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ABSTRACT

The literature on inventory holdings stresses their role in smoothing
production when costs are convex. Existing empirical evidence suggests that
output is more variable than consumption so that production smoothing is not
apparently present. One way of explaining this finding is to allow for non-
convex technologies. In this paper, we investigate some macroeconomic
implications of the proposition that at least some firms in the economy
produce with non-convex technologies.

We begin our analysis by studying a simple Robinson Crusce economy with a

single, storable good which is produced from a non-convex technology. The
single agent can produce a finite amount of output simply by incurring a fixed
production cost. We demonstrate that the efficient solution to this problem
will entail periods of production followed by periods of inactivity: 1i.e.
production will be bunched rather than smoothed. More importantly,
inventories will be used to smooth consumption relative to this production
path. Still, as long as the agent discounts the future or inventories
depreciate over time, consumption will mnot be totally smooth. Instead,
consumption will be highest in pericds of production. Thus the non-convex

technology will induce fluctuations in both production and consumption.

Using this analysis as a starting point, we then consider the implications
of a non-convex technology in one sector of the economy for the behavior of
other sectors through intersectoral technological linkages for both
centralized and decentralized economies. For the centralized setting, the
extent to which non-convexities spill over to other sectors depends on the
degree to which intermediate and final goods can be inventoried and the nature
of the technological interaction between factors. For the decentralized
economy, the production of inputs which are strategic complements
(substitutes) will be synchronized (staggered). Thus the presence of
strategic complementarities (as in imperfectly competitive markets) will imply
that non-convexities will have aggregate implications.
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I. Intfoduction

Macroeconomic models based on convex preferences and technologies generally
have difficulty in explaining observed fluctuations in the economy. This is
primarily a consequence of the smoothing implications of comvex economies. In
order to match observed fluctuations in a convex environment, it is necessary
to either introduce large, aggregate stochastic elements into the analysis or
large intertemporal substitution effects.

This tension between the smoothing effects of convex preferences and
technologies and the presence of fluctuations is, perhaps, best exemplified in
the literature on inventories. The initial models of inventories stressed
their role in smoothing production relative to fluctuating sales when
technologies are convex. Evidence on the time series of production and sales
(see, e.g., Blinder [1986] and West [1986]) indicates that, in contrast to the
predictions of the production smoothing model, the variance of sales appears
to be significantly less than the variance of output. This observation has
led to the development of alternative models of inventory holding whose
predicted relative variances for production and sales are consistent with the
data.l

One of these alternatives is to assume that production technologies are not
convex. For example, the operations research literature on production, sales
and inventories generally assumes that there is a start-up cost to a
production run and a constant marginal cost of production leading to the
bunching of production relative to sales, i.e. the (S,s) model.2 These models
generally have the implication that the va;iance of production exceeds the
variance of sales at the level of the individual firm.

The goal of this paper is to investigate the aggregate implications of this



microeconomic explanation for the observed behavior of inventory, sales and
production. Given the role that inventories play in the business cycle, it
seems natural to inquire whether or not an economy with non-convexities in
technology at the firm level will display other properties of the cycle,
particularly, the smoothing of consumption relative to production and the
observed co-movement of sectors. Further, over the course of a cycle,
variations in inventories are common across sectors of the economy. Finally.
one tends to observe that the variance of production exceeds that of sales
even for aggregate variables at business cycle frequencie&3 For a cheory of
production bunching at the firm level to be consistent with this observation
requires some synchronization in the production of goods economy-wide.
Otherwise, the non-convexities at the firm level will be smoothed by the
aggregation across firms.a

Section II of the paper focuses on the first issue, the correlations
between consumption, production and inventories predicted by this production
bunching model. Here we investigate the sclution to the programming problem
of a single agent with a non-convex technology. We find that the ecoromy will
quite mnaturally exhibit cycles in production and that, in the presence of
depreciating inventories and/or discounting, consumption will be positively
correlated with production. These results should not be totally surprising in
that the bunching of production is almost an immediate consequence of the
assumed technology. However, the fact that consumption 1is timed with
production is of greater interest. The fixed cost of a production run creates
a discontinuity in the cost of borrowing: in the period just before a
production run inventories are completely exhausted so that it is quite costly

to increase consumption in this period relative to others. Thus consumption

tw



fluctuates with production.

Based on these results, Section III focuses on the issue of aggregation and
spillovers to other sectors linked through factor demand flows 1in a
centralized setting.5 We find that the extent to which the production
bunching of final goods spills over to intermediate inputs depends on the cost
of holding inventories. If, to take an extreme case, factors cannot be held
in inventory, then the production of intermediate goods will be synchronized
with the production of final goods. The predictions of this model are related
to Blinder’s [1981, 1986] argument that non-convexities are more important in
retail trade than in manufacturing. The point is that the production bunching
in the retail sector spills over to the manufacturing sector creating large
fluctuations in production there as well.

We also investigate the implications of non-convex technologies in the
production of intermediate goods. In this discussion, we focus on whether the
production of intermediate goods will be synchronized or staggered and the
resulting implications for final goods production. Here, we find that the
extent to which production bunching in one intermediate goods sector spills
over to other intermediate inputs and final goods depends on inventory holding
costs and the degree of substitutability between factors within the production
process.

Drawing on Section III, we then consider a decentralized environment in
which sellers of inputs have non-convex technologies. In this setting, we
investigate a timing game between these sellers. If the payoff functions for
these sellers exhibits strategic complementarity (substitutability), then the
equilibrium in this game is synchronization (staggering) of production runs.

Thus the non-convexities at the firm level -7ill have aggregate implications in



the presence of strategic complementarities. This is of interest given the
role of strategic complementarities in understanding multiplier effects and
coordination difficulties in closely related macroeconomic audels‘6

Overall, we find that smoothing by aggregation need not occur when
activities are sufficiently complementary and the holding of inventories is
sufficiently costly. In these environments, the presence of non-convexities
in a subset of the sectors of the economy can have interesting aggregate
implications. OQur conclusion outlines a number of extensions of this model to
look at final demand linkages and provides a discussion of the implications of

. ; 7
our results for macroeconomic fluctuations.

II. Inventory, Consumption and Qutput Fluctuations with Non-Convex Technology

In this section, we consider the intertemporal choice pfoblem of a
representative agent. The agent is endowed with labor time in each period of
his infinite lifetime which can be utilized in the production of a single
commodity. Inventories of this commodity depreciate at rate § each period.
This good is produced from a non-convex technology: there is a fixed cost of
initiating a production run, K, and zero marginal cost up to a capacity, Q.
At this stage, we treat K and Q as exogenous.

The choice problem of the agent is:
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(1) max )} 8" [u(cy) - C(a)]
(e (a,) “ o

subject to:

(1.a) e + I =T (-8 +q,

(1.b) I=0,
0 if 9" 0

(l.¢) C(qt) - K if qte (0,Q] and
o otherwise

(1.d) I_l-O

In this problem, q, refers to the level of production in period t, It is
the level of inventory holdings at the end of the period and c, is the level
of consumption within a period. The accumulation equation for inventories is
given by (l.a) with the stock of inventories at the start of period O set at
0. The agent disc..nts utility at rate g€(0,1] and goods depreciate at rate
§e(0,1]. The non-convexity of the technology is reflected in the cost
function, C(qt).8 Labor time is the only input into this production process
so that the cost of production should implicitly be interpreted as labor
costs, incorporating the technology and the disutility of work. The utilitcy
function for consumption, u(+), is strictly increasing and strictly concave
and u’'(c)=>» as c¢~0 so that ctzo is not included as a constraint.

The following two lemmas characterize the consumption of the agent for a

given production plan. That is, we solve for the optimal (ct) given (qt).
Lemma 1: If, in the solution to (1), (1.b) is not binding for period t, then

(2) u’(ct)-ﬁ(l-6)u’(ct+l).




Lemma 2: If, in the solution to (1), (l.b) is binding for period t, then

(3 w'{e )>B(1-6)u’ (e ).

The proofs of these lemmas and all propositions to follow bare in the
Appendix of this paper. Lemma 1 states that if the non-negativity constraint
on inventories does not bind, then the agent will equalize the marginal rate
of substitution over two adjacent periods to.the return on the storage
technology, as in (2).9 If the constraint that ItzO is binding, then the
agent would prefer to increase consumption in period t but is unable tc, as in
(3). Note that when (2) holds and A(l-§)<l, consumption will monotonically
decrease over time. Consumption may increase discontinuously between periods
t and t+l when (1.b) binds, as in (3).

We show that the solution to (1) entails production every T periods and
consumption out of inventories between times of production. In the period
before the next production run, inventories equal zero. This solution is
similar to that of the (S,s) literature though our model is simplified by the
fact that once production occurs, the agent always produces Q units and that
inventories fall to zero prior to production.lo Note that this allocation
constitutes a stationary periodic allocation: consumption and inventory
holdings can be determined solely by time relative to the production run,
indexed by r=1,...,T, where r=1 indicates a production run.

To understand the optimality of this solution, consider the sub-problem of
deciding on consumption and inventories given that the agent produces Q units

of the good every T periods. This is basically a T-period cake eating problem



with discounting and depreciation. In our proposed solution to (1), the
individual consumes according to (2) until the period just before a new

delivery of goods and then eats all of the remaining inventories.

Proposition 1: If, in the solution to (1), there exists a T such that the
agent produces every T periods, then e, will satisfy (2), Ir will satisfy

(l.a) and the condition that IT-O for r=T.

This proposition characterizes consumption and inventory behavior for a
hypothesized production plan. The next step of characterizing the optimal
value of T proceeds in two stages: first we show that the optimal production
plan will imply production every T periods and second we find the optimal time
between production periods, ’I‘*

To ensure that the analysis of production bunching is not vacuous, we
assume production is costly enough that there will not be a production run
each period yet is not so costly that production never occurs. The actual
assumptions on the primitives of the problem to ensure an interior solution
are stated below.

The discussion which follows uses the fact that the stock of inventories is
the only state variable in this problem. Hence, by optimality, we know that
the lifetime utility is dependent only on this state variable though this
level of wutility may be supported by more than one path .of the choice
variables. With this in mind, we also make use of the fact that given the
state variable, we can choose among the various paths which yield the same

level of lifetime utility.



Proposition 2: The solution to (1) entails production every T periods.

*

The final stage of -characterizing T in general is a bit harder. Suppose
that the.agent produced every T periods and consumed all of the good by the
period prior to a production run. Then the utility over the T periods, W(T).

would be given by

T
W(T) = max E ﬂTU(CT)
(cr) =1
subject to:
IT =0,
Il = Q - cl and
IT- (1-6)IT_1 -c, for r= 1,...,T-1

Here, the stock of inventories at the end of the period before a production
run is constrained to equal zero,

The lifetime utility of an agent from producing every T periods is then

W(T) - K
V(T) =

1-8

From this, an increase in T will have two effects. First, a given production
run will be -split over more periods. This is a cost in that increasing the
span between production periods reduces W(T)/l-ﬂT.ll Second, the cost of
production will be delayed and this is beneficial to the agent. The optimal T

trades off these costs and benefits.

At this stage, we can state more formally the assumptions which are
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sufficient for an interior solution. In particular, assume that u(Q)<K and
that there exists a T<= such that W(T)>K. So, production will occur but is
not profitable in each period.

*
While a full characterization of T is difficult to obtain, we can show

that
: : * : z Y
Proposition 3: T 1is a non-decreasing function of K.

As a special and more tractable case, suppose that there is no discounting
(B=1) and no depreciation (§=0). In the absence of discounting, we compare
two programs based on the average utility they generate. For this
specification, per period consumption if the agent produces every T periods

12

will simply be Q/T. With this in mind, one can characterize the optimal

frequency of production through

Proposition 4: If B=(1-6)=1, then T* solves u’(Q/T*) = K/Q.

Thus, when there is no discounting and no depreciation, we obtain a clean

. 2 * . . - z
characterization of T . Note that the time between production periods is an
- . - - * .
increasing function of K. Further, as capacity rises, T actually falls if

, » . c s 13 R oo . .
u’(c) + cu”(c) is positive. This is somewhat surprising. An increase in Q
has two effects: output per production run increases and cost per unit falls.

The latter effect dominates the former if u(«) is not too concave.

The significant part of this solution 1is the predicted patterns of

consumption, produc:ion and inventories. The model, due to the non-convex
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technology, implies production bunching and consequently that production will
be much more volatile than sales (consumption). As discussed by Blinder
[1981] and Ramey [1987], it is not very surprising that this non-convex
technology can reproduce the observed relationship between the variances of
production and sales. Of additional interest though is that consumption
fluctuates if A(1l-6)<1. From (2), consumption falls between production
periods but is also a stationary function of the time since production, r.
Hence consumption in peried 0 and T* will be equal and higher than consumption
in period T*-l. The cost of initiating a new production run earlier creates
an endogenous borrowing éonstraint in this economy which implies that
consumption will fluctuate with production. If B(l-6)=1, then consumption
will be smoothed over time and independent of production periods.

Is this model important for macroeconomics? While the model succeeds in
reproducing the observed relative variances in production and sales, it does
so by introducing a non-convexity in the technology of the representative
agent. In light of the importance of inventories over the course of business
cycles, the obvious question is whether this non-convexity will have any
interesting aggregate implications. One immediate response i1s to appeal to a
smoothing by aggregation argument that these non-convexities will be
immaterial in the aggregate. This argument implicitly assumes that there are
multiple producers in the economy who stagger their production periods. The
sections that follow highlight circumstances in which the non-convexity at one
firm will spillover to other activities by focusing on economies with multiple

inputs and, in Section IV, many firms.

III. Factor Demand Linkages: Centralized jolution
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In this section we investigate factor demand linkages across sectors to

understand how production bunching induced by a non-convex technology in one

sector affects other sectors linked by factor demands. We examine this issue

by modifying the model of Section II to allow for intermediate goods
production and the associated intersectoral linkages.

The representative agent'’'s problem is altered to:

(&) max i " fu(e) - CnD]. <l
y z J -
te do(ngl, (ni), (IL) t=0
subject to: q q q q
(4.a) Ct + Ic =< It-l (1-67) + q. 0<st <1l
(4.b) q, = f(yt,zt)
(4.¢) yo + I =am)) + 1) (-6, 05671
- z z z z z
(4.d) z, It < h(nc) + It_l(l-s ), 0=<67<l
(4.e) Ii > 0 for j= q,y,z and
- z
4. £) n nc + ncs N.

As in Section II, the agent is endowed with N units of time in each period

which can be allocated towards the production of either of two intermediate

goods, y and z, where ny and nz are the amounts allocated to the two
activities respectively. The function C(+) explicitly represents the
disutility of labor and is assumed to be strictly convex. The two

intermediate goods are combined to produce the final consumption good q.
Inventories of each type of good as well as the associated depreciation rates
are denoted by appropriate superscripts. All initial stocks are assumed to be
zero.

In what follows, we consider the impact of nonconvex tectnologies at both
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the final goods and intermediate goods stage of production. We will be
implicitly assuming throughout that the parameters are such that production
bunching of the type analyzed in detail in Section II occurs in a sector
specified to have a nonconvex technology. Accordingly, our focus in this
section is on the spillover effects ;f production bunching in oﬁe sector on

other sectors linked through factor demands.

A. Downstream Nonconvexities
We begin our analysis of this model by considering an enviromnment in which
the final goods production technology is non-convex, while the intermediate

goods technologies are both assumed to be convex. Specifically,

0 for k(yt,zt) < K
(5)  flyz) =
: Q, otherwise.

and h'>0, h"<0, g’'>0, and g"<0. Assume that k(+) is differentiable. concave
and increasing in its two arguments.

Based upon the logic from the analysis of Section II, we take as given that
there exists a T* such that optimal production plans entail producing q, every
T* periods.la The following proposition characterizes the nature of the

spillover effects of such downstream bunching on upstream production plans.

*
Proposition 5: Suppose q is produced every T periods in the amount Q.
Then:

*
(i) §7-1 (62-1) implies y (z) is produced every T periods synchronized with
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the production of gq;
(ii) 0<67=8%<1 implies Yy, (zT) is increasing in r where P denotes the number
* 15

of periods since the last production of q (7 =1,...,T) Further, the

z

. ; : . : y :
rate of increase is an increasing function of §° (§7) and a decreasing

function of B.

Proposition 5 indicates the crucial role that inventories play in
determining whether nonconvexities from downstream firms spillover to upstream
firms. If intermediate goods cannot be held as inventories (and/or it is very
costly to do so), production bunching generated from downstream nonconvexities
will induce production bunching upstream for intermediate goods producers. If,
however, intermediate goods can be held as inventories at zero or very low
cost, then upstream firms facing convex costs will use inventories to smooth
production even though orders from downstream firms are bunched.

It is important to note that the nature of the interaction between the
alternative intermediate goods plays relatively 1little role in this
environment. Whether y and z are complements or substitutes will have
quantitative implications but this is not fundamental for the generation of
spillover effects. The key is the tension created by production bunching by
downstream firms and the desire for production smoothing by the convex
producers upstream.

A potentially interesting empirical application of Proposition 5 is the
interaction of the retail and manufacturing sectors of the economy. As noted
by Blinder ‘[1981], amongst others, the nature of the ordering and selling
process in the retail sector likely involves nonconvexities in the cost

structure. Proposition 5 can be interpreted as suggesting that manufacturing
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sectors supplying the retail sector may exhibit some production bunching due
to spillovers from the retail sector even if convex technologies are present

16

in the manufacturing sector. The degree of spillover will depend on how

inventoriable are the goods produced in the manufacturing sector.

B. Upstream Nonconvexities
We now turn our attention to nonconvexities present in the technology of

intermediate goods producers. In particular, initially assume:

0 if n>t' <K
(6) g(n)) =
Q, otherwise.

with f(yt,zt) and h(zc) both increasing, concave functions of their arguments.
Following the logic of Section II again, we take as given that there exists
a T* such that y is produced every T* periods in the amount Q.17 Our interest
is the consequences of such bunching for the production of the other
intermediate good and the final good.
In this environment there are potentially numerous cases to consider,

particularly in terms of the interaction of Ye and z To simplify matters we

e
focus on two polar assumptions regarding f(yt,zt); in particular, we consider
f(yt,zt) - mln(yt,zt) and f(yt,zt) -y + z,. The following propositions
summarize optimal production plans for Ye and 9, under these alternative

specifications.

*
Proposition 6 : Suppose that f(yc,zt) - min(yt,zt) and that there exists a T

*
such that y is produced every T periods in the amount Q. Then:
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*
L | implies q and z are produced every T periods synchronized

(1) 67 - &
with the production of y;

(ii) §7-1 but 0<s3<1 implies q is produced every T* periods synchronized with
the production of y and letting r be the number of periods since the last

*
production of y, zr is increasing in r, for <T ;

*
(iii) 6y<l but 52-1 implies zf and q,_ are decreasing in 7, for r<T .

Proposition 7: Suppose f(yt,zt) - yt + zt and that there exists a T* such that
y is produced every T* periods in the amount Q. Then:

(i) the minimum production of z will be in periods of production of y.
Further, letting r be the number of periods since the last production of vy, z,

>
is non-decreasing in r, for r<T ;

(ii) var(q) < var(y) + var(z).

Propositions 6 and 7 reveal that the nature of the spillover of
nonconvexities in upstream firms depends critically on the technological
interaction between intermediate goods. That is, Proposition 6 indicates that
if there exists strong complementarities between intermediate goods in  the
production of the final good then the nonconvexity in one intermediate good
sector tends to generate production bunching in the other intermediate goods
sector and consequently in the production of the final good.

This tendency is mitigated by the ability to hold inventories of the
intermediate goods. In particular, when z is storable at relatively low cost.
there will be some tendency to smooth the production of =z through building
inventories of z prior to the production of y. In contrast, when y is

storable at relatively low cost, there will again be some tendency to smooth
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the production of z but in this case by decumulating inventories of v in
accordance with the production of z. In either case, even though the ability
to hold inventories permits taking some advantage of production smoothing
incentives for z, there is still an important spillover effect from the non-
convex y sector in that the production of z will tend to be bunchea around the
production runs of y.

Proposition 7 indicates further that when strong substitutibilities are
present between intermediate goods there tends to be less spillover effects
from nonconvexities present in one intermediate goods sector. This is because
the technology permits substitution away from the production bunching
occurring in the one sector. Proposition 7 indicates that this will be true
as long as it is optimal to produce at least some of the intermediate good
with a convex technology. This substitution away from the nonconvexity
implies a negative covariance in the production of the two intermediate goods.
This negative covariance implies that the production of final goods will be
smoothed by this substitution.

Thus far in this section we have considered the question of whether
nonconvexities in one sector will spillover to other convex sectors. An
equally important issue 1is whether alternative sectors both facing
nonconvexities should synchronize or stagger their respective bunched
production plans. To consider this question, assume that both y and z involve

symmetric nonconvex technologies given by:

0 ifn <X
M g(n’) = ¢

t .
Q, otherwise.



. 0 if nz <K
(8) gln)) = .
Q, otherwise.

Further, to maintain complete symmetry also assume that §7 = 8%, For ease of
exposition, let 61 be the common depreciation rate.

Using the 1logic of Section II again and given the completely symmetric
specification of y and z under consideration, we take as given that there
exists a T* such that y is produced every T* periods and z is produced every
T* periods. Note, however, that the timing of the production runs could be
either synchronized or staggered. This timing question is addressed in the
following propositions.

Proposition 8 : Suppose that f(yt,zt) - min(yt,zt), C"=0, 6i > §% and there
exists a T* such that y and z are produced every T* periods in the amount Q,
then the production of y, z and q are perfectly synchronized.

Proposition 9: Suppose that f(yt,zt) =Y.tz Si > % and there exists a T*
such that y and z are produced every T* periods. Then:

(i) y and z are produced every T* periods but are completely staggered
(i.e., the production of y occurs T*/2 periods after the production of z);

(ii) q 1is produced every T*/2 periods synchronized with the staggered

production of y and z;

Propositions 8 and 9 reveal that the nature of factor demand linkages is
critical for whether alternative intermediate input sectors will stagger or

synchronize production if both face nonconvex technologies. Specifically,
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Proposition 8 indicates that if the intermediate inputs are perfect
complements, there is a tendency for synchronized production of these inputs.
In contrast, Proposition 9 suggests that in the presence of strong
substitutabilities between the intermediate inputs with nonconvex technologies
there is a tendency to stagger production. Overall, whether aggregation over
multiple inputs smooths out the bunching of production by individual sectors
depends critically on whether the sectoral linkages involve complements or
substitutes.

A few additional assumptions are made in Propositions 8 and 9 which deserve
comment. In Proposition 8 it is assumed that C"=0. This assumption removes
any disincentive to synchronize. If C">0, however, the incentive ¢to
synchronize with perfect complements still dominates so that the intermediate
goods would be produced either in the same period or in adjacent periods.

Further, in both Propositions 8 and 9 it is assumed that éi > s This
assumption is made primarily to reduce the number and complexity of cases to
consider. If this assumption is reversed then rather than converting
intermediate goods into final goods immediately, there would be a tendency to
convert intermediate goods into final goods at the time of consumption.
Otherwise, the basic message of the two propositions would be the same. That
is, there would be a tendency to synchronize the production of the
intermediate goods when they are strong complements and a tendency to stagger
the production of the intermediate goods when they are strong substitutes.

All of the results in this section pertain to a centralized environment in
which the decisions on inputs are coordinated by a single agent. This is

appropriate in a number of settings. First, one might argue that our results

characterize the decisions of large integrated firms in wnich the different
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input sources are the various subsidiaries of these corporations.
Equivalencly,v integrated firms can be reinterpreted as individual firms held
together by explicit binding contracts with regard to their production
activities. In that case, the optimization problems investigated in this
section would yield the solutions to the contracting problem between these
agents assuming that income effects are insignificant and ignoring any
informational asymmetries. Finally, one might view this section as pertaining
to a planned economy. As described, for example by Ickes [1986], planned
economies do undergo fluctuations in economic activities which might be
associated with non-convexities smoothed by the holding of inventories.
Ericson ({1983] presents a stochastic model of bottlenecks leading to
fluctuations in planned economies which stresses the role of factor
complementarities and inventories of intermediate goods.

Because of the non-convexities in the technology, we cannot argue that the
allocations characterized in this section can be supported as competitive
equilibria. For that reason, we now consider decentralized allocations with

non-convex production functions.

IV. Factor Demand Linkages: Decentralized Solution

Consider an economy in which two intermediate producers have a non-convex
technology and sell to a final goods producer which has a convex technology.
We distinguish two important cases with regard to the interaction between the
intermediate goods producers: strategic complements and strategic substitutes.
These terms refer to the nature of the strategic interaction between players
in the game. If there are two players each choosing a single dimensional

strategy variable, then strategic complementarity (substitutability) implies



that reaction curves are upward (downward) sloping. The main result reported
below is that in the presence of strategic complementarities, agents will
choose to synchronize production so that smoothing by aggregation will not
arise and the non-convexities at the individual level will have aggregate
implications.

Since strategic substitutability arises when many firms are producing
inputs which are perfect substitutes, our analysis yields an interesting
connection between market structure and fluctuations from non-convexities.
The fluctuations induced by the non-convexities are more likely to be
important at the aggregate level when markets are thin.

To understand this result, consider a game played by two agents, indexed by
i=1,2, who live forever. Player 1l's payoffs for period t are given by
wl(y(t),z(t)) where y(t) (z(t)) is agent l's (2's) output or sales in period
t. Player 2's preferences are defined analogously. Suppose that in this
economy, agent i receives an endowment of good i in period t and then these
endowments are traded thus generating, as a reduced form, the payoffs
described by wi(-). Agents are assumed to discount the future at rate 8.
Further, we assume that goods are not storable.18

We use this game tc mimic the economy with non-convexities in technology
while abstracting away from the choice of the frequency of production. In
particular, suppose that the endowment process fluctuates so that each agent
receives a high endowment in one period (H) followed by a low endowment in the
next, (L). The game is extended to the choice of the frequency of production
runs below.

The agents play a game of timing in which they choose whether to have their

period of high endowment in even or odd periods. This is a simple device for
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modelling decisions to stagger or synchronize. To maintain symmet between
these choices, Nature then flips a fair coin to determine whether the first
period will be even or odd. If the Nash equilibrium entails both plavers
receiving the high endowment in even or odd periods, then we term this a
synchronized equilibrium. If the one player chooses a high endowment in even
(odd) periods and his opponent chooses the high endowment in odd (even)
periods, then a staggered equilibrium resulcs.

This game is similar in some respects to that described by Maskin-Tirole
[1988}. In that paper, agents were forced to commit to two period production
plans. The moves in the game were staggered by assumption though Maskin-
Tirole argue (see their Section 4) that staggering is the equilibrium of the

appropriate timing game. Here we show

Proposition 10: If LIPS >0 (112<0), then the players will wish to synchronize

(stagger) their endowment sequence.

The intuition behind this result is straightforward. Strategic
complementarities (w12>0) imply chat each agent prefers to have a large value
of their strategy variable when the other does as well: i.e. the marginal
payoff from a high endowment increases with the quantity endowed to the other
agent. So, each agent prefers to receive H when the other does. In contrast,
strategic substitutability implies that the marginal gain from high endowment
is lower when the other agent has high endowment as well. Thus, the
equilibrium is to stagger in this case.

Interpreting the results of Proposition 10 requires a discussion of the

conditions under which strategic complementarities may arise and an argument
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relating the exchange economy with fluctuating endowments to a production
economy with a non-convex technology. We address these points in turn.

Cooper-John [1988] argues that strategic complementarities give rise to
many interesting macroeconomic phenomena in static models including: the
possibility of multiple Pareto-ranked equilibria and multiplier éffects from
shocks to the economy. Examples of these complementarities appear in the
models of trading externalities of Diamond [1982] and Howitt [1985], the model
of technological interactions by Brvant [1983] and models of imperfect
competition by Hart [1982], Weitzman (1982] and many others.

For the pgame between two suppliers of inputs who sell to a price taking
producer of final goods, whether or not the inputs are strategic substitutes
or complements in the Cournot-Nash game between the two suppliers will depend
on the structure of the technology.19 For example, when the two inputs are
perfect complements, as in Bryant [1983], then sychronization will be an
equilibrium while staggering will arise if the inputs are perfect substitutes.

Proposition 10 thus provides an interesting extension of strategic
complementarities to a dynamic setting. The main point is that if these
complementarities are present, then agents will wish to synchronize their
periods of high endowment and aggregate fluctuations will result. Thus
smoothing by aggregation does not arise in the presence of complementarities.
In contrast, strategic substitutes gives rise to staggering. Since, the
leading example of strategic substitutes is that of firms producing identical
products with Cournot-Nash interaction in product markets, Proposition 10
leads to the conjecture that the presence of fluctuations in non-convex
economies may be related to market structure.

Proposition 10 concerns timing in a model with fluctuating endowments while
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our ultimate interest is in the timing of discrete production activities. We
now turn attention to a model in which agents choose the timing of production
runs. As in Proposition 10, the timing of production runs will be shown to
depend on the nature of strategic interaction between the producers’

Assume there is a competitive final goods producer who purchases inputs
from two suppliers and produces with a technology of y = min (21'22)' The
final good can be stored without depreciation. Let Wy be the price of input i
in terms of the final good.

Both input suppliers produce using a non-convex technology: it costs K
units of labor time to produce z units of the input. At this stage, assume
that inputs cannot be stored. The period t utility of input suppliers is
u(ct) where u(-) is strictly increasing and 1is strictly concave and Cc is
consumption in period t. Lifetimes are infinite and utility is the sum of
period utilities, i.e. there is no discounting. As in the Proposition 4 of
Section II, allocations are evaluated by average utilities.

In each period, input suppliers simultaneously set their input prices,
wi.zo The final goods producer takes these prices as given and determines its
input demands. Sales of the input equal the minimum of the amount demanded
and the amount that the suppliers have available. The input suppliers store
the final goods they receive and consume optimally. Given that the final good
does not depreciate and there is no discounting, the input suppliers will
completely smooth their consumption. As a consequence, these agents will have
no incentive to trade intertempcrally.

Te characterize an equilibrium, first note that since inputs cannot be held
in inventory, trade will only occur in periods of production by beth input

suppliers. Thus there is clearly a strong incentive to synchronize periods of
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production of intermediate goods in this economy.

To understand the equilibrium frequency of production runs, consider first
the cooperative solution in which the input suppliers jointly determine the
frequency of production. This optimization problem, assuming that the input
suppliers are treated identically and the output supplief has zero
consumption, is the same as that solved in Section II of this paper with
Q=z/2. Therefore, in the case of no discounting and no depreciation,
Proposition &4 characterizes the optimal frequency of production, denoted by

TC

Proposition 11;: There exists a Nash equilibrium in which production of both
inputs occurs every T¢ periods, wi-l/2 for i=1,2 in periods of production and

ct--z/2'rc in all periods for both input producers.

Thus we see that the cooperative choice of the frequency of production can
be sustained as a Nash equilibrium in which the production of the intermediate
goods is synchronized. This result extends Proposition 8 tec a non-cooperative

setting. There are other equilibria in this game.zl

Proposition 12: For A>l, producing every aT¢ periods is a Nash equilibrium in

which vy =1/2 for i=1,2 and ct-z/2ATC in all periods for both producers.

In contrast, there are no equilibria in which production occurs every ATC
periods where A<l. Players could always dc better by producing less

frequently -- i.e. every ¢ periods as in the joint optimization problem.
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Thus we find that there are multiple equilibria in this games of the timing
of production runs. As in the related paper of Murphy et. al. [1989], it is
possible for the producers to become "stuck" at an inefficient equilibrium in
which the time between pi‘oduction runs is too large. This is a type of
coordination. failure as the equilibrium with infrequent production is Pareto-
dominated by one in which production occurs every T¢ periods. Note that there
is no limit to the span between production runs so that one equilibrium is
never to produ.ce.22

This model is extreme in a couple of important ways. First, the inputs are
perfect complements. Suppose, in contrast, they were perfect substitutes so
that the technology for producing the final good was f(zl+zz) with £'()>0 and
f"()<0. In this case, staggering of production runs is an equilibrium. Along
the equilibrium path, the input suppliers exert full monopoly power in periods
of production and then consume from their inventery of final goods. The
alternative of producing in the same period is not more profitable since the
producers of perfect substitutes would then compete leading each to earn lower
profi!:s.z3 This extends the results of Proposition 9 to a non-cooperative
setting.

It is interesting to conjecture the implications of adding more firms to

the model in which there are two inputs which are perfect complements. That
is, suppose that there are two producers of z, and two producers of z, and
that these inputs are perfect complements in the production of y. One

equilibrium is for the four producers to split into two pairs with one
producer of each input in each pair. Each pair might then act as described by
Proposition 11 -- producing every T¢ periods, charging wi-l/2 for i=1,2 and

consuming smoothly out of inventory. The pairs will produce in different



26
periods to avoid competition between producers of identical products. Thus
we see that adding more firms will reduce the amount of fluctuations in this
economy -- as we add more and more firms, more and more pairs will be created
and these pairs will wish to produce in different periods.ZA Eventually, the
time slots will be filled so that no fluctuations will be observed. In this
sense, there is a relationship between market structure and the amount of
fluctuations this economy can exhibit.

Second, inputs depreciate completely in the example above. If inputs did
not depreciate at all, then the complementarity between the sales of the
inputs would have no implications for the timing of their production.
However, if there is ¢ depreciation, then production will be synchronized
since it is costly to the producers to carry inventories between periods given
that final goods are completely storable. This extends the result reported in
Proposition 8.

Finally, we could also relax the assumption that the final good does not
depreciate. As long as the input are perfect complements, the equilibrium
will still be for the producers to synchronize production and store their
goods. Borrowing and lending will not be relevant in this case. However, if
the goods are perfect substitutes, then borrowing and lending may arise to

enable the input sellers to further smooth consumption.

V. Conclusion

The point of this paper has been to investigate the aggregate implications
of production bunching at the microeconomic level. The second section of the
paper focused on the optimal allccation of a single producer with a non-

convex technology. The next two sections extended those results to focus .n



the centralized and decentralized allocations with multiple input suppliers.
Our main results concern environmments in which the non-convexity at the firm
level 1is not smoothed by aggregation, This occurs when inputs are
sufficiently complementary in the production process. Further, we found that
competitive economies -- with many firms producing closely substitutable
inputs -- are more likely to display smoothing by aggregation than are
imperfectly competitive economies.

One extension of our analysis will be an investigation of final goods
linkages. We anticipate that results similar to those described in Section IV
will hold in that environment as well: strategic complementarities will imply
the synchronization of production activities. This will arise either due to
the "thick markets externalities" described by Diamond and Howitt or by the
demand linkages across sectors stressed in the literature on imperfect
competition and strategic complementarities.

Further, we 'plan to 1link our results more closely with evidence on
aggregate fluctuations. From this paper, we see that complementarities
generate the temporal synchronization of activities but the frequency of these
activities has been left unspecified. This frequency is determined by the
relative sizes of Q and K which are exogenous in our analysis. Under what
conditions will the fluctuations generated by non-convex technologies
replicate the aggregate fluctuations observed in most economies?

In order to explain observed aggregate fluctuations it is likely that we
must depart from the shockless environment characterized in the formal
analysis. Allowing for shocks to, for example, tastes, technology, and
resources in the context of the class of models we have considered clearly

deserves further attention. The results we have derived thus far should point
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the way for understanding the likely consequences of such shocks.26 In the
face of nonconvexities, economic agents have incentives to bunch their
respective individual responses to shocks. Whether agents will synchronize or
stagger their responses presumably depends on the presence of strategic
complementarities in much the same manner that we have characterized such
synchronization decisions in this paper.

A related point concerns evidence on inventories. As noted earlier, there

are two leading -explanations for the observation that production is more

volatile than consumption. One, explored here, is that non-convexities are
important at the firm level. Second, is the importance of cost shocks to the
economy. While empirical work has already begun to determine the relative

strengths of these approaches (e.g. Ramey [1987] and Eichenbaum [1988]), it is
useful to contrast the theoretical model proposed in Section II with a model
of cost shocks.

Suppose that Robinson Crusoe produces with a convex technology in which
output is given by Ve = f(nc,ﬁc) where fn>0,frm<0,f9>0 and fn9>0. Interpret §

as a technology parameter. If Robinson Crusoe has preferences given by

-]
t
§ B lu(e) - g(n) |
t=0
and goods can be held in inventory with a depreciation rate of §, then

Robinson Crusoe’s optimal allocation satisfies
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u’(ct) = B(1l-§)u’(c for Ic> 0 and

C+l) !

u’(ct)fn(nt,éc) - g’(nt) for all t.

From these conditions, we know that a temporarv positive technology shock will
induce: employment to increase (assuming the substitution effect dominates),
consumption and savings to increase and future employment to fall. The point
is to contrast these implications with those derived in Section II. Are there
ways to discriminate between models with cost shocks and those with increasing
returns to scale? At the level of an individual firm, the answer must be no.
One way to generate the technology given by (l.c) is through variations in the
costs of production which duplicate that specification. An open question is
whether or not one can distinguish cost shock models from those with non-
convexities in technology by looking at sectoral comovements of output and
employment.

One means of distinguishing the models is to investigate time series in
which fluctuations occur due to taste rather than cost shocks. Since the cost
shock model assumes that the technology is convex, it predicts production
smoothing when fluctuations are induced by changes in tastes. In contrast,
the model with the non-convex technology model predicts production bunching
and, we would conjecture, that the period of production would correspond to
times in which the marginal utility of consumption is high.

Perhaps, the data on seasonal fluctuations reported by Barsky-Miron [1988]
provide such an opportunity since the large increase in fourth quarter
activity may be attributed to a demand shock. They argue that production
smoothing is not revealed in the data since the fourth quarter is also a time

of high production. We plan to investigate this further, by augmenting our



30
model to include demand variations and explore more fully the different
implications of the cost shock and production bunching models.27

Finally, we can consider other applications of the theme of this paper: the
link between strategic complements (substitutes) and the synchronization
(staggering) of discrete activities. One important application might concern
the timing of price changes as discussed by Blanchard [1987]. We plan to
think more formally about the relatiomship between our results and those on

the choice between synchronized and staggered price changes.
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Appendix
Proof of lemma 1 and lLemma 2:
Directly from the first-order conditionms. QED.

Proof of Proposition 1:

If inventories are drawn down just prior to the period of production, then
consumption for all r is given by Lemma 1. The pattern of inventories will
then follow (l.a) subject to the condition that Ir-O for r=T. These two sets
of conditions determine a unique consumption path.

To see that this path of inventories is optimal, consider the alternatives.
First, the agent could exhaust inventories in a period prior to ;-T. However,
since marginal utility goes to infinity as consumption goes to zero, this
violates (2) so that (l.b) will never bind for r<T. The consumption pattern
between the periods of production will therefore be given by (2).

Second, the agent could hold positive levels of inventories over production
periods. In this case, there are two possibilities: either inventories reach
zero at some point in time or are always positive. For the first of cthese
sub-cases, suppose that production occurs with zero inventories in period t*
and let t' denote that last time that a production run occurred with
inventories equal to zero in the preceding period, i.e. IC-O for t=t'-1 and
t=t"-1. By the hypothesis of this case,  production occurs with positive
inventories at least once between periods t' and t" so that IC>O for t=t'+T-1
Consumption between period t' and t" 1is given by (2) so that it never

increases. In particular, note that consumption over the T periods preceding

t" was smaller for each value of r than consumption was, for each r, in the T
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periods after ¢t’. Yet inventories at the start of the production run
preceding t" were positive (It>0 for t=t"-T-1) and thus exceeded the stock of
inventories held at the end of period t’-1. This is a contradiction as it is
not possible to consume less in each of T periods while It>0 for t=t’'+T and
It-O for t=t"-1.

Alternatively, if inventories were always positive, (2) implies that
consumption would be falling through time and Ir for r=T increasing. This
allocation 1is clearly dominated by a solution in which the stock of
inventories is consumed at some point.

QED.

Proof of Proposition 2:
Suppose that the solution to (l) entails production in periods a,b,c,....

If inventories were equal to zero each time production occurred, then, by

optimality, production must occur every T periods, i.e. b=a+T,c=b+T, since the
state variable takes on the same value in each period of production.

If, alternatively, inventories never reached zero, then consumption would
be monotonically falling. As before, the stock of inventories held just
before a production run would be increasing over time which is sub-optimal.
This then rules out any solution of erratic production in which inventories
are always positive.

The final possibility is a periodic solution in which production occurs for
'some time without running inventories to zero and then, eventually, production
occurs with =zero inventories and the process repeats itself. In this
solution, inventories would take on the same value at two distinct points in

time with the path from those points onward not \;oir’mciding.28 One can then
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construct a path giving equal utility in which production occurs only with
positive inventories. Again, this violates optimality by the argument given

above.

QED.

Proof of Proposition 3:

For two distinct values of K, Kl > K2 denote the corresponding optimal,

* *
periods between production by T 1 and T 9 Optimality implies that when the

*
cost of a production run is Kl (KZ) the agent prefers to produce every T 1

* * *
(T 2) rather than every T (T 1) periods. That is,

2
W(TH K W K
1 1, 2 1 d
1-871. 1. 8%
T K Wty K
e A L
1-872 1- 841

For these two inequalities to hold, given that K1>K2, it must be the case

that

1 1 . . s *
which implies T, = T,.

1A

L

1-81 1-ﬂT2

QED.

Proof of Proposition &:

N
For T to be optimal, it must be the case that this periodicity dominiates
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: * . : z . :
producing either every T +A periods where A 1is some finite integer. To
compare these alternative periodicities, we consider the utility differential

* % *
over T (T +X) periods.29 Thus.if T 1is optimal it must be the case that

(a1)  (T+0T [W@/TY) - wWQ/T+1)] = K.

*
Condition (Al) says that over T (T +1) periods, the agent prefers to
R *
produce every T rather than T +A periods. That is, the extra utility from
the additional AQ units, split optimally over time, is not less than the cost

of the extra A production runs, XK.

The left side of (Al) can be rewritten as

* *
w(Q/T ) - w(Q/T +X)

(a2) A " "
(/T )y - (1/T +x)

By strict concavity of u(+), this is strictly greater than Qu’(Q/T*) which,
*
by hypothesis equals K. Thus u’'(Q/T )=K/Q implies that (Al) holds for all A.

QED.

Proof of Proposition 5:
Given the separability of preferences in (4), the choice of the timing of
the production of the intermediate goods can be reduced to the following cost

minimization problem:
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T
(A3) min E BT ¢}, g <1
)y, (o) r=1
T T
subject to: "
T T
Tok - Tk -
(A3.2) K E ((1-67)" Tgd)], E [((1-65)7 Th(nD)]) = K
Tml =1
(A3.b) n=n +n<N.
T T T
(i) Consider éy = 1. This implies that inventories of intermediate good ¥

will not be held so it is only optimal to produce y when the final good is
produced. The same logic works for intermediate good z.
y

(ii) In this case, the relevant optimality conditions from (A3) for o

z :
and n , are given by:

(a4) cr (nf+n?) /g’ (0) = pCL-67)c (0! +n D) /8" (0 ]))
’ t y z ’ z z t y z ! z
(a%) ¢ (af+nZ) /b’ (n2) = A(L-67)C (n] 40 1))/h (0 1))

Since g"s 0, h"<0 and C" > 0, C'/g’ is an increasing function of nyf in (A&)

and C’'/h’ is increasing in nzf in (A4)’. Given that 8 < 1 and §% = 57 < 1.

this implies with (A4) and (A4)’' that ny and nzf are increasing in r and thus

r
Y, and z_ are increasing in r. Note, further, that (A4) implies that the rate
of increase in nyf is an increasing function of s’ and a decreasing function

of B. The same logic applies for the rate of increase in nzf from (A4)'.

QED.



Proof of Proposition 6:

(i) Since neither intermediate good can be stored and the intermediate
goods are perfect complements, z is produced only when y is produced. This in
turn implies that q is produced only when y is produced.

(ii) Since the intermediate goods are perfect complements and v cannot be
stored, q is produced only when y is produced. However, since z can be stored
and C">0 and h"s0, there is an incentive to smooth the production of z. The

. - s z . . .
relevant optimality conditions from (4) for n , in this case are given by:

B YN A e nZy CcZymr g Z y .,z
(AS) C (nr+nr)/h (n)) = B(1-67)C (nr+l+nr+l)/h (“r+1)
*
T
* -
(46) >§ 155" "h(a®) - q
Tl
Here nyr equals zero except at r-T*. From (A6), observe that the agent will

accumulate just enough inventories of z in order to produce Q units of q everv
T* periods. Given discounting and depreciation, since C’/h’ is an increasing
function of nyr, (AS) implies that it will be optimal to produce z most just
prior to periods of production of y.

(iii) Since inventories of y can be held but inventories of z cannot, the
agent has an incentive to smooth the production of z through holding
inventories of y. However, if §7 > 6q, the agent may prefer to convert the
intermediate goods immediately to final goods in order to take advantage of
. the less expensive storage technology. Thus, there are two subcases here.
First, if s7 > 59 and the agent finds it optimal to convert to final goods
immediately then q and z are synchronized with the production of y. Hence, in
this subcase, q and z are trivially non-increasing in r, for r<T*.

Second, for sufficiently low Sy, the agent will smooth the production of =z
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through holding inventories of y. The relevant optimality conditions from (&)

z R
for n , are given by:

(A7) U (h(n?))- ¢ (af+ n))/mr(a) =
Z

y '
B(1-67)[U' (h(n_

¢ (nZ y ) mZ
)-C (nr+l+ nr+l>/h (nr+l>]

T*-1
(48) E (h(n?)/1-s)H71 =
r=0
Note again that nyT-O except at r=0 when y is produced. In this case,

following each production run of y, the agent is producing z (and thus q) in a
manner consistent with (A7) and exhausting the inventories of y just prior to
the next production rum. Since U’ (h(*))-C'(*)/h’(+) is a decreasing function
of nZT and given discounting and depreciation, (A7) implies that z and q will
be decreasing in for >0. Hence, in both subcases, z and q are non-

’

*
increasing in r, for O<r<T .

Proof of Proposition 7:

(1) Given the linear final goods production technology, if the agent holds
inventories then the agent will hold inventories of final goods if §% < §7
and inventories of the intermediate goods otherwise. Consider the case s <
Sy. In this case, from (4) the time path of consumption of the final goed

and the production of z is governed by:

' Ay e ; q
(A9) U (cT) = B(1-6M)U (c1+1), if IT >0

(410) Ue ) = C(nZ # o) /b (0)
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From (A9), as long as inventories are being held and given depreciation and
discounting, consumption will be decreasing over time. Since positive
inventories will be held at the end of periods of production of vy, nyT- K in
periods of production runs and zero in other periods and given that C’'/h' is
an increasing function of nz’_, this implies with (Al0) that the minimum
production of z will be in periods of production of y. This also implies that
as long as positive inventories are being held, z will be strictly increasing
in r. If inventories are exhausted prior to the next production run of v,
then production and consumption of the final good will be equal to z and in
this case (Al0) implies a constant production of z. Thus, if inventories are
exhausted, then z will be non-decreasing in r, for r<’r*. The case of § < §3
follows along similar lines.

(ii) The production path of y is Q every T* periods with zero production
of y between production runs. The production path of z is characterized by
minimal production of z during production periods of y. These two production
paths imply a negative covariance between the production of y and z. Given
the linear final goods technology, this implies var(q) < var(y) + var(z).

QED.

Proof of Propogition 8:

Since 6i > Sq, the agent will immediately convert available intermediate
goods to final goods. Given the final goods production technology, this means
that positive inventories of both intermediate goods will never be held
contemporaneously. However, if the production of y and z are not
synchronized, then positive inventories of one of the intermediate goods may

be held until the next production run of the other intermediate good. Let A
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be the interval between the production of y and the production of z if the

intermediate goods are not synchronized. Accordingly, let T*-1 be che
interval between the production of z and the production of y. Further,
without loss of generality, let A < T*-x. In this environment this implies

that if y and z are not synchronized then in the steady-state in periods of

production of y, the agent will produce Q units of y and

o @ = ara-sh™ . asshTn-a-eh T

units of the final good. The remainder, Q-Qy, will be held in inventory of
the intermediate good until the next production of z. Similarly, in periods

of production of z, the agent will produce Q units of z and

a12) %= ara-shr - a-shHTn-a-sh™

units of the final good. The remainder will be held in inventory of the
intermediate good until the next production of y. Observe that since A < T*-
z vy . : z y S
A, Q© > Q. More importantly, (All) and (Al2) imply that Q > Q" + Q for all
strictly positive A. Consider the implications of this inequality for any
interval of length T* beginning with a period in which both the final good and
intermediate good z 1is produced. If y and z are synchronized then the
production run of the final good is the amount Q in the first period of this
interval. If y and z are not synchronized then the final good is produced in
the amount Qz in the first period of the interval and in the amount Qy, Tk-X
: Cons : . z y i_.q
periods later within the interval. Since Q > Q° + Q and § >§', over any such

interval synchronization leads to a greater aviilable production of the final
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good. The key 1is that staggering leads to lost potential final goods
production through the depreciation of the intermediate goods between
intervals of the production of the intermediate goods.

Staggering not only leads to less production but also to higher costs of
production. To see this, consider the present discounted cost of staggered
production versus synchronized production. Under synchronized production, the

present discounted cost from time 0 is given by (recall C"=0):

T* T*
(Al3) 2C(K) + 2C(K)B™ /(1-8" )

Under staggered production, the present discounted cost from time 0 is given

by: 30

*
(Al4) 20(K) + C(R) (1+8™M 87 /(1-8T )

Given initial inventories are zero, joint production in time O necessarily
occurs and this is reflected in the first term 2C(K) in both (Al3) and (Al4) .
After time O, however, (Al3) and (Al4) indicate that staggered production
implies higher costs. This is because, for example, in order to produce final
goods in period T* with staggering, intermediate good v must have been
produced ) periods earlier. This production of one the intermediate goods
prior to its use in the production of the final good is what generates the
‘higher cost under staggering.

Overall, then, staggering implies fewer goods, produced later and at higher
cost which implies staggering is suboptimal. This implies the perfect

synchronization of y, z and q.
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QED.

Proof of Proposition 9:

Given the linear final goods production technology and Si > Sq, the agent
will immediately comvert any intermediate goods 1into final goods. ‘To
establish (i) and (ii) we rule out alternative subcases successively. First,
consider the possibility that the agent perfectly synchronizes y, z, and thus.
q. This is dominated by (i) and (ii) since the latter takes advantage of
consumption smoothing and production smoothing incentives given u" < 0 and C"
> 0. Alcternatively, suppose the agent staggered the production of y and z but
at unequal intervals. This is ruled out by the same arguments used in
Proposition 2 since in this environment the two models are formally
equivalent.

QED.

Proof of Proposition 10:

Suppose that both players synchronize their endowments, then the lifetime

expected (because of nature's coin flip) discounted utility is given by

1

sy . —
v 2(1-8)

[ x(H ,H) + n(L ,L) }.

Alternatively, if the players stagger, then the lifetime expected discounted

utility for each is given by



s

1
VSt - [W(H,L)+N(L,H)]

2(1-8)

The sign of v v5tan 1s given by

9 (x,z) dxdz

M
[ &y I

Hence if Ty > 0 (112<0), A > (<) 0 and the players will synchronize (stagger)

periods of high endowments.

ro

QED.

Proof of Proposition 11:

For periods in which both inputs suppliers produce, the symmetric Nash
equilibrium will be for each of the input suppliers to charge a price of 1/2.
Because these agents do not discount and have strictly concave utilicy
functions, consumption equals z/2’rc in each period if they produce every T
periods.

To see that producing every ¢ periods 1is optimal, consider the
alternatives open to one of the suppliers. An input producer has no incentive
to produce more frequently since the final goods producer has no value for the
inputs in periods where the other producer is inactive. Further, producing
less frequently would imply that the input supplier would receive z/2 only in
periods in which both suppliers are producing. This cannot be a profitable
deviation since T° is the jointly optimal timing between production runs.

. AP : ¢ .
That is, if it was optimal for one producer to produce every AT periods where
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»>1, then that frequency of production would have solved the joint

optimization problem.

QED.

Proof of Proposition 12:

As in the proof of Proposition 11, given that production occurs every ATS
periods, the input prices and consumption path follows immediately. Neither
producer has an incentive to produce more freqgently since, as before,
production in other periods has no value and also has no incentive to produce
less frequently since each production run yields positive utilicy.

QED.
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Footnotes

1. These include models with serially correlated demand shocks and/or
stockout avoidance (e.g. Kahn [1987]) and cost shocks (e.g. Eichenbaum [19881)
as well as the models with non-convex technologies described further below.

2. Bertsekas [1976] provides a lengthy discussion of the (S,s) literature
while Blinder [1981] and Caplin [1985] discuss some macroeconomic
implications. Ramey [1987] presents a theoretical and empirical analysis of a
firm producing in a range of decreasing marginal cost.

3. See the discussion in Blinder [1986]

4, In fact, the literature on non-convexities in general equilibrium models
rests on smoothing by aggregation over a large number of agents.

5. That is, we expand the single agent model to allow for multiple inputs
where the supply of these inputs is determined as the solution to a
programming problem. Interpretations of this approach are provided at the end
of Section III.

6. These terms and their macroeconomic implications are discussed in Cooper-
John [1988] and Haltiwanger-Waldman [1988]. As discussed in Section IV,
strategic complementarities (substitutes) implies that reaction curves in a
game with a scaler strategic variable are upward (downward) sloping.

7. In a closely related paper, Murphy, Shleifer and Vishny [1989] stress the
importance of demand linkages in a non-convex economy with durable goods.
Cooper-Haltiwanger [1988] contains a discussion of final demand linkages in an
economy with production runs and non-durable goods. In this paper, we have
chosen to focus on factor demand linkages across sectors as stressed in the
work of Long-Plosser [1983].

8. An alternative approach, not adopted here, would be to build the non-
convexity into the preferences of the agent. Here the non-convexity in C(-)
is derived from the technology.

9. By the term binding, we mean that the multipler on the constraint is not
equal to zero.

10. Note that our problem includes it in the optimal choice of a consumption
"stream as well as the sub-problem of minimizing the cost of the stream. The
(S,s) literature generally focuses on the cost minimization problem alone.
Also, our problem lacks some of the stationarity of the traditional (S,s)
problem in that our production lot is fixed at Q rather than the stock, after
production, equalling S. It appears to be rather straightforward to reproduce
many of the results in this section using a technology in which there is a
positive marginal cost of production and no capacity.



47

11. It is easy to show that over T(T+l) periods one would prefer to have T+l
rather than T "cakes" of size Q.

12. Since goods do not depreciate and there is no discounting, the agent can
produce in a very irregular pattern and simply hold goods as desired over time.

13. This is the condition used in many models of labor supply to guarantee
that increases in the real wage induces greater labor supply.

14.In what follows, when we state that production of a good occurs every T*
periods we are referring to the steady-state interval between production
runs. Given the assumption of zero initial inventories, this does not become
an issue until we consider the environments specified in Propositions 8 and
9.

15. Here r=1 is the period just after a prqduction run in contrast to the
notation used in Section II. Note that at r=T , another production run begins
if production occurs every T periods.

16. Though the variance of production will not necessarily exceed the variance
of sales for the manufacturing sector, production in that sector is much more
volatile because of the non-convexity in the retail sector.

17.Since there are two intermediate goods, it may be that production of the
final good is possible without the input of one of the intermediate goods.
This possibility is particularly applicable for Proposition 7 which involves
perfect substitutes. In what follows, we are implicitly assuming that the
combination of K and Q are such that the agent finds it optimal to produce y
every T* periods.

18. These results extend to the case in which goods can be held in inventory
as long as some depreciation occurs as explained at the end of this sectiomn.

19. 1If f(y,z) is the final goods production function where y and z are the
inputs then the supplier of y will increase output when z increases iff

(y,z)y + £ _(y,z) is positive. This is equivalent to the requirement that
mz¥g1nal revende associated with the production of y increases when =z
increases. There is an analogous condition for the supplier of z.

20. We consider the game in which prices are the strategy variable to avoid
the multiplicity of equilibria that may arise in static games in which
quantities are the choice variables, as in Bryant [1983]. This allows us to
focus on the multiple equilibria that arise due to timing considerations
across periods.

21. Our consideration of the possibility of mulitiple equilibria in this model
was motivated by the findings of Murphy, Shleifer and Vishny [1989] of
multiple equilibria in a model with durable goods.

22. This conclusion can be avoided by assuming that at some finite cost,
input suppliers can produce the final good and that this yields positive utility.
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23. The easiest way to see this is to note that even if the two producers
could cooperatively set input prices, they could not earn more profits per
firm than in the staggered solution due to the congestion effects of f£"()<0.
Given that they act non-cooperatively in periods where they both produce, the
defection to producing in the same period cannot be more profitable than the
equilibrium with staggering.

24, However, there may exist other equilibria we have not analyzed.

25. In Cooper-Haltiwanger [1989] we address related dynamic implications of
strategic complementarities generated by final goods demand linkages. In
particular, we demonstrated that strategic complementarities generated by
final goods demand linkages together with inventory holding in at least some
sectors provides an explanation of the observed persistent positive comovement
in employment across sectors. A primary difference with the current analysis
is that in the earlier paper we focused on economies with convex technologies
subject to sectoral shocks. Murphy et. al. also concentrate on demand
linkages in a model with durable goods.

26. Hall [1988] conjectures that in models with non-convexities and strategic
complementarities, low frequency shocks may generate high frequency
fluctuations.

27. For related work in this direction see Chatterjee-Ravikumar [1988] as
well as the discussion in Miron-Zeldes [1988].

28. Implicitly we are neglecting integer problems by assuming here that the
time intervals are small enough that the state variable takes on the same
value twice in the solution we are arguing against. This problem arises
elsewhere in the literature on non-convex programming problems, as in the
money demand problem described in Tobin [1956] and in the Hadley-Whitin [1963!
discussion of inventories.

29. To compare average utilities over the infinite horizon, we compare two
programs over .a finite interval of time in which both solutions complete
cycles, i.e. T (T +A) periods. Given the periodic nature of these programs,
domination of one over a common finite interval implies domination in terms of
average utility over all time.

30. The present discounted cost given in (al4) presumes that when staggering
begins y is produced before z. This is optimal as producing z first and then
y would both be more costly and yield a lower discounted flow of final goods
output.





