounts future receipts at the same rate at which interest
accrues on the debt. (i1) The value of the bonus is zero when there is zero

capital at the end of the game.



The results of that paper are: that all the subgame—perfect equilibria of
the game are similar in that they all result in the same payoffs to the
players; that the payoffs are Pareto optimal (in particular, the creditor is
ultimately satisfied, so a bonus is received); and that the creditor extracts
all the surplus associated with the bonus (unless the debtor is able to repay
the initial debt without forgiveness and prefers that to the option of
ignoring the debt altogether; in this case the creditor cannot extract the
full value of the bonus). Furthermore, the play of one of these subgame-
perfect equilibria has the property that there is only one forglveness, and
this occurs at the first move of the game. Finally, in none of the plays of
any subgame—perfect equilibrium does a forgiveness occur after a positive
payment has been made.

In the present paper we analyze two models of sovereign—debt
fenagotiations which differ from that of [FR], hereafter called Model 1, in
several of their features, thus permitting us to explore the semsitivity of
our earlier results to these modifications. In one of these, Model 2, the
form of the debt is ‘altered so that instead of being a mumber from which
payments and forgivenesses are subtracted and to which interest is added
during the course of play, the debt is now, more realistically, a schedule of
payments due, all of which the debtor is initially expected to meet. The
creditor is free to suggest alternative payment schedules and the debtor to
accept or reject the creditor’'s offer. Whenever the debtor fails to make a
payment, however, the debt is no longer simply rescheduled automatically at
the given fixed rate of interest, as in Model 1. The results for Model 2 are

similar to those obtained for Model 1, despite the fact that assumption (1) in



Model 1 has no counterpart in Model 2. Thus, the multidimensionality of the
debt schedule here serves to obviate the need for that assumption.

The other new model, Model 3, returns to the Model-l specification of the
debt as a scalar and abstracts away from the complicatlons associated with
capital accumulation and growth by assuming that the debtor country receives a
constant sequence of endowments. This enables us to focus more on the role
that the creditor’'s relative impatience plays in the bargaining game (cf.
assumption (1)). Since capital accumulation has no counterpart in Model 3,
assumption (ii) has no counterpart; there 1s, however, a different assumption
about the bonus. The results for Model 3 turn out to be rather different.
There are generally many subgame—perfect equilibria; when assumption (i) does
not hold these all differ from the one emphasized for Model 1 in [FR].
Furthermore, there now exist subgame-perfect equilibria at which the debtor
éapcures some of the surplus; and for some instances of Model 3 this is true
of all the subgame—perfect equilibria.

It has often been assumed in the sovereign—debt literature (e.g. [EG],
[EGS], [K],[S]) that the set of loans that will be fully repaid is the same as
the set of loans for which the debtor’'s benefits from full repayment exceed
the costs the debtor ;ssociates with default. As argued in [FR], this is
tantamount to assuming that the creditor has all the power in the bargaining
game. While the results of [FR] can be seen as providing a game-theoretic
foundation for this assumption, Models 2 and 3 enable us to take a closer look
at the factors that drive that result. The conclusions derived from thesc
models, in particular the existence of equilibria with very different
characteristics in Model 3, point to the fact that the results of Model 1 rest

on subtle combinations of the assumptions.



The rest of the paper is organized as follows. Sections 2 and 3 present
and analyze Models 2 and 3, respectively; and each section concludes with some
remarks on the nature of the equilibria obtained as compared with those for
Model 1. Section 4 follows with general remarks. All the proofs are

relegated to an appendix.

2. Model 2

The creditor is named A and the debtor B. At the beginning of each time
period t € (0,1,...}, the relevant part of the history of the game so far can
be summarized by current wvalues of the state variables K, D, and r, where: K,
a nonnegative real number, is the debtor's capital stock; D = (DO'DI"")' a
sequence of nonnegative real numbers, is the sequence of payments currently
scheduled for periods t, t+l, etc.; and t+r, r being a nonnegative integer or
©, denotes the time at which the debt will be considered repaid assuming B
manages to pay DO'DI""'Df in periods t,t+l,...,t+r, respectively. The pair
(D,r) is called a feasible schedule if each component of D is between C and M
(M some large positive number) and if all components of D after r are zero.
(As the notation suggests, we shall be assuming a good deal of stationarity;
this is solely to keep the notation as uncluttered as possible.) Initial
values Ko and feasible schedule (Do,ro) are given as the last part of the
definition of the game, called GZ(KO.Do.ro).

At the beginning of each period t production takes place, transforming K
into g(K). Player A then makes the first move in the period: she selects an
alternative feasible schedule (D',r') to offer B. (Player A may set

(D' ,r’)=(D,r) if she wishes to make no new offer.) Next, B chooses values for
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the variables X, ¢ and p, where: x€{Y,N)} is either "Yes" or "No" to the new
offer, ¢ is current consumption, and p is the amount of any payment B makes to
A in the current period. Thus c20, p20, and c+p s g(K). As a result of these
moves, A enjoys the utility r(p) associated with her current—period receipt p,
B enjoys the utility u(c) assoclated with her current-period consumption c,
and g(K)~c-p becomes the capital stock in period t+l. If r=0, x=N, and pxD,,
or 1if r'=0, x=Y, and pzDo’. then the debt is repaid and the game ends.

Otherwise, period t+l is entered with state variables K=g(K)—c-p and

((Dl,DZ,...),r—l) if x=N and p2D,,
@7 = { «0;".D,",...),7r'=1) if x=Y and p2Dy’,
((M,M,...),=) otherwise.

For each player, a (pure) strategy is, as usual, a sequence of functions,
one for each time period t, mapping the set of possible parti;l histories into
the set of available moves. As a result of any pair of strategles, a sequence
of consumptions, payment schedules, payments, and capital stocks, as well as a
stopping time (if any) is determined. Possessing the discount factor «,

Player A wishes to maximize

T

E: atr(pt)

t=0

where T denotes the time final payment is received. For Player B, who

discounts with factor 8, the objective is to maximize

T
t T+1
Z B u(<:t) + B8 Z(KT+1),
t=0



where Z(K) is the value of the future to B after the game ends with terminal
capital stock K. (If the game never ends, T=w.) A subgame—perfect
equilibrium is a pair of strategies, one for each player, such that for every
possible partial history of actions, each player’'s strategy restricted to the
continuation game (the subgame that féllows the partial history) is optimal
given the opponent’s strategy.

The following assumptions will be maintained for the rest of this
section: O<a<l, 0<8<l. u and r are continuous and increasing; u is also
strictly concave. g is continuous, increasing and concave; and g is bounded
above and below by M and 0, respectively. Z is continuous, increasing,
concave and bounded below on [0,M] by the function v, which is defined by the

Bellman equation:

v(K) = max (u(c) + Bv(g(K)—¢)) YKe[0,M]. (L
Osc=<g(K)

Also 2(0) is assumed equal to v(0). These assumptions ensure that:
Lemma 2.1: There is a unique solution v to (1), which is continuous, strictly
concave and increasing. Furthermore, the value of c that maximizes the right-
hand side in (1) is unique and continuous in Ke(O0,M].
Since v is the value of B’s unique, optimal stand—alone policy, Z can be
interpreted as this amount plus the value of the debt’s retirement bonus.

Next we define w(K,D,r) as the payoff to B from starting at state (K,D,r)
and repaying (D,r) optimally when B hypothesizes that A will never make a

revised offer. Thus
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T

t r+l
w(K,Do,...,D',r) - . max E: B u(ct) + 8 Z(K'+1)
0% t=0
subject to 0sc_ s g(K)D
c v for t =0,...,r
K

eel = 8K e D,

whenever the constraints are feasible, and w(K,Do,...,Df,r) = —o» otherwise.

Lemma 2.2: For each r, on the region where w(:.,r) > —», w is continuous

(jointly) in (K,Do,...,D'), increasing in K on [0,M] and decreasing in each
argument Dy,...,D.. Furthermore, the optimal value for ¢; is unique and
varies continuously with K,Do,...,D'.

We are now ready to specify a strategy b* for Player B. At each of her
moves, B observes K,D,r,D’, and r’', and computes w(K,D,r), w(K,D',r’), and
v(K). B sets x=Y i{f and only if w(K,D’',r’) 2= max {(w(K,D,r),v(K)}, in which
‘case B sets c to be the maximizing ) for w(K,D’,r’) and sets p=Dy’. In the
other case (x=N) if v(K)>w(K,D,r) she sets p=0 and c¢c to maximize the right-
hand side of (1); otherwise she sets c equal to the maximizing < for w(K,D,r)
and p=Dj;.

Next, to determine a strategy a* for A, consider first the Bellman

equation:
y(K,D,r) = max (r(p) + ay(g(K)-c—Do’,(Dl’.Dz'.---).f’-l))
. D’,f’
where ¢ is the maximizing e for w(K.Do',...,Df’,r’) (2

and subject to the constraint on (D',r'):
w(K,D',r') = max{w(K,D;r), v(K)}.
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Lemma 2.3: There is a unique function y solving (2). Furthermore this y is
continuous in (K,Do,...,Dr)'for each r, and the constraint in (2) is binding
for each (K,D,r).

The strgtegy a* for A selects a maximizer of y(K,D,r) at each A-move having

state (K,D,r).

The actual play of (a*,b*) has at most one rescheduling and that at the
initial period followed by payments according to this schedule. The (Pareto
optimal) payoffs from following (a*,b*) beginning at any initial state
(Ko,Do,ro) are y(Ko,Do,ro) and max(w(KO,Dorro),v(Ko)) respectively.
Propogition 2.4: The strategy pair (a*,b*) constitutes a subgame-perfect
equilibrium of the game GZ(KO,DO,rO) for every nonnegative Ko and every
feasible (00,r0).

Propogition 2.5: For each initial state (Ko,Do,ro). everyfgﬁkﬁime-perfect
equilibrium of GZ(KO,DO,rO) generates the same payoffs in every subgame as

does (a*, bx),

Remarks

Here is some intuition concerning why we are able to dispense with
assumptions like the one in [FR] that relates A’'s discount factor to the rate
of interest on the debt. In Model 1, Player A’'s payoff function is assumed to
be such that she is indifferent over all payment sequences that have the same
present value, where the interest rate in the present-value calculation is
that at which the debt grows. Her objective is therefore to maximize the
current debt subject to respecting B’'s incentive-compatibility constraints ——

that B prefers paying to not paying. A does not care what pattern of payments
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B chooses. If A’s objective were something other, she would not be
indifferent over B's payment sequence, and she would have a maximization
problem to solve subject to incentive-compatibility constraints for B which in
turn could feed back on A’s objective fﬁnction in a complicated way. The
reason for such complications is that in Model 1 Player A has only one
instrument at her disposal — the current debt level, and B can choose to pay
it off in many ways. In Model 2, A selects the entire sequence of payments
that B is to make, so A can simply maximize her utility over all the payment
sequences that B would agree to repay. She has all the instruments she needs

to avoid the feedback complications.

3. Model 3

The game of Model 3 is termed Gq(e,Dy). It is played by the same two
playets'ovet the same discrete time periods. There is no capital, production,
or storage in Model 3, however. At the beginning of each period t, the debtor
receives a new endowment e and inherits a debt D.. The initial value of debt
Dp>0 is specified exogenously, as is the constant value e. The first move at
each t belongs to A, who selects f_, the part of D to be forgiven currencly.
It is then B's move: she selects the current level of consumption c. and debt-
service payment p,.. If Py = Dt-ft' the game ends; otherwise, the next period
is entered with

Deyp = (L+) (De~fr-py)

where r>0 is the interest rate on the debt. Thus the following restrictions
on the players’ moves apply:

0 < f: < D¢,



0 < c, 0s p, < D ~f., ‘and c +p, < e.
Denote by T the first period at which p.=D.~f.. If this never happens, T=x.
The creditor's maximization problem is unchanged from Model 1: A wishes
to maximize the discounted sum of the debtor’s payments Ztatpt, where O<a<l is

the creditor’s discount factor. The debtor wishes to maximize

TEI

gy Bluey) + ﬁTu(c,r+z) + gL (3)

where z>e is a one-period consumption bonus received by the debtor upon
repayment of her debt, and AZ is the value of the future to the debtor at time
T when ending the game at T with no debt. We assume that as(1+r)'1, that u is
concave and increasing, and that u(z)+ﬁZZu(e)(1-ﬁ)'1. Thus, the difference
u(e)(l—ﬁ)'l—[u(cr+z)+ﬁz] can be thought of as the extra value to the debtor of
regaining access to the capital market on debt-free terms. Note that, unlike
in Models 1 and 2, B is assumed to gain some of the benefit from the bonus in
consumption units immediately upon repaying the outstanding debt.

Consider the strategies g for A and b for B-defined at any subgame at any

time t defined by

D_-e ifD_>e
a: Set £ = 1 € ¢
L © otherwise
-
(0,e) i£D -f >e
b: Set (p..c.’ = |
{ (Dt-ft,e—Dt+ft) otherwisge.

Notice that when (a,b) is played, debt forgivenesses and payments occur only

at time zero. Furthermore, the resulting payoffs are Pareto optimal with the
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creditor receiving the payoff min(e,Do), which is less than the surplus due to
the existence of the bonus when u(z)+ﬂZ>u(e)(1—ﬂ)_1.
Propegition 3.1: The strategy pair (a,b) is a subgame—perfect equilibrium of
Gq(e,Dg).

There exist additional subgame—perfect equilibri; that are not generally
Pareto efficient, however. To illustrate this, we next construct one such

strategy pair (;,S) for the special case:

e=1, z-ﬂ_l, Z-[ﬂ(l—ﬂ)]_l, l—a>r, and u(c)=c. (&)
0 N if 0spD_s1
\
D, - 1 i 1<D,_s (1+1) (1—a)r t
a: Set ft - ﬁ R
0 if (1+r)(1—a):"1 <D s+ (l—-a)r—l
-1 -1
Dt_ 1- (1-a)r if Dc >1 + (l-a)r
D -f, if 0sD~f s1
0 1€ 1 <D £ s (la)rt
A t t
b: Set p_=~ 1

-1 -1 ' -1
Dc_fc_ (l-a)r if (l-a)r < Dc—fc <1+ (l-a)r

-1
0 if Dc—fc >1+ (l-a)r

and c, =1 - p,
In contrast with (a,b), under (;,S) when Dg 1is sufficiently large

repayment takes two periods. When (1+r)(1—a)r_1<D0<1+(1—a)r_1, the play of
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(a,b) has po-Do—(l-a)r'l and py=1. If a<g this is not Pareto optimal, since
B could be made better off increasing Po by e<nin(1—D°+(1~n)r°1.a) and
decreasing p; by ea~l without affecting A’'s payoff. When Dozl+(1—a)r_1, the
play of (a,b) has fg=Dy-1-(l-a)r™L, pg=1, £;=—1+(l+r)(l-a)r™l, p;=1, a's
payoff is l+a. B’'s payoff is ﬂz+ﬂ22-(1-ﬂ)'1. ’
Proposition 3.2: If (4) holds, (a,b) is a subgame-perfect equilibrium of
Gy(e,Dy).

Using the two equilibria (g,b) and (3,3) and assuming (4), it is
possible to construct a continuum of subgame-perfect equilibria for G3(e,Do)
that depend in more complicated ways on the history. For instance, there are
history-dependent subgame-perfect—equilibrium strategies that support any
payoff for A in the interval (1,l+a) when DO is sufficiently large. In such a
strateg; pair, A’'s strategy calls for an initial forgiveness of the debt down
to 1+(1—c)r'1-e. 0<e<a.>and thereafter the strategy is given by a. B's
strategy is the same as b as long as A does not deviate from this initial
forgiveness. Any such deviation by A, however, causes B to switch to b and A
to switch to g.

In [FR] we obtained a subgame—perfect equilibrium for Model 1 under the
assumption a—(1+r)'1, the play of which had the creditor making one
forgiveness in period 0 and the debtor thereafter repaying the debt optimally
assuming that no further forgivnesses would be forthcoming. The debtor’s
payoff was her maximin payoff v(K,;) (as given in (1)). When a<(1+r)'1, we
were unable to compute subgame-perfect equilibria for Model 1. By way of
contrast, we have here:

Propogition 3.3: 1If a<(1+r)‘1, Dp>e, and u(z)+ﬂ2>u(e)(1-ﬂ)'1, there is no

subgame-perfect equilibrium for Gy(e,Dy) in the play of which the creditor
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nakes a sole forgiveness in period 0 and in which the debtor obtains her
maximin payoff.

Proposition 3.4: If a<(l+r)~L, e<Dy<[(l-a)+(1+r) 1], and
u(z)+ﬂZ>u(e)(1—ﬂ)-1, at every subgame—perfect equilibrium of G3(e,DO), B's

payoff exceeds her maximin payoff.

Remarks

Here is some intuition as to why we are able to derive equilibria for
G3(e.D0) in which, unlike in Model 1, the debtor’s payoff is greater than her
maximin payoff. The assumptions that the debtor receives z immediately, that
z>e, and that u(z)ﬂ?ZZu(e)(l—ﬂ)'1 ensure that it is incentive compatible for B
to repay 0 if D .-f >e and if she assumes that next period’s forgiveness f .|
will be mnx(Dt+1—e,0). Even when a—(1+r)'1, the analogue of the uniqueness
proof in [FR] fails for Model 3 because B’s payoff from repaying D optimally
when she hypothesizes that there will be no future forgivenesses is -
discontinuous at D=e. The counterpart of any such discontinuity in Model 1l is
avoided as a consequence of the assumption Z(0)=v(0) and the assumed

continuity of Z(K).

4. Conclusions

This paper presents two models of sovereign—debt renegotiations that
differ in various ways from Model 1. Model 2 preserves the spirit of the
results obtained in [FR] in that there is an equilibrium in the play of which
only one new debt schedule is offered (in period zero) and in that in all

;ubgame—perfect equilibria the creditor {s able to extract all the surplus
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associﬁted with the bonus (unless the initial state is such that the inicial
debt can be repayed without any forgiveness). Since Model 2 allows us to
dispense with the assumption relating the creditor’s discount factor to the
interest rate, the assumption that only the creditor is free to suggest new
debt schedules might appear to be what is driving the results for both Models
1 and 2. That matters are not as simple as this, however, is illustrated in
Model 3. Here, although the creditor is again the sole grantor of
forgivenesses, when a<(1+r)-1 there is no subgame-perfect équilibrium like the
one decribed in [FR]; moreover, there are initial conditions such that in all
subgame-perfect equilibria B's payoff exceeds her maximin payoff. When
c—(1+r)'1 although there is an equilibrium like the one described in [FR],
there are ;enerally many other subgame-perfect equilibria as well with payoffs
that differ. This suggests that the bonus structure and the relative degree
of impatience of the creditor interconnect with the various other assumptions
in a complex fashion.

The existence of subgame-perfect equilibrium plays in Model 3 iu which
forgivenesses and payments alternate for more than one period seems to
correspond better to the observed reality of repeated negotiations than the
subgame-perfect equilibrium plays obtained for Models 1 and 2. The robustness
of the Model 3 subgame-perfect equilibria is somewhat suspect, however, since
these equilibria seem to rest on strong assumptions concerning the form and
size of the bonus. Nonetheless, there may be interesting policy implications:
the results suggest that if the debtor countt& could establish a sufficiently
small, pqlitically-credible, upper bound on its potential payments in every
period, then such equilibria might obtain. (In fact, Peru has imposed such an

upper bound on its yearly payments.)
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As noted in [FR], the existence of uncertainty may be another avenue to
obtaining repeated negotiations in equilibrium. Furthermore, without
uncertainty it is hard to imagine how bad loans come about in the first place.
Our attempts to introduce uncertainty concerning future production to this end
have been unsuccessful so far, however. To illustrate the difficulties,
suppose that in Model 2 there were some uncertainty about the outputs
resulting from future production decisions. The analogue of a repayment plan
for B that assumes no further forgivenesses in the deterministic model ought
to be then a contingency plan which makes a satisfactory payment in the
present period and then continues to make scheduled payments in the future as
long as certain output targets are realized, but not in other cases. This
means that the analogue here of the function w in the deterministic model
would contain expressions that involved the maximum of two functions —— one
that described the value of the future if payments were to continue and the
other if they were to stop. In such a model, B’s objective would not be
concave as a function of her consuaption choice in the current period, and lLer
optimal current consumption chéice would not therefore be continuous generally
in the components of the debt schedule she faced. This means in turn that the
transition structure of the dynamic program that A faced would not be
continuous generally and the existence of an optimal plan for A would become
problemmatical.

Finally, it is well to review some of the additional hypotheses
maintained throughout both papers:

1. The bonus is provided from outside the resources of the players of our
games, and it accrues only when the creditor is ultimately satisfied—thus it

has a rather discontinuous flavor.
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2. No sanctions may be imposed by the creditor for failure to repay (cf.
[BR]).

3. As contrasted with the recent bargaining literature (e.g. [R]), "offers” in
Models 1 and 3 (and partially——only on the payment side—in Model 2) are real
economic actions and do no have to be "accepted" before they are implemented.
4. Our games have only two players. Ve therefore ignore the roles of
political constraints in the debtor country, the creditor’'s government, the
World Bank and IMF, and interactions among the players of simultaneous debt-

negotiation games.

Appendix

Lemma 2.1: There is a unique solution v to (1), which is continuous, strictly
‘concave and increasing. Furthermore, the value of c that maximizes the right-
hand side in (1) is unique and continuous in Ke[O0,M].

Proof: All but monotonicity follows directly from Exercise 9.7 in {LPS]. For

monotonicity, observe that if K'>K, v(K')>v(K), since g(K')-g(K) can be added

to the consumption that maximizes (1).||

Lemma 2.2: For each 7, on the region where w(s,r) > —=, w is continuous
(jointly) in (K,Do,...,Df), increasing in K on [0,M] and decreasing in each

Furthermore, the optimal value for cy is unique and

argument Do,...,Df.

varies continuously with K,Do,...,Df.

Pxoof: Continuity of w follows from the continuity assumptions on u, g and Z.

The monotonicity argument is analogous to that of the previous lemma. The
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conclusions about the optimizing cy follow from the strict concavity of the

objective function and the maximum theorem. ||

Lemma 2.3: There is a unique function y solving (2). Furthermore this y is
continuous in (K,Do,...,D') for each r, and the constraint in (2) is binding
for each (K,D,r).
Proof: To establish existence and uniqueness of y we need only check that the
hypotheses of Corollary 9.17.2 in [BS] hold (with the obvious change
necessitated by replacing minimize with maximize). All the hypotheses of that
corollary are immediate once we establigh that

((K,D,r,D',r"): vo(K,Do’,...,D",r') 2 max{w(K,D,r), v(K)})
is closedl; but this is an immediate consequence of Lemmas 2.1 and 2.2. Lower
semicontinuity of y follows from the same corollary in [BS], for this only
lower semicontinuity of (the analogue of) r needs to be assumed. The proof
that y is continuous assuming r continuous follows analogously. That the
constraint in (2) is binding focllows from the continuity of w, the
monotonicity of w in the arguments Do’,...,D", the monotonicity of r, and the

assumption that Z(O)-v(O).II

Propogition 2.4: The strategy pair (a*,b*) constitutes a subgame-perfect
equilibrium of the game Gz(Ko,Do,ro) for every nonnegative K0 and every
feasible (00,:0).

1Denoting by I the nonnegative integers with the discrete topology and by

M the set of sequences of elements from [0,M] with the product topology, the
set in question lives in the product space [0,M]xMxIxXMxI.
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Proof: Assume Player B deviates at some node in the game tree: If she assumes
that no revised schedule will Be forthcoming, her payoff is not improved, by
the construction of w. Now, since all subsequent offers by A under a* leave B
no better off than if no new offer ha& been forthcoming, the deviation by B
leaves her'no better off. For A to deviate profitably from a*, she must offer
a schedule that differs from an optimizing one in (2). Since b* calls for B
to play as predicted in (2), such a deviation cannot improve A’s payoff in the

subgame . | |

Consider a B-subgame characterized by (K,D,r,D’,r’) where (D,r) is the
previously accepted debt schedule and (D’,r') the new offer. Let (a,b) be
any strategy pair for GZ(KO,Do,rO) and let H(K,D,r,D’,r’) denote B’'s payoff
resulting from (a,D) in the B—subgame.2 Furthermore, let (2,5,?,5',;')“
denote the capital stock, accepted debt schedule, and new outstanding offer
obtained under (E,E) t periods after (K,D,r,D’',r') (assuming no termination
hy t), and c

g denote the consumption in each period s until t also resulting

from (3,B). Finally, let K* and c: be similarly obtained from optimizing

according to v for t periods starting from the same initial B-subgame. The

following lemma is then a consequence of the optimal nature of the v program.

2From now on, we adopt the following simplifications concerning subgames:
1. Payoffs in a subgame do not include the partial payments that accrue before
the subgame begins. From the separable payoff structure, this is an
inessential abuse of language. 2. The discounting of such payoffs is to the
time of the beginning of the subgame. 3. We identify different subgames that
begin with the same state-variable values. is eases the notational burden
and should cause no confusion.
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Lemma A.l:
H(R,5,7,5",7)~v(®)2 C(H(K,D,7,D’ , r")~v(K))  VYe<T.

Rroof:
H(K,D,;,D',r')—:géﬂ’u(zs)+ﬂcﬂ(i,§,;,~',;') and

V() =SEru(en) v (ke) 2SEru(E )+85v(B).

So H(K,B,7,5",7")-v(®)28 “(H(K,D,7,D’ ,r*)=v(K)). ||

Propogition 2.5: For each initial state (Ko,Do,ro), every subgame-perfect
equilibrium of GZ(KO,Do,ro) generates the same payoffs in every subgame as
does (a*,b¥).

Proof: Note first that in any A-subgame characterized by (K,D,r), in every
subgame-perfect equilibrium, B‘s payoff must be as least as great as

R(K,D, r)mmax(v(K),w(K,D,r)) (B’'s payoff from (a*,b*) in that subgame), since B
has a strategy that guarantees her this payoff regardless of A’'s strategy in
that subgame. Now let (a,b) be any subgame-perfect—cquilibiium strategy
combination for GZ(KO,Do,ro). In any B-subgame characterized by
(K,D,r,D',r’), let HY(K,D,r,D',r') be B's maximum payoff from accepting the
new offer (D',r’) and thereafter following b (against a) and let
Hy(K,D,r,D’,r’) be B's maximum payoff from rejecting (D',r’) and thereafter
following E (against ;). Note that H(K,D,r,D’,r’) must either equal
HY(K,D,r,D',r') or HN(K,D,r,D',r'). Suppose that B receives more than
R(K,D,r) in some A-subgame under (a,b). Let gq=sup(H(K,D,r,D’,r’')-v(K))

where the supremum is taken over all B-subgames which follow immediately after

the proposal by A of an alternative feasible schedule (D',r’') with



Hy(K,D,r,D’,r')>Hy(K,D,r,D’,r’), as determined by (3,k). Note that g>0
since, by hypothesis, under (3,b) there is an A-subgame in which A proposes
a debt-repayment schedule strictly better for B than R(K,D,r).

Consider, theréfore, an A-subgame characterized by (K,D,r) in which a
proposes (D‘,r’) such that HY(K,D,r,D’,r’)>HN(K.D,r,D’,r’) and such that
H(K,D,r,D’,r")-v(K)>Bq. Strategy E must have B accept (D’',r’); moreover,
along the equilibrium path of the subgame beginning with B’s reply, a must
propose no better debt schedule for B. To see this, note that otherwise, in
the next B-subgame for instance, H(ﬁ,ﬁ',;',5",;”)-v(ﬁ)>q (with
notation extending that in Lemma A.l), contradicting the definition of q: and,
by Lemma A.l, the same reasoning iterated implies that in every period
thereafter no new debt repayment schedule is both proposed and accepted under
(3,B). But then H(K,D,r,D’,r')=w(K,D’,r'), since, given that no better debr
repayment schedule will be proposed, B cannot do better than to repay
according to (D’,r'). Now, in this same A-subgame characterized by (K,D,r),
let A deQiate by changing her proposal from (D‘,r') to (ﬁ,r'), where D is
identical to D’ except for the last positive component which is increased by
>0 under ﬁ and where ¢ is such that H(K,D,r,ﬁ,r')-v(K) is still greater
than #q and Hy(K,D,r,D,r*)>Hy(K,D,r,D,r*). (That such ¢ exist follows from
Z(0)=v(0), ¢>0, and continuity of w.) By the previous argument, b must agree
with b* at B’s next move; i.e. accept and plan to repay according to (B,
under the assumption that no better debt schedules will be proposed. Hence,
this is a profitable deviation for A in this subgéme, and (a,b) is therefore

not subgame perfect. ||



-21-

Broposition 3.1: The strategy pair (4,h) is a subgame—perfect equilibrium of
Gy(e,Dp).

Proof: Given b, in any A-subgame beginning at t, A’s maximum payoff is
min(e,Dt) (since for all k>0: ake<e and ach(1+r)ksDc). Strategy a,
restricted to that subgame, achieves that payoff.

Given g, at any B-subgame beginning at t, B’'s payoff from using b is
lu(e+z-Dc+fc) + Bz if Dc - fc <e

u(e) + Bu(z) + ﬂzz otherwise

If B follows an alternative strategy resulting ultimately in no final
repayment of the debt, B’s payoff is clearly smaller in both cases.

Suppose next that D .-f <e at this B-subgame and that B follows an
alternative strategy ending in final repayment at T>t, with last two payments
pr-1 and py. For this case, we shall first argue that B can do at least as
well by repaying finally at T-1 instead of repaying finally at T. B's payoff
accruing in T-1 and T (discounted to T-1) is:

ue-py_y) + Pu(e-pr+z) + p%2 (5)
Note first that since A follows a, Dy_;-fy_j<e, and hence that
u(e+z=Dy_+Eq_1) + BZ - (u(e) + Pu(e+z=Dp_j+fr ;) + A2Z] 2 0,
since, by assumption,
u(e) s (1-f)u(z) + B(1-A)Z = (1-Blu(e+z-Dy_;+fp_1) + B(1-B)Z.
Thus, it suffices to show that (5) is not greater than
u(e)+pu(e+z-Dp_;+Er_1)+A%2, (6)
i.e. that

u(e) - u(e-pT_l) 2 ﬂ[u(e+z-pT) - u(e+z-DT_1+fT_1)]. (7)
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If pTéDT-l-fT-l' (7) obviously holds since the left-hand side is non-negative
and the right-hand side is non-positive. If py<Dy_;-fr_;, then pp<e; so since
A follows 3, pT-(DT_l-fT_l—pT_l)(1+r). Note that
(e+z-pp)=(e+z=Dp_y+fy_)) = Pr1~T(Op_1~fp_1-Pr-1) = Pr-1-
and that
e~(e—~pr_))=Pr-1-
Hence, as a result of f<l, concavity, and zze, (7) holds in this case as well.
VConsequently, repaying the outstanding debt at T-l is at least as good for B
as repaying finally at T. So, instead of considering B’'s original alcternative
strategy, we might as well consider a modified version of it which exactly
imitates it until period T-1, whereupon the outstanding debt is repaid.
Repeating the argument as above for the new last two periods, T-2 and T-1,
establishes that repaying the outstanding debt at T-2 is at least as
Vbrofitable for B as repaying finally at T-l, and so on. By induction then,
B's payoff from repaying the entire debt at t (i.e., from following b in the
subgame) Is at least as great as that obtained from any alternative strategy.
Suppose next that D.-f >e in this B-subgame. Then the following period,

given that A follows g, Dt+1—ft+1-nin(e,(Dt—ft-pt)(1+r)). In period t+l, as
we have established above, B cannot do better than to repay all of this
‘iuindiately. Thus, i{f a profitable deviation at t exists, it must involve a
positive payment at t. B’'s payoff from such a deviation is at most
u(e—pt)+ﬁu(e+z-pt+1)+ﬁzz, where pt+1-min(e,(Dt-ft-pt)(l+r)). But this is not
greater than u(e)+ﬂu(z)+ﬁzi (to -see this, replace DT—l—fT—l by e in (7) and
modify the subscripts)—which is precisely B's payoff from following b. Thus,

there are no profitable deviations for B beginning with p.>0 either.|]|
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Propogition 3.2: If (4) holds, (3,6) is a subgame-perfect equilibrium of
G3(e,Dg).

Proof: Suppose first that B uses b. at any A-subgame beginning at t in
which Dt>1+(1-a)r—1, if A forgives less than Dt-l-(l-a)r_l, B repays 0 that
period and A’'s payoff cannot exceed a(l+a)<l+a (A's payoff from (a,b) in
such subgames). Forgiving more than Dt:-l-(l-u)r—1 likewise yields a payoff
smaller than l+a. At any A-subgame in which D.<1l, if A makes a positive
forgiveness f, A obtains Dt—f<Dt (A's payoff from (;,G) in such subgames).
If A makes a positive forgiveness f at any A-subgame in which
(1+r)(1-a)r"1<Dtsl+(1-a)r'1, A's payoff cannot exceed
Dt—f—(l-a)r-1+a<Dt—(1-a)r'1+a (A's payoff from (Q,Q) in such subgames) if
Dt—fZ(l-a)r-l; is even less than this if 1<Dt—f<(1-a)r_1; and cannot exceed
Dt—stt-(l-a)r—1+a if D -f<l. Finally, at A-subgames in which
1<Dt<(1+r)(1-a)r'1, if A forgives less than D.-1 then: A's payoff canmnot
exceed a<l (A’s payoff from (;,Q) in such subgames) if 1<Dt—f<(1-a)r'l, and
cannot exceed Dt-f—(l-a)r-1+asl if (l-a)r'lsDt-f. If A forgives more than
D.-1, then A’'s payoff is D.-f<1l. Thus, A never profits by deviating from a
in any subgame.

Now fix A's strategy at a. At any B-subgame beginning at t in which
Dt-ft>1+(1-a)r—1, any positive payment p,_ leaves B with an outstanding debt
next period greater than (14r)(1=a)r™! and hence with a payoff no greater than

(L-po)+B(1-pyyp)+82248%2 ®
where pt+1-min(1,(D—f—pt)(1+r)-(1-a)r'1). Following b and paying zero in

period t yields B a payoff of
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1+p2z+8%2. %)
If ?z+1'1' then (8) is no greater than (9). If
Prap=(De—Ec-Pe) (1+1)=(1=)r~1<1, then the upper bound on B's payoff from
deviating (i.e.(8)) is monotonically increasing (decreasing) in p. as
B(1+r)>(<)1 and monotonically decreasing in Dt'ft' Consequently, setting p =1
and Dt-ft-1+(1~m)r_1 and subtracting (8) from (9) yields 1l-af>0; thus, in
these subgames a positive payment at t cannot be part of a profitable
deviation for B. Next, at any B-subgame in which (1—05r'1<Dt-ftsl+(l-a)r—l, a
payment of less than Dt-ft—(l—a)r-l at t implies that next period’s debt is
greater than (1+r)(l—a)r'1, and thus that B's payoff cannot exceed
(1-p o) +B(1-p 4y ) +B2246°2, (10)
where pt+1-uin(1,(Dt—ft-pt)(1+r)—(1—a)r'1). Following b and setting
pt-Dt-ft-(l—a)r-l, on the other hand, yields B a payoff of
’ 1-(D~£ - (1-a) r 1) +hz+822. (11)
That (11) is greater than (10) can be seen by substituting the values of z and
Z and manipulating the inequalities. Payment of more than Dt:-ft._-(l-ol)r—l at t
likewise yields B a smaller payoff than (11). In B—subgames in which
1<Dt—ft<(1—a)r-1, a positive payment at t yields B a payoff that cannot exceed
(1-p ) +B(1-py 1 +2)+A2Z, (12)
where pt+1-uin(1,(Dt—ft—pt)(l+r)). Following b and paying zero at t, on the
other hand, yields B a payoff of
1+8z+822. (13)
Once again it is easy to sﬁow that if p., =l this deviation is not profitable.
If pt+1'(Dt'f:'pt)(l+r)<1' the upper bound on B's payoff from deviating is

monotonically increasing (decreasing) in p. as ﬂ(1+f5>(<)1. Setting p =1 and
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Dc'fc'l and subtracting (12) from (13) ylelds 1-p>0, demonstrating that in
these subgames a positive payment at t cannot be part of a profitable
deviation for B. Lastly, in B-subgames in which D _-f <1, not repaying the
entire debt immediately yields B a payoff of at most (12), whereas following .
b and repaying D -~p, yields B a payoff of z+fZ. As in the proof of
Proposition 3.1, repaying less than the outstanding debt is not a profitable
deviation. This establishes that B never profits from deviating from b in any

subgame . | |

Lemma 7.2: If u(z)+ﬂZ>u(e)(1—ﬂ)'1, for every subgame-perfect equilibrium of
G3(e,Do) and in every A-subgame characterized by D, B's payoff is no greater
than R(D)su(e+z—min(e,D))+FZ.

Proof: Consider ; subgame—perfect strategy combination (a.b) in which there
'is an A~subgame characterized by D.whata B achieves more than R(D). Let
H(D-f) denote B's payoff in a B-subgame characterized by D-f and let

qesup (H(D-f)-R(D)), where the supremum {s taken over all B-subgames
immediately following a positive forgiveness determined by a. (Note that g>0
since, by hypothesis, in some A-subgame H(D-f) is greater than R(D)).
Congider a B-subgame hunediacaly.folloving a positive forgiveness in which
H(D-£)-R(D)>8q. Note first that along the equilibrium path of the subgame
beginning with B's reply, a calls for no future forgivenesses since, by
analogy with Lemma A.l, if there is a next such positive forgiveness f_ at
time t, H(D.-£,)-R(D.)>q (where D, and f_ are determined by (2,0)), and
consequently a positive forgiveness in iny such‘petiod t would contradict the

definition of q. Moreover, since H>R and since no future forgivenesses are
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expecéed, D—f must be strictly less than min(e,D). Also, E must in turn have
B psying the outstanding debt immediately, since, using the proof of
Proposition 3.1 (but replacing the weak inequalities in the two lines
following (5) by strict inequalities), this is the only payment that achieves
B's maximum payoff in this subgame. Now let A deviate in the A-subgame by
reducing £ by ¢>0 such that H(D—f+¢)-R(D) is still strictly greater than Sq
(such ¢ exist since u is continuous and D—f<e). The same logic as before
leads to the conclusion that B must repay immediately after the e¢—deviation.
Consequently, the e-deviation is profitable for A, contradicting the

hypothesis that (a,B) is subgame perfect.ll

Corollary: If u(z)+ﬂz>u(e)(1—ﬂ)‘1, at any subgame-perfect-equilibrium
strategy combination for G3(e,Do), A never forgives more than max(D-e,0) at

Any A-move and B always repays D—f immediately at any B-subgame with D—f=<e.

Propogition 3.3: If a<(1+t)'1, Dp>e, and u(z)+ﬂZ>u(e)(1—ﬂ)_1, there is no
subgame—-perfect equilibrium for Gy(e,Dg) in the play of which the creditor
makes a sole forgiveness in period O and in which the debtor obtains her
m;xinin payoff.

Proof: Suppose (E,E) is a subgame—perfect strategy combination for Gy (e,Dy)
with Dy>e, in the play of which A makes one forgiveness in period 0, B repays
optimally thereafter (under the assumption that there will be no further
forgivenesses forthcomingi, and B obtains her maximin payoff. Let repayment
end in period T. Note that Tzl since u(z)+ﬂz>u(e)(1—ﬂ)-1. Consider the last

two payments in this sequence, T-1 and T. Since under (a,b) B repays Dy-£y
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(with interest) without expecting any further forgivenesses, b must have pr=e
and py_;=Dy_j—e(l+r)se (from concavity of u and zze). Let B deviate by
reducing Pr-1 by ¢(1+r)'1, where 0<¢<e[1—a(1+r)](1+r)'1, so that now Dp=e+e .
If at the next A-move, 3 makes a forgiveness fr snailez than ¢, A’s payoff
against b cannot exceed the discounted value of what B would repay if B
assumed no further forgivenesses were forthcoming (since, by the Corollary,
the play of (a,b) must have repayment end with a payment of e), {.e. B will
make payments of at most pT-(1+z)'1te+¢(1+r)-fT <(l—a)e and Pr,1=e. Hence A's
payoff (discounted to T) from fy<e against b is strictly smaller than e. By
forgiving ¢, on the other hand, A’'s payoff against b is e, since, by the
Corollary, B repays e immediately. Consequently, the reduction of pT;l by e

is a profitable deviation for B, and hence (a,b) is not subgame perfecc.l[

Broposition 3.4: If a<(l+r)”l, e<Dy<[(l-a)+(l+r)l]e, and
, u(z)+ﬂz>u(e)(1—ﬂ)'1, at every subgame-perfect equilibrium of G;(e,Do), B's
payoff ecxceeds her maximin payoff.
Proof: 1If A makes an initial forgiveness fo such that Do—fo>e, then A’'s
payoff cannot exceed (Do-fo—e(1+r)'1)+ae<e, since by the Corollary at every
subgame-perfect equilibrium the last payment made by B must be e whenever a B-
subgame commences with D-f>e. By making a forgiveness fg such that Dy—fy=e,
on the other hand, A’s payoff in every subgame—perfect equilibrium of the
continuation game i{s e, again by the corollary. Hence A must forgive the debt
down to e in every subgame-perfect equilibrium (when the initial condition is

as gilven above), and B’'s payoff is thus greater than her maximin payoff. ||
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