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1 Introduction

“When a patent is granted and the information contained in it is circulated to the gen-

eral public and those especially skilled in the trade, such additions to the general store

of knowledge are of such importance to the public weal that the Federal Government

is willing to pay the high price of 17 years of exclusive use for its disclosure, which

disclosure, it is assumed, will stimulate ideas and the eventual development of further

significant advances in the art.” – U.S. Supreme Court, Kewanee Oil Co. v. Bicron

Corp. (1974; No. 73-187)

Patent publications divulge inventors’ proprietary knowledge to the world. For example, Thomas

Edison’s light bulb patent (USPTO patent # 223,898–see Figure 1) revealed methods of creating

incandescent filaments and paved the way for subsequent innovations in electric lighting by others.

The U.S. patent office has published over ten million such inventions, as part of a grand bargain

that exchanges invention disclosure for inventors’ temporary monopoly rights.1 As emphasized

by the U.S. Supreme Court, the publication requirement seeks to inform the work of follow-on

inventors and reduce duplicative research and development (R&D). Thus, the patent system’s

net effect on technological progress depends on the completeness and rate at which patents are

disclosed to the public (Scotchmer and Green (1990) and Fromer (2009)). Yet, and despite the fact

that technological progress is central to endogenous growth models (e.g., Romer (1990), Lucas Jr

and Moll (2014), Luttmer (2014), and Perla and Tonetti (2014)), little is known about the effects

of patent publication on technology diffusion.2

In this study, we provide causal evidence that patent publication facilitates knowledge diffu-

sion, reduces technology duplication, informs follow-on inventors’ patenting decisions, and possibly

increases R&D. Thus, our study advances what little we know about the effects of patent publi-

cation (Graham and Hegde (2015), Hegde and Luo (2018), Lück, Balsmeier, Seliger, and Fleming

(2020), Furman, Nagler, and Watzinger (2021)).3 The few studies on this topic offer contradictory

conclusions: survey-based research suggests that inventors consider patents an important source

of relevant technical knowledge (Ouellette (2017)) and information on rivals’ R&D activities (Co-

hen, Goto, Nagata, Nelson, and Walsh (2002)); however, some legal scholars argue that “patent

disclosures play an insignificant role in promoting R&D spillovers” (Roin (2005), p. 2027).

1The disclosure requirement for patentability in the U.S. states: “the [patent] specification shall contain a written
description of the invention . . . in such full, clear, concise and exact terms as to enable any person skilled in the
art . . . to make and use the same.”(35 U.S.C. § 112).

2Efforts in other fields have sought to identify the effects of peer-to-peer entrepreneur knowledge flows (e.g.
Brooks, Donovan, and Johnson (2018) and Brooks, Donovan, and Johnson (2020)) and coworker knowledge flows
(e.g. Herkenhoff, Lise, Menzio, and Phillips (2018), Jarosch, Oberfield, and Rossi-Hansberg (2021), Nix (2020),
Gregory (2020)), often finding sizeable effects of knowledge diffusion on real output, productivity, and other aggre-
gates.

3In contrast, over 100 published and working papers examine the effect of the monopoly rights awarded by
patents (see Hall, Helmers, Rogers, and Sena (2014) and Williams (2017) for surveys of the relevant literature).
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We measure the effects of patent publication by leveraging the enactment of the American

Inventor’s Protection Act of 1999 (P.L.106-113; henceforth, “AIPA”) as a natural experiment.

AIPA harmonized U.S. patent laws with those of the rest of the world by requiring applications

filed on or after November 29, 2000, to be published 18 months from the filing date. Before AIPA,

inventors were allowed to keep the existence of their U.S. patent applications secret until the

patent was granted, which, in 2000, averaged about 3.5 years. Thus, AIPA reduced the period of

secrecy for U.S. patent applications by about two years, on average, allowing us to measure the

effects of patent publication on knowledge diffusion and follow-on innovation.

To guide our empirical analysis, we develop a theoretic framework in which AIPA provisions

news shocks to inventors about recent technologies, and we derive a set of testable assumptions

and implications. Our main assumption is that under AIPA, the technological know-how embed-

ded in patents enters the stock of public knowledge faster than during the pre-AIPA regime. In

this new information environment inventors see related inventions in the patent system earlier

prior to filing their own patents. First, we show that inventors’ search effort for prior knowledge,

proxied by patent citations, increases. Better information about competing inventions reduces du-

plicate patent applications, which, in turn, reduces abandonments and similarity between closely

related inventions. Under AIPA, inventors also draw more on recently disclosed patents and take

smaller inventive steps, raising technology similarity among related, but not substitute, applica-

tions. Overall patent activity and innovation under AIPA may increase, decrease, or stay the

same, depending on the net effect of the two countervailing forces of (i) lower invention costs due

to superior information on the one hand, and (ii) free-riding by follow-on inventors on the other.

We provide tests of our theory using a Difference-in-Difference (DID) regression design, which

we refer to as the “twin” study design. We build a sample of 316,563 patent applications filed at

the USPTO between 1998 and 2003, each of which has an equivalent patent filed at the European

Patent Office (EPO).4 The U.S. patents form our treatment group, while their EP “twins” form

our control group. The EPO required 18-month disclosure of applications well before AIPA’s

enactment—since its establishment in 1977—and we show that the European twins of U.S. patents

were not plausibly affected by AIPA’s enactment.

This “twin” study design allows us to control for unobserved characteristics of each patent

family (comprising the U.S. patent and its EP twin) and to account for quality-based selection

into patenting or early disclosure using family-fixed effects. Thus, we isolate AIPA’s causal effects

by analyzing differences in the diffusion patterns of identical twin patents, one filed in the U.S.

and the other in Europe, before and after AIPA. This design identifies the effect of the USPTO’s

18-month patent disclosure alone since the EPO disclosed the European twins of U.S. patents at

18 months both before and after AIPA (twin applications are published nearly simultaneously

after AIPA—18 months from the filing date of the earliest twin, called the “priority date”). By

4We refer to patents filed at the USPTO as U.S. patents and patents filed at the EPO as European patents (EP
patents) throughout the paper, regardless of the applicants’ country of origin.
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identifying the effect of 18-month disclosure in the U.S. for patents disclosed around the same

time by the EPO, this design provides conservative estimates of patent disclosure’s effects.

The “twin” study estimates show that after AIPA’s enactment (i) U.S. patents’ follow-on

citations, our proxy for knowledge diffusion, within a ten-year window after disclosure date increase

by 14.7 percent; (ii) mean delay for U.S. patents to receive 1/3/5/7 follow-on patent citations from

application date drops by 25 to 29 percent; (iii) technological overlap increases between distant but

related U.S. patents and decreases between highly similar U.S. patents; (iv) overall U.S. patenting

increases by 6.2 percent. We also find that the increase in citations to U.S. patents is due to

an uptick in citations to U.S. patents after AIPA, rather than to a decrease in citations to their

European twins. This suggests a rise in knowledge diffusion stemming from earlier publication by

the U.S., rather than a migration of citations from European patents to their U.S. twins, caused the

increase in citations to U.S. patents after AIPA. We provide additional robustness checks including

showing that self-citations, which reflect knowledge flows within patenting organizations, do not

significantly rise after AIPA.

Our “twin” study’s key identifying assumption is that applications disclosed by one national

patent office (EPO) are not seamlessly disseminated to inventors filing for patents in another

jurisdiction (the USPTO), until published by the latter. This assumption is supported by an

extensive body of prior literature which has documented that patent citations and knowledge

spillovers are geographically localized (Jaffe, Trajtenberg, and Henderson (1993), Jaffe and Tra-

jtenberg (1999), Maurseth and Verspagen (2002), Bottazzi and Peri (2003), Peri (2005), Breschi

and Lissoni (2001)). Moreover, Bacchiocchi and Montobbio (2006), Azagra Caro and Tur (2014),

Wineburg (1988), Webster, Jensen, and Palangkaraya (2014), and de Rassenfosse, Jensen, Julius,

Palangkaraya, and Webster (2019), study various patent offices (including the USPTO and EPO)

and confirm search costs and “biases” that favor local inventors in patent grants and citations.

We contribute three additional pieces of evidence to this literature. We show that AIPA’s effects

are larger when we use an alternative estimation sample of U.S. patents with twins filed at the

Japanese Patent Office (JPO), rather than at the EPO. We argue that this reflects the larger

search costs for JPO patents, as they are published in Japanese. Additionally, we show that ci-

tations to Patent Cooperation Treaty (PCT) patents, which are published in a single repository

(by the World Intellectual Property Organization) after 18 months from filing and then seamlessly

transmitted to national patent offices that participate in the PCT (including both the EPO and

USPTO), show the least responsiveness to AIPA. Lastly, we find that foreign inventors filing at

the USPTO experience the greatest increase in citations post-AIPA, consistent with the idea that

a U.S. patent publication diffuses knowledge more effectively for inventors with fewer channels for

broad international exposure. These results, taken together with prior evidence on the localiza-

tion of knowledge flows, support the assumption that publication by the USPTO enhances the

visibility of inventions even if they are disclosed by other national patent offices.

We next investigate heterogeneity in AIPA’s treatment intensity to address the mechanisms
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underlying our results. First, we stratify US-EP twins by their technology class’s exposure to

pre-AIPA grant delays to test how variation in disclosure timeliness affects patenting outcomes.

We find that patents in technology classes with the slowest pre-AIPA grant times have the greatest

post-AIPA response of forward citations and citation lags, consistent with our hypothesis. Second,

since AIPA allowed applicants to opt out of pre-grant publication, we use opt-out prevalence across

technology fields to proxy for the value of secrecy. We find that patents in industries with greater

opt-out rates (i.e., greater values of secrecy) are the most responsive to AIPA. These results suggest

that AIPA’s effects on knowledge diffusion are larger for inventors in contexts where barriers to

knowledge flows are steeper.

Lastly, we link speedier patent disclosure to real measures of innovation by exploiting firm-

specific exposure to AIPA. We do so by constructing the mean reduction in delays that each firm’s

patent portfolio received around AIPA. Firms that patented in technology areas with the longest

patent grant delays experienced the greatest acceleration in disclosure after AIPA. We find that

firms with one standard deviation greater exposure to AIPA (i.e., expediting patent publication

by about 16 months) increased their R&D investment after AIPA by 4%, suggesting AIPA had

significant effects on incentives to innovate. To provide a policy benchmark for the stimulative

effects of AIPA, we compare the magnitude of AIPA’s estimated effects to those of R&D tax credits

(Rao (2016)). We show that a one standard deviation greater exposure to AIPA is comparable to

reducing the user-cost of R&D by 2.6 percentage points or equivalently increasing the R&D tax

credit in the U.S. by roughly 6 to 16 percentage points (i.e., increasing the R&D tax credit from

20% to 26%).5 We provide additional suggestive evidence that AIPA increased the rate of U.S.

patenting by about 6.2 percent, while decreasing patent abandonments and patent scope. Thus

our findings collectively reveal that accelerated patent publication had wide-ranging effects on the

speed of knowledge diffusion and innovation.

AIPA affected the timing of additions to, arguably, the world’s single largest repository of

technical knowledge and it is considered the most important U.S. patent law enacted in the 20th

century. The U.S. Congress’s motivation for AIPA’s enactment was as follows: “US researchers

and investors are denied the opportunity to learn what their foreign competitors are working on

until a US patent issues. This causes duplicative research and wasted developmental expenditures,

putting U.S. inventors at a serious disadvantage vis-a-vis their foreign counterparts and competi-

tors.”6 Our analysis confirms that AIPA indeed increased knowledge diffusion, reduced duplicative

technologies and reduced patenting costs, without having a negative impact on U.S. patenting or

innovation. Thus, our policy evaluation provides evidence against proposed legislation (e.g., H.R.

5980) that seeks to limit pre-grant publication on the assumption that disclosure imposes a net

cost on innovation. Our results also imply that welfare analyses of patent systems should incor-

5The range of the equivalent R&D tax credit is determined by the calibrated interest rate and corporate tax
rate.

6See https://www.congress.gov/106/crpt/hrpt287/CRPT-106hrpt287-pt1.pdf
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porate the effects of invention disclosure, in addition to those of the monopoly rights created by

patents.

The rest of the paper is organized as follows. Section 2 provides institutional background

and reviews the literature on patent disclosure. Section 3 develops a theoretical framework that

motivates our empirical investigation. Section 4 describes the sample and our event study analysis

of AIPA. Section 5 discusses our “twin” study design and the corresponding findings. Section 6

explores plausible mechanisms behind our results as well as various robustness tests. Section 7

analyzes the effects of AIPA on patenting and R&D. Finally, section 8 offers concluding thoughts.

2 Background

2.1 Institutional Context

Prior to AIPA, the disclosure of a U.S. patent application, containing detailed technical descrip-

tions and drawings of the invention, occurred when the patent was issued. Applications that were

either rejected by the patent office or withdrawn by their applicants were never published. AIPA

required patent applications filed at the USPTO on and after November 29, 2000 to be published

18 months after the application date by the USPTO.7 Since most foreign countries’ patent sys-

tems already had similar 18-month publications, AIPA’s enactment harmonized the U.S. patent

system’s disclosure policies with international norms.

However, in response to concerns that pre-grant disclosure harms small inventors (see Modigliani

et al. (1999)), the Act provided U.S. applicants with a loophole: they could opt out of 18-month

disclosure under the condition that they forgo foreign protection. Thus, applicants that opted

out of foreign protection post-AIPA (as was the case for applicants that did not pursue foreign

protection before the Act) could keep both the presence of their patent application and the con-

tent secret until patent grant. For patents that take a long time to issue, the additional period of

pre-grant secrecy beyond 18 months could be substantial; for example, among U.S. patent appli-

cations filed in 2005, 50% took more than 38 months, 25% more than 51 months, and 10% more

than 61 months to issue. Patent applications in these groups could gain at least an additional 20

months, 33 months, and 43 months of secrecy, respectively, by opting out of foreign protection.

Impetus and contemporaneous legislation. According to experts, efforts to accelerate patent

publication in the U.S. came to fruition with the 1994 Uruguay Round negotiations on the Global

Agreement on Tariffs and Trade (GATT) between the U.S. on the one hand, and other countries

that already disclosed patents 18 months from application date, on the other. After these nego-

tiations, the U.S. agreed to introduce legislation to harmonize its patent publication time-line, to

7Applications can be published before 18 months if applicants submit an early publication request to the USPTO.
Less than 1% of applicants request publication prior to 18 months.
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align with other developed countries of the world where 18-month publication after application was

already in vogue. The Uruguay round negotiations also addressed other patent related matters,

some of which were enacted immediately in the U.S. in 1995 (e.g., the change in patent term from

17 years after grant to 20 years from application date, and patent term adjustments for patents

subject to prolonged prosecution at the USPTO were enacted for patents filed after June 8, 1995,

via U.S.C. 301-307). The introduction of 18-month patent publication in the U.S. suffered delays

due to intense lobbying and opposition from several groups. Famously, 26 Nobel Laureates sent a

letter to the U.S. Senate opposing the 18-month disclosure requirement as harming inventors and

stifling the flow of new inventions (Modigliani et al. (1999)).

On May 24, 1999, Representatives Coble and Rohrabacher introduced H.R. 1907 with the 18-

month publication requirement, after brokering unanimous approval by the House Subcommittee

on Intellectual Property and the Courts. The bill, dubbed the American Inventors Protection Act

(AIPA) for the first time, incorporated a provision that only required publication of an application

after 18 months if the applicant is also applying for protection in other countries. The bill also

provided provisional rights to patentees to obtain reasonable royalties, retrospectively, after grant,

if others make, use, sell, or import the invention during the period between publication and grant.8

Eventually, on November 29, 1999, ten days after the vote in the Senate, President Bill Clinton

signed the AIPA into law.

AIPA packaged other patent law changes along with the 18 month publication rule; specifically,

the establishment of a patent reexamination alternative that expanded the participation of third

party requester, establishment of the PTO as an agency with more control over its operating budget

under the Dept of Commerce, and provision of patent term compensations for inventors who were

subject to processing delays at the PTO. However, according to historians of patent law, the most

significant change was the enactment of 18-month publication (see, for example, Ergenzinger Jr

(2006) for a detailed account of AIPA’s legislative history). Considering the hypothetical effects

of these other changes, we believe it implausible for them to have caused the effects we attribute

to AIPA’s 18 month publication rule (e.g., AIPA’s reexamination provision effects less than 0.5%

of applications that are subject to reexamination each year while enhanced budgetary control at

the USPTO allowed the agency to independently set its fees and plough back any surpluses to

improve the agency’s operations in later years). To rule out that our results are contaminated by

8According to AIPA the owner of a published application receives provisional rights to pursue royalties or
infringement damages for the period between the date of publication and date of patent grant. To be entitled to
the royalties, the published claims must be “substantially identical” to the granted claims. These rules together
limit the downside of early patent disclosure to inventors. Without these protections, the inventor would face a
higher risk of substitution by rivals through pre-grant disclosure. Hence, we anticipate that in the absence of these
provisional rights, some inventors would prefer to delay disclosure till grant date. It is unclear how the provisional
rights affect our knowledge diffusion results however: on the one hand, disclosure without provisional rights may
increase citations and knowledge diffusion by lowering the cost of entry/duplication by follow-on competitors; on
the other hand, disclosure without provisional rights may limit overall knowledge diffusion if inventors respond by
delaying disclosure to grant date.
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any anticipation effects, we remove patents filed one year before AIPA came into force (that is,

filed between Nov 29, 1999 and Nov 28, 2000) and find results comparable to our main results.9

A placebo test conducted using the pre-AIPA subsample also rules out that other spurious factors

set into motion during our study period caused effects that we attribute to expedited patent

publication.10

2.2 Literature Review

A large body of prior research has focused on studying the effects of the temporary monopoly

rights conferred by patents on innovation (see Hall et al. (2014) and Williams (2017) for excellent

surveys of this research). This research suggests that patents confer various benefits to their

holders (e.g., Farre-Mensa, Hegde, and Ljungqvist (2020) and Kogan, Papanikolaou, Seru, and

Stoffman (2017)), while plausibly blocking follow-on innovation efforts under some circumstances

(see Galasso and Schankerman (2015) and Sampat and Williams (2019)). Surveys of innovative

firms attempt to compare the effectiveness of patents against other appropriability mechanisms

and suggest that firms prefer trade secrecy over patents to secure their R&D efforts (e.g., Levin,

Klevorick, Nelson, Winter, Gilbert, and Griliches (1987) and Cohen et al. (2002)). However,

Graham and Hegde (2015) find that of the companies that do patent, only about 8% of patent

applicants opt out of pre-grant publication, thus revealing a preference for disclosure over secrecy

for their inventions. In other related work, Johnson and Popp (2003) find that patents that remain

in the patent office longer are cited more often, and, therefore, pre-grant publication diffuses these

ideas faster. In a reduced-form simulation incorporating pre-AIPA data, Johnson and Popp (2003)

find small positive short-run effects of pre-grant publication through this mechanism, but no long-

run impact. Our research adds to this literature by examining the private and public consequences

to inventors of accelerating the disclosure of their technological knowledge.

Our paper complements several contemporaneous efforts to understand the effects of inven-

tion disclosure. In particular, Furman, Nagler, and Watzinger (2018) show the introduction of

patent libraries in the 1980s increased local patenting, job creation, and citations. These find-

ings provide mechanisms through which invention publication may benefit follow-on innovation,

complementing the results of Hegde and Luo (2018) and Mohammadi and Khashabi (2017), who

show that AIPA accelerated technology licensing and corporate venture investments, respectively.

Additionally, Kim and Valentine (2021) build on our approach to identify the real effects of AIPA

by exploiting variation in realized patent grant delays of each firm’s pre-AIPA patents relative to

their competitors. They find positive effects of AIPA on citations and innovation inputs, including

R&D, broadly consistent with our results which rely on each firms’ USPC-weighted exposure to

delays.11 An important and creative contribution by Lück et al. (2020) uses data on 35 USC 102

9See Appendix D.4.
10See Appendix D.5.
11Kim and Valentine (2021) focus on the “Relative Spillover, defined as the log of the ratio between the patent-
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rejections to provide evidence on the reduction of R&D duplication post AIPA, and de Rassen-

fosse, Pellegrino, and Raiteri (2020) exploits secrecy orders to measure the effects of patent secrecy

on follow-on innovation. Other discussions of AIPA, such as that of Okada and Nagaoka (2020)

and Baruffaldi and Simeth (2020), are descriptive in nature and compare patent citations before

and after AIPA. Relative to this literature, our “twin” study methodology allows us to measure

the causal effect of AIPA on technology similarity, patent scope, the timing and composition of

citations, as well as overall patenting and R&D. Furthermore, we put forth the theory of AIPA

as a news shock, which allows us to interpret and rationalize our findings. In doing so, we extend

recent research that investigates the effects of other policies such as compulsory secrecy orders

Gross (2019) and trade secrecy laws (Ganglmair and Reimers, 2019) on innovation.

In terms of theory, some of the earliest work on information disclosure and innovation is

by Horstmann, MacDonald, and Slivinski (1985), Bhattacharya, Glazer, and Sappington (1992),

Anton and Yao (1994), Anton and Yao (2004), and Bhattacharya and Guriev (2006). More-recent

work by Aoki and Spiegel (2009), Hopenhayn and Squintani (2011), Akcigit and Liu (2016), and

Bobtcheff, Bolte, and Mariotti (2017), among others, endogenizes the timing of patent races.12 Of

particular note, Hopenhayn and Squintani (2011) find that when R&D output is secret, firms take

longer to patent inventions, and, thus, invention disclosure slows with R&D secrecy. We depart

from these papers by simplifying the ex-ante decision of when to patent to instead model rich

institutional details of the patent process. Our contribution is to integrate a multi-stage patent

process into a heterogeneous firm framework with endogenous investment during the patenting

process, drawing on elements from Atkeson and Burstein (2010) and Atkeson and Burstein (2019).

In our theory, AIPA provides advance information about the presence of duplicates (i.e., a news

shock) that alters the patenting, investment and abandonment decisions of inventors. Our theory

thus provides a unifying framework to understand how the information environment created by

patent publications influences a wide range of innovation activities.

We also build on the work by Bloom, Schankerman, and Van Reenen (2013) who use vari-

ation in federal and state R&D tax credits to identify technology diffusion. We advance this

research by measuring the effect of patent publication on diffusion. In terms of theory, our work

is closely related to Bloom et al. (2013); namely, both frameworks flexibly model substitutability

and complementarity between own and rival technology, and both model free-riding. However, our

frameworks differ along three key dimensions. We incorporate the negative effects of technology

disclosure through the outside option of the firm instead of through product market competition

weighted industry average publication lag and the patent-weighted own firm average publication lag, measured
over the 20 years prior to the enactment of the AIPA.” Thus Kim and Valentine (2021) use realized delays on each
patent of the focal firm relative to competitors. Firm-specific realized delays may reflect endogenous characteristics
of the firms (e.g. total assets, size, resources devoted to lawyers etc.). Our measure mitigates these issues by using
technology class averages of delays, which are then weighted using the technology class shares of firms, similar to
a Bartik-style instrument.

12See also Bryan and Lemus (2017) who endogenize the direction of innovation.
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(see Section 3.4), we explicitly incorporate the stages of patenting, and we enrich the inventors’

information space in order to derive testable implications of pre-grant patent publication.

3 Theoretical Framework

Our theoretical framework models AIPA as provisioning news shocks about existing patent appli-

cations to current cohorts of inventors. We use this framework to discipline our exploration of the

data. In particular, we derive testable implications regarding AIPA’s impact on various measures

of patenting and innovation.

Consider a finite horizon economy populated by a unit measure of inventors. Let t = 0, 1 denote

time. At date 0, inventors draw their idea quality from a distribution F (z) : [0,∞) → [0, 1]. After

drawing an idea, inventors must decide between entering a competitive market, whose payoff at

t = 1 is independent of the quality of their idea, V c, or patenting the idea.13 Pre-AIPA, inventors

first invest in patent scope ∆ and then subsequently learn about the presence of duplicate patents.

Thus, there are two sources of risk: uncertainty over idea quality and uncertainty over the presence

of a duplicate patent. The payoff at t = 1 to successfully patenting is given by V p(·). Figure 2

illustrates the timing of the model.

Let Z0 > 0 denote the stock of disclosed knowledge at t = 0. The profitability of a patent is

determined by two factors: (i) idea quality, and (ii) inventor investment in the patent, ∆ ∈ [0,∞),

which we will interpret as the number of claims and patent scope. Let G(z,∆, Z0) denote the

profitability of a patent based on idea z, with scope ∆, and disclosed knowledge Z0.
14

To describe the value functions, we work backwards in time across the stages in Figure 2. In

the terminal period, t = 1, the value of a patent is simply its profitability,

V p(z,∆, Z0) = G(z,∆, Z0).

Stepping back one stage, we assume there is a duplicate patent in the system with probability

1 − q (we will refer to duplicates as close technologies).15 If a duplicate patent is present, then

the inventor abandons the patent and receives the competitive value V c. Stepping back another

stage, the inventor chooses the scope of the patent ∆ at cost c(∆), which is itself preceded by the

choice to patent and the draw of idea quality. Thus, the value to an inventor at t = 0 is given by,

V (Z0) =

∫
max{max

∆
qV p(z,∆, Z0) + (1− q)V c − c(∆), V c}dF (z).

13In Section 3.4, we allow V c to depend on own- and economy-wide ideas, thus introducing a notion of free-riding.
14An example includes the nested-CES function G(z,∆, Z0) =

((
z1/ρ + ∆1/ρ

)ρ/γ
+ Z

1/γ
0

)γ

, where ρ > 1(< 1)

implies complements (substitutes) between z and ∆, and γ similarly controls complementarity between private and
public knowledge Z0.

15We discuss the case of endogenous duplication rates in Appendix A.4.
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3.1 Pre-AIPA Characterization

First consider the choice of patent scope, ∆(z, Z0), which is conditional on the idea quality. It is in-

tuitive that if scope and public knowledge are complements (V p
12(z,∆, Z0) > 0), then scope expands

when public knowledge expands. If scope and public knowledge are substitutes (V p
12(z,∆, Z0) < 0),

then scope declines when public knowledge expands. Under standard regularity conditions out-

lined in assumption 1, lemma 1 formalizes this intuition. We relegate all proofs to Appendix

A.

Assumption 1: Suppose V p(·) is bound above, strictly increasing and concave in each of

its arguments, and is such that V p(z, 0, Z0) = 0, and lim∆→0 V
p
2 (z,∆, Z0) = ∞. Suppose c(·) is

strictly convex, c(0) = 0, and it has a finite first derivative at the origin, c1(0) < ∞. We further

assume c(·) and V p(·) are twice continuously differentiable in all arguments.

Lemma 1. Under assumption 1, (i) the patent scope decision is finite and unique, (ii) if

public knowledge and scope are complements, then patent scope is increasing in public knowledge,

and (iii) if public knowledge and scope are substitutes, then patent scope is decreasing in public

knowledge.

Next consider the decision to patent. Lemma 2 establishes that with greater public knowledge,

the patenting threshold declines, i.e. zp decreases where zp is defined below. We interpret this as

a decline in the average inventive step size as public knowledge expands. To prove this lemma,

we require some additional notation and assumptions. Let the expected payoff from patenting be

given by

Π(z,∆, Z0) ≡ qV p(z,∆, Z0) + (1− q)V c − c(∆).

Define zp to be the minimum idea quality that enters the patent system, i.e. the value that satisfies

the equality,

V c = Π(zp,∆(zp, Z0), Z0).

To characterize how the patent threshold varies with public knowledge, we make a second assump-

tion which prohibits corner solutions (e.g. all inventors patenting). We view this assumption as

reasonable since most inventors (and firms) do not hold patents.

Assumption 2: there exist z and z such that V c > Π(z,∆(z, Z0), Z0) and Π(z,∆(z, Z0), Z0) >

V c.

Under assumptions 1 and 2, lemma 2 formally proves that the patenting threshold declines as

public knowledge expands. Thus average inventive step size declines.

Lemma 2: Under assumptions 1 and 2, a unique interior patenting threshold zp exists and is

monotone decreasing in public knowledge Z0.
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3.2 Post-AIPA Characterization

We model the introduction of AIPA as provisioning news shocks about related inventions to

follow-on inventors and rivals. Under the post-AIPA regime, duplicate patents are known prior

to investing in the patent (i.e. the random event corresponding to duplication, 1 − q, is known

in advance); moreover, the current cohort of patents is disclosed and enters public knowledge,

adjusted for duplicates.16 Thus the available stock of public knowledge is given by Z1 = Z0 +

q
∫∞
zp,A

zdF (z) > Z0. Figure 2 depicts the new timing. Post-AIPA policy functions are denoted

with a scripted A, e.g. zp,A is the post-AIPA patent threshold rule. Likewise, value functions that

differ post-AIPA are scripted by A.17 The post-AIPA value of an inventor at t = 0 is given by,

V A(Z0) =

∫ ∞

zp,A
{q

[
max
∆

V p(z,∆, Z1)− c(∆)
]
+ (1− q)V c}dF (z) + V cF (zp,A)

Lemma 4 establishes that patenting payoffs increase post-AIPA. This is due to the fact that

inventors no longer have uncertainty over the presence of a duplicate when they make their decision

to invest in scope. The AIPA news shock allows inventors to lower their effective costs of investing

in patent scope from c(∆) to qc(∆). Throughout this section, we maintain assumptions 1 and 2

as hypotheses to proofs.

Lemma 4: The expected payoffs of patenting are unambiguously greater post-AIPA.

Since public knowledge expands, and payoffs to patenting increase, lemma 5 establishes that

the patenting threshold declines.

Lemma 5: The patenting threshold declines post-AIPA, zp,A < zp.

Since the patenting threshold zp declines under AIPA, more patents are filed, and the inventive

step size is smaller. We interpret smaller inventive steps as being synonymous with non-duplicative

(distant) technologies becoming more similar, on average. However, duplication rates drop by

assumption of the new information environment, implying that the closest technologies become

less similar. This is one of our main testable implications.

Next, we revisit patent scope. In general, the impact of AIPA on the scope of a patent is

ambiguous and depends on both the non-duplication rate q and the complementarity between

scope and public knowledge. On the one hand, AIPA lowers the effective costs of investing in

patent scope from c(∆) to qc(∆) which puts upward pressure on patent scope. On the other

hand, AIPA increases public knowledge. If scope and public knowledge are complements, scope

unambigiously increases post-AIPA. However, if scope and public knowledge are substitutes, then

the effect of AIPA on scope is ambiguous: lower costs put upward pressure on scope, but greater

public knowledge puts downward pressure on scope. Lemma 6 formalizes these mechanisms and

provides a characterization of post-AIPA scope in the empirically relevant limiting case with low

16This can be rationalized as the new steady-state level of knowledge.
17Note that the function V p(z,∆, Z1) is not affected by AIPA except through its arguments. Likewise, V c is not

affected by AIPA.
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duplication rates q ≈ 1.

Lemma 6: If q ≈ 1 and V p
23(z,∆, Z1) < 0, then scope declines post-AIPA. For any q < 1, if

V p
23(z,∆, Z1) > 0, scope increases post-AIPA.

With sufficiently low duplication rates, the cost reduction of investing in scope is minimal.

If scope and public knowledge are substitutes, then greater public knowledge post-AIPA will

unambiguously decrease scope. This case is particularly relevant for the U.S. data as we will

discuss in Section 4.

3.3 Patent Citations

We next extend the model to derive predictions for citations. We show that if the idea distribution

is Pareto (a functional form common in the knowledge diffusion literature, e.g. Lucas Jr and Moll

(2014) and Perla and Tonetti (2014)), then forward citations rise post-AIPA.

We describe the key features of the environment since citations are central to our main analysis,

relegating the details to Appendix A.3. Let s denote search effort of the existing stock of knowledge

and let µ(s) denote the cost of searching. Our proxy for citations is search effort s. We assume

greater values of search effort s imply better draws of ideas. In particular, we assume ideas are

drawn from a Pareto distribution, with lower support s, i.e., z ∼ F (z, s). Thus greater search

effort s shifts the distribution toward higher quality ideas. The pre-AIPA value at t = 0 is given

by,

V (Z0) =

[∫ ∞

zp
{max

∆
qV p(z,∆, Z0) + (1− q)V c − c(∆)}f(z, s)dz + V cF (zp, s)

]
− µ(s)

Under several additional assumptions, we show that search effort s is an increasing function of

expected payoffs and therefore citations increase post-AIPA.

We note that the model’s notion of a citation (search effort prior to invention) resembles

backward citations; however, in Appendix A.3, we argue that in a repeated version of our model

economy, backward citations from the current cohort of patents are forward citations to the pre-

vious cohort of patents. Since AIPA is a permanent news shock to all future patenting cohorts,

AIPA must increase forward citations to patents disclosed after the law’s enactment.

3.4 Model extensions

We consider several model extensions and their empirical implications. We discuss free-ridership

and outside options that depend on idea quality in the main text, and we discuss conditions under

which our main predictions continue to hold with endogeneous duplication rates in Appendix A.4.

Outside option scales with public knowledge (free-ridership). Our first discussion re-

volves around free-ridership. If the value of the competitive option, V c(Z1), is an increasing
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function of the stock of disclosed knowledge (Z1), there will be free ridership and AIPA may cause

patenting to decrease. As we show in Section 7, our empirical results suggest this is not the case:

patenting rises post AIPA. We further argue that competition should drive rents from unpatented

operations to zero, regardless of the stock of disclosed knowledge.

Outside option scales with idea quality. Suppose the competitive payoff is a function of idea

quality: V c(z). Then (i) predictions regarding scope are unchanged, and (ii) the patent threshold

is now defined implicitly by Π(zp,∆, Z0) = V c(zp). If we impose the assumption that Π1 > V c
1 ,

i.e. expected payoffs from patenting better ideas increase at a greater rate than the competitive

payoff, then our main predictions are unaltered. This is because Π(·) increases post-AIPA, and

so the patenting threshold, zp, must also decrease. As a result, our qualitative implications are

unchanged.

3.5 Empirical Implications

In summary, modeling AIPA as provisioning news shocks yields the following testable implications

about the law’s effects: (i) citations increase (as inventors’ search effort for ideas increases);

(ii) the closest technologies increase distance (duplication declines) and patent abandonments

decrease (by assumption that AIPA provisioned news shocks about related technologies); (iii) the

furthest technologies decrease distance, i.e., average inventive step-size (which is proportional to

zp) declines; (iv) patent scope declines under the assumptions that (a) that public knowledge

and private patent investment are substitutes and (b) pre-AIPA duplication rates are low; (v)

technology enters public domain and production sooner (by assumption that AIPA is a news

shock); and (vi) patent filings increase (although free-ridership can rationalize the opposite).

We use the above implications as a guide for our examination of the data. We begin with an

event-study analysis surrounding AIPA, before establishing causality using our “twin” research

design. We then measure the effects of AIPA on R&D expenditures using Compustat data.

4 Event Study Analysis

We begin by summarizing key innovation measures around AIPA’s enactment in November, 2000.

Our analysis in this section is primarily graphical, and in Appendix C, we formalize the graphical

results with an event study research design following Gross, Notowidigdo, and Wang (2020).

4.1 Sample and Data

Our goal is to compare the extent and speed of knowledge diffusion, technology similarity, patent

originality, application abandonment rates, and patent scope around AIPA to shed light on the
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effect of accelerated disclosures.

We begin with the universe of utility patent applications filed at the USPTO from 1998-

2003. The application data are drawn from the agency’s Patent Application Information Retrieval

files and include both abandoned (rejected/withdrawn) and successful applications. We track

the citations received by these applications until the beginning of 2017. We supplement these

data with the European Patent Office’s PATSTAT (2017 Spring version) for information on (i)

International Patent Classification (IPC) assignments; (ii) the worldwide patent family table to

identify patents with foreign or EPO parallel applications; and (iii) standardized patent applicant

and inventor names. After excluding reissued patents or applications that do not have information

on important variables or have errors, our sample has 1,536,346 applications filed at the USPTO.

Of these, 675,917 applications (75.4% of which were issued patents) were filed before AIPA, and

860,429 applications (69.5% of which were issued patents) were filed after AIPA. Table 1 provides a

summary of sample observations after each step of filtering to construct the before-after comparison

sample and the US-EP twin sample (more will be discussed in Section 5.2). In most analyses,

we focus on granted patent applications rather than on all applications, except when we examine

patent abandonment rates.18 We discuss our main variables in detail below and list the definitions

of all variables used in our analyses in Table 2.

Forward citations. The number of forward citations, after excluding self-citations, measures

the extent of knowledge diffusion from the focal patent (extensive margin). We count citations

received by each focal patent in 3/5/7/10 years after its disclosure date, which is the publication

date for patents with pre-grant publications and the grant date for those without. The disclosure

date is the time when patents become visible and, thus, citable by follow-on inventors.

Citation lags. Citation lag proxies for the speed of knowledge diffusion (intensive margin). It

is measured as the average difference between the application dates of the focal patent and its

first 1/3/5/7 forward citations, excluding self-citations. We use application dates as we want to

capture how rapidly knowledge diffuses starting from the inception of the focal invention to the

creation of follow-on inventions. Since patents become visible sooner after AIPA–at 18-months

from application–one should naturally expect shorter citation lags for post-AIPA patents. Never-

theless, measuring citation lags from application dates helps assess the speed with which follow-on

inventions build on prior patents.

Timing considerations in forward citations and citation lags. Our goal is to assess how

the timing of patent disclosure affects the diffusion of knowledge about an invention. For this, ide-

18Application-level data for abandoned U.S. patents are not available pre-AIPA. Accordingly, we exclude aban-
doned and pending patents when analyzing citation counts, citation lags, and technology similarity to keep the pre-
and post-AIPA samples comparable.
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ally, we would measure knowledge diffusion starting from the invention date, which is theoretically

the earliest date at which related knowledge can start diffusing.19 However, we do not observe the

invention date, so we use the patent application date to approximate it. It is important to note

that our citation lag measure includes the mandated reduction in publication times caused by

AIPA. Incorporating this mandated institutional acceleration of patent publication is essential to

measure AIPA’s effects on the speed of knowledge diffusion. Unlike the citation lag variable, our

forward citation counts begin after the disclosure date. If we were to use time-since-application

to measure forward citations, citation counts for post-AIPA patents will be greater than for pre-

AIPA patents since post-AIPA patents have enjoyed exposure for longer due to early publication.

Thus, to remove differences in exposure times from biasing our extensive margin results, we count

forward citations from the date the patents are visible to the public both before and after AIPA.

Technology similarity. Technology similarity, which we also refer to as technology overlap, is

measured as the cosine similarity between the focal patent and next-generation patents. Next-

generation patents include all patents in the same primary technology subclass (IPC 4-digit code)

as the focal patent and filed in the 19-36 month window after the focal patent.20,21 We start the

window at the 19th month to ensure that the next-generation patents have had the opportunity

to use the knowledge embedded in the 18-month disclosures. We stop the window at the 36th

month since this is roughly the average application-grant (and, thus, disclosure) lag. Presumably,

patents filed within this 19-36 month window are the ones most likely to benefit from the knowledge

revealed by the 18-month disclosures, although we ensure the robustness of our findings for different

windows. To isolate the informational impact of patent disclosures, we exclude next-generation

patents that have the same assignee as the focal patent.

The cosine similarity between the focal patent and its next-generation patents is computed as

Simij =
NiN

′
j

(NiN ′
i)

1/2(NjN ′
j)

1/2

where i represents the focal patent and j= 1, . . . , J represents any patent in the next generation.

Nk = (Nk1, Nk2, . . . Nk7154) is a vector with each element representing patent k’s fraction of IPC

19To provide an even closer estimate of the invention date, we provide additional analysis of citation lags based
on the priority date of the patent. The priority date reflects the date of the earliest application related to an
invention as it adjusts for repeated filings of related applications through procedures such as continuations and
divisionals. Appendix E shows that our main citation lag results are robust to using priority dates.

20Each patent typically receives multiple IPC codes. For patents with multiple IPC codes, we choose the one
listed first as the main IPC code for U.S. patents. According to PATSTAT, the USPTO lists the primary IPC code
first, but other authorities, such as the EPO, list the IPC codes alphabetically. We choose the subclasses (4-digit
codes) with the highest frequency as the primary subclass for EP patents.

21We require the next-generation patents to have the same IPC 4-digit codes as the focal patent to reduce
computational burden and to focus on patents in a related area as the focal patent. We require next-generation ap-
plications to be granted to maintain comparability for patents before and after AIPA, as we do not have information
on the IPC assignments for undisclosed abandoned applications.
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assignments in each of the 7,154 IPC main groups (IPC 7-digit code). The cosine similarity is

widely used to measure the proximity of two vectors, each representing the location in a pre-

defined space (e.g., Jaffe et al. (1986), Bloom et al. (2013)). Thus, for each focal patent i, we have

a vector of similarities {Simi1, . . . , SimiJ} between patent i and its next-generation patents. We

then record the similarity value at every 5th percentile of this distribution, with higher percentiles in

the similarity distribution (between a focal patent and its next-generation patents) corresponding

to technologically close patents, and lower percentiles in the distribution corresponding to distant

patents. By construction, our technology similarity measure ranges from 0 to 1, with larger values

(and higher percentiles) indicating a higher degree of technological overlap. This measurement

strategy allows us to examine the differentiation of patents as a function of the crowdedness of

technological areas.22

4.2 Summary Statistics

Column (1) of Table 3 provides summary statistics for the 1.1 million granted U.S. patents in our

sample. The average U.S. patent received 3.9 citations within three years after disclosure date

(which is the 18-month publication date when available or the grant date for patents without 18-

month publications), and the time it took for a patent to receive one citation was 36 months from

application date. 17% of applications filed between 1998-2003 were granted before 18 months, and

thus AIPA was non-binding on this subset of patents. Lastly, between 2000 and 2003, 8.6% of the

successful post-AIPA applications opted out of pre-grant publication (note this statistic does not

exist pre-AIPA).

4.3 Graphical Evidence

We begin by graphically examining changes in the scope and speed of knowledge diffusion around

AIPA, as well as other patent characteristics pertinent to our theoretic predictions.

Forward citations. Figure 3 plots the average number of forward citations (excluding self-

citations) by application month from 1998 to 2003. To illustrate AIPA’s estimated impact, we

add a line that fits pre-trends and extrapolate it to the post-AIPA period to indicate the expected

citations for post-AIPA patents if AIPA had not been enacted, ceteris paribus.23 Overall, Figure 3

shows that post-AIPA patents received more forward citations than pre-AIPA patents. The effects

of AIPA are larger when we count forward citations over longer horizons.

Two patterns apparent from Figure 3 require discussion. First, citation counts show downward

trends for both pre- and post- AIPA patents, most likely due to truncation of citing patents (an

increasing fraction of potential citing patents are not yet granted as one approaches the end of

22Appendix B reports a validation exercise of our similarity measure.
23We formalize this analysis and explore different counterfactual trend assumptions in Appendix C.
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our observation period–December 31, 2016–increasing undercounting of citations with time). This

can lead to greater undercounting of citations for post-AIPA patents. Second, the way that we

count forward citations favors pre-AIPA patents, particularly in the shorter citations windows,

since their citations clock starts at grant and patents generally experience an uptick in citations

upon grant both due to visibility and the finalization of property rights implied by the grant. As

we increase the length of the citation counting windows, this effect of patent grant is attenuated

and the cumulative effect of pre-grant patent disclosures intensifies. Therefore, the number of

forward citations received by post-AIPA patents exceeds that of pre-AIPA patents five, seven, or

ten years after disclosure. The figure clearly shows that the jump in citations occurs immediately

in the months after AIPA’s enactment, making other factors, such as contemporaneous economic

conditions, less likely to be behind this increase. In Appendix C, we formalize these results using

an event-study regression design with a linear pre-trend and find that post-AIPA patents receive

3.8%-19% more forward citations, on average.

Citation lag. We next graphically examine the speed of knowledge diffusion around AIPA.

Figure 4 plots the average citation lag for all U.S. patents by application month from 1998 to

2003. The average time to receive the first citation ranged from 30 to 33 months before AIPA,

and fell to 27 to 29 months after AIPA. The reduction in citation lag is even more pronounced

at higher levels of citations. The average time to receive the first seven citations ranged from 42

to 45 months before AIPA, and fell to 39 to 41 months after AIPA. Overall, Figure 4 suggests

that citation lags dropped sharply after AIPA, suggesting that timely patent disclosure accelerates

knowledge diffusion. Event study analysis in Appendix C shows that after AIPA, the delay to

receive one to seven forward citations decreased by 11.6%-20.1%, relative to the predicted delay

based on a linear pre-trend.

Technology similarity. Figure 5 plots the monthly average similarity for all U.S. patents filed

from 1998 to 2003. As described in Section 4.1, similarity at lower (higher) percentiles proxies

for technological overlap with technologically remote (close) patents. We observe a large increase

in similarity between technologically remote patents (5th-15th percentiles of similarity) and tech-

nologically moderate patents (25th- 85th percentiles of similarity) and a sharp drop in similarity

among the top 5% or 10% closest patents (90th -95th percentiles of similarity). These findings

are formalized in the event study analysis in Appendix C and are consistent with our theoretical

predictions.24

Patenting threshold: renewals and originality. Our model predicts that the post-AIPA

patenting threshold decreases due to reduced uncertainty in the patenting process and the positive

externality from the larger stock of public knowledge from recently disclosed applications. Thus,

24We discuss alternative measures of similarity in Appendix G.
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patentees make smaller inventive steps. While we cannot directly observe the patenting threshold,

we investigate whether inventors pursued patenting for less valuable or less original inventions

after AIPA.

Panel A of Figure 6 plots the monthly average 3.5-year renewal rate.25 Patents that renew

after grant are considered more valuable than those that do not. We find that the renewal rate

went up before AIPA but gradually decreased after AIPA. The regression analysis reported in

Appendix C confirms this graphic evidence suggesting that, indeed, inventors pursue patenting

for less-valuable ideas in the post-AIPA period.

Panel B of Figure 6 plots the monthly average originality. Originality is measured as one minus

the Herfindahl dispersion of backward citations to previously patents made by the focal patent

across different technology classes (e.g., Trajtenberg, Henderson, and Jaffe (1997)). Intuitively,

patents that refer to a broader class of prior art are more original. We find that patent originality

rose steadily before AIPA and gradually fell afterward. The regression estimates, reported in

Appendix C, confirm that inventors patent less-original ideas after AIPA.

Patent scope: claims. Our model predicts that patent scope declines after AIPA under the

assumption that public knowledge and private patent investment are substitutes and duplication

rates are low. Following the prior literature, such as Kuhn and Thompson (2019), we measure

patent scope by the total number of allowed claims, the number of independent claims, and the

average number of words in the independent claims. A larger number of claims indicate a broader

scope, and a greater number of words indicate that claims are defined with greater precision and

clarity, thus narrower scope. Panels C through E of Figure 6 plot the monthly average patent

scope. We find that patent scope decreased across the three measures post-AIPA relative to the

pre-trend (as in Kuhn and Thompson (2019), we interpret more words in claims as indicative of

more narrowly delineated scope). The regression estimates in Columns 3-5 of Table C.3 reported

in Appendix C confirm these results.

Patent application abandonments. Our model implies that as more information on pending

applications becomes available, inventors make a more informed decision on whether or not to

patent their inventions, leading to fewer unsuccessful applications. Panels G and H of Figure 6

plot application abandonment rates before and after AIPA.26 Once we account for the increasing

trend of abandonments before AIPA, we find that abandonment rates declined after AIPA. The

regression estimates in Column 6 of Table C.3 in Appendix C confirm the graphical evidence and

25As the sample patents were granted by mid-2014, four years before the record date of renewals (April 2018),
there is no truncation errors in the computation of 3.5-year renewal rates.

26Not all abandoned patents can be considered “dead and buried” since applicants frequently abandon appli-
cations only to file continuation applications with some modifications, which claim lineage with the abandoned
application (Hegde, Mowery, and Graham (2009)). Therefore, we examine all abandonments and abandonments
that are not followed by continuation filings in Panels D and E, respectively.
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suggest up to a 5.2% (=0.013/0.247, the pre-AIPA average) decrease in abandonments relative to

the pre-AIPA period.

While the sharpness of the jumps that coincide with AIPA’s enactment suggests that these

differences are due to AIPA, the magnitude of these differences may be contaminated by other

confounding changes, such as the dot.com bubble and burst or other macroeconomic cycles that

altered the quality of patents filed in the two periods. One could also argue that the greater

number of citations to post-AIPA patents reflects the selection of higher-quality patents into the

pre-grant disclosure regime after AIPA, rather than enhanced knowledge diffusion. We address

these concerns in the following section.

5 “Twin” Difference-in-Differences Analysis

5.1 Empirical Design

To identify AIPA’s causal effects, we use a difference-in-differences framework that compares

patents filed in the USPTO and their equivalent applications filed in the EPO before and after

AIPA’s enactment. As discussed in Section 2, AIPA mandated all post-AIPA U.S. applications

with parallel foreign applications to be published 18 months after filing. In contrast, patents filed

at the EPO were always published in 18 months, thus providing us with an ideal control group as

the EPO parallel applications (equivalent, or “twin,” applications) protect the same underlying

invention as those filed at the USPTO. All inventors are required to disclose equivalent foreign

applications at the time of filing in a particular country’s patent office, and examiners further

ascertain their equivalence status. We verify that the “twins” in our study are indeed equivalent

in Appendix D.2.

We focus on EP equivalents rather than on equivalent applications filed at other foreign loca-

tions since the EPO is a large patent office with prosecution standards that are relatively similar

to the USPTO’s. The EPO is also the most favored foreign location for U.S. patent applicants,

which allows us to construct a sizable sample of twin applications. Further, the comparison of

patents in two relatively comparable jurisdictions that cover the same technology sharpens our

identification of AIPA’s effects. To ensure robustness of our results, and to further elucidate the

mechanisms behind our results, we later examine US-Japan twin patents.

Our main regression specification is summarized below:

Outcomeijt = α1 + α2I(USj) + α3I(USj)× I(Post AIPAt) + δWj + Familyi +Montht + ϵijt (1)

where j designates a patent in family i filed in month t. I(USj) indicates whether the patent

application is at the USPTO (denoted ‘US (d)’ in the tables, where (d) denotes dummy), and

I(Post AIPAt) indicates whether the patent application is submitted after AIPA’s effective date
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(denoted ‘Post AIPA (d)’ in the tables), which itself is not separately identified due to the month

fixed effects. The variable of interest is the interaction between I(USj) and I(Post AIPAt)

(denoted ‘Post AIPA × US (d)’ in the tables), which captures AIPA’s effect on patenting and in-

novation outcomes. Wj represents control variables, which include whether the patent is granted

(Granted (d)) and whether it is granted before 18 months (Early Grant (d)). By sample construc-

tion, which we will discuss in detail in the next section, all U.S. patents in the “twin” sample are

granted, while EP equivalents can be granted, abandoned, or pending. The patent prosecution

process is, on average, longer in the EPO than in the USPTO; hence, we interact the U.S. and

early grant dummies to allow them to have different coefficients. We add application month fixed

effects to control for global trends and business cycles. Most importantly, the “twin” study design

allows us to control for unobservable characteristics, such as patent quality and sector-specific

time-variant shocks, by adding patent family or twin fixed effects.27

Our identification strategy rests on the assumption that information barriers across regions

(between the U.S. and Europe) come in the way of knowledge diffusion. Inventors from one region

may not search as keenly for knowledge disclosed in other national jurisdictions either because

the search is likely to reveal less relevant knowledge or because other factors, such as language

differences, render searches in foreign jurisdictions more costly. In Section 6, we provide evidence

to support this assumption of cross-country barriers. In particular, one of our tests repeats our

twin analysis for U.S. and Japanese equivalent filings, and we show that AIPA’s effects are more

pronounced when we use Japanese twins of U.S. applications as the control group. We argue

this reflects the higher informational barriers between U.S. and Japan, than between U.S. and

Europe, as Japanese patent equivalents are published in the Japanese language. Hence, we believe

our strategy of using EP twins provides conservative estimates of AIPA’s effects since it captures

only the marginal effect of disclosure by the USPTO for identical inventions that are disclosed

simultaneously by the EPO.

We check, and rule out, that the propensity to file for EP parallel applications changed after

AIPA because of the mandated disclosure requirement in the U.S., as we do not find any no-

ticeable change in the proportion of U.S. patents with EP parallel applications (or other foreign

applications) during 1998-2003, as shown in Appendix Figure D.1.

5.2 Sample Selection and Summary Statistics

Our US-EP twin sample is constructed based on the patent family table from PATSTAT (simple

DOCDB patent family), which records the complete set of equivalent patent applications filed

across different national patent offices. As described in Table 1, we start with 1,536,346 U.S.

applications filed between January 1, 1998 and December 31, 2003. We require these U.S. patents

27The online Appendix D explores alternative fixed effects in Table D.2 and alternative specifications for pre-
trends in Table D.4.
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to be granted and matched to EP equivalents in order to be included in the twin sample. We

further: (i) require EP parallel applications are filed within 18 months of their associated U.S.

applications according to the Patent Cooperation Treaty (1970); and (ii) exclude EP applications

that are international PCT filings with the EPO designated as the receiving office.28 These steps

result in a sample of 316,563 U.S. patents with 354,227 EP equivalents with an average twin

family size of 2.12. The family size is slightly greater than two, as one U.S. patent may be

matched to multiple EP equivalents either because the EPO requested an amended application or

because EPO requested a single U.S. application be split into two to adhere to EPO’s application

specifications under certain circumstances. 29

Column 2 of Table 3 reports sample averages of key variables used in the analysis for U.S.

patents with EP equivalents. On average, U.S. patents with EP equivalents receive marginally

more citations at the 3/5/7/10 year horizons when compared to the pooled sample of U.S. patents

over the same time period. U.S. patents with EP equivalents receive 4.1 citations 3-years after

disclosure versus 3.9 citations among the broader sample of all U.S. patents. At the 10-year

horizon, U.S. patents with EP equivalents have 14.4 forward citations compared to 13.2 for all

U.S. patents. Citation lags are comparable between U.S. patents with EP equivalents and all

U.S. patents. U.S. patents with EP equivalents are marginally less similar to prior cohorts, and

they include more claims (19.1 vs. 18.24 for all US patents). The signs of these differences are

not surprising as inventions seeking patent protection in multiple countries are presumably more

valuable, but we argue that the limited magnitude of these differences between U.S. patents with

EP equivalents and all U.S. patents implies relatively high external validity of our twin analysis.

If anything, we expect the “twin” analysis to provide lower-bound estimates of AIPA effects as it

identifies the effects of disclosure by the USPTO for inventions that are simultaneously disclosed

elsewhere.

5.3 Difference-in-Differences Results

Forward citations. We first examine AIPA’s effect on the extent of knowledge diffusion in the

twin sample. We supplement the USPTO’s data on citations made by U.S. patents with PATSTAT

data on citations made by patents filed in other jurisdictions. We require the citing U.S. patent

to be granted to avoid double counting the forward citations made by corresponding pre-grant

publications after AIPA. For EP applications, citations data are obtained from PATSTAT, and

include citations from both granted patents and pre-grant publications. Following Harhoff, Hoisl,

and Webb (2006), we adjust for patent equivalents when counting forward citations for EP patents.

Specifically, if a future EP patent cites a U.S. patent but not its EP equivalent, it is counted as

28International PCT filings are identified based on the kind code of “W” in PATSTAT.
29In untabulated tests, we find that our results are identical when we limit the sample to twins that had a

one-to-one correspondence between U.S. and EPO equivalents.
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one forward citation for the EP equivalent.30

Figure 7 plots the monthly average forward citations for U.S. and EP twins, normalized to 1

in January, 1998 for comparability. Figure 7 reveals comparable pre-trends for both U.S. and EP

forward citations prior to AIPA.

Panel A of Table 4 reports the DID estimates for forward citations using equation (1). Con-

sistent with the graphic evidence, we observe a significant positive coefficient on ‘Post AIPA ×
US (d)’ for the 5/7/10-year forward citations, although it is significantly negative for three-year

forward citations. Economically, U.S. patents receive 5.7% (14.7%) more five-year (ten-year) for-

ward citations in the post-AIPA period, relative to their EP equivalents. The economic magnitude

increases as we extend the horizon of citation counts, which is probably due to the cumulative ef-

fect of knowledge in pre-grant publications being transferred to subsequent generations of patents,

which, in turn, stimulate further follow-on innovation.

One may be concerned that the more forward citations received by U.S. patents simply reflect

a migration of citations. In other words, before AIPA, only EP equivalents were published; hence,

future patents would have no choice but to cite the visible EP equivalents. After AIPA, since

both U.S. and EP pre-grant publications were public, future patents could cite either U.S. or EP

publications, thereby boosting forward citations received by post-AIPA U.S. patents through a

substitution effect. If this were the case, we should observe an increase in forward citations for U.S.

applications and a decrease for EP equivalents of roughly the same magnitude. We investigate this

concern in Table D.4 included in Appendix D. Overall, we find that rather than a drop in citations,

EP equivalents receive more forward citations after AIPA, although the increase is economically

small and only statistically significant at the 10% level when we count the citations in a ten-year

window after application. These results suggest that the increase in U.S. patents’ forward citations

after AIPA is unlikely to be driven by an EP-to-US substitution.

Since detailed information about the underlying inventions covered by US-EP twin patents is

always publicly available through EP pre-grant publications, greater knowledge diffusion associated

with timely U.S. patent disclosures suggests the existence of search frictions across patent offices.

Such frictions may have arisen from search costs, language barriers, or a lack of other channels

that facilitate knowledge diffusion across national patent office jurisdictions. Given these search

frictions, we expect AIPA to cause a larger increase in knowledge diffusion in the U.S. than in

Europe.31 To test this expectation, we examine forward citations made by future U.S. patents

and EP patents separately in Panel B of Table 4. The coefficients on ‘Post AIPA × US (d)’

are significantly positive for 5/7/10-year forward citations made by future U.S. patents, as well

30Appendix F undoes the Harhoff et al. (2006) adjustments and shows very similar results.
31Since twin patents may have already diffused within the U.S. due to the presence of an equivalent EP patent,

AIPA’s effects should be greater for applications without twins—that is those filed at, and disclosed by, the USPTO
alone. While not as clean as the twin analysis, our event study analysis in Appendix C yields moderately larger
results, supporting the idea that the twin analysis provides conservative estimates of AIPA. Likewise, analysis on
US-JP twins, for which language barriers are arguably higher, yields larger effects of AIPA (see Section 6 below).
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as by future EP patents. More importantly, the magnitude is much larger for forward citations

made by future U.S. patents, and the difference between the two is statistically significant at the

conventional level. This evidence suggests that pre-grant publications increase knowledge diffusion

by reducing search frictions across patent offices.

Citation lag. As in Section 4, we use citation lags to proxy for the speed of knowledge diffusion.

Figure 8 plots the monthly average citation lags for U.S. and EP parallel applications, respectively.

It shows a consistent and compelling drop in the citation lags for U.S. patents in the post-AIPA

period across the four different citation lag measures. The drop was concentrated in a short

window right after AIPA’s enactment. By the second quarter of 2002, the time lag for U.S.

patents had roughly stabilized. Meanwhile, there is no noticeable change in the citation lags for

EP applications around AIPA. More importantly, the U.S. and EP applications shared a similar

trend before AIPA, which alleviates the concern about violating the parallel trend assumption for

valid DID analysis.

In Table 5, we estimate equation (1) to test the impact of AIPA on the pace of knowledge

diffusion. Consistent with the graphic evidence, we find significant drops in the four citation lag

measures. The economic magnitude is large. The point estimates indicate that it takes U.S.

patents 25% to 29% less time to receive 1/3/5/7 forward citations after AIPA, relative to EP

equivalents.

Technology similarity. Lastly, we study the impact of pre-grant publications on technology

similarity. On the one hand, adequate and timely knowledge diffusion can spur follow-on innova-

tion, which could decrease the technology distance between the focal patent and subsequent patent

applications. On the other hand, the prompt availability of information on competing inventions

can reduce duplicative research in the subsequent period, which would increase technology distance

among the closest patents.

To shed light on the potential impact of AIPA on technology similarity, in Figure 9, we plot

the monthly average technology similarity with technologically remote or close patents filed in the

future. Overall, we see an increase in similarity among technologically remote patents after AIPA

(5th percentile to 50th percentile). The difference-in-difference estimate shrinks in magnitude at

the 75th percentile. At the highest percentiles of similarity (90th percentile and 95th percentile),

we observe a drop in technology overlap among U.S. patents after AIPA.

The regression results estimating equation (1) in Table 6 confirm this graphic finding, revealing

an increase in similarity at the 50th and 75th percentiles to be about 12.0% (=0.013/0.108) and

3.4% (=0.010/0.289), respectively. These patterns reverse at the upper percentiles. We find that at

the 95th percentile, there is a 2.1% (=0.013/0.611) reduction in similarity. Note that the estimated

reduction of duplicative patenting is likely to be underestimated since all percentiles – including

the 95th percentile – are pushed upwards by increased knowledge spillovers after AIPA.
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Figure 10 plots the coefficients on the interaction term in equation (1) using the similarity mea-

sure at every 5th percentile as the dependent variable. The coefficient initially increases, reaches a

plateau around the 60th to the 70th percentile, and then decreases quite sharply. Collectively, both

the graphic evidence and regression results provide robust evidence that, after AIPA, technologi-

cally distant U.S. patents become more similar and similar patents become more differentiated.

Since our twin sample has only granted U.S. patents with EP equivalents, the design is not

suitable for identifying AIPA’s effects on patent abandonment. Likewise, since by definition twins

have the same, or nearly identical, claims and backward citations, our DID analysis cannot be

used to test predictions regarding AIPA’s effects on patenting scope and originality. Hence, we

have focused on examining AIPA’s effects on citations, citations lag and similarity with our “twin”

design. We refer readers back to Section 4.3 for evidence, based on our event study, regarding

AIPA’s effects on patenting threshold, patent scope and abandonments.

6 Mechanisms and Robustness Checks

In this section, we investigate the mechanisms driving our results and the robustness of our findings.

We first provide evidence supporting a key assumption of our “twin” based identification strategy—

that information barriers between national jurisdictions come in the way of knowledge flows across

borders. Specifically, we analyze US-JP twins, PCT filing status, and twins filed foreign inventors

and find that AIPA eased flows where the impediments were high. We then explore AIPA’s

heterogeneous effects and show that the law’s estimated impact on the extent and the speed of

knowledge diffusion is stronger for (i) patents in technological fields that suffered the longest grant

delays pre-AIPA; and (ii) technological fields in which inventors value secrecy for their patents

the most. These findings suggest accelerated disclosure had the greatest impact on citations in

contexts where we expect barriers for free knowledge diffusion to be the higher. In a setting

where we expect the barriers to be non-existent — that is, for within-firm knowledge flows, which

we proxy using self-citations — we show that AIPA had no systematic impact. Taken together,

these findings suggest that the mechanism underlying the post-AIPA increase in citation count

and speed is enhanced knowledge diffusion. Finally, we report a battery of checks to establish the

robustness of our “twin” analysis.

6.1 Cross-country barriers to knowledge diffusion

Our “twin” analysis is inspired by a well-established literature which documents that knowledge

flows, proxied by patent citations, tend to be localized within city, state, and national boundaries

(Jaffe et al. (1993), Jaffe and Trajtenberg (1999), Maurseth and Verspagen (2002), Bottazzi and

Peri (2003), Peri (2005), Breschi and Lissoni (2001)). Several studies including Wineburg (1988),

Bacchiocchi and Montobbio (2006), Azagra Caro and Tur (2014), Webster et al. (2014), and
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de Rassenfosse et al. (2019) document search costs and biases, favoring local inventors in patent

grants and citations, in various national jurisdictions including the U.S., Europe, Japan, and

China. Nevertheless, we conduct three exercises here aimed at testing the existence of barriers to

cross-country knowledge diffusion.

US-JP twins. Our first exercise highlights the role of language barriers by repeating our “twin”

analysis for Japanese twins of U.S. patent applications. The Japanese Patent Office (JPO) pub-

lishes its applications in Japanese, so inventions published at 18 months by the JPO are rather

inaccessible to follow-on inventors in other countries. In contrast, EPO publishes most of its ap-

plications in English (85% in our sample) or languages based on the English alphabet (German

and French) that are more readily translated. Thus, our prior is that AIPA, and the consequent

accelerated publication of US-JP twins in English by the USPTO, had greater effects on knowledge

diffusion for US-JP twins than US-EP twins.

Table 7 reports the results of this analysis with Panel A focusing on citation counts and Panel

B on citation lags. We begin by augmenting equation (1) with country-specific linear trends,

which purge the predictable upward linear trend in citations exhibited by Japanese patents (see

Appendix Figure D.2). For comparability, we repeat our US-EP twin analysis with country-specific

linear trends, yielding similar point estimates to the baseline estimates without controlling for the

trends. Specifically, in Panel A of Table 7, Columns (1) and (2) illustrate the impact of AIPA on

3-year forward citations for US-EP and US-JP twins, respectively. While Column (1) implies no

significant difference of 3-year forward citations for US patents relative to their EP equivalents,

Column (2) shows that U.S. patents receive significantly more citations post-AIPA relative to

their JP equivalents. The last row of Panel A (‘Difference in AIPA Effect’) tests equality of the

coefficients. We find that the coefficients differ at the 5% level. Columns (3) through (8) yield

similar results, with the US-JP twins exhibiting significantly greater post-AIPA citations than

US-EP twins.

Panel B of Table 7 compares the AIPA impact on citation lags across US-JP and US-EP twins.

We find significant reductions in citation lags at all horizons for both US-EP and US-JP twins. In

particular, U.S. patents in US-EP pairs exhibit a 20% reduction in time delay to receive 1 citation

whereas U.S. patents in US-JP pairs exhibit a 37% reduction. This difference is significant at the

1% level. Columns (3) through (8) repeat the analysis for different citation thresholds. While the

point estimates broadly support our argument of greater barriers for US-JP twins, the differences

fall outside of standard significance levels.

Overall, we find larger effects of AIPA on our knowledge diffusion measures for US-JP twins

than on US-EP twins, suggesting information frictions, worsened by language differences, impede

the free flow of knowledge across national boundaries. These results are consistent with accelerated

patent publications by the USPTO lowering these barriers.
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PCT Filings. Our second exercise estimates AIPA’s effects in our twin analysis for patent fami-

lies filed under the international Patent Cooperation Treaty. PCT patents are published in a single

repository (by the International Bureau at the World Intellectual Property Organization) after 18

months from filing and then seamlessly transmitted to national patent offices that participate in

the PCT (including both the EPO and USPTO). These patents are easily and readily searchable

by U.S. inventors, and so arguably exhibit fewer barriers of EPO-to-USPTO knowledge flows. We,

therefore, expect AIPA’s accelerated patent disclosures to have minimum impacts on the diffusion

of these inventions.

Panel A of Table 8 estimates equation (1) with a full set of interactions with a PCT twin

indicator (‘PCT (d)’). The resulting triple difference estimator compares U.S. vs EP twin citations

before and after AIPA among PCT and non-PCT twins. Columns (1) through (4) report results

for forward citations. In general, we find that PCT twins are less responsive to AIPA relative to

non-PCT ones. Adding the relevant interaction terms (‘Post AIPA × US × PCT (d)’ plus ‘Post

AIPA × US’) implies that PCT twins exhibit very little difference in U.S. patent citations relative

to their EP twins, pre- and post-AIPA. Columns (5) through (8) repeat this analysis for citation

lags and reveal a smaller AIPA impact on citation lags for PCT twins. We view these estimates as

further supporting our assumption that cross-country barriers impede the free flow of knowledge

across borders.

Foreign inventors. Our third exercise differentiates AIPA’s impact on foreign and U.S.-based

inventors. Our prior is that foreign inventors’ ideas are less likely to diffuse in the U.S., thus making

the effects of AIPA more pronounced for U.S. twins filed by these inventors. To implement this

triple difference analysis, we augment equation (1) with a full set of interactions with a foreign

inventor indicator (‘Foreign Inventor (d)’).

Panel B of Table 8 reports the results. The coefficient of interest is the triple interaction

‘Post AIPA × US × Foreign Inventor (d)’, which estimates the differential AIPA effect for foreign

inventors. Columns (1) through (4) report the forward citation results, which show a significant

larger impact of AIPA on foreign inventors’ patent citations. Thus, AIPA exhibits stronger effects

for ideas that are least likely to have diffused within the U.S. through alternative mechanisms such

as local investor meetings and industry conferences. Columns (5) through (8) report the results

for citation lags. Although two of the estimates are not significant at conventional levels, we find

a more pronounced negative effect on citation lags for foreign inventors, further supporting our

hypothesis that AIPA provisioned relevant news to follow-on inventors, particularly in settings

where other information diffusion mechanisms are less effective.
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6.2 Heterogeneous Effects

Our analysis of US-JP twins, PCT filing status, and foreign inventors suggests that national

boundaries impede knowledge flows and that AIPA eased flows where the impediments were high.

Here, we further probe AIPA’s heterogeneous effects, stratifying our sample along two dimensions

which plausibly correlate with other types of barriers for knowledge flows: (1) exposure to patent

grant delays and (2) the value of secrecy, proxied by opt-out intensity in the technology class.

Exposure to grant delays. We first stratify US-EP twins by their technology field’s pre-AIPA

grant delays. Our prior is that patents in fields with the greatest pre-AIPA grant delays react more

to AIPA since AIPA accelerated their disclosure the most. We construct pre-AIPA grant delay as

the average time delay from application to grant, in years, for U.S. patents filed in the three-year

pre-AIPA period for each main IPC technology class (4-digit). The average pre-AIPA grant delay

is 31 months in our sample and it varies a lot across technology classes. For example, patents in

HO4L, “Transmission of Digital Information,” have an average delay about 48 months while the

delay is 19 months for patents in “Artificial flowers; Wigs; Masks; Feathers.” We implement the

triple difference estimator by augmenting equation (1) with a full set of interactions with pre-AIPA

grant delay exposure.

Panel A of Table 9 reports our results. Consistent with our prior, we find that if pre-AIPA

grant delays are one standard deviation larger (0.61), forward citations increase a further 2.4-4.0%

and citation lags reduce by a further 5.1-8.5%. This result supports our hypothesis that timely

patent disclosure accelerates knowledge diffusion.

Exposure to opt-outs. As explained in Section 2, AIPA allowed patent applicants to opt out

of pre-grant publication by forgoing foreign protection for their inventions. Our assumption is that

applicants opt-out of early disclosure for inventions that benefit more from secrecy, thus the value

of secrecy can be proxied by opt-out intensity. The average opt-out rate is 8.6%, as reported in

Table 3, but some technology classes (e.g., B21L, Making Metal Chain) have virtually no opt-outs

while others (e.g., H05C, Electric Circuits) have an opt-out ratio as high as 25%. We expect that

patents in technology fields with the greatest opt-out prevalence (and thus having the greatest

value of secrecy) will be the most responsive to accelerated patent publication. Since opt-outs

became available after AIPA, we construct opt-out ratio as the percentage of opt-out U.S. patents

filed during the 3-year post-AIPA period (2000-2003) in each 4-digit IPC class. We implement the

triple difference estimator by augmenting equation (1) with a full set of interactions with opt-out

ratios.

Panel B of Table 9 reports our results. We find that for patents in fields with opt-out rates

one standard deviation higher (0.046) than the mean, the estimated post-AIPA effects on forward

citations are 1.2-1.9% greater and on citation lags are 2.9-4.6% greater. These results suggest that
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accelerated patent publication matters the most for knowledge diffusion in fields of higher secrecy.

6.3 Placebo test using self-citations

Throughout our analyses, we have interpreted an increase in citations post-AIPA as reflecting

increased knowledge diffusion after AIPA. Here, we use self-citations data to further test the plau-

sibility of this interpretation. Since self-citations – defined to be citations by follow-on inventors

to their own prior patents – are not affected by barriers to knowledge diffusion, they should not

respond to AIPA.

Table 10 estimates specification (1) for self-citation counts and the share of self-citations among

total citations. Panel A of Table 10 shows that 18-month publication does not have a systematic

effect on self-citations: the 3-year and 5-year estimates are negative, the 7-year estimate is not

significant at conventional levels, and the 10-year estimate is significant and positive but very

small relative to the baseline estimates in Table 4. Furthermore, in Panel B, we find a systematic

negative effect of AIPA on the share of total citations that are self-citations. We view this as

corroborating evidence that the post-AIPA increase in citations reflects the effects of disclosure-

related knowledge flows occurring across firm boundaries, and that the increase is not due to

correlated shocks that may have increased citations overall, including self-citations. Even while

the placebo test supports our interpretation of the citations result, we note that this placebo is

not perfect – AIPA may have had an effect on self-citations if it altered the nature of firms’ R&D

allocations and invention strategies with respect to its own previous-generation inventions (which,

in turn, may respond to the broader information environment as discussed in our theory section).

For example, a decreasing fraction of self-citations is also consistent with firms being more likely

to use recent external knowledge as a substitute to own-R&D post-AIPA, as predicted by our

theory.

6.4 Other Robustness Checks

We conduct a number of robustness tests to ensure the validity of our measures and regression-

based results. Specifically, we provide evidence that supports our twin study’s representativeness

and validity; we conduct a placebo exercise in the pre-AIPA period; we use U.S. twins granted

within 18 months of filing, and thus unaffected by AIPA’s 18-month publication rule, as a placebo;

we adjust for continuation and divisional patents that may induce noise into our citation lag

measures; we exclude software patents to mitigate confounding macro trends in patenting; and

we explore alternative fixed effects, including applicant fixed effects. We find our main results are

quantitatively and qualitatively robust across the wide variety of checks.

Representativeness of “twin” analysis. We examine the representativeness of the estimates

delivered from our US-EP “twin” study design by comparing them to the estimates from event-
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study design on the universe of U.S. patents (Tables C.1 - C.3 in Appendix C). On the one hand, we

expect that AIPA’s effects are understated by the “twin” design as it identifies the marginal effect

of disclosure by the USPTO for applications that are simultaneously disclosed by other national

offices (EPO). AIPA’s effects should arguably be higher for applications without twins–that is, for

U.S. patent applications without foreign equivalents. On the other hand, since applications with

foreign equivalents are likely to be more valuable than those without (consistent with comparative

descriptives on patent claims, citations and renewals presented in Table 3), one may expect early

disclosures to have a greater impact on knowledge diffusion for twin patents. The comparison

suggests the plausibility of both hypotheses: the event-study estimates of AIPA’s effects are

larger for the extensive margin but smaller at the intensive margin than “twin” study estimates.

Nevertheless, the estimates obtained by the two designs are broadly comparable, suggesting that

AIPA’s effects on the population of patentees are not too far off from those obtained by the US-EP

“twin” analysis.

Placebo AIPA effective date. In Appendix D.5, we use an earlier fictitious AIPA enactment

date (July, 1999, roughly the mid-point of our pre-AIPA sample period) to rule out spurious

effects driving the results. The results show no impact on citations, citation lags, or technology

similarity between before this fictitious date and AIPA’s actual enactment in November, 2000.

This evidence suggests that our results are not biased by spurious trends or possible anticipation

effects of AIPA’s actual enactment.

U.S. patents granted within 18 months. In Appendix D.6, we conduct another placebo test

in which we restrict US-EP twins to only include twins where the U.S. patent is granted within

18 months, and thus AIPA was not binding. We find much more muted effects in this subsample:

no effect of AIPA on forward citations and a slight decrease in citation lags (about 20% of the

magnitude we see in the entire twin sample).

Continuation applications. In Appendix E, we address the concern about the influence of

continuation filings, which allow patent applicants to submit related applications that claim prior-

ity to previously field applications, on our results. We first analyze citation lags based on priority

dates, the filing date of the earliest related patent application, which is closer to the actual inven-

tion date. This analysis yields very similar effects of AIPA on citation lag reductions. We also

repeat our baseline analysis after excluding 63,365 (9.45%) continuation patents from the US-EP

twin sample, as identified from PATSTAT’s application continuation table. The results estimated

from this “clean” sample are very similar to our baseline.

Alternative similarity measures. In Appendix G, we analyze alternative similarity measures,

including Jaccard similarity based on 7-digit IPC codes, cosine similarity based on 4-digit IPC
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codes, and cosine similarity based on text-converted vectors as constructed by Google. Figure G.1

plots the results along with our main measure (cosine similarity based on 7-digit IPC codes) and

Table G.1 reports the regression results. The general pattern that similarity rises among distant

but related patents is present in all versions of similarity considered. The reduction in similarity

among the closest related patents is also present in all measures except for Google text similarity,

presumably due to the difficulty of converting large bodies of text into sparse vectors. We further

discuss the pros and cons of various similarity measures in detail in Appendix G.

Excluding software-related patents. To alleviate concerns that our results reflect contempo-

raneous macro-economic trends related to the dot-com stock-market bubble that peaked in March

2000, Appendix I repeats our main analysis after excluding software patents as defined by Graham

and Vishnubhakat (2013). We find results very similar to the ones obtained from our main sample

that does not impose any technology-field sample exclusions.

Alternative fixed effects and trends. In Table D.2 of Appendix D.3, we repeat our “twin”

analysis with alternative fixed effects, including applicant fixed effects. We find very similar results

across a wide range of specifications. The fact that our twin analysis results are robust to applicant

fixed effects provides strong evidence that selection on inventor-specific characteristics is unlikely

to explain our main findings. We further include country-specific technology trends in Table D.3 of

Appendix D.3 to address concerns regarding the differences in industry composition and sectoral

trends across patent offices; we find very similar results.

7 AIPA, Patenting, and Innovation

In this section, we examine AIPA’s broader impact on measures of innovation. We test two

predictions: (i) AIPA increased patenting overall, (ii) AIPA increased real measures of innovation

proxied by R&D investments. We find evidence that both of these predictions hold in the data.

Patenting intensity. First, we examine AIPA’s effect on overall U.S. patenting. Our theory

predicts that patenting activities increase after AIPA due to a richer information environment

that decreases the cost of patenting.32

To empirically examine AIPA’s effect on patenting, in Figure 11, we plot the monthly count

of patent applications in the USPTO and EPO (without imposing the twin requirement) and find

that they both grew steadily before AIPA and that the growth rate slowed slightly after AIPA

while remaining positive. We formalize this graphical analysis by running difference-in-differences

32This prediction is derived under the assumption that the value of the outside option (entering the competitive
market without patenting) remains unchanged by AIPA. If this value increases as public knowledge accumulates
faster, the patenting rate could decrease after AIPA.
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regressions that compare the total number of applications and eventually granted applications

filed in each month from 1998 to 2003 at the USPTO and EPO, respectively, in Columns (1) and

(2) of Table 11. We find that the number of U.S. applications (eventually granted) increased by

2,304 (1,158) per month after AIPA, relative to EP applications. This increase is economically

considerable, equivalent to 11.9% (7.9%) of the pre-AIPA average (19,384 applications and 14,621

grants, respectively). As a robustness check, we also conduct the analysis at the patent-office ×
technology-class × month level in Columns (3)-(6) and find confirmative evidence that patenting

intensity increased after AIPA.

R&D intensity. Second, to shed direct light on the effect of early disclosure on innovation

measures other than patents, we examine AIPA’s effect on firms’ R&D investments.33 Although all

pre-grant publications are disclosed in 18 months after the filing date, the (expected) advancement

in disclosure caused by AIPA varies across technology classes due to different levels of grant

delays. Specifically, we exploit this between-class variation and calculate a firm-specific measure

of exposure to AIPA’s information shock as the weighted average of delays across all technology

classes that the firm patents in. The weights are the share of patents filed in each class by the firm

during the three years before AIPA. Firms with a larger weighted average delay are more affected

by AIPA and hence are considered to have greater exposure to AIPA. Firms with zero patents or

weighted average delay smaller than 18 months are considered to have zero exposure to AIPA.

We then estimate AIPA’s effect on the R&D investments (as measured by log R&D or R&D

intensity) as a function of the firm-specific AIPA exposure.34 To minimize R&D intensity outliers,

we analyze three samples: firms with annual sales greater than $10m, $20m, and $50m.

The results are reported in Table 12. Across the six specifications, we find a consistent increase

in R&D investment after AIPA for firms with greater exposure to AIPA. Columns (1) through (3)

estimate the elasticity of R&D to AIPA exposure. Across each of our samples, the standard devi-

ation of exposure to AIPA is approximately 1.4 years (Appendix H.1 contains summary statistics

for the samples). Consider column (3) which restricts firms to those with greater than $50m in

sales. A one standard deviation faster patent disclosure post-AIPA is associated with a 3.95%

(=1.4×.0282) increase in R&D investment. These results are robust across samples, and they

imply that pre-grant publication had a large stimulative effect on R&D.

33We focus on U.S. publicly listed companies for this analysis due to the availability of their R&D data. We
obtain the R&D expenses and other firm variables from Compustat for all companies listed in the U.S. from 1998 to
2003, six years centered around AIPA’s enactment. We exclude firms in finance (SIC code: 6000-6999) and utility
industry (SIC code: 4900-4999) and firms with missing values for the variables. We further require firms to have at
least one observation before and one observation after AIPA in the estimation sample to ensure comparability. We
report the sample size and summary statistics for key variables in Appendix Table H.1. The link between patents
and public companies is obtained from Kogan et al. (2017).

34We explore the possibility of differential pre-trends between high and low exposure firms in Appendix H.2. We
find very similar pre-trends of R&D among firms in the top and bottom quintiles of AIPA exposure, suggesting
that our results are not driven by the correlation of unobservables and exposure to AIPA.
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Columns (4) through (6) of Table 12 repeat our estimation using R&D intensity as the depen-

dent variable. The coefficients are interpretable as semi-elasticities. We find that greater AIPA

exposure is positively related to R&D intensity; however, the results are sensitive to sample selec-

tion. To minimize R&D intensity outliers and provide conservative estimates, we focus on column

(6), which restricts firms to those with greater than $50m in sales. A one standard deviation

faster patent disclosure post-AIPA is associated with a 0.27 percentage point (=1.4×.00193) in-

crease in R&D intensity. This represents a 4% increase in R&D intensity relative to the sample

average R&D intensity rate of 6.6%. Thus, the implied elasticities across columns (3) and (6) are

consistent and imply large positive effects of AIPA on R&D.

To interpret the magnitude, we compare our results to Rao (2016) who measures the impact

of R&D tax credits on R&D spending using confidential firm-level IRS data. Rao estimates the

semi-elasticity of R&D intensity with respect to the user cost of R&D is -0.104 (Table 4, Column

(2) of Rao (2016)). Thus, a one standard deviation faster patent disclosure has an equivalent effect

to a 2.6 percentage point (=.0027/.104) decrease in the user cost of R&D. Rao (2016) reports an

interquartile range of R&D user costs of 5 percentage points, placing AIPA’s effect on R&D user

costs well within an empirically plausible range.

Using the formulas and parameter values in Rao (2016) (setting the input price growth rate

as well as the firm-specific claw-back and carry-forward terms to zero), we calculate that a 2.6

percentage point reduction in the user-cost of R&D is equivalent to increasing the R&D tax credit

from 6 to 16 percentage points (i.e., increasing the R&D tax credit from 20% to 26%). Figure

12 graphically illustrates the R&D tax credit equivalent of AIPA for various interest rates and

corporate tax rates.

Taken together with our previous evidence on enhanced knowledge diffusion and reduced du-

plicative patenting post-AIPA, this analysis suggests that accelerated patent publication had a

net positive effect on both innovation inputs (R&D) and outputs (patents).

R&D Mechanisms. In Appendix H.3, we explore the heterogeneous effects of AIPA on R&D

along the dimensions of technology cycle, value of secrecy, and technology similarity. Specifically,

we compute a firm’s heterogeneous AIPA exposure as the average application-grant delay weighted

by its patent portfolio in the subset of technology classes with above/below median: (1) length of

technology cycle (measured as the median citation lag for the technology class during the three-

year pre-AIPA period), (2) opt-out rates, and (3) technology similarity. We find that industries

with shorter technology cycles – in which faster disclosure of knowledge post-AIPA arguably should

have the greatest effect – are also the industries that increase R&D the most post-AIPA. Likewise,

consistent with our analysis in Section 6, AIPA has larger effects on R&D investments in areas

with high opt-out rates, our proxy for the value of secrecy. Lastly, we find that the AIPA effect on

R&D is stronger in areas with low similarity, where knowledge diffusion is more limited to begin

with. We note that the ability to stratify along more granular dimensions of heterogeneity is
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limited by our small sample of public firms. We therefore leave more detailed exploration of these

mechanisms to future researchers with administrative Census bureau data, such as the Survey of

Industrial Research and Development.

Summary. Economists have long used patents as proxies for innovation and patent citations as

proxies for knowledge diffusion (e.g., Griliches, Pakes, and Hall (1987), Jaffe et al. (1993)). A recent

body of careful empirical work has validated this usage by providing evidence that patents can be

causally linked to increases in productivity, revenue growth, R&D investment, and better market

valuation for their holders (e.g., Kogan et al. (2017), Farre-Mensa et al. (2020)). In the context of

AIPA, Hegde and Luo (2018) find that patents are about 30 percentage points more likely to be

licensed before grant after AIPA, which was interpreted as a reduction in the search costs of finding

technology inputs after AIPA. Our study shows that accelerated patent publication had substantial

effects on patenting, R&D, and citations by follow-on inventors. We also provided corroborative

evidence that the mechanism behind these effects is enhanced knowledge diffusion. Combining

our evidence with the prior literature, we believe it is plausible that the accelerated development

of disclosed technologies by follow-on inventors (a subset of whom license the technology) is one

of the mechanisms driving an increase in innovation outcomes post-AIPA.

8 Concluding thoughts

In this study, we provide causal estimates of the effects of patent publication on various measures

of innovation. We make progress by exploiting the passage of AIPA — a law which expedited the

disclosure of U.S. patent applications by nearly two years, on average — as a natural experiment.

To guide our empirical analysis, we develop a theoretic framework in which AIPA provisions news

shocks to inventors about recent technologies, and we derive a set of testable assumptions and

predictions.

Consistent with the framework’s implications, our event study analysis implies that AIPA

(i) increased the magnitude and the pace of knowledge diffusion associated with U.S. patents;

(ii) increased overlap between technologically distant patents; decreased overlap between similar

patents; (iii) lowered inventive steps and patent scope; (iv) decreased patent abandonments; and

(v) increased U.S. patenting.

We then establish the causal effects of AIPA by comparing U.S. patents subject to AIPA’s

accelerated 18 month disclosure with “twin” European patents which were always disclosed at 18

months. This “twin” study design allows us to control for unobserved characteristics of each patent

family (comprising the U.S. patent and its EP twin) and to account for quality-based selection

into patenting or early disclosure using family-fixed effects. This “twin” analysis largely aligns

with our event-study analysis: (i) U.S. patents’ follow-on citations increase; (ii) U.S. patents’ time
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lag to citations decrease; and (iii) technological overlap increases between distant but related U.S.

patents and decreases between highly similar U.S. patents.

Lastly, we link speedier disclosure of inventions to real measures of innovation, such as R&D,

by exploiting firm-specific exposure to AIPA. Firms exposed to one standard deviation longer

patent grant delays increased their R&D investment by 4% after AIPA, suggesting that AIPA had

significant effects on incentives to innovate.

Overall, we provide causal evidence that patent publication matters and that rules governing

the timing of publication can have a profound impact on follow-on innovation. Early disclosure

appears to promote knowledge diffusion, to lower patenting costs, and to reduce technology du-

plication. We also find that overall, patent publication’s effect on reducing the cost of innovation

through knowledge diffusion dominates possible losses from free-ridership, resulting in a net in-

crease in patenting and R&D investments. Our findings imply that welfare analyses of patents

should incorporate their information disclosure effects.
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Figure 1: Thomas Edison’s Light Bulb Patent

Figure 2: Model Timing

This figure depicts the timing of our model’s stages (1) Pre-AIPA and (2) Post-AIPA.
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Figure 3: Citations to U.S. patents before and after AIPA

The figures plot the monthly average number of forward citations (excluding self-citations) to U.S. patents filed
during 1998-2003. Forward citations are counted cumulatively 3/5/7/10 years after patent disclosure (i.e.,
publication date for patents with pre-grant publications and grant date for those without). The solid line in each
graph represents an OLS regression line fit using only pre-AIPA patents. The vertical dashed line represents
AIPA’s effective date (November 29, 2000).

(A) (B)

(C) (D)
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Figure 4: Citation lags of U.S. patents before and after AIPA

The figures plot the monthly average citation lags for U.S. patents filed during 1998-2003. Citation lag is
measured as the number of months between the application date of a focal patent and the application dates of its
first or first 3, 5, 7 non-self forward citations. Only patents that have accumulated the required number of forward
citations within ten years after application are included. The vertical dashed line represents AIPA’s effective date
(November 29, 2000).

(A) (B)

(C) (D)
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Figure 5: Technology similarity of U.S. patents before and after AIPA

The figures plot the monthly average technology similarity between U.S. patents filed during 1998-2003 and their
“next-generation” patents. Similarity is measured as the pair-level cosine similarity, based on the distribution of
IPC main groups (IPC 7-digit code), between the focal patent and patents in its next generation.
“Next-generation” patents are those that were filed in the same IPC technology subclass (IPC 4-digit code) within
the window of 19-36 months after the focal patent’s filing. We then take the 5th, 10th, 15th, 25th, 50th, 75th,
85th, 90th, and 95th percentile values across all “next-generation” patents to construct a patent-level similarity for
each focal patent. The solid line in each graph represents an OLS regression line fit using only pre-AIPA patents.
The vertical dashed line represents AIPA’s effective date (November 29, 2000).

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)
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Figure 6: U.S. patent renewal, originality, claims, and abandonment

The figures plot the average renewal rates in Panel A and originality index in Panel B by application month during 1998-2003. Panels C-E plot the average
number of total allowed claims, independent claims, and average words per independent claim for issued patents. Panel F plots the monthly average
abandonment rates. The solid line in each graph represents an OLS regression line fit using only pre-AIPA patents. The vertical dashed line represents
AIPA’s effective date (November 29, 2000).

(A) (B) (C)

(D) (E) (F)
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Figure 7: Citations to US-EP “twins” before and after AIPA

The figures plot the monthly average number of forward citations (excluding self-citations) to U.S. patents and
their equivalent “twins” at the European Patent Office (EPO) filed during 1998-2003. Forward citations are
counted cumulatively 3/5/7/10 years after patent disclosure (i.e., publication date for patents with pre-grant
publications or grant date for those without). We normalize the average by its value at the beginning of the sample
period. Citations data are obtained from the USPTO and PATSTAT. The vertical line represents AIPA’s effective
date (November 29, 2000).

(A) (B)

(C) (D)
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Figure 8: Citation lags of US-EP “twins” before and after AIPA

The figures plot the monthly average citation lags of U.S. patents and their equivalent “twins” at the European
Patent Office (EPO) filed during 1998-2003. Time lag is measured as the number of months between the
application date of a focal patent and the application dates of its 1st/3rd /5th/7th forward citations. Only patents
that have accumulated the required number of forward citations within ten years after application are included.
The vertical line indicates AIPA’s effective date (November 29, 2000).

(A) (B)

(C) (D)
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Figure 9: Similarity of US-EP “twins” before and after AIPA

The figures plot the monthly average technology similarity between patents filed during 1998-2003 and
“next-generation” patents for U.S. patents and their equivalent “twins” filed at the EPO. Similarity is measured
as the cosine distance, based on the distribution of IPC main groups (IPC 7-digit code), between the focal patent
and patents in its next generation. “Next-generation” patents are those that were filed in the same IPC technology
subclass (IPC 4-digit code) within the window of 19-36 months after the focal patent’s filing. We then take the
5th, 10th, 15th, 25th, 50th, 75th, 85th, 90th, and 95th percentile values across all “next-generation” patents to
construct a patent-level similarity for each focal patent. The vertical line indicates AIPA’s effective date
(November 29, 2000).

(A) (B) (C)

(D) (E) (F)
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Figure 10: AIPA’s effect on technology similarity at different percentiles (ventiles)

This figure plots the estimated AIPA effect on technology similarity measured at different percentiles (ventiles)
between focal patents and next-generation patents. The estimated AIPA effect is the coefficient on the interaction
term ‘US × Post AIPA (d)’. Refer to Table 6 notes for a description of the regression specification.

Figure 11: Patenting Intensity (U.S. v. EP)

The figures below plot the number of patent applications (the left graph) and eventually granted patent applications
(the right graph) filed during each month during 1998-2003 at the USPTO and EPO, respectively. The vertical
dashed line represents AIPA’s effective date (November 29, 2000).

(A) (B)

48



Figure 12: Compare the impact of R&D tax credit and AIPA on R&D

We compute the effect of AIPA on the R&D to sales ratio. Rao (2016) reports the effect of R&D user costs on

R&D to sales ratios. We use Rao (2016)’s R&D user cost formula ρ = (r+δ)(1−τ−c)
1−τ where r is the interest rate, δ

is the depreciation rate, τ is the corporate tax rate, and c is the R&D tax credit rate. Following Rao (2016), we
set δ = 0.15, c = 0.25 and we vary the interest rate and corproate tax rates on the axes. We set the carry-forward
provisions to zero.
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Table 1: Sample Counts
# US applications # EP equivalents Avg Twin Size

U.S. applications filed between Jan. 1, 1998 and Dec. 31, 2003 1,536,346
Exclude US ungranted patent applicants (abandoned or pending) 1,107,710
Exclude US patent applicants that dont match to EP equivalents 403,292 467,587 2.16
Require EP filings are non-PCT and filed w/in 18mo of US equivalent 316,563 354,227 2.12

Table 2: Variable definitions
Variable Definition

Opt Out (d) Dummy variable, equal one if the patent application is filed after the enactment of AIPA and opts out of
the pre-grant publication requirement.

Early Grant (d) Dummy variable, equal one if the patent application is granted 18 months after application.

3-yr forward cites The number of forward citations received within three years after disclosure (publication date for patents
with pre-grant publications and grant date for patents without). When followed by suffix ‘US’ (‘EP’), the
forward citing patents included in the computation are restricted to those applied in the USPTO (EPO).

X-yr forward cites The number of forward citations received within X years after disclosure. When followed by suffix ‘US’
(‘EP’), the forward citing patents included in the computation are restricted to those applied in the USPTO
(EPO).

Months to 1 cite The average time lag to receive the first forward citations conditional on having at least one forward
citation within ten years of application (unit: month).

Months to X cites The average time lag to receive the first X forward citations conditional on having at least X forward
citations within ten years of application (unit: month).

Similarity Xth Pctile The Xth percentile of the pair-wise cosine similarity based on the distribution of IPC main group assign-
ments (IPC 7-digit codes) of the focal patent and the next cohort patents (patents that are applied in the
same primary IPC subclass [IPC 4-digit codes] within the window of 19-36 months after the application
date of the focal patent). X ranges from 5 to 95.

3.5-yr Renewal (d) Dummy variable, equal to one if payment of renewal fees due in 3.5 years from grant date is made.

Originality One minus the Herfindahl index of the patent’s backward citations in each U.S. patent classification system
(USPC) technology class. Only backward citations of patents that are granted when the citations are made
are included.

Claims Total number of claims allowed at grant.

Independent Claims The number of independent claims allowed at grant.

Independent Claim Word Length The average number of words per independent claim.

Abandon (d) Dummy variable, equal one if the application is abandoned.
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Table 3: Summary Statistics

This table reports the summary statistics of key variables of interest for the universe of U.S. patents (patent
applications filed in the USPTO from 1998 to 2003 and granted by mid-2014) and U.S. patents with EP
equivalents. The sample composition is indicated in the table header. For more details on the variable definitions,
please refer to Table 2. We use (d) to denote dummy indicator variables.

(1) (2)
All US Patents US Patents with

EP Equivalents
#=1,107,710 #=316,563

Variable Mean S.D. Mean S.D.

3-yr forward cites 3.885 7.599 4.103 8.189
5-yr forward cites 6.779 13.079 7.261 14.29
7-yr forward cites 9.472 18.518 10.236 20.455
10-yr forward cites 13.191 26.718 14.433 29.938
Months to 1 cite 36.4 21.561 36.788 21.685
Months to 3 cites 39.667 20.45 39.888 20.579
Months to 5 cites 41.69 19.875 41.853 20.005
Months to 7 cites 43.631 19.318 43.747 19.466
Similarity 5th Pctile 0.005 0.034 0.005 0.031
Similarity 10th Pctile 0.009 0.048 0.008 0.044
Similarity 15th Pctile 0.013 0.062 0.013 0.058
Similarity 25th Pctile 0.033 0.101 0.031 0.095
Similarity 50th Pctile 0.126 0.215 0.117 0.2
Similarity 75th Pctile 0.311 0.319 0.296 0.302
Similarity 85th Pctile 0.432 0.334 0.41 0.319
Similarity 90th Pctile 0.517 0.326 0.49 0.314
Similarity 95th Pctile 0.634 0.299 0.601 0.292
Early Grant (d) 0.17 0.376 0.134 0.341
3.5-yr Renewal 0.872 0.334 0.889 0.314
Originality 0.439 0.276 0.441 0.276
Claims 18.24 17.2 19.086 17.708
Independent Claims 3.06 2.57 3.052 2.679
Independent Claim Word Length 160.252 104.049 156.637 102.877
Opt-Out Rate (2000-2003) 0.086 0.280 – –
Abandon (d) (1,536,346 Applications) 0.279 0.449 – –
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Table 4: AIPA’s effect on knowledge diffusion (extensive margin): “twin” analysis

This table reports DID estimates of AIPA’s effect on the extent of knowledge diffusion. The sample consists of
U.S. patents filed during 1998-2003 and their equivalent applications filed at the EPO. The regressions are
specified as follows:

Outcomeijt = α1 + α2I(USj) + α3I(USj)× I(Post AIPAt) + δWj + Familyi +Montht + ϵijt

where j indicates the patent application belonging to family i and filed in month t, and Wj represents patent
characteristics such as whether the patent is granted before 18 months. The dependent variable is the natural
logarithm of one plus 3/5/7/10-year forward citations (excluding self-citations). We include patent family fixed
effects and application month fixed effects; hence, the impact of AIPA is identified by the interaction term
I(USj)× I(Post AIPAt). In Panel B, we repeat the same regressions with the dependent variables as the forward
citations made by subsequent U.S. and EP patents, respectively. For brevity, only the coefficients on the
interactions are reported. Standard errors are clustered by application month for U.S. and EP patents, separately.
***, **, and * indicate 1%, 5%, and 10% significance levels, resp. (d) denotes dummy indicator variable.

Panel A: Main Analyses of Forward Citations

(1) (2) (3) (4)
Log 3-Yr. Forward
Cites

Log 5-Yr. Forward
Cites

Log 7-Yr. Forward
Cites

Log 10-Yr. Forward
Cites

Post AIPA × US (d) -0.017** 0.057*** 0.108*** 0.147***
(0.008) (0.009) (0.010) (0.011)

US (d) 0.806*** 0.986*** 1.093*** 1.207***
(0.006) (0.008) (0.008) (0.009)

Granted (d) 0.191*** 0.242*** 0.276*** 0.299***
(0.006) (0.006) (0.007) (0.007)

Early Grant (d) 0.419*** 0.516*** 0.572*** 0.606***
(0.009) (0.010) (0.010) (0.011)

Early Grant × US (d) -0.468*** -0.572*** -0.634*** -0.678***
(0.010) (0.014) (0.016) (0.017)

Family FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Observations 670,142 669,708 668,373 659,620
Adj R-squared 0.450 0.511 0.541 0.568

Panel B: Forward Citations by U.S. or EP Patents, respectively

(1) (2) (3) (4)
Log 3-Yr. Forward
Cites

Log 5-Yr. Forward
Cites

Log 7-Yr. Forward
Cites

Log 10-Yr. Forward
Cites

Citations by U.S. Patents
Post AIPA × US (d) -0.018** 0.048*** 0.094*** 0.133***

(0.008) (0.010) (0.011) (0.012)

Citations by E.P. Patents
Post AIPA × US (d) -0.004 0.018*** 0.036*** 0.048***

(0.002) (0.003) (0.003) (0.004)
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Table 5: AIPA’s effect on knowledge diffusion (intensive margin): “twin” analysis

This table reports DID estimates of AIPA’s effect on the speed of knowledge diffusion. The sample consists of
U.S. patents filed during 1998-2003 and their equivalent applications filed at the EPO. The dependent variable is
the average time between the patent application dates of the focal patent and its first X (=1/3/5/7) forward
citations. Only patents that have at least 1/3/5/7 forward citations (excluding self-citations) within ten years
after application are included. The regressions are specified as follows:

Outcomeijt = α1 + α2I(USj) + α3I(USj)× I(Post AIPAt) + δWj + Familyi +Montht + ϵijt

where j indicates the patent application belonging to family i and filed in the year t. Standard errors are clustered
by application month for U.S. and EP patents, separately. ***, **, and * indicate 1%, 5%, and 10% significance
levels, resp. (d) denotes dummy indicator variable.

(1) (2) (3) (4)
Log Months to Log Months to Log Months to Log Months to
1 Cite 3 Cites 5 Cites 7 Cites

Post AIPA × US (d) -0.254*** -0.294*** -0.292*** -0.274***
(0.013) (0.016) (0.023) (0.028)

US (d) -0.394*** -0.214*** -0.150*** -0.121***
(0.011) (0.012) (0.014) (0.019)

Granted (d) -0.201*** -0.178*** -0.147*** -0.139***
(0.015) (0.015) (0.021) (0.032)

Early Grant (d) -0.393*** -0.342*** -0.298*** -0.255***
(0.015) (0.021) (0.031) (0.043)

Early Grant × US (d) 0.149*** 0.079** 0.059 0.031
(0.026) (0.035) (0.052) (0.064)

Family FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Observations 454,497 318,794 239,577 188,668
Adj R-squared 0.284 0.327 0.347 0.375
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Table 6: AIPA’s effect on patent similarity: “twin” analysis

This table reports DID estimates of AIPA’s effect on technological similarity. The sample consists of U.S. patents
filed during 1998-2003 and their equivalent applications filed at the EPO. The regressions are specified as follows:

Outcomeijt = α1 + α2I(USj) + α3I(USj)× I(Post AIPAt) + δWj + Familyi +Montht + ϵijt

where j indicates the patent application, belonging to family i and filed in year t. Standard errors are clustered by
application month for U.S. and EP patents, separately. ***, **, and * indicate 1%, 5%, and 10% significance
levels, resp. (d) denotes dummy indicator variable.

(1) (2) (3) (4)
Similarity Similarity Similarity Similarity
50th Pctile 75th Pctile 90th Pctile 95th Pctile

Post AIPA × US (d) 0.013*** 0.010*** -0.008*** -0.013***
(0.001) (0.001) (0.001) (0.001)

US (d) 0.023*** 0.052*** 0.063*** 0.058***
(0.001) (0.001) (0.001) (0.001)

Granted (d) 0.009*** 0.018*** 0.010*** 0.005***
(0.001) (0.001) (0.001) (0.001)

Early Grant (d) -0.001 0.006*** 0.008*** 0.008***
(0.002) (0.002) (0.002) (0.002)

Early Grant × US (d) -0.002 -0.017*** -0.016*** -0.007***
(0.002) (0.002) (0.002) (0.002)

Family FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Observations 669,029 669,029 669,029 669,029
Adj R-squared 0.615 0.683 0.698 0.700
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Table 7: US-EP versus US-JP twin analyses

This table compares DID estimates of AIPA’s effect on the extent and the speed of knowledge diffusion across US-EP twins and US-JP twins. The
dependent variable is the natural logarithm of one plus 3/5/7/10-year forward citations (excluding self-citations) in Panel A and the time lag of forward
citations in Panel B. Columns (1), (3), (5), and (7) use US-JP twins that do not have EP equivalents while Columns (2), (4), (6), and (8) use our main
sample (i.e., US-EP twins). Differences in AIPA effects across the two samples are tested using two-tailed t-tests, and reported at the bottom of the panels.
All regression specifications are the same as our main specifications except that we add country-specific linear time trends in all regressions. For brevity,
only the coefficients on the interactions (‘Post AIPA × US(d)’) are reported. Standard errors are clustered by application month for U.S., EP, and JP
patents, separately. ***, **, and * indicate 1%, 5%, and 10% significance levels, resp. (d) denotes dummy indicator variable.

Panel A. Forward citations

(1) (2) (3) (4) (5) (6) (7) (8)
Log 3-Yr. Forward Cites Log 5-Yr. Forward Cites Log 7-Yr. Forward Cites Log 10-Yr. Forward Cites
US-JP US-EP US-JP US-EP US-JP US-EP US-JP US-EP

Post AIPA × US (d) 0.042* -0.025 0.129*** 0.070** 0.175*** 0.114*** 0.207*** 0.141***
(0.025) (0.030) (0.029) (0.035) (0.032) (0.038) (0.033) (0.041)

Controls Y Y Y Y Y Y Y Y
Family FE Y Y Y Y Y Y Y Y
Month FE Y Y Y Y Y Y Y Y
Observations 669,877 247,903 668,218 247,805 659,154 247,071 642,640 243,208
R-squared 0.710 0.738 0.743 0.770 0.762 0.784 0.778 0.797

Difference in AIPA Effect 0.068** 0.059** 0.061* 0.066**
(0.028) (0.029) (0.032) (0.033)

Panel B. Citation lags

(1) (2) (3) (4) (5) (6) (7) (8)
Log Months to 1 Cite Log Months to 3 Cites Log Months to 5 Cites Log Months to 7 Cites
US-JP US-EP US-JP US-EP US-JP US-EP US-JP US-EP

Post AIPA × US (d) -0.366*** -0.196*** -0.278*** -0.236*** -0.275*** -0.242*** -0.259*** -0.211***
(0.021) (0.026) (0.023) (0.021) (0.027) (0.022) (0.032) (0.023)

Controls Y Y Y Y Y Y Y Y
Family FE Y Y Y Y Y Y Y Y
Month FE Y Y Y Y Y Y Y Y
Observations 317,853 138,280 149,423 65,699 81,400 34,544 49,424 19,989
R-squared 0.616 0.674 0.635 0.712 0.637 0.725 0.641 0.737

Difference in AIPA Effect -0.170*** -0.042 -0.032 -0.048
(0.030) (0.031) (0.034) (0.041)
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Table 8: Heterogeneous effects of AIPA: PCT Filing Status and Inventor Country of Origin

This table reports the heterogeneous AIPA effects by Patent Cooperation Treaty (PCT) filing status in Panel A and inventors’ country of origin in Panel B
on forward citations, excluding self-citations, (Columns (1)-(4)) and citation lags (Columns (5)-(8)). When the US-EP patent family has affiliated PCT
filings, we set the PCT filing indicator to be one (‘PCT Filing (d)’). We use the first inventor’s country of residence and code it as one if the inventor
resides outside the US (‘Foreign Inventor (d)’). Each family has the same PCT filing status and first inventor, hence these standalone terms are absorbed
by family fixed effects. The regression specification is the same as the ones used to obtain our main results except that we add interaction terms here. We
report only the key coefficients for brevity. Standard errors are clustered by application month for U.S. and EP patents, separately. ***, **, and * indicate
1%, 5%, and 10% significance levels, resp.

Panel A: PCT Filing Status

(1) (2) (3) (4) (5) (6) (7) (8)
Log 3-Yr. For-
ward Cites

Log 5-Yr. For-
ward Cites

Log 7-Yr. For-
ward Cites

Log 10-Yr. For-
ward Cites

Log Months to 1
Cite

Log Months to 3
Cites

Log Months to 5
Cites

Log Months to 7
Cites

Post AIPA × US × PCT Filing (d) -0.126*** -0.111*** -0.108*** -0.105*** 0.172*** 0.068*** 0.014 0.020
(0.011) (0.012) (0.013) (0.013) (0.016) (0.021) (0.034) (0.037)

Post AIPA × US (d) 0.027*** 0.090*** 0.137*** 0.170*** -0.289*** -0.283*** -0.271*** -0.257***
(0.006) (0.008) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010)

Observations 670,108 669,608 668,081 658,352 317,853 149,423 81,400 49,424
Adj R-squared 0.491 0.557 0.590 0.619 0.312 0.362 0.370 0.380

Panel B: Foreign Inventors

(1) (2) (3) (4) (5) (6) (7) (8)
Log 3-Yr. For-
ward Cites

Log 5-Yr. For-
ward Cites

Log 7-Yr. For-
ward Cites

Log 10-Yr. For-
ward Cites

Log Months to 1
Cite

Log Months to 3
Cites

Log Months to 5
Cites

Log Months to 7
Cites

Post AIPA × US × Foreign Inventor (d) 0.122*** 0.114*** 0.108*** 0.097*** -0.164*** -0.083*** -0.026 -0.020
(0.014) (0.015) (0.016) (0.018) (0.019) (0.023) (0.038) (0.038)

Post AIPA × US (d) -0.100*** -0.024** 0.025** 0.072*** -0.140*** -0.233*** -0.274*** -0.261***
(0.009) (0.011) (0.011) (0.012) (0.015) (0.017) (0.032) (0.033)

Observations 669,877 668,218 659,154 642,640 317,853 149,423 81,400 49,424
Adj R-squared 0.469 0.532 0.565 0.592 0.286 0.330 0.340 0.354
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Table 9: Heterogeneous effects of AIPA: Pre-AIPA Grant Delays and Opt-Out Exposure

This table reports the heterogeneous AIPA effects by pre-AIPA application-grant time delay in Panel A and opt-out prevalence in Panel B on forward
citations, excluding self-citations, (Columns (1)-(4)) and citation lags (Columns (5)-(8)). We compute the average time delay (in years) by IPC main
technology class (4-digit) for US patents filed in the three-year pre-AIPA period (‘Application Grant Delay’). We measure the prevalence of opt-outs by
computing the percentage of US patents that are filed during the 3-year post-AIPA period (2000-2003) in each 4-digit IPC class (‘Opt-Out Ratio’), since
opt-outs are only available post-AIPA. Both ‘Application Grant Delay’ and ‘Opt-Out Ratio’ vary by technology class and do not not vary over time, hence
the standalone term is absorbed by family fixed effects. The regression specification is the same as the ones used to obtain our main results except that we
add interaction terms here. We report only the key coefficients for brevity. Standard errors are clustered by application month for U.S. and EP patents,
separately. ***, **, and * indicate 1%, 5%, and 10% significance levels, resp.

Panel A: Pre-AIPA Grant Delay Exposure

(1) (2) (3) (4) (5) (6) (7) (8)
Log 3-Yr. For-
ward Cites

Log 5-Yr. For-
ward Cites

Log 7-Yr. For-
ward Cites

Log 10-Yr. For-
ward Cites

Log Months to 1
Cite

Log Months to 3
Cites

Log Months to 5
Cites

Log Months to 7
Cites

Post AIPA × US × Application Grant Delay 0.039*** 0.060*** 0.065*** 0.061*** -0.084*** -0.124*** -0.140*** -0.087***
(0.010) (0.010) (0.010) (0.010) (0.016) (0.015) (0.018) (0.021)

Post AIPA × US (d) -0.107*** -0.084*** -0.050** -0.002 -0.067* -0.010 0.034 -0.071
(0.023) (0.023) (0.024) (0.024) (0.036) (0.037) (0.045) (0.053)

Observations 669,470 667,812 658,749 642,237 317,660 149,339 81,344 49,398
Adj R-squared 0.461 0.521 0.553 0.578 0.281 0.321 0.330 0.339

Panel B: Opt-Out Exposure

(1) (2) (3) (4) (5) (6) (7) (8)
Log 3-Yr. For-
ward Cites

Log 5-Yr. For-
ward Cites

Log 7-Yr. For-
ward Cites

Log 10-Yr. For-
ward Cites

Log Months to 1
Cite

Log Months to 3
Cites

Log Months to 5
Cites

Log Months to 7
Cites

Post AIPA × US × Opt-Out Ratio 0.404*** 0.392*** 0.325*** 0.258** -0.668*** -0.816*** -0.996*** -0.623*
(0.111) (0.110) (0.116) (0.122) (0.179) (0.197) (0.295) (0.354)

Post AIPA × US (d) -0.049*** 0.024** 0.073*** 0.116*** -0.207*** -0.237*** -0.221*** -0.230***
(0.010) (0.011) (0.012) (0.013) (0.016) (0.017) (0.028) (0.032)

Observations 669,809 668,150 659,086 642,572 317,837 149,417 81,396 49,420
Adj R-squared 0.462 0.524 0.556 0.582 0.280 0.319 0.328 0.339
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Table 10: Placebo analysis with self-citations

This table reports DID estimates of AIPA’s effect on self-citations. Panel A uses the logged citation count (one
plus the number of self-citations and then take natural logarithm) while Panel B uses the percentage of
self-citations relative to total forward citations as the dependent variable. The regression specification is the same
as the ones used in our main analyses. Standard errors are clustered by application month for U.S. and EP
patents, separately. ***, **, and * indicate 1%, 5%, and 10% significance levels, resp. (d) denotes dummy
indicator variable.

Panel A. Self-citation count

(1) (2) (3) (4)
Log 3-Yr. Forward
Self-Cites

Log 5-Yr. Forward
Self-Cites

Log 7-Yr. Forward
Self-Cites

Log 10-Yr. Forward
Self-Cites

Post AIPA × US (d) -0.091*** -0.038*** 0.001 0.034***
(0.004) (0.006) (0.006) (0.006)

Observations 669,877 668,218 659,154 642,640
Adjusted R-squared 0.242 0.288 0.324 0.353

Panel B. Self-citation percentage

(1) (2) (3) (4)
Self-Cite Share of
Total 3-Yr. For-
ward Cites

Self-Cite Share of
Total 5-Yr. For-
ward Cites

Self-Cite Share of
Total 7-Yr. For-
ward Cites

Self-Cite Share of
Total 10-Yr. For-
ward Cites

Post AIPA × US (d) -0.037*** -0.016*** -0.008*** -0.004***
(0.002) (0.002) (0.002) (0.001)

Observations 669,877 668,218 659,154 642,640
Adjusted R-squared 0.218 0.264 0.293 0.314
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Table 11: Patenting intensity

This table reports Ordinary Least Squares (OLS) regression analysis of patenting intensity around AIPA’s
enactment. In Columns (1) and (2), the dependent variable is the number of applications and granted applications
filed in each month from 1998 to 2003 at each patent office (USPTO or EPO). In Columns (3)-(6), we conduct
the analysis at patent-office × technology-class × month level. The dependent variable is the monthly count of
applications or granted applications by technology class (primary IPC 4-digit code) filed at each patent office.
Robust standard errors are reported in parentheses. ***, **, and * stand for statistical significance based on
two-sided tests at the 1%, 5%, and 10% level, respectively. (d) denotes dummy indicator variable.

(1) (2) (3) (4) (5) (6)
#Application #Grant #Application #Grant #Application #Grant

Post AIPA × US (d) 2,303.815*** 1,158.371*** 3.694*** 1.857*** 3.641*** 1.834***
(549.774) (351.626) (0.516) (0.436) (0.515) (0.436)

US (d) 11,061.429*** 9,883.629*** 18.498*** 16.504*** 18.541*** 16.529***
(449.807) (285.939) (0.324) (0.282) (0.324) (0.282)

Post AIPA (d) 1,498.057*** 326.659*** 2.532*** 0.564*
(225.647) (110.988) (0.337) (0.300)

Fixed Effects No No IPC4 IPC4 IPC4, Month IPC4, Month
Observations 144 144 86,797 86,797 86,797 86,797
R-squared 0.938 0.963 0.740 0.655 0.741 0.656
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Table 12: AIPA’s effect on R&D investment: U.S. public companies

This table reports the AIPA’s impact on R&D investments by U.S. public companies. The dependent variable, indicated in the table header, is the level of
R&D investment (natural logarithm of R&D expenses in Columns (1)-(3)) and R&D intensity (R&D expenses scaled by total sales in Columns (4)-(6)).
Both measures are winsorized at the 1% level. ‘Post AIPA (d)’ is a dummy indicator equal one if the fiscal year ends after the effective date of AIPA
(November 29, 2000) and zero otherwise. ‘Firm Exposure to AIPA’ is the firm-specific exposure to the AIPA shock measured by the median
application-grant delay (in years) by USPC technology class weighted by the firm’s patent share in each class. The portfolio weight is based on the firm’s
portfolio of patents filed from January 1, 1998 to November 28, 2000. Exposure is set to be zero for firms without any patent applications. Standard errors
are clustered by firm. ***, **, and * stand for statistical significance based on two-sided tests at the 1%, 5%, and 10% level, respectively. (d) denotes
dummy indicator variable.

(1) (2) (3) (4) (5) (6)
Log R&D Log R&D Log R&D R&D to Sales

Ratio
R&D to Sales
Ratio

R&D to Sales
Ratio

Sample: Sales≥10m Sales≥20m Sales≥50m Sales≥10m Sales≥20m Sales≥50m

Post AIPA (d) -0.0309 -0.0343 -0.0469* 0.00244 0.00971 -0.00116
(0.0208) (0.0221) (0.0252) (0.0122) (0.0122) (0.00249)

Post AIPA × Firm Exposure to AIPA 0.0297*** 0.0288*** 0.0282*** 0.00550** 0.00355** 0.00193**
(0.00871) (0.00922) (0.0107) (0.00267) (0.00181) (0.000934)

Size 0.364*** 0.369*** 0.369*** 0.0311* 0.0267* 0.00339
(0.0212) (0.0237) (0.0308) (0.0180) (0.0152) (0.00531)

Tobin’s Q -0.0133*** -0.0141*** -0.0141*** -0.00401* -0.00342* -0.00387***
(0.00365) (0.00403) (0.00516) (0.00240) (0.00188) (0.00125)

Return on Assets -0.134*** -0.116*** -0.0776 -0.0781*** -0.0549*** -0.0343**
(0.0343) (0.0395) (0.0582) (0.0171) (0.0174) (0.0160)

Loss 0.0811*** 0.0775*** 0.0753*** 0.0300*** 0.0273*** 0.0218***
(0.0140) (0.0149) (0.0179) (0.00534) (0.00546) (0.00292)

Leverage -0.193*** -0.198*** -0.181** 0.00430 -0.0236 -0.0179
(0.0663) (0.0715) (0.0860) (0.0674) (0.0585) (0.0159)

Controls Y Y Y Y Y Y
Observations 17,978 16,406 13,693 17,978 16,406 13,693
R-squared 0.967 0.968 0.969 0.737 0.684 0.863
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