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Abstract

The attractive properties of the Deferred Acceptance (DA) algorithm rest on the assumption of

perfect information. Yet field studies of school matching show that information is imperfect, particularly

for disadvantaged students. We model costly strategic learning when schools are ex ante symmetric, agree

on their ranking of students, and learning is rationally inattentive. Our analytic solution quantifies how

each student’s rank, learning costs and prior beliefs interact to determine their gross and net welfare as

well as the extent and form of mistakes they make. In line with the evidence, we find that lower-ranked

students are affected disproportionately more by information costs, generally suffering a larger welfare

loss than higher-ranked students. Interactions between mechanism design, inattention and inequity are

thus of first order importance.
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1 Introduction

Matching mechanisms are in widespread use, prominently in centralized school allocation systems worldwide

(Neilson, 2019). The Deferred Acceptance (DA) algorithm of Gale and Shapley (1962) is particularly widely

used, due in part to its theoretically attractive properties. Yet these properties rest on the assumption that

agents know everything about all schools they are asked to rank, which is at odds with empirical evidence. Of

particular concern is the observation that not all students are equally informed about their options, so that

incomplete information can amplify inequity. Students from disadvantaged backgrounds are often unaware

of their options (Hoxby and Avery, 2013) and targeted information interventions can significantly improve
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the quality of school they attend (Hastings and Weinstein, 2008; Hoxby and Turner, 2015). Presciently, Roth

and Sotomayor (1990) early on identified modeling of information acquisition as an important next step in

the analysis of matching mechanisms. Recent years have seen increased interest in and gradual progress

towards this goal (Bade, 2015; Immorlica et al., 2020; Artemov, 2021; Chen and He, 2021a,b).

The challenge faced by matching models with endogenous information is that students face three sources

of uncertainty: signal-based, deriving from uncertainty about what information their learning strategy will

produce; strategic, deriving from uncertainty about others’ submissions and thus the resulting matching

outcome; and value-based, referring to the remaining uncertainty about the student’s valuation of their

match.

We introduce a tractable model of strategically rational inattention in a matching market that parsimo-

niously captures this complexity. To focus on the interplay with inequity we assume that schools agree on

their ranking of students. For analytic tractability we assume that schools are ex ante symmetric (exchange-

able) and that learning is rationally inattentive (Sims, 2003; Caplin and Dean, 2015; Matejka and McKay,

2015). While our symmetry assumption implies that schools are ex ante identical, it does not require that

students’ valuations are independent across schools so that information on a school can update beliefs about

others.

We solve the model analytically for any number of schools and students, for any exchangeable priors,

and for heterogeneous marginal costs of learning. While not entirely simple, the solution is remarkably

elementary given the subtle interplay of forces. It permits us to quantify how each student’s rank, learning

costs and prior beliefs interact to determine their gross and net welfare as well as the extent and form of

mistakes they make.

A central finding is that DA exacerbates inequity. Lower-ranked students attain a lower fraction of their

net welfare surplus under full information than do higher-ranked students, even if they have the same costs

of learning. This is because lower-ranked students face greater uncertainty about the outcome resulting from

any submission, which disperses and often dilutes their incentive to acquire information. This is in addition

to, and exacerbates, any effect stemming from lower-ranked students having less ready access to information,

as may be realistic. While students’ net utilities respect their ranking, this need not be the case for their

outcomes. It may be optimal for a lower-ranked student to invest more in learning than a higher-ranked

student, in order to hedge for the higher strategic risk they face.

Three key aspects of our model allow us to solve it analytically. First, given their exchangeable priors

students endogenously acquire symmetric information (cf. Roth and Rothblum, 1999), so that in equilibrium

each student’s ex ante probability of being matched with any particular school depends only on the school’s

position in the student’s submitted list (“list-position sufficiency”). Each student is most likely (at least

weakly) to be matched with their top-listed school, then with their second-listed school, and so on. Students’

incentive to learn their true preference is fully characterized by their probability distribution of being matched

with the school in each position of their list. List-position sufficiency results from the exchangeability of
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prior beliefs, their independence across students, and anonymity of DA, and hence holds more generally.

The second aspect of the solution is specific to the mechanism. In our setting with schools’ ranking

of students being unanimous, DA amounts to serial dictatorship (Kojima and Manea, 2010; Morrill, 2013).

The first-ranked student is always matched with their top-listed school, with the second and each subsequent

student then able to understand precisely the probability with which each school will still be available to

them, and hence the likelihood that they will receive the school at each position in their list. The fact

that lower-ranking students are more likely to be matched with a school further down their list results in

very unequal learning incentives that policy can do little to address, since it is based on properties of the

mechanism. Other mechanisms may incentivize information acquisition more equally, as we illustrate in an

example for the Boston mechanism. The equalization of learning incentives in the Boston mechanism relative

to DA reduces inequity.

The third feature of our model that makes the solution simple is that students’ learning costs are linear

in the expected reduction in Shannon entropy between their prior and posterior beliefs, as in standard

rational inattention theory. Our exchangeable case allows us to apply the methods of Matejka and McKay

(2015) in their simplest form, producing state-dependent choice probabilities of the undistorted multinomial

logit form. Our approach is particularly amenable to rational inattention in strategic settings (Martin,

2017; Denti, 2020; Ravid, 2020; Bloedel and Segal, 2021). While the entropy-based cost function simplifies

formulae, we conjecture that many of the key properties of the solution would generalize to a broader class

of cost functions. By way of illustration, we revisit our leading example for the case of optimal sequential

search. While the sequential search solution qualitatively confirms our findings, it is harder to generalize.

This paper contributes to a growing literature on endogenous information acquisition in matching mar-

kets. In a setting with partition-based learning, Bade (2015) shows that among all non-bossy strategy-

proof mechanisms, sequential serial dictatorship is uniquely optimal in incentivizing efficient information

acquisition. Artemov (2021) provides a mild condition under which fewer students acquire information in

equilibrium than socially optimal. Immorlica et al. (2020) shows that when learning is costly, no matching

mechanism can generally guarantee a stable outcome while inducing efficient information acquisition. Chen

and He (2021a,b) illustrate differential learning incentives under DA and the Boston mechanism.

Section 2 introduces our model. Section 3 illustrates the key features of our solution and the structure

of the equilibrium in a small-scale example. Section 4 provides the analytic solution to the general model

and characterizes strategic uncertainty. Section 5 characterizes patterns of mistaken decisions and provides

formulae for each student’s gross and net welfare in equilibrium. Section 6 analyzes the potential impact of

cost-reducing policies in reducing the inequity resulting from DA, illustrates how other mechanisms may be

more effective in reducing inequity, and revisits the example of Section 3 with sequential search. Section 7

concludes. The full solution of the sequential search model is in Appendix B, all proofs are in Appendix C.
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2 Model and Symmetry

A finite number N = c ·M of students i ∈ I = {1, . . . , N} is matched with schools x ∈ X in a finite set of

cardinality |X| = M , each of capacity c ∈ N, using the Deferred Acceptance (DA) algorithm.1 Each student

i submits a rank-order list li ∈ Ai to the matching mechanism, a permutation of schools with li(m) ∈ X

indicating the school listed at position m. We assume that it is common knowledge that all schools submit

the same list to the matching mechanism, according to which students are ranked in strict order given by

their index i (so that student 1 is top-ranked and thus has the highest priority). This unanimous ranking of

students could reflect their scores on a standardized admissions test, for example, or the random outcome

of a single tie-breaking rule. When submitting list li, student i is matched with school xiDA(li, l−i) ∈ X

which is the deterministic matching resulting from DA when the lists submitted by all other students are

l−i ∈ A−i ≡ ×j 6=iAj . The utility student i derives from being matched with a school x ∈ X is determined by

their type θi ∈ Θi ≡ VM , a vector of length M whose elements – denoted by θix – are the type’s valuations

of each school x ∈ X, which are in the finite set V ⊂ R of possible utility levels.2 Students’ types θi are

drawn independently of each other from their priors µi ∈ ∆(Θi). Let Θ−i ≡ ×j 6=iΘj . Students do not know

their types ex ante; rather, they can resolve some of the uncertainty about their own (but not others’) type

(i.e. about their valuation of schools) by acquiring a costly signal before submitting their list. They choose

an arbitrary (finite) information structure before observing a signal realization and submitting a rank-order

list. The cost of an information structure is linear in its expected reduction of Shannon entropy.

Each student’s equilibrium strategy will reflect the three-stage lottery they face: First, they face signal

uncertainty about the outcome of their chosen information structure. Second, the matching outcome resulting

from a submitted list is stochastic, due to the uncertainty about other students’ submissions. We will refer

to this as strategic uncertainty. Note that while DA’s strategy-proofness implies that strategic uncertainty

does not affect a student’s list submission strategy, it can affect their information acquisition strategy. What

is worth learning for a given student depends on how likely they are to be matched with each school on

their submitted list. Characterizing this distribution is combinatorically challenging even in the simplest

of cases, which would be compounded when relaxing independence across students, as observing a signal

would permit inference about what others likely learn and thus schools’ availability. Assuming that students’

types are drawn independently of each other allows us to abstract from this complication as students have

no way of learning – directly or indirectly – about others’ types. Third, students’ endogenously imperfect

information results in remaining value uncertainty about the utility they obtain from the school with which

they are matched. In equilibrium, each student bears these types of uncertainty in mind when choosing the

extent of the effort they put into understanding schools. Solving the model thus requires us to identify each

student’s probability, in equilibrium, of being matched with each school on their list. This will further allow

us to specify each student’s probability distribution, as a function of their rank and their prior valuation of
1We consider the one-shot implementation of the student-proposing DA.
2The notation θix implies an ordering of the elements in X, which is arbitrary and assumed where convenient for brevity.
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schools, over the set of feasible rank-order list submissions, as well as their posterior belief when submitting

each possible list.

2.1 Exchangeable Prior Beliefs

As we focus on differences between students, we impose strong symmetry on each student’s prior belief about

their valuation of schools, assuming that it is exchangeable in the sense of de Finetti (cf. Kreps, 1988, pp.

145), i.e. for any permutation α : X → X of schools

µi
(
θi1, . . . , θ

i
M

)
= µi

(
θiα(1), . . . , θ

i
α(M)

)
. (1)

Exchangeability requires that all permutations of the elements of θi are equiprobable. This condition is more

general than assuming that utilities are independently and identically distributed across schools. It will also

be preserved in the remaining capacities of schools, while independence is not. Note also that priors can be

heterogeneous, so long as they are all exchangeable.

The assumption of exchangeability allows for essentially arbitrary Bayesian updating so that a signal

about a student’s valuation of one school can carry information about their valuation of other schools. In

models of costly sequential search this type of updating becomes intractable quickly. For example, it can

imply that there is no reservation strategy: observing a school of high utility can imply that utilities are gen-

erally high and justify further search, while observing a school of low utility can imply the converse. Rational

inattention and exchangeability, on the other hand, are highly complementary as we now demonstrate.

2.2 Symmetric Decision Problems

Exchangeable priors give rise to a strong form of symmetry in students’ decision problems that we now

introduce for general decision problems (µ,A, u) consisting of a prior µ ∈ ∆(Ω) over a finite state space Ω,

a choice set A, and a utility function u : A× Ω→ R.

Definition 1. Define the partition {Ωk}1≤k≤K of the state space, with ω, ω′ ∈ Ωk ⊆ Ω for some k if and

only if there exists a bijection αωω′ : A→ A such that

u(a, ω) = u(αωω′(a), ω′) ∀a ∈ A. (2)

A decision problem (µ,A, u) is symmetric if, for any k,

µ(ω) = µ(ω′) ∀ω, ω′ ∈ Ωk (3)

and, for any a, b ∈ A and k, there exists a bijection πab : Ωk → Ωk such that

u(a, ω) = u(b, πab(ω)) ∀ω ∈ Ωk. (4)
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This definition states that, within each subset Ωk of the partition, each state is equally likely and the

utilities of each pair of actions and each pair of states are permutations of each other. The critical simplifi-

cation is that symmetry of a decision problem ensures that the corresponding rational inattention problem

has a particularly simple solution. In stating this result it is convenient to solve for optimal information

acquisition strategies via choice of Bayes-consistent stochastic choice data

P ∈ P(µ,A) ≡

{
P ∈ ∆(A× Ω)|

∑
a∈A

P (a, ω) = µ(ω)∀ω ∈ Ω

}
(5)

as is standard in the literature (Matejka and McKay, 2015; Denti, 2020). The general rational inattention

problem with Shannon mutual information costs is given by

max
P∈P(µ,A)

∑
a∈A

∑
ω∈Ω

P (a, ω)u(a, ω)−K(κ, P ) (6)

where

K(κ, P ) ≡ κ
∑
a∈A

[H(µ)−H(γa)]
∑
ω∈Ω

P (a, ω) (7)

with the Shannon entropy H(p) = −
∑
ω∈Ω p(ω) ln(p(ω)) and the posterior belief

γa(ω) ≡ P (a, ω)∑
ν∈Ω P (a, ν)

. (8)

We will focus on strategies reflecting the decision problem’s symmetry.

Definition 2. A strategy P ∈ P(µ,A) is symmetric if for all a, b ∈ A∑
ω∈Ω

P (a, ω) =
∑
ω∈Ω

P (b, ω). (9)

The symmetric solution to symmetric rational inattention problems reduces to conditional choice proba-

bilities of the (undistorted) multinomial logit form of Matejka and McKay (2015).

Proposition 1. If a decision problem (µ,A, u) is symmetric, then the unique symmetric solution of the

rational inattention problem (eq. 6) satisfies

P (a|ω) ≡ P (a, ω)

µ(ω)
=

z(a, ω)∑
c∈A z(c, ω)

∀a ∈ A,ω ∈ Ω (10)

where z(a, ω) ≡ exp (u(a, ω)/κ). If the z(a) are affine independent, this is the unique solution (Matejka and

McKay, 2015; Caplin et al., 2019).
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3 An Example

We will show in Section 4 that in equilibrium, others’ symmetric equilibrium strategies cause each student’s

problem to be symmetric, so that they have a unique symmetric best response. In this section we illustrate

the resulting solution in an example, which demonstrates how each student’s symmetric solution results

in lower-ranked students’ problems being symmetric, so that symmetry is inherited. This implies that in

equilibrium each student is unconditionally equally likely to match with any of the schools, which will permit

a combinatoric answer to the question of how likely each school is to be available for ensuing students.

The example of this section involves three students i ∈ {1, 2, 3} who are to be matched by DA with three

schools x ∈ {a, b, c} of unit capacity. Each student values schools as either good or bad, receiving utility

uG > 0 from matching with a good school and uB = 0 from a bad one. For simplicity, we assume that all

students face the same marginal cost κ of information. Since the schools unanimously rank the students in

order of their index, the matching resulting from DA is characterized by serial dictatorship (see Proposition

4 below), so that each student is matched with the first school on their submitted rank-order list that has

not been assigned to a higher-ranking student. We first solve for the Nash equilibrium of the resulting game

between students whose strategies consist of type-dependent stochastic choice data (Matejka and McKay,

2015). The solution permits us to analyze key features of the equilibrium: what each student learns and

what type of mistakes they make; inequities in the gross and net welfare they attain; and the potential for

cost-reducing policies to reduce inequity. Section 4 will generalize these analyses to arbitrary numbers of

schools and students, general utilities, and heterogeneous information costs.

3.1 Solving for Students’ Optimal Submissions

Note first that there are eight states of the world defined by the quality in sequential order of schools a,

b, and c. Since each student i has an exchangeable prior µi, prior probabilities are a function only of the

cardinality of the set of good schools,

µi(GGB) = µi(GBG) = µi(BGG) =: µi(2) ≥ 0 (11)

µi(GBB) = µi(BGB) = µi(BBG) =: µi(1) ≥ 0 (12)

We define µi(GGG) =: µi(3) and µi(BBB) =: µi(0) accordingly. The only additional restriction that

exchangeability imposes apart from non-negativity is that µi(3) + 3µi(2) + 3µi(1) + µi(0) = 1. A student’s

expected utility of submitting a rank-order list depends on their type θi, but also on their rank i. Since, by

serial dictatorship, student 1 receives their first-listed school with certainty, their utility of submitting list l1

is given by

u1(l1, θ1) = θ1
l1(1) (13)

when their type is θ1. Ex ante, student 1 thus only faces the signal uncertainty associated with the random

realization from their chosen signal structure, and the value uncertainty referring to the remaining uncertainty
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l1\θ1 GGG GGB GBG BGG GBB BGB BBG BBB

(a, ∗, ∗) z
6z

z
4z+2

z
4z+2

1
4z+2

z
2z+4

1
2z+4

1
2z+4

1
6

(b, ∗, ∗) z
6z

z
4z+2

1
4z+2

z
4z+2

1
2z+4

z
2z+4

1
2z+4

1
6

(c, ∗, ∗) z
6z

1
4z+2

z
4z+2

z
4z+2

1
2z+4

1
2z+4

z
2z+4

1
6

Table 1: Type-conditional choice probabilities P 1∗(l1|θ1) of student 1, where P 1∗(a, ∗, ∗|θ1) is the probability

of submitting each list that ranks school a first, i.e. (a, b, c) and (a, c, b).

in the resulting posterior about their valuation θ1
l1(1) of their top-listed school. Their learning problem is

therefore a standard rational inattention problem which is symmetric as specified in Definition 1. The

optimal symmetric strategy follows directly from the standard rationally inattentive solution of Matejka and

McKay (2015) and is given in full in Table 1, where we define z ≡ exp(uG/κ) for convenience.3 Given the

strong symmetry properties of the solution, we can effectively summarize all choice probabilities focusing on

states in which the good schools are earlier in the alphabet than bad schools: if there is one good school it

is school a, if there are two they are a, b. For each state we show the solution for a subset of rank-order lists

which are “representative” for other lists that give rise to the same sequence of good and bad schools. The

choice probabilities of Table 1 can thus be summarized as

P 1∗ (a, b, c|GGG) =
z

6z
(14)

P 1∗ (a, b, c|GGB) = P 1∗ (a, c, b|GGB) =
z

4z + 2
(15)

P 1∗ (c, a, b|GGB) =
1

4z + 2
(16)

P 1∗ (a, b, c|GBB) =
z

2z + 4
(17)

P 1∗ (b, a, c|GBB) = P 1∗ (b, c, a|GBB) =
1

2z + 4
(18)

P 1∗ (a, b, c|BBB) =
1

6
(19)

The solution has many noteworthy features. First, note that for student 1 only the quality of the top-

ranked school matters for the probability with which a list is submitted. Second, z ≡ exp(uG/κ) is a sufficient

statistic for the extent to which the utility of picking a good school and costs of identifying such a school

impact choice probabilities, as has been understood since Matejka and McKay (2015). Third, the simple way

of understanding these probabilities in all cases is to note that the numerator reflects the transformed utility

of the particular list submitted, while the denominator reflects the corresponding value added up across all

lists. What this means is that the likelihood of identifying a particular school as good is higher the fewer

such schools there are: With z = 2, for example, there is a 50% probability of listing the good school first

if exactly one school is good. If exactly two schools are good, each of these is 40% likely to be top-ranked.
3The symmetric equilibrium restricts attention to strategies under which submissions with equivalent expected utility are

equally likely.
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µ2

γ′ (a,b,c)

l2(1) = a
Gγ′(θ2

a = G)

B
2
3

l2(2) = b
G

B
1
3

γ′′ (c,b,a)

l2(1) = c
G

B
2
3

l2(2) = b
G

B
1
3

...

θ2
l2(j)

Value

Uncertainty
x2(l2, l−2)

Strategic

Uncertainty
l2γ2

Signal

Uncertainty

Figure 1: Posterior-based illustration of the three-stage lottery faced by student 2. Having chosen an

information structure given their prior belief µ2, student 2 faces uncertainty about the realization of the

signal and the posterior belief γ2 it induces. Given their posterior belief, they submit a utility-maximizing

rank-order list l2 to the mechanism, which results in an outcome that is stochastic as it depends on the

submission of student 1. There is remaining uncertainty about their valuation of their matched school.

Fourth, and most strikingly, these conditional probabilities apply regardless of the structure of the prior,

provided it is exchangeable. The same formulae thus characterize conditional choice probabilities regardless

of what learning about one school might imply about the probability of the other schools being good. This

contrasts profoundly with models of sequential search, in which the realized utilities of early schools can

create all kinds of intricacies in the subsequent search patterns, making conditional choice probabilities in

the optimal strategy strongly path dependent and far from invariant to the structure of the prior. Finally,

note that the unconditional choice probabilities of student 1 are uniform, so ex ante they are equally likely

to be matched with any of the three schools. This is critical for student 2, since whichever school student 1

is matched with will not be available to them.

In addition to value and signal uncertainty, all students other than student 1 also face strategic uncertainty

about the outcome resulting from the list they submit. Figure 1 illustrates this for student 2 using the

(equivalent) posterior-based approach for interpretability: First, nature draws a signal from the information

structure chosen by the student, which results in a posterior belief γ2 ∈ ∆(Θ2) about their type θ2 under

which they will submit a utility-maximizing rank-order list l2. Second, the student faces strategic uncertainty

about the outcome resulting from their submitted list. Third, there is value uncertainty remaining about

the utility of their realized outcome. By choosing an information structure, the student determines how

much value uncertainty will be remaining. Note that the choice of information structure is implicit in our

formulation, as is now standard in the literature. Since their types are independent, student 2 cannot infer
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anything about the type of student 1 from what they learn about their own type. From the perspective of

student 2 each of the three schools is thus equally likely to still be available, hence they will be matched

with their top-ranked school with probability 2/3, and their second-ranked school with probability 1/3. For

student 2 the resulting expected utility of submitting a list l2 when their true type is θ2 is thus

u2(l2, θ2) =
2

3
θ2
l2(1) +

1

3
θ2
l2(2). (20)

The strategic uncertainty about which of the schools on their list student 2 is matched with affects

their learning incentives, which is reflected in their type-conditional choice probabilities. Due to the strong

symmetry properties of the solution, the choice probabilities (given in full in Table 4 in the appendix) can

again be summarized by focusing on states in which the good schools are earlier in the alphabet than the

bad schools. The choice probabilities in such cases are:

P 2∗ (a, b, c|GGG) =
z

6z
(21)

P 2∗ (a, b, c|GGB) =
z

2z + 2z
2
3 + 2z

1
3

(22)

P 2∗ (a, c, b|GGB) =
z

2
3

2z + 2z
2
3 + 2z

1
3

(23)

P 2∗ (c, a, b|GGB) =
z

1
3

2z + 2z
2
3 + 2z

1
3

(24)

P 2∗ (a, b, c|GBB) =
z

2
3

2z
2
3 + 2z

1
3 + 2

(25)

P 2∗ (b, a, c|GBB) =
z

1
3

2z
2
3 + 2z

1
3 + 2

(26)

P 2∗ (b, c, a|GBB) =
1

2z
2
3 + 2z

1
3 + 2

(27)

P 2∗ (a, b, c|BBB) =
1

6
(28)

Student 2’s optimal strategy has the same qualitative features and essentially the same simplicity and

separability properties as that of student 1. Again z ≡ exp(uG/κ) is a sufficient statistic for the impact of

learning costs as well as the utility differential between schools on patterns of mistakes. As was the case for

student 1, student 2 is more likely to submit better lists for higher values of z. The conditional probabilities

again apply regardless of the structure of the prior and the unconditional choice probabilities of student 2 are

also uniform, so ex ante they are equally likely to be matched with any of the three schools. The solution has

one more striking feature related to strategic uncertainty. Student 2 is less likely than student 1 to submit

a good list because their learning incentive is diluted by the strategic uncertainty, which is reflected in the

exponents of z. The formulae reveal in a precise and simple manner how the strategic uncertainty impacts

what is learned. If only the first school on a list is good, z is taken to the power of 2/3 to reflect the fact that

the first school is received with this probability. If only the second school on a list is good, the exponent 1/3

reflects the fact that the second school is received with this probability. If both are good, z has exponent

1 since student 2 will find themselves at a good school regardless of how the strategic uncertainty resolves.

10



Finally, the exponent is zero when the first two are both bad. As for student 1, the numerator can be seen

as the value of the list in question, while the denominator is the total value of all lists in the given state,

which depends only on the number of good schools in that state. As we will see, these findings apply equally

in the general case. Finally, note that there is an even stronger form of symmetry here, as identifying the

one good school gives rise to the same conditional probabilities (after cancelling) as identifying the one bad

school.

Since whichever schools students 1 and 2 match with will, by serial dictatorship, not be available to

student 3, their submission is inconsequential, so they optimally acquire no information and are indifferent

between lists.

3.2 Value Uncertainty in Students’ Posterior Beliefs

Beyond specifying students’ type-conditional choices, solving the model analytically allows us to analyze

the form and likelihood of the mistakes each student makes. This is revealed by their posterior beliefs

P i∗(θi|li) ≡ P i∗(li, θi)/
∑
θ∈Θi P

i∗(li, θ) when submitting any list, which are shown in Table 2. Students’

posterior beliefs exhibit a strong form of symmetry: They depend only on the order of good and bad schools

in the submitted list, but not on the schools’ identities. Due to this symmetry, the nature of students’

posteriors is best summarized through the value uncertainty, which is captured by the probability

pi(m) ≡
∑
θi∈Θi

P i∗(θi|li)1
{
θili(m) = uG

}
(29)

that the m-th listed school on any list li submitted by student i is a school whose valuation is good under

their true type. This probability is independent of li due to the posteriors’ symmetry.

Student 1 does not face any strategic uncertainty and their value uncertainty is standard as in any

individual rational inattention model. The probability that the top-listed school (the only possible outcome)

is good for student 1 is

p1(1) = µ1(3) + 3µ1(2)
2z

2z + 1
+ 3µ1(1)

z

z + 2
(30)

which is increasing in z. For student 3 the strategic uncertainty is maximal, as they face a 1/3 probability

of matching with any of the schools regardless of their submission. Student 3 thus will not learn anything,

so their value uncertainty will be defined by the prior irrespective of information costs,

p3(1) = p3(2) = p3(3) = µ3(3) + 2µ3(2) + µ3(1) =: p3 (31)

More interesting are the mistakes made by student 2 who faces non-trivial strategic uncertainty (unlike

student 1) and non-trivial signal uncertainty (unlike student 3) and thus resembles the generic student in

our general model. The nature of the mistakes depends on how the strategic uncertainty resolves: When

being matched with the first school on their list, the probability of that school being good is

p2(1) = µ2(3) + 3µ2(2)
z + z

2
3

z + z
2
3 + z

1
3

+ 3µ2(1)
z

2
3

z
2
3 + z

1
3 + 1

(32)
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l1\θ1 GGG GGB GBG BGG GBB BGB BBG BBB

(a, ∗, ∗) µ1(3) 3z
2z+1µ

1(2) 3z
2z+1µ

1(2) 3
2z+1µ

1(2) 3z
z+2µ

1(1) 3
z+2µ

1(1) 3
z+2µ

1(1) µ1(0)

(b, ∗, ∗) µ1(3) 3z
2z+1µ

1(2) 3
2z+1µ

1(2) 3z
2z+1µ

1(2) 3
z+2µ

1(1) 3z
z+2µ

1(1) 3
z+2µ

1(1) µ1(0)

(c, ∗, ∗) µ1(3) 3
2z+1µ

1(2) 3z
2z+1µ

1(2) 3z
2z+1µ

1(2) 3
z+2µ

1(1) 3
z+2µ

1(1) 3z
z+2µ

1(1) µ1(0)

l2\θ2 GGG GGB GBG BGG GBB BGB BBG BBB

(a, b, c) µ2(3) 6zµ2(2)
Z2(2)

6z
2
3 µ2(2)
Z2(2)

6z
1
3 µ2(2)
Z2(2)

6z
2
3 µ2(1)
Z2(1)

6z
1
3 µ2(1)
Z2(1)

6µ2(1)
Z2(1) µ2(0)

(a, c, b) µ2(3) 6z
2
3 µ2(2)
Z2(2)

6zµ2(2)
Z2(2)

6z
1
3 µ2(2)
Z2(2)

6z
2
3 µ2(1)
Z2(1)

6µ2(1)
Z2(1)

6z
1
3 µ2(1)
Z2(1) µ2(0)

(b, a, c) µ2(3) 6zµ2(2)
Z2(2)

6z
1
3 µ2(2)
Z2(2)

6z
2
3 µ2(2)
Z2(2)

6z
1
3 µ2(1)
Z2(1)

6z
2
3 µ2(1)
Z2(1)

6µ2(1)
Z2(1) µ2(0)

(b, c, a) µ2(3) 6z
2
3 µ2(2)
Z2(2)

6z
1
3 µ2(2)
Z2(2)

6zµ2(2)
Z2(2)

6µ2(1)
Z2(1)

6z
2
3 µ2(1)
Z2(1)

6z
1
3 µ2(1)
Z2(1) µ2(0)

(c, a, b) µ2(3) 6z
1
3 µ2(2)
Z2(2)

6zµ2(2)
Z2(2)

6z
2
3 µ2(2)
Z2(2)

6z
1
3 µ2(1)
Z2(1)

6µ2(1)
Z2(1)

6z
2
3 µ2(1)
Z2(1) µ2(0)

(c, b, a) µ2(3) 6z
1
3 µ2(2)
Z2(2)

6z
2
3 µ2(2)
Z2(2)

6zµ2(2)
Z2(2)

6µ2(1)
Z2(1)

6z
1
3 µ2(1)
Z2(1)

6z
2
3 µ2(1)
Z2(1) µ2(0)

Table 2: Posterior beliefs P i∗(θi|li) of student 1 (top) and 2 (bottom), with Z2(2) = 2z + 2z
2
3 + 2z

1
3 and

Z2(1) = 2z
2
3 + 2z

1
3 + 2. P 1∗(θ1|a, ∗, ∗) denotes the posterior belief of student 1 when submitting any list

that lists school a first.
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which is increasing in z, as was the case for student 1 above. The pattern of mistakes is more interesting if the

strategic uncertainty results in student 2 being matched with their second-listed school, whose probability

of being good is

p2(2) = µ2(3) + 3µ2(2)
z + z

1
3

z + z
2
3 + z

1
3

+ 3µ2(1)
z

1
3

z
2
3 + z

1
3 + 1

. (33)

Note that this is increasing in z if and only if µ2(2) > µ2(1), so that the pattern of mistakes depends

on the structure of the prior. In a tracking problem in which exactly one of the schools is good (so that

µ2(1) = 1/3 > 0 = µ2(2)), for example, this probability decreases when information costs are reduced, as the

student is increasingly successful in identifying the one good school and ranking it first (“cherry picking”).

Conversely, if µ2(2) = 1/3 so that there is exactly one bad school (“lemon dropping”), this probability

increases as information costs are reduced. This is because the student will be more successful in identifying

the one bad school and ranking it last.

3.3 Gross Welfare and the Value of Information

The strategic and value uncertainty jointly determine students’ ex ante probability of being matched with a

good school.4 For student 1 this probability is simply given by p1(1), whereas for student 2 it is

2

3
p2(1) +

1

3
p2(2) = µ2(3) + µ2(2) + (µ2(2) + µ2(1))

2z + z
2
3

z + z
2
3 + z

1
3

. (34)

Note that both students’ ex ante probability of a good outcome is always increasing in z regardless of the

prior (provided that not all schools yield the same utility with certainty).

We can quantify how students’ ex ante welfare and the value of information in equilibrium depend on

their rank (which determines how much strategic uncertainty they face) and on their information costs.

First, note that under their prior belief, a student always matches with a good school when all schools are

good, matches with a good school with probability 2/3 when two schools are good, and with probability 1/3

when only one school is good. In the case of no information, all students thus attain expected utility

U(µi) ≡
(
µi(3) + 2µi(2) + µi(1)

)
uG (35)

regardless of their list submission. By acquiring information, students raise their ex ante gross welfare

U i∗(z, µi) above this level, to an extent that reflects the value of their equilibrium information structure

which depends on their rank i. The resulting value of information (Frankel and Kamenica, 2019) to each

student in equilibrium is summarized in the following Proposition.

Proposition 2. The value of students’ information structure in equilibrium is

U1∗(z, µ1)− U(µ1) =

(
2z − 2

2z + 1
µ1(2) +

2z − 2

z + 2
µ1(1)

)
uG (36)

U2∗(z, µ2)− U(µ2) =
z − z 1

3

z + z
2
3 + z

1
3

(
µ2(2) + µ2(1)

)
uG (37)

and 0 for student 3.
4The signal uncertainty does not impact the probability of a good outcome, due to the symmetry of the posteriors.
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Figure 2: Relative gross welfare of students 1 and 2 as a function of κ/uG = 1/ ln(z), for student 1 priors

satisfying µ1(2) = µ1(1) and any student 2 priors.

The utility achieved under full information, given by

U
1
(µ1) ≡

(
µ1(3) + 3µ1(2) + 3µ1(1)

)
uG (38)

U
2
(µ2) ≡

(
µ2(3) + 3µ2(2) + 2µ2(1)

)
uG, (39)

constitutes an upper limit on each student’s gross welfare. While student 1 will be matched with a good

school whenever there is one, student 2 only has a 2/3 chance of being matched with the only good school.

The fact that student 2 attains lower gross utility even under perfect information solely reflects the fact that

schools prefer student 1 to student 2. Students’ full information surplus

U
1
(µ1)− U(µ1) =

(
µ1(2) + 2µ1(1)

)
uG (40)

U
2
(µ2)− U(µ2) =

(
µ2(2) + µ2(1)

)
uG (41)

thus presents a natural benchmark with which to compare their value of information (which is itself a

surplus). We thus define the relative gross welfare

Û i(z, µi) ≡ U i∗(z, µi)− U(µi)

U
i
(µi)− U(µi)

, (42)

which is plotted in Figure 2.

3.4 Net Welfare and the Cost of Information

Rather than analyzing students’ utility without taking into account their information costs, a policy maker or

planner may want to consider students’ utility net of equilibrium information costs Ki∗(κ, µi) ≡ K(κ, P i∗),

N i∗(z, µi) ≡ U i∗(z, µi)−Ki∗
(
uG

ln(z)
, µi
)
. (43)

Due to the symmetry in students’ posteriors they all have the same entropy, so that computing students’

information costs is straightforward. The resulting net utility is summarized in the following Proposition.
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Figure 3: Relative net welfare of students 1 and 2 as a function of κ/uG = 1/ ln(z), for student 1 priors

satisfying µ1(2) = µ1(1) and any student 2 priors.

Proposition 3. Students’ net utility in equilibrium is

N1∗(z, µ1) =

[
µ1(3) ln z + 3µ1(2) ln

(
2z + 1

3

)
+ 3µ1(1) ln

(
z + 2

3

)]
uG
ln z

(44)

N2∗(z, µ2) =

[
µ2(3) ln z + 3µ2(2) ln

(
z + z2/3 + z1/3

3

)
+ 3µ2(1) ln

(
z2/3 + z1/3 + 1

3

)]
uG
ln z

(45)

N3∗(z, µ3) =
(
µ3(3) + 2µ3(2) + µ3(1)

)
uG (46)

The expressions for the net utility exhibit the same kind of separability by prior as observed for the

gross utilities of Proposition 2. As before, a meaningful comparison is again possible by computing students’

relative net welfare, which is defined as

N̂ i(z, µi) ≡ N i∗(z, µi)−N(µi)

N
i
(µi)−N(µi)

(47)

where N
i
(µi) = U

i
(µi) is the net utility when information is costless and N(µi) = U(µi) is the net utility

when information is infinitely costly (so that no information is acquired). The resulting relative net welfare

is shown in Figure 3.

3.5 Inequity

Figure 2 illustrates how, at any marginal cost κ of information, student 2 attains a lower fraction than

student 1 of their gross welfare surplus under full information, which is already smaller than that of student

1. At κ = uG, for example, student 1 achieves Û1 ≈ 42% of their full information surplus. At the same cost

of information, student 2 achieves only Û2 ≈ 22% of their full information surplus – a sizeable difference

indicated by the vertical dotted line in Figure 2. An analyst merely examining students’ behavior might be

tempted to conclude that lower-ranked students face higher information costs, but here their behavior and

outcome are solely due to their diluted incentives to acquire information under the mechanism.
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The relative gross welfare of the two students facing the same information costs obeys the ranking

2z − 2

2z + 1
≥ Û1(z, µ1) ≥ z − 1

z + 2
> Û2(z, µ2) > 0 (48)

at any cost of information and regardless of their priors. As discussed above, the gross welfare surplus of

student 3 is always zero. Lower-ranked students in this section’s example are thus affected disproportionately

more by information costs than higher-ranked students: The former attain a lower fraction Û i(z, µi) of their

already smaller gross welfare surplus under full information than the latter, which also implies that the value

U i∗(z, µi) − U(µi) of their equilibrium information structure is lower, as is their gross welfare U i∗(z, µi) in

absolute terms.

The fact that student 2 exerts less effort on information acquisition than student 1 does not change the

ranking of their utilities: The relative net welfare is still lower for student 2 than for student 1, obeying the

ordering

3
ln
(

2z+1
3

)
ln(z)

− 2 ≥ N̂1(z, µ1) ≥
3 ln

(
z+2

3

)
2 ln(z)

− 1

2
> N̂2(z, µ2) > 0 (49)

for any information costs and priors. At κ = uG, for example, student 1 achieves N̂1 ≈ 22% of their full

information surplus while student 2 achieves only N̂2 ≈ 11%, as seen in Figure 3.

3.6 Information Policies

We have seen above that student 2 is disproportionately affected by costly information. This is because

their incentive to acquire information is lower under DA than that of student 1. A policy maker to whom

this type of inequity is of concern may thus want to address this informational disadvantage by leveling the

informational playing field: Using the above solution, it is straightforward to determine the level κ2(κ1) to

which student 2’s information costs have to be lowered in order for them to achieve the same fraction of

their full information surplus as student 1 does at cost κ1. The policy maker’s goal would then be to find,

for any z, the z̃(z) such that

Û2(z̃(z), µ2) = Û1(z, µ1). (50)

Returning to the example of Figure 2 where µ1(2) = µ1(1), it is easy to see that for student 2 to achieve the

fraction student 1 achieves at κ1 = uG,

Û1(exp(1), µ1) ≈ 0.42 ≈ Û2(exp(2.04), µ2) (51)

their information cost would have to be reduced by more than half to κ2 = 0.49uG as indicated by the

horizontal dotted line in Figure 2. In order for student 2 to double their fraction of net welfare surplus from

11% to the 22% that student 1 achieves at κ = uG,

N̂1(exp(1), µ1) ≈ 0.22 ≈ N̂2(exp(2.02), µ2) (52)

their information cost would have to be reduced to κ2 = 0.495uG as indicated by the horizontal dotted line

in Figure 3.
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4 Equilibrium

In this section we characterize the symmetric equilibrium of the general model. The game between stu-

dents who acquire costly information structures before submitting a rank-order list can be expressed equiv-

alently as a game in stochastic choice strategies (cf. Denti, 2020). This game consists of each student i

choosing a stochastic choice strategy P i ∈ P(µi, Ai) so as to maximize, given others’ strategies P−i ≡

(P 1, . . . , P i−1, P i+1, . . . , PN ) where P j ∈ P(µj , Aj) for all j 6= i, expected utility

U i(P i,P−i) =
∑

(li,l−i)∈Ai×A−i

∑
(θi,θ−i)∈Θi×Θ−i

P i(li, θi)P−i(l−i,θ−i)θixi(li,l−i) (53)

net of information costs K(κi, P i) as defined in equation 7. Note that P−i(l−i,θ−i) =
∏
j 6=i P

j(lj , θj) since

students’ types are independent, as are their simultaneous list submissions. This formulation of student

i’s rational inattention problem (cf. Matejka and McKay, 2015, Corollary 1) gives rise to the following

equilibrium: P ∗ = (P 1∗, . . . , PN∗) ∈ ×i∈IP(µi, Ai) is a Nash equilibrium if for all i ∈ I

U i(P i∗,P−i∗)−K(κi, P i∗) ≥ U i(P i,P−i∗)−K(κi, P i) for all P i ∈ P(µi, Ai). (54)

It is symmetric if every strategy P i∗ is symmetric according to Definition 2.

We focus on equilibria in symmetric strategies that reflect the fact that schools are ex ante identical under

each student’s prior belief. The central challenge in identifying the equilibrium is to characterize the strategic

uncertainty that each student faces. This is rendered feasible by the observation that if others’ strategies

are symmetric, then a student’s problem is symmetric in the sense of Definition 1 and thus has a unique

symmetric solution itself (Proposition 1). In order to characterize the resulting symmetric equilibrium, we

first show in Section 4.1 that if others’ strategies are symmetric, then the probability that a student matches

with a given school only depends on its position on the student’s submitted list (a property we refer to as

list-position sufficiency; see Lemma 1). Next, we establish that list-position sufficiency implies that each

student’s problem is symmetric (Lemma 2), which implies (by Proposition 1) that it has a unique symmetric

solution. Given students’ symmetric equilibrium strategies, we then find combinatoric expressions for each

student’s probability of being matched by DA with each school on their list, which fully characterizes the

strategic uncertainty they face (Section 4.2). This permits us to describe the unique symmetric equilibrium

analytically (Section 4.3). It is only at this last stage that the rationally inattentive cost function comes into

play – most of the intricacy relates to the inescapable strategic uncertainty.

4.1 Symmetry and List-Position Sufficiency

The first key observation is that symmetry of others’ strategies renders all lists equivalent in that a student’s

probability of being matched with a given school depends only on its position m in their submitted list, not

its identity nor that of the other schools in the list. This holds true for a class of matching mechanisms

beyond DA. In our setting, suppressing notation for the school side of the market, a matching mechanism x

17



is a vector-valued function x : ×i∈IAi → XN such that, for all x ∈ X and l1, . . . , lN ∈ ×i∈IAi,∑
i∈I

1{xi(l1, . . . , lN ) = x} ≤ c (55)

where xi(l1, . . . , lN ) ∈ X denotes the school x ∈ X with which student i ∈ I is matched when the submitted

lists are l1, . . . , lN . We define a class of mechanisms that are invariant to renaming of schools (see also Ehlers,

2008).

Definition 3. Given any li ∈ Ai and any permutation α : X → X of schools, let liα be the list such that

liα(m) = α(li(m)) m = 1, . . . ,M. (56)

A matching mechanism x is anonymous if for any permutation α : X → X

xi(liα, l
−i
α ) = α(xi(li, l−i)) (57)

for all i ∈ I, li ∈ Ai, and l−i ∈ A−i.

To state the result formally, we define student i’s probability, given P−i, of being matched with school

x ∈ X when submitting list li ∈ Ai as

πix(x|li,P−i) ≡
∑

l−i∈A−i

∑
θ−i∈Θ−i

P−i(l−i,θ−i)1
{
xi(li, l−i) = x

}
. (58)

Lemma 1 (List-Position Sufficiency). If, for any i ∈ I, P j is symmetric for all j 6= i in the sense of

Definition 2, then for any anonymous matching mechanism x there exists hi ∈ ∆({1, . . . ,M}) such that

πix(li(m)|li,P−i) = hi(m) (59)

for all li ∈ Ai and all m ∈ {1, . . . ,M}.

List-position sufficiency rests on students’ symmetric information (cf. Roth and Rothblum, 1999), which

they acquire endogenously in light of their exchangeable priors.

Given others’ strategies P−i, student i’s expected utility of submitting rank-order list li ∈ Ai when their

true type is θi ∈ Θi is

ui(li, θi) =
∑
x∈X

πix(x|li,P−i)θix =
M∑
m=1

πix(li(m)|li,P−i)θili(m). (60)

The distribution hi of random variable m thus captures the entire strategic uncertainty under the matching

mechanism. We next note that list-position sufficiency implies that the student’s problem is symmetric,

provided that their prior is exchangeable.

Lemma 2. The problem of student i with choice set A = Ai, an exchangeable prior µi ∈ ∆(Θi) over state

space Ω = Θi, and utility, for any probability mass function hi,

ui(li, θi) =
M∑
m=1

hi(m)θili(m) (61)

is symmetric in the sense of Definition 1.
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The unique symmetric equilibrium then rests on Proposition 1, by which each student has a unique

symmetric best response to others’ symmetric equilibrium strategies.

4.2 Characterizing Strategic Uncertainty under DA

This section fully characterizes the strategic uncertainty under DA. Due to schools’ unanimous ranking of

students, the matching produced by the Deferred Acceptance Algorithm is characterized by serial dictatorship

(Kojima and Manea, 2010; Morrill, 2013): the matching is as if every student i was matched in order, starting

with student 1, with the first school in their submitted rank-order list among those with positive remaining

capacity after students 1, . . . , i− 1 have been assigned in the same manner.

Proposition 4. Given schools’ unanimous ranking of students, the DA matching is characterized by serial

dictatorship.

This permits us to find a combinatoric expression for the probability mass function hiDA. The key

observation is that given that others’ equilibrium strategies are symmetric, each school is equally likely to

be available to any student (see Lemma 3 below). The number of schools available to a student is thus

a sufficient statistic for their probability of each outcome, which is specified combinatorically in Lemma

4 below. When schools’ capacities are greater than 1, then the number of available schools is stochastic,

however, so Lemma 5 specifies the corresponding distribution of the number of available schools each student

will face given others’ symmetric strategies. In order to state these results, we define the random vector

cn ∈ Cn ≡
{
cn ∈ NM0 :

∑
x∈X c

n
x = c ·M − n

}
whose element cnx is the remaining capacity of school x after

students 1, . . . , n have been assigned by serial dictatorship and whose probability distribution is induced by

these students’ strategies,

P(cn|P 1, . . . , Pn) ≡
∑
l1∈A1

· · ·
∑
ln∈An

1

{
cnx = c−

n∑
i=1

1{xiDA(li, l−i) = x} ∀x ∈ X

}
n∏
j=1

∑
θj∈Θj

P j(lj , θj). (62)

Note that this definition, resting on serial dictatorship, would not be meaningful for more general mechanisms.

The following Lemma establishes that if the strategies of higher-ranked students are symmetric, then each

school is equally likely to have a given remaining capacity, and thus also the same probability of having

positive remaining capacity.

Lemma 3. If P 1, . . . , Pn are symmetric in the sense of Definition 2, then the conditional distribution

P(cn|P 1, . . . , Pn) is exchangeable, i.e. for all permutations α : X → X of schools

P(cnα(1), . . . , c
n
α(M)|P

1, . . . , Pn) = P(cn1 , . . . , c
n
M |P 1, . . . , Pn) (63)

for all cn ∈ Cn.

Since the distribution of cn is exchangeable, a sufficient statistic is given by the random vector kn =

(kn0 , . . . , k
n
c ) whose elements knr ≡

∑
x∈X 1{cnx = r}, for r = 0, 1, . . . , c, capture the number of schools with
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remaining capacity r after n students have been assigned. All vectors cn in the set

Cn(kn) ≡

{
cn ∈ Cn :

∑
x∈X

1{cnx = r} = knr ∀r = 0, . . . , c

}
(64)

of vectors consistent with a given kn are permutations of each other and hence – by exchangeability –

equally likely. Conditional on a vector kn, the remaining capacities cn induced by the symmetric equilibrium

strategies are thus distributed uniformly across schools.

Corollary 1. If P 1, . . . , Pn are symmetric, then the distribution of cn conditional on kn is uniform over

Cn(kn).

This observation permits us to find the combinatoric expression for hiDA, which we now illustrate in two

steps. In the next subsection, we derive an expression for a student’s probability of matching with the m-th

school on any list they submit, conditional on a vector kn of remaining capacities. The subsection thereafter

derives a recursive expression for the distribution of remaining capacities faced by any student. Together,

these two results characterize each student’s probability mass function hiDA.

4.2.1 Outcome Conditional on the Number of Schools with no Remaining Capacity

By serial dictatorship, each student is matched with the first school on their list having positive remaining

capacity after all higher-ranked students have been matched in the same manner. Since each school is equally

likely to be available to a student, the number kn0 of schools with no remaining capacity is a sufficient statistic

for the probability that the m-th school on a student’s list li is the first one with positive remaining capacity

(and thus their matching outcome). This probability is given in the following Lemma.

Lemma 4. Given any kn and li ∈ Ai

1

|Cn(kn)|
∑

cn∈Cn(kn)

1

{
m = min

η
{η : cnli(η) > 0}

}
=

(
M −m

kn0 + 1−m

)
/

(
M

kn0

)
∀m ∈ {1, . . . ,M}. (65)

Conditional on kn0 , this result provides the probability distribution over the rank m on their list of the

school with which a student will be matched. The combinatoric expression with binomial coefficients arises

because each of the
(
M
kn0

)
configurations in which exactly kn0 schools have no remaining capacity is equally

likely. Of these configurations,
(
M−m

kn0 +1−m
)
are such that the first m− 1 positions on a given list have a school

with no remaining capacity and the m-th position features a school with positive remaining capacity, which

are exactly the cases in which a student is matched with the m-th school on their list. Their probability,

conditional on kn0 , of being matched with the m-th school on their list is thus(
M −m

kn0 + 1−m

)
/

(
M

kn0

)
(66)

for any list. Note that this probability is zero for all m > kn0 + 1, which reflects the fact that a student can

do no worse than list all unavailable schools before available ones.
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Figure 4: Illustration of Lemma 4 for M = 3 schools. White balls symbolize schools with positive remaining

capacity, black balls schools that have no remaining capacity and are thus unavailable to a student. Each

column corresponds to a number kn0 of schools that are unavailable to a student, and each of the three schools

is equally likely to be an available one. Determining the first available school in a given list thus amounts to

sequential draws without replacement from an urn with M = 3 balls, kn0 of which are black, until the first

white draw.

This result is illustrated in Figure 4 which revisits the example of Section 3 featuring three schools of

unit capacity. If kn0 = 0 schools are unavailable to a student, as is the case for student 1, then the school in

position m = 1 on their list is available with probability(
3− 1

0 + 1− 1

)
/

(
3

0

)
= 1. (67)

If, as is the case for student 2, exactly kn0 = 1 of the three schools is unavailable (specifically, any of the

three schools with equal probability 1/3), then the school in position m = 1 on their list is available with

probability (
3− 1

1 + 1− 1

)
/

(
3

1

)
= 2/3, (68)

and otherwise their second-listed school is available. If kn0 = 2 schools are unavailable, as is the case for

student 3, then by analogous logic there is a 1/3 chance that their first-listed school is available, a 1/3 chance

that the first-listed school is unavailable but the second one is available, and a 1/3 chance that only the

third-listed school is available. Equation 65 thus parsimoniously characterizes the strategic uncertainty faced

by students in the example of Section 3.
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4.2.2 Characterizing the Distribution of Remaining Capacities

In the example of Section 3 there was no uncertainty about the number of schools with no remaining capacity,

only about their identity. This is not true when schools have capacity greater than 1, however: The number

of unavailable schools then is stochastic; it depends on the probability mass function in equilibrium of the

random vector kn after n students have been assigned, which we will denote by fn(kn). This probability

mass function can be obtained recursively. The recursion rests on serial dictatorship and the fact that for

a student with a symmetric strategy P i, each school with positive remaining capacity is an equally likely

outcome (see Lemma C.2 in the Appendix).

The resulting recursion yielding the distribution over remaining capacities is illustrated in Figure 5 for

an example with three schools (as before), now of capacity 2. In the top left corner, the distribution f0

before any student has been assigned is degenerate at k0 = (0, 0, 3), as all three schools are certain to have

a remaining capacity of two. Student 1 will thus with certainty be matched with a school of remaining

capacity r = 2. After n = 1 students have been assigned, one school will thus have one slot remaining and

two schools will have both slots remaining, so that f1(k1 = (0, 1, 2)) = 3
3f

0(k0 = (0, 0, 3)) = 1 is degenerate.

The distribution f2 after two students have been assigned is non-degenerate: If students 1 and 2 did

not match with the same school, then two schools will have one slot remaining and one school will have

two slots remaining, k2 = (0, 2, 1) (left branch). Since student 2 has an equal probability of matching

with any school, this occurs with probability f2(k2 = (0, 2, 1)) = 2
3f

1(k1 = (0, 1, 2)) = 2/3. If students

1 and 2 did match with the same school (right branch), then k2 = (1, 0, 2) which occurs with probability

f2(k2 = (1, 0, 2)) = 1
3f

1(k1 = (0, 1, 2)) = 1/3.

How many schools are available after n = 3 students depends on whether students 1, 2, and 3 all

matched with different schools or whether two of them matched with the same school. If they all matched

with different schools then k3 = (0, 3, 0). This occurs with probability

f3(k3 = (0, 3, 0)) =
1

3
f2(k2 = (0, 2, 1)) = 2/9 (69)

since, conditional on k2 = (0, 2, 1), there is a 1/3 chance that student 3 matched with the one school of

remaining capacity r = 2 (left branch). Otherwise two of the students matched with the same school so that

k3 = (1, 1, 1), which as illustrated in the fourth row of Figure 5 occurs with probability

f3(k3 = (1, 1, 1)) =
2

3
f2(k2 = (0, 2, 1)) +

2

2
f2(k2 = (1, 0, 2)) = 7/9, (70)

because k3 = (1, 1, 1) arises if either k2 = (0, 2, 1) and student 3 matched (with probability 2/3) with one of

the two schools of remaining capacity r = 1, or if k2 = (1, 0, 2) and student 3 matched (with certainty) with

one of the two schools of remaining capacity r = 2. Analogous logic yields the distributions in the remaining

rows of Figure 5. The general characterization of remaining capacities following the logic of the preceding

example is given by the following Lemma.
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Figure 5: Illustration of the recursion of Lemma 5 for a simple example with 3 schools of capacity 2. Each

row illustrates the distribution fn(kn) for a different number n of students that have been assigned. Each

column corresponds to a given number kn0 of schools with no remaining capacity.

Lemma 5. For any n = 0, . . . , N , if P 1, . . . , Pn are symmetric in the sense of Definition 2, then∑
cn∈Cn(kn)

P(cn|P 1, . . . , Pn) = fn(kn) (71)

for all kn, where the probability mass functions fn over a random vector k = (k0, k1, . . . , kc) are defined

recursively as

f0 (k) = 1 {kc = M,kr = 0∀r 6= c}

fn+1 (k) =
c∑
r=1

kr + 1

M − k0 + 1 {r = 1}
fn (k + er − er−1) (72)

with er being the unit vector of length c+1 such that (er)ρ = 1{ρ = r} for ρ = 0, . . . , c, and where fn(k) = 0

unless kr ∈ {0, . . . ,M} for all r and
∑c
r=0 kr = M .
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Given the resulting distributions of ki−1
0 , each student i’s probability hiDA(m) of matching with the school

in each position on their list is then readily obtained from Lemma 4. In the previous example, students 1

and 2 will always be matched with their first-listed school, since the schools have sufficient capacity to

accommodate two students so that k0
0 = k1

0 = 0 with certainty. The probability that the first-listed school

of student 3 is still available to them depends on k2
0. With probability 2/3 it is the case that k2

0 = 0,

in which case student 3 gets their first choice with probability 1 (by Lemma 4). Otherwise k2
0 = 1, in

which case student 3 gets their first choice with probability 2/3 and their second choice with probability

1/3. Student 3 is thus matched with their first choice with probability 8/9, and with their second choice

otherwise. In contrast, student 4 is matched with their first choice with probability 20/27 and their second

choice otherwise, since k3
0 = 0 only with probability 2/9.

4.3 Equilibrium Characterization

Proposition 1, Lemma 1, and Lemma 2 establish the unique symmetric Nash equilibrium, which is sum-

marized by the following Theorem. If others’ strategies are symmetric, then a student i’s probability of

matching with a school under DA only depends on its position m on their list and the distribution of

remaining capacities, as characterized by Lemmas 3, 4, and 5.

Theorem 1 (Nash Equilibrium). Given an anonymous mechanism, (P 1∗, . . . , PN∗) is a symmetric Nash

equilibrium if and only if for all i ∈ I

P i∗(li|θi) ≡ P i∗(li, θi)

µi(θi)
=
zi(li, θi)

Zi(θi)
∀li ∈ Ai, θi ∈ Θi (73)

where

zi
(
li, θi

)
= exp

(
1

κi

M∑
m=1

hi(m)θili(m)

)
(74)

and

Zi(θi) =
∑
l′∈Ai

zi(l′, θi). (75)

Under DA

hiDA(m) =
∑

k∈Nc+1

(
M −m

k0 + 1−m

)
/

(
M

k0

)
· f i−1(k). (76)

The key observation in establishing the result is that given others’ symmetric equilibrium strategies, the

problem of student i is symmetric in the sense of Definition 1, so that equation 73 is the unique symmetric

best response, giving rise to choice probabilities that are unconditionally uniform. Regardless of how the

strategic uncertainty in hi resolves, they thus have an unconditionally equal probability of matching with

any school that still has positive remaining capacity.

It is worth noting how simple these results are. For example, in a general model, changing any student’s

cost of learning would be expected to change the strategic uncertainty facing all subsequent students. In our
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symmetric framework, students have symmetric information à la Roth and Rothblum (1999). This implies

that the effect instead is purely local to the student in question, so that changing one student’s marginal cost

of information only affects their outcome, but does not otherwise affect the equilibrium. It is this feature

that allows us to conduct separable policy experiments for each student. Note also that the probability mass

function hi is monotone decreasing in m, which reflects the strategy-proofness of DA: Under any belief it

is best to rank the schools in decreasing order of their expected utility. While students may submit a list

inconsistent with their true type, they have no incentive to deviate from truthfully revealing their belief.

5 Students’ Choices, Mistakes, and Welfare

5.1 Students’ List Submissions

Theorem 1 shows that the powerful separability properties of the solution found in the example of Section

3 are fully general. Each student’s optimal strategy has the same qualitative features and essentially the

same simplicity as in that special case. The conditional probability of any list in any state can be computed,

according to equation 73, as a ratio between a transformed payoff to that list in that state and the sum of

the correspondingly transformed payoffs in that state across all lists. The properties of this solution notably

depend on the precise nature of the payoff transformation in equation 74. The novel feature of this formula

relates to the strategic uncertainty it captures in a student’s probability hi(m) of receiving the m-th listed

school on any list, which determines the expected utility of the stochastic outcome resulting from an action

in a given state. Note that this is different from standard rational inattention models in that the learnable

state does not resolve all of the uncertainty: The decision maker can only reduce value uncertainty, but not

strategic uncertainty. The probability of choosing any list is then obtained by the usual transformation of

dividing the expected utility of that list by the cost parameter κi and exponentiating, divided by the sum

across all lists of that expression. It is hard to imagine a simpler formula that takes into account in a flexible

manner all strategic considerations.

Note finally that the prior is separable just as in the three-school case. Variations in the prior change

the pattern of behavior without in any way changing the conditional choice probabilities in each state. Of

course the prior does impact posterior beliefs and hence welfare, which we will now discuss.

5.2 Value Uncertainty in Students’ Posterior Beliefs

Note that the denominator in the conditional probability of equation 73, Zi(θi) as specified in equation

75, depends only on the set of payoffs, but not their precise assignment to schools. The assumption of

exchangeable priors implies that all states with the same such set of payoffs are equiprobable. This means

that the posterior beliefs have corresponding invariance properties. From students’ solution of equation 73
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it is immediate to find their posterior belief

P i∗(θi|li) = µi(θi)
zi(li, θi)

Zi(θi)/(M !)
(77)

when submitting any list li ∈ Ai. The posterior distorts the prior in a systematic and continuous manner:

The prior probability µi(θi) of any state is divided by this state’s average value across all lists, Zi(θi)/(M !),

and then multiplied by the state’s value zi(li, θi) when submitting a given list li. This implies that states

giving higher-than-average utility for a list are more likely under a student’s posterior belief when submitting

that list than they are under the student’s prior. Exchangeability again implies that µi(θi) and Zi(θi) are

the same for all states featuring the same distribution of utility levels.

This explicit solution allows us to analyze the form and likelihood of the mistakes each student makes.

As in the example of Section 3, the structure of learning is best understood by analyzing students’ expected

utility after strategic uncertainty has resolved. Student i’s expected utility in equilibrium of being matched

with their m-th listed school is given by

U i∗
(
κi, µi|m

)
≡
∑
li∈Ai

∑
θi∈Θi

P i∗(li, θi)θili(m) =
∑
θi∈Θi

µi(θi)

∑
li∈Ai z

i(li, θi)θili(m)

Zi(θi)
. (78)

This quantity’s additive separability by type θi, while compelling and intuitive, is one of the attractive

consequences of the exchangeability assumption that could not have been expected ex ante. This position-

conditional expected utility is a response to, and reflects features of, the strategic uncertainty in hi. This

function, like hi, will be monotonically decreasing in m, as students list schools in order of decreasing

expected utility.

5.3 Gross Welfare and the Value of Information

From equation 78 it is immediate that in equilibrium, student i attains gross utility U i∗(κi, µi) ≡ U i(P i∗,P−i∗)

given by

U i∗(κi, µi) =
M∑
m=1

hi(m)U i∗(κi, µi|m) = κi
∑
θi∈Θi

µi(θi)

∑
li∈Ai z

i(li, θi) ln zi(li, θi)

Zi(θi)
. (79)

A student who does not acquire any information and instead relies on their prior attains expected utility

U(µi) =
∑
θi∈Θi

µi(θi)

∑
x∈X θ

i
x

M
, (80)

as they are equally likely to be matched with any of the M schools. The following Proposition quantifies the

resulting value of information (Frankel and Kamenica, 2019) to each student.

Proposition 5. The value of student i’s information structure in equilibrium is

U i∗(κi, µi)− U(µi) =
M∑
m=1

[
hi(m)− 1

M

]
U i∗

(
κi, µi|m

)
. (81)
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The value of information is again separable by the prior, a property that is inherited from U i
(
κi, µi|m

)
in equation 78. Proposition 5 highlights the value of information’s dependence on strategic uncertainty.

Strategic uncertainty affects U i
(
κi, µi|m

)
as discussed above, but it also enters the expression for the value

of information directly. For example, the value of information is highest for student 1 for whom h1(1) = 1,

and zero for student N for whom hN (m) = 1/M for all m. The expression above also opens the door for

comparative statics of gross welfare, as exemplified in Section 3.

5.4 Net Welfare and the Cost of Information

Analogous expressions can be obtained for the information costs incurred by any student and their resulting

net utility. In equilibrium, student i incurs information costs Ki∗(κ, µi) ≡ K(κ, P i∗) of

Ki∗(κi, µi) = κi
∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)

Zi(θi)
ln

(
M !zi(li, θi)

Zi(θi)

)
. (82)

Their resulting net utility is given in the following Proposition.

Proposition 6. In equilibrium, student i attains net utility N i∗(κi, µi) ≡ U i∗(κi, µi)−Ki∗(κi, µi) given by

N i∗(κi, µi) = κi
∑
θi∈Θi

µi(θi) ln

(
Zi(θi)

M !

)
. (83)

The functional form capturing students’ net utility is remarkably simple and depends on the average value

of a state across all feasible lists, Zi(θi)/(M !). This expression facilitates a direct and intuitive comparison

between students’ net utilities in equilibrium. The net utility surplus is given accordingly by

N i∗(κi, µi)−N(µi) =
∑
θi∈Θi

µi(θi)

[
κi ln

(
Zi(θi)

M !

)
− 1

M

∑
x∈X

θix

]
. (84)

6 Inequity, Policy, and Sequential Search

This section analyzes the implications of costly information for students’ ex ante welfare, and discusses the

potential for cost-reducing policies to alleviate the inequity resulting from costly information.

6.1 Inequity

Figure 6 illustrates, using an example with eight students and four schools of capacity 2, that lower-ranked

students attain a lower fraction of their (already smaller) net welfare surplus and generally lower gross

welfare, as well.

However, information costs can also result in lower-ranked students attaining greater expected gross

utility than higher-ranked students, even though higher-ranked students are preferred by all schools. This

counter-intuitive flipping of the utility order is due to the fact that lower-ranked students may be incentivized

to learn more, as illustrated in the following example. Consider six students and three schools of capacity 2

27



0.0 0.5 1.0 1.5 2.0
/uG

0.0

0.2

0.4

0.6

0.8

1.0
U

i (
,

)
1-2
3
4
5
6
7
8

0.0 0.5 1.0 1.5 2.0
/uG

0.0

0.2

0.4

0.6

0.8

1.0

N
i (

,
)

1-2
3
4
5
6
7
8

Figure 6: Relative gross (left) and net (right) welfare in an example with eight students and four schools of

capacity 2, with priors under which each student considers exactly one of the schools to be good (uG = 1)

and three bad (uB = 0).

as in the example of Figure 5 in Section 4, and assume that exactly two schools are good while one is bad

(“lemon dropping”). Students’ position-conditional expected utilities are shown for κ = 0.05 and uG = 1 in

Table 3. The expected utility of the first-listed school of students 1 through 5 is 1, meaning that they list

a good school in the first position with certainty. Students 1 and 2 list the second good school in second

or third position with equal probability 1/2, but always match with a good school since they are always

matched with their first-listed school. Student 3, who faces (as derived in Section 4) a 1/9 probability of

matching with their second-listed school, lists the second good school second with probability 90.2% and

third otherwise. They thus attain an ex ante expected utility of 0.989, meaning that they match with a

good school with probability 98.9%. Student 4 faces a 7/27 chance of matching with their second-listed

school (see Section 4 above). This outcome is more likely than it is for student 3, and incentivizes student

4 to exert more effort in identifying the second good school. They thus list the second good school second

i\m 1 2 3

1 1 1/2 1/2

2 1 1/2 1/2

3 1 0.902 0.098

4 1 0.994 0.006

5 1 0.983 0.017

6 2/3 2/3 2/3

Table 3: Position-conditional expected utility U i(κi, µi|m) for κi = 0.05 and µi under which exactly two

schools yield uG = 1 and one has utility 0.
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with probability 99.4% and third otherwise, and therefore match with a good school with probability 99.8%,

which is a better outcome than that of student 3. While student 3 could do better by following the learning

strategy of student 4, its higher cost is not justified for them. Student 5 lists the second good school second

with probability 98.3% and third otherwise; student 6 has a 2/3 chance in each slot of having a good school,

thus matching with a good school with probability 2/3.

6.2 Information Policies

Our model allows us to quantify the relationship between students’ rank and welfare loss, as well as the effect

of cost-lowering policies. A particularly attractive feature of the equilibrium is that students’ solutions do not

depend on others’, so that changing one student’s information costs does not have any equilibrium effects.

Even after a student’s learning costs are reduced to offset the informational disadvantage as in Section 3,

note that higher-ranked students will still achieve higher utility, as the policy maker offsets the informational

disadvantage resulting from a student’s lower rank but not the lower priority itself. Note also that cost-

lowering policies can offset lower-ranked students’ welfare loss by reducing their value uncertainty, but they

cannot reduce their strategic uncertainty itself, which weakens their impact. Student N is a particularly

stark example, as they have no incentive to acquire any information regardless of how much a policy may

reduce information costs. This stresses the need for mechanism design that takes into account information

acquisition incentives – future research for which our model opens the door and for which the symmetric

setting seems to be particularly promising. This will likely require reducing strategic uncertainty.

6.3 Inequity in the Boston Mechanism

Artemov (2021) and Chen and He (2021b) have observed that the Immediate Acceptance (IA) algorithm or

Boston mechanism, while challenged for its lack of strategy-proofness (cf. Abdulkadiroğlu and Sönmez, 2003;

Abdulkadiroğlu et al., 2005, 2009), may incentivize better information acquisition than DA. An interesting

observation is that IA also incentivizes information acquisition more equally: In the three student example of

Section 3, for example, it would give rise to strategic uncertainty captured by the probability mass function

h1
B = (1, 0, 0) (85)

h2
B =

(
6

9
,

2

9
,

1

9

)
(86)

h3
B =

(
4

9
,

5

18
,

5

18

)
(87)

Student 2 still has a 2/3 chance of being matched with their first pick, which is the case unless that school is

also the first pick of student 1. If student 2 does not receive their first choice, they are no longer guaranteed

to be matched with their second choice, however: They will miss out on their second choice if it is the first

choice of student 3, which is the case with probability 1/3. Student 2 thus has a lower incentive to resolve

their preference under IA than they did under DA. Student 3, on the other hand, now has positive value of
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information. They will be matched with their first choice if it is neither the first choice of student 1 nor of

student 2, which is the case with probability 4/9. In this example IA is thus more equitable in incentivizing

information acquisition.

6.4 Sequential Search

Modeling students as rationally inattentive, with learning costs that are linear in the expected reduction in

Shannon entropy between their prior and posterior beliefs, gives rise to equilibrium strategies that reflect

the strategic learning incentives in a remarkably compact and simple form. Yet Section 4 makes clear that

the central analytic challenge, irrespective of learning costs, is solving for the strategic uncertainty. It is

thus natural to conjecture that many of the qualitative features of the equilibrium are robust to changes in

the cost function. Most significant perhaps is to consider qualitatively different costs, such as those that

characterize standard models of sequential search. While the Shannon cost function is uniformly posterior

separable (Caplin et al., 2021) and as such can be micro-founded based on continuous incremental learning

and optimal stopping (Hébert and Woodford, 2021; Bloedel and Zhong, 2021), sequential search is a more

appropriate description for situations in which agents incur fixed costs to perfectly learn their valuation of

a school (e.g. through a campus visit). The most realistic cases may be of hybrid form, with both fixed

and flow costs. Appendix B revisits the example of Section 3 and shows that its key conclusions are indeed

robust to replacing the Shannon cost function with optimal sequential search. Recall that the example

involves three schools of unit capacity and three students whose valuation of schools is either good or bad,

yielding utility uG > 0 or uB = 0, respectively.

To reduce notational burden, we assume that all students incur the same fixed search cost κ ∈ (0, 1)

for fully revealing their valuation of a school, and that they have the same exchangeable prior µ with full

support µ(g) > 0 (to avoid trivial cases) over the number g = 0, 1, 2, 3 of good schools, so that

µ(3) + 3µ(2) + 3µ(1) + µ(0) = 1. (88)

To reflect the focus on symmetry, we assume that search order among schools is uniform and independent

across students. One of the central findings of Section 3 is that lower-ranked students are affected dispropor-

tionately by information costs. Figure 7, which plots students’ relative gross and net welfare analogous to

Figures 2 and 3, demonstrates that this finding is robust. While the precise shape depends on parameters,

the broad qualitative features of relative welfare remain intact in this example. First, the relative welfare

falls faster for student 2 as search costs rise above zero. Second, it is always (weakly) higher for student

1 than for student 2. It is this second property which implies that no search is optimal for student 2 at a

lower cutoff than for student 1. The figure also illustrates that with sequential search costs, gross welfare is

a discontinuous function of information costs.

While Figure 7 is qualitatively similar to Figures 2 and 3, note that sequential search gives rise to

piece-wise linear functions, while the Shannon case is smooth. This reflects the different nature of the two
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Figure 7: Relative gross (left) and net (right) welfare of student 1 and 2 under sequential search, as a function

of κ, for µ(3) = µ(2) = µ(1) = µ(0) = 1/8.

information cost functions. In sequential search, students pay a fixed cost to fully reveal their valuation

of a school. This results in strategies that vary discontinuously with search costs, which would make the

equilibrium analysis beyond this example challenging. Shannon information costs, in contrast, make it easier

to analyze the resulting equilibrium even for relatively general cases.

7 Conclusion

The attractive properties of DA rest on the assumption that applicants are fully informed about their options,

yet in practice this is often not the case as learning is costly and information is incomplete. We introduce

a tractable model of costly strategic learning and characterize the welfare consequences of endogenously

imperfect information for DA. We assume that schools agree on their ranking of students, that schools are ex

ante symmetric, and that learning is rationally inattentive. We find that lower-ranked students are affected

disproportionately more by information costs, generally suffering a larger welfare loss than higher-ranked

students. This raises questions about the mechanism’s consequences for equity and underlines the importance

of exploring the trade-off between how a mechanism incentivizes information acquisition and other possible

desiderata such as strategy-proofness.
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A Tables

l2\θ2 GGG GGB GBG BGG GBB BGB BBG BBB

(a, b, c) z
Z2(3)

z
Z2(2)

z
2
3

Z2(2)
z

1
3

Z2(2)
z

2
3

Z2(1)
z

1
3

Z2(1)
1

Z2(1)
1

Z2(0)

(a, c, b) z
Z2(3)

z
2
3

Z2(2)
z

Z2(2)
z

1
3

Z2(2)
z

2
3

Z2(1)
1

Z2(1)
z

1
3

Z2(1)
1

Z2(0)

(b, a, c) z
Z2(3)

z
Z2(2)

z
1
3

Z2(2)
z

2
3

Z2(2)
z

1
3

Z2(1)
z

2
3

Z2(1)
1

Z2(1)
1

Z2(0)

(b, c, a) z
Z2(3)

z
2
3

Z2(2)
z

1
3

Z2(2)
z

Z2(2)
1

Z2(1)
z

2
3

Z2(1)
z

1
3

Z2(1)
1

Z2(0)

(c, a, b) z
Z2(3)

z
1
3

Z2(2)
z

Z2(2)
z

2
3

Z2(2)
z

1
3

Z2(1)
1

Z2(1)
z

2
3

Z2(1)
1

Z2(0)

(c, b, a) z
Z2(3)

z
1
3

Z2(2)
z

2
3

Z2(2)
z

Z2(2)
1

Z2(1)
z

1
3

Z2(1)
z

2
3

Z2(1)
1

Z2(0)

Table 4: Type-conditional choice probabilities P 2∗(l2|θ2) of student 2 in the example of Section 3, with

Z2(3) = 6z, Z2(2) = 2z + 2z
2
3 + 2z

1
3 , Z2(1) = 2z

2
3 + 2z

1
3 + 2, and Z2(0) = 6.

B Sequential Search

This section derives the solution of the sequential search model outlined in Section 6.4. The solution is

simplified by the fact that searching all three schools is a strictly dominated strategy under any mechanism.

Rather than search the third school, the optimal strategy is to list the unsearched school last if the first two

are both good, first if they are both bad, and in the middle if one is good and one bad. There are thus

five strategies (denoted as indicated in parentheses) whose expected net utilities we consider: search twice

regardless of what the first search reveals (“2”); search twice if the first search reveals a bad school and once if

it reveals a good school (“2B”); search once if the first is bad, twice if it is good (“2G”); search once regardless

(“1”); and do not search at all (“0”). The strategy of not searching at all yields an expected utility of

V (0;µ) = [µ(3) + 2µ(2) + µ(1)]uG (B.1)

where the right-hand side is simply the unconditional probability that a randomly selected school is good. To

specify the value V i(1;κ, µ) of searching exactly once, we take account, conditional on each search outcome,

of the outcome of the optimal listing strategy, which is to list the one searched school first if it is revealed to

be good and last if it is bad. How likely a student using this strategy is matched with a good school depends

on the number of good schools, so that

V i(1;κ, µ) =
[
µ(3) + µ(2)

(
3hi(1) + 2hi(2) + hi(3)

)
+ µ(1)

(
2hi(1) + hi(2)

)]
uG − κ. (B.2)

If there are 3 good schools, which occurs with probability µ(3), then the student is sure to match with a good

school. With probability 3µ(2) there are two good schools, in which case there is a 2/3 chance that the first

searched will be good and a 1/3 chance that it is bad. If it is good and thus top-listed, then the second good
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school will be listed second or third with probability 1/2 each. If it is bad and thus listed last, then the two

good schools will be in the first two positions for sure. Hence the first school on the list is certain to be good,

the second on the list is good with probability 2/3, and the third on the list is good with probability 1/3.

The remaining state in which a good match is possible is the state with 1 good school, which has probability

3µ(1). In this case the one search reveals a good school with probability 1/3 and a bad one otherwise. If the

revealed school is the good one then it will be listed first, otherwise the good school has an equal 1/2 chance

of being listed first or second. Combining these two cases there is an overall 2/3 chance of the good school

being listed first, and a 1/3 chance of it being listed second. Lastly, we subtract the search cost which is

incurred once. Analogous logic rationalizes the remaining three equations as expanded on below.

V i(2G;κ, µ) =
[
µ(3) + 3µ(2)

(
hi(1) + hi(2)

)
+ µ(1)

(
2hi(1) + hi(2)

)]
uG − [1 + µ(3) + 2µ(2) + µ(1)]κ

V i(2B;κ, µ) =
[
µ(3) + µ(2)

(
3hi(1) + 2hi(2) + hi(3)

)
+ 3µ(1)hi(1)

]
uG − [1 + µ(2) + 2µ(1) + µ(0)]κ

V i(2;κ, µ) =
[
µ(3) + 3µ(2)

(
hi(1) + hi(2)

)
+ 3µ(1)hi(1)

]
uG − 2κ

To understand V i(2G;κ, µ) note that it differs from V i(1;κ, µ) in only two respects: It is more likely to

identify a good school when there are two good ones, and an additional search cost is paid if the first one

is good. The key is that when the first-searched school is good, the second search is only beneficial when in

fact two schools are good, and in this case the search means that the second good school is certainly listed

second, either as the second identified good one or as the unsearched one. Hence the 1/3 probability that

the last-listed school is one of the good ones is no longer applicable, as the first- and second-listed school are

surely the two good ones. Note that in the state in which only one school is good, the second search after

finding the good one has no value.

To understand V i(2B;κ, µ) note likewise that it differs from V i(1;κ, µ) in only two respects. This time

it is more likely to identify a good school when there is only one good school, and an additional search cost

is paid if the first one is bad. The key is that when the first-searched school is bad, the second search is only

beneficial when there is only one good school, and in this case the second search ensures that it is certainly

listed first. Finally, to understand V i(2;κ, µ) note that it has both of the conditional benefits associated

with searching a second time only following one of the outcomes, at the cost of incurring a second search

cost for sure.

Which search strategy attains the highest ex ante net value under DA depends on a student’s information

costs, prior, as well as their rank, since h1
DA = (1, 0, 0), h2

DA = (2/3, 1/3, 0) and h3
DA = (1/3, 1/3, 1/3).

Student 3, as residual claimant, never searches. From the above equations it follows that student 1 stops

searching for sure if the first school is revealed to be good, so they are optimizing among the three strategies

whose net value is illustrated in the left panel of Figure 8 for the case in which schools have an independent

1/2 probability of being good. For sufficiently high costs, not searching at all is the dominant strategy,

while for low enough costs it is optimal to search twice only after the first-searched school is revealed to be

bad. Whether or not it is ever optimal to search exactly once regardless of the outcome depends on the
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Figure 8: Expected net utility for student 1 (left) and 2 (right) under different sequential search strategies,

for µ(3) = µ(2) = µ(1) = µ(0) = 1/8. The optimal strategy at each information cost is highlighted in gray.

parameters.

The set of possibly optimal strategies for student 2 is larger than for student 1. In particular, neither the

strategy of searching twice only if the first-searched is good, nor that of always searching twice, is dominated.

This most search intensive strategy indeed is optimal as search costs approach zero, with no search still being

optimal for sufficiently high search costs. Which, if any, of the other strategies can be optimal depends on

the parameters. The right panel of Figure 8 reveals that for the previously discussed independent uniform

prior, student 2’s optimal search strategy for intermediate information costs is to search exactly once, and

thus less than does student 1. In both figures we have marked the upper envelope defining the optimal search

strategy, which is convex as the maximum of linear functions. Note that student 2 stops searching altogether

at a lower cost of information than student 1. At the lowest information costs, however, student 2 searches

more than does student 1, which is reminiscent of the example of Table 3.

The resulting welfare is shown in Figure 7 in the main text, whose properties can be rationalized by a few

simple observations. First, in accordance with equations 40 and 41, the full information surplus of student

1 and 2 is

V 1(2;κ = 0, µ)− V (0;µ) = [µ(2) + 2µ(1)]uG (B.3)

V 2(2;κ = 0, µ)− V (0;µ) = [µ(2) + µ(1)]uG. (B.4)

As search costs rise initially from zero, it is optimal for student 2 to search twice while student 1 searches

less, stopping after one search if the school is good. Relative net welfare in this leftmost region of the figure
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is therefore

V 1(2B;κ, µ)− V (0;µ)

V 1(2;κ = 0, µ)− V (0;µ)
= 1− 1 + µ(2) + 2µ(1) + µ(0)

µ(2) + 2µ(1)

κ

uG
(B.5)

V 2(2;κ, µ)− V (0;µ)

V 2(2;κ = 0, µ)− V (0;µ)
= 1− 2

µ(2) + µ(1)

κ

uG
. (B.6)

which explains the steeper negative slope of the relative net welfare as search costs rise above zero for student

2 compared to student 1 in Figure 7.

A second qualitative observation concerns the cutoff cost level at which each student stops search alto-

gether. The surplus of each search strategy relative to the no-search benchmark for student 1 is

V 1(1;κ, µ)− V (0;µ) = [µ(2) + µ(1)]uG − κ (B.7)

V 1(2B;κ, µ)− V (0;µ) = [µ(2) + 2µ(1)]uG − [1 + µ(2) + 2µ(1) + µ(0)]κ. (B.8)

Hence for student 1 the cutoff κ̄1 above which no search is optimal is given by

κ̄1 = max

{
µ(2) + µ(1),

µ(2) + 2µ(1)

1 + µ(2) + 2µ(1) + µ(0)

}
uG. (B.9)

For student 2

V 2(1;κ, µ)− V (0;µ) =

[
2

3
µ(2) +

2

3
µ(1)

]
uG − κ (B.10)

V 2(2G;κ, µ)− V (0;µ) =

[
µ(2) +

2

3
µ(1)

]
uG − [1 + µ(3) + 2µ(2) + µ(1)]κ (B.11)

V 2(2B;κ, µ)− V (0;µ) =

[
2

3
µ(2) + µ(1)

]
uG − [1 + µ(2) + 2µ(1) + µ(0)]κ (B.12)

V 2(2;κ, µ)− V (0;µ) = [µ(2) + µ(1)]uG − 2κ (B.13)

so the cutoff κ̄2 above which no search is optimal for student 2 is given by

κ̄2 = max

{
2

3
(µ(2) + µ(1)) ,

µ(2) + 2
3µ(1)

1 + µ(3) + 2µ(2) + µ(1)
,

2
3µ(2) + µ(1)

1 + µ(2) + 2µ(1) + µ(0)

}
uG. (B.14)

Qualitatively, the key observation is that student 1 continues to earn surplus at cost levels at which student

2 has stopped searching and effectively picks at random,

κ̄1 ≥ µ(2) + µ(1) > κ̄2. (B.15)

Hence at high as well as at low levels of the search cost, the reduction in net welfare surplus is greater for

student 2 than for student 1, just as in the case with rational inattention.
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C Proofs

C.1 Proof of Proposition 1

First note that by Definition 1 there exists, given ω, ω′ ∈ Ωk for some 1 ≤ k ≤ K, a bijection αωω′ : A→ A

satisfying equation 2 so that u(c, ω) = u(αωω′(c), ω
′) for all c ∈ A. It follows that

Z(ω) ≡
∑
c∈A

z(c, ω) =
∑
c∈A

z(αωω′(c), ω
′) = Z(ω′) ∀ω, ω′ ∈ Ωk (C.1)

where the last equality follows from the fact that αωω′ is a permutation. Note moreover that by Definition

1 there exists, given any a, b ∈ A and 1 ≤ k ≤ K, a bijection πab : Ωk → Ωk satisfying equation 4 so that

u(a, ω) = u(b, πab(ω)) for all ω ∈ Ωk, from which it follows that∑
ω∈Ωk

z(a, ω) =
∑
ω∈Ωk

z(b, πab(ω)) =
∑
ω∈Ωk

z(b, ω) ∀a, b ∈ A (C.2)

where the last equality follows from the fact that πab is a permutation. Definition 1 therefore implies

that for any symmetric decision problem it is the case, for all ω, ω′ ∈ Ωk given some 1 ≤ k ≤ K, that

µ(ω) = µ(ω′) =: µk by equation 3 and Z(ω) = Z(ω′) =: Zk by equation C.1, so that∑
ω∈Ωk

µ(ω)
z(a, ω)

Z(ω)
=
µk
Zk

∑
ω∈Ωk

z(a, ω) =
µk
Zk

∑
ω∈Ωk

z(b, ω) =
∑
ω∈Ωk

µ(ω)
z(b, ω)

Z(ω)
∀a, b ∈ A (C.3)

where the second equality follows from equation C.2. This implies, for any a, b ∈ A, that

∑
ω∈Ω

z(a, ω)

Z(ω)
µ(ω) =

K∑
k=1

∑
ω∈Ωk

z(a, ω)

Z(ω)
µ(ω) =

K∑
k=1

∑
ω∈Ωk

z(b, ω)

Z(ω)
µ(ω) =

∑
ω∈Ω

z(b, ω)

Z(ω)
µ(ω) (C.4)

so that in a symmetric decision problem∑
ω∈Ω

z(a, ω)

Z(ω)
µ(ω) = 1/|A| ∀a ∈ A. (C.5)

In a symmetric decision problem, any symmetric strategy P ∈ P(µ,A) therefore satisfies∑
ω∈Ω

z(a, ω)µ(ω)∑
c∈A z(c, ω)

∑
ω∈Ω P (c, ω)

= |A|
∑
ω∈Ω

z(a, ω)

Z(ω)
µ(ω) = 1 ∀a ∈ A (C.6)

where the first equality follows from the fact that for a symmetric strategy
∑
ω∈Ω P (c, ω) = 1/|A| for all

c ∈ A by definition. The necessary and sufficient conditions for optimality (Caplin et al., 2019, Proposition

1) then imply that a symmetric strategy is a solution if and only if the state-dependent choice probabilities

satisfy the necessary conditions of Matejka and McKay (2015), which in this case reduce to equation 10.

C.2 Derivation and Analysis of Equations 32, 33, and 34

The probability of the first-listed school of student 2 being good is obtained immediately by summing, in

Table 2, the posterior probabilities of all states in which this is the case, so that (cf. equation 78)

p2(1) = µ2(3) + 3µ2(2)
z + z

2
3

z + z
2
3 + z

1
3

+ 3µ2(1)
z

2
3

z
2
3 + z

1
3 + 1

(32)
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The probability that the second-listed school of student 2 is good is given analogously by (cf. equation 78)

p2(2) = µ2(3) + 3µ2(2)
z + z

1
3

z + z
2
3 + z

1
3

+ 3µ2(1)
z

1
3

z
2
3 + z

1
3 + 1

= µ2(3) + 3µ2(2) + 3

[
µ2(1)− µ2(2)

]
z

2
3

z + z
2
3 + z

1
3

. (33)

The sign of its derivative with respect to z only depends on the sign of the derivative’s numerator, so that

sgn

(
∂p2(2)

∂z

)
= sgn

([
µ2(1)− µ2(2)

]
·
[
2z−

1
3 (z + z

2
3 + z

1
3 )− z 2

3 (3 + 2z−
1
3 + z−

2
3 )
])

= sgn
([
µ2(2)− µ2(1)

]
·
[
z

2
3 − 1

])
so p2(2) is increasing in z if and only if µ2(2) > µ2(1), since z > 1. For a tracking problem in which exactly

one of the schools is good (so that µ2(1) = 1/3 > 0 = µ2(2)), this reduces to

p2(2) =
z

1
3

z
2
3 + z

1
3 + 1

which, due to z > 1, is decreasing in z. Conversely, if µ2(2) = 1/3 then the probability is

p2(2) = 1− z
1
3

z
2
3 + z

1
3 + 1

which is increasing in z. Student 2’s ex ante probability of being matched with a good school is

2

3
p2(1) +

1

3
p2(2) = µ2(3) +

2

3

(
3

(µ2(2) + µ2(1))z + µ2(2)z
2
3

z + z
2
3 + z

1
3

)
+

1

3

(
3µ2(2) + 3

[
µ2(1)− µ2(2)

]
z

2
3

z + z
2
3 + z

1
3

)

= µ2(3) + µ2(2) + (µ2(2) + µ2(1))
2z + z

2
3

z + z
2
3 + z

1
3

(34)

which is non-decreasing in z.

C.3 Proof of Proposition 2

The gross utility of student 1 follows as a special case of equations 78 and 79 as

U1∗(z, µ1) = U1∗(z, µ1|1) = κ

[
µ1(3)

3z ln z

3z
+ 3µ1(2)

2z ln z

2z + 1
+ 3µ1(1)

z ln z

z + 2

]
=

[
µ1(3) + 3µ1(2)

2z

2z + 1
+ 3µ1(1)

z

z + 2

]
uG

in accordance with equation 30. The gross utility of student 2, conditional on matching with the first or

second school on their list, respectively, is obtained from equation 78 as

U2∗(z, µ2|1) =

[
µ2(3) + 3µ2(2)

z + z2/3

z + z2/3 + z1/3
+ 3µ2(1)

z2/3

z2/3 + z1/3 + 1

]
uG

U2∗(z, µ2|2) =

[
µ2(3) + 3µ2(2)

z + z1/3

z + z2/3 + z1/3
+ 3µ2(1)

z1/3

z2/3 + z1/3 + 1

]
uG

in accordance with equations 32 and 33. The expected gross utility of student 2 is thus given by

U2∗(z, µ2) =
2

3
U2∗(z, µ2|1) +

1

3
U2∗(z, µ2|2)

=

[
µ2(3) + 3µ2(2)

z + 2
3z

2/3 + 1
3z

1/3

z + z2/3 + z1/3
+ 3µ2(1)

2
3z

2/3 + 1
3z

1/3

z2/3 + z1/3 + 1

]
uG

=

[
µ2(3) + µ2(2)

3z + 2z2/3 + z1/3

z + z2/3 + z1/3
+ µ2(1)

2z + z
2
3

z + z
2
3 + z

1
3

]
uG
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or equivalently, using equation 79,

U2∗(z, µ2) =

[
µ2(3) ln z + 3µ2(2)

2z ln z + 2z
2
3 ln z

2
3 + 2z

1
3 ln z

1
3

2z + 2z
2
3 + 2z

1
3

+ 3µ2(1)
2z

2
3 ln z

2
3 + 2z

1
3 ln z

1
3

2z
2
3 + 2z

1
3 + 2

]
κ

=

[
µ2(3) ln z + 3µ2(2)

z ln z + 2
3z

2
3 ln z + 1

3z
1
3 ln z

z + z
2
3 + z

1
3

+ 3µ2(1)
2
3z ln z + 1

3z
2
3 ln z

z + z
2
3 + z

1
3

]
κ

=

[
µ2(3) + µ2(2)

3z + 2z
2
3 + z

1
3

z + z
2
3 + z

1
3

+ µ2(1)
2z + z

2
3

z + z
2
3 + z

1
3

]
uG

=

[
µ2(3) + µ2(2) +

2z + z
2
3

z + z
2
3 + z

1
3

(µ2(2) + µ2(1))

]
uG

Using equation 35 the gross utility surplus is then obtained as

U1∗(z, µ1)− U(µ1) =

[
µ1(3) + 3µ1(2)

2z

2z + 1
+ 3µ1(1)

z

z + 2

]
uG −

[
µ1(3) + 2µ1(2) + µ1(1)

]
uG

=

[(
3

2z

2z + 1
− 2

)
µ1(2) +

(
3

z

z + 2
− 1

)
µ1(1)

]
uG

=

[
2z − 2

2z + 1
µ1(2) +

2z − 2

z + 2
µ1(1)

]
uG (36)

and

U2∗(z, µ2)− U(µ2) =

[
µ2(3) + µ2(2) +

2z + z
2
3

z + z
2
3 + z

1
3

(µ2(2) + µ2(1))

]
uG −

[
µ2(3) + 2µ2(2) + µ2(1)

]
uG

=

[
2z + z

2
3

z + z
2
3 + z

1
3

− 1

]
(µ2(2) + µ2(1))uG

=
z − z 1

3

z + z
2
3 + z

1
3

(
µ2(2) + µ2(1)

)
uG (37)

C.4 Proof of Proposition 3

The proposition is a corollary of Proposition 6: From equation 83 it follows that

N1∗(z, µ1) = κ

[
µ1(3) ln

(
6z

6

)
+ 3µ1(2) ln

(
4z + 2

6

)
+ 3µ1(1) ln

(
2z + 4

6

)]
=

[
µ1(3) ln z + 3µ1(2) ln

(
2z + 1

3

)
+ 3µ1(1) ln

(
z + 2

3

)]
uG
ln z

(44)

and

N2∗(z, µ2) = κ

[
µ2(3) ln

(
6z

6

)
+ 3µ2(2) ln

(
2z + 2z

2
3 + 2z

1
3

6

)
+ 3µ2(1) ln

(
2z

2
3 + 2z

1
3 + 2

6

)]

=

[
µ2(3) ln z + 3µ2(2) ln

(
z + z

2
3 + z

1
3

3

)
+ 3µ2(1) ln

(
z

2
3 + z

1
3 + 1

3

)]
uG
ln z

(45)

and

N3∗(z, µ3) =
(
µ3(3) + 2µ3(2) + µ3(1)

)
uG (46)
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C.5 Derivations of Section 3.5

Relative Gross Welfare (Equation 48 and Figure 2)

From Proposition 2 and equations 40 and 41, it follows by the definition of equation 42 that students’ relative

gross welfare is

Û1(z, µ1) =
2z − 2

2z + 1

µ1(2)

µ1(2) + 2µ1(1)
+
z − 1

z + 2

2µ1(1)

µ1(2) + 2µ1(1)
(C.7)

Û2(z, µ2) =
z − z 1

3

z + z
2
3 + z

1
3

(C.8)

so that, for all µ1 and µ2 and all z > 1,

1 ≥ 2z − 2

2z + 1
≥ Û1(z, µ1) ≥ z − 1

z + 2
> Û2(z, µ2) > 0. (48)

Relative Net Welfare (Equation 49 and Figure 3)

Recalling that

N(µi) = U(µi) =
(
µi(3) + 2µi(2) + µi(1)

)
uG

it follows from Proposition 3 that

N1∗(z, µ1)−N(µ1) =

[
µ1(3) ln z + 3µ1(2) ln

(
2z + 1

3

)
+ 3µ1(1) ln

(
z + 2

3

)]
uG
ln z
−
(
µ1(3) + 2µ1(2) + µ1(1)

)
uG

=

[(
3 ln

(
2z + 1

3

)
− 2 ln(z)

)
µ1(2) +

(
3 ln

(
z + 2

3

)
− ln(z)

)
µ1(1)

]
uG
ln z

and

N2∗(z, µ2)−N(µ2) =

[
µ2(3) ln z + 3µ2(2) ln

(
z + z2/3 + z1/3

3

)
+ 3µ2(1) ln

(
z2/3 + z1/3 + 1

3

)]
uG
ln z

−
(
µ2(3) + 2µ2(2) + µ2(1)

)
uG

=

[(
3 ln

(
z + z

2
3 + z

1
3

3

)
− 2 ln(z)

)
µ2(2) +

(
3 ln

(
z

2
3 + z

1
3 + 1

3

)
− ln(z)

)
µ2(1)

]
uG
ln z

.

Since

N
i
(µi)−N(µi) = U

i
(µi)− U(µi)

students’ relative net welfare as defined in equation 47 is thus

N̂1(z, µ1) =

(
3 ln

(
2z + 1

3

)
− 2 ln(z)

)
1

ln(z)

µ1(2)

µ1(2) + 2µ1(1)
+

(
3 ln

(
z + 2

3

)
− ln(z)

)
1

ln(z)

µ1(1)

µ1(2) + 2µ1(1)
(C.9)
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and

N̂2(z, µ2) =

(
3 ln

(
z + z

2
3 + z

1
3

3

)
− 2 ln(z)

)
1

ln(z)

µ2(2)

µ2(2) + µ2(1)

+

(
3 ln

(
z

2
3 + z

1
3 + 1

3

)
− ln(z)

)
1

ln(z)

µ2(1)

µ2(2) + µ2(1)

=

(
3

[
ln

(
z

2
3 + z

1
3 + 1

3

)
+

1

3
ln(z)

]
− 2 ln(z)

)
1

ln(z)

µ2(2)

µ2(2) + µ2(1)

+

(
3 ln

(
z

2
3 + z

1
3 + 1

3

)
− ln(z)

)
1

ln(z)

µ2(1)

µ2(2) + µ2(1)

= 3 ln

(
z

2
3 + z

1
3 + 1

3

)
/ ln(z)− 1. (C.10)

Since z > 1, note that for any µ1

3 ln

(
2z + 1

3

)
/ ln(z)− 2 ≥ N̂1(z, µ1) ≥ 1

2

(
3 ln

(
z + 2

3

)
/ ln(z)− 1

)
so that

3
ln
(

2z+1
3

)
ln(z)

− 2 ≥ N̂1(z, µ1) ≥
3 ln

(
z+2

3

)
2 ln(z)

− 1

2
> 3

ln

(
z

2
3 +z

1
3 +1

3

)
ln(z)

− 1 = N̂2(z, µ2) > 0. (49)

C.6 Proof of Lemma 1

Given P−i and fixing the “numeraire” list lI = (1, . . . ,M), note that for any permutation α : X → X

πix(α(x)|lIα,P−i) =
∑

l−i∈A−i

∑
θ−i∈Θ−i

P−i(l−i,θ−i)1
{
xi(lIα, l

−i) = α(x)
}

=
∑

l−i∈A−i

∑
θ−i∈Θ−i

P−i(l−iα ,θ−i)1
{
xi(lIα, l

−i
α ) = α(x)

}
=

∑
l−i∈A−i

1
{
xi(lIα, l

−i
α ) = α(x)

}∏
j 6=i

∑
θj∈Θj

P j(ljα, θ
j)

=
∑

l−i∈A−i
1
{
α(xi(lI , l−i)) = α(x)

}∏
j 6=i

∑
θj∈Θj

P j(ljα, θ
j)

=
∑

l−i∈A−i
1
{
xi(lI , l−i) = x

}∏
j 6=i

∑
θj∈Θj

P j(ljα, θ
j)

=
∑

l−i∈A−i
1
{
xi(lI , l−i) = x

}∏
j 6=i

∑
θj∈Θj

P j(lj , θj)

where the first equality is by definition of equation 58, the second equality follows from observing that

summing over all l−iα amounts to summing over all l−i because α is a permutation, the fourth equality

follows by equation 57 from the fact that xi is an anonymous mechanism (Definition 3), the fifth equality
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follows from α being a permutation, and the last equality follows by equation 9 from the symmetry of all

P j . Student i’s probability of being matched with the m-th school on any list li ∈ Ai is then obtained, by

setting α = li and noting that lIli = li, as

πix(li(m)|li,P−i) =
∑

l−i∈A−i
1
{
xi(lI , l−i) = m

}∏
j 6=i

∑
θj∈Θj

P j(lj , θj) =: hi(m) (C.11)

for allm ∈ {1, . . . ,M}. We have shown that if others’ strategies are symmetric, then there exists hi satisfying

equation 59 which is independent of li. To complete the proof, note that this is indeed a probability mass

function, as

M∑
m=1

hi(m) =
M∑
m=1

∑
l−i∈A−i

1
{
xi(lI , l−i) = m

}∏
j 6=i

∑
θj∈Θj

P j(lj , θj)

=
∑

l−i∈A−i

∏
j 6=i

∑
θj∈Θj

P j(lj , θj)
M∑
m=1

1
{
xi(lI , l−i) = m

}
=

∑
l−i∈A−i

∏
j 6=i

∑
θj∈Θj

P j(lj , θj)

= 1.

C.7 Proof of Lemma 2

Define a partition {Θi
k}1≤k≤K of Θi such that θ, θ′ ∈ Θi

k for some k if and only if there exists a permutation

ρθθ′ : X → X of schools such that

θ′ρθθ′ (x) = θx (C.12)

for all x ∈ X.

We first show that this partition conforms to the requirement that θ, θ′ ∈ Θi
k for some k if and only if

there exists a bijection αθθ′ : Ai → Ai satisfying equation 2. To see that θ, θ′ ∈ Θi
k only if there exists such

an αθθ′ , define, for any θ, θ′ ∈ Θi
k, the mapping αθθ′ as

(αθθ′(l)) (m) = ρθθ′(l(m)) ∀l ∈ Ai, m ∈ {1, . . . ,M} (C.13)

and note that it is a bijection since it is constructed from a concatenation of two permutations of schools

(ρθθ′ and l). It follows, for all l ∈ Ai, that

ui(αθθ′(l), θ
′) =

M∑
m=1

hi(m)θ′(αθθ′ (l))(m) =
M∑
m=1

hi(m)θ′ρθθ′ (l(m)) =
M∑
m=1

hi(m)θl(m) = ui(l, θ) (C.14)

where the second equality follows from equation C.13 and the third equality from equation C.12. To see

the converse direction, namely that existence of some permutation αθθ′ satisfying equation C.14 implies

θ, θ′ ∈ Θi
k for some k, note that for the preceding equation to hold for arbitrary hi, it must be the case that

θ′(αθθ′ (l))(m) = θl(m). (C.15)
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Since (αθθ′(l))◦ l−1 is a permutation of schools (because αθθ′(l) ∈ Ai and l ∈ Ai are themselves permutations

of schools), this implies that there exists a permutation of schools which, by equation C.15, satisfies equation

C.12, so that θ, θ′ ∈ Θi
k by definition. The partition defined via the permutation ρθθ′ satisfying equation

C.12 thus conforms to the requirements of Definition 1.

Given this partition, we can now show that the problem of student i is symmetric. First note that, given

some k, equation 3 is satisfied for all θ, θ′ ∈ Θi
k, since

µi(θ′1, . . . , θ
′
M ) = µi(θ′ρθθ′ (1), . . . , θ

′
ρθθ′ (M)) = µi(θ1, . . . , θM )

where the first equality follows from µi being exchangeable and the second equality from equation C.12.

Next, define, for any l, l′ ∈ Ai and k, the mapping πll′ : Θi
k → Θi

k as

(πll′(θ))l′(m) = θl(m) ∀θ ∈ Θi
k, m ∈ {1, . . . ,M}. (C.16)

Note that πll′(θ) ∈ Θi
k for all θ ∈ Θi

k, since l
′ ◦ l−1 is a permutation of schools which, by equation C.16,

satisfies equation C.12, from which it follows that θ ∈ Θi
k implies πll′(θ) ∈ Θi

k. Note moreover that πll′ is a

bijection (since l and l′ are permutations of schools) that satisfies equation 4 for all θ ∈ Θi
k, since

ui(l′, πll′(θ)) =

M∑
m=1

hi(m) (πll′(θ))l′(m) =

M∑
m=1

hi(m)θl(m) = ui(l, θ)

where the second equality follows from equation C.16. This concludes the proof.

C.8 Proof of Proposition 4

The fact that, given the unanimous ranking of students by schools, the matching resulting from the Deferred

Acceptance Algorithm is equivalent to that resulting from serial dictatorship follows from Theorem 3 of

Kojima and Manea (2010) which states that deferred acceptance is the unique allocation rule that is stable

and satisfies weak Maskin monotonicity.5 To see this, first note that the (exogenously specified) priority

structure C (the same at all schools) induced by schools’ unanimous ranking of students is substitutable6

and, since all students are acceptable, acceptant.

Let ϕ be the allocation rule given by serial dictatorship. The following arguments apply to students’

rank-order lists which amount to strict “preferences” in the classical full-information sense, even though

actual preferences in our setting need not be. Note that ϕ is a stable allocation rule at the priority structure

C. Towards a contradiction, assume that there is a blocking pair. Since N = c ·M so that there are no

empty seats, this must consist of two students, i < i′ w.l.o.g., where student i listed school x̃ that student i′

is matched with above their current match, and vice versa. But this is not possible under serial dictatorship,

for student i would have been matched with school x̃, as they are ranked above student i′. Note also that ϕ
5Also see Morrill (2013, p. 20).
6E.g. by virtue of inducing a responsive (Roth and Sotomayor, 1990, Definition 4 of Chapter 16) preference relation over

sets of students (Roth and Sotomayor, 1990, p. 499).
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satisifes weak Maskin monotonicity (Morrill, 2013, p. 20). Then by Theorem 3 of Kojima and Manea (2010)

it must be the case that ϕ is the deferred acceptance rule for C.

C.9 Auxiliary Lemma C.1

Lemma C.1 (List-Position Sufficiency under DA). If, for any i ∈ I, P j is symmetric for all j 6= i in the

sense of Definition 2, then under DA

πixDA(li(m)|li,P−i) = hiDA(m) =
∑

ci−1∈Ci−1

1

{
m = min

η
{η : ci−1

η > 0}
}
P(ci−1|P 1, . . . , P i−1) (C.17)

for all li ∈ Ai and all m ∈ {1, . . . ,M}, where P(ci−1|P 1, . . . , P i−1) is as defined in equation 62.

Proof. Define, for any n = 0, . . . , N − 1, the vector-valued function

Cn : ×j≤nAj → NM

whose element

Cnx (l1, . . . , ln) = c−
n∑
i=1

1{xiDA(li, l−i) = x} (C.18)

is the remaining capacity of school x after students 1, . . . , n submitting lists l1, . . . , ln have been assigned.

Note, for any i ∈ I, that by serial dictatorship (Proposition 4)

xiDA(li, l−i) = li
(

min
η
{η : Ci−1

li(η)(l
1, . . . , li−1) > 0}

)
. (C.19)

Since DA is an anonymous mechanism (Lemma 3), it follows from Lemma 1 that, given a symmetric P−i,

student i’s probability of being matched with the m-th school on their rank-order list li ∈ Ai is, for any

m = 1, . . . ,M and li ∈ Ai, given by

πixDA(li(m)|li,P−i)

=
∑

l−i∈A−i
1
{
xiDA(lI , l−i) = m

}∏
j 6=i

∑
θj∈Θj

P j(lj , θj)

=
∑

l−i∈A−i
1

{
min
η
{η : Ci−1

η (l1, . . . , li−1) > 0} = m

}∏
j 6=i

∑
θj∈Θj

P j(lj , θj)

=
∑

ci−1∈Ci−1

1

{
min
η
{η : ci−1

η > 0} = m

} ∑
l−i∈A−i

1
{
Ci−1(l1, . . . , li−1) = ci−1

}∏
j 6=i

∑
θj∈Θj

P j(lj , θj)

=
∑

ci−1∈Ci−1

1

{
min
η
{η : ci−1

η > 0} = m

} ∑
l1∈A1

· · ·
∑

li−1∈Ai−1

1
{
Ci−1(l1, . . . , li−1) = ci−1

}∏
j<i

∑
θj∈Θj

P j(lj , θj)

=
∑

ci−1∈Ci−1

1

{
min
η
{η : ci−1

η > 0} = m

}
P(ci−1|P 1, . . . , P i−1) (C.17)

=: hiDA(m)

where the first equality follows from equation C.11, the second equality from equation C.19 applied to the

“numeraire” list lI = (1, . . . ,M), and the fifth equality from the definition of equation 62.
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C.10 Proof of Lemma 3

Since xDA is an anonymous mechanism, the remaining capacities function of equation C.18 satisfies, for any

permutation α : X → X of schools and liα as in Definition 3,

Cnα(x)(l
1
α, . . . , l

n
α) = c−

n∑
i=1

1{xiDA(liα, l
−i
α ) = α(x)}

= c−
n∑
i=1

1{α(xiDA(li, l−i)) = α(x)}

= c−
n∑
i=1

1{xiDA(li, l−i) = x}

= Cnx (l1, . . . , ln) (C.20)

where the second equality follows from equation 57 and the third equality from α being a permutation. It

follows that if P 1, . . . , Pn are symmetric, then equation 63 is satisfied for all cn ∈ Cn, as

P(cnα(1), . . . , c
n
α(M)|P

1, . . . , Pn)

=
∑
l1∈A1

· · ·
∑
ln∈An

1
{
Cn(l1, . . . , ln) = cnα

} n∏
j=1

∑
θj∈Θj

P j(lj , θj)

=
∑
l1∈A1

· · ·
∑
ln∈An

∏
x∈X

1
{
Cnx (l1, . . . , ln) = cnα(x)

} n∏
j=1

∑
θj∈Θj

P j(lj , θj)

=
∑
l1∈A1

· · ·
∑
ln∈An

∏
x∈X

1
{
Cnα(x)(l

1
α, . . . , l

n
α) = cnα(x)

} n∏
j=1

∑
θj∈Θj

P j(lj , θj)

=
∑
l1∈A1

· · ·
∑
ln∈An

∏
x∈X

1
{
Cnx (l1α, . . . , l

n
α) = cnx

} n∏
j=1

∑
θj∈Θj

P j(ljα, θ
j)

=
∑
l1∈A1

· · ·
∑
ln∈An

1
{
Cn(l1, . . . , ln) = cn

} n∏
j=1

∑
θj∈Θj

P j(lj , θj)

= P(cn1 , . . . , c
n
M |P 1, . . . , Pn)

where the first equality follows from the definition of equation 62, the third equality from equation C.20, the

fourth equality from α being a permutation and by equation 9 from the symmetry of all P j , and the fifth

equality from the fact that α is a permutation and that we are summing over all l1, . . . , ln.

C.11 Proof of Corollary 1

Define, given any kn such that ∃ cn ∈ Cn(kn) with P(cn|P 1, . . . , Pn) > 0, the conditional probability

P(cn|kn, P 1, . . . , Pn) ≡ P(cn|P 1, . . . , Pn)

P(kn|P 1, . . . , Pn)
1{cn ∈ Cn(kn)} (C.21)

where

P(kn|P 1, . . . , Pn) ≡
∑

cn∈Cn(kn)

P(cn|P 1, . . . , Pn). (C.22)
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Corollary. If P 1, . . . , Pn are symmetric, then, given any kn s.t. ∃ cn ∈ Cn(kn) with P(cn|P 1, . . . , Pn) > 0,

P(cn|kn, P 1, . . . , Pn) =
1{cn ∈ Cn(kn)}
|Cn(kn)|

. (C.23)

Proof. If cn, c̃n ∈ Cn(kn), then by the definition of Cn(kn) in equation 64∑
x∈X

1{cnx = r} = knr =
∑
x∈X

1{c̃nx = r} ∀r = 0, . . . , c

This implies that there exists a permutation α : X → X of schools such that

c̃nx = cnα(x) ∀x ∈ X

If P 1, . . . , Pn are symmetric then, by Lemma 3, P(cn|P 1, . . . , Pn) is exchangeable, so it follows that

P(cn|P 1, . . . , Pn) = P(c̃n|P 1, . . . , Pn) ∀cn, c̃n ∈ Cn(kn)

and therefore

P(cn|kn, P 1, . . . , Pn) = P(c̃n|kn, P 1, . . . , Pn) ∀cn, c̃n ∈ Cn(kn)

which implies the result.

C.12 Proof of Lemma 4

Note that

|Cn(kn)| = M !/
c∏
r=0

knr !

which is the number of ways in which the remaining capacities of kn can be assigned to the M schools. It

follows that

1

|Cn(kn)|
∑

cn∈Cn(kn)

1

{
m⋂
η=1

(
cnli(η) = 0

)}
=

∏c
r=0 k

n
r !

M !

∑
cn∈Cn(kn)

1

{
m⋂
η=1

(
cnli(η) = 0

)}

=

∏c
r=0 k

n
r !

M !

(M −m)!

(kn0 −m)!
∏c
r=1 k

n
r !

=
(M −m)!kn0 !

M !(kn0 −m)!
(C.24)
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where the second equality follows from counting the number of vectors cn such that the first m schools on

list li have no remaining capacity. The result then follows from observing that, for all m ∈ {1, . . . ,M},

1

|Cn(kn)|
∑

cn∈Cn(kn)

1

{
m = min

η
{η : cnli(η) > 0}

}

=
1

|Cn(kn)|
∑

cn∈Cn(kn)

1

{(
cnli(m) > 0

)m−1⋂
η=1

(
cnli(η) = 0

)}

=
1

|Cn(kn)|
∑

cn∈Cn(kn)

[
1

{
m−1⋂
η=1

(
cnli(η) = 0

)}
− 1

{
m⋂
η=1

(
cnli(η) = 0

)}]

=
(M −m+ 1)!kn0 !

M !(kn0 −m+ 1)!
− (M −m)!kn0 !

M !(kn0 −m)!

=

(
M −m+ 1

kn0 −m+ 1
− 1

)
(M −m)!kn0 !

M !(kn0 −m)!

=

(
M − kn0

kn0 −m+ 1

)
(M −m)!kn0 !

M !(kn0 −m)!

=
(M −m)!

(kn0 −m+ 1)!(M − kn0 − 1)!

(M − kn0 )!kn0 !

M !

=

(
M −m

kn0 + 1−m

)
/

(
M

kn0

)
where the third equality follows from equation C.24.

C.13 Auxiliary Lemma C.2

Lemma C.2. Given ci−1 (and thus ki−1), if P i is symmetric then

π̃i(x|P i, ci−1) ≡
∑
li∈Ai

1

{
li
(

min
η
{η : ci−1

li(η) > 0}
)

= x

} ∑
θi∈Θi

P i(li, θi) =
1{ci−1

x > 0}
M − ki−1

0

(C.25)

for all x ∈ X.

First note that the number of lists whose first school with positive remaining capacity is a given x ∈ X is∑
li∈Ai

1

{
li
(

min
η
{η : ci−1

li(η) > 0}
)

= x

}

=
M∑
m=1

∑
li∈Ai

1{li(m) = x}1
{
m = min

η
{η : ci−1

li(η) > 0}
}

=
M∑
m=1

∑
li∈Ai

1{li(m) = x}1
{
ci−1
li(m) > 0

}
1

{
m−1⋂
η=1

(
ci−1
li(η) = 0

)}

= 1
{
ci−1
x > 0

} M∑
m=1

∑
li∈Ai

1{li(m) = x}1

{
m−1⋂
η=1

(
ci−1
li(η) = 0

)}
. (C.26)

It remains to count the number of ways in which the M − 1 schools other than li(m) = x can be arranged

in the M − 1 other positions of li in such a manner that the first m− 1 positions feature an empty school.
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Note that, since there are ki−1
0 =

∑
x∈X 1{ci−1

x = 0} empty schools, there are

ki−1
0 !

(ki−1
0 − (m− 1))!

ways to select m − 1 empty schools for positions li(1), . . . , li(m − 1), and (M −m)! ways of arranging the

remaining M −m schools in positions li(m+ 1), . . . , li(M). It follows, for m− 1 ≤ ki−1
0 , that

∑
li∈Ai

1{li(m) = x}1

{
m−1⋂
η=1

(
ci−1
li(η) = 0

)}
=

ki−1
0 !

(ki−1
0 − (m− 1))!

(M −m)!

= ki−1
0 !(M − ki−1

0 − 1)!

(
M −m

M − ki−1
0 − 1

)
(C.27)

and therefore ∑
li∈Ai

1

{
li
(

min
η
{η : ci−1

li(η) > 0}
)

= x

}

= 1{ci−1
x > 0}ki−1

0 !(M − ki−1
0 − 1)!

ki−1
0 +1∑
m=1

(
M −m

M − ki−1
0 − 1

)

= 1{ci−1
x > 0}ki−1

0 !(M − ki−1
0 − 1)!

M−1∑
m′=M−ki−1

0 −1

(
m′

M − ki−1
0 − 1

)

= 1{ci−1
x > 0}ki−1

0 !(M − ki−1
0 − 1)!

(
M

M − ki−1
0

)
= 1{ci−1

x > 0} M !

M − ki−1
0

(C.28)

where the first equality follows from plugging equation C.27 into equation C.26, the second equality from

the substitution m′ = M −m , and the third equality from the hockey-stick identity

n∑
m′=r

(
m′

r

)
=

(
n+ 1

r + 1

)
.

Given that P i is symmetric, student i’s probability of matching with school x is thus, conditional on ci−1,

π̃i(x|P i, ci−1) =
1

M !

∑
li∈Ai

1

{
li
(

min
η
{η : ci−1

li(η) > 0}
)

= x

}
=

1{ci−1
x > 0}

M − ki−1
0

where the first equality follows by
∑
θi∈Θi P

i(li, θi) = 1/(M !) for all li ∈ Ai from the definition of equation

C.25, and the second equality follows from equation C.28. Note also that since, by Corollary 1, each school

is equally likely to have positive remaining capacity, student i has an equal probability of matching with any

school x ∈ X.
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C.14 Proof of Lemma 5

The proof is by induction over n.

Base Case: n = 0

Before any student has been assigned, each school x ∈ X has capacity c0x = c with certainty, so

P(c0) = 1{c0 = (c, . . . , c)}.

It follows that k0
r = M · 1{r = c} with certainty so equation 71 is satisfied for n = 0, because∑

c0∈C0(k0)

P(c0) = 1 {kc = M,kr = 0∀r 6= c} = f0
(
k0
)
.

Induction Step: n− 1→ n

Assuming that equation 71 holds for n − 1, we show that it then holds for n. Define a random vector

i ∈ I ≡
{
i ∈ {0, 1}M :

∑
x∈X ix = 1

}
with the interpretation that ix = 1 if and only if student n is matched

with school x. Its distribution conditional on cn−1 is, by Proposition 4 and equation C.19, given by

Pi|cn−1

(
i|Pn, cn−1

)
= 1{i ∈ I}

∑
x∈X

1{ix = 1}
∑
ln∈An

1

{
ln
(

min
η
{η : cn−1

ln(η) > 0}
)

= x

} ∑
θn∈Θn

Pn(ln, θn).

After student n is matched with a school, the remaining capacity of this school will decrease from cn−1
x = r

to cnx = r − 1. It follows, given any kn and cn−1 ∈ Cn−1(kn−1) and where er is the unit vector defined in

the Lemma, that∑
cn∈Cn(kn)

Pi|cn−1

(
cn−1 − cn|Pn, cn−1

)
=

∑
cn∈Cn(kn)

1{cn−1 − cn ∈ I}
∑
x∈X

1{cn−1
x − cnx = 1}1{c

n−1
x > 0}

M − kn−1
0

=
1

M − kn−1
0

∑
cn∈Cn(kn)

1{cn−1 − cn ∈ I}
∑
x∈X

1{cn−1
x − cnx = 1}

c∑
r=1

1{cn−1
x = r}

=
1

M − kn−1
0

∑
cn∈Cn(kn)

1{cn−1 − cn ∈ I}
c∑
r=1

∑
x∈X

1{cn−1
x = r}1{cnx = r − 1}

=
1

M − kn−1
0

c∑
r=1

∑
x∈X

1{cn−1
x = r}

∑
cn∈Cn(kn)

1{cn−1 − cn ∈ I}1{cnx = r − 1}

=
1

M − kn−1
0

c∑
r=1

∑
x∈X

1{cn−1
x = r}1{kn = kn−1 − er + er−1}

=

c∑
r=1

kn−1
r

M − kn−1
0

1{kn−1 = kn + er − er−1} (C.29)

where the first equality follows by equation C.25 of Lemma C.2 from the symmetry of Pn, the third equality

from cn−1
x − cnx = 1, the fourth from rearranging, the fifth equality from the fact that given cn−1 there is
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exactly one vector cn consistent with a decrease of the capacity of school x from r to r − 1, and the last

equality from the definition of kn−1
r . Since

P
(
cn|P 1, . . . , Pn

)
=

∑
cn−1∈Cn−1

Pi|cn−1

(
cn−1 − cn|Pn, cn−1

)
P
(
cn−1|P 1, . . . , Pn−1

)
(C.30)

this implies, given kn, that∑
cn∈Cn(kn)

P(cn|P 1, . . . , Pn)

=
∑

cn−1∈Cn−1

P
(
cn−1|P 1, . . . , Pn−1

) ∑
cn∈Cn(kn)

Pi|cn−1

(
cn−1 − cn|Pn, cn−1

)
=
∑
kn−1

∑
cn−1∈Cn−1(kn−1)

P
(
cn−1|P 1, . . . , Pn−1

) c∑
r=1

kn−1
r

M − kn−1
0

1{kn−1 = kn + er − er−1}

=
c∑
r=1

∑
kn−1

kn−1
r

M − kn−1
0

1{kn−1 = kn + er − er−1}
∑

cn−1∈Cn−1(kn−1)

P
(
cn−1|P 1, . . . , Pn−1

)
=

c∑
r=1

∑
kn−1

kn−1
r

M − kn−1
0

1{kn−1 = kn + er − er−1}fn−1(kn−1) (C.31)

where the first equality follows from equation C.30, the second equality from equation C.29, the third from

rearranging, and the fourth equality from the inductive assumption of equation 71 for n− 1. It then follows

that equation 71 also holds for n, as for any kn∑
cn∈Cn(kn)

P(cn|P 1, . . . , Pn)

=
c∑
r=1

∑
kn−1

knr + 1

M − (kn0 − 1{r = 1})
1{kn−1 = kn + er − er−1}fn−1(kn + er − er−1)

=
c∑
r=1

knr + 1

M − (kn0 − 1{r = 1})
fn−1(kn + er − er−1)

∑
kn−1

1{kn−1 = kn + er − er−1}

=
c∑
r=1

knr + 1

M − kn0 + 1{r = 1}
fn−1(kn + er − er−1) (72)

= fn(kn)

where the first equality follows from equation C.31 noting that since the capacity of one school decreases

from r to r− 1 it is the case that kn−1
r = knr + 1 and kn−1

0 = kn0 − 1{r = 1}. Note also that unless knr−1 > 0

and knr < M , the requirement that kn−1
r−1 = knr−1 − 1 ≥ 0 and kn−1

r = knr + 1 ≤ M is violated, in which case

fn−1(kn + er − er−1) = 0.
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C.15 Proof of Theorem 1

We use Proposition 1, Lemma 1, and Lemma 2 to show that for each student i ∈ I, P i∗ satisfying equation

73 is the unique symmetric best response to others’ symmetric strategies P−i∗. From equation 53 it follows

by Lemma 1 for symmetric P−i∗ that

U i(P i,P−i∗) =
∑

(li,l−i)∈Ai×A−i

∑
(θi,θ−i)∈Θi×Θ−i

P i(li, θi)P−i∗(l−i,θ−i)θixi(li,l−i)

=
∑
li∈Ai

∑
θi∈Θi

P i(li, θi)
∑

l−i∈A−i

∑
θ−i∈Θ−i

P−i∗(l−i,θ−i)θixi(li,l−i)

=
∑
li∈Ai

∑
θi∈Θi

P i(li, θi)
∑
x∈X

θix
∑

l−i∈A−i

∑
θ−i∈Θ−i

P−i∗(l−i,θ−i)1
{
xi(li, l−i) = x

}
=

∑
li∈Ai

∑
θi∈Θi

P i(li, θi)
∑
x∈X

θixπ
i
x(x|li,P−i∗)

=
∑
li∈Ai

∑
θi∈Θi

P i(li, θi)
M∑
m=1

πix(li(m)|li,P−i∗)θili(m)

=
∑
li∈Ai

∑
θi∈Θi

P i(li, θi)

M∑
m=1

hi(m)θili(m)

where the fourth equality follows from equation 58 and the last equality from Lemma 1. The problem of

student i according to equation 54 is therefore, given others’ symmetric P−i∗,

max
P i∈P(µi,Ai)

U i(P i,P−i∗)−K(κi, P i) = max
P i∈P(µi,Ai)

∑
li∈Ai

∑
θi∈Θi

P i(li, θi)ui(li, θi)−K(κi, P i)

with

ui(li, θi) =
M∑
m=1

hi(m)θili(m). (61)

By Lemma 2 this problem is symmetric in the sense of Definition 1, so by Proposition 1 its unique symmetric

solution is indeed given by

P i∗
(
li|θi

)
≡
P i∗

(
li, θi

)
µi(θi)

=
zi(li, θi)∑

l′∈Ai z
i(l′, θi)

∀li ∈ Ai, θi ∈ Θi (73)

with

zi
(
li, θi

)
= exp

(
1

κi

M∑
m=1

hi(m)θili(m)

)
∀li ∈ Ai, θi ∈ Θi (74)

which is indeed symmetric in the sense of Definition 2, as∑
θi∈Θi

P i∗(li|θi)µi(θi) = 1/|Ai| ∀li ∈ Ai.

This concludes the equilibrium proof. Under DA we further know by Lemma C.1 that

hiDA(m) =
∑

ci−1∈Ci−1

1

{
m = min

η
{η : ci−1

η > 0}
}
P(ci−1|P 1∗, . . . , P (i−1)∗). (C.17)
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Recalling the definition

P(ki−1|P 1∗, . . . , P (i−1)∗) ≡
∑

ci−1∈Ci−1(ki−1)

P(ci−1|P 1∗, . . . , P (i−1)∗) (C.22)

it therefore follows from Lemma 3, Lemma 4, and Lemma 5 that

hiDA(m) =
∑
ki−1

P(ki−1|P 1∗, . . . , P (i−1)∗)
∑

ci−1∈Ci−1(ki−1)

P(ci−1|P 1∗, . . . , P (i−1)∗)

P(ki−1|P 1∗, . . . , P (i−1)∗)
1

{
m = min

η
{η : ci−1

lI(η)
> 0}

}

=
∑
ki−1

P(ki−1|P 1∗, . . . , P (i−1)∗)
1

|Ci−1(ki−1)|

∑
ci−1∈Ci−1(ki−1)

1

{
m = min

η
{η : ci−1

lI(η)
> 0}

}

=
∑
ki−1

P(ki−1|P 1∗, . . . , P (i−1)∗)

(
M −m

ki−1
0 + 1−m

)
/

(
M

ki−1
0

)
=
∑
ki−1

(
M −m

ki−1
0 + 1−m

)
/

(
M

ki−1
0

) ∑
ci−1∈Ci−1(ki−1)

P(ci−1|P 1∗, . . . , P (i−1)∗)

=
∑
ki−1

(
M −m

ki−1
0 + 1−m

)
/

(
M

ki−1
0

)
f i−1(ki−1) (76)

where the first equality follows from equation C.17, the second equality by equation C.23 from Corollary 1

of Lemma 3, the third equality by equation 65 from Lemma 4, the fourth equality from the definition of

equation C.22, and the last equality follows by equation 71 from Lemma 5.

C.16 Proof of Proposition 5

From equation 78 it follows that

U i∗(κi, µi) =
M∑
m=1

hi(m)U i∗(κ, µi|m)

=
∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)

M∑
m=1

hi(m)θili(m)

=
∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)
ui(li, θi)

= κi
∑
θi∈Θi

µi(θi)

∑
li∈Ai z

i(li, θi) ln zi(li, θi)∑
l′∈Ai z

i(l′, θi)
(79)

where the last equality follows from the fact that ui(li, θi) = κi ln zi(li, θi) by definition. Note that

U(µi) =
1

M

M∑
m=1

U i∗(κi, µi|m)

=
∑
θi∈Θi

µi(θi)
1

M

M∑
m=1

∑
x∈X

∑
li∈Ai z

i(li, θi)θix1{x = li(m)}∑
l′∈Ai z

i(l′, θi)

=
∑
θi∈Θi

µi(θi)
1

M

∑
x∈X

θix

∑
li∈Ai z

i(li, θi)
∑M
m=1 1{x = li(m)}∑

l′∈Ai z
i(l′, θi)

=
∑
θi∈Θi

µi(θi)
1

M

∑
x∈X

θix (80)
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so that

U i∗(κi, µi)− U(µi) =
∑
θi∈Θi

µi(θi)

[∑
li∈Ai z

i(li, θi)κi ln zi(li, θi)∑
l′∈Ai z

i(l′, θi)
−
∑M
k=1 θ

i
k

M

]

=
∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)

[
ui(li, θi)−

M∑
k=1

1

M
θik

]

=
∑
θi∈Θi

µi(θi)
∑
li∈Ai

[
M∑
m=1

hi(m)θili(m) −
M∑
m=1

1

M
θili(m)

]
zi(li, θi)∑

l′∈Ai z
i(l′, θi)

=
M∑
m=1

[
hi(m)− 1

M

] ∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)
θili(m)

=
M∑
m=1

[
hi(m)− 1

M

]
U i∗

(
κi, µi|m

)
. (81)

C.17 Proof of Proposition 6

The information costs in equilibrium are, writing P i∗(li) =
∑
θi∈Θi P

i∗(li, θi), given by

Ki∗(κi, µi) = K(κi, P i∗)

= κi
∑
li∈Ai

P i∗(li)
[
H(µi)−H(γl

i

)
]

= κi
∑
li∈Ai

P i∗(li)
∑
θi∈Θi

[
−µi(θi) lnµi(θi) +

P i∗(li|θi)µi(θi)
P i∗(li)

ln

(
P i∗(li|θi)µi(θi)

P i∗(li)

)]

= κi
∑
θi∈Θi

µi(θi)

[∑
li∈Ai

P i∗(li|θi)
(

ln

(
P i∗(li|θi)
P i∗(li)

)
+ ln

(
µi(θi)

))
− lnµi(θi)

]

= κi
∑
θi∈Θi

µi(θi)

[∑
li∈Ai

P i∗(li|θi) ln

(
P i∗(li|θi)
P i∗(li)

)
+

(∑
li∈Ai

P i∗(li|θi)− 1

)
lnµi(θi)

]

= κi
∑
θi∈Θi

µi(θi)
∑
li∈Ai

P i∗(li|θi) ln

(
P i∗(li|θi)
P i∗(li)

)

= κi
∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)
ln

(
M !zi(li, θi)∑
l′∈Ai z

i(l′, θi)

)
(82)

where the second equality follows from equation 7, the sixth equality corresponds to equation 2.36 of Cover

and Thomas (2006), and the last equality follows from equation 73 which also implies P i∗(li) = 1/M !.
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The net utility is then given by

N i∗(κi, µi) = U i∗(κi, µi)−Ki∗(κi, µi)

= κi
∑
θi∈Θi

µi(θi)

[∑
li∈Ai z

i(li, θi) ln zi(li, θi)∑
l′∈Ai z

i(l′, θi)
−
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)
ln

(
M !zi(li, θi)∑
l′∈Ai z

i(l′, θi)

)]

= κi
∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)

[
ln zi(li, θi)− ln zi(li, θi)− ln

(
M !∑

l′∈Ai z
i(l′, θi)

)]

= κi
∑
θi∈Θi

µi(θi)
∑
li∈Ai

zi(li, θi)∑
l′∈Ai z

i(l′, θi)
ln

(
1

M !

∑
l′∈Ai

zi(l′, θi)

)

= κi
∑
θi∈Θi

µi(θi) ln

(
1

M !

∑
l′∈Ai

zi(l′, θi)

)
(83)

where the second equality follows from equations 79 and 82. Note that without information acquisition, the

net utility is given by

N(µi) = U(µi) =
∑
θi∈Θi

µi(θi)
1

M

∑
x∈X

θix.

The net utility surplus is therefore

N i∗(κi, µi)−N(µi) =
∑
θi∈Θi

µi(θi)

[
κi ln

(
1

M !

∑
l′∈Ai

zi(l′, θi)

)
− 1

M

∑
x∈X

θix

]
. (84)
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