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1 Introduction

Instrumental variable (IV) strategies are widely used for causal inference in economics,

political science, sociology, epidemiology, and other fields. Since the work of Imbens

and Angrist (1994), it has been increasingly common to interpret linear IV estimators

as estimating a local average treatment effect (LATE), or at least a positively weighted

average of LATEs. The scientific value of this interpretation has been extensively

analyzed and debated (e.g. Robins and Greenland, 1996; Heckman, 1997; Angrist and

Imbens, 1999; Deaton, 2010; Imbens, 2010; Swanson and Hernán, 2014).

In this paper we focus on a more practical question that is both distinct from,

and primary to, the value of the LATE interpretation: does the LATE interpretation

even apply to the types of specifications that empirical researchers use in practice? In

Section 2, we show that if the IV specification includes covariates, then the answer is,

in general, “no.” The linear IV estimator with covariates is composed of treatment

effects for both compliers and always-takers, and some always-taker treatment effects

are always negatively weighted.

Our finding challenges the claim by Angrist and Pischke (2009, pg. 173) that

2SLS with covariates produces an average of covariate-specific LATEs. . . These

results provide a simple casual [typo in original] interpretation for 2SLS in

most empirically relevant settings.

Their assertion is based on a “saturated” two stage least squares (TSLS) specification

that controls for covariates nonparametrically, described by Angrist and Pischke (2009)

as the “saturate and weight approach” (Theorem 4.5.1; originally Theorem 3 in Angrist

and Imbens, 1995). Our results show that this type of saturated specification is not only

sufficient for TSLS with covariates to be interpretable as an average of covariate-specific

LATEs, it is also necessary, at least without additional parametric assumptions.1

In Section 2, we report the results of a survey on the specification of linear IV esti-

mators in published empirical papers in economics. Of the 99 papers in our survey that

use a linear IV estimator with covariates, we find only a single paper (Chamberlain and

Imbens, 2004) that used a saturated specification. The implication for the 98 other

papers is that they may not be estimating an average of covariate-specific LATEs. In

fact, they may be estimating a quantity that doesn’t even satisfy the minimal require-

ment of being a positively weighted average of subgroup-specific treatment effects, a

1As we show in Section 4.2, this statement remains true even if treatment effects are constant across both
unobservable groups and observed covariates. This contrasts with recent results on two-way fixed effects
models (e.g. Goodman-Bacon, 2021; Sun and Abraham, 2021), which point out interpretation problems that
arise in event studies if there are heterogeneous treatment effects due to observables (in particular, cohorts).
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property we describe as weakly causal.

In Section 3, we provide a formal definition of a weakly causal estimand and develop

a general sufficient and necessary characterization of estimands that are weakly causal.

The characterization has two components. First, a weakly causal estimand cannot

depend on the levels of potential outcomes while holding treatment effects (differences)

constant, a phenomenon we describe as level-dependence. Second, a weakly causal

estimand should not apply negative weight to the treatment effects for any subgroup.

In Section 4, we specialize these results to a large class of TSLS estimands.

We start by considering the simpler case with treatment effects that are linear in

the treatment intensity and constant across both unobservable and observable groups.

For this case we show that the single sufficient and necessary condition for the TSLS

estimand to be weakly causal is that the TSLS specification has rich covariates, in the

sense that it exactly reproduces the conditional mean of the instrument.2 Specifica-

tions that are saturated in covariates, such as the Angrist and Pischke (2009) “saturate

and weight” specification, will always have rich covariates. But a non-saturated spec-

ification only has rich covariates if an implicit parametric functional form assumption

happens to be correct. If it is not correct, our results show that the resulting TSLS es-

timand will necessarily depend on potential outcome levels (level-dependence), and so

will not be weakly causal. In the constant effects case, rich covariates can be replaced

by traditional linearity assumptions on mean potential outcomes (e.g. Heckman and

Robb, 1985).

Next, we allow for heterogeneous, nonlinear treatment effects and impose the Im-

bens and Angrist (1994) monotonicity condition. A rich covariate specification is still

necessary for the TSLS estimand to be weakly causal, but it is no longer sufficient.

Given rich covariates, we show that the additional sufficient and necessary condition

is that the first stage specification is monotonicity-correct, meaning that it correctly

reproduces the direction of the monotonicity assumption conditional on any value of

the covariates. When the first stage is not monotonicity-correct, the TSLS estimand

will always reflect the contribution of a negatively weighted subgroup, and so will not

be weakly causal. In the heterogeneous treatment effects case, rich covariates cannot

be replaced by traditional linearity assumptions on mean potential outcomes.

Our sufficient conditions extend those by Angrist and Imbens (1995, Theorem 3),

Abadie (2003, Propositions 5.1 and 5.2), Kolesár (2013), and S loczyński (2022). More

importantly, unlike these authors, we show that rich covariates and a monotonicity-

2In this regard, our results differ markedly from those of S loczyński (2022), who assumes rich covariates
and examines negative weight problems that can only arise under heterogeneous treatment effects due to
non-monotonicity.
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correct first stage are also necessary for a TSLS estimand to be weakly causal. The

implication is that the Angrist and Pischke (2009) interpretation of TSLS as a positively

weighted average of LATEs is fragile. Unless one happens to specify the relationship

between the instruments and covariates correctly, and unless one happens to include

enough interactions between the instrument and covariates in the first stage, the TSLS

estimand will not be a positively weighted average of LATEs. Assuming constant

treatment effects allows one to omit first stage interactions, but still does not mean

TSLS will have a causal interpretation without correctly specified functional forms.

Although our survey turned up only a single paper that used a TSLS specifica-

tion with saturated covariates, we found many papers that nevertheless invoked the

widespread LATE interpretation. Our results draw this interpretation into question.

Yet the magnitude by which the interpretation fails in practice is ultimately an empir-

ical question.

In Section 5, we develop a decomposition that quantifies the extent to which a

TSLS estimand fails to be weakly causal. The decomposition contains three terms.

The first is a level-dependence term that reflects how not having rich covariates makes

the TSLS estimand depend on the levels of the potential outcomes, rather than solely

on treatment effects. The second term consists of negatively weighted treatment effects

that are created by a monotonicity-incorrect first stage, even with rich covariates. The

third term consists of positively weighted treatment effects. The TSLS estimand is

weakly causal if and only if the first two terms in the decomposition are zero. All

three terms are identified and can be estimated, enabling quantification of the extent

to which a given TSLS estimand fails to be weakly causal.

In Section 6, we apply the decomposition to four IV analyses: Gelbach (2002),

Dube and Harish (2020), Card (1995), and Angrist and Krueger (1991). In the first

two applications, we find strong evidence that covariates are not rich, leading to TSLS

estimates that aren’t weakly causal even under a constant, linear treatment effects

assumption, at least not without additional parametric assumptions. In the third

and fourth applications, we find that the covariates are rich enough to prevent severe

level-dependence, but that the first stages are not monotonicity-correct, leading the

TSLS estimand to reflect negatively weighted treatment effects. Our findings in all

four applications suggest that the LATE interpretation of TSLS is far from accurate

for the types of specifications actually used in practice.

In the concluding section, we summarize our key findings and discuss the impli-

cations for empirical research. Taken together, our findings show that for TSLS to

meet even the weakly causal criterion requires either making parametric assumptions

or controlling for covariates nonparametrically. The implication is that TSLS does
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not possess a privileged causal interpretation compared to more principled methods

for estimating the LATE that have been proposed in the literature. These include

fully parametric methods (Imbens and Rubin, 1997; Hirano et al., 2000; Yau and Lit-

tle, 2001; S loczyński et al., 2022), semiparametric methods (Abadie, 2003; Tan, 2006,

2010; Hong and Nekipelov, 2010), and nonparametric methods (Frölich, 2007; Ogburn

et al., 2015; Heiler, 2021; Sun and Tan, 2021), including machine learning based ap-

proaches (Chernozhukov et al., 2018; Athey et al., 2019; Singh and Sun, 2022). Our

survey of the empirical literature shows that these methods are not widely used. Our

findings on TSLS suggest that maybe they should be.

2 Overview and implications for empirical practice

In this section we demonstrate our main points in the special case of a binary treatment

and binary instrument with heterogeneous treatment effects.

2.1 IV with covariates is not LATE

Let T ∈ {0, 1} be a binary treatment and Z ∈ {0, 1} be a binary instrument. The

outcome is Y with potential outcomes Y (0) and Y (1) related via Y = (1 − T )Y (0) +

TY (1). Potential treatment states are T (0) and T (1) with T = (1− Z)T (0) + ZT (1).

The vector of covariates is X.

Assume that Z is conditionally exogenous in the sense of being independent of

(Y (0), Y (1), T (0), T (1)) conditional on X. Suppose that the Imbens and Angrist (1994)

monotonicity conditions holds so that P[T (1) ≥ T (0)] = 1.3 The monotonicity con-

dition implies that the group variable G ≡ (T (0), T (1)) can take three values with

non-zero probability: G = (0, 0) ≡ nt are the never-takers, G = (0, 1) ≡ cp are the

compliers, and G = (1, 1) ≡ at are the always-takers.

Consider a linear IV regression with outcome variable Y , endogenous variable T ,

excluded instrument Z, and a vector of control variables X that includes a constant.

The IV estimand (the population coefficient on T ) is given by

βiv =
E[Y Z̃]

E[T Z̃]
, where Z̃ ≡ Z −L[Z|X] (1)

are the residuals from a regression of Z on X, and

L[Z|X] ≡ X ′E[XX ′]−1 E[XZ]

3This is the strongest form of the monotonicity condition one can contemplate here. Weaker forms that
allow the ordering of T (0) and T (1) to vary with X are considered in Section 4.4.
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are the population fitted values from regressing (linearly projecting) Z onto X.4 The

IV estimand βiv is often interpreted as reflecting the average treatment effect among

complier groups with weights that vary by the probability of compliance given covari-

ates. The following proposition shows that this is not true in general.

Proposition 1. Suppose that E[Y (t)|X] = η′tX for some (unknown) parameters ηt,

t = 0, 1.5 Let ∆(cp, x) ≡ E[Y (1) − Y (0)|G = cp, X = x] and ∆(at, x) ≡ E[Y (1) −
Y (0)|G = at, X = x] denote the conditional average treatment effects for the compliers

and always-takers, respectively. Then

βiv = E[ω(cp, X)∆(cp, X)] + E[ω(at, X)∆(at, X)], (2)

where ω(cp, X) ≡ E[Z|X] (1−L[Z|X]) P[G = cp|X] E[Z̃T ]−1

and ω(at, X) ≡ E[Z̃|X] P[G = at|X] E[Z̃T ]−1.

If E[Z̃T ] > 0, then the complier weights ω(cp, X) are negative if and only if L[Z|X] >

1. The always-taker weights ω(at, X) are strictly negative with positive probability

unless E[Z̃|X] = 0 deterministically.

Proposition 1 shows that in general βiv reflects not only the compliers, but also

the always-takers. If E[T Z̃] > 0, so that the first stage coefficient is positive, then

the weights on the always-takers have the same sign as the random variable E[Z̃|X] =

E[Z|X] − L[Z|X]. Because L[Z|X] is the best linear approximation to E[Z|X], the

difference E[Z̃|X] always takes negative values whenever it is not deterministically zero.

Thus, whenever L[Z|X] 6= E[Z|X], the IV estimand incorporates negatively weighted

treatment effects for some groups, which means that it fails to satisfy even a minimal

condition for “being causal.”6

In order for the LATE interpretation to hold, it is necessary that L[Z|X] = E[Z|X],

a condition we call rich covariates. Specifications that are saturated in covariates, such

as “saturate and weight” (Angrist and Pischke, 2009), have rich covariates. If Z and X

are independent, as can be the case in some controlled and natural experiments, then

any specification with a constant will have rich covariates. Outside of these two cases,

having rich covariates is a parametric assumption. If it fails, then the IV estimand βiv

reflects not just compliers, but also negatively weighted always-takers.

4The proof of (1) is a special case of Proposition 6 ahead.
5This additional assumption is made in order to simplify the weights. Removing the assumption only

amplifies the negative interpretation issues exposed by Proposition 1. Our general results in Section 4 do
not maintain this assumption.

6It’s also possible that E[TZ̃] < 0, so that the first stage coefficient has the opposite sign of that suggested
by the monotonicity condition (see Section 4.3). This does not change the conclusion that there will always
be some negatively weighted always-takers unless E[Z̃|X] is deterministically zero.
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There is no reason to expect, a priori, that the weights on the always-taker treat-

ment effects in (2) will be small in magnitude. In many applications, the proportion of

always-takers, P[G = at|X], can be expected to be considerably larger than the pro-

portion of compliers, P[G = cp|X]. As a consequence, even negative values of E[Z̃|X]

that are small in magnitude can produce large negative weights on the always-taker

treatment effects. These magnitudes are ultimately an empirical matter. The decom-

position we develop in Section 5, and apply in Section 6, provides a way to quantify

the impact that a failure of rich covariates has on the causal interpretation of βiv.

Decomposition (2) is not the only possible decomposition. Instead of interpreting

βiv as a weighted average of compliers and always-takers, one can interpret it as a

weighted average of compliers and never-takers, or of all three groups, as shown in the

next proposition.

Proposition 2. Suppose that E[Y (t)|X] = η′tX for some (unknown) parameters ηt,

t = 0, 1. Let ∆(nt, x) ≡ E[Y (1)−Y (0)|G = nt, X = x] denote the conditional average

treatment effect for the never-takers. Then for any real number ε,

βiv = E[ωε(cp, X)∆(cp, X)] + E[ωε(at, X)∆(at, X)] + E[ωε(nt, X)∆(nt, X)],

where ωε(cp, X) ≡
(
εE[Z̃|X] + L[Z|X](1−E[Z|X])

)
P[G = cp|X] E[Z̃T ]−1,

ωε(at, X) ≡ εE[Z̃|X] P[G = at|X] E[Z̃T ]−1,

and ωε(nt, X) ≡ (ε− 1) E[Z̃|X] P[G = nt|X] E[Z̃T ]−1.

Each choice of ε in Proposition 2 provides a different interpretation of βiv, with Propo-

sition 1 corresponding to ε = 1. However, unless E[Z̃|X] = E[Z|X]−L[Z|X] = 0, any

such choice involves either the always-takers or the never-takers, or both, and applies

negative weights to both groups for some values of X, as well as potentially negative

weights to the compliers. Only in specifications with rich covariates is βiv a positively

weighted average among compliers alone.

2.2 Intuition

The intuition behind Propositions 1 and 2 can be seen by writing the numerator of βiv

as

E[Y Z̃] = E
[
E
[
Y Z̃|X

]]
= E

[only contains complier treatment effects︷ ︸︸ ︷
C[Y,Z|X]

]
+ E

[
E[Y |X]︸ ︷︷ ︸

contains all three groups

E[Z̃|X]
]
. (3)
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The first term in (3) is the average of the numerator of a nonparametric IV specification

that conditions on X. The argument in Imbens and Angrist (1994) shows that this

term is equal to an average of scaled LATEs, which only reflects treatment effects for

the compliers. It is the second term of (3) that causes problems. This term reflects

the difference between nonparametric conditioning and linear projection.

When covariates are not rich, so that E[Z̃|X] 6= 0, the second term in (3) generally

depends on E[Y |X], a quantity which is determined not only by compliers, but also

by always-takers and never-takers. This creates “level-dependence” in βiv because the

always-takers always have Y = Y (1) and the never-takers always have Y = Y (0). Thus,

βiv depends on the levels of the always-taker and never-taker potential outcomes, rather

than the difference, Y (1)− Y (0). As we show in Section 3, level-dependent estimands

do not have a causal interpretation because the levels can lead βiv to have the “wrong

sign.”

The expression in Proposition 1 arises from centering the term E[Y |X] in (3) around

E[Y (0)|X]. The simplifying linearity assumption implies that E[Y (0)|X] = η′0X is un-

correlated with E[Z̃|X]. Thus, since never-takers always have Y = Y (0), the centering

removes the average untreated outcome for the never-takers, leaving only a weighted

average of the complier and always-taker treatment effects. Alternatively, we can cen-

ter around E[Y (1)|X] = η′1X, which leaves a weighted average of the complier and

never-taker treatment effects. Both decompositions are equally valid ways to rewrite a

single number (βiv) as a weighted average of three other numbers (∆(cp, X), ∆(at, X),

and ∆(nt, X)). Taking an ε–weighted average of these two decompositions yields the

expression in Proposition 2, which covers all possible decompositions in this specific

case.

The theory we develop in Section 3 is designed to handle this type of non-uniqueness

in decomposition and determine, in a general setting, necessary conditions for the

existence of some “good” decomposition. For the simplified case considered here, with a

binary treatment, a binary instrument, and the linearity assumption E[Y (d)|X] = η′dX,

this type of analysis can be done directly, as in Proposition 2. Our analysis of more

general TSLS specifications in Section 4 shows that the necessity of rich covariates for

a causal interpretation is a conclusion that applies more broadly.

2.3 Numerical illustration

As a simple illustration of these results, suppose that X ∈ {(1,−1), (1, 0), (1, 1)} with

equal probability, where the first component corresponds to a constant. Then suppose
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Figure 1: IV with covariates is not LATE
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that

E[Z|X = x] = P[Z = 1|X = (1, x)] =

4/5 if x ∈ {−1, 1}
2/5 if x = 0

.

Regressing Z onto X yields the constant regression line:

L[Z|X] = X ′E[XX ′]−1 E[XZ] = 2/3,

so that E[Z̃|X] = E[Z|X]−L[Z|X] 6= 0 and is both positive and negative with non-zero

probability.

Suppose that the conditional group share probabilities are given by:

(never-takers) P[G = nt|X = (1, x)] = 1/3

(compliers) P[G = cp|X = (1, x)] = 1/6 + |x| /6
(always-takers) P[G = at|X = (1, x)] = 1/2− |x| /6.

Simplifying the algebra in Proposition 1 yields

ω(cp, (1, x)) =

12/7, if |x| = 1

3/7, if x = 0
and ω(at, (1, x)) =

6/7, if |x| = 1

−18/7, if x = 0
.
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For simplicity, assume that Y (0) = 0, so that treatment effects are determined solely by

Y (1), and that E[Y (1)|G = cp, X = x] ≡ µ(cp) and E[Y (1)|G = at, X = x] = µ(at)

do not depend on x. Then Proposition 1 shows that

βiv =
9

7
µ(cp)− 2

7
µ(at).

Figure 1 shows the value of βiv as a function of µ(at), keeping µ(cp) = 1/3. If it

were true that LATE only reflects the compliers, then we would expect to see a flat line,

so that the IV estimand doesn’t depend on the treatment effect for the always-takers.

Not only is the line not flat, it slopes down. This means that the IV estimand can be

negative even when both the compliers and the always-takers have positive treatment

effects.

2.4 Survey on IV specifications used in empirical work

Propositions 1 and 2 show that using an IV specification that is saturated in covariates

is important for the LATE interpretation asserted by Angrist and Pischke (2009). To

get a sense of how common it is to saturate in covariates, we surveyed the specifications

used in the empirical economics literature.

Our sample was constructed by searching the Web of Science Database for articles

published between January 2000 and October 2018 containing the words “instrument”

or “instrumental variable” in the abstract, title, or topic words. We restricted the

search to the following five journals: Journal of Political Economy, American Eco-

nomic Review, Quarterly Journal of Economics, Review of Economic Studies, and

Econometrica. In total, 266 articles matched our search criteria.

We restricted our attention to papers that use at least one IV specification in an

empirical application. This produced 122 papers; the other 144 papers not included

were either methodological papers without an empirical application, or were papers

that used the word “instrument” in a different context, such as to describe a policy or

financial instrument. Column (1) of Table 1 tabulates the papers used in our survey

by the journal in which they were published.

Column (2) shows that over 92% of the papers in our survey use TSLS (including

exactly identified linear IV) for at least some of their results. Column (3) counts the

subset of the papers in column (2) for which all TSLS specifications in the main body

of the paper include at least one covariate, or the authors explicitly state the exogeneity

assumption for the instrument as conditional on covariates.7 Comparing columns (2)

7Another possible justification for including covariates is to improve statistical precision. This motivation
was rarely stated explicitly in the papers in our survey. While it is difficult to infer researchers’ unstated
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Table 1: IV papers by journal and type

(1) (2) (3) (4)

All papers Papers using Papers using Papers using
TSLS TSLS with covariates TSLS with covariates,

referring to LATE

American 100% 95% 82% 27%
Economic Review 44 42 36 12

Quarterly Journal 100% 93% 86% 14%
of Economics 28 26 24 4

Journal of Political 100% 91% 83% 30%
Economy 23 21 19 7

Econometrica 100% 73% 73% 27%
15 11 11 4

Review of 100% 100% 75% 25%
Economic Studies 12 12 9 3

All 100 % 92% 81% 25%
122 112 99 30

and (3) shows that using covariates in TSLS is extremely common practice; only 13

out of the 112 papers that use TSLS include any specifications without covariates.

Column (4) shows that almost a third of the papers that use TSLS with covariates also

explicitly use the phrases “compliers,” “local average treatment effect,” or “LATE” to

describe their results.

In Table 2, we categorize the papers in column (3) of Table 1 by the TSLS specifi-

cations they use. Column (2) shows that only 5% of the papers use any specification

that is saturated in covariates. These are typically preliminary specifications with only

a set of fixed effects. Column (3) shows that every paper uses at least one specification

that is not saturated in covariates, with only one exception. The one exception is

Chamberlain and Imbens (2004). Column (4) shows that those authors also saturate

the first stage in both the covariates and the instruments, as prescribed by Angrist and

Pischke’s (2009) “saturate and weight” specification.

2.5 Implications for empirical practice

Avoiding the conclusion of Propositions 1 and 2 requires choosing a specification with

rich covariates, i.e. one that ensures L[Z|X] = E[Z|X].

reasons for choosing particular specifications, it seems unlikely that they would only use specifications with
covariates if covariates were only being used to improve precision.
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Table 2: TSLS papers with covariates by journal and empirical specification

(1) (2) (3) (4)
At least one specification

Papers using TSLS Saturated Not saturated Saturated in instruments
with covariates in covariates in covariates and covariates

American 100% 0% 100% 0%
Economic Review 36 0 36 0

Quarterly Journal 100% 4% 100% 0%
of Economics 24 1 24 0

Journal of Political 100% 16% 100% 0%
Economy 19 3 19 0

Econometrica 100% 9% 91% 9%
11 1 10 1

Review of 100% 0% 100% 0%
Economic Studies 9 0 9 0

All 100 % 5% 99% 1%
99 5 98 1

Notes: This table classifies the papers from column (3) of Table 1 by TSLS specification.

The saturate and weight (SW) specification (Angrist and Pischke, 2009) is saturated

in covariates, and thus has rich covariates. However, it also uses a first stage that is

fully saturated in both the covariates and the instruments, meaning that the regressors

are indicators for all possible covariate-instrument combinations. This results in a large

number of excluded variables and potential many instruments bias, which may explain

why the SW specification was used by only a single paper in the survey. In fact, that

one paper (Chamberlain and Imbens, 2004) is a methodological consideration of many

instruments bias.

However, our results on monotonicity-correctness show that the interactions be-

tween covariates and instruments used in the SW specification may not be necessary

for the LATE interpretation. Excluded interactions were not used in (1) and yet

Propositions 1 and 2 show that if covariates are rich, then βiv will be composed of only

positively weighted complier effects. The reason is that the Angrist and Imbens (1995)

monotonicity condition was assumed to work in the same direction for every covariate

group. In contrast, the SW specification is premised on a version of the monotonicity

assumption that allows the direction of monotonicity to vary with covariates. If one

strengthens monotonicity—which we argue in Section 4.4 is often reasonable—then

instrument-covariate interactions are not needed in the first stage to preserve the com-

plier interpretation, at least if the instrument is scalar and ordered (see Proposition 10
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ahead).

Our findings show that flexibly controlling for covariates is important for ensuring

TSLS has a causal interpretation, but that these covariates can often enter separably

from both the instruments and treatment. If a flexible covariate specification cannot

be used, then another response to our findings is to test the null hypothesis that

L[Z|X] = E[Z|X]. The most well-known test is Ramsey’s (1969) RESET test, which

is straightforward to implement (see, e.g. Wooldridge, 2010, pp. 137–138). If Z is

binary, then it is also a good idea to check that the fitted values L[Z|X] lie between

0 and 1, which is necessary for L[Z|X] = E[Z|X]. Alternatively, researchers might

consider using a method other than TSLS that is explicitly designed to estimate a

LATE-type parameter, such as one of those cited in the introduction.

One such alternative method for the binary treatment, binary instrument case is

the weighting approach developed by Abadie (2003). His approach requires estimating

E[Z|X = x] in a first step, and thus makes explicit the implicit parametric assumption

invoked when interpreting TSLS as LATE. Angrist and Pischke (2009, pp. 180–181)

use Angrist’s (2001) reanalysis of Angrist and Evans (1998) as an example to dismiss

the relevance of Abadie’s (2003) approach. Yet Angrist (2001, pg. 12) also reports that

“the covariates are not highly correlated with the twins instruments. . . ” Our findings

show why it is misleading to extrapolate the Angrist and Pischke (2009) argument to

other empirical settings: the case when Z is mean independent of X is one where any

covariate specification is rich. If Z and X are dependent—as is usually the case when

covariates are used in an IV analysis—then IV will not have a complier interpretation

unless E[Z|X = x] is modeled correctly.

3 Definition and characterization of weakly causal estimands

In this section we define a weak property that an estimand should satisfy in order to “be

causal.” We interpret the estimands through a widely studied nonparametric IV model

(e.g. Manski, 1989, 1994; Heckman, 1990; Imbens and Angrist, 1994; Balke and Pearl,

1994, 1997; Vytlacil, 2002, 2006). The model uses the potential outcomes notation

with covariates used previously by Angrist and Imbens (1995), Angrist et al. (1996),

Heckman and Vytlacil (1999), Angrist et al. (2000), Hirano et al. (2000), Abadie (2003),

Tan (2006), Frölich (2007), Kolesár (2013), and S loczyński (2022), among others. The

model nests random assignment and selection on observables as special cases.

13



3.1 The nonparametric instrumental variables model

A discrete, ordered treatment variable T takes values in T ≡ {t0, t1, . . . , tJ}, listed in

increasing order. We are interested in the causal effects that T has on an outcome

variable, Y . We observe a scalar- or vector-valued instrumental variable (IV) Z that

takes values in a set Z. The case in Section 2 corresponds to T = {0, 1} and Z = {0, 1}.
There is a vector of covariates X with support X .

Associated with each level of the IV is a potential treatment choice, T (z). Asso-

ciated with each level of the treatment is a potential outcome, Y (t), which does not

directly depend on the instrument due to the usual exclusion restriction. The potential

and actual treatments and outcomes are related through

T =
∑
z∈Z

1[Z = z]T (z) and Y =
∑
t∈T

1[T = t]Y (t).

We maintain the following standard nonparametric exogeneity condition throughout

our analysis.

Assumption EX. (Exogeneity) ({T (z)}z∈Z , {Y (t)}t∈T )⊥⊥Z|X.

We assume that each of T,Z, and X are discretely distributed with finite support.

This is just for mathematical simplicity. Our theoretical results can be extended to

allow for T to be a continuous scalar, and both X and Z to be vectors with continuous

components. The changes required essentially involve replacing sums with integrals and

finite indices with function arguments. We also assume throughout that the expectation

of Y exists.

Our analysis is based on partitioning individuals into mutually exclusive and ex-

haustive groups based on their potential treatment choices. Order Z arbitrarily as

Z ≡ {z0, z1, . . . , zK}. Let G ≡ (T (z0), T (z1), . . . , T (zK)) denote an individual’s choice

group, that is, their configuration of potential treatment choices under each of the

instrument values. Let G denote the values that G can take. In the binary treat-

ment (T = {0, 1}), binary instrument (Z = {0, 1}) case, G takes values in G =

{(0, 0), (1, 1), (0, 1), (1, 0)}, corresponding to the groups Angrist et al. (1996, Table 1)

called the never-takers, always-takers, compliers, and defiers, respectively. Using the

group notation, Assumption EX can be equivalently written as follows.

Assumption EX. (Exogeneity, group form) (G, {Y (t)}t∈T )⊥⊥Z|X.
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3.2 Definition of a weakly causal estimand

Consider the group treatment responses (GTRs)

µj(g, x) ≡ E[Y (tj)|G = g,X = x],

which are the expected potential outcomes across choice and covariate groups.8 We

collect the GTRs as µ ≡ {µj(g, x) : j = 0, 1, . . . , J, g ∈ G, x ∈ X}, which takes values

in some set M ⊆ Rdµ that reflects any additional maintained assumptions on the

GTRs, such as Assumption CLE ahead. We use the following definition as a minimal

requirement for an estimand to be interpreted as “causal.”

Definition WC. β is weakly causal if both of the following statements are true for all

µ ∈M:

If µj(g, x)− µj−1(g, x) ≥ 0 for all j ≥ 1, all g ∈ G, and every x ∈ X, then β ≥ 0.

If µj(g, x)− µj−1(g, x) ≤ 0 for all j ≥ 1, all g ∈ G, and every x ∈ X, then β ≤ 0. (4)

Definition WC is a natural requirement for an estimand β to reflect the causal effect

of T on Y . The requirement is merely that if the causal effect of the treatment has

the same sign for every treatment contrast, and every choice and covariate subgroup,

then the summary estimand β also has that sign. That is, β is weakly causal if it

is not a systematically misleading measure of the sign of the underlying group- and

covariate-specific treatment effects.

Definition WC is intended to be an extremely weak criterion. An estimand can be

weakly causal and still be completely uninteresting. For example, the trivial estimand

β = 0 is weakly causal. However, it seems unlikely that an estimand that fails to be

weakly causal could still reasonably be described as reflecting the causal effect of T

on Y , since it may not even have the right sign. As minimal as Definition WC is, we

have already seen in Figure 1 that a linear IV estimand can fail to satisfy it, even if

the instrument satisfies exclusion and exogeneity (Assumption EX).

We provide sufficient and necessary conditions to be weakly causal for any estimand

that can be written as

β = E[b(T,X,Z)Y ] (5)

for some function b. For example, βiv in Section 2 satisfies (5) with b(T,X,Z) =

8As a minor abuse of notation, we assume that µj(g, x) is well-defined for all (g, x), even if g is not in the
support of G given X, so that P[G = g,X = x] = 0. This convention has no impact on our results.
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Z̃/E[T Z̃] = (Z −L[Z|X])/E[T (Z −L[Z|X])]. The following result decomposes these

estimands into GTRs.

Proposition 3. Suppose that β has form (5), and that Assumption EX holds. Then

β =
∑
g,x

ω0(g, x)µ0(g, x) +
∑
g,x

J∑
j=1

ωj(g, x) (µj(g, x)− µj−1(g, x)) , (6)

where ωj(g, x) ≡ E [1[T ≥ tj ]b(tj , x, Z)|G = g,X = x] P[G = g,X = x] for all j ≥ 0.

3.3 Weak causality and positively weighted averages

Suppose that µ is only restricted to lie in some hypercubeM� ≡ [y, y]dµ , where y < y

and either or both of y and y could be infinite. Then Definition WC is equivalent

to the widely-used criterion of positively weighted subgroup-specific treatment effects

(e.g. Angrist, 1998; Lee, 2008a; Angrist and Pischke, 2009; Card et al., 2015; Goodman-

Bacon, 2021; Sun and Abraham, 2021; Goldsmith-Pinkham et al., 2021).

Proposition 4. Suppose that β has the form (5), that Assumption EX holds, and

that M =M�. Then β is weakly causal if and only if:

• (Non-negative weights) ωj(g, x) ≥ 0 for all j ≥ 1, and all g and x.

• (Level irrelevance) ω0(g, x) = 0 for all g and x.

When these conditions are satisfied,

β =
∑
g,x

J∑
j=1

ωj(g, x) (µj(g, x)− µj−1(g, x)) (7)

for non-negative weights ωj(g, x) ≥ 0.

Proposition 3 shows that β can always be written as (6). Proposition 4 uses that

representation to show that if β cannot also be written like (7) with weights that are

non-negative, then one of two things must be true: either β only reflects treatment

effects, but some of these effects are negatively weighted, or else β reflects not just

treatment effects but also the levels of potential outcomes. The first situation violates

the non-negative weights requirement, which is naturally necessary for β to be weakly

causal (recall Figure 1). The second situation violates the level irrelevance require-

ment. Level irrelevance is necessary for β to be weakly causal because it prevents the

possibility that all treatment effects are positive, even while the levels of the GTRs are

such that β < 0.
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The necessary direction of Proposition 4 can be altered by further restricting M
so that the GTRs must satisfy additional properties. The most salient assumption is

that treatment effects are constant and linear.

Assumption CLE. (Constant, linear effects) There exists a constant ∆ such that

µj(g, x)− µj−1(g, x) = ∆(tj − tj−1) for every j ≥ 1, g ∈ G and x ∈ X .

We letMCLE denote the subset ofM� that also satisfies the condition in Assumption

CLE. The next proposition shows that with constant, linear treatment effects, the

requirement of non-negative weights can be relaxed so that the non-negativity happens

after aggregating across groups, covariates, and treatment contrasts.

Proposition 5. Suppose that β has the form (5) and that Assumptions EX and CLE

hold, so that M =MCLE. Then β is weakly causal if and only if:

• (Non-negative weights, aggregated)
∑

g,x

∑J
j=1(tj − tj−1)ωj(g, x) ≥ 0.

• (Level irrelevance) ω0(g, x) = 0 for all g and x.

4 When is TSLS weakly causal?

In this section we specialize the general results of the previous section to a large class

of TSLS estimands.

4.1 TSLS specifications and estimands

A TSLS specification is characterized by four components: (i) the outcome variable; (ii)

the variables included in the second stage, but not the first; (iii) the variables included

in the first stage but excluded from the second; and (iv) the variables included in

both stages. The nonparametric IV model specifies the outcome variable, Y , but not

which combinations of T , Z, and X go in the first and second stages. We consider TSLS

specifications where (ii) is the treatment, T , (iii) is a vector of instruments I ≡ i(Z,X),

where i is a known, vector-valued function, and (iv) is a vector of covariates, C ≡ c(X),

where c is also a known, vector-valued function. Together, F ≡ [I ′, C ′]′ are the first

stage variables, while S ≡ [T,C ′]′ are the second stage variables.

One way to interpret the first stage of TSLS is as a procedure for reducing F down

to the same dimension as S by transforming I into a scalar. That is, the first stage of

TSLS replaces the vector of instruments I by the scalar effective instrument

Ż ≡ γ′I,
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where γ is the vector of population coefficients on I in the first stage regression of T

on I and C. The TSLS estimand can then be written as the standard IV estimand

that uses Ḟ ≡ [Ż, C ′]′ as instruments for S ≡ [T,C ′]′, that is

αtsls = E[ḞS′]−1 E[Ḟ Y ]. (8)

Alternatively, the first stage of TSLS can be viewed as constructing fitted values for

the treatment,

Ṫ ≡ Ż + λ′C,

where λ is the vector of population coefficients on C in the first stage regression. The

TSLS estimand is then the OLS estimand from a regression of Y onto Ṫ and C.9

We assume throughout that the standard rank condition holds, so that αtsls exists.

Our interest is in the component of αtsls that corresponds to the coefficient on T , since

it is this coefficient that could potentially be used to measure the causal effect of T

on Y . We call this component βtsls. An expression for βtsls like (5) can be found by

applying the Frisch-Waugh-Lovell Theorem.

Proposition 6. Let βtsls denote the component of αtsls that corresponds to the coef-

ficient on T . Then

βtsls =
E[Z̃Y ]

E[Z̃2]
=

E[Z̃Y ]

E[Z̃T ]
= E

[(
Z̃

E[Z̃T ]

)
Y

]
,

where Z̃ ≡ Ż − L[Ż|C] are the population residuals from regressing Ż onto C and

L[Ż|C] ≡ E[ŻC ′] E[CC ′]−1C are the population fitted values.

Propositions 3 and 6 imply that βtsls can be written as (6) with

ωj(g, x) = E[Z̃T ]−1 E
[
1[T ≥ tj ]Z̃|G = g,X = x

]
P[G = g,X = x]. (9)

As shown in Propositions 4 and 5, whether βtsls is weakly causal is determined by

ωj(g, x). The properties of ωj(g, x) are in turn determined by the TSLS specification.

Next, we study how aspects of the TSLS specification affect whether ωj(g, x) satisfies

the conditions in Propositions 4 and 5, starting with the simpler case of constant, linear

treatment effects considered in Proposition 5.

9Our definition of the TSLS estimand presumes the standard asymptotic framework where the number of
observations is growing and the dimensions of I and C are fixed. Kolesár (2013) and Evdokimov and Kolesár
(2019) consider alternative frameworks that allow for the dimensions of either or both of these vectors to
also be growing.
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4.2 Constant, linear treatment effects

In this section we assume constant, linear treatment effects (Assumption CLE).

4.2.1 Sufficient and necessary condition for weak causality

By itself, Assumption CLE does not guarantee that βtsls is weakly causal. The sufficient

and necessary condition is that the covariate specification is rich enough to reproduce

the conditional mean of the effective instruments.

Definition RC. Let L[Ż|C = c(x)] ≡ E[ŻC ′] E[CC ′]−1c(x) be the population fitted

value at C = c(x) from regressing Ż onto C. A TSLS specification has rich covariates

if E[Ż|X = x] = L[Ż|C = c(x)] for every x ∈ X .

Proposition 7. Suppose that Assumptions EX and CLE are satisfied and that C

contains a constant regressor. Then βtsls is weakly causal if and only if the TSLS

specification has rich covariates.

The intuition behind Proposition 7 is that a TSLS specification that does not have

rich covariates reflects not just treatment effects, but also the levels of potential out-

comes. For example, when T = {0, 1} with Y = Y (0) + ∆T , Proposition 6 implies

that

βtsls = E[Z̃T ]−1 E[Z̃(Y (0) + ∆T )] = ∆ +

depends on Y (0)︷ ︸︸ ︷
E[Z̃T ]−1 E[Z̃Y (0)] . (10)

Using Assumption EX, the potentially level-dependent term can be written as

E[Z̃Y (0)] = E
[
E[Z̃|X] E[Y (0)|X]

]
. (11)

The nonparametric IV model does not restrict E[Y (0)|X] at all. Level-dependence will

thus happen whenever E[Z̃|X] 6= 0 with positive probability, which in turn happens

whenever the TSLS specification does not have rich covariates, because

E[Z̃|X] ≡ E[Ż|X]−L[Ż|C].

An alternative way to interpret this level-dependence is as an asymmetric weighting

of Y (0) and Y (1). Using the expression in Proposition 6,

βtsls = E
[
E[Z̃T ]−1Z̃TY (1)

]
−E

[
E[Z̃T ]−1

(
Z̃T − Z̃

)
Y (0)

]
, (12)
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which shows that βtsls is the difference between weighted averages of Y (1) and Y (0).

The weights in these averages are not in general the same—the weights are asymmetric—

because the weight on Y (0) also includes the term −E[Z̃T ]−1Z̃. If the covariates are

rich, then this additional term will always be uncorrelated with Y (0), and the weights

in (12) return to being symmetric.

4.2.2 Discussion

The assumption that a TSLS specification has rich covariates has been used previously

in the literature. Abadie (2003, Proposition 5.2) proved the sufficient direction of

Proposition 7 in the special case that T = {0, 1}, I = Z and Z = {0, 1}. Kolesár

(2013, pp. 8–10) proves the sufficient direction for the more general case considered

here.

Proposition 7 shows that assuming rich covariates is not only sufficient for βtsls

to have a causal interpretation, it is also necessary. Whenever a TSLS specification

does not have rich covariates, βtsls will not be weakly causal. Moreover, the necessity

has nothing to do with heterogeneous or nonlinear treatment effects. Rather, it is

a fundamental consequence of the exercise started by Imbens and Angrist (1994) of

interpreting a linear IV estimand through a nonparametric IV model. The linear IV

estimator was designed for the linear IV model; giving it a causal interpretation within

a nonparametric IV model requires additional assumptions.

As Kolesár (2013, pp. 10–11) notes, there are two important special cases in which

a TSLS specification will have rich covariates. One is when X is discrete and C

contains an indicator for each possible realization of X, so that the specification is

saturated in X. The other is when Z is unconditionally randomly assigned, and I

contains only functions of Z, so that E[Ż|X = x] = γ′E[I|X = x] = γ′E[i(Z)] is

constant in x. Outside of these two special cases, the claim that a TSLS specification

has rich covariates is one that must be defended. Using domain knowledge to argue

that E[Ż|X = x] is indeed linear in c(x) seems difficult, and indeed we found no papers

in our survey that tried to do so.

Proposition 7 also applies to selection on observables by taking Z = T = I. Angrist

(1998) proposed implementing a selection on observables strategy using a linear regres-

sion with a single binary treatment indicator and saturated covariates, describing the

difference between this regression and nonparametric matching as “partly cosmetic”

(Angrist, 1998, pg. 255). Proposition 7 shows that Angrist’s (1998) argument cannot

be extrapolated beyond the saturated case: any deviation from full saturation will lead
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to negative weights, at least without an auxiliary functional form assumption.10 More-

over, whenever Angrist’s (1998) saturated specification can actually be implemented,

the overlap condition P[T = 1|X = x] ∈ (0, 1) must hold for every x, or else there would

be perfect multicollinearity. Thus, a linear regression implementation of selection on

observables is weakly causal only when it is also possible to estimate a traditional pa-

rameter (such as the average treatment on the treated) using a nonparametric matching

estimator.11

4.2.3 Imposing an additional linearity assumption

One way to overturn the necessary direction of Proposition 7 is to add the assumption

that E[Y (tj)|X = x] is a linear function of c(x).

Assumption LIN. (Linear potential outcome mean) E[Y (tj)|X = x] = η′c(x)

for some η and some j.

Proposition 8. Suppose that Assumptions EX, CLE, and LIN are satisfied, and that

C contains a constant regressor.12 Then βtsls = ∆, so βtsls is weakly causal.

Assumption LIN—or something similar—is explicitly stated in classical and text-

book treatments of IV models, e.g. Heckman and Robb (1985, pp. 184–186) or

Wooldridge (2010, pg. 939). But it is not part of the nonparametric IV model on

which the widely-invoked “LATE interpretation” of TSLS rests (Angrist and Imbens,

1995). In our survey, we found no researchers who attempted to justify an assumption

like Assumption LIN. As Abadie (2003, pg. 247) points out, an undesirable implication

of Assumption LIN is that one can have βtsls = ∆ even if the excluded “instruments”

I depend only on X, and not on Z, an example of what Angrist and Pischke (2009,

pg. 191) describe as “back-door identification.”

A higher-level alternative to having rich covariates or imposing Assumption LIN is

to directly assume that the left-hand side of (11) is zero. This assumption appears in

Wooldridge’s (2010, pg. 937) discussion of the binary treatment case as the assumption

that L[Y (0)|C, I] does not depend on I. If we put aside knife-edge balancing cases, (11)

shows that this assumption either requires rich covariates or Assumption LIN. However,

10Assumption LIN in the next section is one such assumption. Under this assumption, selection on
observables with a binary treatment is a special case of the analysis in Section 2 in which every unit is a
complier. Assumption LIN is, however, crucial for this conclusion.

11There may however be statistical differences between such estimators. Goldsmith-Pinkham et al. (2021)
argue that the linear regression implementation will necessarily have a smaller asymptotic variance.

12In terms of theM set in Section 3, M =MCLE ∩MLIN, whereMLIN ≡ {µ :
∑

g µj(g, x) P[G = g|X =
x] = η′c(x) for some η and some j}.
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considering the high-level assumption usefully exposes the fundamental problem with

using the nonparametric IV model to justify TSLS: Assumption EX by itself does not

imply that regressing Y (0) onto C and I would yield a zero coefficient on I, even

though this condition is essential for giving TSLS a causal interpretation.

Assumption LIN was also maintained in Propositions 1 and 2, which showed that

βtsls is not weakly causal without rich covariates. This does not contradict Proposition 8

because of the addition of constant, linear treatment effects (Assumption CLE). When

Assumption CLE is removed to allow for heterogeneous treatment effects, Assumption

LIN no longer suffices as a substitute for rich covariates.

4.3 Heterogeneous treatment effects

In this section we drop Assumption CLE and allow for treatment effects that are both

nonlinear and heterogeneous across both covariates and groups, as in Angrist and

Imbens (1995).

4.3.1 Monotonicity

We add a conditional-on-covariates form of the Imbens and Angrist (1994) monotonicity

condition. We follow S loczyński (2022) in calling this “weak” monotonicity, in contrast

to “strong” monotonicity, introduced ahead.

Assumption WM. (Weak monotonicity) For all x ∈ X , and all z, z̄ ∈ Z, either

P[T (z̄) ≥ T (z)|X = x] = 1

or P[T (z) ≥ T (z̄)|X = x] = 1.

We describe Assumption WM as weak monotonicity because it allows the direction

of monotonicity to depend on x. For example, if Z = {0, 1} and X = {0, 1}, then

Assumption WM allows for

P[T (1) ≥ T (0)|X = 0] = 1

and P[T (0) ≥ T (1)|X = 1] = 1. (13)

If, for example, T = {0, 1} is also binary, then group G = (0, 1) would be compliers

conditional on X = 0, but they would be defiers conditional on X = 1, and conversely

for G = (1, 0).
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4.3.2 Sufficient and necessary conditions for weak causality

For any x, the order in which Assumption WM holds between two instrument values

can be determined by the conditional mean of T ,

p(z, x) ≡ E[T |Z = z,X = x].

If p(z̄, x) ≥ p(z, x) then T (z̄) ≥ T (z) conditional on X = x, and conversely (Imbens and

Angrist, 1994; Vytlacil, 2002). We say that the first stage of the TSLS specification is

monotonicity-correct if the first stage fitted values reproduce this ordering, in the sense

of predicting higher values of treatment when the instrument is such that individuals

choose higher values of treatment.

Definition MC. Let ṫ(z, x) ≡ γ′i(z, x) + λ′c(x) denote the population fitted values

in the first stage regression for a realization with Z = z and X = x. Suppose that

(z, z̄) are both in the support of Z, conditional on X = x. Then a TSLS first stage is

monotonicity-correct for (z, z̄) conditional on X = x, if

(p(z̄, x)− p(z, x))×
(
ṫ(z̄, x)− ṫ(z, x)

)
≥ 0.

In the previous section, we established that the requirement of rich covariates is

necessary for βtsls to be weakly causal. Since this was true under Assumption CLE, it

also remains true without that assumption. (And, as already noted, it also remains true

even if one imposes Assumption LIN, as shown in Proposition 2.) With heterogeneous

treatment effects, and given rich covariates, whether βtsls is weakly causal depends on

the monotonicity-correctness of its first stage.

Proposition 9. Suppose that Assumptions EX and WM are satisfied. Suppose that

the TSLS specification for βtsls has rich covariates and that C contains a constant

regressor. If the TSLS specification is monotonicity-correct for every (z, z̄), conditional

on every x, then βtsls is weakly causal. Conversely, if βtsls is weakly causal, then for

every x ∈ X the TSLS first stage must be monotonicity-correct for at least one pair

(z, z̄).

4.3.3 Interpreting monotonicity-correctness

Definition MC is easiest to appreciate in the case with T = {0, 1}, I = Z, and Z ∈
{0, 1}, so that ṫ(1, x) − ṫ(0, x) = γ is the scalar coefficient on Z in the first stage

regression. If Assumption WM holds with T (1) ≥ T (0) conditional on X = x, then

p(1, x)−p(0, x) ≥ 0. The TSLS first stage is monotonicity-correct conditional on X = x
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if and only if γ > 0, so that the linear projection in the first stage reproduces the same

sign as the (nonparametric) propensity score.

Proposition 9 shows that a necessary condition for βtsls to be weakly causal in this

case is that the TSLS first stage is monotonicity-correct for all x. Since there is only a

single coefficient γ, the implication is that βtsls for this specification will not be weakly

causal if the direction of Assumption WM changes with x, as in (13). S loczyński

(2022, Theorem 3.3) previously made this point in the binary Z, binary T case with

C saturated in X.

Including interactions between covariates and instruments in the first stage can

help ensure monotonicity-correctness. For example, suppose that X contains a binary

component, X1 ∈ {0, 1}, and that I = [Z,ZX1]′ now has two components with first

stage coefficient vector [γ1, γ2]′, so that for any realization of the other components x−1

of X,

ṫ(1, x1 = 0, x−1)− ṫ(0, x1 = 0, x−1) = γ1

and ṫ(1, x1 = 1, x−1)− ṫ(0, x1 = 1, x−1) = γ1 + γ2.

This first stage can still be monotonicity-correct conditional on all values of X =

(x1, x−1), even if the direction of Assumption WM is positive when x1 = 0 and negative

when x1 = 1, as in (13). The requirement is that γ1 ≥ 0 and γ1 +γ2 ≤ 0. Whether this

requirement holds depends on how the covariates C are specified, and on the stochastic

relationship between Z and the other components, X−1 (see Section 4.4).

As this example suggests, monotonicity-correctness is about how the relationship

between Z and T varies conditional on X. This is different from rich covariates, which

is about the joint distribution of Z and X. It is possible for a TSLS specification to be

monotonicity-incorrect even if Z and X are independent, as in a completely randomized

experiment.

With a binary instrument Z = {0, 1}, the sufficient and necessary conditions in

Proposition 9 are the same. With a multivalued instrument, a small gap opens up be-

tween the two conditions. The gap occurs because it is possible—at least in principle—

for the first stage to be monotonicity-incorrect for some instrument contrasts, as long

as it is monotonicity-correct “on average” across all instrument contrasts. This type

of fortuitous averaging seems difficult to defend, so for practical purposes we view the

gap between sufficient and necessary in Proposition 9 as empirically irrelevant.
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4.3.4 Relationship to the literature

Special cases of the sufficient conditions in Proposition 9 appear in Angrist and Imbens

(1995), Angrist and Pischke (2009), Kolesár (2013), and S loczyński (2022). Angrist and

Imbens (1995) and Angrist and Pischke (2009) assume first stage specifications that are

saturated in both the instruments and covariates, which is automatically monotonicity-

correct for any instrument pair, conditional on any covariate value. Kolesár (2013)

relaxes this to Definition MC, although stated somewhat differently; see also Heckman

and Vytlacil (2005, Section 4.3) and Heckman (2010, Section 3.4).

These authors primarily consider the binary treatment case. For multivalued treat-

ments, Angrist and Imbens (1995), Angrist and Pischke (2009), and Kolesár (2013)

interpret βtsls as a positively weighted average of “average causal response” functions,

rather than of underlying subgroup-specific treatment effects. Heckman et al. (2006,

pp. 414–415) provide an interpretation in terms of subgroup-specific treatment effects

when the first stage is fully saturated, but under a condition different from Assumption

WM.

In contrast, Proposition 9 shows that—given rich covariates—having a monotonicity-

correct first stage is not only sufficient for a causal interpretation, it is also necessary.

It is not just necessary for interpreting βtsls as a positively weighted average of LATEs,

but even for interpreting βtsls as weakly causal. Proposition 9 thus exactly charac-

terizes the set of TSLS specifications that can be said to have a causal interpretation

under Assumptions EX and WM. This set turns out to be essentially the same as the

restrictive fully saturated one originally used in Angrist and Imbens (1995, Theorem

3), the one which was used in only a single one of the 99 papers in our survey that

used TSLS with covariates (Section 2.4).

4.4 Which TSLS estimands are weakly causal?

Propositions 8 and 9 show that for a TSLS specification to produce a weakly causal

estimand it needs to be both rich and monotonicity-correct.

Nonparametric TSLS specifications that restrict attention to the population with

X = x and use a first stage that is saturated in Z will be both rich (trivially) and

monotonicity-correct. Each value of x produces a different estimand βtsls(x), each of

which is weakly causal. Any positively weighted sum of βtsls(x) across x ∈ X will be

weakly causal. Frölich (2007) discusses several different weighting schemes.

Nonparametric conditioning can be viewed as arising from a TSLS specification

that fully interacts both the treatment and instruments with indicators for each x bin.

The “saturate and weight” (SW) specification (Angrist and Pischke, 2009; Angrist
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and Imbens, 1995) is like nonparametric conditioning but uses only a single treatment

variable. Letting X ≡ {x1, . . . , xL}, the SW specification takes

C ≡ [1, 1[X = x`] : ` = 2, . . . , L]′ (SW)

and I ≡ [1[Z = zk], 1[X = x`]1[Z = zk] : ` = 2, . . . , L, and k = 2, . . . ,K]′ .

Specification SW is both rich and monotonicity-correct: it is rich because regressing

Z onto C yields fitted values E[Z|X], and it is monotonicity-correct because the first

stage fitted values are equal to the propensity score.

However, because specification SW has L excluded variables—the same number

of values that X takes—it is quite vulnerable to many instruments bias. Jackknife

estimators have been proposed for reducing many instruments bias (Angrist et al.,

1999; Ackerberg and Devereux, 2009; Kolesár, 2013). In Appendix B, we report Monte

Carlo evidence on the performance of the JIVE, IJIVE, and UJIVE estimators for

specification SW. Our results confirm that many instruments bias can be a serious

problem for estimating specification SW with TSLS, and often remains a substantial

problem even when using jackknife estimators.

The large number of excluded variables in specification SW are created by inter-

acting X and Z. Removing these interactions produces the saturated separable (SS)

specification

C ≡ [1, 1[X = x`] : ` = 2, . . . , L]′ and I ≡ [1[Z = zk] : k = 2, . . . ,K]′ . (SS)

Specification SS has the same covariates C as specification SW, so it still has rich

covariates. However, removing the interactions means that specification SS will not be

monotonicity-correct if the direction of monotonicity changes with X, as in (13).

A natural response is to strengthen Assumption WM to require the direction of

monotonicity to be invariant to X. S loczyński (2022) calls this strong monotonicity.

Assumption SM. (Strong monotonicity) For all z, z̄ ∈ Z, either

P[T (z̄) ≥ T (z)|X = x] = 1

or P[T (z) ≥ T (z̄)|X = x] = 1 for all x.

Assumption SM implies that p(z̄, x) − p(z, x) has the same sign for all x. Perhaps

surprisingly, however, specification SS is still not necessarily monotonicity-correct even

under Assumption SM. The reason is that omitted interaction terms can bias the

coefficients on the instrument indicators in a way that contradicts the sign of the
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propensity score (see Appendix C for an example).

Suppose, however, that Z is scalar and ordered, and that the comparisons in As-

sumption SM follow this ordering.

Assumption OSM. (Ordered strong monotonicity) Z is scalar with z0 ≤ z1 ≤
· · · ≤ zK and

P[T (z0) ≤ T (z1) ≤ · · · ≤ T (zK)|X = x] = 1 for all x.

Assumption OSM also does not ensure that specification SS is monotonicity-correct.

However, it does ensure that the more parsimonious saturated linear (SL) specification

C ≡ [1, 1[X = x`] : ` = 2, . . . , L]′ and I = Z. (SL)

will be monotonicity-correct. More generally, any specification with rich covariates that

has a first stage that is separable and linear in Z will produce a βtsls that is weakly

causal.

Proposition 10. Suppose that Assumptions EX and OSM are satisfied. If the TSLS

specification has rich covariates with C containing a constant regressor, and if I = Z,

then βtsls is weakly causal.

These findings suggests that the original Angrist and Imbens (1995) monotonicity

condition, Assumption WM, is often too weak to ensure reasonable TSLS estimands

are weakly causal. On the other hand, it is not clear that strengthening Assumption

WM to Assumption SM or OSM appreciably changes its economic content.13

For example, Angrist and Evans (1998) use parental preferences for mixed sibling

sex composition as a binary instrument for fertility, with the argument that having

two children of different sexes (Z = 0) makes a family less likely to have a third

child (T = 1). Assumptions WM, SM, and OSM are all potentially suspicious in this

case because they require all families to have the same sex-mix preferences, ruling out

the existence of any family that prefers two boys, and thus eliminating meaningful

unobserved heterogeneity in preferences.14 The difference between Assumptions WM

and SM (or OSM) is whether sex-mix preferences can be modulated by observables, e.g.

more educated families all prefer mixed-sex, while less educated families all prefer two

boys. While mathematically weaker, such an assumption does not address the critique

13S loczyński (2022) provides a more positive view of Assumption WM relative to Assumption SM.
14Rosenzweig and Wolpin (2000) and Lee (2008b) show that such preferences are indeed relevant to the

fertility behavior of parents in India and South Korea, respectively.
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that there is unobserved heterogeneity in parental preferences for mixed sibling sex

composition.

5 Decomposing TSLS estimands

A TSLS estimand that is not weakly causal could still be “close” to weakly causal if the

covariates are “almost” rich and the first stage is “almost” monotonicity-correct. To

make this concept precise, we develop a decomposition that breaks a TSLS estimand

into a weakly causal term and two terms that measure the degree to which covariates

are not rich and the first stage is not monotonicity-correct. All three of these terms

are point identified, so we can use the decomposition to estimate the extent to which

a TSLS estimand fails to be weakly causal.

For any x, let ξ0(x) denote the value of z for which p(z, x) is smallest, then let

ξ1(x) denote the second smallest value, ξ2(x) the third smallest, and so on. Then

p(ξ0(x), x) ≤ p(ξ1(x), x) ≤ · · · ≤ p(ξK(x), x), where K is the number of elements of Z.

For k ≥ 1, let

Υk(x) ≡ E[Y |X = x, Z = ξk(x)]−E[Y |X = x, Z = ξk−1(x)].

Also, let Ξk(x) ≡ {ξ`(x)}`≥k denote the set of instrument values with propensity score

at least as large as p(ξk(x), x), conditional on X = x. We use these definitions in the

following proposition.

Proposition 11. Suppose that Assumption EX is satisfied. If a TSLS specification

has rich covariates, then

βtsls = E

[
K∑
k=1

Υk(X)t̃k(X)φk(X)

]
≡ βrich,

where

φk(x) ≡ P[Z ∈ Ξk(x)|X = x] P[Z /∈ Ξk(x)|X = x] E[Z̃2]−1

and t̃k(x) ≡ E
[
ṫ(Z, x)|Z ∈ Ξk(x), X = x

]
−E

[
ṫ(Z, x)|Z /∈ Ξk(x), X = x

]
.

Proposition 11 provides the following decomposition:

βtsls = βrich + (βtsls − βrich). (14)

The first term, βrich, is the estimand that would have been obtained by a given TSLS
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specification had the distribution of observables been such that the covariates were

rich, i.e. such that E[Ż|X = x] = L[Ż|C = c(x)] for all x. The second term is

the deviation between the estimand produced under the actual distribution of the

observables, βtsls, and the estimand βrich produced under this idealized scenario. Since

each of Υk(x), t̃k(x), and φk(x) are features of the distribution of observables, we can

directly estimate both terms in (14).

With heterogeneous treatment effects, βrich could still reflect both positively and

negatively weighted treatment effects depending on the sign of t̃k(x). To see this, notice

that each outcome contrast, Υk(x), is a numerator for a conditional Wald estimand.

That is,

waldk(x) ≡ E[Y |X = x, Z = ξk(x)]−E[Y |X = x, Z = ξk−1(x)]

E[T |X = x, Z = ξk(x)]−E[T |X = x, Z = ξk−1(x)]
≡ Υk(x)

ρk(x)

whenever ρk(x) ≡ p(ξk(x), x) − p(ξk−1(x), x) 6= 0. Assumption WM implies that each

of these Wald estimands is a positively weighted average of what Angrist and Imbens

(1995) call the average causal response, and thus is a positively weighted average of

subgroup-specific treatment effects, and so weakly causal. Since φk(x) ≥ 0, whether

these Wald estimands contribute to βrich with positive or negative weight is determined

by the sign of t̃k(x), which is the impact on T predicted by the first stage for a shift

from Z = ξk−1(X) to the values in Ξk(x) that have larger propensity scores.15 If tk(x)

is non-negative, then the TSLS first stage is monotonicity-correct for at least one pair

of instrument values, conditional on X = x.

We can isolate only the positively weighted contrasts by splitting βrich into βrich =

β+
rich + β−rich, where

β+
rich ≡ E

[
K∑
k=1

Υk(X) max
{

0, t̃k(X)
}
φk(X)

]

and β−rich ≡ E

[
K∑
k=1

Υk(X) min
{

0, t̃k(X)
}
φk(X)

]
.

This extends decomposition (14) to

βtsls =

positively weighted︷︸︸︷
β+

rich +β−rich︸︷︷︸
negatively weighted

+

level-dependence︷ ︸︸ ︷
(βtsls − βrich) .

15When defining ξk(x), any ties in propensity scores are now broken based on the values of ṫ(z, x). This
breaks ties in favor of the empirical first stage and ensures that ties do not contribute to negative weights.
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Only the first term, β+
rich, reflects positively weighted treatment effects. The second

term, β−rich, reflects negatively weighted treatment effects caused by a monotonicity-

incorrect first stage, while the third term, (βtsls − βrich), captures level-dependence

caused by insufficiently rich covariates. Each of the three terms in the decomposition

are identified, enabling an empirical measurement of the makeup of the TSLS estimand

for a given empirical specification.

While β+
rich reflects positively weighted treatment effects, its weights do not neces-

sarily sum to one. This has the undesirable implication that if treatment effects were

indeed constant, β+
rich would not equal that constant, making the interpretation of β+

rich

more difficult. To restore interpretation we also consider the rescaled version

β̃+
rich ≡ β+

rich ×E

[
K∑
k=1

ρk(X) max
{

0, t̃k(X)
}
φk(X)

]−1

,

and an analogous version β̃−rich of the negatively weighted component. The rescaled

versions have weights that sum to one, so can be interpreted on the same scale as the

subgroup-specific treatment effects.

6 Applications

In this section, we measure the extent to which commonly-employed TSLS specifi-

cations fail to produce weakly causal estimands by applying the decomposition in

Proposition 11 to four empirical studies.

6.1 Gelbach (2002)

Gelbach (2002) estimates the impact of public school availability on maternal labor

supply using a sample of single mothers whose youngest child was five years old in

1980. The outcome variable Y is maternal hours worked. The treatment variable T

is an indicator for whether the mother’s five-year-old was enrolled in public school.

The instrument Z is the child’s quarter of birth (QOB). The covariates X are race,

residence in a central city, mother’s age, state of birth, state of residence, number of

own children and other household members by age. The sample size is 10,932.

Gelbach (2002, Table 2) provides evidence that QOB is correlated with some de-

mographic variables, noting on pg. 309,

Since demographic variables are statistically associated with both QOB and

labor supply, I control for them in the IV estimation.
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In his main results, Gelbach (2002, Table 6, column (4)) sets I to be indicators for

each quarter of birth, and takes C to include everything in X as indicators except

for age, which is specified as quadratic, number of own children, which is linear with

different counts for ages 6–12, 13–17, and above 18, and number of other household

members, which is linear with different counts for younger and older than 18. Gelbach’s

specification is not rich by construction; it has 111 variables, whereas a saturated

specification has 10,397 variables, one for each covariate bin. Gelbach (2002, pg. 311)

asserts that his estimates are nonparametric and reflect the compliers:

Subject to instrument validity, IV estimates nonparametrically identify the

average effect of public schooling... [If ] there is heterogeneity in the enroll-

ment effects, only the effect of women observed enrolling their children is

identified.

Our results show that this claim is false. For Gelbach’s estimates to reflect only com-

pliers, the covariate specification must be rich, which requires making a parametric

assumption about the conditional mean of the instruments given the covariates.

Column (2) of Table 3 reproduces Gelbach’s (2002) main TSLS estimate and decom-

poses it using Proposition 11. The level-dependence portion is estimated to be almost

as large as the original TSLS estimand. This means that if the employed specification

had actually been rich, then the resulting estimate (βrich) would have been nearly zero.

Consistent with this finding, a RESET test provides strong evidence against the null

hypothesis that the covariates are rich, with a p-value of .012.

Decomposing βrich further into positively and negatively weighted components, we

find that both components are small. This implies that even under constant treatment

effects (Assumption CLE), the TSLS estimate in column (2) primarily reflects the

levels of potential outcomes, rather than the differences (treatment effects). In order

to restore a treatment effect interpretation, one could invoke Assumption LIN to impose

a parametric assumption that the conditional means of potential outcomes are linear

(Proposition 8).

Column (3) reports the TSLS estimate of the saturated, separable specification

(SS). The estimate is closer to zero, consistent with the decomposition of the baseline

specification, but is quite noisy. The reason is that saturating the covariates creates

nearly as many covariate bins as there are observations. Only 789 observations lie

in covariate bins with residual QOB variation—all others effectively get discarded in

estimation due to perfect collinearity in the first stage. Columns (4) and (5) report

TSLS and IJIVE estimates of the saturate and weight specification (SW), but these

depend on an even smaller effective sample, and are also too noisy to learn much.
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Table 3: Decomposition for Gelbach (2002, Table 6, column (4))

(1) (2) (3) (4) (5)

Original specification Saturated covariate specifications

OLS TSLS TSLS (SS) TSLS (SW) IJIVE (SW)

Estimate (βtsls) –1.009*** 2.707*** 0.738 –1.560 –1.410
(0.381) (0.881) (11.290) (6.391) (6.607)

Level-dependence (βtsls − βrich) — 2.666*** — — —
[0.984, 4.429]

Treatment effects (βrich) — 0.041 0.738 –1.560 –1.410
[–0.245, 0.324] [–7.038, 9.282]

Positively-weighted (β+
rich) — 0.004 0.133 –1.560 –1.410

[–0.266, 0.291] [–7.458, 8.591]
Negatively-weighted (β−rich) — 0.036 0.605 — —

[–0.027, 0.085] [–0.816, 2.401]

Causal effect, pos.-weighted (β̃+
rich) — 0.067 0.119 — —

[–6.678, 7.486] [–6.728, 7.637]

Causal effect, neg.-weighted (β̃−rich) — –5.190 –5.109 — —
[–19.504, 7.847] [–19.361, 8.202]

Ramsey RESET test p-val.
(H0 : rich covariates) — 0.012 — — —

Excluded variables 0 3 3 211 211
Included variables 111 111 10,397 10,397 10,397
Included variables, effective sample 111 111 349 186 186
Sample size 10,932 10,932 10,932 10,932 10,932
Effective sample size 10,932 10,932 789 440 440

Notes: The effective sample size is the number of observations that the estimator depends on after accounting
for perfect collinearity in the first stage. Heteroskedasticity-robust standard errors are reported in parentheses
for OLS, TSLS, and IJIVE estimates. Confidence intervals for the decomposition components are computed
via nonparametric bootstrap based on 1000 bootstrap samples, with 95% confidence intervals shown in
brackets. The RESET test is of the null hypothesis that E[Ż|X = x] = L[Ż|C = c(x)] for all x. We
implemented the RESET test using a nonparametric bootstrap estimate of the asymptotic variance matrix
based on 1000 bootstrap samples. Stars *, **, and *** denote significance at levels .10, .05, and .01,
respectively.

In Table 4, we consider a more parsimonious version of Gelbach’s (2002) specifica-

tion that includes only a quadratic in mother’s age and state of residence fixed effects.

Column (2) of Table 4 shows that the TSLS point estimate for this baseline specification

is 2.752, which is nearly identical to Gelbach’s original estimate of 2.707, and the stan-

dard error is only slightly larger. While the RESET test still provides some evidence

that the specification does not have rich covariates, the impact on level-dependence is

less severe, although still both economically and statistically significant.

Column (3) of Table 4 shows that there are still over 3,000 covariate bins in spec-

ification SS, even when only using mother’s age and state of residence. However, the
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Table 4: Decomposition of a parsimonious alternative to Gelbach (2002)

(1) (2) (3) (4) (5)

Baseline specification Saturated covariate specifications

OLS TSLS TSLS (SS) TSLS (SW) IJIVE (SW)

Estimate (βtsls) –2.987*** 2.752*** 2.474** –1.442** –0.340
(0.397) (0.935) (1.194) (0.689) (0.911)

Level-dependence (βtsls − βrich) — 0.982** — — —
[0.024, 2.513]

Treatment effects (βrich) — 1.770** 2.474** –1.442 –0.340
[0.098, 2.889] [0.230, 4.738]

Positively-weighted (β+
rich) — 0.994 1.403 –1.442 –0.340

[–0.645, 2.005] [–1.067, 3.352]
Negatively-weighted (β−rich) — 0.777*** 1.071*** — —

[0.402, 1.319] [0.649, 2.211]

Causal effect, pos.-weighted (β̃+
rich) — 1.275 1.289 — —

[–0.976, 3.005] [–0.955, 2.995]

Causal effect, neg.-weighted (β̃−rich) — –12.128*** –12.069*** — —
[–17.809, –5.491] [–17.879, –5.529]

Ramsey RESET test p-val.
(H0 : rich covariates) — 0.124 — — —

Excluded variables 0 3 3 2,593 2,593
Included variables 52 52 3,177 3,177 3,177
Included variables, effective sample 52 52 1,808 1,329 1,329
Sample size 10,932 10,932 10,932 10,932 10,932
Effective sample size 10,932 10,932 9,341 7,975 7,975

Notes: Same notes as for Table 3.

effective sample is only about 10% smaller than the original sample. Consequently,

the TSLS estimate for specification SS has a standard error roughly comparable to

the more tightly parameterized estimate in column (2). The two point estimates are

also fairly close, reflecting the lesser role of level-dependence in this more parsimonious

specification. Under Assumption CLE, the SS estimate in column (3) is weakly causal.

Decomposing either column (2) or column (3) into positively and negatively weighted

components shows that monotonicity-incorrectness is important here. The negatively

weighted component is large and statistically significant for both estimates, implying

that the separable first stage relationship used in specification SS fails to reproduce

the sign of the nonparametric propensity score and thus is not monotonicity-correct.

The negatively weighted component is positive because it reflects negatively weighted

negative treatment effects for some groups. Reweighting the positive and negative

components shows that a relatively small proportion receive negative weight, but that

those that do have large negative treatment effects. As Gelbach (2002, pg. 308) notes,
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Table 5: Sensitivity to covariate specification in Dube and Harish (2020)

(1) (2) (3) (4) (5) (6) (7) (8)

Queen 1.011 0.511 0.681 0.984 1.220 0.262 1.190 0.400
(0.523) (0.231) (0.355) (0.519) (0.640) (0.170) (0.639) (0.211)
[0.011] [0.005] [0.029] [0.015] [0.013] [0.142] [0.014] [0.039]

Polity fixed effects X X X
Decade fixed effects X X X
Missing gender control X X X
Previous monarch controls X X X

Notes: Clustered standard errors are reported in parentheses. Brackets contain p-values for the clustered
wild bootstrap procedure implemented by Dube and Harish (2020) with 1000 replications. Column (8)
replicates Table 3, column (3) of Dube and Harish (2020). The sample size is 3,586.

the IV estimate reflects both the price and income effects of subsidized schooling, so

its theoretical sign is ambiguous.

Column (4) of Table 4 reports specification SW, which is, by construction, a posi-

tively weighted average of complier treatment effects. The sign reverses from columns

(2) and (3), providing further evidence of covariate-variation in the propensity score

that is consistent with Assumption WM, but not with Assumption SM. However, the

point estimate in column (4) is actually closer to the OLS estimate in (1), which could

be the consequence of many instruments bias. Consistent with this explanation, the

IJIVE estimate of specification SW in column (5) is considerably smaller in magnitude,

and not statistically different from zero.

6.2 Dube and Harish (2020)

Dube and Harish (2020) estimate the effect of queenly rule on war using panel data

on the polities of Europe covering the years 1480 to 1913. The outcome variable Y is

a binary indicator for whether a polity-year observation was at war. The treatment

variable T is a binary indicator for whether a queen ruled in that polity-year. Dube

and Harish (2020) use two instruments Z; we focus on their preferred instrument,

which is an indicator for whether the previous monarch had a legitimate firstborn male

child. The covariates X in their main results (Dube and Harish, 2020, Table 3, column

(3)) are polity and decade identifiers, whether the previous monarchs were corulers

unrelated to one another, whether they had any legitimate children (with and without

missing birth years), and whether the gender of the previous firstborn child is missing.

Dube and Harish (2020) justify most of their controls with concerns about exo-

geneity of the instrument. For example, they argue that controlling for whether the
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previous monarch had any legitimate children is necessary because the firstborn son

instrument is mechanically zero whenever the previous monarch had no children (Dube

and Harish, 2020, pp. 2601–2602). In Table 5 we show that without polity fixed effects

their IV estimates are implausibly large, sometimes exceeding the logical value of 1, al-

beit with large standard errors. With both polity and decade fixed effects, but without

the previous monarch controls, their estimates are close to half as large in magnitude.

Covariates apparently matter substantially for the conclusions in this application.

Dube and Harish (2020, pg. 2605) explicitly invoke a LATE interpretation for their

estimates:

If there are heterogeneous treatment effects, the IV estimate will be the LATE

(Imbens and Angrist 1994). It will tell us the effect for the specific group

of women who were eligible to rule and induced into ruling because of the

presence of a firstborn female or sister among previous monarchs (i.e., the

set of women who were compliers).

However, their specifications do not include interactions between covariates, so they

are not saturated, and thus are not necessarily rich. Their first stage specification also

does not include any interactions between the instrument and the covariates, so may

not be monotonicity-correct.

Table 6 reports our decomposition of Table 3, column (3) of Dube and Harish

(2020). Column (2) replicates and decomposes their TSLS estimate. We find that

almost all of the estimate is driven by level-dependence, as in Gelbach (2002). The

RESET test overwhelmingly rejects the null hypothesis of rich covariates.

Column (3) of Table 6 reports specification SS, which has the opposite sign, but is

imprecisely estimated. As in Gelbach (2002), this is because saturating the covariates

creates a large number of bins. Few observations lie in covariate bins that have residual

variation in the instrument, reducing the effective sample to only a fraction of the

original sample. The implication is that the original TSLS specification is relying

heavily on the assumed parametric form to extrapolate across covariate bins. The

large level-dependence term and overwhelming rejection of the null of rich covariates

in column (2) both suggest that this parametric form is working poorly here. Figure

2 provides additional evidence, showing that many of the fitted values of L[Z|C] lie

outside of the interval [0, 1] that E[Z|X] must lie in.

Columns (4) and (5) of Table 6 report TSLS and IJIVE estimates of specification

SW. These depend on an even smaller subsample of 107 observations. The estimates

are tighter than those for SS in column (3), but they are also close to the OLS estimate.

This is suggestive of many instruments bias, which could be a problem here with 11
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Table 6: Decomposition of Dube and Harish (2020, Table 3, column (3))

(1) (2) (3) (4) (5)

Original specification Saturated covariate specifications

OLS TSLS TSLS (SS) TSLS (SW) IJIVE (SW)

Estimate (βtsls) 0.115*** 0.400* –0.509 0.145 0.148
(0.035) (0.211) (0.523) (0.099) (0.101)

Level-dependence (βtsls − βrich) — 0.447* — — —
[–0.007, 2.410]

Treatment effects (βrich) — –0.047 –0.509 0.145 0.148
[–0.288, 0.038] [–7.021, 9.103]

Positively-weighted (β+
rich) — –0.042 –0.451 0.145 0.148

[–0.236, 0.043] [–6.299, 10.477]
Negatively-weighted (β−rich) — –0.005 –0.058 — —

[–0.063, 0.022] [–3.878, 0.423]

Causal effect, pos.-weighted (β̃+
rich) — –0.294 –0.294 — —

[–3.355, 0.339] [–1.427, 1.354]

Causal effect, neg.-weighted (β̃−rich) — 0.109 0.109 — —
[–0.400, 0.667] [–0.400, 0.667]

Ramsey RESET test p-val.
(H0 : rich covariates) — 0.000 — — —

Excluded variables 0 1 1 11 11
Included variables 65 65 447 447 447
Included variables, effective sample 65 65 28 11 11
Sample size 3,586 3,586 3,586 3,586 3,586
Effective sample size 3,586 3,586 267 107 107

Notes: The effective sample size is the number of observations that the estimator depends on after accounting
for perfect collinearity in the first stage. Clustered standard errors are reported in parentheses for OLS,
TSLS, and IJIVE estimates. Confidence intervals for the decomposition components are computed via
nonparametric block bootstrap based on 1000 bootstrap samples, with 95% confidence intervals shown in
brackets. The RESET test is of the null hypothesis that E[Z|X = x] = L[Z|C = c(x)] for all x. We
implemented the RESET test using a cluster-robust estimate of the asymptotic variance matrix. Stars *,
**, and *** denote significance at levels .10, .05, and .01, respectively.

excluded variables and only 107 observations. On the other hand, the IJIVE estimate

is similar, suggesting that many instruments bias is not playing an important role. The

Monte Carlo results in Appendix B show that IJIVE sometimes effectively corrects for

many instruments bias and sometimes does not.

6.3 Card (1995)

Card (1995) uses a sample of 24-year-old men from the 1976 interview of the NLSY to

estimate the returns to education. The outcome Y is log hourly wage. The treatment

T is years of education. The instrument Z is a binary indicator for the presence of
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Figure 2: Fitted values of L[Z|C] in Dube and Harish (2020)
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Notes: A histogram of the fitted values from regressing I = Z onto C for the TSLS specification in column
(2) of Table 6.

an accredited four-year college in the local labor market when the respondent was 14

years old. In his main results, Card (1995, Table 3A, column (5)) specifies covariates C

using a quadratic in years of potential experience, a race indicator for Black, geography

indicators for living in the South and in an urban area, a set of indicators for region

of residence in 1966, and an indicator for residence in an SMSA in 1966. All of these

terms enter additively, so the covariate specification is not saturated, and thus not

necessarily rich.

Column (2) of Table 7 reproduces Card’s estimate of the returns to schooling and

reports the results of our decomposition. The estimate in column (2) is weakly causal

under the assumption of constant, linear effects, and a linearity assumption on the

conditional mean of potential outcomes (Proposition 8). Without these assumptions,

however, the specification must have rich covariates (Proposition 7). A RESET test

overwhelmingly rejects the null hypothesis that the specification has rich covariates.

In this case the impact on level-dependence is estimated to be fairly small, although

the estimate is quite noisy. Figure 3 shows that most of the fitted values of L[Z|C] lie

within the unit interval, as they should under correct specification.

Specification SS in column (3) has no level-dependence term by construction and

produces an estimate that is modestly larger with a similar standard error. Under the

assumption of constant, linear treatment effects the estimate in column (3) is weakly
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Table 7: Decomposition of Card (1995, Table 3A, column (5))

(1) (2) (3) (4) (5)

Original specification Saturated covariate specifications

OLS TSLS TSLS (SS) TSLS (SW) IJIVE (SW)

Estimate (βtsls) 0.075*** 0.132** 0.148** 0.072*** 0.076***
(0.004) (0.054) (0.064) (0.013) (0.021)

Level-dependence (βtsls − βrich) — 0.020 — — —
[–0.045, 0.137]

Treatment effects (βrich) — 0.112** 0.148** 0.072 0.076
[0.007, 0.211] [0.017, 0.327]

Positively-weighted (β+
rich) — 0.176*** 0.234*** 0.072 0.076

[0.067, 0.294] [0.104, 0.488]
Negatively-weighted (β−rich) — –0.064* –0.085* — —

[–0.148, 0.003] [–0.272, 0.003]

Causal effect, pos.-weighted (β̃+
rich) — 0.109*** 0.109*** — —

[0.049, 0.129] [0.046, 0.133]

Causal effect, neg.-weighted (β̃−rich) — 0.075* 0.075* — —
[–0.005, 0.117] [–0.002, 0.121]

Ramsey RESET test p-val.
(H0 : rich covariates) — 0.000 — — —

Excluded variables 0 1 1 238 238
Included variables 15 15 819 819 819
Included variables, effective sample 15 15 264 238 238
Sample size 3,010 3,010 3,010 3,010 3,010
Effective sample size 3,010 3,010 1,864 1,780 1,780

Notes: The effective sample size is the number of observations that the estimator depends on after accounting
for perfect collinearity in the first stage. Heteroskedasticity-robust standard errors are reported in parentheses
for OLS, TSLS, and IJIVE estimates. Confidence intervals for the decomposition components are computed
via nonparametric bootstrap based on 1000 bootstrap samples, with 95% confidence intervals shown in
brackets. The RESET test is of the null hypothesis that E[Z|X = x] = L[Z|C = c(x)] for all x. We
implemented the RESET test using a heteroskedasticity-robust estimate of the asymptotic variance matrix.
Stars *, **, and *** denote significance at levels .10, .05, and .01, respectively.

causal (Proposition 7). It is also weakly causal without constant, linear treatment

effects if the monotonicity assumption is strengthened to Assumption SM, so that

it operates in the same direction for all covariate groups (Proposition 10). Under

weak monotonicity (Assumption WM), the estimate in column (3) could still reflect

both positively and negatively weighted treatment effects. Our decomposition shows

that both components are substantial in magnitude, with the overall TSLS estimate

reflecting the sum of a large positively weighted component and a smaller negatively

weighted component. Normalizing the weights of either component shows that they

reflect treatment effect estimates that are closer to the OLS estimate than the original
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Figure 3: Fitted values of L[Z|C] in Card (1995)
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Notes: A histogram of the first-stage fitted values from regressing I = Z onto C for the TSLS specification
in column (2) of Table 7.

TSLS estimate.

Column (4) reports the TSLS estimate of specification SW, which will be weakly

causal even under weak monotonicity (Assumption WM). The estimate is considerably

smaller and more tightly estimated than either of the separable estimates in columns

(3) and (4), and is even smaller than the OLS estimate in column (1). However,

the large number of excluded variables raises concerns about many instruments bias.

Applying IJIVE to the same specification increases the estimate slightly to be almost

identical to the OLS estimate. This suggests that if there is many instruments bias,

IJIVE fails to correct for it, which is consistent with our simulation results for this

sample size and number of covariate bins (see Appendix B).

6.4 Angrist and Krueger (1991)

Angrist and Krueger (1991) estimate the returns to education using a sample of men

from the 1980 Census who were born in the United States between 1930 and 1939.

The outcome variable Y is log weekly earnings. The treatment variable T is years

of education. The instrument Z is quarter of birth (QOB). Covariates X are year of

birth, region of residence, state of birth, race, marital status, and residing in an urban

area.

We decompose the estimate in Table V, column (6) of Angrist and Krueger (1991).
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Table 8: Decomposition of Angrist and Krueger (1991, Table V, column (6))

(1) (2) (3) (4) (5)

Original specification Saturated covariate specifications

OLS TSLS TSLS (SS) TSLS (SW) IJIVE (SW)

Estimate (βtsls) 0.063*** 0.081*** 0.078*** 0.061*** 0.063**
(0.000) (0.016) (0.017) (0.005) (0.029)

Level-dependence (βtsls − βrich) — 0.002 — — —
[–0.001, 0.005]

Treatment effects (βrich) — 0.078*** 0.078*** 0.061 0.063
[0.045, 0.108] [0.046, 0.109]

Positively-weighted (β+
rich) — 0.101*** 0.100*** 0.061 0.063

[0.076, 0.134] [0.077, 0.133]
Negatively-weighted (β−rich) — –0.022*** –0.022*** — —

[–0.051, –0.012] [–0.048, –0.011]

Causal effect, pos.-weighted (β̃+
rich) — 0.075*** 0.074*** — —

[0.051, 0.087] [0.052, 0.088]

Causal effect, neg.-weighted (β̃−rich) — 0.063*** 0.063*** — —
[0.024, 0.090] [0.022, 0.090]

Ramsey RESET test p-val.
(H0 : rich covariates) — 0.837 — — —

Excluded variables 0 30 30 1,900 1,900
Included variables 21 21 695 695 695
Included variables, effective sample 21 21 661 659 659
Sample size 329,509 329,509 329,509 329,509 329,509
Effective sample size 329,509 329,509 329,468 329,463 329,463

Notes: The effective sample size is the number of observations that the estimator depends on after accounting
for perfect collinearity in the first stage. Heteroskedasticity-robust standard errors are reported in parentheses
for OLS, TSLS, and IJIVE estimates. Confidence intervals for the decomposition components are computed
via nonparametric bootstrap based on 1000 bootstrap samples, with 95% confidence intervals shown in
brackets. The RESET test is of the null hypothesis that E[Ż|X = x] = L[Ż|C = c(x)] for all x. We
implemented the RESET test using a nonparametric bootstrap estimate of the asymptotic variance matrix
based on 1000 bootstrap samples. Stars *, **, and *** denote significance at levels .10, .05, and .01,
respectively.

For this specification the excluded variables I are QOB interacted with indicators for

year of birth. The covariate specification C is a full non-interacted set of indicators

for year of birth, region of residence, and state of birth, as well as non-interacted

indicators for race, marital status, and residence in an SMSA. This specification is not

necessarily rich in general. However, if QOB is independent of the covariates—which

seems plausible, at least on first consideration—then any specification C that includes

a constant term is rich.16

16Angrist and Krueger (1991) cite Lam and Miron (1987, 1991) as providing evidence that parents’ socioe-
conomic status and other characteristics are unrelated to season of birth. Buckles and Hungerman (2013)
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Table 8 reports the decomposition results. The RESET test fails to reject the null

of rich covariates, and we find essentially no level-dependence. This implies that the

estimate is weakly causal under the assumption of constant, linear treatment effects

(Assumption CLE), and leads the TSLS estimate of specification SS to be similar. If

we allow for heterogeneous treatment effects, however, the decomposition shows that

roughly 25% of the original estimate is due to negatively weighted positive treatment

effects. The positively and negatively weighted treatment effect components are smaller

than the overall TSLS estimate, with the negatively weighted component approximately

the same as the OLS estimate.

The negatively weighted component is mechanically removed by the introduction of

covariate-instrument interactions in specification (SW), reported in column (4). The

estimate is tightly estimated and remarkably close to the OLS estimate in column

(1), raising concerns of many instruments bias. The IJIVE estimate in column (5) is

similar but with a much larger standard error, suggesting that if there is indeed many

instruments bias, it fails to correct for it.

7 Conclusion

In discussing the LATE interpretation of (linear) IV estimates, Angrist and Krueger

(1999, pg. 1326) conjectured:

That is, IV estimates in models with covariates can be thought of as produc-

ing a weighted average of covariate-specific Wald estimates as long as the

model for covariates is saturated . . . . In other cases it seems reasonable to

assume that some sort of approximate weighted average is being generated,

but we are unaware of a precise causal interpretation that fits all cases.

In this paper we have provided the precise—sufficient and necessary—causal inter-

pretation that fits (nearly) all cases. The interpretation shows that TSLS estimates

with covariates cannot be interpreted as “weakly causal,” and thus not as a positively

weighted averages of LATEs, at least not without additional parametric assumptions.

We developed a decomposition that measures the extent to which a TSLS estimand

fails to be weakly causal and applied it to four empirical applications, finding evidence

in each that in practice, the LATE interpretation of TSLS does not hold.

Our findings show that TSLS only has a causal interpretation under parametric as-

sumptions or when using close-to-nonparametric specifications, such as specifications

SS or SW. In this regard TSLS has no advantage over more explicit parametric (Im-

find evidence of a relationship between socioeconomic status and season of birth in births after 1943.
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bens and Rubin, 1997; Hirano et al., 2000; Yau and Little, 2001; S loczyński et al.,

2022), semiparametric (Abadie, 2003; Tan, 2006, 2010; Hong and Nekipelov, 2010),

and nonparametric (Frölich, 2007; Ogburn et al., 2015; Chernozhukov et al., 2018;

Athey et al., 2019; Heiler, 2021; Sun and Tan, 2021; Singh and Sun, 2022) approaches

to estimating LATEs. Researchers may want to consider adopting one of these more

principled approaches. Alternatively, the implicit parametric assumptions invoked in

non-saturated TSLS specifications should be defended, both by stating them explicitly,

and by evaluating their adequacy through specification testing.

It is important to reemphasize that the criterion of “weakly causal” used throughout

the analysis is an extremely weak one. Being weakly causal may be necessary for a

quantity to represent an interesting causal effect, but it is not sufficient. For example,

S loczyński (2022) argues that even the saturated specification SS produces an estimand

that can be difficult to interpret and may be quite different from the unconditional

LATEs considered in the original Imbens and Angrist (1994) analysis.

These interpretation difficulties were already reason to recommend alternative IV

methods designed to estimate quantities, such as the average treatment on the treated,

that are not only weakly causal but also have clear counterfactual interpretations. Such

methods rely on explicitly stated parametric assumptions (Heckman, 1976; Heckman

et al., 2003) or are semiparametric (Carneiro et al., 2011; Brinch et al., 2017; Mogstad

et al., 2018) or nonparametric (e.g. Heckman and Vytlacil, 1999; Manski and Pepper,

2000). By showing that common interpretations of TSLS also rely on either parametric

assumptions or nonparametric implementations, our findings provide another reason

to pursue such approaches.
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A Proofs

Proof of Proposition 1. The expression for βiv is a special case of Proposition 2

with ε = 1.

If E[T Z̃] > 0, then because E[Z|X] ∈ [0, 1] for binary Z, the sign of ω(cp, X)

depends on the sign of 1 − L[Z|X], which is negative if and only if L[Z|X] > 1. The

sign of ω(at, X) varies with X according to the sign of E[Z̃|X]. Because X contains

a constant, E[E[Z̃|X]] = E[Z̃] = 0, and thus E[Z̃|X] is either zero with probability 1,

or else it has positive probability of taking both positive and negative values. In the

latter case, the sign of ω(at, X) is negative for some values of X regardless of whether

E[T Z̃] is positive or negative. Q.E.D.

Proof of Proposition 2. The numerator of βiv can be written as

E[Y Z̃] = E
[
E
[
Y Z̃|X

]]
= E [C[Y,Z|X]] + E

[
E[Y |X] E[Z̃|X]

]
. (15)

The same argument as in Imbens and Angrist (1994) applied conditional-on-covariates

yields

C[Y,Z|X] = µ(cp, X) C[T,Z|X] = µ(cp, X) P[G = cp|X] E[Z|X](1−E[Z|X]). (16)

As for the second term of (15),

E [Y |X] = E [Y |G = at, X] P [G = at|X] + E [Y |G = nt, X] P [G = nt|X]

+ E [Y |G = cp, X] P [G = cp|X]

= E [Y (1)|G = at, X] P [G = at|X] + E [Y (0)|G = nt, X] P [G = nt|X]

+ E [(1− Z)Y (0) + ZY (1)|G = cp, X] P [G = cp|X] . (17)

Adding and subtracting E[Y (0)|G = at, X] P[G = at|X] gives

E [Y |X] = ∆(cp, X) P[G = cp|X] E[Z|X] + ∆(at, X) P[G = at|X] + η′0X (18)

due to both the exogeneity of Z and the linearity assumption on E[Y (0)|X = x].

Alternatively, adding and subtracting E[Y (1)|G = nt, X] P[G = nt|X] to (17) gives

E [Y |X] = ∆(cp, X) P[G = cp|X](E[Z|X]− 1)−∆(nt, X) P[G = nt|X] + η′1X.

(19)
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So multiplying (18) by ε and summing it with (19) multiplied by 1− ε gives

E[Y |X] = ∆(cp, X) P[G = cp|X] (E[Z|X] + ε− 1) + ∆(at, X)εP[G = at|X]

+ ∆(nt, X)(ε− 1) P[G = nt|X] + εη′0X + (1− ε)η′1X.

Because X and Z̃ are orthogonal,

E
[
E[Y |X] E[Z̃|X]

]
= E

[
∆(cp, X) P[G = cp|X] (E[Z|X] + ε− 1) E[Z̃|X]

+ ∆(at, X)εP[G = at|X] E[Z̃|X]

+ ∆(nt, X)(ε− 1) P[G = nt|X] E[Z̃|X]
]
. (20)

Summing (16) and (20), and noting that

E[Z|X](1−E[Z|X]) + (E[Z|X] + ε− 1) E[Z̃|X]

=
(

E[Z|X]−E[Z̃|X]
)

(1−E[Z|X]) + εE[Z̃|X]

= L[Z|X](1−E[Z|X]) + εE[Z̃|X]

yields a weighting expression with weights proportional to the claimed expression but

missing a common multiple of E[Z̃T ]−1, which comes from the denominator of βiv.

Q.E.D.

Proof of Proposition 3. Note that T is only stochastic due to Z after condition-

ing on X and G, as a direct consequence of the definition of G. Thus, Assumption

EX implies that T and Y (t) are independent conditional on X and G. We use this

observation to write

β =
∑
g,x

E
[
b(T, x, Z)Y

∣∣G = g,X = x
]

P[G = g,X = x]

=
∑
g,x,j

E
[
1[T = tj ]b(tj , x, Z)Y (tj)

∣∣G = g,X = x
]

P[G = g,X = x]

=
∑
g,x,j

µj(g, x) E
[
1[T = tj ]b(tj , x, Z)

∣∣G = g,X = x
]

P[G = g,X = x]

≡
∑
g,x,j

µj(g, x)ψj(g, x),

where all summations are taken over g ∈ G, x ∈ X , j ∈ {0, 1, . . . , J}, and

ψj(g, x) ≡ E
[
1[T = tj ]b(tj , x, Z)

∣∣G = g,X = x
]

P[G = g,X = x].
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Notice that ωj(g, x) =
∑J

k=j ψk(g, x), so that (6) follows from Lemma 1.

Q.E.D.

Lemma 1. For any constants {aj , cj}Jj=0,

J∑
j=0

ajcj = a0c̃0 +
J∑
j=1

(aj − aj−1)c̃j ,

where c̃j ≡
∑J

k=j ck.

Proof of Lemma 1. Since cj = c̃j − c̃j+1,

J∑
j=0

ajcj =
J∑
j=0

aj (c̃j − c̃j+1)

= a0c̃0 +

J∑
j=1

aj c̃j +

J−1∑
j=0

aj c̃j+1 = a0c̃0 +

J∑
j=1

(aj − aj−1)c̃j ,

where the final equality used a change of variables in the second summand from j to

j + 1. Q.E.D.

Proof of Proposition 4. If ωj(g, x) ≥ 0 and ω0(g, x) = 0 for all g and x, then it

follows immediately from (6) that β satisfies Definition WC.

We will prove the converse by contraposition. That is, we will show that if either

the non-negative weights or level irrelevance condition is not satisfied, then there exists

a µ ∈ M = M� such that µj(g, x) − µj−1(g, x) has the same sign for every j ≥ 1,

and all g and x, and that this common sign is different than the sign of β. Thus, if

the weights do not satisfy both the non-negative and level irrelevance conditions, then

β is not weakly causal. Or, by contraposition, if β is weakly causal, then the weights

satisfy both conditions.

First, suppose that the level irrelevance condition does not hold, but that the non-

negative weights condition may or may not hold. Then there exists a (g?, x?) such that

ω0(g?, x?) 6= 0. Set

µj(g, x) =


µ̄, if (g, x) 6= (g?, x?)

µ?, if (g, x) = (g?, x?) and j < j?

µ? + ∆?, if (g, x) = (g?, x?) and j ≥ j?
, (21)

where µ̄, µ? ∈ (y, y) and ∆? ∈ (y − y, y − y) are numbers we will choose, and j? ≥ 1

can be chosen arbitrarily. Then µj(g, x) − µj−1(g, x) is zero for all (g, x) 6= (g?, x?),
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while for (g, x) = (g?, x?) it is ∆? when j = j? and zero otherwise. In particular, the

sign of µj(g, x) − µj−1(g, x) is the sign of ∆? for all j ≥ 1 and all (g, x), regardless of

the values of µ̄ and µ?. If µ is specified as in (21), then (6) becomes

β =

 ∑
(g,x)6=(g?,x?)

ω0(g, x)

 µ̄+ ω0(g?, x?)µ?


︸ ︷︷ ︸

define this to be β0(µ̄, µ?) for shorthand

+ωj?(g
?, x?)∆?. (22)

Since ω0(g?, x?) 6= 0, there exist values of µ̄ and µ? such that β0(µ̄, µ?) 6= 0. Choose

any such µ̄, µ? ∈ (y, y). If β0(µ̄, µ?) > 0, then choose a ∆? < 0 that is sufficiently small

in magnitude so that ωj?(g
?, x?)∆? > −β0(µ̄, µ?) and µ?+∆ ∈ [y, y]. Then from (22) we

have β = β0(µ̄, µ?)+ωj?(g
?, x?)∆? > 0, so that these choices of µ̄, µ?, and ∆? produce a

µ ∈M� that violates the second condition of Definition WC. Similarly, if β0(µ̄, µ?) < 0,

then choose ∆? > 0 to be sufficiently small to ensure that ωj?(g
?, x?)∆? < −β0(µ̄, µ?),

so that β < 0, contradicting the first condition of Definition WC.

On the other hand, suppose that the level irrelevance condition holds. Then, by

hypothesis, the non-negative weights condition does not hold, so there exists a j?, g?,

and x? such that ωj?(g
?, x?) < 0. Use the same construction as in (21) with these new

values of j?, g?, and x?, where j? is no longer arbitrary. Because the level irrelevance

condition holds, (22) reduces to

β = ωj?(g
?, x?)∆?.

Selecting any ∆? > 0 produces β < 0, thus providing the existence of a µ ∈ M� that

violates the first condition of Definition WC. Q.E.D.

Proof of Proposition 5. If Assumption CLE is satisfied, so that M =MCLE, then

µj(g, x)− µj−1(g, x) = ∆(tj − tj−1)

for every j ≥ 1, g, and x. Substituting into (6) yields

β =
∑
g,x

ω0(g, x)µ0(g, x) +

∑
g,x

J∑
j=1

(tj − tj−1)ωj(g, x)

∆ (23)

If ∆ ≥ 0, so that all treatment effects are positive, and if the level irrelevance and

aggregated non-negative weights conditions hold, then (23) shows that β ≥ 0 as well,

and thus β satisfies Definition WC.

To prove the converse, we follow the same strategy as in the proof of Proposition 4 of
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showing that if the weights fail either the aggregated non-negativity or level irrelevance

conditions, then there always exists a µ ∈ M = MCLE that contradicts one of the

conditions in Definition WC (i.e. (4)).

First, suppose that the level irrelevance condition does not hold, so that there exists

a (g?, x?) such that ω0(g?, x?) 6= 0. Set

µj(g, x) =



µ̄, if (g, x) 6= (g?, x?) and j = 0

µ̄+ ∆(tj − t0), if (g, x) 6= (g?, x?) and j > 0

µ?, if (g, x) = (g?, x?) and j = 0

µ? + ∆(tj − t0), if (g, x) = (g?, x?) and j > 0

,

for µ̄, µ? ∈ (y, y) and ∆ ∈ [y−y, y−y]. Notice that µ ∈MCLE if ∆ is sufficiently small

in magnitude. From (23),

β = β0(µ̄, µ?) + ω̄∆, (24)

where β0(µ̄, µ?) is the same quantity defined in (22) and

ω̄ ≡
∑
g,x

J∑
j=1

(tj − tj−1)ωj(g, x).

Since ω0(g?, x?) 6= 0, there exist values of µ̄ and µ? such that β0(µ̄, µ?) 6= 0. If

β0(µ̄, µ?) > 0, then choose ∆ < 0 to be sufficiently small in magnitude to make

ω̄∆ > −β0(µ̄, µ?), and thus β > 0, violating the second condition of Definition WC.

If β0(µ̄, µ?) < 0, then choosing a small ∆ > 0 violates the first condition of Definition

WC.

If the level-irrelevance condition does not hold then, by hypothesis, the non-negative

weights condition is not satisfied, so that ω̄ < 0. Since β = ω̄∆ under level-irrelevance,

taking any ∆ > 0 creates a violation of the first condition of Definition WC. Q.E.D.

Proof of Proposition 6. The well-known two stage interpretation of αtsls is

αtsls = E[ṠṠ′]−1 E[ṠY ], (25)

where Ṡ ≡ E[SF ′] E[FF ′]−1F . Since C is a subvector of both S and F , Ṡ = [Ṫ ′, C]′,

where Ṫ is the population fitted value from the first stage regression of T on I and C.
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This fitted value can be written as

Ṫ = γ′I + λ′C ≡ Ż + λ′C, (26)

where γ and λ are population regression coefficients. Applying the Frisch-Waugh-

Lovell Theorem to the second step regression (with full vector of coefficients (25)), the

component of αtsls corresponding to the coefficient on Ṫ can be written as

βtsls = E[RY ]/E[R2],

where R ≡ Ṫ−L[Ṫ |C] are the residuals from projecting the population fitted treatment

variable, Ṫ , onto the covariates, C. Using (26), these residuals can be written more

simply as

R ≡ Ṫ −L[Ṫ |C] =
(
Ż + λ′C

)
−L

[
Ż + λ′C|C

]
= Ż −L[Ż|C] ≡ Z̃.

This shows that βtsls = E[Z̃Y ]/E[Z̃2]. Since Z̃ is a residual from a projection onto C,

we can also use (26) to write

E[Z̃2] = E[Z̃Ż] = E[Z̃(Ṫ − λ′C)] = E[Z̃T ]−E[Z̃(T − Ṫ )] = E[Z̃T ],

where the final equality follows because Z̃ is a linear function of I and C, and thus

orthogonal to the first stage residuals, T − Ṫ . Q.E.D.

Proof of Proposition 7. We evaluate the sufficient and necessary conditions in Propo-

sition 5 using the expressions for ωj(g, x) given in (9).

First, consider the aggregated non-negative weights condition in Proposition 5.

Then since ωJ+1(g, x) = 0,

∑
g,x

J∑
j=1

(tj − tj−1)ωj(g, x) =
∑
g,x

 J∑
j=1

tjωj(g, x)−
J−1∑
j=0

tjωj+1(g, x)


=
∑
g,x

J∑
j=0

tj(ωj(g, x)− ωj+1(g, x))− t0
∑
g,x

ω0(g, x).

The second term is zero when ωj(g, x) is given by (9) because∑
g,x

ω0(g, x) = E[Z̃T ]−1 E[Z̃] = 0,
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due to the assumption that C contains a constant regressor. The first term satisfies

∑
g,x

J∑
j=0

tj(ωj(g, x)− ωj+1(g, x)) = E[Z̃T ]−1 E

 J∑
j=0

tj1[T = tj ]

 Z̃

 = 1,

so is also non-negative, as required.

Second, consider the level irrelevance condition, which given (9) can be written as

ω0(g, x) = E[Z̃T ]−1 E[Z̃|G = g,X = x] P[G = g,X = x] = 0 (27)

for all g and x. Assumption EX implies that Z̃ ≡ Ż − L[Ż|C] is independent of G

given X, so

E[Z̃|G = g,X = x] = E[Z̃|X = x] = E[Ż|X = x]−L[Ż|C = c(x)].

For every x there exists a g ∈ G such that P[G = g,X = x] > 0, because G exhaustively

partitions possible choice types. Thus, (27) can hold for every g and x if and only if

E[Ż|X = x] = L[Ż|C = c(x)]

for every x, that is, if and only if the TSLS specification has rich covariates.

We have shown that the aggregated non-negative weights condition is satisfied

whether or not the TSLS specification has rich covariates, and that the level irrelevance

condition is satisfied if and only if the TSLS specification has rich covariates. The claim

now follows from Proposition 5.

Q.E.D.

Proof of Proposition 8. Under Assumption CLE,

Y =
J∑
j=0

Y (tj)1[T = tj ] = Y (t0) +
J∑
j=1

(Y (tj)− Y (t0)) 1[T = tj ] = Y (t0) + ∆(T − t0),

so that

βtsls = E[Z̃T ]−1 E[Z̃(Y (t0) + (∆T − t0)] = ∆ + E[Z̃T ]−1 E[Z̃Y (t0)].

Given Assumption CLE, Assumption LIN also implies that

E[Y (t0)|X = x] = E[Y (tj)− Y (t0)|X = x] + E[Y (tj)|X = x] = ∆(tj − t0) + η′c(x),
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so that E[Y (t0)|X = x] = η′0c(x), where η0 is the same as η but has ∆(tj − t0) added

to the coefficient on the constant regressor. Because Z̃ is orthogonal to C,

E[Z̃Y (t0)] = E[Z̃ E[Y (t0)|X]] = E[Z̃C]′η0 = 0,

so that βtsls = ∆, as claimed. Q.E.D.

Proof of Proposition 9. We evaluate the sufficient and necessary conditions given

in Proposition 4 using the expressions for ωj(g, x) given in (9). One of the conditions in

Proposition 4, level irrelevance, was shown to be satisfied in the proof of Proposition 7

if the TSLS specification has rich covariates and C contains a constant, both of which

are maintained assumptions here. Thus, we turn our focus to the other requirement of

non-negative weights, which is that ωj(g, x) ≥ 0 for all g, x, and j ≥ 1.

We use the observation that an individual’s choice group G completely determines

what treatment value they would choose as a function of the instrument realization,

Z. Let Zj(g) denote the set of instrument values for which individuals in choice group

g would choose a treatment value tj or larger. Then

ωj(g, x) = E[Z̃T ]−1 E
[
Z̃1[T ≥ tj ]

∣∣∣G = g,X = x
]

P[G = g,X = x]

= E[Z̃T ]−1 E
[
Z̃1[Z ∈ Zj(g)]

∣∣∣G = g,X = x
]

P[G = g,X = x]

= E[Z̃T ]−1 E
[
Z̃1[Z ∈ Zj(g)]

∣∣∣X = x
]

P[G = g,X = x]

= E[Z̃T ]−1 C
[
Ż, 1[Z ∈ Zj(g)]

∣∣∣X = x
]

P[G = g,X = x], (28)

where the third equality used Assumption EX and the fourth used the assumption that

the TSLS specification has rich covariates, so that Z̃ has mean zero given X = x.

In the proof of Proposition 6 we showed that E[Z̃T ] = E[Z̃2] > 0, so (28) implies

that ωj(g, x) ≥ 0 if and only if Ż and 1[Z ∈ Zj(g)] are positively correlated, conditional

on X = x, for every (g, x) pair such that P[G = g,X = x] > 0. Because

C
[
Ż, 1[Z ∈ Zj(g)]

∣∣∣X = x
]

=
(

E
[
Ż|Z ∈ Zj(g), X = x

]
−E

[
Ż|Z /∈ Zj(g), X = x

])
×P[Z ∈ Zj(g)|X = x] P[Z /∈ Zj(g)|X = x], (29)

the sign of the correlation is given by the sign of

E
[
Ż|Z ∈ Zj(g), X = x

]
−E

[
Ż|Z /∈ Zj(g), X = x

]
,
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whenever g, x, and j are such that P[Z ∈ Zj(g)|X = x] ∈ (0, 1).

Now suppose that the TSLS specification is monotonicity-correct for every (z, z̄),

and conditional on every x. Fix any g, x and j with P[G = g,X = x] > 0 and

P[Z ∈ Zj(g)|X = x] ∈ (0, 1), noting that (28) immediately implies that ωj(g, x) = 0

(and thus ωj(g, x) ≥ 0) for all other combinations of g, x and j. Lemma 2 shows that

p(z+, x) − p(z−, x) > 0 for every z+ ∈ Zj(g) and z− /∈ Zj(g) with P[Z = z|X = x] ∈
(0, 1) for z = z−, z+. Since the TSLS specification is monotonicity-correct, these pairs

must also satisfy

ṫ(z+, x)− ṫ(z−, x) = γ′i(z+, x)− γ′i(z−, x) ≥ 0.

As a consequence,

E
[
Ż|Z ∈ Zj(g), X = x

]
= E

[
γ′i(Z, x)|Z ∈ Zj(g), X = x

]
≥ E

[
γ′i(Z, x)|Z /∈ Zj(g), X = x

]
= E

[
Ż|Z /∈ Zj(g), X = x

]
,

and thus from (28)–(29), ωj(g, x) ≥ 0, so that βtsls is weakly causal, by Proposition 4.

Conversely, suppose that βtsls is weakly causal, so that ωj(g, x) ≥ 0 for all g,

x, and j ≥ 1 by Proposition 4. Note from (28) that ω0(g, x) = 0 as well, because

1[Z ∈ Zj(g)] = 1 deterministically when j = 0. Consider any value of x with P[X =

x] > 0. If p(z, x) is constant as a function of z, then the TSLS specification is trivially

monotonicity-correct for any pair (z, z̄). So, suppose that there exists a pair (z−, z+)

in the support of Z, conditional on X = x, such that p(z+, x)− p(z−, x) > 0.

Since p(z+, x) − p(z−, x) > 0, Lemma 2 implies that there exists a g and a j such

that P[G = g|X = x] > 0 with z+ ∈ Zj(g) and z− /∈ Zj(g), so that P[Z ∈ Zj(g)|X =

x] ∈ (0, 1). Because ωj(g, x) ≥ 0 for all g, x, and j, (28)–(29) then imply that

E
[
Ż|Z ∈ Zj(g), X = x

]
−E

[
Ż|Z /∈ Zj(g), X = x

]
≥ 0. (30)

In order for (30) to be true, there must exist some z̄+ ∈ Zj(g) and z̄− /∈ Zj(g)—

although not necessarily (z̄−, z̄+) = (z−, z+)—such that

E
[
Ż|Z = z̄+, X = x

]
−E

[
Ż|Z = z̄−, X = x

]
= ṫ(z̄+, x)− ṫ(z̄−, x) ≥ 0.

Since z̄+ ∈ Zj(g) and z̄− /∈ Zj(g), Lemma 2 implies that p(z̄+, x) > p(z̄−, x). We

conclude that the TSLS specification is monotonicity-correct for (z̄−, z̄+) conditional

on X = x. Because x ∈ X was arbitrary, this establishes the claim. Q.E.D.
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Lemma 2. Suppose that Assumptions EX and WM are satisfied. Let (z−, z+) be

two points in the support of Z, conditional on X = x. Let Zj(x) denote the set of

instrument values z for which individuals in choice group g would choose a treatment

value tj or larger. Then p(z+, x) − p(z−, x) > 0 if and only if there exists a choice

group g with P[G = g|X = x] > 0 and a treatment level tj such that z+ ∈ Zj(g) and

z− /∈ Zj(g).

Proof of Lemma 2. Suppose that p(z+, x) > p(z−, x). Assumption EX implies that

E[T (z+)|X = x] = p(z+, x) > p(z−, x) = E[T (z−)|X = x].

So given Assumption WM, it must be that

P[T (z+) ≥ T (z−)|X = x] = 1,

and hence that for some j,

P[T (z+) ≥ tj |X = x] > P[T (z−) ≥ tj |X = x] = P[T (z+) ≥ tj , T (z−) ≥ tj |X = x].

It follows that

P[T (z+) ≥ tj , T (z−) < tj |X = x]

= P[T (z+) ≥ tj |X = x]−P[T (z+) ≥ tj , T (z−) ≥ tj |X = x] > 0.

The definition of G implies that

P[T (z+) ≥ tj , T (z−) < tj |X = x] = P[G ∈ {g : z+ ∈ Zj(g), z− /∈ Zj(g)}|X = x],

so there must exist a g such that P[G = g|X = x] > 0 with z+ ∈ Zj(g) and z− /∈ Zj(g).

Conversely, suppose that such a g and treatment level tj exist. For any z+ ∈ Zj(g)

and z− /∈ Zj(g) it follows that

P[T (z+) ≥ tj > T (z−)|X = x] ≥ P[G = g|X = x] > 0,

noting in particular that this also implies P[T (z+) > T (z−)|X = x] > 0. Assumption

WM thus requires that

P[T (z+) ≥ T (z−)|X = x] = 1.
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From Assumption EX it then follows that

p(z+, x) = E[T (z+)|X = x] > E[T (z−)|X = x] = p(z−, x).

Q.E.D.

Proof of Proposition 10. Assumption OSM implies that p(z, x) is an increasing

function of z for any x, so that p(z+, x) − p(z−, x) ≥ 0 for any z+ ≥ z−. The pre-

dicted value from the first stage regression is ṫ(z+, x) − ṫ(z−, x) = (z+ − z−)γ, so the

specification will be monotonicity-correct for all pairs (z−, z+) if and only if γ ≥ 0.

From the Frisch-Waugh-Lovell Theorem, γ can be written as

γ =
C[T, Z̃]

V[Z̃]
.

The sign of γ is thus the same as the sign of

C[T, Z̃] = E
[
E [T |X,Z] Z̃

]
= E [p(Z,X)(Z −E[Z|X])] = E [C[p(Z,X), Z|X]] ,

where in the first two equalities we used the assumption that covariates are rich with C

containing a constant regressor. Because both p(Z,X) and Z are increasing functions of

Z, the covariance between p(Z,X) and Z is positive conditional on X (e.g. Thorisson,

1995, Section 2), so C[T, Z̃] and thus γ are positive. The conclusion now follows from

Proposition 9. Q.E.D.

Proof of Proposition 11. From Proposition 6, βtsls = E[Z̃T ]−1 E[Z̃Y ]. Letting

πg(x) ≡ P[G = g|X = x], the numerator of βtsls can be written as

E[Z̃Y ] = E

[∑
g

E
[
Z̃Y
∣∣X,G = g

]
πg(X)

]

= E

[∑
g

K∑
k=0

E
[
Z̃Y 1[Z = ξk(X)]

∣∣X,G = g
]
πg(X)

]

= E

[∑
g

K∑
k=0

E
[
Z̃Y (τ(g, ξk(X))) 1[Z = ξk(X)]

∣∣X,G = g
]
πg(X)

]
, (31)

where τ(g, z) is the treatment level that choice group g chooses under instrument value
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z. Assumption EX implies that

E
[
Z̃Y (τ(g, ξk(X))) 1[Z = ξk(X)]|X,G = g

]
= E [Y (τ(g, ξk(X))) |X,G = g] E

[
Z̃1[Z = ξk(X)]

∣∣X,G = g
]

= E [Y |X,G = g, Z = ξk(X)] E
[
Z̃1[Z = ξk(X)]

∣∣X] . (32)

Inserting (32) into (31) yields

E[Z̃Y ] = E

[
K∑
k=0

(∑
g

E [Y |X,G = g, Z = ξk(X)]πg(X)

)
E
[
Z̃1[Z = ξk(X)]

∣∣X]]

=
K∑
k=0

E
[
E[Y |X,Z = ξk(X)] E

[
Z̃1[Z = ξk(X)]

∣∣X]] , (33)

where the second equality uses Assumption EX, which implies that πg(x) ≡ P[G =

g|X = x] = P[G = g|X = x, Z = ξk(x)] for any k. Lemma 1 shows that (33) can also

be written as

E[Z̃Y ] = E

E[Y |X,Z = ξ0(X)] E[Z̃|X] +
K∑
k=1

Υk(X)
K∑
j=k

E
[
Z̃1[Z = ξk(X)]|X

] ,
If the TSLS specification is rich, so that E[Z̃|X = x] = 0 for each x, then this reduces

to

E[Z̃Y ] = E

 K∑
k=1

Υk(X)
K∑
j=k

E
[
Z̃1[Z = ξk(X)]|X

] .
Observe that with Ξk(x) ≡ {ξ`(x) : ` ≥ k},

K∑
j=k

E
[
Z̃1[Z = ξk(X)]

∣∣X] = E
[
Z̃1[Z ∈ Ξk(X)]

∣∣X]
=
(

E[Z̃|Z ∈ Ξk(X), X]−E[Z̃|Z /∈ Ξk(X), X]
)

×P[Z ∈ Ξk(X)|X] P[Z /∈ Ξk(X)|X]

= t̃k(X) P[Z ∈ Ξk(X)|X] P[Z /∈ Ξk(X)|X],
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so that

E[Z̃Y ] = E

[
K∑
k=1

Υk(X)t̃k(X) P[Z ∈ Ξk(X)|X] P[Z /∈ Ξk(X)|X]

]
.

Multiplying by E[Z̃T ]−1 = E[Z̃2]−1 yields the stated expression for βrich. Q.E.D.

B Finite sample performance of saturated specifications

B.1 Simulation design

We create a data generating process motivated by the empirical features of the data

used in Card (1995), but with a binary treatment. We drawX uniformly from a discrete

Halton sequence X on [0, 1], the fineness of which we vary in different simulations. The

instrument Z is then drawn conditionally on X according to

E[Z|X = x] = P[Z = 1|X = x] = 0.119 + 1.785x− 1.534x2 + 0.597x3. (34)

The outcome and treatment are generating according to

Y = log(129.7 + 1247.7X − 2149.0X2 + 1515.7X3) + 1.2T + U,

T = 1[Φ(V ) ≤ p(Z)], (35)

where (U, V ) are standard multivariate normal with correlation .527, Φ is the standard

normal distribution function (so that Φ(V ) is uniformly distributed on [0, 1]), and the

propensity score in our baseline is set to p(0) = .22 and p(1) = .29. The pair (U, V ) is

drawn independently of (X,Z).

This data generating process matches some key features of the data in Card (1995).

The most important for our purposes is the estimated empirical distribution of E[Z|X],

shown in black in Figure B.1, and plotted against the cumulative distribution function

of E[Z|X = x], which is plotted in red. Our propensity score choices directly match the

probability of college completion (T = 1, defined as 16 or more years of schooling) in the

Card (1995) sample. The coefficient of 1.2 on the treatment indicator is the estimate

obtained from the TSLS estimator of specification SS with a binary treatment. The

correlation .527 between U and V is chosen to match the corresponding OLS estimator

of specification SS.

Because the treatment enters additively in (35), treatment effects are constant both

across observables and unobservables. As a consequence, the SS and SW specifications

both have the same estimand, which is equal to the coefficient on T of 1.2. This allows
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Figure B.1: Empirical distribution of college-presence instrument
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Notes: This figure plots the distribution function of the conditional mean of the college-presence instrument
used by Card (1995). The black line is the estimated empirical distribution of E[Z|X]. The red line is
E[Z|X = x] for the DGP in our simulations.

us to compare estimators based solely on their finite-sample distribution relative to a

common target.

B.2 Baseline results

As a baseline, we take the number of covariates bins to be similar to the Card (1995)

data (see Table 7) with |X | = 250. Table B.1 reports results for four sample sizes, with

the first row of each panel having 3,000 observations, similar to the Card (1995) data.

All estimators of specification SW are highly biased, both in mean and in median, and

are centered closer to the OLS estimator than they are to the true estimand of 1.2.

This is expected for TSLS, but it is also true for IJIVE (Ackerberg and Devereux,

2009) and UJIVE (Kolesár, 2013), with the latter exhibiting a wildly noisy finite-

sample distribution.17 In contrast, the TSLS estimator of specification SS is less biased,

although with a standard deviation that is considerably larger than the TSLS estimator

of specification SW.

The other rows of Table B.1 show that the bias of the SW estimators decreases as

n increases, consistent with the many instruments bias phenomenon. The jackknife

17The UJIVE estimator of specification SW is undefined when an (X,Z) bin has fewer than 2 observations,
so we drop such bins when implementing it. We omit JIVE (Angrist et al., 1999) because it is expected to
perform especially poorly with many covariates (Ackerberg and Devereux, 2009), which is what we found in
simulations not reported here.
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estimators improve much more quickly, with both showing less mean and median bias

with n = 10,000 observations, and essentially none with n = 50,000. In contrast,

the TSLS estimator remains severely biased even with n = 100,000 observations. All

estimators become less variable as n increases, but the TSLS estimator of specification

SS wins out in terms of root mean-squared error (RMSE) in all cases.

B.3 Varying instrument strength

Next, we vary the strength of the instrument by adjusting p(1) while keeping p(0) = .22

fixed. We keep the number of covariate bins at the baselines of |X | = 250.

Figure B.2 shows how the median estimate changes for each estimator as p(1)

increases, for four different sample sizes. Larger values of p(1) and n lead to lower

bias for all TSLS and JIVE estimators, as expected. Bias for the TSLS estimator

of specification SS quickly disappears as the instrument gets stronger. In contrast,

estimators of specification SW suffer from bias for much larger values of p(1), suggesting

a deleterious interaction between many and weak instruments (e.g. Chamberlain and

Imbens, 2004; Chao and Swanson, 2005).

Table B.2 shows more details on the distributions of the five estimators for different

instrument strengths with n = 3,000. The TSLS estimator of specification SW has

much lower variance than the other TSLS and IJIVE estimators, but that’s because

overfitting in the first stage leads it to mimic OLS, and thus also be highly biased.

The IJIVE and UJIVE estimators of specification SW are less biased, but also more

variable. They end up being more variable than the TSLS estimator of specification

SS, which consequently has the smallest RMSE in all cases except when the instrument

is extremely weak (p(1) − p(0) = .05), in which case it is outperformed by OLS and

the TSLS estimator of specification SW (which is essentially OLS).

B.4 Varying the number of covariate bins

Finally, we vary the number of covariate bins (|X |) while keeping p(0) = .22, and

p(1) = .29 fixed at their baseline values.

Figure B.3 shows how the median estimate changes for each estimator as |X | in-

creases. Consistent with many instruments bias, the TSLS estimator of specification

SW tends towards the OLS estimator as the number of groups increases, as do both

IJIVE and UJIVE, but less quickly. In contrast, the TSLS estimator of specification

SS is essentially median-unbiased even when there are an extremely large number of

covariate bins.

Table B.3 shows that the TSLS estimator of specification SW is both the most bi-
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ased and least variable of the IV estimators. Its RMSE tends to be roughly comparable

with that of the TSLS estimator of specification SS which has small bias, but larger

variance. The IJIVE and UJIVE estimators of SW tend to be quite noisy, leading to

RMSEs that are dominated by both the TSLS estimators of SW and SS.
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Table B.1: Baseline with |X | = 250, p(0) = .22, and p(1) = .29

N Mean (SD) RMSE 10% 25% Median 75% 90%

OLS

3,000 0.317 (0.037) 0.884 0.265 0.289 0.318 0.344 0.367

10,000 0.317 (0.019) 0.883 0.291 0.304 0.317 0.331 0.342

50,000 0.317 (0.009) 0.883 0.306 0.311 0.317 0.324 0.329

100,000 0.317 (0.006) 0.883 0.309 0.312 0.317 0.322 0.326

TSLS (SW)

3,000 0.353 (0.134) 0.858 0.164 0.257 0.357 0.450 0.534

10,000 0.442 (0.123) 0.768 0.268 0.354 0.442 0.530 0.606

50,000 0.734 (0.091) 0.475 0.611 0.667 0.737 0.803 0.857

100,000 0.890 (0.082) 0.321 0.781 0.831 0.889 0.944 1.001

IJIVE (SW)

3,000 0.466 (0.578) 0.934 –0.276 0.118 0.479 0.822 1.196

10,000 1.146 (1.066) 1.067 0.093 0.528 0.966 1.541 2.431

50,000 1.205 (0.213) 0.213 0.920 1.048 1.198 1.347 1.501

100,000 1.209 (0.137) 0.137 1.028 1.108 1.213 1.298 1.401

UJIVE (SW)

3,000 0.688 (5.638) 5.661 –3.304 –0.773 0.562 1.976 4.746

10,000 1.472 (2.656) 2.670 –0.081 0.517 1.117 1.962 3.439

50,000 1.210 (0.215) 0.215 0.923 1.052 1.204 1.353 1.510

100,000 1.210 (0.137) 0.137 1.028 1.109 1.214 1.299 1.402

TSLS (SS)

3,000 1.300 (0.737) 0.744 0.377 0.797 1.220 1.733 2.264

10,000 1.224 (0.321) 0.322 0.815 0.982 1.212 1.435 1.655

50,000 1.206 (0.145) 0.145 1.010 1.099 1.211 1.308 1.398

100,000 1.202 (0.105) 0.105 1.066 1.123 1.195 1.278 1.353

Notes: Results are based on 1,000 repetitions. The true TSLS estimand is 1.2 for both specifications SW
and SS. The mean, standard deviation, and root mean-squared error (RMSE) all exclude realizations smaller
than the 1st percentile and larger than the 99th percentile.
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Figure B.2: Varying the strength of the instrument with |X | = 250
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Notes: Each point represents the median estimate over 1,000 repetitions. The true estimand is 1.2 for both
the SS and SW specifications. The reported F–statistics are computed from the population residuals and
asymptotic variance matrix and indicated separately for specifications SS and SW.
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Table B.2: Varying p(1) with n = 3,000 and |X | = 250

p(1)− p(0) Mean (SD) RMSE 10% 25% Median 75% 90%

OLS

0.05 0.309 (0.038) 0.892 0.258 0.280 0.309 0.336 0.365

0.10 0.328 (0.036) 0.873 0.278 0.301 0.327 0.354 0.377

0.20 0.364 (0.035) 0.837 0.318 0.338 0.365 0.387 0.412

0.40 0.432 (0.033) 0.768 0.390 0.408 0.432 0.456 0.479

TSLS (SW)

0.05 0.326 (0.135) 0.884 0.140 0.228 0.324 0.425 0.501

0.10 0.401 (0.128) 0.809 0.224 0.309 0.401 0.490 0.578

0.20 0.586 (0.110) 0.623 0.436 0.506 0.585 0.660 0.742

0.40 0.882 (0.080) 0.328 0.771 0.829 0.880 0.940 0.991

IJIVE (SW)

0.05 0.393 (0.635) 1.026 –0.398 0.007 0.397 0.784 1.170

0.10 0.596 (0.469) 0.765 –0.001 0.271 0.590 0.900 1.226

0.20 0.886 (0.261) 0.408 0.547 0.689 0.872 1.064 1.248

0.40 1.094 (0.121) 0.161 0.932 1.008 1.095 1.183 1.255

UJIVE (SW)

0.05 0.120 (6.432) 6.522 –4.203 –1.064 0.316 1.912 4.439

0.10 0.568 (4.896) 4.937 –3.060 –0.360 0.773 1.885 4.350

0.20 1.297 (0.566) 0.574 0.654 0.888 1.204 1.577 2.115

0.40 1.212 (0.153) 0.154 1.002 1.100 1.212 1.326 1.426

TSLS (SS)

0.05 1.359 (1.265) 1.275 0.016 0.615 1.206 1.962 2.851

0.10 1.243 (0.469) 0.471 0.627 0.907 1.215 1.555 1.885

0.20 1.211 (0.222) 0.222 0.904 1.051 1.207 1.373 1.521

0.40 1.203 (0.109) 0.109 1.048 1.123 1.204 1.284 1.356

Notes: Same notes as for Table B.1.
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Figure B.3: Varying |X | with p(0) = .22, p(1) = .29
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Notes: Same notes as for Figure B.2. Note that the x-axis has a different scale in each facet.
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Table B.3: Varying |X | with n = 3,000, p(0) = .22, and p(1) = .29

|X | Mean (SD) RMSE 10% 25% Median 75% 90%

OLS

200 0.316 (0.037) 0.885 0.266 0.289 0.316 0.342 0.365

100 0.316 (0.036) 0.885 0.267 0.291 0.315 0.341 0.366

50 0.316 (0.036) 0.885 0.268 0.290 0.315 0.341 0.364

10 0.315 (0.035) 0.885 0.266 0.289 0.315 0.341 0.364

TSLS (SW)

200 0.359 (0.137) 0.852 0.168 0.262 0.358 0.460 0.543

100 0.419 (0.185) 0.803 0.162 0.280 0.423 0.550 0.668

50 0.507 (0.258) 0.740 0.161 0.322 0.506 0.690 0.869

10 0.885 (0.445) 0.545 0.271 0.560 0.881 1.172 1.486

IJIVE (SW)

200 0.527 (0.784) 1.034 –0.366 0.082 0.517 0.971 1.447

100 1.074 (4.142) 4.144 –0.969 –0.041 0.747 1.542 3.272

50 1.134 (3.017) 3.017 –0.925 0.105 0.962 1.987 3.796

10 1.350 (1.766) 1.772 0.175 0.680 1.240 1.884 2.930

UJIVE (SW)

200 0.488 (6.297) 6.337 –3.596 –0.829 0.538 1.716 4.330

100 0.590 (5.198) 5.234 –2.569 –0.388 0.775 1.916 4.349

50 1.203 (4.385) 4.385 –1.414 0.052 0.980 2.052 4.114

10 1.359 (1.763) 1.771 0.175 0.680 1.242 1.888 2.945

TSLS (SS)

200 1.300 (0.707) 0.714 0.445 0.810 1.234 1.720 2.240

100 1.295 (0.681) 0.688 0.495 0.829 1.219 1.647 2.257

50 1.283 (0.673) 0.678 0.478 0.821 1.213 1.683 2.192

10 1.280 (0.622) 0.627 0.551 0.844 1.201 1.631 2.136

Notes: Same notes as for Table B.1.
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C Specification SS can be monotonicity-incorrect even under As-
sumption SM

Suppose that Z = {0, 1, 2} and X = {0, 1}, and take

C ≡ c(X) ≡ [1, X]′ and I ≡ i(Z) ≡ [1[Z = 1], 1[Z = 2]]′ ≡ [Z1, Z2]′. (36)

Then in the notation of Definition MC,

ṫ(2, x)− ṫ(1, x) = γ2 − γ1,

where γ ≡ [γ1, γ2]′ is the vector of population coefficients on I for the first stage

regression. The claim is that even if p(2, x)− p(1, x) > 0 for both values of x, it is still

possible to have γ2 − γ1 < 0, so that the TSLS first stage determined by (36) is not

monotonicity-correct.

To see the intuition, let V ≡ T − p(Z,X) be the difference between T and its

conditional mean, then enumerate:

T = p(0, 0) + (p(0, 1)− p(0, 0))X + (p(1, 0)− p(0, 0))Z1 + (p(2, 0)− p(0, 0))Z2

(p(1, 1)− p(0, 1))Z1X + (p(2, 1)− p(0, 1))Z2X

≡ C ′λ? + I ′γ? +W ′ζ + V,

where W ≡ [Z1X,Z2X]′ and the coefficient vectors collect the appropriate values of

p(z, x). Letting Ĩ ≡ I−L[I|C], T̃ ≡ T −L[T |C], and W̃ ≡W −L[W |C], then applying

the Frisch-Waugh-Lovell Theorem,

γ = E[Ĩ Ĩ ′]−1 E[Ĩ T̃ ] = E[Ĩ Ĩ ′]−1 E[Ĩ(Ĩ ′γ? + W̃ ′ζ + V )] = γ? + E[Ĩ Ĩ ′]−1 E[ĨW̃ ′]ζ︸ ︷︷ ︸
omitted variables bias

.

If the bias term is zero, then γ = γ? and γ2 − γ1 = p(2, 0)− p(1, 0) > 0. However, the

bias term is not zero in general.

As a numerical example, suppose that P[X = 1] = .5, with

P[Z = z|X = x] =


.5, if z = 0

.05 + .4x, if z = 1

.45− .4x, if z = 2

.
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and set

p(z, 0) =


0, if z = 0

.085, if z = 1

.170, if z = 2

and p(z, 1) =


0, if z = 0

.425, if z = 1

.510, if z = 2

.

Then it can be shown through some tedious calculations that γ = [.355, .24]′, so that

γ2 − γ1 < 0 even while p(z, x) is strictly increasing in z for both values of x.

Intuitively, when Z = 1 it is overwhelmingly likely that X = 1, and when Z = 2, it

is overwhelmingly likely that X = 0. So γ1, the regression coefficient on Z1, is mostly

determined by variation in the X = 1 group, while γ2, the regression coefficient on Z2,

is mostly driven by variation in the X = 0 group. Yet the change in the conditional

mean of T from Z = 0 to Z = 1 conditional on X = 1 is much larger than the change

from Z = 0 to Z = 2 conditional on X = 2. As a consequence, γ1 ends up being larger

than γ2, violating monotonicity-correctness.
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