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ABSTRACT

A prominent challenge when drawing causal inference using observational data is the ubiquitous 
presence of endogenous regressors. The classical econometric method to handle regressor 
endogeneity requires IVs that must satisfy the stringent condition of exclusion restriction, making 
it infeasible to use in many settings. We propose a new IV-free method using copulas to address 
the endogeneity problem. Existing copula correction methods require nonnormal endogenous 
regressors: normally or nearly normally distributed endogenous regressors cause model non-
identification or significant finite-sample bias. Furthermore, existing copula control function 
methods presume the independence of exogenous regressors and the copula control function. Our 
proposed two-stage copula endogeneity correction (2sCOPE) method simultaneously relaxes the 
two key identification requirements, and we prove that 2sCOPE yields consistent causal-effect 
estimates with correlated endogenous and exogenous regressors as well as normally distributed 
endogenous regressors. Besides relaxing identification requirements, 2sCOPE has superior finite-
sample performance and addresses the significant finite-sample bias problem due to insufficient 
regressor nonnormality. Moreover, 2sCOPE employs generated regressors derived from existing 
regressors to control for endogeneity, and thus can greatly increase the ease and broaden the 
applicability of using IV-free methods to handle regressor endogeneity. We further demonstrate 
the performance of 2sCOPE via simulation studies and illustrate its use in an empirical 
application.
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Causal inference is central to many problems faced by academics and practitioners. It increas-

ingly gains importance as rapidly-available observational data in this digital era promise to

offer real-world evidence on cause-and-effect relationships for better decision makings. How-

ever, a prominent challenge faced by empirical researchers to draw valid causal inferences

from these data is the presence of endogenous regressors that are correlated with the struc-

tural error in the population regression model representing the causal relationship of interest.

For example, omitted variables such as ability would cause endogeneity of schooling when

examining schooling’s effect on wages (Angrist and Krueger 1991).

Regressor endogeneity poses great empirical challenges to researchers and demands spe-

cial handling of the issue in order to draw valid causal inferences. One classical method to

deal with the endogeneity issue is using instrumental variables (IV). The ideal IV has to meet

two requirements: it is correlated with the endogenous regressor via an explainable and val-

idated relationship (i.e., relevance restriction), yet is uncorrelated with the structural error

and does not directly affect the outcome (i.e., exclusion restriction). Although the theory

of IVs is well-developed, researchers often face the challenge of finding good IVs satisfying

these two requirements. Potential IVs often suffer from either weak relevance or challenging

justification for exclusion restriction, which hampers using IVs to correct for the underlying

endogeneity concerns (Rossi 2014).

To address the lack of suitable IVs, there has been a growing interest in developing

and applying IV-free endogeneity-correction methods (Ebbes, Wedel, and Böckenholt 2009).

Park and Gupta (2012) propose an IV-free method that uses the copula model (Danaher

2007; Danaher and Smith 2011; Christopoulos, McAdam, and Tzavalis 2021) to directly

model the regressor-error dependence.1 In addition to requiring no IVs, their approach

is straightforward to use: one can simply add the latent copula data for the endogenous

regressors as control variables to correct for endogeneity. These features considerably increase

1In statistics, a copula is a multivariate cumulative distribution function where the marginal distribution of each

variable is a uniform distribution on [0, 1]. Copulas permit modeling dependence without imposing assumptions on

marginal distributions.
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the feasibility of endogeneity correction, as evidenced by the rapidly increasing use of the

copula correction method (see examples of recent applications in the next section on literature

review). However, similar to other IV-free methods, the copula correction methods also

require the distinctiveness between the distributions of the endogenous regressor and the

structural error. This means that the endogenous regressor is required to have a nonnormal

distribution for model identification with the commonly assumed normal structural error

distribution (Park and Gupta 2012; Papies, Ebbes, and Van Heerde 2017; Becker, Proksch,

and Ringle 2021; Haschka 2022; Eckert and Hohberger 2022; Qian, Xie, and Koschmann

2022). Furthermore, we show that the existing copula control function correction method

implicitly requires all exogenous regressors to be uncorrelated with the linear combination

of copula transformations of endogenous regressors (henceforth referred to as copula control

function (CCF) used to control for endogeneity), and may yield significant bias when there

are noticeable correlations between the CCF and exogenous regressors.

In practical applications, both requirements of sufficient regressor nonnormality and no

correlations between CCF and exogenous regressors can be too strong, and pose signifi-

cant challenges for applying the copula correction method. We often encounter endogenous

regressors or include transformations of endogenous variables as regressors that have close-to-

normal distributions. Examples of such regressors in economics and marketing management

studies include stock market returns (Sorescu, Warren, and Ertekin 2017), corporate social

responsibility (Eckert and Hohberger 2022), the organizational intelligent quotient (Mendel-

son 2000), and the logarithm of price (see Figure 4 in the Application). Theoretically, the

endogenous regressor and the structural error can contain a common set of unobservables

that collectively have a normal distribution, which can lead to a close-to-normal distribution

of the endogenous regressor. In these situations, even if the model is identified asymptoti-

cally, close-to-normality of endogenous regressors can cause estimation bias even in moder-

ate sample sizes and require a large sample size to mitigate the finite-sample bias (Becker,

Proksch, and Ringle 2021). Correlations between the CCF and exogenous regressors are
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also quite common in practical applications, especially when the exogenous regressors are

included to control for observed confounders. Examples of such exogenous control variables

abound in marketing and management studies, such as customer-specific variables (location,

age, household size, income, past purchase behaviors, etc.) when estimating the returns of

consumer targeting strategies on product sales (Papies, Ebbes, and Van Heerde 2017) and

firms’ similarity when estimating the effect of competition on innovation (Aghion et al. 2005).

These considerations call for more general and flexible copula correction methods that relax

both stringent requirements of sufficient regressor nonnormality and no correlations between

CCF and exogenous regressors.

In this paper, we develop a generalized two-stage copula endogeneity correction method,

denoted as 2sCOPE, that relaxes the above two requirements. Similar to the existing cop-

ula methods, 2sCOPE requires neither IVs nor the assumption of exclusion restriction. The

2sCOPEmethod corrects for endogeneity by adding residuals, obtained from regressing latent

copula data for each endogenous regressor on the latent copula data for exogenous regressors,

as generated regressors in the structural model. Unlike the original copula method (Park

and Gupta 2012; Becker, Proksch, and Ringle 2021; Eckert and Hohberger 2022, henceforth

denoted as CopulaOrigin), 2sCOPE can account for the dependence between endogenous and

exogenous regressors. Thus, CopulaOrigin is a special case of 2sCOPE. Under a Gaussian

copula model for the endogenous regressors, correlated exogenous regressors and the struc-

tural error, we prove that 2sCOPE can identify causal effects under weaker assumptions than

CopulaOrigin and overcome the above two key limitations of CopulaOrigin (Table 1).

The contributions of this work are threefold. First, to our knowledge, this work is among

the first in the literature to provide formal proofs for theoretical properties of copula correc-

tion methods. These theoretical results are needed because model identifiability is central to

addressing the endogeneity issue. Recent work notes the lack of rigorous proofs of required

model identification conditions and estimation properties (consistency and efficiency) for

copula correction as one major area requiring further research (Becker, Proksch, and Ringle
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2021; Haschka 2022)2. The theoretical results presented here can fill in this important knowl-

edge gap, and contribute to a better understanding of the properties of the copula correction

methods and guiding their use.

Table 1: A Comparison of Copula Correction Methods

Features Park and Gupta (2012) Haschka (2022) 2sCOPE

nonnormality of
Required Required Not Required2

Endogenous Regressors1

No Correlated
Required Not Required Not Required

Exogenous Regressors3

Intercept Included YES NO4 YES

Theoretical Proof YES NO YES

Estimation Method
Control Function

MLE Control Function
& MLE

Structural Model Linear Regression LPM-FE Linear Regression

RCL LPM-FE, LPM-RE, LPM-ME

Slope Endogeneity RCL, Slope Endogeneity

Note: 1: When required, normality of any endogenous regressor leads to non-identifiable models.
Insufficient nonnormality of endogenous regressors can also cause poor finite-sample performance
(finite-sample bias and large standard errors) and require extremely large sample sizes to perform well.
2: Nonnormality of endogenous regressors is not required as long as at least one correlated exogenous
regressor is not normally distributed.
3: In our paper, correlated exogenous regressors refer to those exogenous regressors correlated with the
CCF (copula control function) used to control for endogeneity.
4: The approach cannot estimate the intercept term, which is removed from the panel model prior to
estimation using first-difference or fixed effects transformation (Web Appendix A.8 of Haschka (2022)).
Becker, Proksch, and Ringle (2021) shows the importance of including intercept in marketing applications.
LPM: Linear Panel Model; FE: Fixed Effects for individual-specific intercepts with common slope
coefficients; RE: Random Effects; ME: Mixed-Effects (including both fixed effects and random coefficients);
RCL: Random Coefficient Logit

Two novel theoretical findings emerge from this study. First, we identify an implicit as-

sumption required for CopulaOrigin to yield consistent estimation, and provide conditions to

verify this implicit assumption. This helps improve the effectiveness of the rapidly adopted

method for addressing the endogeneity issue. A useful result is that the existence of the corre-

lations between endogenous and exogenous regressors alone does not automatically introduce

2For instance, owing to the complex form of the estimation method, Haschka (2022) notes the lack of theoretical

proofs of required model identification conditions and estimation consistency as one limitation of the copula correction

method developed there, and thus has to rely solely on simulation studies to evaluate its empirical properties.
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bias to CopulaOrigin. Instead, we show that the implicit assumption is the uncorrelatedness

of the exogenous regressors with the CCF, the linear combination of copula transformations

of endogenous regressors used to control for endogeneity. The difference between the im-

plicit assumption and the condition of zero pairwise correlations between endogenous and

exogenous regressors can be substantial, especially with multiple endogenous regressors.3 We

prove that the proposed 2sCOPE yields consistent causal effect estimates when the implicit

assumption above is violated, which can cause biased causal effect estimates for CopulaOrigin.

The other novel finding of our theoretical investigation is as follows. Although the ex-

ogenous regressors that are correlated with the CCF require special handling for consistent

causal-effect estimation, we prove that they can be leveraged efficiently by 2sCOPE to sub-

stantially improve the finite-sample performance of copula correction and to relax the model

identification requirement of nonnormality of endogenous regressors. We prove that the

structural model with normally distributed endogenous regressors can be identified using

2sCOPE as long as one of the exogenous regressors correlated with endogenous ones is non-

normal, which is considerably more feasible in many practical applications.

Second, the proposed 2sCOPE method is the first copula-correction method that simul-

taneously relaxes the nonnormality assumption of endogenous regressors and handles corre-

lated endogenous and exogenous regressors (Table 1). Existing copula correction methods

do not account for correlated endogenous and exogenous regressors. An exception is Haschka

(2022), which generalizes Park and Gupta (2012) to fixed-effects linear panel models with

correlated regressors by jointly modeling the structural error, endogenous and exogenous

regressors using copulas and maximum likelihood estimation (MLE). However, as noted in

Haschka (2022), Haschka’s approach still requires the nonnormality of endogenous regressors.

Thus, all existing copula correction methods require sufficient nonnormality assumption of

3Although Haschka (2022) explains why correlated regressors can cause potential bias for CopulaOrigin, no con-

dition of when bias can occur is given. Specifically, it is possible that with multiple endogenous regressors, the CCF

is uncorrelated with exogenous regressors when pairwise correlations between endogenous and exogenous regressors

are non-zeros. Even if there is only one endogenous regressor and CCF reduces to be proportional to the copula

transformation of the endogenous regressor, the correlation coefficient is not invariant to nonlinear transformations

and thus changes after the copula transformation of the endogenous regressor (Danaher and Smith 2011).
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endogenous regressors for model identification; even when the model is identified, insufficient

regressor nonnormality can cause significant finite-sample bias in a sample size of less than

2,000 (Haschka 2022; Becker, Proksch, and Ringle 2021; Eckert and Hohberger 2022). Becker,

Proksch, and Ringle (2021) suggest a minimum absolute skewness of 2 for an endogenous

regressor to ensure good performance of Gaussian copula correction methods in a sample

size of less than 1000 (Figure 8 in Becker, Proksch, and Ringle 2021). These requirements

can significantly limit the use of copula correction methods in practical applications.

Our proposed 2sCOPE method overcomes these important restrictions of existing copula

correction methods. Consistent with our theoretical results, the evaluation in Cases 2 and

3 of the simulation studies demonstrates the superior finite-sample performance of 2sCOPE

and shows that 2sCOPE eliminates or substantially reduces the significant problem of finite-

sample bias due to insufficient regressor nonnormality raised in Becker, Proksch, and Ringle

(2021) and Eckert and Hohberger (2022). In fact, even when the endogenous regressor is nor-

mal or close-to-normal with a skewness of 0, the estimation bias of 2sCOPE is still negligible

for sample size as small as 200 (Figure 1). We further conduct systematic simulation studies

and provide an actionable guideline for using 2sCOPE in Figure 2. The guideline establishes

sufficient conditions regarding exogenous regressors, verifiable using tests of nonnormality

and relevance to endogenous regressors, for 2sCOPE to effectively handle endogenous re-

gressors with insufficient nonnormality using data at hand. When these conditions are not

satisfied, we develop a novel bootstrap re-sampling method (Algorithm 1) to detect and quan-

tify the finite-sample bias due to insufficient regressor nonnormality. The bootstrap method

directly informs the specific size of finite-sample bias and the applicability of 2sCOPE for

the data at hand, and thus complements the rules of thumb using tests of normality and

relevance. We illustrate the use of the guideline and the bootstrap algorithm to control for

potential finite-sample bias caused by insufficient nonnormality of the endogenous regressor

(logarithm of the price) in our empirical application. Overall, 2sCOPE can greatly broaden

the applicability of the IV-free methods for handling endogeneity issues in practice.
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Third, the proposed 2sCOPE provides a versatile and feasible copula generated regressor

method to handle regressor endogeneity. Despite that the vast majority of applications of the

copula correction method have used the generated-regressor approach (Becker, Proksch, and

Ringle 2021; Eckert and Hohberger 2022), no copula control function method exists that can

handle endogenous regressors having insufficient nonnormality or correlated with exogenous

regressors. 2sCOPE addresses this unmet need. By including generated regressors in the

structural model to control for endogeneity, 2sCOPE enjoys a number of benefits associated

with using the control function to address endogeneity as compared with the alternative

MLE approach. These include but are not limited to incurring little extra computational and

modeling burdens to be integrated with complex outcome models, broader applicability with

weaker assumptions, and increased robustness to model mis-specifications.4 We demonstrate

that 2sCOPE retains and enhances these desirable properties of the control function approach

for a range of commonly used models in marketing studies, as shown in Table 1.

In many of these models, the MLE approach becomes much more difficult or computa-

tionally infeasible, while 2sCOPE is straightforward. We present an example with Footnote

8 showing that extending the MLE approach of Haschka (2022) to random coefficient lin-

ear panel models (RC-LPMs) with correlated endogenous and exogenous regressors requires

numerically evaluating potentially high-dimensional integrals of complicated functions con-

taining the product of copula density functions, evaluated at repeated measurement occa-

sions. Yet 2sCOPE involves none of these integrals and can be implemented using standard

software programs for RC-LPMs, assuming all regressors are exogenous. Furthermore, al-

though 2sCOPE assumes a normal error distribution, we show its robustness to symmetric

nonnormal error distributions (Web Appendix E.4), in contrast to the sensitivity to such

error mis-specifications in the existing copula methods (Becker, Proksch, and Ringle 2021).

Thus, the 2sCOPE control function approach leveraging correlated exogenous regressors

can increase robustness to model mis-specifications. Last but not the least, the generated-

4As shown in Becker, Proksch, and Ringle (2021), Gaussian copula control function approach is more robust

against error term mis-specifications than the Gaussian copula MLE approach.
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regressor approach facilitates studying the theoretical properties of 2sCOPE.

The remainder of this paper unfolds as follows. It begins with a review of the related liter-

ature on methods for causal inference with endogenous regressors. We then propose 2sCOPE

and prove the consistency of 2sCOPE with normally distributed and correlated regressors.

Next, we evaluate the performance of 2sCOPE using simulation studies under different sce-

narios and provide a flowchart to guide the use of 2sCOPE in practical applications. We

further apply 2sCOPE to estimate price elasticity using store purchase databases.

LITERATURE REVIEW

The marketing, economics, and statistics literature develops a rich set of methods to draw

causal inferences. The gold standard to estimate causal effects is randomized assignments

such as controlled lab experiments and field experiments (Johnson, Lewis, and Nubbemeyer

2017, Anderson and Simester 2004, Godes and Mayzlin 2009). When controlled experiments

are not feasible, quasi-experimental designs such as regression discontinuity, difference-in-

difference, and synthetic control are used to mimic randomized experiments and to enable

the identification of causal effects with observational data (Hartmann, Nair, and Narayanan

2011, Narayanan and Kalyanam 2015, Athey and Imbens 2006, Shi et al. 2017, Kim, Lee,

and Gupta 2020). However, these quasi-experimental designs have special data and design

requirements, and are not aimed at coping with the general issue of endogenous regressors

when estimating causal effects using observational data.

There is a large literature on various approaches to addressing endogenous regressors

when inferring causal effects. Papies, Ebbes, and Van Heerde (2017), Rutz and Watson

(2019), and Park and Gupta (2012) provide an overview of addressing endogeneity in mar-

keting. Three broad classes of solutions are discussed, and the most commonly used solution

is the IV approach (Angrist and Krueger 1991, Qian 2008, Novak and Stern 2009, Ataman,

Van Heerde, and Mela 2010, Van Heerde et al. 2013, Li and Ansari 2014). Rossi (2014)

surveyed 10 years of publications in Marketing Science and Quantitative Marketing and
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Economics, revealing that the most commonly used IVs are lagged variables, costs, fixed

effects, and Hausman-style variables from other markets. However, the survey found that

the strength of the IVs is rarely measured/reported, which is needed to detect the weak IV

problem. Moreover, one generally cannot test the exclusion restriction condition and verify

the validity of the instruments. The survey also found that most papers lack a discussion

of why the instruments used are valid. In short, though the theory of IVs is well-developed,

good instruments are difficult to find, making the IV approach hard to implement in practice.

The second class of solutions to mitigate endogeneity is to specify the economic structure

that generates the observational data including endogenous regressors (e.g., a supply-side

model for marketing-mix variables) (Chintagunta et al. 2006, Sudhir 2001, Yang, Chen, and

Allenby 2003, Sun 2005, Dotson and Allenby 2010 and Otter, Gilbride, and Allenby 2011).

The key concern with this approach is that incorrect assumptions or insufficient information

on the supply side can lead to biased estimates (Chintagunta et al. 2006).

The third class of solutions in the domain of endogeneity correction is IV-free meth-

ods. This is a more recent stream of methodological development. Three extant IV-free

approaches are discussed in Ebbes, Wedel, and Böckenholt (2009): the higher moments

(HM) approach (Lewbel 1997), the identification through heteroscedasticity (IH) estimator

(Rigobon 2003), the latent instrumental variables (LIV) method (Ebbes et al. 2005). Re-

cently Wang and Blei (2019) proposed a deconfounder approach that has some flavor of the

LIV approach. All these methods decompose an endogenous regressor into an exogenous

part and an endogenous part. The assumption of the endogenous regressor containing an

exogenous component not affecting the outcome directly is akin to the stringent condition

of exclusion restriction for observed IVs, and thus can be difficult to justify.

Park and Gupta (2012) introduce another IV-free method that doesn’t require the strin-

gent condition of exclusion restriction. It directly models the association between the struc-

tural error and the endogenous regressor via copula. The copula method has been rapidly

adopted by researchers to deal with the endogeneity problem because of its feasibility to use
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without requiring instruments (Becker, Proksch, and Ringle 2021; Haschka 2022; Eckert and

Hohberger 2022; Qian, Xie, and Koschmann 2022; Datta, Foubert, and Van Heerde 2015;

Heitmann et al. 2020; Atefi et al. 2018; Elshiewy and Boztug 2018). The 2sCOPE method

contributes to the literature by overcoming important limitations of existing copula correc-

tion methods, as described upfront, and being applicable in more general settings with the

capability to leverage exogenous regressors to improve model identification and estimation.

METHODS

In this section, we develop a copula-based IV-free method to handle endogenous regressors

with insufficient nonnormality and correlation with exogenous regressors. We first review

CopulaOrigin and show that CopulaOrigin implicitly assumes no correlations between exogenous

regressors and the CCF, as well as the bias in the structural model parameter estimates that

may arise from the violation of this assumption. Then we propose a new method to deal with

the problem and the detailed estimation procedure. We also show how exogenous regressors

correlated with endogenous regressors can sharpen structural model parameter estimates and

enable the identification of the structural model containing normally distributed endogenous

regressors, which are known to cause the model non-identifiability issue for CopulaOrigin.

Assumptions of Existing Copula Endogeneity-Correction Method (CopulaOrigin)

Consider the following linear structural regression model with an endogenous regressor and

a vector of exogenous regressors 5:

Yt = µ+ Ptα +W ′
tβ + ξt, (1)

where t = 1, 2, ..., T indexes either time or cross-sectional units, Yt is a (1×1) dependent

variable, Pt is a (1×1) continuous endogenous regressor, Wt is a (k×1) vector of exogenous

regressors, ξt is the structural error term, and (µ, α, β) are model parameters. Pt is correlated

with ξt, and this correlation generates the endogeneity problem. Wt is exogenous, which

means it is not correlated with ξt, but can be correlated with the endogenous variable Pt.

5As shown in Becker, Proksch, and Ringle (2021), it is important to include the intercept term when evaluating

the copula correction method.
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The key idea of CopulaOrigin (Park and Gupta 2012) is to use a copula to jointly model

the correlation between the endogenous regressor Pt and the error term ξt. The advantage of

using copula is that marginals are not restricted by the joint distribution. Thus, the copula

model enables researchers to construct a flexible multivariate joint distribution that captures

the correlation among these variables.

Let F (P, ξ) be the joint cumulative distribution function (CDF) of the endogenous re-

gressor Pt and the structural error ξt with marginal CDFs H(P ) and G(ξ), respectively.

For notational simplicity, we may omit the index t in Pt and ξt below when appropriate.

According to Sklar’s theorem (Sklar 1959), there exists a copula function C(·, ·) such that

F (P, ξ) = C(H(P ), G(ξ)) = C(Up, Uξ), (2)

where Up = H(P ) and Uξ = G(ξ), and they both follow uniform(0,1) distributions. Thus,

the copula maps the marginal CDFs of the endogenous regressor and the structural error to

their joint CDF, and makes it possible to separately model the marginals and correlations

of these random variables. To capture the association between the endogenous regressor P

and the error ξ, Park and Gupta (2012) uses the following Gaussian copula for its desirable

properties (Danaher 2007; Danaher and Smith 2011):

F (P, ξ) = C(Up, Uξ) = Ψρ(Φ
−1(Up),Φ

−1(Uξ))

=
1

2π(1− ρ2)1/2

∫ Φ−1(Up)

−∞

∫ Φ−1(Uξ)

−∞
exp

[
−(s2 − 2ρ · s · t+ t2)

2(1− ρ2)

]
dsdt, (3)

where Φ(·) denotes the univariate standard normal distribution function and Ψρ(·, ·) denotes

the bivariate standard normal distribution with the correlation coefficient ρ. With empirical

marginal CDFs, the above Gaussian copula model depends on the rank order of raw data only,

and is invariant to strictly monotonic transformations of variables in (P, ξ). Thus, the above

Gaussian copula model is considered general and robust for most marketing applications

(Danaher and Smith 2011). In the Gaussian copula model, ρ captures the endogeneity of

the regressor P , and a non-zero value of ρ corresponds to P being endogenous.

Let P ∗
t = Φ−1(Up) and ξ

∗
t = Φ−1(Uξ), the above Gaussian copula means [P ∗

t , ξ
∗
t ]

′ follow
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the standard bivariate normal distribution with the correlation coefficient ρ as follows:P ∗
t

ξ∗t

 ∼ N


 0

0

 ,
 1 ρ

ρ 1


 . (4)

Under the assumption that the structural error ξt follows N(0, σ2
ξ ), Park and Gupta (2012)

show that the structural error can be split into two parts as follows:

ξt = σξξ
∗
t = σξρP

∗
t + σξ

√
1− ρ2ωt, (5)

where the first part σξρP
∗
t captures the correlation between ξt and the endogenous regressor,

and the other part σξ ·
√

1− ρ2ωt being an independent new error term. Equation (1) can

then be rewritten as follows:

Yt = µ+ Ptα +Wtβ + σξ · ρ · P ∗
t + σξ ·

√
1− ρ2 · ωt. (6)

Based on the above representation, Park and Gupta (2012) suggest the following generated

regressor approach to correcting for the endogeneity of Pt: the ordinary least squares (OLS)

estimation of Equation (6) with P ∗
t = Φ−1(Up) included as an additional regressor will

yield consistent model estimates. Park and Gupta (2012) also point out that for the above

approach to work, Pt needs to have a nonnormal distribution. Suppose Pt is normally

distributed, Pt = P ∗
t · σp, resulting in perfect collinearity between Pt and P

∗
t and violating

the full rank assumption required for identifying the linear regression model in Equation (6).

Below, we show that an implicit assumption for the above generated regressor approach

to yield consistent model estimates is the uncorrelatedness between P ∗
t and Wt. A non-zero

correlation between the exogenous regressor Wt and the generated regressor P ∗
t would cause

biased OLS estimates of Equation (6) using CopulaOrigin because of the induced correlation

between the error term ωt and Wt, which is formally proved in Theorem 1 below.

Theorem 1. Assuming (1) (1, P,W ) is full rank and W is exogenous, (2) the error term is

normal, (3) a Gaussian Copula for the structural error term and Pt, (4) Pt is endogenous:

ρ ̸= 0, and (5) P ∗
t and Wt are correlated, Cov(ωt,Wt) = − ρ√

1−ρ2
Cov(Wt, P

∗
t ) ̸= 0 and

consequently the OLS estimates of Equation (6) are inconsistent.

Proof: See Web Appendix A.1, Proof of Theorem 1.
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To summarize, CopulaOrigin based on Equation (6) makes the set of assumptions listed in

Table 2. Assumption 5 has been discovered by Haschka (2022). However, as shown in Web

Appendix A.2, Assumption 5 should be replaced with the more general Assumption 5(b)

for the case of multiple endogenous regressors.6 Assumptions 5 and 5(b) are verifiable and

provide users with criteria to check whether CopulaOrigin would provide consistent estimation

when there exist exogenous regressors. With only one endogenous regressor, one can simply

check the correlations between the copula transformation of this endogenous regressor with

each exogenous regressor. For multiple endogenous regressors, one should check the cor-

relations between the CCF (i.e., the linear combination of copula transformations of these

endogenous regressors used to control for endogeneity) in CopulaOrigin with each exogenous

regressor, using the Fisher’s Z test described in Web Appendix E.7. If there exists at least

one exogenous regressor in Wt that fails Assumption 5 or 5(b), CopulaOrigin yields biased

estimates, and our proposed 2sCOPE can be used, which is derived in the next subsection.

Table 2: Assumptions in CopulaOrigin

Assumption 1. Full rank 1 of all regressors and exogeneity of W 2.

Assumption 2. The structural error follows a normal distribution.

Assumption 3. Pt and the structural error follow a Gaussian copula.

Assumption 4. Nonnormality of the endogenous regressor Pt.

Assumption 5. For a scalar endogenous regressor Pt, Wt and P ∗
t are uncorrelated.

Assumption 5(b). For multiple endogenous regressors, Wt and the CCF 3 are uncorrelated.
1: Full rank means rank(X

′
X) = k, in which X = (1, P,W ) with column dimension of k;

2: When P and W are uncorrelated, the exogeneity assumption of W can be relaxed if the interest is only
on α, the coefficient of P (Web Appendix E.11).

3: CCF (copula control function) is the linear combination of P ∗
t used to control for endogenous regressors.

The full rank of all regressors and exogeneity of Wt in Assumption 1 of Table 2 are as-

sumptions made in many other commonly used econometric methods to ensure estimation

consistency, including OLS and IV methods. For Assumptions 2 to 4, Park and Gupta (2012)

have shown reasonable robustness of their copula method to nonnormal distributions of the

6For instance, in the 2-endogenous regressors case, Assumption 5(b) means

Cov(Wt,
ρξ1−ρ12ρξ2

1−ρ212
· P ∗

1,t +
ρξ2−ρ12ρξ1

1−ρ212
· P ∗

2,t) = 0 (Web Appendix A.2), which is not the same as either

Cov(Wt, P
∗
1,t) = 0, Cov(Wt, P

∗
2,t) = 0 or Cov(Wt, P1,t) = 0, Cov(Wt, P2,t) = 0.
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structural error (Assumption 2) and alternative forms of copula functions (Assumption 3),

although it is not surprising to observe the sensitivity of CopulaOrigin to gross violations of

these assumptions, such as highly skewed error distributions (Becker, Proksch, and Ringle

2021; Eckert and Hohberger 2022). By contrast, the assumption that the endogenous regres-

sor Pt follows a nonnormal distribution (Assumption 4) is critical. An endogenous regressor

following a normal distribution violates the full-rank condition in Equation (6) and causes

model unidentification regardless of the sample size; a nearly normally distributed endoge-

nous regressor may require a very large sample size for the method to perform well and may

cause the method to have poor performance for a finite sample size. Both Assumptions 4

and 5(b) can be too strong and substantially limit the applicability of the copula method.

Proposed Method: Two-stage Copula Endogeneity-correction (2sCOPE)

In this subsection, we propose a two-stage copula endogeneity-correction (2sCOPE) method

and show that it can relax both the uncorrelatedness assumption between CCF and the

exogenous regressors (Assumption 5(b)) and the key identification assumption of nonnormal

endogenous regressors (Assumption 4). 2sCOPE jointly models the endogenous regressor, Pt,

the correlated exogenous variable, Wt, and the structural error term, ξt, using the Gaussian

copula model, which implies that [P ∗
t ,W

∗
t , ξ

∗
t ] follows the multivariate normal distribution:

P ∗
t

W ∗
t

ξ∗t

 ∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1



 , (7)

where P ∗
t = Φ−1(H(Pt)), W

∗
t = Φ−1(L(Wt)), and ξ

∗
t = Φ−1(G(ξt)), and H(·), L(·) and G(·)

are marginal CDFs of Pt, Wt and ξt, respectively.

Under the above Gaussian copula model in Equation (7), one can develop a direct exten-

sion of CopulaOrigin, which adds generated regressors P ∗
t andW ∗

t into the structural regression

model to correct for endogeneity bias. The resulting method, denoted as COPE, is shown

to yield consistent causal-effect estimates without requiring the exogeneity of W and As-

sumption 5 (or Assumption 5(b)) needed for CopulaOrigin (Web Appendix A.1). However,
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COPE requires endogenous regressors Pt and exogenous regressorsWt to both have sufficient

nonnormality, and yields substantial bias when regressors have insufficient nonnormality (see

simulation results in Table 6 and Figure 1). Furthermore, adding many generated regressors

for control variables W can cause severe multicollinearity issues and have significantly ad-

verse impacts on causal effect estimation efficiency and stability (simulation results in Web

Appendix E.3 showing COPE can require 5 times the sample size than our proposed method

to achieve the same estimation precision). Overall, COPE suffers from the low face-validity

problem because it can add many more generated regressors than needed into the structural

outcome model. To overcome these limitations of COPE, we derive the 2sCOPE method

that relaxes both Assumptions 4 and 5(b) of CopulaOrigin below.

Under the Gaussian copula model in Equation (7), we have the following system of

equations:

Yt = µ+ Ptα +Wtβ + ξt (8)

P ∗
t = W ∗

t γ + ϵt. (9)

Under the assumption that ξt follows a normal distribution, ϵt and ξt follow a bivariate

normal distribution, since they are a linear combination of tri-normal variate (ξ∗t , P
∗
t ,W

∗
t )

under the Gaussian copula assumption. Equation (9) expresses the copula transformation

of the endogenous regressor, determined by the rank order of Pt, as a linear combination

of observed and unobserved variables. The two error terms ϵt and ξt are correlated because

of the endogeneity of Pt. For example, both ξt and ϵt may contain an additive component

corresponding to a common omitted variable. The above model is then obtained when the

omitted variable and regressors follow a Gaussian copula model.

The main idea of 2sCOPE is to make use of the fact that, by conditioning on ϵt, the

structural error ξt becomes independent of both Pt and Wt. That is, by conditioning on

the component of Pt causing the endogeneity of Pt (i.e, ϵt here), the structural error is not

correlated with both Pt and Wt, thereby ensuring the consistency of standard estimation

methods. In this sense, ϵt serves as a (scaled) control function to address the endogeneity
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bias. To demonstrate this point, note that the Gaussian copula model in Equation (7) can

be rewritten as follows:
P ∗
t

W ∗
t

ξ∗t

 =


1 0 0

ρpw
√

1− ρ2pw 0

ρpξ
−ρpwρpξ√

1−ρ2pw

√
1− ρ2pξ −

ρ2pwρ2pξ
1−ρ2pw

 ·


ω1,t

ω2,t

ω3,t

 ,


ω1,t

ω2,t

ω3,t

 ∼ N




0

0

0

 ,


1 0 0

0 1 0

0 0 1



 . (10)

Given the above joint normal distribution for (P ∗
t ,W

∗
t , ξ

∗
t ) and ξt = σξξ

∗
t , we have

P ∗
t = ρpwW

∗
t + ϵt, (11)

and

Yt = µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

P ∗
t +

−σξρpwρpξ
1− ρ2pw

W ∗
t + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t

= µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

(P ∗
t − ρpwW

∗
t ) + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t,

= µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

ϵt + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t. (12)

Equation (12) suggests adding the estimate of the error term ϵt from the first stage regression

as a generated regressor instead of adding P ∗
t and W ∗

t . As shown in Theorem 2 below, the

linear model in Equation (12) satisfies both the full column rank condition of the regressor

matrix and zero correlation between the new error term ω3,t and each regressor in Equation

(12), ensuring the consistency of OLS estimates (Chpt. 4, Wooldridge 2010). This two-step

procedure, named as 2sCOPE, adds the first-stage residual ϵ̂t to control for endogeneity

and in this aspect is similar to the control function approach of Petrin and Train (2010).

However, unlike Petrin and Train (2010), 2sCOPE requires no use of IVs.

Theorem 2. Consistency of the 2sCOPE Estimator. Assuming (1) (1, P,W ) is full

rank and W is exogenous, (2) the error is normal, (3) either the endogenous regressor Pt

or one correlated regressor in Wt is nonnormal, and (4) a Gaussian Copula for (ξt, Pt,Wt),
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2sCOPE estimator is consistent.

Proof: See Web Appendix B.1, Proof of Theorem 2.

According to Theorem 2, the proposed method 2sCOPE can yield consistent estimates

when assumptions are met. Specifically, Assumption 5(b) is relaxed because 2sCOPE can

handle the case when the model includes exogenous regressors correlated with the CCF.

Theorem 3 further shows that 2sCOPE relaxes Assumption 4 (the nonnormality assumption

on endogenous regressors), a critical model identification condition required in all other

copula correction methods.

Theorem 3. Nonnormality Assumption Relaxed. Assuming (1) (1, P,W ) is full rank

and W is exogenous, (2) the error term is normal, (3) one of the correlated exogenous

regressors Wt is nonnormal, and (4) a Gaussian Copula for the error term, Pt and Wt,

2sCOPE estimator is consistent when Pt follows a normal distribution.

Proof: See Web Appendix B.2, Proof of Theorem 3.

Theorem 3 shows that as long as one exogenous regressor correlated with the endogenous

regressor Pt is nonnormally distributed, 2sCOPE can correct for endogeneity for a normal

regressor Pt while COPE cannot. Intuitively, when Pt (orWt) is normal, P ∗
t (orW ∗

t ) becomes

a linear function of Pt (orWt) under the Gaussian copula assumption, rendering COPE to fail

the full rank assumption and become unidentified. Thus, COPE cannot deal with normal

endogenous/exogenous regressors. For 2sCOPE in Equation (12), adding the first stage

residual ϵ̂t as the generated regressor improves model identification. As long as not all Wt

are normal, ϵ̂t would not be a linear function of Pt and Wt and thus the second stage model

(Equation 12) in 2sCOPE would satisfy the full rank requirement for model identification.

Thus, 2sCOPE can relax the nonnormality assumption on the endogenous regressor required

in Park and Gupta (2012) as long as one of the Wt is nonnormally distributed.

To sum up, we have proven the consistency of 2sCOPE (Theorem 2). Theorem 3 and

Proposition 1 (Web Appendix B.3) further establish that 2sCOPE outperforms COPE, the

extended CopulaOrigin, in terms of estimation efficiency and relaxation of the nonnormality

assumption on endogenous regressors in CopulaOrigin by satisfying a looser condition.
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Multiple Endogenous Regressors

In this subsection, we extend 2sCOPE to the general case of multiple endogenous re-

gressors. Consider the following structural linear regression model with two endogenous

regressors (P1,t and P2,t) that are potentially correlated with the exogenous regressor Wt:

Yt = µ+ P1,t · α1 + P2,t · α2 +Wtβ + ξt. (13)

Under the multivariate Gaussian distribution assumption on (ξt, P
∗
1,t, P

∗
2,t,W

∗
t ), the system

of equations for the 2sCOPE method in Equations (8, 9) are readily extended to

Yt = µ+ P1,tα1 + P2,tα2 +Wtβ + ξt, (14)

P ∗
1,t = ρwp1W

∗
t + ϵ1,t, (15)

P ∗
2,t = ρwp2W

∗
t + ϵ2,t, (16)

where Equations (15) and (16) can be directly derived from the Gaussian copula assumption;

(ξt, ϵ1,t.ϵ2,t) are linear transformations of (ξt, P
∗
1,t, P

∗
2,t,W

∗
t ), and thus also follow a multivariate

Gaussian distribution. As a result, we can decompose the structural error ξt as additive terms

for ϵ1,t, ϵ2,t and a remaining independent error term ω4,t as follows

Yt = µ+ P1,tα1 + P2,tα2 +Wtβ + η1ϵ1,t + η2ϵ2,t + σξ ·m · ω4,t, (17)

where ϵ1,t = P ∗
1,t − ρwp1W

∗
t and ϵ2,t = P ∗

2,t − ρwp2W
∗
t , m is a constant depending only on the

correlation coefficients in the Gaussian copula, η1, η2 and ω4,t are defined in Equation (W11)

in Web Appendix B.1, and the new (scaled) error term ω4,t is independent of latent copula

data (P ∗
1,t, P

∗
2,t,W

∗
t ) as well as all functions of these latent data including P1,t, P2,t,Wt, ϵ1,t, ϵ2,t.

Because ω4,t is independent of all regressors on the right-hand side of Equation (17), the OLS

estimation of Equation (17) yields consistent estimates of structural model parameters as

long as the regressor matrix (1, P1, P2,W, ϵ1, ϵ2) is of full column rank.

The proof for the estimation consistency, relaxation of the regressor-nonnormality as-

sumption, and estimation efficiency gain for 2sCOPE can be found in Web Appendix B

under the related Theorems 2, 3, and Proposition 1. Table 3 summarizes the assumptions

for our proposed 2sCOPE, and Table 4 summarizes the estimation procedure of 2sCOPE.
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Table 3: Assumptions in 2sCOPE

Assumption 1. Full rank 1 of all regressors and exogeneity of W 2.

Assumption 2. The structural error follows a normal distribution.

Assumption 3. Pt, Wt and the structural error follow a Gaussian copula.

Assumption 4. Either Pt or one related regressor in Wt is nonnormally-distributed.

1: Full rank means rank(X
′
X) = k, in which X = (1, P,W ) with column dimension of k;

2: When P and W are uncorrelated, the exogeneity assumption of W can be relaxed if the interest is only
on α, the coefficient of P (Web Appendix E.11).

Table 4: Estimation Procedure for 2sCOPE

Stage 1:

• Obtain empirical CDFs for each regressor in Pt and Wt, Ĥ(Pt) and L̂(Wt);

• Compute P ∗
t = Φ−1(Ĥ(Pt)) and W ∗

t = Φ−1(L̂(Wt));

• Regress each endogenous regressor in P ∗
t separately on W ∗

t and obtain residual ϵ̂t;

Stage 2:

• Add ϵ̂t to the outcome structural regression model as generated regressors.

Note: Standard errors of parameter estimates are estimated using Bootstrap (Web Appendix F).

2sCOPE for Random Coefficient Linear Panel Models

We consider the following random coefficient model for linear panel data

Yit|µi, αi, βi = µ̄+ µi + P ′
itαi +W ′

itβi + ξit, (18)

where i = 1, · · · , N indexes cross-sectional units and t = 1, · · · , T indexes occasions. Pit

(Wit) denotes a vector of endogenous (exogenous) regressors. Pit and Wit can be correlated.

The error term ξit
iid∼ N(0, σ2

ξ ), which is correlated with Pit due to the endogeneity of Pit

but is uncorrelated with the exogenous regressors in Wit. The individual-specific intercept

µi and individual-specific slope coefficients (αi, βi) permit heterogeneity in both intercepts

and regressor effects across cross-sectional units. Extant marketing studies have shown the

ubiquitous presence of heterogeneous consumers’ responses to marketing mix variables (e.g.,

price sensitivity) and substantial bias associated with ignoring such heterogeneity in slope

coefficients. Thus, it is important to allow individual-specific slope coefficients, especially in

marketing studies.
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The linear panel data model as specified in Equation (18) is general and includes the

linear panel model with only individual-specific intercepts considered in Haschka (2022) as

a special case. Specifically, Haschka (2022) fixes (αi, βi) to be the same value (α, β) across

all units, assuming all cross-sectional units have the same slope coefficients. In contrast, the

model in Equation (18) relaxes this strong assumption and can generate unit-specific slope

parameters, which can be used for targeting purposes.

A random coefficient model typically assumes (µi, αi, βi) follows a multivariate nor-

mal distribution. When all regressors are exogenous, estimation algorithms for such ran-

dom coefficient models are well-established and computationally feasible even for a high-

dimensional vector of random effects (µi, αi, βi). With the normal conditional distribution

for Yit|(µi, αi, βi) in Equation (18) and the multivariate normal prior distribution for random

effects (µi, αi, βi), marginally Yit follows a normal distribution with a closed-form expression

containing no integrals with respect to random effects (µi, αi, βi), leading to an easy-to-

evaluate likelihood function (Greene 2003). For instance, R function lme() can be used to

obtain MLEs of population parameters and empirical Bayes estimates of individual random

effects. Alternatively, one can assume a mixed-effect model where µi is a fixed-effect pa-

rameter with µi’s allowed to be correlated with the regressors Pit and Wit. To avoid the

potential incidental parameter problem, one often uses the first-difference or fixed-effects

transformation to eliminate the incidental intercept parameters as follows

ỹit|αi, βi = P̃ ′
itαi + W̃ ′

itβi + ξ̃it, (19)

where ỹit, P̃it, W̃it and ξ̃it denote new variables obtained from the first-difference or fixed-

effect transformation. Haschka (2022) considered a special case of Equation (19) by fixing

(αi, βi) to be constants.

It is straightforward to apply 2sCOPE to address regressor endogeneity in the general

random coefficient model for linear panel data in Equation (18) and the transformed one

without intercepts in Equation (19).7 The 2sCOPE procedure adds the residuals obtained

7Similar to Haschka (2022), a GLS transformation can be applied to both sides of Equation (19), resulting in a
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from regressing P ∗
it on W ∗

it. Thus, 2sCOPE can be implemented using standard software

programs for random coefficient linear panel models assuming all regressors are exogenous

(see Simulation Study Case 4 for an illustration using the R function lme()). By contrast,

the MLE approach for copula correction in the random coefficients model accounting for

correlated endogenous and exogenous regressors is not developed yet and would require

constructing complicated joint likelihood on the error term, Pt andWt, which involves newly

appearing numerical integrals with respect to random effects and cannot be maximized by

standard estimation algorithms for random coefficient models.8 Finally, current applications

applying CopulaOrigin do not consider the role of exogenous regressors. Our analysis shows

that this may yield bias if any exogenous regressor is correlated with the CCF added to

control endogeneity, for which 2sCOPE should be used to address regressor endogeneity.

2sCOPE for Slope Endogeneity and Random Coefficient Logit Model

In Web Appendices C and D, we derive 2sCOPE to tackle slope endogeneity and address

endogeneity bias in random coefficient logit models with correlated and normally distributed

regressors. In these two cases, we show how to apply 2sCOPE to correct for endogeneity bias,

which can avoid the potential bias of CopulaOrigin due to the potential correlations between

the exogenous regressors and CCF, as well as make use of the correlated exogenous regressors

to relax the nonnormality assumption of endogenous regressors, improve model identification

and sharpen model estimates. As shown there, 2sCOPE can be implemented using standard

estimation methods by adding generated regressors to control for endogenous regressors. By

contrast, the maximum likelihood approach can require constructing a complicated joint

likelihood that is not what the standard estimation method uses and thus requires separate

development and significantly more computation involving numerical integration.
pooled regression for which 2sCOPE can be directly applied.

8With endogenous regressors, the individual random effects parameters enter into both the density function for

the outcome Yit|(µi, αi, βi) and the density of copula function C(Uξ,it, UP,it, UW,it) via Uξ,it, and thus cannot be

integrated out in closed-form any more from the likelihood function even with the normal structural error term and

normal random effects. Therefore, numerical integration is required for obtaining MLEs in random coefficient models

with endogenous regressors, which cannot be performed with standard software programs for random coefficient

model estimation.
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SIMULATION STUDY

In this section, we conduct Monte Carlo studies: (a) to assess the performance of the proposed

method for correlated regressors, (b) to assess the performance of the proposed method

under regressor normality and near normality, (c) to assess the performance of the proposed

method under various types of structural models, and (d) to assess the robustness of the

proposed method to violations of model assumptions. We measure the estimation bias using

tbias calculated as the ratio of the absolute difference between the mean of the sampling

distribution and the true parameter value to the standard error of the parameter estimate

(Park and Gupta 2012). Thus, tbias represents the size of bias relative to the sampling error.

Case 1: Nonnormal Regressors

We first examine the case when P andW are correlated. The data-generating process (DGP)

is summarized below:
P ∗
t

W ∗
t

ξ∗t

 ∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1



 = N




0

0

0

 ,


1 0.5 0.5

0.5 1 0

0.5 0 1



 , (20)

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (21)

Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (22)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · Pt + (−1) ·Wt + ξt, (23)

where ξ∗t and P ∗
t are correlated (ρpξ = 0.5), generating the endogeneity problem; W ∗

t is

exogenous and uncorrelated with ξ∗t ; W
∗
t and P ∗

t are correlated (ρpw = 0.5), and thusWt and

Pt are correlated. We consider four different estimation methods: (1) OLS, (2) CopulaOrigin

in the form of Equation (6), (3) the extended method COPE in the form of Equation (W2)

in Web Appendix A.1, and (4) the proposed 2sCOPE in the form of Equation (12). We set

the sample size T = 1000, and generate 1000 datasets as replicates using the DGP above. In

the simulation, we use the gamma distribution Gamma(1, 1) with shape and rate equal to 1

for Pt and the exponential distribution Exp(1) with rate 1 for Wt. Models are estimated on
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all generated datasets, providing the empirical distributions of parameter estimates.

Table 5: Results of the Simulation Study Case 1: Nonnormal Regressors

OLS CopulaOrigin COPE 2sCOPE

ρpw Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

0.5 µ 1 0.689 0.045 6.964 1.231 0.081 2.849 1.012 0.093 0.129 1.009 0.059 0.157

α 1 1.571 0.036 15.75 1.055 0.069 0.791 0.985 0.072 0.213 0.986 0.070 0.197

β -1 -1.259 0.031 8.236 -1.289 0.031 9.169 -0.997 0.067 0.038 -0.995 0.042 0.123

ρpξ 0.5 - - - 0.570 0.047 1.504 0.505 0.055 0.090 0.504 0.038 0.097

σξ 1 0.862 0.020 6.902 1.011 0.043 0.244 1.008 0.041 0.206 1.006 0.040 0.143

D-error - - 0.002613 0.001614

0.7 µ 1 0.730 0.041 6.629 1.307 0.076 4.037 1.011 0.085 0.124 1.005 0.053 0.088

α 1 1.800 0.041 19.67 1.260 0.068 3.838 0.988 0.078 0.148 0.991 0.075 0.118

β -1 -1.529 0.037 14.21 -1.567 0.037 15.36 -0.997 0.071 0.041 -0.994 0.056 0.110

ρpξ 0.5 - - - 0.633 0.043 3.130 0.503 0.057 0.048 0.500 0.026 0.000

σξ 1 0.799 0.018 11.18 0.980 0.044 0.468 1.007 0.041 0.160 1.003 0.040 0.084

D-error - - 0.002902 0.001760

Note: Mean and SE denote the average and standard deviation of parameter estimates over all the 1,000
simulated samples.

Table 5 reports estimation results. As expected, OLS estimates of both α and β are bi-

ased (tbias = 15.75/8.24) due to the regressor endogeneity. CopulaOrigin reduces the bias, but

still shows significant bias for the coefficient estimates of Pt andWt. The bias of CopulaOrigin

depends on the strength of the correlation between W and P . Stronger correlations between

P ∗ and W ∗ can cause a larger bias of CopulaOrigin estimates. For example, when the cor-

relation between W ∗ and P ∗ increases from 0.5 to 0.7, the bias of estimated α increases by

around five times (from 0.055 to 0.260 in Table 5 under the column “CopulaOrigin”). The bias

confirms our derivation in the model section, demonstrating that using the existing copula

method may not solve the endogeneity problem completely with correlated regressors.

The proposed 2sCOPE method provides consistent estimates without using instruments.

The average estimate of ρpξ is close to the true value 0.5 and is significantly different from 0,

implying regressor endogeneity detected correctly using 2sCOPE. Moreover, 2sCOPE shows
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greater estimation efficiency. The standard error of α(β) in 2sCOPE is 0.070 (0.042), which

is 2.78% (37.31%) smaller than the corresponding standard errors using COPE. We fur-

ther calculate the estimation precision of COPE and 2sCOPE using the D-error measure

|Σ|1/K (Arora and Huber 2001, Qian and Xie 2022), where Σ is the covariance matrix of

the regression coefficient estimates, and K is the number of explanatory variables in the

structural model. A smaller D-error means greater estimation efficiency and improved esti-

mation precision. When ρpw = 0.5, the D-error measure is 0.002613 for COPE and 0.001614

for 2sCOPE (Table 5), and thus 2sCOPE increases estimation precision by 38.2%, meaning

that for 2sCOPE to achieve the same precision with COPE, the sample size can be reduced

by 38.2%. A 39.3% efficiency gain for 2sCOPE is observed for ρpw = 0.7 (Table 5).

We perform a further simulation study for a small sample size. Specifically, we use the

same DGP as described above, except with the sample size T=200. Results in Web Appendix

E Table W1 show that OLS estimates have endogeneity bias and CopulaOrigin reduces the

endogeneity bias but significant bias remains. The proposed 2sCOPE performs well, yielding

unbiased estimates for the small sample size T=200. The efficiency gain of 2sCOPE relative

to COPE appears to be greater for a smaller sample size. When the correlation between P ∗

and W ∗ is 0.5, the D-error measures are 0.0166 and 0.0091 for COPE and 2sCOPE (Web

Appendix Table W1), respectively, meaning that 2sCOPE increases estimation precision by

1-0.0091/.0166=46% compared with COPE. Thus, sample size can be reduced by almost half

(∼50%) for 2sCOPE to achieve the same estimation precision as that achieved by COPE. A

similar magnitude of efficiency gain for 2sCOPE relative to COPE (∼50%) is observed when

the correlation between P ∗ and W ∗ is 0.7 (Web Appendix Table W1).

Case 2: Normal Regressors

Next, we examine the case when the endogenous regressor and (or) the correlated exogenous

regressor are normally distributed. We pay special attention to this case because normality

is not allowed for endogenous regressors in Park and Gupta (2012). We use the same DG

as described in Equations (20) to (23) to generate the data, except that the marginal CDFs

25



for regressors, H(·) and L(·), are chosen according to the distributions listed in the first two

columns in Table 6.

Table 6 summarizes the estimation results. As expected, OLS estimates are biased.

CopulaOrigin produces biased estimates whenever the endogenous regressor P follows a normal

distribution. The estimates of CopulaOrigin are biased when P follows a gamma distribution

(first row of Table 6) for a different reason: P and W are correlated. Similar to CopulaOrigin,

the COPE estimators are biased in all three scenarios when either Pt or Wt is normal. When

Wt is normal, β is 0.323 away from the true value -1; when Pt is normally distributed, α is

0.684 away from the true value; when both Pt and Wt are normal, α is 0.663 away from the

true value 1 and β is 0.324 away from the true value -1. This is expected because COPE

adds P ∗
t and W ∗

t , the copula transformation of regressors, as additional regressors, and will

cause perfect co-linearity and model non-identification problem whenever at least one of

these regressors is normally distributed.

Table 6: Results of Case 2: Normal Regressors

Distribution OLS CopulaOrigin COPE 2sCOPE

P W Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

Gamma Normal µ 1 0.431 0.045 12.63 1.018 0.078 0.227 1.017 0.080 0.217 1.015 0.077 0.190

α 1 1.569 0.037 15.40 0.979 0.070 0.302 0.979 0.070 0.296 0.985 0.070 0.212

β -1 -1.259 0.030 8.619 -1.333 0.028 11.78 -1.323 0.433 0.746 -0.997 0.045 0.067

ρpξ 0.5 - - - 0.640 0.039 3.556 0.589 0.141 0.631 0.506 0.036 0.151

σξ 1 0.861 0.019 7.240 1.064 0.046 1.394 1.135 0.162 0.837 1.005 0.038 0.134

Normal Exp µ 1 1.286 0.042 6.777 1.286 0.045 6.374 0.994 0.073 0.081 1.023 0.070 0.334

α 1 1.628 0.031 20.36 1.532 0.462 1.152 1.684 0.437 1.568 1.048 0.126 0.381

β -1 -1.286 0.032 8.956 -1.287 0.032 8.960 -0.992 0.066 0.127 -1.024 0.062 0.383

ρpξ 0.5 - - - 0.089 0.419 0.980 -0.167 0.384 1.738 0.465 0.074 0.473

σξ 1 0.829 0.018 9.492 0.940 0.151 0.394 0.981 0.151 0.129 0.980 0.063 0.318

Normal Normal µ 1 1.001 0.026 0.046 1.002 0.030 0.052 1.001 0.033 0.024 1.002 0.028 0.057

α 1 1.668 0.030 22.38 1.663 0.450 1.474 1.663 0.460 1.441 1.655 0.395 1.657

β -1 -1.335 0.029 11.44 -1.335 0.029 11.42 -1.324 0.438 0.740 -1.328 0.197 1.668

ρpξ 0.5 - - - 0.006 0.412 1.198 0.001 0.412 2.426 0.010 0.303 1.616

σξ 1 0.816 0.019 9.687 0.917 0.155 0.534 1.003 0.211 0.016 0.879 0.092 1.317

By contrast, the proposed 2sCOPE method provides consistent estimates as long as Pt
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andWt are not both normally distributed. Both α and β are tightly distributed near the true

value whenever Pt orWt is nonnormally distributed. Unlike CopulaOrigin and COPE, 2sCOPE

adds the residual term obtained from regressing P ∗
t on W ∗

t as the generated regressor. Thus,

as long as Pt and Wt are not both normally distributed, the residual term is not perfectly

co-linear with the original regressors, permitting model identification. Only when both Pt

and Wt are normally distributed (the last scenario in Table 6), the residual term added into

the structural regression model becomes a linear combination of Pt and Wt, causing perfect

co-linearity and model non-identification. Overall, this simulation study demonstrates the

capability of the proposed 2sCOPE to relax the nonnormality assumption in CopulaOrigin as

long as one of Pt and Wt is nonnormally distributed.

Case 3: Insufficient Nonnormality of Endogenous Regressors

The above case shows that the proposed 2sCOPE can deal with normal endogenous regres-

sors, while CopulaOrigin and COPE cannot. In this case, we examine the performance of these

methods in the more common situation of close-to-normal regressors. Although models are

identified asymptotically (i.e., infinite sample size), appreciable finite-sample bias can occur

with realistic sample sizes commonly seen in marketing studies, if the endogenous regressor

is too close to a normal distribution (Becker, Proksch, and Ringle 2021; Haschka 2022; Eck-

ert and Hohberger 2022). Becker, Proksch, and Ringle (2021) suggest a minimum absolute

skewness of 2 for an endogenous regressor in order for CopulaOrigin to have good performance

in sample sizes less than 1000. This requirement can significantly limit the use of copula

correction methods in practical applications. Given that 2sCOPE can handle normal en-

dogenous regressors, we expect that 2sCOPE can handle much better the finite-sample bias

caused by insufficient regressor nonnormality than the existing copula correction methods.

Thus, in this case, we examine the finite-sample performance of those methods when the

distribution of the endogenous regressor has various closeness to normality. We use the

DGP as described in Equations (20) to (23) to generate data, except that the marginal CDF

for the endogenous regressor (H(·)) is varied from some common distributions with varying
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closeness to normality. Specifically, we consider uniform, log normal, t, mixture normal,

gamma, beta and normal distributions, and use the average absolute estimation bias of all

the regression parameters (µ, α, β) in the structural model to measure the performance.

Figure 1 plots the estimation bias with different distributions of the endogenous regres-

sor P . Results show estimates of CopulaOrigin are biased with correlated endogenous and

exogenous regressors, consistent with our theoretical proof (Theorem 1). COPE performs

well when P has sufficient nonnormality (t(2), log normal, gamma) and has no bias even for

a sample size as small as 200. However, COPE cannot handle a normal endogenous regres-

sor and yields a large estimation bias that remains unchanged as the sample size increases,

consistent with our theoretical proof in Theorem 3 (Web Appendix B.2) and the simulation

result in Case 2. Furthermore, COPE suffers from finite-sample bias when the endogenous

regressor P has distributions with insufficient nonnormality (e.g., beta(2,2), t(df = 30)).

Moreover, the estimation bias of COPE is larger when the sample size is smaller or the dis-

tribution of the endogenous regressor P is closer to normal. For instance, t-distribution with

a degree of freedom 30 is closer to normal than the t distribution with degrees of freedom 10,

5 and 2, resulting in a larger estimation bias. For t(df = 30) which is very close to normal,

increasing the sample size from T=200 to 1000 barely changes the size of the estimation

bias. By contrast, our proposed 2sCOPE method yields consistent estimates for all normal

and close-to-normal regressor distributions and has negligible finite-sample bias even for a

sample size as small as 200 (bias < 5% of parameter values).

Case 4: Random Coefficient Linear Panel Model

We investigate the performance of 2sCOPE in the random coefficient linear panel model.

We use the copula function and marginal distributions of [Pit,Wit, ξit] as specified in Case 1

(Equations 20-22). We assign ρpw = 0.7 as an example. We then generate the outcome Yit

using the following standard random coefficient linear panel model:

Yit = µ̄+ µi + Pit(ᾱ + ai) +Wit(β̄ + bi) + ξit = 1 + µi + Pit(1 + ai) +Wit(−1 + bi) + ξit,
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(a) Sample Size N=200

(b) Sample Size N=1000

Figure 1: Average absolute estimation bias of all the regression parameters (µ, α, β) in
the structural model for different distributions of endogenous regressor.
Note: ‘lnorm’ is lognormal(0,1), ’mixnorm’ is N(-1,1) with the probability 0.5 and N(1,1) with the
probability 0.5, ‘uniform’ is U[0,1], and ‘gamma’ is Gamma(1, 1).
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where [µi, ai, bi] ∼ N(0, I3), t = 1, ..., 50 indexes occasions for repeated measurements, and

i = 1, ..., 500 indexes the individual units. The above random coefficients model permits in-

dividual units to have heterogeneous baseline preferences (µi) and heterogeneous responses

to regressors (ai, bi). Such random coefficient models are frequently used in marketing stud-

ies to capture individual heterogeneity and to profile and target individuals. The correlation

between ξit and Pit creates the regressor endogeneity problem, which can cause biased esti-

mates for standard linear random coefficient estimation methods ignoring the regressor-error

correlation. We generate individual-level panel data as described above 1000 times and use

the data for estimation. Estimation results are in Table 7. LME is the standard estimation

method for linear mixed models assuming all regressors are exogenous, as implemented in

the R function lme(). LME and CopulaOrigin are biased because of endogeneity and corre-

lated exogenous regressors, respectively. Our proposed method 2sCOPE provides unbiased

estimates that are tightly distributed around the true values for all parameters.

Table 7: Results of the Simulation Study Case 4: Random Coefficient Linear Panel Model

LME CopulaOrigin 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ̄ 1 0.722 0.046 6.052 1.314 0.049 6.399 1.004 0.048 0.091

ᾱ 1 1.853 0.045 18.83 1.293 0.045 6.469 1.000 0.046 0.008

β̄ -1 -1.557 0.045 12.39 -1.598 0.044 13.56 -1.000 0.044 0.005

σµ 1 0.985 0.033 0.459 0.982 0.033 0.547 0.984 0.031 0.522

σα 1 0.988 0.036 0.326 0.987 0.034 0.397 0.989 0.035 0.316

σβ 1 0.993 0.031 0.235 0.992 0.033 0.249 0.992 0.033 0.248

ρpξ 0.5 - - - 0.646 0.009 16.33 0.507 0.005 1.365

σξ 1 0.794 0.004 57.71 0.957 0.010 4.439 0.985 0.009 1.640

Note: σµ, σα, σβ are standard deviations of µi, ai, bi.

Additional Simulation Results and Robustness Checks

Web Appendix E provides additional simulation results on a small sample size (E.1), model

estimation with multiple endogenous regressors (E.2), estimation with multiple exogenous
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control covariates including binary and close-to-normal control covariates (E.3), the robust-

ness of 2sCOPE to mis-specifications of the structural error distribution (E.4) and to mis-

specifications of the copula dependence structure (E.5 & E.6), testing Assumption 5(b)

(E.7), experimental studies to obtain practical recommendations for using 2sCOPE (E.8),

the performance of 2sCOPE with one ‘strongly-nonnormal’ exogenous regressor vs. multiple

‘weakly-nonnormal’ exogenous regressors for handling an endogenous regressor with insuf-

ficient nonnormality (E.9), the random coefficient logit model using 2sCOPE (E.10), the

performance of 2sCOPE when W is endogenous (E.11), and the ability of 2sCOPE to lever-

age the empirical correlation between P and W (E.12). Overall, these results demonstrate

that 2sCOPE is robust to small sample sizes and reasonable violations of normal error and

Gaussian copula assumptions and is flexible to leverage control covariates and handle non-

linear models for choice outcomes, and provide guidance of using 2sCOPE to obtain good

performance as summarized in the next section. Interestingly, results in Web Appendix E.9

show that a ‘strongly-nonnormal’ W is considerably more effective than multiple ‘weakly-

nonnormal’ W s in helping the identification of the causal effect for an endogenous regressor

with insufficient nonnormality. Moreover, results in Web Appendix E.12 show that even if an

endogenous W is mistakenly added to the model, the coefficient estimate of the endogenous

regressor using copula methods (CopulaOrigin and 2sCOPE) will not be affected when P and

W are not correlated.

GUIDELINES FOR USING 2SCOPE

To summarize, we have established theoretical conditions that guarantee desirable large-

sample properties of 2sCOPE when there exist correlated exogenous regressors (Theorem

2) and endogenous regressors have insufficient nonnormality (Theorem 3). As expected,

simulation studies demonstrate the good performance of 2sCOPE when the sample size is

sufficiently large. Meanwhile, simulation studies also reveal that, in finite samples, good

performance of 2sCOPE may require sufficient nonnormality of regressors and sufficient rel-
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evance between P and W (e.g., Figure 1 (a)). To provide actionable guidelines for using

2sCOPE for data at hand, we conduct systematic simulation studies to establish the bound-

ary conditions for using 2sCOPE. Specifically, the studies employ a factorial experimental

design, which varies systematically distributions of P andW , sample sizes, the level of endo-

geneity, and the strength of correlation between P and W . We evaluate the performance of

2sCOPE using the relative bias of structural model parameters. Details of the experimental

design and results are described in Web Appendix E.8.

Figure 2: Decision Tree for Using 2sCOPE.
Note: P and W stand for endogenous and exogenous regressors, respectively; like the OLS and IV
methods, for both CopulaOrigin and 2sCOPE to work properly, W should satisfy the exogeneity
assumption; KS stands for the Kolmogorov-Smirnov test.

Figure 2 shows the decision tree of when to use 2sCOPE based on the results from

the simulation studies. The decision tree contains three steps in total. In step 1, we test
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Assumption 5 (or 5(b) for multiple endogenous regressors) to choose between 2sCOPE and

CopulaOrigin. When Assumption 5 (5(b)) is satisfied, CopulaOrigin is preferred over 2sCOPE

because though both methods can provide consistent estimates, CopulaOrigin estimator is

more efficient (Web Appendix E.7). In this case, Becker, Proksch, and Ringle (2021) provide

a flowchart for the use of CopulaOrigin. If Assumption 5 (5(b)) is violated, this means the

presence of relevant exogenous regressors which can be leveraged by 2sCOPE to better handle

endogeneity. In step 2, we test the nonnormality of the endogenous regressor P using the

Kolmogorov -Smirnov (KS) test (see Web Appendix E.8 for the rationale of using the test of

normality). If the KS test rejects the null at the 0.05 level, this means P possesses sufficient

nonnormality and 2sCOPE has a high probability of success in correcting endogeneity bias

based on the results in Web Appendix E.8. Otherwise, P has a close-to-normal distribution,

which requires related exogenous regressors with sufficient nonnormality and relevance to

help identification. Thus, in step 3, we check the nonnormality of W and its relevance to P .

Results in Web Appendix E.8 show: If the p-value of the KS test of an exogenous regressor

W is smaller than 0.001 (i.e., sufficient nonnormality of W ) and the relevance is sufficient

(F statistic for the effect of W ∗ on P ∗ > 10 in the first-stage regression), 2sCOPE will have

a high probability of success.

We have provided the sufficient conditions of endogenous and exogenous regressors above

in steps 2 and 3 for 2sCOPE to have good finite-sample performance. These are not necessary

conditions but are conservative ones to be on the safe side. In particular, to obtain sufficient

conditions, we consider the extreme cases in which either the exogenous regressor in step 2

or the endogenous regressor in step 3 follows the normal distribution. However, in practice,

regressors are likely to have close-to-normal rather than exact normal distributions. The

failure of the sufficient condition tests of W in practice does not mean 2sCOPE cannot be

used. For instance, the estimation result of scenario 1 in Web Appendix Table W11 (P

and W are close-to-normal and weakly nonnormal, respectively) demonstrates that 2sCOPE

may still have acceptable finite-sample performance when the above (conservative) sufficient
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conditions are not satisfied. In this situation (the rightmost branch in Figure 2), one can rely

on our proposed bootstrap resampling Algorithm 1 to evaluate the finite-sample performance

of 2sCOPE on a case-by-case basis.

Algorithm 1 A Bootstrap Algorithm for Evaluating Finite-sample Bias of 2sCOPE

Series Input: data Y, P,W , sample size N, θ̂(Y, P,W )− 2sCOPE estimates of the struc-

tural model parameters, (Ĥ, L̂)− empirical CDFs of P and W , and Σ̂− Gaussian copula
correlation structure estimate. If the ρ̂Pξ is small and not significantly different from zero,

set ρ̂Pξ = ±0.5 in Σ̂.
for b = 1 to B do

Simulate P ∗
b , W

∗
b , ξ

∗
b from Gaussian Copula ΨΣ̂(Φ

−1(UP ),Φ
−1(Uw),Φ

−1(Uξ)), sample
size=N;

Obtain Pb = Ĥ−1(Φ(P ∗
b )),Wb = L̂−1(Φ(W ∗

b )) and ξb = σ̂ξ · ξ∗b , where σ̂ξ is the 2sCOPE
estimate of the standard deviation of structural error term;

Obtain Yb = f(Pb,Wb, ξb, θ̂(Y, P,W )), where f is the linear regression in this setting;

Obtain the 2sCOPE estimate θ̂b = θ̂(Yb, Pb,Wb) using the bth bootstrap sample.
end for
Calculate potential bias of the 2sCOPE estimator: 1

B

∑B
b=1 θ̂b − θ̂(Y, P,W ).

Bootstrap simulations can be used to evaluate the size of the bias in parameter estimates

that may arise when sample size is small to moderate (Efron and Tibshirani 1994, Chpt. 10;

Hooker and Mentch 2018)9, even if the estimation performs well for large samples. Specifi-

cally, the proposed Algorithm 1 randomly draws the same number of observations from the

underlying copula model and the structural model estimated using the original sample,10

and then performs the 2sCOPE estimation on the bootstrap sample as done with the orig-

inal sample. We repeat this simulation B times, and obtain a distribution for each model

coefficient estimate. We then compare the mean of each coefficient estimate’s distribution

with the corresponding coefficient estimate using the original data, which is the true param-

eter value in our model-based bootstrap re-sampling. The small-sample bias of a coefficient

estimate is the difference between the average coefficient estimate from bootstrap samples

9Note that this bootstrap simulation is different from and should not be confused with the bootstrap method

mentioned in Table 4 and used to obtain the standard errors of 2sCOPE estimates.
10When ρPξ is set at zero (i.e., no endogeneity), 2sCOPE is expected to have no finite-sample bias since in this

case 2sCOPE reduces to OLS which is unaffected by regressor normality. Thus, if ρ̂Pξ is small and not significantly

different from zero, we recommend setting ρ̂Pξ to a plausible non-zero value (e.g., ±0.5 as suggested in Algorithm 1).
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and the coefficient estimate from the original sample.

EMPIRICAL APPLICATION

In this section, we apply our method to a real marketing application. We illustrate the

proposed method to address the price endogeneity issue using store-level sales data of the

toothpaste category in Chicago over 373 weeks from 1989 to 1997 11. To control for product

size, we select toothpastes with the most common size, which is 6.4 oz. Specifically, we

estimate the following sales model:

log(Salest) = β0 + log(Retail Pricet) · β1 +W ′
tβ2 + ξt, (24)

where t = 1, 2, ..., T indexes week. Store/category managers and policymakers are often

interested in the price effects on the category demand (e.g., Nijs et al. 2001; Li, Linn, and

Muehlegger 2014). Meanwhile, retail price is usually considered endogenous in the demand

model for category sales (Nijs et al. 2001; Li, Linn, and Muehlegger 2014; Park and Gupta

2012; Haschka 2022). The endogeneity of retail price can come from unmeasured product

characteristics or demand shocks that can influence both consumers’ and retailers’ decisions.

Since these variables are unobserved by researchers, they are absorbed into the structural

error, leading to the endogeneity problem. Prices of different stores are correlated and often

used as an IV for each other. This allows us to test the performance of the proposed 2sCOPE

method in an empirical setting where a good IV exists. Besides the endogenous price, two

promotion-related variables, bonus promotion and direct price reduction, would also affect

demand. In general, the promotion decisions during the study period were made on a

quarterly basis or even longer, plus a long lead time (e.g. several weeks) for implementation;

thus, they were unlikely to be correlated with the weekly unobserved demand shock, and

can be considered exogenous (Chintagunta 2002, Sriram, Balachander, and Kalwani 2007).12

11We obtained the data from https://www.chicagobooth.edu/research/kilts/datasets/dominicks.
12We also checked the endogeneity of the bonus and price reduction promotion variables using the Hausman test

employing IVs (promotions in the other store). The p-values of the Hausman test are 0.30 for bonus promotion and

0.144 for price reduction in store 1 (store 2 is similar), which means there is no evidence that the two promotion

variables are endogenous, consistent with prior literature.
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We focus on category sales in two large stores in Chicago (referred to as Stores 1 and 2). We

convert retail price, in-store promotion and sales from UPC level to the aggregate category

level. They are computed as weekly market share-weighted averages of UPC-level variables.

The correlation between log retail price and bonus promotion in Store 1 (Store 2) is -0.30

(-0.15), and the correlation between log retail price and price reduction promotion in Store 1

(Store 2) is -0.23 (-0.35). The appreciable correlations between price and promotion variables

actually provide a good setting for testing our method with correlated endogenous and

exogenous regressors. The moderate sample size (T=373) also provides an opportunity to

evaluate the finite-sample performance of the 2sCOPE method in the presence of potentially

insufficient regressor nonnormality in real data. Summary statistics of key variables are

summarized in Table 8.

Table 8: Summary Statistics

Store 1 Store 2

Variables Mean SD Max Min Mean SD Max Min

Sales (Unit) 115 52.8 720 35 165.7 93.7 1334 26

Price ($) 2.06 0.20 2.48 1.46 2.10 0.21 2.48 1.47

Bonus 0.18 0.20 0.80 0.00 0.16 0.19 0.79 0.00

PriceRedu 0.10 0.19 0.72 0.00 0.10 0.19 0.73 0.00

(a) Store 1 log sales (b) Store 1 log retail price

Figure 3: Log Sales and Log Retail Price of Toothpaste in Store 1.
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Figure 3 plots log sales and log retail prices of toothpaste at store 1 over time (store 2

is very similar). To control for the possible trend of retail price over time, we use detrended

log retail prices (and for IVs as well) for estimation below. Figure 4 shows the histograms

of detrended log retail prices and the two promotion variables. All the three variables are

continuous variables.

We follow the flowchart in Figure 2 to guide the use of 2sCOPE in the application. In

store 1, the correlations between logP∗ and the exogenous regressors are −0.4413 for bonus

promotion and −0.26 for price reduction promotion, both of which are substantially different

from zero with p-value < 2.2 × e−16 and 7.542 × e−08 respectively, indicating a violation of

Assumption 5 required for CopulaOrigin to yield consistent estimates. Next, we check the

sufficient nonnormality of the endogenous regressor. The KS test of the endogenous price

yields a p-value of 0.063 > 0.05, concluding insufficient nonnormality of the endogenous

price which CopulaOrigin (or COPE) cannot handle appropriately. We then move to the next

step to check the nonnormality of the exogenous regressors, and the relevance between the

endogenous and exogenous regressors. Bonus variable is strongly nonnormal (p-value of KS

test=3.159 ×e−12), and is sufficiently relevant (F statistic = 89.5 > 10). Price reduction

is also strongly nonnormal (p-value of KS test < 2.2 × e−16), and is sufficiently relevant (F

statistic = 27.3 > 10). Thus, according to Figure 2, the store 1 dataset is appropriate for

using 2sCOPE to correct endogeneity, and 2sCOPE is expected to have a high probability

to achieve good finite-sample performance.

We next go through the flowchart for store 2. First, the correlations between logP∗

and the exogenous regressors are −0.32 for bonus promotion and −0.36 for price reduction

promotion, both of which are substantially different from zero with p-value 1.54× e−10 and

4.42× e−13 respectively, indicating a violation of Assumption 5 required for CopulaOrigin to

yield consistent estimates. Next, we check the nonnormality of the endogenous regressor.

The KS test of the endogenous price yields a p-value of 0.0053 < 0.05, concluding sufficient

13These correlations are different from the correlations between the original endogenous and exogenous regressors

without copula transformation. For example, cor(logP,bonus) = -0.30.
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nonnormality of the endogenous price. Thus, according to the decision tree in Figure 2, the

store 2 dataset is also appropriate for using 2sCOPE to correct endogeneity.

We use the IV-based TSLS estimator to cross-validate the performance of 2sCOPE and

the IV used. We use retail price at the other store as an instrument for price, which is

a commonly used instrument in the literature (Park and Gupta 2012, Rossi 2014). This

variable can be a valid instrument as it satisfies the two key requirements. First, retail

prices across stores in a market can be highly correlated because wholesale prices are usu-

ally offered the same (or very similar). The Pearson correlation between the detrended log

retail prices at Stores 1 and 2 is 0.79, providing strong explanatory power on the endogenous

price. The correlation is comparable to that in Park and Gupta (2012). Second, unmeasured

product characteristics such as shelf-space allocation, shelf location, and category location

are determined by retailers and are usually not systematically related to wholesale prices

(exclusion restriction). Meanwhile, unobserved national advertisement is not expected to

affect production cost and wholesale price on a weekly basis and thus is expected to have

a small effect on the variance of weekly wholesale price. Furthermore, as national adver-

tisement occurs only in very few instances in any given planning time horizon (a quarter

or a year), one would expect these demand shocks would be highly correlated and have a

small variance over time at the weekly frequency (Rossi 2014). These considerations suggest

that the exclusion restriction condition is reasonably satisfied in the presence of unobserved

national advertisement. However, like any other IVs, the validity claim cannot be fully veri-

fied, and is debatable. We therefore perform both 2sCOPE and TSLS to cross-validate each

other. Congruent results from the two methods increase our confidence in endogeneity cor-

rection. Like TSLS, 2sCOPE includes (and makes use of) the existing exogenous regressors

in the first-stage regression; however, unlike TSLS, no extra IVs are needed or included in

2sCOPE. Specifically, we first regress logP∗ = Φ−1(Ĥ(logP)) on Bonus∗ = Φ−1(L̂1(Bonus))

and PriceRedu∗ = Φ−1(L̂2(PriceRedu)), and then add the residual as the only “generated

regressor” to the outcome regression. Ĥ(·), L̂1(·), L̂2(·) are all estimated CDFs using the
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(a) detrended log price (b) bonus (c) price reduction

Figure 4: Histogram of Log Retail Price, Bonus and Price Reduction in Store 1

univariate empirical distribution for each regressor. Standard errors of parameter estimates

are obtained using bootstrap (Web Appendix F).

Table 9 reports the estimation results. Beginning with the results from Store 1, OLS esti-

mates are significantly different from TSLS estimates, indicating that the price endogeneity

issue occurs. Instrumenting for retail price changes the price coefficient estimate from -0.767

to -1.797, implying that there is a positive correlation between unobserved product charac-

teristics and the price. The 2sCOPE estimate of ρ, representing the correlation between the

endogenous regressor Pt and the error term, is 0.297 (t-value=3.34) and significantly posi-

tive, further confirming our previous conclusion. This direction of correlation is consistent

with previous empirical findings (e.g., Villas-Boas and Winer 1999, Chintagunta, Dubé, and

Goh 2005). This positive price-error correlation causes upward bias (meaning less price sen-

sitivity) in the OLS price estimate. By directly accounting for this price-error dependence

and controlling the first-stage residual, which captures unobserved product characteristics

causing the positive correlation between the endogenous price and the error term, 2sCOPE

corrects the classic upward endogeneity bias of price elasticity from -0.767 to -2.014. The

2sCOPE price elasticity estimate of -2.014 is close to the estimate of -1.797 from the TSLS

method. Both 2sCOPE and TSLS price estimates show greater price sensitivity, suggesting

that both correct the price endogeneity problem in the right direction. We confirm in the

literature that the TSLS and 2sCOPE estimates are reasonable because the price elasticity
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Table 9: Estimation Results: Toothpaste Sales

OLS TSLS 2sCOPE

Store Parameters Est SE t-value Est SE t-value Est SE t-value

Store 1 Constant 1.301 1.197 0.25 -2.993 1.646 1.82 -3.908 2.314 1.69

Price -0.767 0.288 2.66 -1.797 0.396 4.54 -2.014 0.555 3.63

Bonus 0.371 0.122 3.31 0.104 0.141 0.74 0.064 0.171 0.37

PriceRedu 0.498 0.115 4.33 0.285 0.125 2.28 0.275 0.143 1.92

ρ - - - - - - 0.297 0.089 3.34

Store 2 Constant -3.898 1.246 3.13 0.763 1.943 0.39 0.001 2.702 0.00

Price -1.982 0.300 6.61 -0.864 0.467 1.85 -1.048 0.648 1.62

Bonus 0.062 0.116 0.53 0.286 0.148 1.93 0.239 0.151 1.58

PriceRedu 0.283 0.111 2.55 0.540 0.137 3.94 0.467 0.152 3.07

ρ - - - - - - -0.188 0.109 1.72

of the toothpaste category is around -2.0 (Hoch et al. 1995, Mackiewicz and Falkowski 2015).

Unlike Store 1, the results from Store 2 indicate that the retail price is not endogenous.

First, the estimate of ρ (the correlation between price and the error term) is not significantly

different from 0 for 2sCOPE (t-value ≤ 1.96 under column “2sCOPE” for Store 2 in Table 9).

Second, the estimated price coefficient of OLS is -1.982, which is very close to the estimates

of TSLS and 2sCOPE in Store 1, further confirming no endogeneity of price in Store 2.

Overall, the price elasticity estimates from TSLS and 2sCOPE method are close to each

other for Store 2, and the observed differences between them and the OLS estimate can be

attributed to estimation variability incurred from using more complicated models instead of

the presence of endogeneity.

Evaluating Finite-Sample Performance of Copula Correction Using Bootstrap

In the above, the convergence of results between TSLS and the proposed 2sCOPE in both

stores supports the validity of the proposed method in addressing the endogeneity issue. The

flowchart in Figure 2 also suggests our empirical data satisfy the boundary conditions under

which 2sCOPE is expected to have good finite-sample performance. Though, under this case,

there is little need to empirically evaluate the finite-sample performance using the bootstrap
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resampling in Algorithm 1, we apply the algorithm to illustrate its usage in the empirical

application. Specifically, we apply the bootstrap algorithm (Algorithm 1) to our empirical

application with the true parameter values set to be the store 1’s 2sCOPE estimates reported

in Table 9 rounded to the first non-zero number when generating bootstrap samples. We

also consider the case in which ρ is set at 0.5, somewhat larger than the estimated value of

ρ (=0.3), to assess the robustness of the bootstrap findings. The detailed steps to generate

these bootstrap samples can be found in Web Appendix G.

Table 10 summarizes means and standard deviations of parameter estimates for OLS

and 2sCOPE over the 1000 bootstrap samples, unlike the estimation result on one single

observed dataset reported in Table 9. The estimation results are broadly consistent with

those in Table 9. In both cases (ρ = 0.3 and 0.5), the estimates of 2sCOPE are distributed

closely to the true values, demonstrating that 2sCOPE corrects the bias of OLS estimates

and performs well with little finite-sample bias in our empirical application.

Table 10: Finite-Sample Performance of Copula Correction.

OLS 2sCOPE OLS 2sCOPE

Parameters True Est SE tbias Est SE tbias True Est SE tbias Est SE tbias

Constant -4 1.514 0.777 7.098 -3.782 1.619 0.135 -4 5.256 0.635 14.57 -3.601 1.393 0.287

Price -2 -0.678 0.186 7.099 -1.946 0.388 0.139 -2 0.220 0.152 14.59 -1.904 0.334 0.287

Bonus 0.1 0.458 0.088 4.046 0.113 0.128 0.103 0.1 0.706 0.073 8.290 0.126 0.112 0.236

PriceRedu 0.3 0.571 0.089 3.058 0.309 0.112 0.079 0.3 0.764 0.075 6.160 0.323 0.095 0.240

ρ 0.3 - - - 0.284 0.071 0.222 0.5 - - - 0.483 0.048 0.360

Note: “Est” and “SE” denote the mean and standard deviation of the estimates over 1000 bootstrap
samples of Store 1 Data.

CONCLUSION

Causal inference lies at the center of social science research, and observational studies of-

ten beg rigorous study designs and methodologies to overcome endogeneity concerns. It is

preferable to bring exogeneity via good instruments for identification, although this is not

always possible. In this paper, we focus on the IV-free copula method to handle endogenous
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regressors. We propose a generalized two-stage copula endogeneity correction (2sCOPE)

method that extends the existing copula correction methods (Park and Gupta 2012; Becker,

Proksch, and Ringle 2021; Haschka 2022; Eckert and Hohberger 2022) to more general set-

tings. Specifically, 2sCOPE allows exogenous regressors to be correlated with endogenous

regressors and relaxes the nonnormality assumption on the endogenous regressors. Similar

to the original copula correction method (CopulaOrigin), 2sCOPE corrects endogeneity by

adding “generated regressors” derived from the existing regressors and is straightforward to

use. However, unlike CopulaOrigin that adds the latent copula transformations of endogenous

regressors directly into the model, 2sCOPE has two stages. The first stage obtains the resid-

uals from regressing latent copula data for the endogenous regressor on the latent copula data

for the exogenous regressors. The second stage uses the first-stage residual as a “generated

regressor” in the structural regression model. We theoretically prove that 2sCOPE yields

consistent cause-effect estimates when exogenous regressors are correlated with endogenous

regressors. 2sCOPE can also relax the nonnormality assumption on endogenous regressors

and substantially improve the finite-sample performance of copula correction.

We evaluate the performance of 2sCOPE via simulation studies and demonstrate its use

in an empirical application. The simulation results show that 2sCOPE yields consistent

estimates under relaxed assumptions. Moreover, 2sCOPE outperforms CopulaOrigin (and

COPE) in terms of dealing with close-to-normal or normal endogenous regressors and im-

proving estimation efficiency. Endogenous regressors are allowed to have close-to-normal or

even normal distributions with the help of exogenous regressors (see conditions in Figure 2).

The efficiency gain relative to COPE is substantial and can be up to ∼80% in simulation

studies (Web Appendix E.3), implying that 2sCOPE can reduce the sample size by ∼80%

needed to achieve the same estimation efficiency as compared with COPE that does not ex-

ploit the correlations between endogenous and exogenous regressors. Last but not the least,

our robustness checks show that the proposed 2sCOPE is reasonably robust to the struc-

tural error distributional assumption and non-Gaussian copula correlation structure (Web
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Appendix E.4, E.5 & E.6). We further apply 2sCOPE to a public dataset in marketing.

When dealing with endogenous price, we find that the estimated price coefficient using our

proposed 2sCOPE is very close to the TSLS estimate and the price coefficient reported in

the literature, while OLS estimator shows large biases. We further illustrate the use of a

novel bootstrap simulation algorithm to evaluate and validate the finite-sample performance

of 2sCOPE in the empirical application.

These findings have rich implications for guiding the practical use of the copula-based

IV-free methods to handle endogeneity. A known critical assumption for CopulaOrigin is the

nonnormality of endogenous regressors. The users of the method in the literature have all

been practicing the check and verification of this assumption. However, our work shows

that this is insufficient: one also needs to check Assumption 5 for the one-endogenous-

regressor case, and Assumption 5(b) for the multiple-endogenous-regressors case. Note that

neither assumption is the same as checking the pairwise correlations between the endogenous

and exogenous regressors. Assumption 5 evaluates pairwise correlations involving copula

transformation of the endogenous regressor, which, as shown in the literature (Danaher and

Smith 2011) and in our specific empirical application, can be substantially different from the

pairwise correlations using the original variables. Assumption 5(b) evaluates the correlations

between exogenous regressors and the linear combination of generated regressors, which

are even more different from checking pairwise correlations on the regressors themselves.

When the above assumptions are satisfied, CopulaOrigin is preferred to our proposed 2sCOPE

method (Step 1 in the flowchart depicted in Figure 2), since the simpler and valid model

outperforms more general but more complex models.

If any endogenous regressor has insufficient nonnormality, or any exogenous regressor

violates the Assumptions 5 or 5(b), our proposed 2sCOPE method can be used instead of

CopulaOrigin. The 2sCOPE is straightforward to extend to many other settings, and we

have derived 2sCOPE for a range of commonly used marketing models, including linear

regression models, linear panel models with mixed-effects, random coefficient logit models
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and slope endogeneity. The 2sCOPE method proposed here can be applied to these and

many other cases not studied here, while accounting for correlations between exogenous and

endogenous regressors and exploiting the correlations for model identification in the presence

of insufficient nonnormality of endogenous regressors. When endogenous regressors all have

sufficient nonnormality (p-value of KS test < 0.05), our evaluation shows that 2sCOPE

is expected to perform well. If any endogenous regressor has insufficient nonnormality,

2sCOPE exploits exogenous regressors with sufficient levels of relevance and nonnormality

(with detailed sufficient conditions shown in Figure 2) for satisfactory model identification

in finite samples. One can empirically check and verify whether these conditions are satisfied

for data at hand, using tests of normality and relevance. When these sufficient conditions are

not satisfied, we also propose a bootstrap algorithm to directly gauge and validate the finite-

sample performance of 2sCOPE in real applications on a case-by-case basis, complementing

the above rules of thumb using tests of normality and relevance.

Unlike the two-stage least-squares method (TSLS), 2sCOPE does not require any IVs

that satisfy exclusion restriction (ER). Compared with the exogeneity condition, ER is much

more stringent in that the IV is not only exogenous but also does not appear in the outcome

model, meaning that the IV cannot affect the outcome Y through any other way besides the

endogenous regressor. It is typically impossible to test ER; one has to rely on institutional

knowledge and theoretical arguments to establish the credibility of ER that is often the most

challenging part in IV applications. By contrast, our approach eliminates the requirement

of any variable satisfying the ER assumption, which is an important gain. Using 2sCOPE,

one does not need to argue for ER.

Meanwhile, 2sCOPE is capable of leveraging relevant exogenous variables in W pre-

existing in the outcome model (e.g., in Equation (8)) for model identification. Marketing

models rarely contain only endogenous regressors. In fact, the vast majority of the outcome

models estimated in marketing include exogenous variables for various reasons, such as the

inclusion of exogenous regressors as control variables to mitigate the concern of endogeneity
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of the primary explanatory variables, to improve model prediction and estimation accuracy,

to make the outcome models substantively complete and relevant, or to make the ER as-

sumption of IVs more plausible. These exogenous regressors are not used for generating

the copula control function in CopulaOrigin. By contrast, 2sCOPE can leverage these ex-

ogenous variables W pre-existing in the OLS, IV or CopulaOrigin estimation of the outcome

model, and requires no more arguments made to justify the exogeneity of W than these

other methods.14 Furthermore, exogeneity is considerably weaker than ER. Thus, 2sCOPE

imposes no extra burden in finding relevant exogenous regressors, but can simply leverage

the exogenous regressors that already exist in the model and have been used by alternative

methods, such as OLS or TSLS. As mentioned above, 2sCOPE gains by not requiring any

IVs satisfying the stringent ER condition. No theoretical arguments for the direction and

intuition of correlation between W and P are needed. An empirical correlation is sufficient

(Web Appendix E.12).15 Finally, when the endogenous regressor does not have sufficient

nonnormality, 2sCOPE can leverage exogenous regressors with certain nonnormality and

relevance levels (Figure 2), feasible in many applications, for identification.

To fully benefit from leveraging relevant control covariates inW for handling endogeneity,

it is important that these control covariates are exogenous. As shown in Footnote 14 and

Web Appendix E.11, adding endogenous variables into W can yield inconsistent model esti-

mates for OLS, TSLS, CopulaOrigin, and 2sCOPE. This means that certain types of variables

that violate the exogeneity condition, such as colliders, should be excluded from W . Thus,

for all these econometric methods, the reasonableness of the exogenousW assumption should

be evaluated and justified. In this aspect, substantive or institutional knowledge is useful to

guide or justify the choice of appropriate exogenous control covariates. To avoid violating

14These other methods (OLS, IV and CopulaOrigin) all require the exogeneity of W as 2sCOPE does. For instance,

for the model in Eqn (1), OLS estimate of α̂ = (P ′P )−1P ′Y − (P ′P )−1P ′[1,W ][µ̂, β̂′]′. Thus, when P ′W ̸= 0 (i.e.,

P and W are correlated), α̂ depends on β̂, and the inconsistency of β̂ will make α̂ biased even if P is exogenous.

In TSLS, only exogenous regressors and IVs can enter the first-stage regression in TSLS and so any endogenous

regressors cannot be included in W for TSLS (Wooldridge 2010).
15An example is the location-based targeted pricing. Researchers do not observe location but can reasonably

assume location sale-effects can be captured by a rich set of observed demographic variables W . In this case, W and

P (price) are spuriously correlated. Price could be endogenous due to unobserved shocks affecting all locations.
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the exogeneity assumption about W , we recommend practicing clean adjustment employing

plausibly exogenous control variables necessary to improve causal-effect estimation. Control

variables that are highly suspected to be endogenous should be treated as endogenous re-

gressors in the model or be removed from the model. An exception is endogenous control

variables that are the prognostic factors of only the outcome variable. Unlike TSLS using

IVs, copula correction methods yield consistent causal-effect estimation between the focal

endogenous regressor and the outcome even if such endogenous variables are included in W

and treated as exogenous (Web Appendix E.11).

Although 2sCOPE contributes to solving regressor endogeneity by relaxing key assump-

tions of the existing copula correction methods and extending them to more general settings,

it is not without limitations. For 2sCOPE to work best, the distributions of the endogenous

regressors need to contain adequate information. The condition is violated when the endoge-

nous regressors follow Bernoulli distributions or discrete distributions with small support,

as noted in Park and Gupta (2012). The proposed 2sCOPE method does not address this

limitation. The simplicity of 2sCOPE hinges on the normal structural error and Gaussian

copula dependence structure. Our evaluation shows 2sCOPE is robust to symmetric non-

normal error distributions, linear dependence among endogenous and exogenous regressors,

and certain non-Gaussian copula structure (Web Appendix E.4, E.5 & E.6). Such robustness

may not hold for asymmetric nonnormal error distributions or other forms of dependence

or copula structure. Future research is needed for more flexible copula methods to test and

relax these assumptions. Despite these limitations, we expect that 2sCOPE will provide a

useful alternative to a broad range of empirical problems when instruments are not available.
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WEB APPENDIX A: PROOFS RELATED TO COPULAOrigin

Web Appendix A.1: Proof of Theorem 1

Under the Gaussian copula assumption for structural error ξt and the endogenous regressor

Pt, and the normality assumption of ξt, the outcome regression becomes (Equation 6)

Yt = µ+ Ptα +Wtβ + σξ · ρ · P ∗
t + σξ ·

√
1− ρ2 · ωt.

Because of the exogeneity assumption of Wt (Assumption 1 in Table 2), Cov(Wt, ξt) = 0,

Cov(Wt, ξt) = Cov(Wt, σξ · ρ · P ∗
t + σξ ·

√
1− ρ2 · ωt)

= σξ · ρ · Cov(Wt, P
∗
t ) + σξ ·

√
1− ρ2 · Cov(Wt, ωt) = 0.

Thus, whenever Wt and P
∗
t is correlated, the covariance between Wt and ωt is

Cov(Wt, ωt) = − ρ√
1− ρ2

Cov(Wt, P
∗
t ) ̸= 0,

and Wt would be correlated with the new error term ωt. Consequently, this regressor-error

dependence will cause biased OLS estimates of β as well as α using Equation (6) when P

and W are correlated (Footnote 14). Theorem proved.

COPE Method: A Direct Extension of CopulaOrigin

Under the Gaussian copula model for the endogenous regressor, Pt, the correlated exoge-

nous regressor, Wt, and the structural error term, ξt in Equations (7,10), the structural error

in the main model (Equation 1) can be rewritten as

ξt = σξ · ξ∗t =
σξρpξ
1− ρ2pw

P ∗
t +

−σξρpwρpξ
1− ρ2pw

W ∗
t + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
ω3,t. (W1)
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In this way, the structural error term ξt is split into two parts: one part as a function of P ∗
t

and W ∗
t that captures the endogeneity of Pt and the association of Wt with ξt|Pt

16, and the

other part as an independent new error term. Then, we substitute Equation (W1) into the

main model in Equation (1), and obtain the following regression equation:

Yt = µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

P ∗
t +

−σξρpwρpξ
1− ρ2pw

W ∗
t + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t. (W2)

Given P ∗
t and W ∗

t as additional regressors, ω3,t is not correlated with all regressors on the

right-hand side of Equation (W2) as proven in Theorem 2 in Web Appendix B.1, and thus we

can consistently estimate the model using the least squares estimator. The regressors P ∗
t and

W ∗
t can be generated from the nonparametric distribution of Pt and Wt as P

∗
t = Φ−1(Ĥ(Pt))

and W ∗
t = Φ−1(L̂(Wt)), where Ĥ(Pt) and L̂(Wt) are the empirical CDFs of Pt and Wt,

respectively.

COPE method, the direct extension of CopulaOrigin, does not require the uncorrelatedness

between P ∗
t and Wt for consistent model estimation, an assumption needed for CopulaOrigin.

However, similar to CopulaOrigin, COPE requires the nonnormality of the endogenous re-

gressor Pt to fulfill the full-rank identification assumption. In addition, COPE requires

the nonnormality of all the exogenous regressors Wts to fulfill the full-rank identification

assumption, while our proposed 2sCOPE method relaxes these assumptions.

16Although the exogenous regressor Wt and ξt are uncorrelated, Wt and ξt|Pt (the error component in ξt remaining

after removing the effect of the endogenous regressor Pt) can be correlated.

5



Web Appendix A.2: Assumption 5(b) in CopulaOrigin

According to Park and Gupta (2012), under a Gaussian copula model for (P1,t, P2,t, ξt), the

structural model in Equation (13) with two endogenous regressors can be re-expressed as

Yt =µ+ P1,tα1 + P2,tα2 +Wtβ + σξ
ρξ1 − ρ12ρξ2
1− ρ212

· P ∗
1,t + σξ

ρξ2 − ρ12ρξ1
1− ρ212

· P ∗
2,t

+ σξ ·

√
1− ρ2ξ1 −

(ρξ2 − ρ12ρξ1)2

1− ρ212
· ωt. (W3)

where P ∗
1,t = Φ−1(H1(P1,t)), P

∗
2,t = Φ−1(H2(P2,t)), and H1(·) and H2(·) are CDFs of P1,t and

P1,t, respectively, ρ12 is the correlation between P ∗
1,t and P

∗
2,t, ρξ1 is the correlation between

ξ and P ∗
1,t, ρξ2 is the correlation between ξ and P ∗

2,t, and ωt is a standard normal random

variable that is independent of P ∗
1,t and P ∗

2,t. For the OLS estimation of Equation (W3)

to yield consistent estimates, Wt need also be uncorrelated with ωt, which requires that

Cov(Wt, σξ ·
√

1− ρ2ξ1 −
(ρξ2−ρ12ρξ1)2

1−ρ212
· ωt) = −Cov(Wt,

ρξ1−ρ12ρξ2
1−ρ212

· P ∗
1,t +

ρξ2−ρ12ρξ1
1−ρ212

· P ∗
2,t) = 0

(Assumption 5(b) in the main text) where
ρξ1−ρ12ρξ2

1−ρ212
· P ∗

1,t +
ρξ2−ρ12ρξ1

1−ρ212
· P ∗

2,t is the CCF used

to control for endogeneity in CopulaOrigin.
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WEB APPENDIX B: PROOFS FOR 2SCOPE

Web Appendix B.1: Proof of Theorem 2 Consistency of 2sCOPE

We have shown the derivation of 2sCOPE method in the main text. The system of

equations used in the 2sCOPE method (Equations 8, 9) leads to the following equations

Yt = µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

ϵt + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t,

P ∗
t = ρpwW

∗
t + ϵt.

Since ω3,t is independent of P ∗
t and W ∗

t , it would also be uncorrelated with any functional

form of P ∗
t and W ∗

t , and thus ω3,t is uncorrelated with Pt, Wt and ϵt, which satisfies the

population orthogonality condition required for consistency of OLS (OLS.1 assumption in

Wooldridge 2010). Once Pt or Wt is nonnormal, ϵt is not a linear function of Pt and Wt,

satisfying the full rank condition required for model consistency of OLS (OLS.2 assumption

in Wooldridge 2010). Theorem proved.

2sCOPE in Multiple Exogenous Regressors Case Next, we show that this result can

be easily extended to the multi-dimension Wt case. We first derive the system of equations

of the 2sCOPE method. Here we take 2-dimension Wt as an example. When there are one

endogenous regressor Pt and two exogenous regressors Wt, the linear regression becomes:

Yt = β0 + β1Pt + β2W1,t + β3W2,t + ξt (W4)
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Under the Gaussian Copula assumption,

P ∗
t

W ∗
1,t

W ∗
2,t

ξ∗t


∼ N





0

0

0

0


,



1 ρ1 ρ2 ρξ

ρ1 1 ρw 0

ρ2 ρw 1 0

ρξ 0 0 1




(W5)

The multivariate normal distribution can be written as follows:

P ∗
t

W ∗
1,t

W ∗
2,t

ξ∗t


=



1 0 0 0

ρ1
√

1− ρ21 0 0

ρ2
ρw−ρ1ρ2√

1−ρ21

√
1− ρ22 −

(ρw−ρ1ρ1)2

1−ρ21
0

ρξ
−ρ1ρξ√
1−ρ21

(ρw−ρ1ρ2)ρ1ρξ

1−ρ21
−ρ2ρξ√

1−ρ22−
(ρw−ρ1ρ2)

2

1−ρ21

γ


·



ω1,t

ω2,t

ω3,t

ω4,t


,

where ωk,t ∼ N(0, 1), k = 1, 2, 3, 4, γ =

√√√√1− ρ2ξ −
ρ21ρ

2
ξ

1−ρ21
−
( (ρw−ρ1ρ2)ρ1ρξ

1−ρ21
−ρ2ρξ√

1−ρ22−
(ρw−ρ1ρ2)

2

1−ρ21

)2

. Structural

error ξt can then be written as a function of P ∗
t and W ∗

t ,

ξt = σξξ
∗
t =

σξρξ(1− ρ2w)

1− ρ21 − ρ22 + 2ρ1ρ2ρw + ρ2w

(
P ∗
t − ρ1 − ρ2ρw

1− ρ2w
W ∗

1,t −
ρ2 − ρ1ρw
1− ρ2w

W ∗
2,t

)
+ σξγ · ω4,t.

(W6)

Then we derive the first-stage regression of 2sCOPE

P ∗
t =

ρ1 − ρ2ρw
1− ρ2w

W ∗
1,t +

ρ2 − ρ1ρw
1− ρ2w

W ∗
2,t +

√
1− ρ21 −

(ρ2 − ρ1ρw)2

1− ρ2w
ω3,t

=
ρ1 − ρ2ρw
1− ρ2w

W ∗
1,t +

ρ2 − ρ1ρw
1− ρ2w

W ∗
2,t + ϵ2,t

= γ1W
∗
1,t + γ2W

∗
2,t + ϵ2,t. (W7)

The structural error ξt in Equation (W4) and the first-stage error term ϵ2,t are linear trans-
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formations of the Gaussian data (ξt, P
∗
t ,W

∗
1,t,W

∗
2t) and thus follow a bivariate normal distri-

bution. Thus, ξt can be decomposed to a sum of one term containing ϵ2,t and an independent

new error term, resulting in the following regression equation:

Yt = β0 + β1Pt + β2W1,t + β3W2,t + β4ϵ2,t + σξγ · ω4,t. (W8)

where

β4 =
σξρξ(1− ρ2w)

1− ρ21 − ρ22 + 2ρ1ρ2ρw + ρ2w
.

Since ω4,t is independent of P ∗
t , W

∗
1,t and W

∗
2,t, it is uncorrelated with any functional form

of P ∗
t , W

∗
1,t and W

∗
2,t, and thus ω4,t is uncorrelated with Pt, W1,t, W2,t and ϵ2,t in Equation

(W8). Thus, 2sCOPE that performs OLS regression of Equation (W8) yields consistent

model estimates. Without loss of generality, the result can be extended to cases with any

dimension of Wt.

2sCOPE in Multiple Endogenous Regressors Case

Under the Gaussian Copula assumption that [P ∗
1,t, P

∗
2,t,W

∗
t , ξ

∗
t ] follows a multivariate nor-

mal distribution: 

P ∗
1,t

P ∗
2,t

W ∗
t

ξ∗t


∼ N





0

0

0

0


,



1 ρp ρwp1 ρξp1

ρp 1 ρwp2 ρξp2

ρwp1 ρwp2 1 0

ρξp1 ρξp2 0 1




,
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we have:

P ∗
1,t

P ∗
2,t

W ∗
t

ξ∗t


=



1 0 0 0

ρp
√

1− ρ2p 0 0

ρwp1
ρwp2−ρpρwp1√

1−ρ2p

√
1− ρ2wp1 −

(ρwp2−ρpρwp1)2

1−ρ2p
0

ρξp1
ρξp2−ρpρξp1√

1−ρ2p

−ρwp1ρξp1−
(ρwp2−ρpρwp1)(ρξp2−ρpρξp1)

1−ρ2p√
1−ρ2wp1−

(ρwp2−ρpρwp1)
2

1−ρ2p

m


·



ω1,t

ω2,t

ω3,t

ω4,t


,



ω1,t

ω2,t

ω3,t

ω4,t


∼ N





0

0

0

0


,



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (W9)

where m is a function of all the ρs. Under the Gaussian Copula assumption above, we can

derive ξ∗t as a function of Pt and Wt. After simplification, the structural error in Equation

(13) can be decomposed as

ξt = σξξ
∗
t = η1P

∗
1,t + η2P

∗
2,t − (η1ρwp1 + η2ρwp2)W

∗
t + σξ ·m · ω4,t. (W10)

where

η1 =
σξρξp1(1− ρ2wp2)− σξρξp2(ρp − ρwp1ρwp2)

1− ρ2p − ρ2wp1 − ρ2wp2 + 2ρpρwp1ρwp2

,

η2 =
σξ(ρwp1ρwp2ρξp1 + ρξp2 − ρpρξp1 − ρ2wp1ρξp2)

1− ρ2p − ρ2wp1 − ρ2wp2 + 2ρpρwp1ρwp2

. (W11)
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The 2sCOPE method with one endogenous regressor in Equation (12) is then extended to

Yt = µ+ P1,tα1 + P2,tα2 +Wtβ + η1ϵ
∗
1,t + η2ϵ

∗
2,t + σξ ·m · ω4,t,

ϵ1,t = P ∗
1,t − ρwp1W

∗
t ,

ϵ2,t = P ∗
2,t − ρwp2W

∗
t .

The main model in the first equation above is the same as Equation (17). The new error term

ω4,t is uncorrelated with all the regressors on the right-hand side of Equation (17). Thus,

the OLS estimation of Equation (17) provides consistent estimates of structural regression

model parameters (µ, α1, α2, β).
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Web Appendix B.2: Proof of Theorem 3 Nonnormality Assumption Relaxed

In this section, we prove that our proposed 2sCOPE method can relax the nonnormality

assumption on the endogenous regressors imposed in CopulaOrigin, while COPE does not.

We first examine the COPE method in Equation (W2),

Yt = µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

P ∗
t +

−σξρpwρpξ
1− ρ2pw

W ∗
t + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t.

If the endogenous regressor Pt is normally distributed, Pt = Φ−1
σp
(Φ(P ∗

t )) = σpP
∗
t and thus

P ∗
t and Pt would be fully collinear, violating the full rank assumption and making the model

unidentified.

We then examine the 2sCOPE method in Equation (12).

Yt = µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

ϵt + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t,

ϵt = P ∗
t − ρpwW

∗
t .

When the endogenous regressor Pt is normally distributed, Pt = Φ−1
σp
(Φ(P ∗

t )) = σpP
∗
t . Since

we add the residual ϵt from the first stage to the outcome regression instead of adding each

P ∗
t and W ∗

t , ϵt would not be perfectly collinear with Pt and Wt as long as one of the W s

correlated with Pt is not normally distributed. Theorem proved.
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Web Appendix B.3: Variance Reduction Proposition of 2sCOPE

Proposition 1. Variance Reduction. Assuming (1) the error term is normal, (2) the

endogenous variable Pt and correlated regressors Wt are nonnormal, and (3) a Gaussian

Copula for the error term, Pt and Wt, Var(θ̂2) ≤ Var(θ̂1), where θ̂1 and θ̂2 denote parameter

estimates from COPE and 2sCOPE, respectively.

According to the COPE method in Equation (W2),

Yt = µ+ Ptα +Wtβ +
σξρpξ
1− ρ2pw

P ∗
t +

−σξρpwρpξ
1− ρ2pw

W ∗
t + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t.

The coefficients of P ∗
t and W ∗

t follow a linear relationship. Denote δ3 and δ4 the coefficients

of P ∗
t and W ∗

t respectively. Then,

δ4 + ρpwδ3 = 0.

With the two-stage estimation in 2sCOPE (Equation 12), ρpw is estimated in the first stage

and is thus treated as a known parameter in the main regression. That is, 2sCOPE can be

viewed as the COPE method with a linear restriction. The linear restriction is,

δ4 + ρ̂pwδ3 = 0. (W12)

In this case, the two-stage copula method (2sCOPE) can be viewed as one kind of restricted

least squares estimation based on COPE. We next prove that restricted least squares can

achieve reductions in standard errors. Suppose we simplify the regression expression in

Equation (W2) as

y = Xθ + ϵ,
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where ϵ ∼ N(0, σ2I), X ≡ (1, Pt,Wt, P
∗
t , W

∗
t ), and θ = (µ, α, β, δ3, δ4). The restriction in

Equation (W12) becomes

Rθ = 0,whereR = (0, 0, 0, ρ̂pw, 1).

Thus, the 2sCOPE yields the least squares estimates θ̂2 of Equation (W2) subject to the

above restriction, whereas COPE yields the unrestricted least squares estimates, θ̂1, as fol-

lows.

θ̂1 ∼ N(θ, σ2(X ′X)−1),

θ̂2 ∼ N(θ, σ2M(X ′X)−1M ′).

where according to restricted least squares theory, M = I − (X ′X)−1R′(R(X ′X)−1R′)−1R.

Let us compare the variance of θ̂1 and θ̂2. Note that,

M(X ′X)−1M ′

=(I − (X ′X)−1R′(R(X ′X)−1R′)−1R)(X ′X)−1(I −R′(R(X ′X)−1R′)−1R(X ′X)−1)

=(X ′X)−1 − (X ′X)−1R′(R(X ′X)−1R′)−1R(X ′X)−1.

Therefore,

V ar(θ̂1)− V ar(θ̂2) = σ2{(X ′X)−1 −M(X ′X)−1M ′}

= σ2(X ′X)−1R′(R(X ′X)−1R′)−1R(X ′X)−1 ≥ 0.

Since the matrix V ar(θ̂1)−V ar(θ̂2) is positive semi-definite, all the diagonal elements should

be greater than or equal to zero. Thus, the imposition of the linear restriction brings about

a variance reduction. Theorem proved.
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WEB APPENDIX C: 2SCOPE FOR SLOPE ENDOGENEITY

In this section, we describe the 2sCOPE approach to addressing slope endogeneity with

correlated regressors in the following model:

Yt = µ+ Ptαt +W ′
tβt + ηt, where αt = ᾱ + ξt, (W13)

αt, βt are individual-specific regression coefficients and ᾱ is the mean of αi, ξt ∼ N(0, σ2
ξ ).

The normal error term ηi is uncorrelated with the regressors Pt and Wt and thus causes no

endogeneity concern. However, the random coefficient ξt can be correlated with the regressor

Pt, causing the problem of “slope endogeneity”. Pt andWt can be correlated. Assuming that

(Pt,Wt, αt) follows a Gaussian copula model, the COPE approach to addressing the slope

endogeneity problem is derived as follows.

Yt = µ+ Pt(ᾱ +
σξρpξ
1− ρ2pw

P ∗
t +

−σξρpwρpξ
1− ρ2pw

W ∗
t + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
ω3,t) +W ′

tβt + ηt

= µ+ Ptᾱ +
σξρpξ
1− ρ2pw

Pt × P ∗
t +

−σξρpwρpξ
1− ρ2pw

Pt ×W ∗
t +W ′

tβt +

σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
Pt × ω3,t + ηt. (W14)

Given both Pt×P ∗
t and Pt×W ∗

t in Equation (W14), the unobserved variable w3,t is indepen-

dent of all regressors (Pt,Wt, P
∗
t ,W

∗
t ) and uncorrelated with functions of these regressors.

Thus, Equation (W14) can be estimated using standard methods for random-effects models

with ω3,t as the random effect and (Pt × P ∗
t , Pt ×W ∗

t ) as generated regressors. The method

of Park and Gupta (2012) adds only Pt × P ∗
t as a generated regressor, and may fail to yield

consistent estimates when Pt and Wt are correlated, resulting in the correlation between the

random effect in their method and the regressor Wt.
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The 2sCOPE for addressing the slope endogeneity problem with correlated regressors is

derived as follows

Yt = µ+ Pt(ᾱ +
σξρpξ
1− ρ2pw

ϵt + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
· ω3,t) +W ′

tβt + ηt

= µ+ Ptᾱ +
σξρpξ
1− ρ2pw

P ∗
t × ϵt +W ′

tβt + σξ

√
1− ρ2pξ −

ρ2pwρ
2
pξ

1− ρ2pw
Pt × ω3,t + ηt,(W15)

where only one generated regressor, P ∗
t × ϵt, is needed, given which the random effect ω3,t is

independent of all regressors in Equation (W15).

The 2sCOPE estimation can be implemented using the standard methods for random

effects models by simply adding generated regressors to control for endogenous regressors.

By contrast, the maximum likelihood approach requires constructing a complicated joint

likelihood of (ξt, ηt, P
∗
t ,W

∗
t ), which is not what the standard random effects method uses and

thus requires separate development and significantly more computation involving numerical

integration.
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WEB APPENDIX D: 2SCOPE FOR RANDOM COEFFICIENT LOGIT

MODEL

We next consider endogeneity bias in the following random utility model with correlated

endogenous and exogenous regressors:

uhjt = ψhj + P ′
jtαh +W ′

jtβh + ξjt + ϵhjt, j = 1, · · · , J,

uh0t = ϵh0t, j = 0 if no purchase,

where uhjt denotes the utility for household h = 1, · · · , nh at occasion t = 1, · · · , T with

j = 1, · · · , J alternatives and j = 0 denotes the option of no purchase. In the utility

function, ψhj is the individual-specific preference for choice j with ψhJ normalized to be zero

for identification purpose, (Pjt,Wjt) include the choice characteristics, and (αh, βh) denote

the individual-specific random coefficients. These individual-specific coefficients (ψhj, αh, βh)

permit heterogeneity in both intercepts and regressor effects across cross-sectional units, such

as consumers or households. In this model, the association between regressors in Pjt and

the unobserved common shock ξjt causes endogeneity bias. We further allow Pjt and Wjt

to be correlated. The term ϵhjt is the idiosyncratic error uncorrelated with all regressors.

An individual at any occasion chose the alternative with the largest utility, i.e., Yhjt =

1 iff uhjt > uhj′t ∀j′ ̸= j. When ϵhjt follows an i.i.d Type I extreme value distribution, the

choice probability follows the random-coefficient multinomial logit model.

The 2sCOPE approach can be used to address the endogeneity issue using the following

two-step procedure. In the first step, we estimate the model

uhjt = δjt + ψ̃hj + P ′
jtah +W ′

jtbh + ϵhjt,
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where δjt = µj + P ′
jtᾱ +W ′

jtβ̄ + ξjt, (µj, ᾱ, β̄) is the mean of random effects (ψhj, αh, βh),

ψ̃hj = ψhj − µj, ah = αh − ᾱ and bh = βh − β̄. δjt is treated as occasion- and choice-specific

fixed-effect parameters in this model. Since the regressors are uncorrelated with the error

term ϵhij, there is no endogeneity bias in the model. In the second step, we estimate the

equation below.

δ̂jt = µj + P ′
jtᾱ +W ′

jtβ̄ + ξjt + ηjt, (W16)

where δ̂jt denotes the estimate of the fix-effect δjt; ηjt denotes the estimation error of δ̂ij

and is approximately normally distributed. In the second-step model, the structural error

is correlated with Pjt, leading to endogenous bias. We then apply 2sCOPE to correct for

the endogenous bias, which can avoid the potential bias of CopulaOrigin due to the poten-

tial correlations between P and W , as well as make use of this correlation to relax the

nonnormality assumption of Pit, improve model identification and sharpen model estimates.

The above development is for individual-level data. Park and Gupta (2012) also derived

their copula method for addressing endogeneity bias in random coefficient logit models us-

ing aggregate-level data. It is straightforward to extend the 2sCOPE to the setting with

correlated regressors and (nearly) normal regressor distributions.
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WEB APPENDIX E: ADDITIONAL SIMULATION RESULTS

Web Appendix E.1: Additional Results for Smaller Sample Size for Case 1

In the simulation study case 1, we use the sample size T=1000. Here we further check the

robustness of results with respect to a smaller sample size. We simulate 1000 datasets, each

of which has the sample size T=200, and use the same DGP as described in Case 1. Table

W1 shows that 2sCOPE has unbiased estimates for a small sample size T=200. Hence, our

proposed method is robust and can be applied to small sample sizes.

Table W1: Results of the Simulation Study for Case 1 with Sample Size of 200

OLS CopulaOrigin COPE 2sCOPE

ρpw Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

0.5 µ 1 0.683 0.097 3.264 1.228 0.191 1.194 1.020 0.223 0.091 0.999 0.137 0.005

α 1 1.583 0.079 7.388 1.048 0.178 0.271 0.990 0.184 0.056 0.996 0.175 0.023

β -1 -1.265 0.068 3.902 -1.291 0.068 4.293 -1.019 0.166 0.116 -1.004 0.101 0.044

ρpξ 0.5 - - - 0.559 0.122 0.489 0.493 0.139 0.048 0.489 0.097 0.109

σξ 1 0.857 0.044 3.224 1.016 0.107 0.148 1.018 0.100 0.176 1.001 0.094 0.013

D-error - - 0.016598 0.009069

0.7 µ 1 0.723 0.091 3.050 1.304 0.175 1.740 1.006 0.197 0.031 0.983 0.114 0.153

α 1 1.817 0.095 8.583 1.255 0.161 1.584 1.032 0.182 0.175 1.044 0.174 0.253

β -1 -1.539 0.084 6.388 -1.574 0.086 6.686 -1.045 0.180 0.250 -1.033 0.131 0.251

ρpξ 0.5 - - - 0.624 0.103 1.200 0.490 0.135 0.077 0.480 0.067 0.297

σξ 1 0.796 0.039 5.156 0.988 0.105 0.116 0.999 0.096 0.011 0.982 0.090 0.205

D-error - - 0.016245 0.008867
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Web Appendix E.2: Multiple Endogenous Regressors

In this case, we examine the performance of our proposed 2sCOPE when the model has

multiple endogenous regressors. Specifically, we use the DGP with two endogenous regressors

and one exogenous regressor that is correlated with the endogenous regressors below:

P ∗
1,t

P ∗
2,t

W ∗
t

ξ∗t


∼ N





0

0

0

0


,



1 0.3 0.4 0.5

0.3 1 0.4 0.5

0.4 0.4 1 0

0.5 0.5 0 1




, (W17)

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (W18)

P1,t = H−1
1 (Up1) = H−1

1 (Φ(P ∗
1,t)), P2,t = H−1

2 (Φ(P ∗
2,t)), (W19)

Wt = L−1(UW,t) = L−1(Φ(W ∗
t )), (W20)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · P1,t + 1 · P2,t + (−1) ·Wt + ξt, (W21)

where H−1
1 (·), H−1

2 (·) and L−1(·) are the inverse distribution functions of the Gamma(1,1),

t(30) and Exp(1) distributions used to generate these regressors. We generate 1000 datasets,

each of which has a sample size T=1000.

Table W2 shows the estimation results. First, the OLS estimates are biased. The COPE,

the extended CopulaOrigin, estimates are biased as well because of the close-to-normal endoge-

nous regressor, t(30). However, our proposed 2sCOPE method provides unbiased estimates

for all parameters, indicating that 2sCOPE performs well with multiple endogenous regres-

sors, even for close-to-normal endogenous regressors. Moreover, 2sCOPE provides a much

smaller d-error (0.002695) compared with COPE (0.006943), indicating that 2sCOPE can

largely increase the estimation efficiency. The efficiency gain is 61.2% in this case.
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Table W2: Results of the Simulation Study: Multiple Endogenous Regressors.

OLS COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.903 0.040 2.426 1.002 0.079 0.019 1.016 0.076 0.213

α1 1 1.436 0.029 14.88 0.998 0.058 0.032 0.995 0.058 0.079

α2 1 1.487 0.025 19.23 1.367 0.479 0.765 1.028 0.141 0.197

β -1 -1.338 0.029 11.76 -1.000 0.055 0.007 -1.010 0.054 0.196

ρξp1 0.5 - - - 0.394 0.136 0.781 0.501 0.042 0.029

ρξp2 0.5 - - - 0.110 0.422 0.923 0.472 0.095 0.295

σξ 1 0.742 0.017 15.51 0.992 0.166 0.050 0.993 0.073 0.093

D-error 0.006943 0.002695
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Web Appendix E.3: Multiple Exogenous Control Covariates

We investigate the performance of our proposed method when there exist multiple exogenous

regressors consisting of both continuous and discrete variables. We generate the data using

the following DGP: 

ξ∗t

P ∗
1,t

W ∗
1,t

P ∗
2,t

W ∗
2,t


∼ N





0

0

0

0

0


,



1 ρ 0 ρ 0

ρ 1 q 0 0

0 q 1 0 0

ρ 0 0 1 q

0 0 0 q 1




, (W22)

ξt = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (W23)

P1,t = χ2(2)−1(Φ(P ∗
1,t)), P2,t = χ2(2)−1(Φ(P ∗

2,t)), (W24)

W1,t = Φ−1(Φ(W ∗
1,t)), (W25)

W2,t =


1, if Φ(W ∗

2,t) ≥ 0.5

0. if Φ(W ∗
2,t) < 0.5

, (W26)

Yt = µ+ α1 · P1,t + α2 · P2,t + β1 ·W1,t + β2 ·W2,t + ξt (W27)

= 1 + P1,t + P2,t + (−1) ·W1,t + (−1) ·W2,t + ξt, (W28)

where W1,t is normally distributed and W2,t is a binary variable that follows a Bernoulli

distribution. ρ is set to 0.4, and q is set to two cases, {0.3, 0.6}. We set the sample size T =

1000 and generate 1000 datasets to estimate parameters using OLS and copula methods. For

binary W , we compute W ∗ in the same way as for the continuous case, W ∗ = Φ−1(F (Wt)),

where F is the cdf function of W .
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The estimation results for the multiple-exogenous-regressor case with both discrete and

continuous ones are summarized in Table W3. The OLS and CopulaOrigin estimates are bi-

ased because of endogeneity and correlated exogenous regressors, respectively. The proposed

2sCOPE method performs well and provides consistent estimates for all parameters. This

indicates that our proposed method performs well with multiple exogenous correlated re-

gressors. Moreover, correcting for endogeneity using our proposed method does not require

every exogenous correlated regressor to be informative (i.e., continuously distributed) and

nonnormally distributed.

Table W3: Results of the Simulation Study: Multiple Exogenous Control Covariates.

OLS CopulaOrigin COPE 2sCOPE

q Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

0.3 µ 1 0.312 0.055 12.54 1.100 0.098 1.012 1.100 0.101 0.983 1.000 0.091 0.001

α1 1 1.195 0.015 12.86 1.000 0.031 0.006 1.000 0.031 0.008 1.000 0.031 0.014

α2 1 1.191 0.015 12.57 1.000 0.032 0.002 1.000 0.033 0.002 1.000 0.032 0.001

β1 -1 -1.104 0.028 3.726 -1.130 0.027 4.897 -1.145 0.694 0.209 -0.999 0.036 0.015

β2 -1 -1.167 0.055 3.052 -1.206 0.053 3.882 -1.206 0.053 3.884 -1.003 0.070 0.042

ρP1,ξ 0.4 - - - 0.430 0.053 0.561 0.371 0.152 0.188 0.396 0.050 0.084

ρP2,ξ 0.4 - - - 0.417 0.055 0.307 0.364 0.078 0.468 0.398 0.052 0.042

0.6 µ 1 0.236 0.052 14.63 1.256 0.096 2.667 1.256 0.098 2.609 1.005 0.083 0.056

α1 1 1.256 0.017 14.68 0.999 0.032 0.037 0.999 0.032 0.033 1.000 0.031 0.016

α2 1 1.222 0.016 13.67 0.996 0.029 0.136 0.996 0.029 0.137 0.996 0.029 0.137

β1 -1 -1.277 0.032 8.620 -1.373 0.031 12.14 -1.367 0.629 0.584 -1.002 0.047 0.039

β2 -1 -1.379 0.057 6.621 -1.497 0.053 9.306 -1.497 0.053 9.314 -0.993 0.082 0.082

ρP1,ξ 0.4 - - - 0.566 0.045 3.659 0.487 0.232 0.376 0.396 0.036 0.110

ρP2,ξ 0.4 - - - 0.477 0.047 1.630 0.437 0.082 0.451 0.403 0.040 0.071

We further show the advantage of using 2sCOPE, compared with the direct extension

of CopulaOrigin (COPE), in estimation efficiency and consistency in high-dimensional W

using simulation. In particular, we use some commonly used distributions for the exogenous

regressors W s. The data-generating process (DGP) is summarized below:
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
P ∗
t

W ∗
t

ξ∗t


∼ N




0

010

0


,


1 ρpw ρpξ

ρpw Σw 0

ρpξ 0 1




ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t ,

Pt = H−1(UP,t) = H−1(Φ(P ∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )),

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · Pt + (−1) ·Wt + ξt,

where ξ∗t and P ∗
t are correlated (ρpξ = 0.5), generating the endogeneity problem; W ∗

t is a

8-dimensional exogenous regressors uncorrelated with ξ∗t ; Each exogenous regressor in W ∗
t

is correlated with P ∗
t with ρpw = 0.5; Σw denotes the covariance matrix of W ∗

t with all the

diagonal items equal to one and all non-diagonal items equal to ρw = 0.3. We set the sample

size T = 1000, and generate 1000 datasets as replicates using the DGP above. In the simu-

lation, we use normal distribution N(0, 1) for Pt, and the eight distributions, Exp(1), t(2),

binary, mixnorm, Gamma(1,1), truncated-normal, lognorm(0,1), Cauchy(0,0.5), in sequence

for the 8-dimentional Wt.

Table W4 summarizes the estimation results, and confirms that 2sCOPE outperforms

COPE in several dimensions. First, the estimated coefficient of the endogenous regressor for

COPE is 2.360, which is far away from the true value, indicating that COPE cannot handle

normally-distributed endogenous regressor, while 2sCOPE can provide unbiased estimate.

Second, COPE estimates of some exogenous regressors with certain distributions are biased

(31.9% bias for binary W , 23.5% bias for mix-normal W and 25.7% bias for truncated

normal W ), indicating that COPE is sensitive to the distributions of exogenous regressors

included in the model, making all the estimates vulnerable. Third, the D-error of COPE

24



and 2sCOPE estimates is 0.002531 and 0.000534 respectively, indicating that 2sCOPE is

much more efficient than COPE and increases the efficiency by 78.9%. Adding too many

generated regressors in the model, as COPE does, will significantly decrease the estimation

efficiency. In this section, we illustrate using the exactly normally distributed endogenous

regressor as an example. Please refer to Table W11 for weakly-nonnormal P case.

Table W4: The Performance of 2sCOPE with large-dimension of W

OLS COPE 2sCOPE

Distribution Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 1.848 0.051 16.73 1.281 0.228 1.229 1.040 0.089 0.453

N(0,1) α 1 2.170 0.036 32.75 2.360 0.496 2.741 1.057 0.101 0.565

Exp(1) β1 -1 -1.210 0.024 8.862 -0.999 0.044 0.029 -1.009 0.035 0.245

t(2) β2 -1 -1.066 0.025 2.608 -1.001 0.013 0.107 -1.004 0.012 0.313

binary β3 -1 -1.363 0.045 8.119 -1.319 0.039 8.193 -1.014 0.073 0.196

mix-norm β4 -1 -1.233 0.022 10.76 -1.235 0.432 0.544 -1.012 0.039 0.311

Gamma(1,1) β5 -1 -1.212 0.024 8.812 -1.001 0.043 0.017 -1.011 0.035 0.313

truncated-N(0,1) β6 -1 -1.261 0.024 10.81 -1.257 0.470 0.547 -1.012 0.043 0.270

lognorm(0,1) β7 -1 -1.078 0.017 4.425 -1.000 0.015 0.025 -1.004 0.014 0.286

cauchy(0,0.5) β8 -1 -1.005 0.006 0.883 -1.000 0.002 0.023 -1.000 0.002 0.146

ρ 0.5 - - - -0.392 0.394 2.262 0.487 0.022 0.580

σξ 1 0.644 0.016 22.33 1.191 0.341 0.559 0.968 0.055 0.580

Bias 0.345 0.246 0.016

RMSE 0.347 0.327 0.047

D-error 0.000424 0.002531 0.000534

25



Web Appendix E.4: Misspecification of ξt

Similar to Park and Gupta (2012), we assume the structural error ξt to be normally dis-

tributed, a reasonable and commonly used assumption in marketing and economics litera-

ture. However, the true distribution of ξt is often unknown. Thus, in this simulation study,

we examine the robustness of 2sCOPE to the departures from the normality of ξt. We gen-

erate 1,000 datasets using the same multivariate normal distribution as in Equation (20).

The rest of DGP is:

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )), (W29)

Pt = H−1(Up,t) = H−1(Φ(P ∗
t )), Wt = L−1(Uw,t) = L−1(Φ(W ∗

t )), (W30)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · Pt + (−1) ·Wt + ξt, (W31)

where we set Pt ∼ Gamma(1, 1) and Wt ∼ Exp(1) in the simulation. We check the robust-

ness of the structural error ξt using different distributions (e.g., a uniform distribution, beta

distribution and t distribution) instead of a normal distribution. For estimation, we assume

normality of ξt and use the OLS estimator, CopulaOrigin and the proposed 2sCOPE method.

Table W5 reports estimation results. As shown in Table W5, 2sCOPE can recover the

true parameter values despite the misspecification of ξt, demonstrating the robustness of the

proposed 2sCOPE method to the normal error assumption.
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Table W5: Results of the Simulation Study: Misspecification of ξt

OLS 2sCOPE

Distribution of ξt Parameters True Mean SE tbias Mean SE tbias

U[-0.5,0.5] µ 1 0.912 0.013 6.808 1.002 0.017 0.105

α 1 1.160 0.010 16.41 0.996 0.017 0.233

β -1 -1.072 0.009 8.033 -0.998 0.011 0.147

ρpξ 0.5 - - - 0.495 0.035 0.155

σξ 0.289 0.251 0.004 9.018 0.290 0.008 0.197

Beta(0.5,0.5) µ 1 0.896 0.016 6.461 1.003 0.020 0.145

α 1 1.190 0.012 15.72 0.994 0.018 0.318

β -1 -1.086 0.011 7.763 -0.998 0.014 0.183

ρpξ 0.5 - - - 0.481 0.033 0.593

σξ 0.354 0.311 0.005 9.046 0.356 0.009 0.258

Beta(4,4) µ 1 0.948 0.008 6.928 1.000 0.010 0.009

α 1 1.095 0.006 16.61 1.000 0.010 0.044

β -1 -1.043 0.005 8.149 -1.000 0.007 0.030

ρpξ 0.5 - - - 0.499 0.037 0.025

σξ 0.167 0.144 0.003 7.969 0.167 0.006 0.011

t (df=3) µ 1 0.504 0.082 6.071 0.983 0.127 0.135

α 1 1.903 0.089 10.13 1.024 0.217 0.110

β -1 -1.410 0.064 6.448 -1.012 0.109 0.111

ρpξ 0.5 - - - 0.454 0.069 0.676

σξ 1.732 1.503 0.231 0.992 1.698 0.244 0.141

t (df=5) µ 1 0.603 0.059 6.723 0.997 0.080 0.039

α 1 1.727 0.053 13.65 1.006 0.113 0.057

β -1 -1.328 0.043 7.642 -1.002 0.067 0.037

ρpξ 0.5 - - - 0.486 0.047 0.292

σξ 1.291 1.118 0.049 3.506 1.289 0.070 0.032

We further examine the performance of 2sCOPE with misspecification of ξ under nor-

mally distributed endogenous regressor case. The estimation result in Table W6 shows that

2sCOPE can even work for normal endogenous regressor cases under misspecification of ξ.
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Table W6: Results of the Simulation Study: Misspecification of ξ with Normal
Endogenous Regressor

OLS 2sCOPE

Distribution of ξ Parameters True Mean SE tbias Mean SE tbias

U[-0.5,0.5] µ 1 1.080 0.012 6.778 1.002 0.020 0.086

α 1 1.178 0.008 23.28 1.004 0.037 0.116

β -1 -1.080 0.009 9.070 -1.002 0.018 0.113

ρpξ 0.5 - - - 0.475 0.072 0.344

σξ 0.289 0.241 0.004 10.64 0.288 0.018 0.054

Beta(0.5,0.5) µ 1 1.095 0.015 6.483 1.003 0.025 0.116

α 1 1.211 0.009 22.85 1.007 0.045 0.157

β -1 -1.095 0.011 8.560 -1.003 0.022 0.130

ρpξ 0.5 - - - 0.457 0.075 0.573

σξ 0.354 0.299 0.005 10.51 0.352 0.021 0.088

Beta(4,4) µ 1 1.047 0.007 6.962 1.002 0.012 0.146

α 1 1.105 0.005 22.30 1.004 0.021 0.194

β -1 -1.047 0.005 9.219 -1.002 0.011 0.157

ρpξ 0.5 - - - 0.479 0.072 0.294

σξ 0.167 0.138 0.003 9.969 0.165 0.011 0.159

T(df=3) µ 1 1.443 0.075 5.884 1.022 0.133 0.165

α 1 1.988 0.077 12.82 1.052 0.260 0.201

β -1 -1.443 0.059 7.508 -1.021 0.125 0.168

ρpξ 0.5 - - - 0.438 0.089 0.695

σξ 1.732 1.461 0.221 1.226 1.692 0.247 0.161

T(df=5) µ 1 1.358 0.052 6.932 1.012 0.090 0.135

α 1 1.795 0.045 17.66 1.030 0.168 0.176

β -1 -1.359 0.041 8.795 -1.012 0.082 0.151

ρpξ 0.5 - - - 0.472 0.075 0.376

σξ 1.291 1.073 0.046 4.726 1.277 0.096 0.145
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Web Appendix E.5: Misspecification of Copula

In the proposed method, we use the Gaussian copula to capture the dependence structure

among the regressors and error term (Up, Uw and Uξ). In practice, the dependence might

come from an economic mechanism (such as marketing strategic decisions) and thus might be

different from what the Gaussian copula generates. In this section, we examine the robustness

of the Gaussian copula assumption in capturing the dependence among the endogenous

regressors, exogenous regressors and the error term using simulated data. Specifically, we

generate the dependence among Up, Uw and Uξ using copula models other than the Gaussian

copula. Our simulation setting requires the availability of a random number generation

routine from a tri-variate copula model other than Gaussian copula with non-homogeneous

correlations among the three variables. Among copula models other than Gaussian copula,

we find only T copula has this flexibility of providing flexible random number generation

from arbitrary and heterogeneous correlation structures among more than two variables. We

thus consider using the following T copula models in which

C(Up, Uw, Uξ) =

∫ t−1
ν (Up)

−∞

∫ t−1
ν (Uw)

−∞

∫ t−1
ν (Uξ)

−∞

Γ(ν+d
2
)

Γ(ν
2
)
√
(πν)d|Σ|

(
1 +

x′Σ−1x

ν

)
dx, (W32)

where t−1
ν denotes the quantile function of a standard univariate tν distribution. We set

the degree of freedom ν=2, and the dimension of the copula d=3 in this example. Σ is

the covariance matrix capturing correlations among variables. The data-generating process
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(a) T Copula (ρ = 0.5) (b) Gaussian Copula (ρ = 0.5)

Figure W1: Scatter plots of Randomly Generated Pairs Up, Uw (Up,Uξ) for Considered
Copulas.

(DGP) of t copula is summarized below:
P ∗
t

W ∗
t

ξ∗t


∼ tdν




0

0

0


,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1




= tdν




0

0

0


,


1 0.5 0.5

0.5 1 0

0.5 0 1




. (W33)

Figure W1 shows the scatter plots of randomly generated (Up, Uw, Uξ) pairs from the

above copulas, as well as the Gaussian copula with the same correlation of 0.5. The figure

shows disparate dependence structures between Up and ξt (Up and Uw) for these two copulas.

We then use the following process to generate Pt,Wt and ξt:

ξt = G−1(Uξ) = Φ−1(Uξ), (W34)

Pt = H−1(Up),Wt = L−1(Uw), (W35)

Yt = 1 + 1 · Pt + (−1) ·Wt + ξt. (W36)

where H(·) is a gamma distribution and L(·) is an exponential distribution. We set T =

1000, generate 1000 datasets and estimate the parameters using the OLS estimator and the

proposed 2sCOPE method.
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Table W7 summarizes the estimation results. OLS and CopulaOrigin estimates are still

biased for all parameters. By contrast, estimates from the proposed 2sCOPE method are

centered closely around the true values. Therefore, the proposed method based on the Gaus-

sian copula is reasonably robust to the mis-specifications of the assumed copula dependence

structure, while recognizing that a limitation of the simulation study is the restriction to the

multivariate T copula that has the flexibility of generating multivariate data from arbitrary

and heterogeneous correlation structures.

Table W7: Results of the Simulation Study: Misspecification of Copula

OLS 2sCOPE

Parameters True Mean SE tbias Mean SE tbias

µ 1 0.710 0.530 5.463 0.988 0.077 0.156

α 1 1.580 0.044 13.13 1.029 0.116 0.250

β -1 -1.289 0.047 6.142 -1.017 0.070 0.248

ρpξ 0.5 - - - 0.458 0.067 0.622

σξ 1 0.864 0.026 5.236 0.988 0.054 0.230
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Web Appendix E.6: Linear Dependence Among Regressors

When using 2sCOPE with Gaussian Copula, the implied relation among regressors is

restricted to a specific non-linear form. In this section, we further check the performance of

the 2sCOPE estimator when the regressors are linearly related to each other. Specifically,

we consider the following DGP.X∗
t

ξ∗t

 ∼ N


 0

0

 ,
 1 ρpξ

ρpξ 1


 = N


 0

0

 ,
 1 0.5

0.5 1


 , (W37)

ξt = G−1(Φ(ξ∗t )) = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , (W38)

Wt ∼ N(0, 1), (W39)

Pt = γWt + F−1
χ2(1)(Φ(X

∗
t )), (W40)

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + 1 · Pt + (−1) ·Wt + ξt (W41)

We set the sample size T = 1000, and generate 1000 datasets as replicates using the DGP

above. Equation (W40) shows the linear dependence among P and W , which violates the

assumption of the 2sCOPE estimator. However, the estimation result in Table W8 shows

that 2sCOPE estimation method can still get consistent estimates. Therefore, the results

demonstrate the robustness of the proposed 2sCOPE method based on Gaussian copula,

which implicitly requires a non-linear relationship among regressors, to the linear dependence

among regressors.
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Table W8: Results of the Simulation Study: Linear Dependence Among Regressors

OLS 2sCOPE

γ Parameters True Mean SE tbias Mean SE tbias

0.6 µ 1 0.545 0.041 11.07 0.967 0.084 0.389

α 1 1.226 0.016 14.48 1.015 0.039 0.383

β -1 -1.136 0.030 4.607 -1.010 0.038 0.270

σξ 1 0.891 0.021 5.176 0.987 0.041 0.305

1.2 µ 1 0.546 0.042 10.74 0.969 0.104 0.294

α 1 1.227 0.016 14.37 1.015 0.050 0.294

β -1 -1.273 0.036 7.653 -1.019 0.069 0.274

σξ 1 0.892 0.020 5.554 0.990 0.048 0.217
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Web Appendix E.7: Test Assumption 5(b)

As shown in the METHODS section, when P contains only one endogenous regressor,

Assumption 5 (W and P ∗ are uncorrelated) has to be satisfied for CopulaOrigin to yield

consistent estimates. In the multiple-endogenous-regressors case, W should be uncorrelated

with the CCF term, the linear combination of P ∗s (Assumption 5(b)). Assumption 5 for

a single endogenous regressor is easy to check, while Assumption 5(b) is not that obvious.

In this subsection, we describe how to test Assumption 5(b). Specifically, we consider two

simulation scenarios: one satisfies Assumption 5(b) while the other doesn’t. In addition, we

will show that CopulaOrigin performs better if Assumption 5(b) is satisfied, and 2sCOPE is

preferred if the assumption is violated. The data-generating process is summarized below.

P ∗
1,t

P ∗
2,t

W ∗
1,t

W ∗
2,t

ξ∗t


∼ N





0

0

0

0

0


,



1 p q1 q1 ρ1

p 1 q2 q2 ρ2

q1 q2 1 qww 0

q1 q2 qww 1 0

ρ1 ρ2 0 0 1




, (W42)

ξt = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , Wt = L−1(Φ(W ∗
t )), (W43)

P1,t = H−1(Φ(P ∗
1,t)), P2,t = H−1(Φ(P ∗

2,t)), (W44)

Yt = µ+ α1 · P1,t + α2 · P2,t + β ·Wt + ξt = 1 + P1,t + P2,t + (−1) ·Wt + ξt, (W45)

where Pt ∼ Gamma(1, 1) and Wt ∼ Exp(1) in both scenarios. The two scenarios differ in

the covariance matrix in W42.

In Scenario 1, we set p = 0, q1 = q2 = 0.4, qww = 0.2, ρ1 = 0.5 and ρ2 = -0.5;
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In Scenario 2, we set p = 0, q1 = q2 = 0.4, qww = 0.2, ρ1 = 0.5 and ρ2 = 0.5.

We set T = 1000, generate 1000 datasets and estimate the parameters using the CopulaOrigin

and 2sCOPE methods. To test the assumption 5(b) for CopulaOrigin, we first estimate the

coefficients of P ∗
1 and P ∗

2 (γ̂1 and γ̂2) using CopulaOrigin, and obtain the CCF by calcu-

lating γ̂1P
∗
1 + γ̂2P

∗
2 . Then we check Cor(W,CCF), the correlation between W and the

CCF=γ̂1P̂ ∗
1 + γ̂2P̂ ∗

2 for each W . We use Fisher’s Z test to test the null hypothesis of

Cor(W,CCF) = 0. Assumption 5(b) is violated when the null hypothesis is rejected us-

ing the Fisher’s Z test.

Table W9 summarizes the estimation results for the two scenarios with sample size

N=1000. In Scenario 1, the average correlation between W1 (W2) and the CCF term across

1000 simulated datasets is -0.001316 (0.000369) with an average p-value of 0.493 (0.508),

which means that the correlation is not significantly different from 0 and Assumption 5(b)

holds. Correspondingly CopulaOrigin performs well with all the estimates centered closely

around the true values. By contrast, estimates from CopulaOrigin are biased in Scenario

2, and the average correlation between W1 (W2) and the CCF term across 1000 simulated

datasets is 0.504 (0.503) with the average p-value < 2.2e−16(< 2.2e−16), violating Assump-

tion 5(b). In both scenarios, 2sCOPE provides unbiased estimates. However, when As-

sumption 5(b) holds, CopulaOrigin is more efficient than 2sCOPE with a smaller D-error

(0.001420 < 0.001611) (Table W9), which means CopulaOrigin increases the estimation ef-

ficiency by 13.45%. When the dimension of Wt increases, we expect the efficiency gain of

CopulaOrigin to be greater than that in this example.

To summarize, this subsection provides an example of how to test Assumption 5(b) with

multiple endogenous regressors. When Assumption 5(b) holds, CopulaOrigin is preferred over
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2sCOPE, as the simpler CopulaOrigin procedure yields more efficient estimates with smaller

D-error. Otherwise, the proposed 2sCOPE method is preferred.

Table W9: Results of the Simulation Study: Testing Assumption 5(b)

OLS CopulaOrigin 2sCOPE

Simulation Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

Scenario 1 µ 1 0.999 0.050 0.014 0.999 0.089 0.017 0.998 0.063 0.038

α1 1 1.454 0.033 13.94 0.998 0.060 0.026 1.000 0.059 0.003

α2 1 0.546 0.032 14.19 1.004 0.058 0.074 1.005 0.057 0.087

β1 -1 -1.000 0.029 0.010 -1.000 0.027 0.008 -1.002 0.039 0.050

β2 -1 -1.001 0.029 0.036 -1.001 0.026 0.040 -1.001 0.038 0.021

ρ1 0.5 - - - 0.499 0.049 0.014 0.499 0.034 0.041

ρ2 -0.5 - - - -0.500 0.046 0.010 -0.501 0.032 0.019

σξ 1 0.769 0.017 13.86 1.004 0.043 0.084 1.002 0.043 0.049

D-error 0.001420 0.001611

Cor(W1, CCF), p value -0.001316, 0.493

Cor(W2, CCF), p value 0.000369, 0.508

Scenario 2 µ 1 0.384 0.040 15.32 1.753 0.078 9.699 0.995 0.060 0.085

α1 1 1.763 0.031 24.26 1.161 0.047 3.426 1.001 0.040 0.038

α2 1 1.764 0.034 22.32 1.164 0.044 3.699 1.003 0.041 0.072

β1 -1 -1.456 0.025 18.58 -1.542 0.023 23.54 -1.000 0.031 0.013

β2 -1 -1.456 0.024 19.30 -1.541 0.023 23.78 -1.000 0.032 0.010

ρ1 0.5 - - - 0.666 0.032 5.239 0.491 0.034 0.260

ρ2 0.5 - - - 0.665 0.033 5.047 0.490 0.035 0.274

σξ 1 0.569 0.017 25.01 1.099 0.044 2.237 1.001 0.033 0.043

Cor(W1, CCF), p value 0.504, <2.2e-16

Cor(W2, CCF), p value 0.503, <2.2e-16
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Web Appendix E.8: Simulation Experiments to Inform the Decision Tree of

Using 2sCOPE

As noted in the main paper, as long as the sample size is sufficiently large and the

assumptions of Theorems 2 and 3 are satisfied, 2sCOPE yields unbiased structural model

estimates. However, in practical datasets with finite sample sizes, good performance of

2sCOPE may require sufficient nonnormality of regressors and sufficient relevance between

P andW . Thus, in this section, we conduct systematic simulation studies to assess boundary

conditions for using 2sCOPE in finite samples, and to inform the decision tree in Figure 2

of the main text.

To achieve this goal, in the simulation studies we systematically vary distributions of

P and W , sample size, the endogeneity level, and the relevance level between P and W ,

to obtain empirically verifiable boundary conditions under which we can expect a good

performance of 2sCOPE with a high probability. In the simulation studies, we use the

Kolmogorov-Smirnov (KS) test to evaluate the regressor nonnormality for the following rea-

sons. The KS test is one of the most commonly used tests for normality. The KS test statistic

compares the empirical cumulative distribution of the standardized regressor with the CDF

of the standard normal distribution, and is an overall and comprehensive measure to quan-

tify nonnormality. Furthermore, more powerful normality tests, such as the Shapiro-Wilk

test or Anderson-Darling test, may detect small departures from normality that are insuf-

ficient for the purpose of copula endogeneity correction (Cortina and Dunlap 1997, Eckert

and Hohberger 2022, Ahad et al. 2011). Thus, among these most commonly used normality

tests, we choose the relatively conservative KS test to be on the safe side. Last, because
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the performance of 2sCOPE improves with sample size when everything else is fixed, the

measures for the sufficient nonnormality of regressors should also change with sample size:

a minor departure from normality that is considered as insufficient nonnormality for a small

sample can become sufficient for 2sCOPE to have good performance when the sample size

is large. The p-value from the KS normality test satisfies this condition. Thus, we use the

p-value from the KS test to inform sufficient nonnormality of regressors. Finally, we consider

cases in which Assumptions 5 and 5(b) are violated because otherwise copulaOrigin should be

used instead of 2sCOPE (Web Appendix E.7).

We first consider the sufficient condition of P in step 2 under the scenario when W is

normally distributed, in which case the relevant W is expected to provide less help in iden-

tifying the causal effect of a close-to-normal endogenous regressor P than if W is sufficiently

nonnormal. To identify the boundary condition of sufficient nonnormality of P for using

2sCOPE in this scenario, we conduct a factorial experiment using the data generating pro-

cess from Equations (20-23) with a wide range of variations in sample size, endogeneity level,

relevance, and distributions of regressors. Specifically, we simulate the endogenous regressor

P using the nine nonnormal distributions in Figure 1, 14 levels of sample size {100, 200, 400,

600, 800, 1000, 2000, 4000, 6000, 8000, 10000, 20000, 40000, 60000}, eight endogeneity level

ρpξ {0.1, 0.2, ..., 0.8}, and eight relevance level between P ∗ and W ∗ {0.1, 0.2, ..., 0.8}. This

results in a total of 9 × 14 × 8 × 8 = 8064 cases. We generate 1000 datasets for each case,

estimate the parameters using 2sCOPE, and calculate the average relative bias of [µ, α, β] to

measure the performance in each of the 8064 cases. In the end, we obtain 8064 observations

in total. By examining the performance of 2sCOPE across all these cases, we evaluate the

boundary condition of the nonnormality level of P for good performance of 2sCOPE. Table
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W10 shows that in 5377 out of 8064 cases considered, the average p-value of the KS test of

the normality of P over 1000 simulated datasets is less than 0.05 (i.e., rejecting the normal-

ity of P ). As long as the p-value of the KS test of P is smaller than 0.05, 2sCOPE yields

estimates with minor bias (relative bias less than 10%) with high probability (5250
5377

=97.6%)

(Table W10). A relative bias of less than 10% is a commonly used criterion that indicates

satisfactory performance of a method in terms of estimation bias (Forero, Maydeu-Olivares,

and Gallardo-Pujol 2009, Holtmann et al. 2016, McNeish 2016, Wang and Kim 2017, En-

ders, Keller, and Levy 2018). Among the 5250 cases with an average relative bias less than

10%, the overall mean relative bias is small (1.0%) with a standard deviation (SD) of 1.8%

over these 5250 cases (Table W10). Furthermore, among the 127 cases in which the average

relative bias of the 2sCOPE estimates exceeds 10%, the bias is not large with a mean relative

bias of 17% and a standard deviation of 7% (Table W10). Overall, we can conclude from

this simulation experiment that 2sCOPE is expected to perform well in finite samples with

high probabilities when the p-value from the KS test of the endogenous regressor P is less

than 0.05.

Table W10: Condition for Sufficient Nonnormality of P to Use 2sCOPE in Step 2 of the
Decision Tree.

KS Test P-value of Number of Cases Number of Cases Number of Cases Percentage of
Endogenous Regressor P Bias ≤ 10% Bias > 10% Good Performance

< 0.05 5377 5250 127 97.6%
(mean=1.0%, SD=1.8%)∗ (mean=17%, SD=7.0%)∗

Note: *: Mean and standard deviation of the relative bias across cases are reported in the parenthesis.

Next, we consider the scenario when P fails the nonnormality test in step 2. Specifically,

we consider the extreme case when P is normally distributed, and examine the sufficient

condition ofW for 2sCOPE to have good finite-sample performance. Similarly, to identify the
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sufficient condition of W , we simulate the exogenous regressor W using the nine nonnormal

distributions in Figure 1, 14 levels of sample size {100, 200, 400, 600, 800, 1000, 2000,

4000, 6000, 8000, 10000, 20000, 40000, 60000}, eight endogeneity level ρpξ {0.1, 0.2, ..., 0.8}

and eight relevance level between P ∗ and W ∗ {0.1, 0.2, ..., 0.8}. This results in a total of

9×14×8×8 = 8064 cases. We generate 1000 datasets for each case, estimate the parameters

using 2sCOPE, and calculate the average relative bias of [µ, α, β] to measure the performance.

In the end, we obtained 8064 observations in total. By examining the performance of 2sCOPE

in all those simulation studies, we evaluate the sufficient condition of W for 2sCOPE to have

good performance when P is normally distributed. Figure W2 shows the simulation results.

When W is sufficiently nonnormal with the average p-value of KS test smaller than e−3

over 1000 simulated datasets, we only require a moderate relevance between P ∗ and W ∗

(average F stats > 10 for the effect of W ∗ on P ∗ in the first stage regression of 2sCOPE over

1000 simulated datasets) to have good performance of 2sCOPE (relative bias ≤ 10%) with

a high probability ( 4075
4075+416

= 90.7% in Figure W2): in 4075 out of 4491 (4075+416) cases

in which W satisfies the sufficient nonnormality and sufficient relevance requirements above,

2sCOPE performs well with relative bias ≤ 10%. In other cases, we observe a considerably

lower probability ( 540
3033+540

=15.1% 17) of good finite-sample performance. The simulation

experiment informs the sufficient condition ofW for 2sCOPE to have good performance when

the endogenous regressor P is normally distributed. Overall, this simulation experiment

demonstrates that a combination of certain levels of nonnormality and relevance of W are

needed to identify the normally distributed endogenous regressor with good finite-sample

17The 15.1% is the worst case in extreme scenario (P is set to be normally distributed). In practice when P is

close-to-normal instead of exactly normal, 2sCOPE can have a greater probability of achieving good finite-sample

performance than 15.1% when W does not meet the requirements of sufficient nonnormality and relevance.
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performance.

We have provided sufficient conditions of endogenous and exogenous regressors above for

2sCOPE to have good finite-sample performance. These are not necessary conditions but

are conservative ones to be on the safe side. In particular, to obtain sufficient conditions, we

consider the extreme cases in which either the exogenous regressor in step 2 or the endogenous

regressor in step 3 follows the normal distribution. However, in practice, regressors are likely

to have close-to-normal rather than exact normal distributions. The failure of the sufficient

condition tests of W in practice does not mean 2sCOPE cannot be used. For instance, the

estimation result of scenario 1 in Table W11 (P and W are close-to-normal and weakly

nonnormal, respectively) demonstrates that 2sCOPE may still have acceptable finite-sample

performance when the above (conservative) sufficient conditions are not satisfied. In this

situation, one can rely on our proposed bootstrap resampling Algorithm 1 to evaluate the

finite-sample performance of 2sCOPE on a case-by-case basis.
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Figure W2: Sufficient Condition of W for Using 2sCOPE in Step 3 of the Decision Tree.
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Web Appendix E.9: Multiple ‘Weakly-nonnormal’ Exogenous Covariates vs. One

‘Strongly-nonnormal’ Exogenous Covariate

According to the decision tree in Figure 2, 2sCOPE with one relevant exogenous regressor

having sufficiently strong nonnormality can achieve good finite-sample performance when the

endogenous regressor is normally distributed. In this section, we conduct further simulation

studies to examine whether several ’weakly-nonnormal’ exogenous covariates can add up to

achieve the same performance as one ’strongly-nonnormal’ exogenous covariate when the

endogenous regressor is close to normal. We set the sample size T = 1000, and use the same

data-generating process as in Equations (20 - 23) except for the dimension of W and the

distributions of W and P . Specifically, we set the distribution of P to a close-to-normal

distribution, t(30), and use three different scenarios of W to examine the capability of W

to help identify the causal effect of the endogenous regressor. In scenario 1, we have one W

following the t(4) distribution, with the average p-value of the KS test over 1000 simulated

datasets being 0.0054> 0.001 and thus is a ‘weakly-nonnormal’ exogenous covariate defined

in Figure 2. In scenario 2, we increase the number of ‘weakly-nonnormal’ Ws from 1 to 3,

with a 0.2 correlation between different Ws. In scenario 3, we use one ’strongly-nonnormal’

W following the t(2) distribution, with the average p-value of KS test over 1000 datasets

1.88e−11 < e−10.

Table W11 shows the estimation results of the three scenarios. In both scenarios 1 (one

weakly-nonnormal W ) and 2 (three weakly-nonnormal W s), the estimates of α of 2sCOPE

have similar minor but noticeable finite-sample bias. Adding multiple ‘weakly-nonnormal’

exogenous regressors does not improve the estimation (the estimate of 1.137 for α in scenario
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2 is farther away from the true value than 1.101 in scenario 1). However, the 2sCOPE’s per-

formance becomes better when using a ‘strongly-nonnormal’ W in scenario 3 (the estimate

of 1.018 for α is closer to the true value than 1.101 in scenario 1 and 1.137 in scenario 2,

Table W11). The D-error for 2sCOPE is also smallest when using a ‘strongly-nonnormal’

W in scenario 3 (Table W11). Thus, a ‘strongly-nonnormal’ W is better than multiple

‘weakly-nonnormal’ Ws in helping the identification for close-to-normal endogenous regres-

sors. Adding multiple ‘weakly-nonnormal’ exogenous covariates will not help the identifi-

cation of a normal (close-to-normal) endogenous regressor as effectively as one ‘strongly-

nonnormal’ exogenous regressor. Moreover, the estimation results further confirm that our

proposed 2sCOPE can largely improve the performance, compared with COPE (the extended

CopulaOrigin). For instance, in scenario 3, 2sCOPE has large improvement over COPE in

both estimation consistency (the estimate of α is improved from 1.494 in COPE to 1.018

in 2sCOPE) and efficiency (the D-error is improved from 0.004830 in COPE to 0.001031

in 2sCOPE, increased by 78.7%), when both the endogenous and exogenous regressors are

close-to-normally distributed.
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Table W11: Multiple ’Weakly-nonnormal’ Exogenous W vs. One ’Strongly-nonnormal’ W

OLS COPE 2sCOPE

Scenario Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

1 W , t(4) µ 1 1.001 0.025 0.026 1.001 0.034 0.030 1.000 0.030 0.016

Weakly-nonnormal α 1 1.634 0.030 21.25 1.516 0.556 0.928 1.101 0.209 0.486

β -1 -1.227 0.026 8.684 -1.010 0.086 0.119 -1.038 0.078 0.482

ρ 0.5 - - - -0.018 0.454 1.142 0.425 0.132 0.569

σξ 1 0.822 0.019 9.438 1.016 0.225 0.072 0.965 0.095 0.368

D-error 0.013740 0.002724

3 Ws, t(4) µ 1 1.000 0.021 0.016 1.002 0.031 0.080 0.999 0.029 0.019

Weakly-nonnormal α 1 1.994 0.034 29.40 1.814 0.467 1.742 1.137 0.146 0.941

β1 -1 -1.258 0.027 9.677 -1.018 0.071 0.252 -1.036 0.043 0.848

β2 -1 -1.259 0.025 10.38 -1.022 0.073 0.297 -1.037 0.042 0.892

β3 -1 -1.258 0.024 10.89 -1.020 0.073 0.279 -1.035 0.042 0.851

ρ 0.5 - - - -0.258 0.394 8.345 0.459 0.046 0.903

σξ 1 0.697 0.017 17.93 1.005 0.206 1.923 0.933 0.072 0.928

D-error 0.007816 0.001095

1 W , t(2) µ 1 1.001 0.026 0.040 1.002 0.033 0.054 1.001 0.031 0.037

Strongly-nonnormal α 1 1.574 0.040 14.36 1.494 0.577 0.855 1.018 0.094 0.188

β -1 -1.086 0.033 2.617 -1.002 0.018 0.110 -1.003 0.018 0.194

ρ 0.5 - - - -0.005 0.467 1.081 0.486 0.057 0.249

σξ 1 0.839 0.019 8.273 1.025 0.229 0.108 0.993 0.052 0.133

D-error 0.004830 0.001031
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Web Appendix E.10: Random Coefficient Logit Model with Regressor Endogene-

ity

In this section, we examine the performance of the proposed 2sCOPE in random coef-

ficient logit (RCL) models using simulated individual-level data. The specific DGP is as

follows:

uh0t = ϵh0t (W46)

uh1t = β̄1 + β̄3 ·W1t + (ᾱ + ah) · P1t + ξ1t + ϵh1t, (W47)

uh2t = β̄2 + β̄3 ·W2t + (ᾱ + ah) · P2t + ξ2t + ϵh2t, (W48)

αh ∼ N(0, σ2
a) = N(0, 0.52), (W49)

P ∗
jt

W ∗
jt

ξ∗jt


∼ N




0

0

0


,


1 0.5 0.5

0.5 1 0

0.5 0 1




, (W50)

ξt = G−1(Uξ,t) = G−1(Φ(ξ∗t )) = Φ−1
(0,0.22)(Φ(ξ

∗)) = 0.2 · ξ∗t , (W51)

Pjt = H−1(Φ(P ∗
jt)) = 1.5 + 0.2 · ln(−ln(1− Φ(P ∗

jt))) for j = 1, 2, (W52)

Wjt = L−1(Φ(W ∗
jt)) = I(Φ(W ∗

jt) > 0.7) for j = 1, 2 (W53)

where the purchase occasion t = 1,...,200, the brand j = 1, 2, and the consumer h = 1,...,100.

The independent error term ϵhjt follows Type one extreme value distribution. Pjt is the en-

dogenous regressor following an extreme value distribution, and Wjt is a binary exogenous

regressor that is correlated with Pjt. Consumers have heterogeneous preferences with re-

spect to Pjt. We generate individual-level choices as described above and apply the 2sCOPE

method described in Web Appendix D to the simulated data to estimate the model pa-
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rameters. We also use a benchmark method called OLS, which ignores the endogeneity by

applying OLS to the first-step estimates δ̂jt in Equation W16. Estimation results over 1000

simulated datasets are presented in Table W12. Results show that the OLS estimates are

biased, while the estimates from 2sCOPE are tightly distributed around the true values.

Table W12: Results of the Simulation Study: RCL Model Using Individual-level Data.

OLS 2sCOPE

Parameters True Mean SE tbias Mean SE tbias

β̄1 0.7 0.114 0.098 6.009 0.683 0.306 0.056

β̄2 0.7 0.121 0.099 5.854 0.693 0.310 0.024

β̄3 1 0.928 0.037 1.974 1.012 0.058 0.205

ᾱ -1 -0.563 0.090 4.880 -0.994 0.237 0.028

σa 0.5 0.515 0.046 0.322 0.515 0.046 0.322

Note: σa is estimated in the first step, and thus OLS and 2sCOPE methods have the same estimates.
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Web Appendix E.11: Endogenous W

For the proposed 2sCOPE method to work properly, we require the regressors in W

be exogenous, which is also a requirement for the OLS, copulaOrigin, and IV approaches

(Wooldridge 2010). In this section, we further discuss the case when W is endogenous, and

examine the performance of 2sCOPE and alternative approaches when W is endogenous.

The specific DGP is as follows.

P ∗
t

W ∗
t

Z∗
t

ξ∗t


∼ N





0

0

0

0


,



1 p q ρpξ

p 1 q2 ρwξ

q q2 1 0

ρpξ ρwξ 0 1




= N





0

0

0

0


,



1 −0.5 0.5 0.5

−0.5 1 −0.3 ρwξ

0.5 −0.3 1 0

0.5 ρwξ 0 1




,

ξt = Φ−1(Φ(ξ∗)) = 1 · ξ∗t , Wt = L−1(Φ(W ∗
t )),

Pt = H−1(Φ(P ∗
t )), Zt = L−1(Φ(Z∗

t )),

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + Pt + (−1) ·Wt + ξt, (W54)

where Pt ∼ Gamma(1, 1), Wt ∼ Exp(1) and Zt ∼ Exp(1). Z is a valid instrument variable

of the endogenous regressor P because it satisfies the two conditions in page 89 of Wooldridge

(2010): (1) Z is uncorrelated with the error term ξ and is excluded from the equation W54

for Y (i.e, exclusion restriction), and (2) Z is correlated with P (i.e., relevant). We set the

sample size N = 1000, and estimate the model using OLS, CopulaOrigin, 2sCOPE and TSLS

methods.

Table W13 shows the estimation results over 1000 simulated datasets for four endogeneity

levels of W , ρwξ ={0, 0.1, 0.2, 0.3}. As expected, OLS estimates are biased in all situations.
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CopulaOrigin substantially reduces the bias of the OLS estimates but still has notable bias

because of ignoring the correlation between P and W . As expected, when ρwξ = 0 (i.e.,

W is exogenous), both 2sCOPE and TSLS yield consistent estimates that properly correct

for endogeneity bias. However, when W becomes endogenous (ρwξ ={0.1, 0.2, 0.3}), all

methods suffer from potential biases. As shown in Footnote 14, for the model in Eqn (1),

OLS estimate of α̂ = (P ′P )−1P ′Y − (P ′P )−1P ′[1,W ][µ̂, β̂′]′. Thus, when P ′W ̸= 0 (i.e., P

and W are correlated), α̂ depends on β̂, and the inconsistency of β̂ will make α̂ biased even

if P is exogenous. Similarly, the endogeneity of W can cause bias in β̂, which, when P and

W are correlated, can lead to bias in α̂ for both CopulaOrigin and 2sCOPE. In TSLS, only

exogenous regressors and IVs can enter the first-stage regression in TSLS and so including

endogenousW in the first-stage regression can lead to biased estimates for TSLS (Wooldridge

2010). Thus, all these methods require the exogeneity of W to yield consistent estimates

when W and P are correlated. Moreover, according to the estimation results, the bias of

2sCOPE is relatively smaller than OLS, CopulaOrigin and IV approach.
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Table W13: Simulation Results When P and W are correlated

OLS CopulaOrigin 2sCOPE TSLS

Simulation Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

ρwξ = 0 µ 1 0.287 0.061 11.68 0.780 0.077 2.846 1.002 0.083 0.024 0.998 0.122 0.012

α 1 1.523 0.037 14.30 0.930 0.068 1.027 0.997 0.055 0.054 0.999 0.083 0.009

β -1 -0.808 0.033 5.746 -0.712 0.033 8.790 -1.000 0.036 0.014 -0.998 0.044 0.040

Avg Abs Bias 0.476 0.193 0.0018 0.0013

D-error 0.00096 0.00175 0.00140 0.00189

ρwξ = 0.1 µ 1 0.146 0.062 13.74 0.696 0.083 3.672 0.984 0.089 0.181 0.837 0.120 1.354

α 1 1.560 0.036 15.56 0.899 0.071 1.423 0.945 0.057 0.965 1.053 0.083 0.639

β -1 -0.704 0.033 8.970 -0.597 0.031 13.00 -0.929 0.037 1.919 -0.889 0.043 2.349

Avg Abs Bias 0.570 0.269 0.047 0.109

D-error 0.00092 0.00182 0.00150 0.00186

ρwξ = 0.2 µ 1 0.004 0.062 16.07 0.603 0.084 4.701 0.955 0.091 0.498 0.672 0.114 2.869

α 1 1.597 0.038 15.73 0.878 0.071 1.723 0.903 0.057 1.701 1.108 0.077 1.405

β -1 -0.599 0.036 11.27 -0.482 0.032 16.22 -0.855 0.037 3.896 -0.779 0.043 5.201

Avg Abs Bias 0.665 0.345 0.096 0.219

D-error 0.00101 0.00185 0.00156 0.00176

ρwξ = 0.3 µ 1 -0.143 0.060 18.98 0.513 0.079 6.149 0.927 0.086 0.849 0.502 0.110 4.514

α 1 1.638 0.037 17.04 0.851 0.070 2.126 0.853 0.059 2.488 1.165 0.075 2.213

β -1 -0.495 0.035 14.42 -0.367 0.032 19.61 -0.781 0.034 6.399 -0.667 0.042 8.003

Avg Abs Bias 0.762 0.423 0.146 0.332

D-error 0.00092 0.00185 0.00152 0.00155

Table W14 further shows the estimation results using the same DGP as above except

thatW is uncorrelated with P . OLS estimates continue to have a large bias. One interesting

finding is that the endogeneity of W will not cause bias in the estimate of the endogenous

regressor P using 2sCOPE and CopulaOrigin when P and W are uncorrelated. By contrast,

since both the endogenous W and the IV enter the first stage of TSLS, bias will arise in the

estimate of α using TSLS (Wooldridge 2010). Thus, the copula methods (CopulaOrigin and

2sCOPE) are more robust than the IV method to endogenousW that is unrelated to P . This
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means that when using copula endogeneity correction methods, one does not need to argue

for the exogeneity of the control variables that are prognostic factors of only the outcome

variable; the purpose of including such prognostic variables in the model is to improve the

accuracy of model estimates and predictions rather than to adjust for confounding.

These simulation studies demonstrate the importance of the exogeneity assumption for

the control variables W and potential bias for different estimation methods when the exo-

geneity assumption of W is violated. Thus, we require the exogeneity of W for 2sCOPE to

work properly when W and P are correlated.

Table W14: Simulation Results When P and W are uncorrelated

OLS CopulaOrigin 2sCOPE TSLS

Simulation Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

ρwξ = 0 µ 1 0.548 0.048 9.322 0.999 0.077 0.020 0.999 0.077 0.009 1.001 0.080 0.008

α 1 1.453 0.031 14.71 1.000 0.066 0.005 1.001 0.066 0.011 1.001 0.067 0.017

β -1 -1.000 0.028 0.008 -1.000 0.028 0.008 -1.000 0.032 0.017 -0.999 0.032 0.028

Avg Abs Bias 0.3017 0.0007 0.0006 0.0009

D-error 0.00082 0.00150 0.00164 0.00169

ρwξ = 0.1 µ 1 0.460 0.050 10.83 0.910 0.080 1.124 0.911 0.082 1.089 0.867 0.078 1.715

α 1 1.451 0.031 14.38 1.000 0.068 0.002 1.000 0.068 0.007 1.044 0.066 0.666

β -1 -0.909 0.028 3.221 -0.909 0.028 3.280 -0.909 0.031 2.935 -0.908 0.031 2.956

Avg Abs Bias 0.361 0.060 0.060 0.089

D-error 0.00085 0.00152 0.00164 0.00158

ρwξ = 0.2 µ 1 0.366 0.050 12.70 0.817 0.077 2.370 0.818 0.080 2.268 0.729 0.077 3.523

α 1 1.453 0.032 13.96 0.999 0.064 0.013 1.000 0.064 0.005 1.089 0.064 1.385

β -1 -0.820 0.027 6.630 -0.820 0.027 6.803 -0.820 0.030 5.930 -0.819 0.030 6.084

Avg Abs Bias 0.423 0.121 0.121 0.180

D-error 0.00084 0.00141 0.00155 0.00148

ρwξ = 0.3 µ 1 0.272 0.048 15.06 0.726 0.076 3.630 0.727 0.080 3.421 0.592 0.075 5.415

α 1 1.454 0.030 15.25 0.999 0.065 0.022 0.999 0.065 0.019 1.134 0.061 2.176

β -1 -0.728 0.029 9.344 -0.728 0.028 9.651 -0.728 0.033 8.301 -0.728 0.032 8.617

Avg Abs Bias 0.485 0.183 0.182 0.271

D-error 0.00080 0.00146 0.00162 0.00145
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Web Appendix E.12: Leveraging Empirical Correlation between W and P

As noted in the main paper, 2sCOPE can leverage the exogenous regressors W pre-

existing in the OLS, IV or CopulaOrigin estimation of the outcome model to improve model

estimation. The correlation between W and the endogenous regressor P does not need to

have a causal interpretation: association is sufficient. Thus, using 2sCOPE, one does not

need to argue for a causal relationship between P and W . To demonstrate this point, we

conduct the following simulation study. Specifically, the simulation study considers cases of

correlations resulting from either a causal relationship or mere empirical spurious correlation.

First, we consider the case of a spurious correlation between W and P . A spurious

correlation is an association in which W and P are associated but not causally related. A

common reason for spurious correlations is the presence of a third, unobserved common

factor (named as O here) that affects W and P simultaneously. Although W and P are

empirically correlated, they have no direct causal relationship: given the common factor O,

P and W are unrelated. The specific DGP is as follows.ep,t
ξt

 ∼ N


 0

0

 ,
 σ2

1 ρ · σ1 · σ2

ρ · σ1 · σ2 σ2
2


 = N


 0

0

 ,
 0.5 0.5 ·

√
0.5

0.5 ·
√
0.5 1


 ,

Ot ∼ N(0, σ2
o) = N(0, 1), ew,t ∼ N(0, σ2

w) = N(0, 0.5),

P ∗
t =

√
0.5 ·Ot + ep,t, W ∗

t =
√
0.5 ·Ot + ew,t,

Pt = H−1(Φ(P ∗
t )), Wt = L−1(Φ(W ∗

t )),

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + Pt + (−1) ·Wt + ξt,

where Pt ∼ Gamma(1, 1) andWt ∼ Exp(1). We set the sample size N = 1000, and estimate
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the model using OLS, CopulaOrigin and 2sCOPE methods. Table W15 shows the estimation

results over 1000 simulated datasets. We can see that the OLS estimates are severely biased;

estimates from CopulaOrigin improve upon the OLS estimates but still have a notable bias

because of the spurious correlation between P and W , while the 2sCOPE method yields

consistent estimates even if the association between P and W are spurious.

OLS CopulaOrigin 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.781 0.047 4.654 1.155 0.082 1.885 1.003 0.060 0.045

α 1 1.404 0.037 10.94 1.065 0.072 0.682 1.000 0.070 0.006

β -1 -1.184 0.034 5.368 -1.205 0.034 6.039 -1.001 0.044 0.031

σξ 1 0.933 0.021 3.217 1.002 0.034 0.066 1.000 0.031 0.005

Table W15: Results of the Simulation Study: Spurious Correlation between P and W .

Next, we examine the case of a causal relationship between W and P . In this case, W

directly affects P . The DGP is as follows.ep,t
ξt

 ∼ N


 0

0

 ,
 σ2

1 ρ · σ1 · σ2

ρ · σ1 · σ2 σ2
2


 = N


 0

0

 ,
 0.5 0.5 ·

√
0.5

0.5 ·
√
0.5 1


 ,

W ∗
t ∼ N(0, 1), P ∗

t =
√
0.5 ·W ∗

t + ep,t,

Pt = H−1(Φ(P ∗
t )), Wt = L−1(Φ(W ∗

t )),

Yt = µ+ α · Pt + β ·Wt + ξt = 1 + Pt + (−1) ·Wt + ξt,

where Pt ∼ Gamma(1, 1) and Wt ∼ Exp(1). As shown above, W directly affects both the

endogenous regressor P and the outcome variable. We set the sample size N = 1000, and

estimate the model using OLS, CopulaOrigin and 2sCOPE methods. Table W16 shows the

53



estimation results over 1000 simulated datasets. OLS and CopulaOrigin estimates are biased,

while 2sCOPE yields consistent estimates when P and W are causally related.

Table W16: Results of the Simulation Study: P and W are causally related.

OLS CopulaOrigin 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.809 0.043 4.415 1.213 0.082 2.582 1.001 0.052 0.019

α 1 1.580 0.044 13.04 1.201 0.076 2.653 1.000 0.079 0.005

β -1 -1.388 0.041 9.449 -1.415 0.041 10.15 -1.001 0.062 0.016

σξ 1 0.903 0.021 4.631 0.986 0.038 0.356 1.000 0.034 0.013

The simulation studies in this section demonstrate that 2sCOPE can leverage the associ-

ation between P and W for model estimation, regardless of whether the association is causal

or not.
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WEB APPENDIX F: OBTAINING STANDARD ERRORS USING

BOOTSTRAP

We generate B bootstrap datasets by randomly resampling the original dataset with re-

placement, and re-estimate the structural model parameters using 2sCOPE for each dataset.

Then calculate the standard errors by calculating the standard deviation of the estimates

obtained from these datasets. Algorithm 2 summarizes the detailed steps of how to obtain

the standard errors of estimates using bootstrap.

Algorithm 2 Bootstrap Algorithm for Calculating Standard Error of 2sCOPE Estimates

Series Input: data Y, P,W , sample size N , and number of bootstrap B.
for b = 1 to B do

Randomly resample (Yb, Pb,Wb) from the original data (Y, P,W ) with replacement,
sample size = N ;

Obtain P ∗
b = Φ−1(Ĥ(Pb)),W

∗
b = Φ−1(L̂(Wb)), where Ĥ(·) and L̂(·) are estimated CDFs

of Pb and Wb;
Obtain the 2sCOPE estimate θ̂b = θ̂(Yb, Pb,Wb, P

∗
b ,W

∗
b ) using the bth bootstrap sam-

ple.
end for

Calculate standard error of the estimator:

√∑B
b=1(θ̂b−

1
B

∑B
b=1 θ̂b)

2

B−1
.
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WEB APPENDIX G: IMPLEMENTING THE BOOTSTRAP METHOD TO

EVALUATE FINITE-SAMPLE BIAS IN EMPIRICAL APPLICATION

To gauge and validate the finite-sample performance of 2sCOPE, we apply the bootstrap

algorithm described in Algorithm 1 to our empirical application and conduct a bootstrap

re-sampling study by drawing repeated samples of the same size as the observed data from

the underlying copula model and the structural model estimated from the original sample

using data from store 1 in the application, and perform estimation on each bootstrap sample.

Specifically, we generate data using the following DGP:

Price∗

Bonus∗

PriceRedu∗

ξ∗t


∼ N





0

0

0

0


,



1 −0.5 −0.3 0.3

−0.5 1 −0.3 0

−0.3 −0.3 1 0

0.3 0 0 1




, (W55)

ξt = G−1(Φ(ξ∗t )) = Φ−1
σ (Φ(ξ∗)) = 0.4 · ξ∗t , (W56)

Price = Ĥ−1(Φ(Price∗)), Bonus = L̂−1
1 (Φ(Bonus∗)), (W57)

PriceRedu = L̂−1
2 (Φ(PriceRedu∗)), (W58)

Yt = −4 + (−2) · Price + 0.1 · Bonus + 0.3 · PriceRedu + ξt, (W59)

where Ĥ(·), L̂1(·), L̂2(·) are all estimated CDFs using the univariate empirical distribution

in the application for regressors Price, Bonus and PriceRedu, respectively. The correlation

matrix of the copula transformation of variables (i.e., Price∗, Bonus∗, PriceRedu∗, ξ∗) in

Equation (W55) and the standard deviation of the error term (i.e., σξ) are set according
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to the estimated parameter values using real data. After generating the regressors and

the structural error, we set the coefficients using the 2sCOPE estimates of original data to

generate Y in Equation (W59). We set the sample size T = 373, which is the same as the

sample size in the application, and generate B = 1000 bootstrap datasets in each of which

we estimate the structural model parameters using OLS and 2sCOPE.
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