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1 Introduction

The use of digitized newspaper data by economic historians has become relatively commonplace

in recent years. Here we propose the use of such data to overcome measurement error, a prob-

lem that is pervasive in the statistical analysis of historical data. Given that regression coefficients

of mismeasured variables are attenuated (Aigner, 1973), left unaddressed, measurement error can

lead promising research to be abandoned. A solution to such attenuation bias for continuous vari-

ables with classical measurement error is to use an instrumental variables approach leveraging a

second, also mis-measured, data source as the instrument. In the absence of other endogeneity

concerns,1 as long as the measurement error in the two variables is uncorrelated, instrumenting for

one mis-measured variable, X1, with data from a second mis-measured source, X2, recovers the

true parameter (see Chalfin and McCrary, 2018). The main limitation of this approach is that it

is difficult to find a second variable that is i) measured with error which is arguably uncorrelated

with the error in X1, and ii) reasonably cheap to collect. Since economic historians often spend a

significant amount of time and effort on original data collection, it is usually costly enough to just

have X1.

In this paper, we show how a second measure, X2, can often be generated at low cost from

textual data available via digitized newspapers,2 and how it can be used to resolve measurement

error in the case where X1 is continuous or binary. The distinction between continuous and binary

variables is important because using X2 as instrument for X1 to recover the true parameter only

applies to cases of classical measurement error, which requires X1 to be continuous (Bingley and

Martinello, 2017).3 If X1 is binary and mismeasured, any IV estimate will be inflated by the

inverse of the misclassification rate in X1. This is true even when the instrument is generated by

an otherwise perfectly valid natural experiment.

1Many current papers in economic history seek to establish causal relationships for which instrumental variables
from natural experiments are commonly used and because other endogeneity concerns, such as omitted variables, are
a potential problem (see Dippel and Leonard, 2021). These instruments also resolve classical measurement error,
however, when treatment variables are not continuous, measurement error is non-classical by construction and the
approach fails, an issue that we discuss more fully below.

2Examples of available online repositories for digitized historical newspaper data are Chronicling America and
Newspapers.com.

3Classical measurement error requires that there is no correlation between the true value and the error. Suppose a
binary treatment is misclassified, then the error has a perfect negative correlation with the true value by construction
because if X∗ = 1, then u = −1 and, vice versa, u = 1 if X∗ = 0.
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We provide three potential solutions when X1 is binary. First, the treatment effect can be set

identified. The OLS estimate using X1 as treatment provides a lower bound while the IV estimate

using X2 as instrument for X1 provides the upper bound such that β̂OLS < β < β̂IV. Second, we

show that restricting the analysis to an agreement sample where X1 = X2 can substantially reduce

the OLS bias. The probability that both variables are jointly misclassified is the product of the two

variables’ misclassification rates and therefore measurement error in the agreement sample tends

to be much lower.4 Third, we provide a parametric bias correction procedure that can recover the

true parameter of interest as a nonlinear combination of the OLS and IV coefficients. All three

procedures are fast and efficient, and given that newspaper data can be scraped in a reasonable

amount of time, we hope to provide researchers who work with historical data with low-cost tools

for dealing with measurement error. We demonstrate our three procedures by replicating two recent

papers that study the economic impact of the spread of the boll weevil across the U.S. South in

the late 19th and early 20th century, one by Clay, Schmick and Troesken (2019) and one by Ager,

Brueckner and Herz (2017).

To date, the sole source of data used by analysts to measure the timing of boll weevil arrival at

the county-level stems from a U.S. Department of Agriculture (USDA) map by Hunter and Coad

(1923) which documents the arrival date of the pest across Southern counties. While the map itself

is mostly accurate, it does contain errors.5 Further, it does not necessarily measure what economists

are typically interested in, namely the timing of the economic damage caused by the arrival of the

boll weevil. As an example, if the weevil arrived late in the summer, it would typically hibernate

soon after arrival and thus the actual economic damage would not occur until the following year.

The arrival date from the USDA map therefore is a mis-measured proxy for the date of the actual

economic impact. And, as we document below, this mis-measurement can markedly attenuate

estimated effect sizes.

To produce a second measure for the arrival of the boll weevil, we collect data from Newspa-

pers.com by jointly searching the database for pages containing “boll weevil” and each county’s

name in all newspapers in the county’s state for each year between 1882 and 1932. Our arrival

4For instance, suppose X1 and X2 have misclassification rates of 30% and 20%, respectively, where one minus the
misclassification rate determines the OLS bias. The attenuation bias in the agreement sample will be 0.3×0.2 = 0.06.

5In some instances, the map reports inconsistent arrival dates. The map shows the arrival date with date borders
which occasionally overlap in contradictory ways. See Figure 1 for examples of such overlaps.
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measure is then the peak salience of the weevil in the news as measured by the maximum five

years moving average of boll weevil related pages.6 We argue that errors in this newspaper-based

measure are likely to be uncorrelated with errors in the USDA map, which was generated by

trained USDA entomologists who reported back to the federal agency, whereas local newspaper

reporters mainly wrote about salient issues in their home counties. Using an event study design,

we also show that the newspaper-based salience peaks a year after the official USDA arrival date

on average.

Our replications of Clay et al. (2019) and Ager et al. (2017) show that using our newspaper-

based arrival measure can reduce measurement error and strengthen the results in both papers.

In particular, our theory suggests a ranked pattern between the three proposed solutions, where

β̂OLS < β̂X1=X2 < β = β̂bias-corrected < β̂IV. While we do not observe the true coefficient, the

estimated coefficients largely follow the prescribed pattern in both replication exercises. Name-

ly, the parametric bias correction provides a larger coefficient than the OLS coefficient from the

X1 = X2 agreement sample, and both of these lie within the lower and upper bounds provided

by the OLS and IV estimates, respectively. We find evidence that measurement error led to lower

coefficient estimates in both studies, a finding which is robust across alternative specifications of

our newspaper-based arrival date. However, the difference with the coefficients produced by our

procedures was only statistically significant for Ager et al. (2017). We discuss the frequency of

the time dimension as potential reason for this finding, as Clay et al. (2019) use annual data while

Ager et al. (2017) use data over five year intervals.

We also provide a broader discussion of when such data generation from newspaper articles

is a promising avenue to resolve measurement error and when it is not, as well as of the value

of newspapers to generate novel data for research in economic history in general. Even though

our newspaper-based measure of the boll weevil arrival was generated in a fast and unrefined way,

using this noisier measure still produces smaller but significant effects that are comparable to those

in Clay et al. (2019) and Ager et al. (2017). Even in the absence of the USDA map, we therefore

could have conducted their studies solely based on the newspaper data.

Our paper highlights the usefulness of digitized newspapers to generate additional data to ad-

6We use a moving average to additionally smooth out noise in the newspaper data and provide sensitivity checks
to show that other transformations, such as using a three or seven years moving average or the raw data, give similar
results.
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dress measurement error. We extend the secondary measure IV framework in Chalfin and McCrary

(2018) to the case where treatment is binary and when instrumenting ordinarily does not resolve

measurement error (Bingley and Martinello, 2017). While researchers tend to ignore measurement

error when some conventional level of statistical significance is achieved, we hope to draw some

attention to the issue when the treatment variable is not continuous given that larger IV estimates

compared to OLS are frequently motivated with measurement error in the treatment variable. We

also contribute to a recent literature that uses digitized newspapers to generate novel data for re-

search in economic history. This includes measures of media competition and partisan influence

(Gentzkow, Shapiro and Sinkinson, 2014; Gentzkow, Petek, Shapiro and Sinkinson, 2015), racial

and anti-group sentiment (Ferrara and Fishback, 2020; Ottinger and Winkler, 2021; Bazzi, Fer-

rara, Fiszbein, Pearson and Testa, 2021), the spread of news relating to racial violence (Albright,

Cook, Feigenbaum, Kincaide, Long and Nunn, 2021; Calderon, Fouka and Tabellini, 2021), the

1918 influenza (Beach, Clay and Saavedra, 2020), fertility restrictions (Beach and Hanlon, 2021),

advertisements for the movie “Birth of a Nation” (Esposito, Rotesi, Saia and Theonig, 2014), the

price and types of available cotton seeds (Rhode, 2021), among others.

The remainder of the paper is organized as follows. Section 2 introduces the historical setting

of the boll weevil infestation of the U.S. South between 1892 and 1922, and reviews previous liter-

ature on the topic to set the stage for our later application. In this context, we then discuss potential

measurement issues in the widely used USDA map and describe the collection of our newspaper

based boll weevil arrival measure. Using an event study approach, we show the difference between

the USDA arrival date and salience in local newspapers to highlight why the map may not be the

ideal source for what economists typically aim to measure when studying the effect of the boll

weevil. Section 3 provides the econometric framework for how our newspaper-based arrival mea-

sure can be used to resolve measurement error in the USDA map arrival measure by introducing

three approaches based on set identification, noise reduction by using an agreement sample where

both arrival dates give the same answer, as well as a parametric bias correction. Section 4 repli-

cates the studies by Clay et al. (2019) and Ager et al. (2017) to demonstrate how easily collected

newspaper data can be used to address measurement error and to confirm the theoretical results

from the previous section. We also discuss when our approach is suitable and when it is not, as

well as the utility of digitized newspapers to generate novel data. The final section concludes.
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2 Background and Measurement of the Boll Weevil Infestation

2.1 The Spread of the Boll Weevil and Uses of the USDA Map

The boll weevil spread across the U.S. South starting in 1892 near Brownsville, Texas. The beetle,

which gained its name because of its diet consisting mainly of cotton bolls and flowers, had infested

all Southern cotton growing regions by 1922. Given that cotton at the time was still the main cash

crop in Southern agriculture (Wright, 2013), the arrival of the pest had a substantial impact on

the areas it infested. Consequently, the USDA traced the arrival of the weevil on a map in an

annual report by Hunter and Coad (1923). A portion of this map is shown in Figure 1. During

peak infestation in 1921, cotton acreage had declined by 31% (Ager et al., 2017) and the USDA

estimated the average economic loss per year to be 200 to 300 million USD between 1916 and

1920 (Hunter and Coad, 1923).7 Given this large economic shock, a well developed literature has

studied the various impacts of the boll weevil on different aspects of the Southern economy.

Lange, Olmstead and Rhode (2009) show the large negative impact of the pest on cotton pro-

duction, land value, and yields in the South together with anticipatory behavior by farmers. The

drop in productivity also altered the structure of Southern agriculture with a reduced number of

tenant farmers, farm wages, and female labor force participation (Ager et al., 2017). Ager, Herz

and Brueckner (2020) provide evidence that the lower returns to agriculture reduced fertility due

to the opportunity cost of children and the decreased value of child labor. Also Black Southerners

tended to marry later after the pest arrived for the same reasons (Bloome, Feigenbaum and Muller,

2017). This fertility transition and the decline in the value of child labor in agriculture have al-

so been linked to increased educational attainment (Baker, 2015; Baker, Blanchette and Eriksson,

2020). Another unintended consequence of the reduction in cotton production was increased food

production. Clay et al. (2019) show that this significantly contributed to the reduction in pellagra

deaths. In a later paper, the authors also find that the boll weevil spread reduced the racial income

gap in the South (Clay, Schmick and Troesken, 2020). Similar to the population movements dis-

cussed in Lange et al. (2009), Feigenbaum, Mazumder and Smith (2020) show that the decline

in cotton reliance also resulted in less violence against Black Southerners who saw an increased

ability to move and vote with their feet against overtly discriminatory behavior.

7The damage corresponds to $3.2-$4.8 billion in 2021 dollars.
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Most of the above papers either assign the arrival date for a county whenever the USDA map

first arrival year line crosses that county’s area, or the arrival date is selected for the year line which

contains most of the county’s area. What should be noted is that the solid lines in the map techni-

cally show the farthest extent of the boll weevil in any territory. This measure does not necessarily

correlate with the exact timing of damage caused by the insect. Mature boll weevils hibernate

during the winter and infest the cotton field after the crop season in the subsequent year. Lange

et al. (2009) explicitly mention this caveat in their paper: “First contact usually occurred during

the August seasonal migration, too late to build up significant populations or do much damage in

that year. Maximum damage occurred after the local weevil population became established and

multiplied. Thus, the classic USDA maps detailing the spread of the weevil present a somewhat

misleading picture of the area ravaged by the insect” (p. 689).

2.2 Measuring the Boll Weevil’s Arrival From Newspaper Data

Newspapers were the primary source of information in the late 19th and early 20th centuries and

mainly operated locally in the county where the paper was based (Gentzkow et al., 2014). News-

papers published articles about the boll weevil’s arrival as well as damages in cotton production

caused by the insects. An example of such reporting is shown in Appendix Figure A.1. Digitized

newspaper data are a potential source to generate information on the arrival and damage extent

caused by the pest independent of the USDA map. We use Newspapers.com as our primary data

source of digitized historical newspapers. To the best of our knowledge, this is the largest newspa-

per archive available online.8

For each county, in order to construct our newspaper-based boll weevil arrival and salience

measure, we take all of the available newspapers from said county’s state and identify by year the

number of newspaper pages that include both the words “boll weevil” and said county’s name.9 We

are forced to use all newspapers from an individual county’s state because no newspaper archive

has information on the universe of newspaper pages. Thus, as described, our search not only

8Chronicling America is another digital archive for historical newspapers that is commonly used by researchers
(e.g. Wang, 2019; Ferrara and Fishback, 2020). However, it has fewer volumes than Newspapers.com and does not
contain many digitized newspapers that cover our sample period. As of 11/21/2021, 691,037,256 newspaper pages are
available in Newspapers.com while 18,773,412 pages are available in Chronicling America.

9In principle, one could search each article for a specific arrival date mentioned in the page for each county.
However, this would be time consuming and therefore costly. We instead use this simple search procedure to minimize
the cost for researchers and later show that this quickly obtained raw measure of boll weevil activity is still a good
proxy for the insect’s arrival and salience in a county.
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considers pages in the county of interest but in all counties that are in the same state.10 So, even if

Autauga County in Alabama has no available newspaper pages for the search period but “Autauga

County” and “boll weevil” are mentioned in a newspaper based in Barbour County, Alabama, we

obtain data for Autauga County. Some counties may feature more prominently in the news than

others, which is why we need to adjust these counts for the overall number of pages that mention

the county. Thus, we apply the same search logic to generate the numerator in our boll weevil

measure, which we compute as

%BWct =
No. of in-state newspaper pages mentioning “boll weevil” and a county’s namect

No. of in-state newspaper pages mentioning a county’s namect
(1)

where %BWct captures the salience of the boll weevil for county c in year t in the news. Our

sample includes 911 infested counties from 13 Southern states between 1882 and 1932,11 which is

ten years before and after the time periods covered by the USDA map.

How does our salience measure relate to the official arrival date in the USDA map? To answer

this question formally, we use an event study design and estimate the following equation,

%BWct = πc + γst +
−2∑

`=−10

β` ·D(t−BWUSDA
c = `) +

10∑
`=0

β` ·D(t−BWUSDA
c = `) + εct (2)

where %BWct is our newspaper-based salience measure for county c in year t. D(t−BWUSDA
c =

`) is an event indicator relative to the arrival of the boll weevil from the USDA map for the ten years

before and after the official arrival date. The year before the arrival from the USDA map, ` = −1,

is omitted and serves as the baseline period. The county fixed effects πc capture time invariant

unobservable county characteristics and aggregate time trends that affect counties jointly in each

state are captured by state-by-year fixed effects γst. Standard errors are clustered at the county

level. Given the recent literature on issues related to event study designs, we use the estimator

developed by Sun and Abraham (2020).

Our main interest is in the lag coefficients β` for ` ≥ 0. If salience in the news correlates

highly with the USDA arrival date, then we should observe an immediate jump at the treatment

10For an example see Appendix Figure A.2.
11The sample includes Arkansas, Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, Missouri, North

Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia.
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date ` = 0, followed by an either constant or slowly decaying coefficient pattern. Conversely, if

the weevil tends to arrive later in the summer and hibernates, the more salient economic damage

would occur in the following year which implies that the main effect on salience in the news should

occur after ` = 0. The pattern of the coefficients should not only be informative about the decay

in salience after arrival but also reveals potential anticipatory behavior if the lead coefficients are

significant for ` < −1.

Figure 2 plots the dynamic treatment effects for the twenty year event window around each

county’s boll weevil arrival date in the USDA map on our newspaper-based salience measure. The

figure shows the coefficients from estimating equation (2) via two-way fixed effects (TWFE) and

with the estimator developed by Sun and Abraham (2020). We find that the salience measure

significantly increases in counties after the boll weevil’s arrival based on the USDA map. More

importantly, the effect is largest one year after the arrival date in the USDA map. This confirms

the narrative that salience in the news and arrival are somewhat but not perfectly correlated due to

the pests’ hibernation if it arrives later in the summer (see Harned, 1910). While the post-arrival

coefficients slowly decay, they are still statistically significant even ten years after the arrival of the

weevil. We find no evidence for anticipatory reporting in the four years prior to the USDA map’s

arrival date. For earlier periods, there are significant coefficients in the TWFE results. We find no

pre-trends using the estimator by Sun and Abraham (2020).

2.2.1 Prediction of the Boll Weevil Infestation using Historical Newspapers

Figure 2 illustrates that the USDA map itself is mostly accurate, but it does not necessarily mea-

sure what economists are typically interested in, namely the economic impact of the boll weevil.

However, the main purpose of the newspaper data was to generate a second variable that predicts

the arrival of the boll weevil. One possible such measure would be to simply take the maximum of

%BWct. To generate a more stable prediction that is less prone to outliers or noise in the newspaper

data, we first smooth out noise by applying a five years moving average

MA(5)ct =
1

5

2∑
k=−2

%BWc,t+k
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and then assign the maximum as predicted year of infestation

Predicted year of infestationc = max
t∈[1882,1932]

(MA(5)ct) (3)

For robustness, we later test alternative specifications such as the three and seven years moving

averages, as well as the maximum salience measure %BWc,t within a 10-year window around the

USDA map. While our preferred specification is MA(5), the results in Section 4 are robust across

alternative specifications. More details are discussed below.

To illustrate how our approach based on newspapers can predict its effective infestation, con-

sider the following example for Marion County in Mississippi. The USDA map recorded that the

boll weevil arrived Marion in 1909. However, the damage by the insect was not severe. Harned

(1910), the head of the department and entomologist for the Mississippi Agricultural Experiment

Station, investigated the infestation in Mississippi during 1907 and 1909. For Marion County he

found that, “boll weevils probably spread entirely over this county during September, 1909, al-

though not in large enough number to do serious damage” (p. 22). For each year between 1882

and 1932, we first calculate the salience of the boll weevil of Marion County using pages men-

tioning “boll weevil” and “Marion County”. We calculate MA(5)Marion,t for each year, and define

the effective infestation of Marion County by choosing the year with the maximum MA(5)Marion,t.

Our newspaper-based approach predicts that the effective infestation was 1910 in Marion Coun-

ty, which is one year after the boll weevil’s arrival in 1909 according to the USDA map. This

analysis is shown in Figure 3. The dashed line and solid line indicate Marion County’s %BWct

and MA(5)ct over time, respectively. While our salience measure based on newspapers is noisy

(dashed line), the five years moving average smooths out this noise (solid line). Peak salience in

the news appears to be a reasonable approximation for the arrival of the pest.

Lastly, we provide a comparison between our predicted arrival date (equation (3)) and that

provided by the USDA map. Figure 4 plots the difference in the two arrival dates for the 911

counties in our sample. A positive difference means that the predicted year based on newspapers

is later than the arrival of the boll weevil as presented in the USDA map. While the difference

is typically small, less than 4 years for more than half of sample counties (54.88%), we find that

the difference is extreme for a small number of counties. This result is likely due to the noise in
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the newspaper data such as cases where the search words appear in separate articles even though

they show in the same newspaper page.12 It should be kept in mind that our measure is in some

ways purposefully noisy simply to reduce the cost of collecting the data. More refined versions are

possible by applying a visual inspection of the newspaper data, which would increase the cost of

data collection.

Another reason for some of the extreme values in the difference is due to some newly construct-

ed counties. An example is shown in Appendix Figure A.4. Dixie County in Florida was created in

1921 from the southern portion of Lafayette County. While the boll weevil arrived Dixie County in

1916 according to the USDA map, our newspaper-based measure predicts its effective infestation

as 1932. This is because our prediction based on newspapers mentioning “Dixie County”. Since

Dixie County did not exist before 1921, the prediction is only based newspapers after 1921, which

shown in Panel (a) of Appendix Figure A.4. One possible solution is to aggregate those counties

(as “multi-counties” in Lange et al. (2009) and Ager et al. (2017)) or assign the predicted year from

its original county.13

3 Resolving Bias from Measurement Error using Secondary Measures

3.1 Classical Measurement Error

How can the second measure for the boll weevil arrival from newspaper data be used to correct

for measurement error in the USDA map arrival date? First, consider the case where the data is

used as continuous exposure measure, such as years since arrival of the pest, for instance. Suppose

a researcher wants to estimate the following linear equation by OLS, which is assumed to be

unconfounded with a clear direction of causality but where years since arrival of the boll weevil,

X1, is continuous and measured with error

y = α + βX1 + ε and X1 = X∗ + u

12Appendix Figure A.3 shows that the search word “boll weevil” appears in one article and “Marion County”
appears in another article.

13For available crosswalks to standardize county boundaries over time see Ferrara, Testa and Zhou (2021).
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with Cov(X∗, u) = 0, β is the true parameter, and X∗ is the true measure (i.e. measured without

error). The estimated coefficient will then suffer from the typical attenuation bias,

β̂OLS,X1 = β
V ar (X∗)

V ar (X∗) + V ar (u)

where we denote the estimator and treatment variable of interest in the subscripts of β̂OLS,X1 ,

respectively. Now suppose there is a second variable that seeks to capture X∗ as well but that is

also mismeasured, X2 = X∗ + e, and for which the same conditions apply as for X1. We can then

use X2 as instrument for X1 to solve the measurement error problem (see Chalfin and McCrary,

2018). The IV estimate will be

β̂IV,X1 = β
V ar (X∗)

V ar (X∗) + Cov (u, e)
(4)

In the absence of any other endogeneity problems and if the two measurement errors are uncor-

related such that Cov(u, e) = 0, the IV estimate will recover the true parameter. As with the

exclusion restriction, one would then have to make an argument as to why the two errors should

be uncorrelated or that this correlation is close to zero. In the case of the boll weevil, a possible

argument would be that the USDA map was compiled by trained entomologist who primarily re-

ported back to the agency, whereas the newspapers were written by journalists who reacted to local

developments in their county. If journalists were basing their stories, and in particular the timing

of their articles, on the USDA map, then this assumption fails in which case Cov(u, e) > 0 and the

estimated IV coefficient in (4) would be biased downward.

Since applied economists tend to think hard about the exclusion restriction, we would like to

highlight that this condition is satisfied in our case by assuming away endogeneity concerns other

than measurement error. If X2 affects y through channels other than X1, such other channels must

necessarily be in ε. Since X2 and X1 seek to measure the same quantity, this essentially also

implies a correlation between X1 and the error term as well. This is something that our approaches

in this paper cannot solve. At best, X2 can remove biases relating to measurement error but not

those stemming from omitted variables or reverse causality, for instance.
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3.2 Nonlassical Measurement Error

Oftentimes the arrival or presence of the boll weevil, however, is coded as a binary variable (e.g.

Clay et al., 2019, 2020; Ager et al., 2017). In this case, the IV coefficient will no longer be

unbiased because when the treatment variable is discrete or binary, then measurement error is no

longer classical by construction (Bingley and Martinello, 2017).14 Suppose that now X1 is binary.

When regressing y on X1, the estimated OLS coefficient is still attenuated with

β̂OLS,X1 = β (1− θ)

where θ is misclassification rate in X1 (Aigner, 1973). If θ = 0, then there is no measurement

error whereas θ = 1 means that X1 is entirely randomly misclassified such that it is uncorrelated

with X∗ and therefore contains no usable information. Now suppose that X2 is also binary and

misclassified, but with an error γ that is uncorrelated with θ, and γ < θ. If we then regress y on

X2, the estimated coefficient will also be biased, β̂OLS,X2 = β(1 − γ), however, this attenuation

bias will be smaller than for X1 since β(1− γ) > β(1− θ) in absolute terms.

If we now try to instrument X1 with X2, or vice versa X2 with X1, as in the classical measure-

ment error case considered before, this will not recover the true parameter of interest. Instead, the

estimated coefficient for those two cases will be

β̂IV,X1 = β
1

(1− θ)
and β̂IV,X2 = β

1

(1− γ)

depending on which variable was used as the treatment and the instrument. This outcome is the

inverse of the respective OLS bias terms.15 Unlike OLS, which suffers from attenuation bias, the

IV estimate will be inflated instead with β 1
(1−γ) < β 1

(1−θ) .
16 Neither OLS nor IV yield an unbiased

estimate, however, we now offer three potential approaches for identifying the treatment effect or

for at least minimizing the attenuation coming from the misclassification.

14A key assumption of classical measurement error is Cov(X∗, u) = 0, i.e. the error is uncorrelated with the
true variable. Now suppose X∗ is binary. If for a given observation X∗ = 1, then the error can only be u = −1.
Conversely, if X∗ = 0 then u = 1, meaning that there is a perfect negative correlation between the true variable and
the error.

15See Bingley and Martinello (2017) as well as Dupraz and Ferrara (2021) for measurement error in linked Census
data. For a derivation see the Appendix.

16Notice that this requires θ 6= 1 and γ 6= 1 as the IV estimator is not even defined otherwise.
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Solution 1 - set identification: Even though the true parameter of interest cannot be direct-

ly point identified, the above OLS and IV coefficients can be used as lower and upper bounds,

respectively, to set identify β it given that

β̂OLS,X1 < β̂OLS,X2 < β < β̂IV,X2 < β̂IV,X1

While it is not known a priori whether X1 or X2 has the higher measurement error, the above

inequality suggests the set can be inferred from the relative magnitudes of the OLS and IV co-

efficients. In the above example, set identification implies that β ∈
(
β̂OLS,X2 , β̂IV,X2

)
. Without

additional assumptions, these bounds are tight and are informative as long as zero is not included

in the set. To assess the latter condition, the OLS estimate provides the corresponding test which

rejects non-informativeness when β̂OLS,X2 is significantly different from zero.

Solution 2 - agreement sample: If instrumenting as described above is too complicated, e.g. if

researchers wish to estimate nonlinear treatment effects or their specification includes interactions

of the treatment with other variables, the OLS bias can be further reduced by considering only the

part of the sample for which X1 and X2 both provide the same value. We call this an agreement

sample. The probability that both measures are jointly incorrect is θ×γ = δ. For example, suppose

the error rates are θ = 0.3 and γ = 0.2, then δ = 0.06 which substantially reduces the OLS bias

for β̂OLS,X1=X2 = β(1− δ), which will be closer to the true parameter.

One concern with the agreement sample is that it potentially generates a selected subsample

that is not necessarily representative of the underlying population. If such selection is a concern,

one available correction is to apply inverse propensity score reweighting (see Bailey, Cole and

Massey, 2019). First, regress the indicator for being included in the agreement sample on a wide

set of pre-treatment county characteristics using a Probit regression. Second, obtain the predicted

probability from the previous Probit regression p̂ and use the actual share of observations in the

agreement sample q to generate weights as (1−p̂)
p̂
× q

(1−q) . Lastly, run the regression of interest,

weighting observations in the agreement by the weights created in the previous step. The weights

ensure that the estimation sample is more representative of observations in the entire sample.
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Solution 3 - parametric bias correction: While neither OLS nor IV on their own identify the

true parameter, their estimates can be used jointly to recover β. The bias-corrected (BC) estimate

is then

β̂BC =

√
β̂OLS,X1 × β̂IV,X1 =

√
β(1− θ)× 1

(1− θ)
β =

√
β2 = β (5)

Estimation of (5) is straightforward as the product of two coefficients from different equations can

be readily estimated in standard statistical software with standard errors being estimated via the

delta method or bootstrapping. Taken together, our three possible solutions yield the following

relationship,

β̂OLS,X1 < β̂OLS,X2 < β̂OLS,X1=X2 < β = β̂BC < β̂IV,X2 < β̂IV,X1 (6)

which is the pattern that we look for in the subsequent replication exercises.

4 Replication of Clay et al. (2019) and Ager et al. (2017)

In this section, we replicate two recent papers that study the boll weevil’s impacts on pellagra

deaths (Clay et al., 2019) and cotton productivity (Ager et al., 2017). Implementing our suggested

approaches to measurement error based on historical newspaper data, we demonstrate the potential

for such data to markedly reduce attenuation bias. Our results suggest that the impact of the boll

weevil was larger than previously documented. Further, our analysis largely confirms the ranked

pattern for the different measurement error approaches as suggested by equation (6) in the previous

section. Results are robust across the alternative specifications discussed in Section 2.

4.1 Replication of Clay et al. (2019)

Using annual data between 1915 and 1925 for counties in North and South Carolina, Clay et al.

(2019) show that pellagra deaths decreased following the boll weevil infestation. They argue that

this outcome can be explained by the resulting diversification in food production. After the boll

weevil infestation, the prevailing cotton monoculture was switched to more niacin-rich crops such

as corn and sweet potato. This led to the fall of pellagra, which is a disease related to insufficient
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niacin consumption. Clay et al. (2019) estimate the following regression equation,

ln[pellagra]ct = α + θ1boll weevilct + θ2
(
boll weevilct × intensityc,1909

)
+ θc + θt + εct (7)

where ln[pellagra]ct is the log number of pellagra deaths, or the log pellagra death rate in other

specifications, and boll weevilct is an indicator for whether or not the boll weevil has arrived in

county c as of time t. They provide results with and without the additional interaction of the boll

weevil variable and an intensity measure. The latter is an indicator for whether a county was in

the top quartile of either i) the pre-treatment pellagra death rates measured as average for 1915-16

or ii) cotton acres per capita in 1909. County and year fixed effects are captured by θc and θt, and

standard errors are clustered at the county level.

Our Table 1 replicates the corresponding Table 3 in Clay et al. (2019) using the arrival date

from the USDA map (X2) and our predicted arrival from the newspaper data (X1). We label the

treatment variable used by Clay et al. (2019) as X2 as the results presented in Table 1 suggest that,

for their application, the map-based measure contains less measurement error than that based on

our newspaper data.17 Each column corresponds to different specifications in Table 3 of Clay et

al. (2019). Columns 1-4 report the impact of the boll weevil on pellagra deaths, and Columns 5-8

repeat the same exercise using the log pellagra death rate as outcome. The table reports estimates of

θ1 in equation (7), and we return to θ2 below. The first row reports the OLS (β̂OLS,X1) results for our

newspaper-based arrival date treatment. These coefficient estimates are statistically significant and

of the same sign as those provided by Clay et al. (2019), except for one statistically insignificant

coefficient in Column 4 (same sign, p-value = .11). The second row for β̂OLS,X2 is the replication

of Table 3 in Clay et al. (2019). The following rows report the coefficient estimates for each

specification using the agreement sample, the parametric bias correction, and the IV regressions

respectively. Due to the inclusion of the interaction term, in Columns 2 to 4 and Columns 6

to 8, the bias-correction estimate using equation (5) was only produced for the specifications in

Columns 1 and 5. However, the agreement sample approach is still valid under the interaction term

models. For the IV models, we follow the standard approach of using the interacted instrument

to instrument for the interaction itself. While the IV interaction models don’t technically fit the

17This distinction is based on the relative differences between the OLS and IV estimates as discussed in Section 3.
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analysis in Section 3, the basic intuition still holds and we believe that a comparison of the IV

coefficients remains informative.

Focusing on the main effect, θ1, we draw four main conclusions from our results. First, as might

be expected, our newspaper-based arrival measure appears to be more noisy than that provided by

the map. Nonetheless we achieve similar, though smaller, results compared to those of Clay et

al. (2019). Thus, in the absence of the USDA map, Clay et al. (2019) could have successfully

conducted their study using information from newspaper data alone - highlighting the usefulness

of digitized historical newspapers as a potential data source for economic historians. Second, the

relationship between the various coefficient estimates are consistent with the prediction provided in

equation (6) of our theoretical section. To illustrate this point more clearly, we visualize Column

1 of Table 1 as a bar chart in Figure 5. Third, for all 8 columns, coefficient estimates from the

agreement sample and parametric bias correction models are on the order of 40%-60% larger than

the original estimates of Clay et al. (2019), suggesting marked gains from our measurement error

corrections. Finally, we note that in the two cases where we can implement our parametric bias

correction model these coefficient estimates are quite similar in magnitude to the agreement sample

estimates.

The above discussion focused on the estimated main effect, θ1. To account for the interaction

term, θ2, in Table 2 we report the estimated marginal boll-weevil impact for counties in the top

25th percentile of cotton production (Columns 2, 4, 6, and 8) and pellagra deaths (Columns 3 and

7).18 These results mimic those from Table 1. In all but one model, Column 4 (p-value = .11), we

obtain slightly attenuated but significant results based solely on the newspaper data. In all models,

the agreement sample estimates are highly significant and larger in magnitude than those reported

by Clay et al. (2019). The pattern of the IV estimates exactly match the predictions from Section

3.

4.2 Replication of Ager et al. (2017)

To further validate our approach, we replicate a second paper - that of Ager et al. (2017). They

study the boll weevil’s effect on Southern agriculture in terms of output, labor arrangements, and

labor market outcomes using data from 13 Southern states between 1889 and 1929 in five and ten

18Here we are reporting on the linear combination θ1 + θ2. Thus, in Columns 1 and 5 we just replicate the exact
results from Table 1.
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year intervals.19 The authors show that the boll weevil reduced cotton output and productivity,

the number of tenant farms, farm wages, and female labor force participation. They estimate the

following linear regression model,

yct = αc + βt + γBollWeevilct + δBollWeevilct × Cottonc,1889 + εct (8)

where yct is a given outcome variable for county c in a given five year period t. As in the previous

study, BollWeevilct is an indicator for whether a county is infested in the current five year period.

Cottonc,1889 is the demeaned acreage share of cotton planted in 1889 as measure of cotton intensity.

County and time fixed effects are captured by αc and βt, and standard errors are again clustered

at the county level. Because Ager et al. (2017) estimate models incorporating interaction terms in

all specifications, we are not able to implement the bias correction model, βBC and we thus focus

attention on the agreement sample results as our preferred model.

Table 3 reports the resulting γ coefficients from estimating equation (8).20 Ager et al. (2017)

find significant main effects in 7 of the 12 models that they estimate. Using only our newspaper

data, we also find significant results in each of these 7 models - with our newspaper-based coef-

ficient estimates being larger in magnitude for all but 2 of these models. Further, the newspaper

data leads to significant estimates of the main effect in 3 of the 5 models where Ager et al. (2017)

find no significant effect. For this reason, we keep the same notation in terms of X1 and X2 as in

Tables 1 and 2 (with X1 reflecting the newspaper-based data). In 6 of the 7 models where Ager et

al. (2017) find statistically significant main effects the agreement sample point estimates, βX1=X2 ,

are larger in magnitude than those based solely on either the map data or the newspaper data -

the exception being the estimated effect on corn yield in Column 7. Notice that in all seven of

these models the overall pattern of the OLS and IV estimates match the predictions of equation

(6). The only exception is Column 7 where the agreement sample estimate is slightly below that

of the map-based OLS estimate.

To account for the continuous interaction terms in Ager et al. (2017) in Table 4 we present esti-

mated marginal effects at the 75th percentile of cotton production.21 The overall pattern of results is

19These are 1889, 1899, 1909, 1919, 1924, and 1929.
20Because Ager et al. (2017) demean the cotton production data before constructing their interaction measures, γ

represents that marginal effect at the mean level of cotton production.
21The table summarizes the linear combination γ + .165 ∗ δ.
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similar to that of Table 3. The newspaper-based treatment yields significant OLS results in 8 of the

9 cases where the map-based data gives significant results. In 5 of these cases the newspaper-based

data leads to larger OLS estimates. The newspaper data also leads to significant OLS results in

the 3 models where the map-based data did not find significant results. Focusing on the agreement

sample, this specification yields estimated marginal effects that are larger in magnitude than either

newspaper-based or map-based OLS estimates in 10 of the 12 models. Within the eight models

where both data sets have predictive power, agreement sample estimates are on average 37 percent

larger than the original estimates of Ager et al. (2017). While not quite as uniform in nature as

with the other three sets of results, the IV based marginal estimates in Table 4 generally follow the

pattern predicted in equation (6).

4.3 Sensitivity Analysis

As a sensitivity analysis we replicate our main analysis (Tables 1 and 3) under the alternative

variable definitions discussed above in Section 2. In particular, we test different approaches to

constructing the newspaper-based boll weevil arrival measure: including the three and seven years

moving averages, as well as the maximum of the raw salience measure in equation (1) in a 10 year

window around the USDA map arrival date. Because we feel the most important issue is the ability

to substantially reduce measurement error, for parsimony, we focus our attention in the sensitivity

analysis on the estimated coefficients based on the agreement sample.

The agreement sample coefficients using the different measures of the newspaper-based boll

weevil arrival for the replication of Clay et al. (2019) are plotted in Figure 6. The same exercise

for the replication of Ager et al. (2017) is plotted in Figure 7. Each bar presents the estimated

coefficient using a given measure with error bars reporting their corresponding 95% confidence

intervals. The red crosses indicate the coefficient value in the original study that was replicated.

Figure 6 shows coefficient estimates for each alternative measure of the newspaper-based boll

weevil arrival for Columns 1-8 of the corresponding Table 1. We observe that the estimates us-

ing the agreement sample, β̂OLS,X1=X2 (the green bars), are robust to different measures of the

newspaper-based boll weevil arrival date. Moreover, the point estimates based on these measures

are bigger than β̂OLS,X2 (the red crosses) regardless of specification. In addition to the agreement

sample estimates, columns C1* and C5* of Figure 6 present the bias-corrected estimates, β̂BC ,
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using alternative specifications corresponding to Columns 1 and 5 of Table 1. While these coef-

ficients are less precisely estimated in some specifications, the magnitude of each point estimate

remains bigger than that of the OLS estimates from the USDA map.

Figure 7 repeats the exercise in Figure 6 using the agreement sample for Ager et al. (2017). We

report β̂OLS,X1=X2 as well as the OLS estimates based on the arrival from the USDA map, which

is β̂OLS,X2 in Table 3. Again, Figure 7 shows very similar β̂OLS,X1=X2 estimates, regardless of

different specifications and outcome variables. As in the main replication exercise, β̂OLS,X1=X2 is

bigger than β̂OLS,X2 (the red crosses). Here, not only are the agreement sample estimates uniformly

larger in magnitude than the original estimates of Ager et al. (2017), but in all but one case the entire

95 percent confidence interval lies above the original point estimates.

4.4 Discussion

These two replications have shown that newspaper data can be gainfully used for bias reduction in

statistical analyses using historical data. Both cases have demonstrated that the predictions based

on the inequality in equation (6) hold up in applied examples. The gains in bias reduction appear

to have been larger in the replication of Ager et al. (2017) as compared to the replication of Clay

et al. (2019). While we cannot offer a definitive explanation for this outcome, a possible reason

seems to be the difference in the frequency of the time dimension. The study by Clay et al. (2019)

uses annual data, a much higher frequency than the five year intervals in Ager et al. (2017), which

potentially mitigated some of the measurement error bias. Nonetheless, results in both papers held

up in our replications and could be strengthened using our methods.

The results above also highlight the value of data extracted from digitized newspapers in gen-

eral. Our newspaper-based boll weevil arrival measure was generated in a fast and low-cost way.

Compared to the USDA measure used by Clay et al. (2019), it appears to be more noisy which is

to be expected. It would certainly be possible to refine the measure but doing so would increase

the time and cost of collecting the information. What we want to highlight instead is that our very

coarse measure still managed to produce very similar results in the two replications, meaning that

both studies could have been conducted had the USDA map never existed.

For the purpose of the methods introduced in this paper, it does not matter whether the data

from the newspapers or the original variable (here the USDA map arrival date) is noisier as long
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as the measurement errors in the two variables are uncorrelated. This assumption cannot be di-

rectly tested, as with the exclusion restriction in instrumental variable regressions, for instance. To

provide an example, we argue that the assumption holds in our setting because newspapers report-

ed any boll weevil related events that were observed by newspaper reporters whereas the USDA

map was created by the federal entomologists. Which of the two measures is noisier makes no

difference when applying our methods aside from determining the bounds in the set identification

solution.

Our approach is particularly suited for measures that can be easily generated or extracted using

textual data. Simple n-gram or bag-of-words approaches as in Beach et al. (2020), Ferrara and

Fishback (2020), Albright et al. (2021), Beach and Hanlon (2021), Bazzi et al. (2021), or Ottinger

and Winkler (2021) are particularly promising. For variables such as prices, this approach is less

promising because these can rarely be extracted in a low-cost manner as they oftentimes require

more careful extraction, possibly by hand. It is also impractical for variables that would typically

not be reported in the news or for which the non-random nature of the availability of digitized

newspapers might be a concern. For instance, measures relating to corruption or trade might be

more difficult to find in newspapers. Nevertheless, newspapers can be a great data source when

one wishes to study large scale events because those are more likely to be covered in newspapers.

Our boll weevil infestation example fits into this category as Lange et al. (2009) described “the

boll weevil is America’s most celebrated agricultural pest” (p. 685). Another example along this

line studied in previous literature is the 1918 Influenza Pandemic (Beach et al., 2020). Newspapers

are also useful for the sensational events that had extensive media coverage such as the tragic Tulsa

race massacre in 1921 (Albright et al., 2021) or the famous Bradlaugh-Besant trial of 1877 (Beach

and Hanlon, 2021).

5 Conclusion

Measurement error in historical data is often a source of bias in statistical analyses which leads

to attenuation bias in the relationships that researchers seek to identify. When measurement error

is classical, it is known that this attenuation bias can be removed via an instrumental variable

approach. A potential instrument is a second measure of the same variable with errors, as long

as the errors in two variables are uncorrelated (Chalfin and McCrary, 2018). Generating such a
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second measure tends to be expensive and therefore measurement error tends to be ignored as long

as some conventional level of statistical significance is achieved.

In this paper, we introduce the idea of cheaply generating such a second measure from digitized

newspapers, which can be scraped or downloaded at low costs. We show how a newspaper-based

secondary measure can be used to deal with measurement error when the variable of interest is ei-

ther continuous or binary. The latter case is more challenging since measurement error in a binary

variable is non-classical by construction and therefore an instrumental variables approach alone

does not remove the associated bias (Bingley and Martinello, 2017). Instead, we propose three

alternative methods for dealing with measurement error in this setting based on i) set identifica-

tion, ii) using an agreement sample where both the primary and secondary measure give the same

answer, and iii) a parametric bias correction that can be obtained as nonlinear combination of the

OLS and IV coefficients. Our theory predicts that OLS and IV provide the lower and upper bounds

of the identified set that includes the true parameter, and that the coefficients from the agreement

sample and the parametric bias correction should lie in between these bounds. Also, the bias cor-

rected estimate should still be larger in magnitude than the OLS coefficient from the agreement

sample.

To test this prediction as well as to showcase our methods, we replicate two recent papers

by Clay et al. (2019) and Ager et al. (2017) on the impact of the boll weevil infestation in the

U.S. South between 1892 and 1922. Like most studies on the boll weevil, the main treatment

is measured from a map of the pest by Hunter and Coad (1923), which arguable is measured

with error because of crossing lines and given that the arrival dates are an imperfect measure

of the economic impact of the beetle. To produce a second measure for the boll weevil arrival

from digitized newspaper data, we scrape Newspapers.com and search for pages that mention

“boll weevil” and each county’s name from all newspapers in the county’s state. This approach

maximizes the chance to find articles related to the arrival of the weevil in that county. In both

replications, we find larger coefficients than in the original studies which show the usefulness of

our approach to dealing with measurement error and also reaffirm the main results of the two

papers. In both cases we also find the patterns prescribed in the theoretical section, where plain

OLS yields the smallest coefficient, followed by the agreement sample, and the parametric bias

correction.
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The main contribution of the paper is to provide an easy way to generate a secondary measure

for a given mismeasured variable of interest and to show how this secondary measure can be

used to remove attenuation bias resulting from measurement error. We extend the framework

in Chalfin and McCrary (2018) for classical measurement error to the case where a variable is

binary. The emphasis is on the newspaper data being easily available, which substantially reduces

the cost of generating a secondary measure for bias correction purposes that is usually the main

prohibiting factor for researchers to apply such methods. We also contribute to a recent literature

that has highlighted the usefulness of historical newspapers to generate novel data for the purpose

of research in economic history.
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Tables

Table 1: Replication of Clay et al. (2019) - Main Effects

Log Pellagra Deaths Log Pellagra Death Rate

(1) (2) (3) (4) (5) (6) (7) (8)

β̂OLS,X1
-0.183∗∗∗ -0.142∗ -0.150∗∗ -0.122 -0.151∗∗∗ -0.113∗∗ -0.144∗∗ -0.125∗∗

(0.068) (0.072) (0.075) (0.077) (0.052) (0.055) (0.058) (0.058)
β̂OLS,X2

-0.283∗∗∗ -0.197∗∗∗ -0.237∗∗∗ -0.202∗∗∗ -0.235∗∗∗ -0.161∗∗∗ -0.212∗∗∗ -0.185∗∗∗

(0.059) (0.065) (0.065) (0.063) (0.046) (0.050) (0.050) (0.047)
β̂OLS,X1=X2

-0.396∗∗∗ -0.310∗∗∗ -0.333∗∗∗ -0.278∗∗∗ -0.326∗∗∗ -0.251∗∗∗ -0.295∗∗∗ -0.256∗∗∗

(0.093) (0.097) (0.099) (0.101) (0.074) (0.076) (0.078) (0.078)
β̂BC -0.410∗∗∗ -0.340∗∗∗

(0.101) (0.080)
β̂IV,X2

-0.595∗∗ -0.460∗∗ -0.427∗∗ -0.346∗ -0.493∗∗∗ -0.371∗∗ -0.401∗∗ -0.346∗∗

(0.231) (0.216) (0.207) (0.206) (0.173) (0.164) (0.159) (0.158)
β̂IV,X1

-1.073∗∗∗ -1.058∗∗∗ -1.092∗∗∗ -1.094∗∗∗ -0.892∗∗∗ -0.879∗∗∗ -0.893∗∗∗ -0.893∗∗∗

(0.260) (0.275) (0.259) (0.269) (0.208) (0.221) (0.202) (0.207)

County FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
BW × High pellagra Yes Yes
BW × High cotton Yes Yes Yes Yes
Controls Yes Yes

Obs. 1,312 1,312 1,312 1,312 1,312 1,312 1,312 1,312
Counties 141 141 141 141 141 141 141 141
Obs. (X1 = X2) 1,051 1,051 1,051 1,051 1,051 1,051 1,051 1,051

Note: Replication of equation (1) in Clay et al. (2019) using the boll weevil’s arrival from the USDA map (X2) and the predicted arrival based on
newspapers (X1). Columns 1 and 5 report OLS and IV regressions of deaths by pellagra on an indicator for whether the boll weevil has arrived
in county c. The coefficients βBC are estimated using equation (5) and the delta method. The rest of columns report OLS and IV regressions of
deaths by pellagra on an boll weevil indicator and its interaction term with an indicator for whether county c was in top 25% cotton production in
1909 (Columns 2, 4, 6, and 8) or a dummy variable equal to one if county c was in top 25% pellagra death rates in 1915-1916 (Columns 3 and 7).
The coefficients βOLS,X1=X2

are estimated using a subset of the sample for which X1 and X2 both provide the same value (i.e. an agreement
sample). In IV regressions, X1 is instrumented with X2 and vice versa. The sample is 141 counties in North Carolina and South Carolina between
1915 and 1925. All regressions include county and year fixed effects. Controls include county c’s malaria death rate in 1915 and the share of urban
population in 1910 both interacted with a full set of year dummies. Standard errors are clustered at the county level. Significance levels are denoted
by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 2: Replication of Clay et al. (2019) - Marginal Effects at the 75th Percentile

Log Pellagra Deaths Log Pellagra Death Rate

(1) (2) (3) (4) (5) (6) (7) (8)

β̂OLS,X1 -0.183∗∗∗ -0.278∗∗∗ -0.259∗∗∗ -0.253∗∗∗ -0.151∗∗∗ -0.241∗∗∗ -0.169∗∗∗ -0.169∗∗∗

(0.068) (0.096) (0.083) (0.084) (0.052) (0.070) (0.059) (0.058)
β̂OLS,X2 -0.283∗∗∗ -0.531∗∗∗ -0.442∗∗∗ -0.469∗∗∗ -0.235∗∗∗ -0.452∗∗∗ -0.314∗∗∗ -0.335∗∗∗

(0.059) (0.086) (0.083) (0.080) (0.046) (0.067) (0.063) (0.060)
β̂OLS,X1=X2 -0.396∗∗∗ -0.652∗∗∗ -0.603∗∗∗ -0.595∗∗∗ -0.326∗∗∗ -0.551∗∗∗ -0.429∗∗∗ -0.428∗∗∗

(0.093) (0.120) (0.110) (0.110) (0.074) (0.094) (0.084) (0.082)
β̂BC -0.410∗∗∗ -0.340∗∗∗

(0.101) (0.080)
β̂IV,X2

-0.595∗∗ -0.806∗∗∗ -0.817∗∗∗ -0.750∗∗∗ -0.493∗∗∗ -0.682∗∗∗ -0.613∗∗∗ -0.579∗∗∗

(0.231) (0.280) (0.269) (0.268) (0.173) (0.205) (0.199) (0.196)
β̂IV,X1

-1.073∗∗∗ -1.476∗∗∗ -1.221∗∗∗ -1.271∗∗∗ -0.892∗∗∗ -1.247∗∗∗ -0.900∗∗∗ -0.938∗∗∗

(0.260) (0.280) (0.246) (0.247) (0.208) (0.227) (0.188) (0.187)

County FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
BW × High pellagra Yes Yes
BW × High cotton Yes Yes Yes Yes
Controls Yes Yes

Obs. 1,312 1,312 1,312 1,312 1,312 1,312 1,312 1,312
Counties 141 141 141 141 141 141 141 141
Obs. (X1 = X2) 1,051 1,051 1,051 1,051 1,051 1,051 1,051 1,051

Note: Replication of equation (1) in Clay et al. (2019) using the boll weevil’s arrival from the USDA map (X2) and the predicted arrival based on
newspapers (X1). Columns 1 and 5 report OLS and IV regressions of deaths by pellagra on an indicator for whether the boll weevil has arrived
in county c. The coefficients βBC are estimated using equation (5) and the delta method. The rest of columns report OLS and IV regressions of
deaths by pellagra on an boll weevil indicator and its interaction term with an indicator for whether county c was in top 25% cotton production in
1909 (Columns 2, 4, 6, and 8) or a dummy variable equal to one if county c was in top 25% pellagra death rates in 1915-1916 (Columns 3 and 7).
The coefficients βOLS,X1=X2

are estimated using a subset of the sample for which X1 and X2 both provide the same value (i.e. an agreement
sample). In IV regressions, X1 is instrumented with X2 and vice versa. The sample is 141 counties in North Carolina and South Carolina between
1915 and 1925. All regressions include county and year fixed effects. Controls include county c’s malaria death rate in 1915 and the share of urban
population in 1910 both interacted with a full set of year dummies. Standard errors are clustered at the county level. Significance levels are denoted
by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3: Replication of Ager et al. (2017) - Main Effects

Log Cotton Production Log Corn Production Log Other Outcomes

Bales Acres Yield Share Bushels Acres Yield Share Farm Farm Value Pop. Black Pop.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

β̂OLS,X1 -0.486∗∗∗ -0.245∗∗∗ -0.248∗∗∗ -0.066∗∗∗ 0.037 0.077∗∗∗ -0.040∗∗ 0.053∗∗∗ -0.025∗∗ -0.038∗∗ 0.024∗ -0.028
(0.057) (0.052) (0.022) (0.006) (0.029) (0.019) (0.017) (0.006) (0.011) (0.015) (0.013) (0.034)

β̂OLS,X2 -0.386∗∗∗ -0.173∗∗∗ -0.208∗∗∗ -0.061∗∗∗ -0.032 0.045∗∗ -0.077∗∗∗ 0.064∗∗∗ -0.000 0.005 -0.002 0.028
(0.055) (0.049) (0.024) (0.007) (0.037) (0.023) (0.021) (0.007) (0.012) (0.018) (0.014) (0.030)

β̂OLS,X1=X2 -0.651∗∗∗ -0.290∗∗∗ -0.360∗∗∗ -0.091∗∗∗ 0.055 0.118∗∗∗ -0.062∗∗ 0.087∗∗∗ -0.028∗∗ -0.023 0.001 -0.028
(0.060) (0.054) (0.025) (0.008) (0.041) (0.023) (0.026) (0.007) (0.013) (0.017) (0.016) (0.042)

β̂IV,X2 -1.069∗∗∗ -0.532∗∗∗ -0.551∗∗∗ -0.141∗∗∗ 0.090 0.177∗∗∗ -0.087∗∗ 0.114∗∗∗ -0.052∗∗ -0.075∗∗ 0.080∗∗ -0.048
(0.123) (0.112) (0.047) (0.014) (0.066) (0.043) (0.039) (0.014) (0.026) (0.037) (0.034) (0.079)

β̂IV,X1
-0.939∗∗∗ -0.485∗∗∗ -0.447∗∗∗ -0.135∗∗∗ -0.074 0.091∗∗ -0.165∗∗∗ 0.139∗∗∗ -0.005 0.001 -0.024 0.051
(0.106) (0.094) (0.048) (0.014) (0.076) (0.046) (0.044) (0.014) (0.025) (0.036) (0.033) (0.071)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
BW × High cotton Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Obs. 4,323 4,329 4,323 4,440 4,440 4,440 4,440 4,440 4,440 4,440 3,700 3,679
Counties 735 735 735 740 740 740 740 740 740 740 740 739
Obs. (X1 = X2) 3,927 3,933 3,927 4,032 4,032 4,032 4,032 4,032 4,032 4,032 3,328 3,311

Note: Replication of equation (1) in Ager et al. (2017) using the boll weevil’s arrival from the USDA map (X2) and the predicted arrival based on newspapers (X1). OLS and IV regressions of agricultural and
demographic outcome variables on an indicator for whether the boll weevil has arrived in county c and its interaction term with county c’s acreage share of cotton in 1889. The coefficients βOLS,X1=X2

are
estimated using a subset of the sample for which X1 and X2 both provide the same value (i.e. an agreement sample). In the IV regressions, X1 is instrumented with X2 and vice versa. The sample includes
counties in the U.S. South between 1889 and 1929. All regressions include county and year fixed effects as well as weather controls. Weather controls are January’s mean temperature and average summer
precipitation from May to July. Standard errors are clustered at the county level. Significance levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4: Replication of Ager et al. (2017) - Marginal Effects at the 75th Percentile

Log Cotton Production Log Corn Production Log Other Outcomes

Bales Acres Yield Share Bushels Acres Yield Share Farm Farm Value Pop. Black Pop.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

β̂OLS,X1 -1.008∗∗∗ -0.713∗∗∗ -0.311∗∗∗ -0.116∗∗∗ -0.006 0.056∗∗∗ -0.062∗∗∗ 0.086∗∗∗ -0.051∗∗∗ -0.106∗∗∗ -0.073∗∗∗ -0.099∗∗

(0.058) (0.054) (0.023) (0.007) (0.031) (0.021) (0.018) (0.007) (0.014) (0.019) (0.017) (0.038)
β̂OLS,X2 -0.918∗∗∗ -0.638∗∗∗ -0.287∗∗∗ -0.108∗∗∗ -0.072∗ 0.038 -0.110∗∗∗ 0.098∗∗∗ -0.026 -0.039∗ -0.076∗∗∗ -0.028

(0.063) (0.058) (0.025) (0.008) (0.039) (0.026) (0.021) (0.008) (0.017) (0.021) (0.018) (0.033)
β̂OLS,X1=X2 -1.223∗∗∗ -0.796∗∗∗ -0.437∗∗∗ -0.143∗∗∗ 0.011 0.103∗∗∗ -0.092∗∗∗ 0.122∗∗∗ -0.057∗∗∗ -0.086∗∗∗ -0.094∗∗∗ -0.104∗∗

(0.066) (0.061) (0.026) (0.009) (0.044) (0.027) (0.026) (0.008) (0.018) (0.022) (0.020) (0.047)
β̂IV,X2 -1.712∗∗∗ -1.098∗∗∗ -0.639∗∗∗ -0.203∗∗∗ 0.040 0.156∗∗∗ -0.115∗∗∗ 0.156∗∗∗ -0.084∗∗∗ -0.158∗∗∗ -0.034 -0.133

(0.119) (0.109) (0.048) (0.015) (0.067) (0.043) (0.039) (0.015) (0.026) (0.039) (0.033) (0.082)
β̂IV,X1

-1.566∗∗∗ -1.037∗∗∗ -0.537∗∗∗ -0.190∗∗∗ -0.121 0.082∗ -0.202∗∗∗ 0.178∗∗∗ -0.036 -0.052 -0.119∗∗∗ -0.022
(0.113) (0.100) (0.048) (0.016) (0.077) (0.048) (0.044) (0.015) (0.030) (0.040) (0.036) (0.071)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
BW × High cotton Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Obs. 4,323 4,329 4,323 4,440 4,440 4,440 4,440 4,440 4,440 4,440 3,700 3,679
Counties 735 735 735 740 740 740 740 740 740 740 740 739
Obs. (X1 = X2) 3,927 3,933 3,927 4,032 4,032 4,032 4,032 4,032 4,032 4,032 3,328 3,311

Note: Replication of equation (1) in Ager et al. (2017) using the boll weevil’s arrival from the USDA map (X2) and the predicted arrival based on newspapers (X1). OLS and IV regressions of agricultural and
demographic outcome variables on an indicator for whether the boll weevil has arrived in county c and its interaction term with county c’s acreage share of cotton in 1889. The coefficients βOLS,X1=X2

are estimated
using a subset of the sample for which X1 and X2 both provide the same value (i.e. an agreement sample). In the IV regressions, X1 is instrumented with X2 and vice versa. The sample includes counties in the U.S.
South between 1889 and 1929. All regressions include county and year fixed effects as well as weather controls. Weather controls are January’s mean temperature and average summer precipitation from May to July.
Standard errors are clustered at the county level. Significance levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figures

Figure 1: Errors in the USDA Map for the Arrival of the Boll Weevil

Note: Snipped of the USDA map for the arrival of the boll weevil provided by Hunter and Coad (1923). Each solid line marks the arrival year of
the pest. Researchers typically overlay the lines onto a map of Southern counties and determine the arrival date by the line that covers most of the
county area. The red boxes highlight areas where date lines cross in contradictory ways.
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Figure 2: Event Study Plot - TWFE and Sun and Abraham (2020)
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Note: Coefficient plot from an event study regression of %BW on an event indicator relative to the arrival of the boll weevil from the USDA map
as well as county and state-by-year fixed effects. Each circle and diamond presents the estimates β` in equation (2) using OLS and the estimator
proposed by Sun and Abraham (2020), respectively. The sample consists of 911 infested counties in 13 Southern states. The omitted baseline period
is ` = −1, which is one year before the arrival from the USDA map. The relative time period for the latest-infested counties is omitted as well for
the estimates using Sun and Abraham (2020) due to the lack of never-infested counties in our sample. Standard errors are clustered at the county
level and 95% confidence intervals are reported around the point estimates.
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Figure 3: Salience of the Boll Weevil - Marion County, Mississippi
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Note: The dashed line is the salience measure of Marion County over time. The salience measure is constructed based every available newspaper
outlet in Mississippi between 1882 and 1932. The solid line is 5-year moving averages of the salience measure (MA(5)). The red horizontal line
shows the boll weevil’s arrival in Marion County from the USDA map. The blue horizontal line indicates the predicted arrival where MA(5) is the
highest.
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Figure 4: Distribution of Differences between Boll Weevil Measures
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Note: Distribution of the difference between the year of the boll weevil infestation from the USDA map and predicted by newspapers for 911
infested counties in our sample. Each bar indicates the share of counties in our sample for different level of differences. The difference is defined
as the predicted year based on our newspaper approach minus the year of arrival from the USDA map. The right-skewed distribution indicates that
in general the prediction is later than the arrival from the map.
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Figure 5: Visualization of Column 1 in the Replication of Clay et al. (2019)
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Note: Regression of log pellagra deaths on an indicator for the boll weevil’s arrival from the USDA map (X2) and the predicted arrival based on
newspapers (X1) for the replication of Clay et al. (2019). The figure visualizes the coefficients from our replication exercise in Column 1 of Table
1 to show the ranked pattern according to our theory in Section 3. The variable subscript indicates which variable was used as treatment. The figure
confirms the pattern described in the inequality in equation (6).
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Figure 6: Sensitivity Analysis for the Replication of Clay et al. (2019)
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Note: Each bar in C1 through C8 presents the estimates β̂OLS,X1=X2
in Table 1 using alternative specifications and 95% confidence intervals are

reported. Bars in C1* and C5* show the estimates β̂BC in Table 1 across specifications. Alternative specifications include 3- and 7-year moving
averages as well as 10-year bound from the USDA map. Red crosses indicate the OLS estimates based on the arrival from the USDA map (i.e.
β̂OLS,X2

in Table 1).

34



Figure 7: Sensitivity Analysis for the Replication of Ager et al. (2017)
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Note: Each bar presents the estimates β̂OLS,X1=X2 in Table 3 using alternative specifications and 95% confidence intervals are reported. Alter-
native specifications include 3- and 7-year moving averages as well as 10-year bound from the USDA map. Red crosses indicate the OLS estimates
based on the arrival from the USDA map (i.e. β̂OLS,X2

in Table 3).
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Online Appendix

Additional Tables and Figures

Figure A.1: Boll Weevil in Newspapers

Note: An example of newspaper articles on the boll weevil infestation published in The Times-Democrat on June 8th, 1908. Newspapers published
articles about the boll weevil’s arrival as well as damages in cotton production caused by the insects.
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Figure A.2: Boll Weevil in Newspapers from Different Counties

Note: Newspapers reported the number of boll weevil cases not only in their own county, but also from other counties or even different states.
Figure A.2 shows that the boll weevil infestation in Marion County was reported in Jasper County (left) and Attala County (right). Sources: Jackson
Daily News on June 11th, 1910 (left); The Star Ledger on July 8th, 1910 (right).
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Figure A.3: Errors in Newspapers

Note: An example of possible errors in our approach. The search word “boll weevil” shows in one article and “Marion County” shows in another
article in the page 2 of The Lexington Advertiser on July 28th, 1904. This page is still counted when we construct the salience measure of Marion
County even though it did not report the boll weevil infestation of the county.
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Figure A.4: Salience of the Boll Weevil - Dixie and Lafayette Counties, Florida

(a) Dixie County, Florida
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(b) Lafayette County, Florida

Arrival (USDA)

Predicted Arrival

0
.0

5
.1

.1
5

.2
Sa

lie
nc

e 
of

 th
e 

bo
ll 

w
ee

vi
l i

n 
ne

w
sp

ap
er

s

1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930
Year

%BW MA(5)

Note: The dashed line is the salience measure of Dixie County (in Panel (a)) and Lafayette County (in Panel (b)) over time, respectively. The
salience measure is constructed based every available newspaper outlet in Florida between 1882 and 1932. In Panel (a), missing values are shown
in early periods because the search word “Dixie County” did not show in newspapers until 1921 (except for errors). Dixie County was created in
1921 from the southern portion of Lafayette County. The solid line is 5-year moving averages of the salience measure (MA(5)) for each county.
The red horizontal lines indicate the boll weevil’s arrival from the USDA map. The blue horizontal lines show the predicted arrival where MA(5) is
the highest.
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Measurement Error Derivations

For the continuous case where measurement error inX1 andX2 are classical and uncorrelated with

each other, the IV estimator is

β̂IV,X1 =
Cov(y,X1)

Cov(y,X2)

=
Cov(α + βX∗ + ε,X∗ + u)

Cov(X∗ + u,X∗ + e)

= β
V ar(X∗)

V ar(X∗) + Cov(u, e)

which yields the true parameter β if Cov(u, e) = 0.

For the binary case, consider the first stage regression

X1 = π0 + π1X2 + η

Meyer and Mittag (2017) show that measurement error in a binary outcome yields a biased right-

hand side coefficient. In the absence of measurement error in X2, the estimated first stage coeffi-

cient therefore would be π̂1 = π1(1 − θ). However, since also X2 is mismeasured, the coefficient

is additionally attenuated as π̂1 = π1(1− θ)(1− γ). Now consider the reduced form,

y = α + βX1 + ε

= α + β(π0 + π1X2 + η) + ε

= κ+ ψX2 + ξ

where ψ = βπ1, κ = α+ βπ0, and ξ = ε+ βη. Also here the measurement error in X2 is reflected

in the attenuation of the reduced form coefficient, ψ̂ = ψ(1 − γ) = βπ1(1 − γ). Lastly, the IV

coefficient on X1, using X2 as instrument, will be the estimated reduced form coefficient divided
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by the estimated first stage coefficient,

β̂IV,X1 =
ψ̂

π̂

=
βπ1(1− γ)

π1(1− θ)(1− γ)

= β
1

(1− θ)

resulting in an inflated estimate of the true parameter unless θ = 1, in which case the IV estimator

is undefined.
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