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ABSTRACT

This paper studies the relevance of cognitive uncertainty – subjective uncertainty over one's 
utility-maximizing action – for understanding and predicting intertemporal choice. The main idea 
is that when people are cognitively noisy, such as when a decision is complex, they implicitly 
treat different time delays to some degree alike. By experimentally measuring and manipulating 
cognitive uncertainty, we document  three economic implications of this idea. First,  cognitive 
uncertainty explains various core empirical regularities, such as why people often appear very 
impatient, why per-period impatience is smaller over long than over short horizons, why 
discounting is often hyperbolic even when the present is not involved, and why choices 
frequently violate transitivity. Second, impatience is context-dependent: discounting is 
substantially more hyperbolic when the decision environment is more complex. Third, cognitive 
uncertainty matters for choice architecture: people who are nervous about making mistakes are 
twice as likely to follow expert advice to be more patient.
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1 Introduction

Many economically important intertemporal decisions are complex and cognitively diffi-
cult. For instance, suppose your bank offers you a special promotional product, in which
for every $100 you invest, you receive $105 back after three years. Which fraction of your
income should you invest into this asset to maximize your discounted utility? Thinking
through decisions like these is arguably challenging and may make people’s decision
process cognitively noisy.1 This paper empirically examines how such noisiness impacts
intertemporal choice. Our main hypothesis is that cognitive noise induces a “compres-
sion effect:” people behave as if they treat different time delays to some degree alike.
Continuing the example, imagine an alternative scenario in which the promotional prod-
uct pays back $105 after five rather than three years. Our hypothesis is that cognitive
noise induces people to take similar decisions across these two scenarios – a compression
effect – even when their discounted-utility maximizing decision strongly varies.

This perspective has four main economic implications, for both theoretical modeling
and applied work. First, extreme discounting over short horizons partly results from
bounded rationality. If people implicitly treat a one-week delay as if it were longer, they
will appear excessively impatient. Second, cognitive noise and the resulting compres-
sion logic shed light on various core empirical regularities that have proven difficult to
explain (Ericson and Laibson, 2019; Cohen et al., 2020), such as why people appear
much more impatient (per unit of time) over short horizons than over longer ones, why
discounting is often hyperbolic even when the present is not involved, and why choices
frequently violate transitivity. Third, a cognitive noise account predicts that phenomena
that are of practical interest to economists, such as short-run impatience and hyperbolic
discounting, should depend on decision complexity and opportunities for deliberation
(Imas et al., 2021). Fourth, viewing intertemporal choice through a lens of cognitive
noise has potential implications for choice architecture: to the degree that people are
aware of their noisiness and resulting mistakes, they may welcome expert advice. In
summary, we hypothesize that cognitive noise is crucial for understanding many eco-
nomic aspects of intertemporal choice, in a way that is largely orthogonal to behavioral
economists’ traditional emphasis on taste-based present bias.

To empirically investigate these hypotheses, we use the insight that people often
have some awareness of how noisy and prone to error their decision process is. Cog-
nitive uncertainty refers to a decision-maker’s subjective uncertainty over what their
utility-maximizing decision is (Enke and Graeber, 2020). In an intertemporal choice

1Various lines of prior work posit the presence of cognitive noise. For example, in both drift-diffusion
models (e.g, Krajbich et al., 2012; Fudenberg et al., 2018) and Bayesian noisy cognition models (Gabaix
and Laibson, 2017; Woodford, 2020; Khaw et al., 2021; Frydman and Jin, 2021), agents accumulate
noisy cognitive evidence.
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context, such cognitive uncertainty could reflect (i) uncertainty over one’s current or
future preferences; or (ii) the cognitive difficulty of computing discounted utility condi-
tional on knowing one’s preferences, for example because the environment is complex,
or because it is mentally hard to integrate one’s preferences with payouts and delays.

In our experiments, we link discounting behavior to a quantitative measure of cog-
nitive uncertainty. In a first paradigm, experimental participants make decisions in stan-
dard multiple price lists to trade off different time-dated UberEats vouchers that can be
used for restaurant delivery and takeout. In a second, complementary paradigm, we im-
plement analogous decisions, except that these are defined over hypothetical monetary
amounts. Third, as a robustness check, we replicate our findings using a direct elicitation
technique that does not have a response grid. We discuss in detail how our study design
relates to discussions about experimental intertemporal choice methodology, including
reliability and fungibility of payments.

Following Enke and Graeber (2020), after each choice, we elicit cognitive uncer-
tainty as a person’s subjective probability that their revealed valuation range of a larger-
later payment (the switching interval in a choice list) actually contains their true valua-
tion. We interpret this measure as capturing the participant’s posterior uncertainty about
their utility-maximizing decision, after a “cognitive signal” has been generated through
deliberation. We document that measured cognitive uncertainty is significantly corre-
lated with across-trial variability in responses to repetitions of the same choice problem.
This suggests that cognitive uncertainty indeed captures a choice signature of cognitive
noise, and that it is to some extent reflective of actual noisiness.

In our data, 75–80% of all decisions are associated with strictly positive cognitive
uncertainty. The main insight of our analysis, from which many of our results follow,
is that the choices of cognitively uncertain participants are strongly compressed in the
sense that people value a payment delayed by one year very similarly to a payment
delayed by two years. As a result of this compression, cognitively uncertain decisions
look like they reflect high impatience over short horizons but low impatience over very
long ones (a “flipping” property). Thus, cognitive uncertainty is strongly linked to the
empirical regularity of decreasing impatience (hyperbolicity). Importantly, we find that
cognitive uncertainty is predictive of short-run impatience and hyperbolic discounting
also when the present is not involved in a tradeoff, such that models of present bias do
not apply. All of these correlations are quantitatively large. For instance, the magnitude
of decreasing impatience is five times larger for decisions that are associated with strictly
positive cognitive uncertainty.

The idea that cognitively uncertain decisions look like different delays are treated
alike alsomanifests in another widely-studied empirical regularity: subadditivity, a canon-
ical transivity violation according to which people are more impatient over two short
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intervals than over one (normatively identical) long interval. As we predicted in our
pre-registration, this pattern is likewise strongly correlated with cognitive uncertainty.
Indeed, in many specifications, we cannot statistically reject the null hypothesis that
there is no subadditivity in the set of cognitively certain decisions.

Our main hypothesis is that cognitive noisiness leads to an inelasticity of decisions
with respect to the delay, rather than that it “replaces” taste-based present bias. Thus, as
a placebo exercise, we pre-registered the prediction and find empirically that cognitive
uncertainty is unrelated to front-end delay effects. These refer to the pattern that people
tend to be more impatient about a delay that begins now rather than in the future, which
is widely believed to be a revealed preferences signature of present bias. These results
show that bounded rationality in the form of cognitive noise and taste-based present
bias are separate, complementary objects that explain partly different phenomena.

We discuss in some detail how our results relate to the predictions of different classes
of random choice models. Our results are consistent with models that represent average
decisions as a convex combination of utility-maximization and a form of central tendency
effect. For instance, in random response models (Regenwetter et al., 2018), this central
tendency could reflect that the decision-maker plays randomly with some probability. In
models of Bayesian noisy cognition (Gabaix and Laibson, 2017; Woodford, 2020), the
central tendency could reflect an intermediate “cognitive default” action. For instance,
because people have little experience with the decision context in our experiments, they
may intuitively anchor on an “intermediate valuation” of the larger-later payment, as
in numerous documentations of central tendency or compromise effects effects in psy-
chology (Simonson and Tversky, 1992; Xiang et al., 2021). To illustrate this idea, we
present a stylized Bayesian noisy cognition model of intertemporal choice in Section 3
and derive our pre-registered predictions within this framework.

To examine the quantitative importance of cognitive uncertainty, we estimate a
model in which measured cognitive uncertainty determines the relative weights of util-
ity maximization and the central tendency effect. In these estimations, accounting for
cognitive uncertainty produces an increase in model fit that is twice as large as the in-
crease resulting from incorporating present bias. At the same time, we also find that
present bias is needed to rationalize the data, even when cognitive uncertainty is ac-
counted for. This again suggests that present-biased preferences and cognitive noise are
separate objects that both matter.

The reader may wonder why it is important for economists to understand that dis-
counting behavior is to a large degree governed by bounded rationality rather than non-
standard discount functions per se. After all, variants of the generalized hyperbola often
fit data reasonably well, even if they may be getting the underlying reason wrong. We
document that a cognitive noise and cognitive uncertainty account has real implications

3



for economics, regarding both the intensive and extensive margins of decision-making.
First, on the intensive margin, an account of cognitive noise predicts systematic context-

dependence of impatience: higher decision complexity, or higher cognitive busyness,
should produce more pronounced hyperbolic discounting. According to stable discount
functions, on the other hand, behavior does not vary as a function of complexity or cog-
nitive states. To test these ideas, we implement additional treatment arms in which we
either induce cognitive load or manipulate the complexity of the intertemporal decision
tasks by embedding a math problem into them. As predicted, we find that both cognitive
load and increased complexity lead to discounting behavior that is more hyperbolic. For
example, subjects who were distracted by an addition task displayed more impatience
over short horizons, but less impatience over very long ones.

Second, on the extensive margin, a main implication of our account is that people
are potentially “nervous” about making impatient mistakes and might therefore desire
expert advice. In contrast, in pure preferences-based accounts, people may behave in
impatient ways, but at the time the decision is taken they do not worry that the decision
reflects a mistake. We study this distinction by surprising participants with information
about advice from a poll of economists, who recommend that the participant chooses
the most patient available action. We find that the probability of revising the previously-
taken decision in the direction of greater patience is twice as high among cognitively
uncertain participants. We interpret these patterns as suggesting that cognitive uncer-
tainty is relevant also for choice architecture.

Linking this paper to the literature, it is well-known that a broad class of anoma-
lies appear to reflect an insensitivity of behavior with respect to the time delay. Vari-
ous pioneering contributions to the literature focused on identifying (or even openly
reverse-engineering) reduced-form discount functions that fit this compression pattern
well (Mazur, 1987; Loewenstein and Prelec, 1992; Ebert and Prelec, 2007). Our ap-
proach builds on this work, but shows that these phenomena largely reflect bounded
rationality. While we do not intend to claim that taste-based present bias is unimpor-
tant, we do argue that cognitive noise better explains many of the phenomena that are
often ascribed to present bias, such as extreme short-run impatience and hyperbolicity
of the discount function (but not, for example, dynamic inconsistency).

A second line of work in both economics and psychology has documented various
“cognitive effects” on people’s intertemporal decisions.2 Most directly related to our work
are models of cognitive or decision noise. A first class of models builds on the recent
Bayesian cognitive noise literature (Woodford, 2020; Khaw et al., 2021; Gabaix, 2019;

2In economics, this includes work on time perception (Brocas et al., 2018), waiting periods (Imas et
al., 2021), focusing effects (Dertwinkel-Kalt et al., 2021), similarity (Rubinstein, 2003), cognitive ability
(Dohmen et al., 2010), and noise in commitment demand (Carrera et al., 2019).
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Frydman and Jin, 2021; Frydman and Nunnari, 2021). Intertemporal choice applica-
tions of these models (Gabaix and Laibson, 2017; Gershman and Bhui, 2019) motivate
our experiments, though as we discuss below they do not fully explain our evidence.
A second class of models comprises random response and random preference models,
which have received attention in a largely theoretical literature in decision theory and
mathematical psychology (e.g., Regenwetter et al., 2018; Lu and Saito, 2018; He et al.,
2019).3 Relative to these various strands of the literature, our contribution is that we
directly measure and exogenously manipulate cognitive noise, which allows us to pro-
vide much sharper and more direct tests, and to quantify the relative contribution of
cognitive noisiness to intertemporal choice.

The idea of empirically measuring cognitive noise and related concepts is increas-
ingly gaining traction in the economics literature (Butler and Loomes, 2007; Agranov
andOrtoleva, 2017, 2020; Khaw et al., 2021; Enke andGraeber, 2020).While economists
have not deployed these techniques in intertemporal choice contexts, two psychological
and neuroscientific papers that are contemporaneous with ours also elicit people’s con-
fidence in their intertemporal decisions (Bulley et al., 2021; Soutschek et al., 2021).
While their objectives, approaches and measurement methods differ from ours in many
ways, probably the biggest difference is that they do not focus on the objects that we are
interested in here: explaining widely-studied empirical regularities from the economics
literature, documenting a dependence of choices on complexity, structurally estimating
a cognitive noise model, and highlighting implications for choice architecture.

Finally, abstracting away from intertemporal choice as such, our work ties into an
active recent literature that suggests that what seem like non-standard preferences
are sometimes better thought of as reflecting bounded rationality (Esponda and Vespa,
2016; Nielsen and Rehbeck, 2020; Imas et al., 2021; Martínez-Marquina et al., 2019;
Bordalo et al., 2020) and complexity (Abeler and Jäger, 2015; Oprea, 2020).⁴

The paper proceeds as follows. Section 2 provides a brief review of the extant ev-
idence on compression effects in intertemporal choice. Section 3 discusses theoretical
background and develops our predictions. Section 4 presents the experimental design,
Sections 5–6 the results and Section 7 the model estimations. Section 8 shows results on
choice architecture and exogenous manipulations of complexity. Section 9 concludes.

3As summarized by Regenwetter et al. (2018), researchers in this (mostly psychology) literature typ-
ically argue their empirical case through model-fitting exercises rather than direct measurements of nois-
iness. A limitation of this approach is that with a multitude of different models as well as functional form
specifications at the researcher’s disposal, a large set of different results can potentially be rationalized.

⁴Our focus on cognitive uncertainty also links to the “implicit risk” literature, which highlights the
importance of objective uncertainty about whether or when a delayed reward is received (Sozou, 1998;
Dasgupta and Maskin, 2005; Halevy, 2008; Chakraborty et al., 2020).
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2 Intertemporal Choice Regularities

The behavioral economics research program has successfully shed light on how taste-
based present bias contributes to the stylized fact that people often appear extremely
impatient and dynamically inconsistent. Yet, as highlighted by recent review papers,
other commonly-identified – and economically no less important – empirical regularities
are less well-understood and not easily explained by accounts of present bias (Ericson
and Laibson, 2019; Cohen et al., 2020). A key stylized fact is that people’s discounting
behavior tends to be very inelastic with respect to the length of the time delay. This
basic principle manifests in three distinct empirical regularities. First, as visualized in
Panel A of Figure 1, people often act in very impatient ways in decisions over relatively
short horizons, yet appear considerably less impatient over longer horizons, in both lab
and field (Thaler, 1981; Loewenstein and Prelec, 1992; Giglio et al., 2015). This im-
plies that people’s implied per-period impatience strongly decreases in the length of the
time delay. This is puzzling because the extreme flattening out of observed discounting
behavior is not predicted by present bias models (Laibson, 1997), which converge to ex-
ponential discounting over long horizons. Second, as visualized in Panel B of Figure 1,
an inelasticity of discounting with respect to the time delay is also observed for trade-
offs in which the early consumption opportunity is not today but in the future, again at
odds with a pure present bias account (Kable and Glimcher, 2010).⁵ Third, experimen-
tal studies robustly identify a particular type of transitivity violation called subadditivity,
according to which people appear considerably more patient in tradeoffs over one long
interval than in choices where that same interval is partitioned into two sub-intervals
(Read, 2001). Again, this can be understood as people being insensitive to the time de-
lay. A dominant approach in the economics literature has been to attempt to explain
these stylized facts through non-standard discount functions, such as the generalized
hyperbola and its variants (e.g., Mazur, 1987; Loewenstein and Prelec, 1992; Kable and
Glimcher, 2010). Either implicitly or explicitly, such accounts usually take the perspec-
tive that “anomalous” discounting behavior reflects “anomalous” preferences. We, on the
other hand, study the hypothesis that they arise from cognitive noise.

3 Theoretical Considerations and Hypotheses

Consider a choice context in which a decision-maker (DM) is prompted to specify the
units of consumption a at an earlier point in time t1 that make him indifferent to con-

⁵Decreasing impatience is the dominant finding in the literature (see, e.g. Cohen et al., 2020; Kable
and Glimcher, 2010; He et al., 2019). However, it is not universal, neither when the early date is today
nor when it is in the future (see, e.g., Andersen et al., 2014; Harrison et al., 2005).
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Figure 1: The figure shows the discounted value of $100 to be received with different time delays, parti-
tioned by whether the early payment date is today (Panel A) or in the future (Panel B). The black markers
indicate average behavior in our experiments described in Section 4. The red solid line fits an exponential
discounting model and the blue dashed line a β −δ model. Both models are estimated on the joint data.

suming ct2
= 1 at t2 > t1. We define ∆t ≡ t2 − t1. Denote by D(t) = δt the DM’s

discount function, and by u(·) a weakly concave utility function⁶. Later, we will allow
for taste-based present bias. A helpful theoretical benchmark is that of a rational DM’s
utility-maximizing decision, which equates the discounted utilities of both options. Nor-
malizing u(1) = 1, we get:

D(t1)u(a) = D(t2)u(1) ⇒ a∗ = u−1(δ∆t) ∈ [0, 1]. (1)

Our objective in this section is to summarize the extant random choice literature in a
way that highlights that three broad classes of models often generate an inelasticity
of decisions with respect to the delay. Per the discussion in the preceding section, this
inelasticity is a potential driver behind various empirical regularities. We only provide a
brief discussion here because, as reviewed in the formal treatment of Regenwetter et al.
(2018), random choice models exhibit large diversity in precise modeling approaches
and functional form assumptions.

Bayesian cognitive noise models. Bayesian cognitive noise (also called cognitive im-
precision)models presume that people do not have direct access to their utility-maximizing
action a∗ but only to a noisy cognitive signal. In the intertemporal choice domain, cog-
nitive noise could arise for a variety of reasons, which we discuss in Section 4 below. In

⁶When u(c) = cα, eq (1) also applies in the case ct2
≥ 1 where a∗ is now interpreted as the normalized

indifference point of the rational DM.
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general, cognitive signals can be conceptualized as pertaining to a problem parameter
(Khaw et al., 2021; Frydman and Jin, 2021), utility from future consumption (Gabaix
and Laibson, 2017), or the utility-maximizing action itself. We here adopt the latter ap-
proach. DMs are hypothesized to combine this cognitive signal with a prior over their
utility-maximizing action, which we call cognitive default action (see, e.g., Woodford,
2020). This cognitive default can be interpreted as the action the DM would take in the
absence of any deliberation.

Appendix A presents an intertemporal cognitive noise model that is an adaptation of
atemporal applications (Fennell and Baddeley, 2012; Heng et al., 2020). In this model,
the DM holds a Beta-distributed prior over his discounted-utility maximizing action,
where the prior has mean d. Through deliberation, the DM generates a cognitive signal
about what his discounted-utility maximizing decision is. This signal S is (scaled) Bi-
nomially distributed and satisfies E[S] = a∗. Given signal realization S = s, a Bayesian
DM’s posterior mean over his utility-maximizing action can be represented as

ao = λs(a∗(δ,∆t)) + (1−λ)d ⇒ E[ao] = λa∗(δ,∆t) + (1−λ)d. (2)

This formulation intuitively captures an anchoring-and-adjustment heuristic (Tversky
and Kahneman, 1974), according towhich people anchor on some initial reaction (which
may vary across contexts) and then adjust based upon the outcome of their deliberation
process. Here, the weight λ partly captures the precision of the cognitive signal.⁷

The main implication of eq. (2) is that decisions are insufficiently sensitive to the
time delay because they partly reflect the delay-invariant cognitive default. As we show
in Appendix A, eq. (2) implies the following predictions, which we pre-registered.

Pre-registered predictions. A DM with λ < 1 (cognitive noise) exhibits:

1. More pronounced short-run impatience, both when the time delay starts in the present
and when it starts in the future.

2. More pronounced decreasing impatience, both when the time delay starts in the
present and when it starts in the future.

3. More pronounced subadditivity.

4. The same degree of front-end delay effects: the pattern that people appear more pa-
tient when a constant is added to both the early and the later date.

⁷Another potential microfoundation for regression to a cognitive default d are models of caution (e.g.,
Cerreia-Vioglio et al., 2015; Chakraborty, 2020). These models are intuitively related in the sense that
– due to subjective uncertainty over their utility function – agents regress towards preferring a certain
option. This setup could potentially be modified such that, because of uncertainty about their preferences
and caution, agents regress to a “simple” or “intuitive” option d, rather than a certain one.

8



To see the logic behind these predictions, it is useful to imagine that the cognitive
default action d in eq. (2) is somewhat “intermediate” in nature.⁸ In our experiments,
a central tendency is plausible because people have little experience with the context,
which plausibly leads them to intuitively anchor on an “intermediate valuation” (away
from ao = 0 and ao = 1), akin to documentations of central tendency or compromise
effects effects in psychology. Then, Predictions 1 and 2 imply a distinctive “flipping”
property: while cognitively noisy agents appear more impatient over short delays, the
inelasticity with respect to the delay can make them less impatient over very long delays.

Prediction 4 clarifies that a cognitive noise framework like the one sketched above
does not predict a link between cognitive noise and front-end delay effects, which are
usually thought of as a canonical signature of present-biased preferences.⁹ The reason
is that, in eq. (2), cognitive precision λ only affects how people respond to a given time
delay, rather than whether it starts in the present or future.

Finally, we note that not all cognitive noise models generate the full set of predictions
above. The main intertemporal choice applications of Bayesian noisy cognition in the lit-
erature are Gabaix and Laibson (2017) and Gershman and Bhui (2019). Their setup
is slightly different from the one above because they assume that all decision-relevant
cognitive noise stems from the mental simulation of future utils. The stylized frame-
work above, on the other hand, takes a broader perspective by assuming that the utility-
maximizing action is simulated with noise, regardless of what the underlying sources
of noise are (noisy mental simulation of future utils may be one of them). This distinc-
tion matters for predictions. While Gabaix and Laibson’s model generates decreasing
impatience, their model makes two predictions that differ from the ones above. First, be-
cause their model maintains transitivity, it does not predict subadditivity. Second, their
model predicts front-end delay effects and related preference reversals, see Section 2.7
of Gabaix and Laibson (2017).

Random response models. This class of models is broad. One incarnation that re-
lates to the preceding discussion is that the DM probabilistically either plays his utility-
maximizing action or chooses at random, ε∼ F(·) ∈ [0, 1], with E[ε] = d. Formally, we
say that a trembling action at r is given by

at r =







a∗(δ,∆t) with prob. λ

ε otherwise
⇒ E[at r] = λa∗(δ,∆t) + (1−λ)d. (3)

⁸Specifically, suppose that a∗(∆t → 0)> d > a∗(∆t →∞), which says that the default action is less
(more) patient than the utility-maximizing action for very short (long) time delays.

⁹Front-end delay effects refer to the regularity that people generally behave less patiently in a tradeoff
between consumption dates t0 and t1 than in a tradeoff between t0 + z and t1 + z, for z > 0.
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This expression for the average action is identical to the one in (2). Thus, the two models
make identical predictions about average behavior. Moreover, the models are also diffi-
cult to tease apart looking at individual decisions because they both predict that actions
will be random (even conditional on potential anchoring on a cognitive default). Thus,
depending on the precise assumptions about the distribution of the random response,
various different individual-level response patterns can be rationalized.1⁰

Random preference models. This class of models assumes that the DM’s discount func-
tion is stochastic and fluctuates over time (e.g., Regenwetter et al., 2018; Lu and Saito,
2018; He et al., 2019). In its most widespread incarnation, random intertemporal pref-
erences models assume that “true” discounting is exponential, yet the decision-relevant
discount factor δ̃ varies randomly across trials, such that δ̃ = δ+µ, with E[µ] = 0. Thus,
in the setup sketched above, the DM’s random preference action ar would be given by

ar = a∗(δ̃,∆t). (4)

It is widely understood that variation in δ can produce behavior that implies “decreas-
ing impatience” because the average of multiple exponential functions is not necessarily
exponential and can be hyperbolic. This insight was first noted in interpersonal (social
welfare) contexts (Weitzman, 2001; Jackson and Yariv, 2014). However, a mathemati-
cally identical insight applies when a single DM’s discount factor varies across time (Lu
and Saito, 2018; He et al., 2019). Thus, as in the models described above, higher nois-
iness (variance of µ) should be correlated with stronger decreasing impatience. At the
same time, in contrast to the cognitive noise model sketched above, models that only fea-
ture random variation in preferences do predict front-end delay effects (see Proposition
1 in Jackson and Yariv (2014)) and don’t predict subadditivity.11

Summary and empirical implementation. The different classes of random choice
models can make similar predictions, in particular as far as a link between noise and
decreasing impatience are concerned. Moreover, the models afford varying degrees of
flexibility (see Regenwetter et al., 2018). Hence, our objective is not to definitely tease

1⁰Another type of random response model is that the DM’s action is given by at r,2 = a∗(δ,∆t)+η, with
E[η] = 0. Then, because the DM’s action is bounded by zero and one, random decision errors may lead to
“bouncing off the boundary” and push decisions to be intermediate, on average. We do not highlight this
type of model because, in our data, decisions that are associated with strictly positive cognitive uncertainty
are rarely located at or close to the boundaries, see Appendix Figure 13.

11To see this, consider a model à la Lu and Saito (2018), in which the DM draws a separate discount
factor δ̃ = δ + µ for each potential calendar time prior to observing the specific payout dates in an
experimental trial. In a subadditivity documentation, there are three time delays, t0 → t1, t1 → t2
and t0 → t2. Let the decision-relevant discount factors for the first two delays be δ̃t0→t1

= δ + µ1 and
δ̃t1→t2

= δ+µ2. Then, with δ̃t0→t2
= δ̃t0→t1

δ̃t1→t2
, there is no subadditivity.
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thesemodels apart, but to generically show that cognitive noise is instrumental for under-
standing intertemporal choice. At the same time, to the degree that the different classes
of models domake different predictions, our empirical results will allow us to draw some
conclusions about the relative explanatory power of the different approaches.

Because the actual form and realizations of cognitive noise are unobservable, we
empirically measure a signature of cognitive noise. Following Enke and Graeber (2020),
we use the language of cognitive noise models to define cognitive uncertainty as people’s
lack of certainty that their action equals their true utility-maximizing action:

pCU ≡ P(
�

�A|{S = s} − ao
�

�> c), (5)

where A
�

�{S = s} is the perceived posterior distribution about the utility-maximizing
action, conditional on the cognitive signal s. Intuitively, cognitive uncertainty captures
the likelihood with which the DM thinks his optimal action might fall outside a window
of length 2c around the action that he actually chose.

4 Experimental Design

4.1 Choice Tasks

Incentivized UberEats Voucher Experiments. In treatment Voucher Main, rewards are
given by UberEats food delivery vouchers.12 Participants complete multiple price lists
(MPLs) that elicit interval information about indifference points. In each list, the left-
hand side Option A is a fixed delayed UberEats voucher with value y2 ∈ {40,42, . . . , 50}.
The later payout date t = t2 varies between one week and one year. The right-hand side
Option B is an UberEats voucher the value of which increases as one goes down the list,
from $2 to $y2, in steps of $2 each. The payment date for Option B, t1, is always strictly
earlier than the one for Option A, though not necessarily today.

Participants had to indicate a choice between Options A and B in each row of the
MPL. We implemented a computerized auto-completion mode that enforces a single
switching row: whenever a subject chose Option A in a given row, Option A automatically
got selected in all rows above. Likewise, whenever a subject chose Option B in a given
row, Option B automatically got selected in all rows below. Participants could revisit and
change their choices at any time, and choices only became locked in when a participant
decided to proceed to the next screen. Appendix Figure 10 shows a screenshot.

12The currently most widely used experimental economics paradigm to implement primary rewards in
an intertemporal choice context consists of real effort tasks. These are infeasible in our context, however,
because our research hypothesis requires a consumption good that can plausibly be implemented with
long time delays, while real effort studies focus on horizons of a few weeks at most.
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UberEats is the largest online food ordering and delivery service in the world. The
service can be used to order food for takeout or delivery from a wide array of restaurants
and is widely available throughout the United States, with an estimated market share
of between one fifth to one third (Curry, 2021). Through a special collaboration with
Uber, we designed our UberEats vouchers to be valid for a period of only seven days. For
example, when a choice option is given by “$40 voucher that is valid in 6 months,” then
this means that the voucher will become valid six months after the participant’s study
date, and will remain valid for a period of seven days. We implemented a comprehension
check to verify that participants understood that the voucher would expire after seven
days, rather than be valid indefinitely. Participants’ vouchers were directly credited to
their personal UberEats accounts within 10 hours of completion of the study, such that
subjects did not have to actively claim the voucher. The vouchers were always visible
in their accounts, they could just not be used before the validity period. Participants
received automatic reminders 24 hours before a voucher became valid and 24 hours
before it expired.

Hypothetical Money-Early-versus-Later Experiments. TreatmentMoneyMain has the
same structure as the UberEats voucher experiments, except that the rewards are given
by hypothetical dollar amounts.While the hypothetical nature of the payouts has obvious
disadvantages, it also confers various advantages, in particular in conjunction with our
financially incentivized UberEats experiments. First, we could explicitly instruct partici-
pants to make their choices assuming that there is no payment risk. Second, hypothetical
payments allow us to use some very long time delays (up to “in 7 years”) that would
not be credible with real payments or food vouchers. This is an important advantage
because, as discussed above, the inelasticity of discounting to the time delay leads us to
expect that the relationship between cognitive uncertainty and impatience will flip as a
function of the time delay. Finally, money experiments allow us to replicate the setup in
which regularities such as diminishing impatience or subadditivity have predominantly
been documented in the literature (Cohen et al., 2020).

Choice configurations. First, for choice lists with an early date of today, we implement
delayed dates that range from one week to seven years in the hypothetical money ex-
periments, and from one week to one year in the incentivized UberEats study. Second,
in both experiments, we implement a broad set of lists that have an early payment date
of “in one month,” again with large variation in the corresponding later payment dates.
These choice lists allow us to study short-run impatience and decreasing impatience,
starting from both the present and the future.

Third, we implement sets of three choices each that serve to test for subadditivity
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effects, such as: (t1 = 0, t2 = 12m), (t1 = 0, t2 = 6m), (t1 = 6m, t2 = 12m). Fourth,
these subadditivity sets also allow for an analysis of front-end delay effects: the extent
to which people are more patient in, e.g., (t1 = 6, t2 = 12) than in (t1 = 0, t2 = 6). Fifth,
for each participant, two randomly selected choice configurations were presented twice
in random locations in the sequence of twelve price lists. These are exact repetitions of
the same choice problems and facilitate an analysis of across-trial choice variability. The
order of all choice lists was randomized at the participant level.

Study components. The hypothetical money study consisted of four parts. In the first,
each participant completed a total of twelve MPLs. In the second part, each subject com-
pleted six additional intertemporal choice problems that were administered in a direct
elicitation format rather than using MPLs. We discuss these data in greater detail in Sec-
tion 6.4. In the third part of the study, participants completed three choice under risk
MPLs that (i) facilitate an analysis of the cross-domain stability of cognitive uncertainty
and (ii) allow to disentangle time discounting from the role of utility curvature in our
structural analyses (Section 7). In the fourth part, participants completed a Raven ma-
trices test of cognitive skills. The structure of the UberEats study was identical, except
that we did not implement the direct elicitation choice problems.

4.2 Measuring Cognitive Uncertainty

Elicitation. In both paradigms described above, participants make choices in MPLs
that carry interval information about indifference points. In our experiments, the switch-
ing intervals have a width of $2. Our experimental instructions explain that we use this
switching interval to determine how much the participant values the larger-later pay-
ment at the earlier date. Immediately after each choice list, we measure cognitive un-
certainty (CU) as the participant’s subjective probability that their true valuation of the
later payment / voucher is actually contained in their stated switching interval. Specifi-
cally, after a participant completes a choice list with switching interval given by [$a, $b],
the subsequent screen reminds them of their previous decision and elicits cognitive un-
certainty:

Your choices on the previous screen indicate that you value $y2 in t2 some-
where between $a and $b in t1. How certain are you that you actually value
$y2 in t2 somewhere between $a and $b in t1?

Participants answer this question by selecting a radio button between 0% and 100%, in
steps of 5%. Appendix Figure 11 provides a screenshot. This cognitive uncertainty mea-
surement follows the same protocol as proposed in a revised version of Enke and Graeber
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(2020) for choice under risk, here adapted to an intertemporal choice context. In line
with the discussion in Section 3, we interpret this question as capturing the participant’s
(posterior) uncertainty about their utility-maximizing decision, after some sampling of
cognitive signals has taken place. We refer to (inverted) responses to this question as
cognitive uncertainty rather than confidence because in economics the latter is used for
problems that have an objectively correct solution.

Potential origins of cognitive uncertainty. Our measure is deliberately designed to
capture participants’ overall subjective uncertainty about what their preferred action is.
This uncertainty could have various potential origins. First, people may not know their
true preferences. This preference uncertainty could either be about one’s true discount
factor, or about the instantaneous utils that one will derive from future consumption, as
in Gabaix and Laibson (2017).

Second, even conditional on knowing their preferences, peoplemay cognitively strug-
gle with choosing an action that maximizes discounted utility. For example, people may
find it hard to cognitively integrate their discount factor with the time delay that is
implied by different choice options, or they may suffer from imperfect time perception.
A hypothetical special case of this class of non-preference-uncertainty mechanisms is
that there is no true discounting at all, but that experimental subjects find it cognitively
difficult to maximize the net present value of payments.

Comparisonwith alternativemeasures. Broadly speaking, the literature has proposed
two different types of measures for eliciting people’s uncertainty about their own de-
cisions. At one extreme, psychologists, neuroscientists and some economists elicit mea-
sures of “decision confidence,” in which subjects indicate on Likert scales how “confident”
or “certain” they are in their decision (e.g., De Martino et al., 2013, 2017; Polania et al.,
2019; Bulley et al., 2021; Xiang et al., 2021; Butler and Loomes, 2007). At the other ex-
treme, economists have proposed to use measures of across-trial variability (Khaw et al.,
2021) or deliberate randomization (Agranov and Ortoleva, 2017, 2020). Our preferred
measure strikes a middle ground between these two approaches. While our approach
retains the attractive simplicity of implementing a single question (as in the psychology
literature), it is also quantitative in nature. The simplicity of asking one question per de-
cision screen should be contrasted with the approach of gauging cognitive noise through
across-task variability in choices, which requires many trials and is usually defined at
the level of a study rather than of a single choice problem. Below, we document a strong
correlation between our simple-but-unincentivized CU measure and choice variability.
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4.3 Design Considerations

Time discounting studies are complicated by a range of methodological considerations.
We discuss prominent concerns and implications for interpretation below.

External uncertainty / payment credibility. According to the so-called “implicit risk”
hypothesis, intertemporal decisions could reflect not only genuine discounting but also
external uncertainty (e.g. Benzion et al., 1989; Sozou, 1998; Halevy, 2008). This could
be due to a lack of trust in the experimenter, uncertainty about the future purchasing
power of money or vouchers, or the subjective probability of forgetting about the exis-
tence of the later reward. To address this, we put various measures in place. First, we
deliberately implemented the money experiments in hypothetical terms. This allows us
to emphasize that subjects should make their decisions assuming that they know with
certainty that they will receive all payments as indicated. We verified understanding of
this through a comprehension check.

Second, in the UberEats experiments, because vouchers appear in the participant’s
UberEats account within a few hours of the study regardless of the precise validity period,
there is no differential payment risk across vouchers with different time delays. Partici-
pants could always view vouchers in their account, they could just not be used. We view
this as a main advantage of our method relative to traditional monetary payments.

Third, those participants that actually won a voucher were asked to state their sub-
jective probability that they will actually receive and use their voucher. The median
(average) response is 95% (84%). Most importantly, we find that subjects’ beliefs are
uncorrelated with the delay of the voucher’s validity period. This suggests that future
vouchers were not perceived as more uncertain. All of our results are robust to only
including participants in the analysis who indicate 100% certainty.13

Cognitive vs. external uncertainty. A related concern is that participants misinterpret
the CU question as asking about their subjective probability of actually receiving the later
reward. To address this, our money experiments include a comprehension check ques-
tion that directly asks participants to indicate whether the CU elicitation question asks
about (i) the subject’s subjective probability of actually receiving the money or (ii) their
certainty about own their valuation, given that they know they will receive the money
with certainty. In addition, notice that an account of CU capturing perceived payment un-
certainty would predict that CU is always negatively correlated with observed patience.

13Regarding actual consumption of our vouchers, at the time of the writing of this paper, 77% of
subjects had used their UberEats credit, which is arguably a high usage rate for a voucher. This percentage
fluctuates across delays but does not systematically decrease in the length of the delay.
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However, we will see that, over sufficently long time horizons, CU is actually positively
correlated with patience.

Fungibility. A common argument is that intertemporal choice experiments over money
do not capture preferences-based discounting because money is fungible. From such a
perspective, behavior in experiments reveals participants’ attempt to maximize the net
present value of payments, given (perceived) real interest rates. An alternative view
is that experimental participants narrowly bracket their choices and treat monetary
amounts in experiments as proxy for utils (Halevy, 2014; Sprenger, 2015; Andreoni
et al., 2018; Epper et al., 2020). We acknowledge this discussion, but note that it only
affects the precise interpretation of our cognitive uncertainty question. Under the inter-
pretation that our experimental paradigms do not capture true discounting, our CUmea-
sure picks up participants’ cognitive limitations in computing discounted utility (here:
NPVs), conditional on knowing their preferences (δ = 1). On the other hand, if experi-
ments over money also capture real discounting, the CU question potentially captures all
of the various psychological mechanisms discussed in the previous subsection. Regard-
less of whether the participant’s objective is to maximize NPV or discounted utility more
generally, our hypothesis is that subjective uncertainty about the utility-maximizing ac-
tion is associated with a compression effect.

Utility curvature. Estimates of discount rates from price list choicesmay be confounded
unless the curvature of the utility function is taken into account. To address this, we use
the “double price list method” that estimates utility curvature from a separate set of
risky choices.

Transaction costs. A main concern with traditional time discounting experiments is
that they capture differential transaction costs between present and future. In our hypo-
thetical money experiments, transaction costs are implausible. In the UberEats experi-
ments, there are likewise no transaction costs because participants automatically receive
their vouchers credited to their UberEats app, together with automated reminders about
the validity dates.

4.4 Logistics and Participant Pool

The study was conducted on Prolific, an online worker platform. Recent experimental
economics work suggests that data quality on Prolific is higher than on Amazon Mechan-
ical Turk, and comparable to that in a canonical lab subject pool (Gupta et al., 2021). For
the hypothetical money experiments, we made use of Prolific’s “representative sample”
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option to collect data from a broad and diverse (though not actually nationally repre-
sentative) set of participants.1⁴ We pre-registered a sample size of N = 600 participants.
However, because of the discreteness of Prolific’s representative sample procedure, we
eventually ended up sampling N = 645 people. Since we view throwing away data as
questionable, we keep the full sample, but we have verified that all results hold if we
restrict the sample to the first 600 completes.

In the UberEats experiments, the study description that was visible to prospective par-
ticipants announced that study bonuses would be paid in the form of UberEats vouch-
ers. In addition, we implemented a screening in which participants were again asked
whether they possess an UberEats account, and we immediately routed all people out
of the experiment who did not.1⁵ As we pre-registered, N = 500 workers participated
in the UberEats study.

Participants in both studies completed a comprehension check of three questions
each. Any participant who failed one or more of these questions was immediately routed
out of the experiment (16% in the money and 37% in the UberEats experiments). We
additionally implemented an attention check at the end of the study, and exclude all
participants who failed it (2% in the money and 1% in the UberEats experiments).

In the hypothetical money experiments, participants received $4.50 as a flat payment
for completion of the study. In the UberEats study, participants received a completion
fee of $4.00. In addition, one of the three parts of the experiment (intertemporal choice,
risky choice, Raven IQ test) was randomly selected for payout, with associated probabil-
ities of 25:5:70. Appendix G contains screenshots of all experimental instructions and
comprehension checks.

4.5 Pre-Registration

Appendix Table 5 provides an overview of all treatments conducted for this paper, in-
cluding pre-registration details. Our pre-registration includes (i) predictions 1–4 in Sec-
tion 3, (ii) the prediction that cognitive uncertainty is correlated with across-trial choice
variability, and (iii) descriptive analyses of the correlates of cognitive uncertainty to be
discussed in Section 5.

1⁴In our money experiments, average age is 42 years, 54% are female, and 45% have a college degree.
In our UberEats experiments, average age is 28 years, 58% are female and 59% have a college degree.

1⁵Because our experiments were conducted from late March through May 2021, we took various mea-
sures to ensure that only those prospective participants signed up for the study who were not concerned
about ordering food for delivery due to COVID-19. First, the study description clarifies that people should
not participate if they are concerned about ordering food for delivery due to COVID-19. Second, we re-
stricted the sample to participants of age 45 and under. Third, we ask prospective participants whether
they are worried about ordering delivery food due to COVID-19, and we immediately exclude anyone
from the study whose response is affirmative. Finally, by late March 2021 it had become increasingly
evident that delivery food is not a main source of COVID-19 transmission.
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Figure 2: Histogram of cognitive uncertainty statements in Money Main (left panel, N = 7, 740) and
Voucher Main (right panel, N = 6, 000).

5 Variation in Cognitive Uncertainty

5.1 Variation Across Participants and Decision Problems

Figure 2 shows histograms of task-level CU in the MPL decisions in treatments Money
Main (left panel) and Vouchers Main (right panel), such that each participant corre-
sponds to twelve observations. We see that 75% of all decisions inMoney Main and 81%
of decisions in Voucher Main are associated with strictly positive CU.

The heterogeneity in Figure 2 reflects both across-participant heterogeneity and sys-
tematic variation across choice problems. Figure 3 illustrates correlates of CU in treat-
mentMoneyMain using binned scatter plots; the analogous figures for treatment Voucher
Main look almost identical. The left panel shows that CU strongly increases in the length
of the log time delay (ρ = 0.16), suggesting that payouts or consumption in two tem-
porally distant periods are more difficult to evaluate against each other.

In light of this across-task variation, a relevant question is how stable people are
in exhibiting high or low CU. In our data, participant-fixed effects explain 45-54% of
the variation in CU. Thus, CU appears to have reasonably high within-domain stability.
Looking at across-domain stability, the right panel of Figure 3 documents that a partici-
pant’s average CU in intertemporal decisions is strongly correlated with the participant’s
average CU in separate risky choice (lottery) experiments that we implemented in the
final part of our study. The raw correlation is r = 0.62 in Money Main and r = 0.50 in
Voucher Main.1⁶

1⁶Other correlations between average subject-level CU and demographics are mostly small. The first
value refers to the money study and the second one to the voucher study: r = −0.08 (0.01) with the
score on Raven matrices IQ test, r = −0.10 (0.08) with age, r = 0.06 (0.06) with a female indicator,
r = −0.03 (−0.05) with a college degree indicator, and r = 0.07 (−0.07) with log study completion time.

18



10
15

20
25

30
C

og
ni

tiv
e 

un
ce

rt
ai

nt
y

-2 0 2 4
Ln [Time delay in months]

Money Main: CU as function of time delay

10
20

30
40

50
A

ve
ra

ge
 C

U
 in

 in
te

rt
em

po
ra

l c
ho

ic
e

0 20 40 60 80
Average CU in choice under risk

Money Main: CU across choice domains

Figure 3: Binscatter plots. The left panel shows the relationship between task-level CU and the log time de-
lay in a decision problem (N=7,740 decisions). The right panel shows the correlation between participant-
level average CU in intertemporal choice and average CU in choice under risk (N=645 participants).

5.2 Is Cognitive Uncertainty Reflective of Actual Noise?

Some researchers have used choice variability as empirical measure of cognitive noise.
We deem it useful to establish an empirical correspondence between our CU question
and variability for two reasons. First, data on choice variability is useful to understand
whether people’s subjective perception of their own cognitive noise is roughly accurate.
Second, a correlation between CU and choice variability may be seen as validation of a
quantitative-but-unincentivized question, in the spirit of recent experimental validation
studies in the literature (e.g. Falk et al., 2015; Enke et al., forthcoming).

Figure 4 shows the magnitude of across-trial variability as a function of cognitive un-
certainty. Variability is computed as absolute difference in normalized switching points
across two repetitions of the same choice list. We see that decisions that are associated
with higher average CU across the two trials are more variable. In quantitative terms,
an increase in average CU from zero to fifty is associated with a threefold increase in
variability. In both datasets, the raw correlation is ρ ≈ 0.17, p < 0.01.

Aside from choice variability, response times are sometimes used in the literature as
an indicator for how difficult – and thus, potentially, cognitively noisy – choices are. We
do not find a meaningful relationship between CU and response times in choice lists
(ρ = 0.03), nor between response times and choice variability (ρ = 0.04).

6 Cognitive Uncertainty and Intertemporal Choice

6.1 Inelasticity of Decisions to the Time Delay

We begin by displaying the raw data: how intertemporal decisions vary as a function of
the delay. For each choice list, a useful summary statistic is a participant’s normalized
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Figure 4: Link between cognitive uncertainty and across-task variability in normalized switch points in an
exact repetition of the same decision problem in Money Main (left panel, N = 1, 290) and Voucher Main
(right panel, N = 1,000). The y-axis captures the absolute difference between the normalized indifference
points across the two implementations. Average cognitive uncertainty is winsorized at 60 (roughly the
95th percentile in both datasets) for ease of visibility.

indifference point, which is given by the midpoint of the switching interval, divided by the
later payment amount. This measure represents which payment at the earlier payment
date makes the participant indifferent to receiving $1 at the later date.

Figure 5 shows average normalized indifference points (in percent). The top panel
shows results for treatment Money Main and the bottom panel those for Voucher Main.
To make the results comparable, the x-axes are kept identical even though the maximal
time delay in the vouchers study is only twelve months. We show results separately
for participants with CU of zero and strictly positive CU.1⁷ For ease of illustration, we
restrict attention to decision problems in which the early payment date is today, t1 = 0.
The analogous figure for t1 > 0 looks very similar (Figure 12 in Appendix B).

The figure’s main takeaway is that CU is strongly associated with compression of in-
difference points towards the center (roughly 50%). Notably, in treatment Money Main,
this CU-associated inelasticity is sufficiently strong that cognitively uncertain partici-
pants act as if they are less patient over relatively short horizons, yet more patient over
relatively long horizons, with a crossover point at around one year. This indicates that
the main behavioral implication of CU in intertemporal choice is indeed insensitivity to
time delays, rather than generically higher impatience. A second takeaway from Figure 5
is that behavior is very similar in Money Main and Voucher Main, including in its link
to CU. In particular, cognitively uncertain decisions in Voucher Main also reflect lower
patience over short time delays, yet as a result of insensitivity, this difference becomes
ever smaller as the length of the time delay increases.

Table 1 presents corresponding OLS regression estimates. Here, we relate partici-

1⁷This binary split is just for illustration purposes. Our regressions analyses leverage the entire variation
in cognitive uncertainty.
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Figure 5: Observed discounting with t1 = 0 in Money Main (top panel, N = 4,948) and Voucher Main
(bottom panel, N = 3,846). Normalized indifference points are given by the midpoint of the switching
interval in a choice list, divided by the larger-later payout amount (in %). The figure shows averages
across decisions. Whiskers show standard error bars, computed based on clustering at the subject level.

pant’s normalized indifference point to the length of the time delay, interacted with CU.
Columns (1)–(4) show the results forMoney Main, separately for whether the early pay-
ment date is today or in the future. Columns (5)–(8) show analogous results for Voucher
Main. The results confirm the visual impression from Figure 5. First, CU is associated
with a lower sensitivity of indifference values with respect to time delays, as can be in-
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Table 1: Cognitive uncertainty and inelasticity with respect to time delays

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

Sample: t1= 0 t1> 0 t1= 0 t1> 0

(1) (2) (3) (4) (5) (6) (7) (8)

Time delay (years) -8.08∗∗∗ -8.08∗∗∗ -7.76∗∗∗ -7.72∗∗∗ -39.2∗∗∗ -38.9∗∗∗ -39.1∗∗∗ -39.1∗∗∗
(0.39) (0.39) (0.39) (0.39) (2.16) (2.14) (3.88) (3.86)

Time delay × 0.11∗∗∗ 0.11∗∗∗ 0.073∗∗∗ 0.071∗∗∗ 0.61∗∗∗ 0.59∗∗∗ 0.58∗∗∗ 0.59∗∗∗
Cognitive uncertainty (0.01) (0.01) (0.01) (0.01) (0.08) (0.08) (0.14) (0.14)

Cognitive uncertainty -0.38∗∗∗ -0.37∗∗∗ -0.32∗∗∗ -0.31∗∗∗ -0.59∗∗∗ -0.58∗∗∗ -0.57∗∗∗ -0.57∗∗∗
(0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.07) (0.07)

Payment amount FE No Yes No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes No Yes

Observations 4948 4948 2792 2792 3846 3846 2154 2154
R2 0.17 0.19 0.19 0.21 0.20 0.21 0.13 0.14

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Columns
(1)–(4) include data fromMoney Main, where columns (1)–(2) restrict attention to decision problems with
t1 = 0 and columns (3)–(4) to problems with t1 > 0. An analogous logic applies to columns (5)–(8) for
Voucher Main. Demographic controls include age, gender and income bucket. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

ferred from the positive interaction coefficient. Second, the regression intercept (which
captures patience over very short horizons) is negatively correlated with CU, as we can
infer from the significant raw CU term. These results are very similar for t1 = 0 and
t1 > 0. A final comment regards the coefficient magnitudes. For example, in column
(1), the coefficients suggest that increasing CU from zero to fifty (the 90th percentile) is
associated with a decrease in sensitivity from 8.1 to 2.6 (or 68%), a large magnitude.1⁸

6.2 Linking Cognitive Uncertainty to Empirical Regularities

6.2.1 Short-Run Impatience

Figure 5 provided strong visual evidence for the hypothesis that, over very short hori-
zons, cognitively uncertain subjects are more impatient than cognitively certain ones, in
both Money Main and Voucher Main. More formally, in Money Main, the raw correlation
between normalized indifference points for one-week delays and cognitive uncertainty
is ρ = −0.45 both when t1 = 0 and when t1 > 0. In Voucher Main, the same correla-

1⁸The reason why the coefficient magnitudes are so different between Money Main and Voucher Main
is the large difference in the average time delay between these two experiments. Once the data in Money
Main are restricted to delays of at most one year, the coefficients are similar across the two experiments.
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tions are given by ρ = −0.39 and ρ = −0.45. All of these correlations are statistically
significant at the 1% level. Appendix Table 7 reports complementary regressions.

6.2.2 Decreasing Impatience

To study decreasing impatience, we follow the literature and define a required rate of
return for a given normalized indifference point ao as RRRt1,t2

(ao) ≡ ln
� ct2

ct1

�

= ln
�

1
ao

�

.
The RRR is a metric of impatience that depends on the delay. The literature frequently
computes a per-periodmeasure of patience as RRR/∆t. A transformation of this measure
that captures per-period patience in an intuitive and structurally meaningful way is

δH(a
o)≡ e−RRR/∆t = (ao)1/∆t . (6)

This monotone transformation is attractive because – in a standard exponential discount-
ing model without utility curvature and present bias – it directly corresponds to the
exponential annual discount factor that is implied by the indifference point ao. Thus,
decreasing impatience says that δH(ao) increases in the time delay, while under expo-
nential discounting δH(ao) is constant in the time delay.

Figure 6 shows the link between CU and decreasing impatience in four different pan-
els: treatments Money Main and Voucher Main, separately for t1 = 0 and t1 > 0. Again,
to make the figures comparable across experiments, we scale the x-axis to accommodate
the longer time delays inMoney Main. For each of the samples, we compute the average
implied δH(ao) across subjects for a given time horizon.1⁹

The figures show that average per-period patience strongly increases in the time de-
lay for cognitively uncertain participants. This is true in all four panels. For participants
with CU of zero, however, per-period patience increases much more weakly. For example,
for decisions in Money Main, implied per-period patience increases by a factor of 9.4 for
choices associated with positive cognitive uncertainty (going from a time delay of one
week to seven years), but by a factor of only 1.8 for decisions with zero cognitive uncer-
tainty. Table 8 in Appendix C confirms these visual impressions through regressions.

The strong increase in per-period patience for high-CU decisions cannot be explained
by present bias alone even if one asserted that CU and a desire for immediate gratifica-
tion are correlated. This is because we find very similar patterns for t1 = 0 and t1 > 0,

1⁹This visualization procedure is not subject to the aggregation insight of Weitzman (2001) and Jack-
son and Yariv (2014), which is that if the true data-generating process consists of subjects having different
exponential discount functions, the average choice cannot necessarily be represented by an exponential
function. This is not a problem here because we do not compute an implied δH for the average choice,
but instead average the implied δH . Therefore, if the true process was exponential and participants had
heterogeneous but constant discount factors, the average implied δH in Figure 6 should be constant in
the time horizon. In any case, in our regression analyses, we always work with decision-level (rather than
average) implied δH , which implies that potential aggregation issues never matter for our statistical tests.
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Figure 6: Implied per-period patience in Money Main (top panels) and Voucher Main (bottom panels),
partitioned by whether the early payment date is today or in the future. Per-period patience is computed
as δH(ao) ≡ e−RRR/∆t = (ao)1/∆t , where ao is the observed normalized indifference point. The figure
shows average δH across decisions. Whiskers show standard error bars, computed based on clustering at
the subject level.

while present bias only predicts diminishing impatience for t1 = 0. Section 7 calibrates
the relative importance of CU and present bias in generating observed behavior.

6.2.3 Subadditivity

We now turn to the two “subadditivity sets” in our data, each of which consists of three
dates: set 1: {0, 6m, 12m}; set 2: {0, 4m, 8m}.2⁰ Following standard procedures in the
literature, we compare the normalized indifference point obtained from the problem in-
volving the one long interval with the product of the two normalized indifference points
obtained from the respective two short intervals (the implied normalized indifference
point of a long “composite interval”). Thus, although each subject makes three decisions
for a given set, these give rise to two observations. Subadditivity occurs if the former
quantity is larger than the latter. Table 2 summarizes the results for both Money Main

2⁰Because we randomly selected some choice lists to be presented twice to the same participant, we
sometimes have more than one observation for one of the three decisions that constitute a subadditivity
set. In those cases, we average the decisions in the two identical choice lists.
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Table 2: Cognitive uncertainty and subadditivity

Dependent variable:
Overall Normalized Indifference Point over Long Interval

Treatment: Money Main Voucher Main

(1) (2) (3) (4) (5) (6)

1 if one long interval, 0 if composite interval 8.53∗∗∗ 3.35∗∗ 3.63∗∗∗ 9.50∗∗∗ 1.51 1.56
(0.62) (1.32) (1.32) (0.60) (1.61) (1.60)

1 if one long interval × Cognitive uncertainty 0.25∗∗∗ 0.23∗∗∗ 0.32∗∗∗ 0.32∗∗∗
(0.06) (0.06) (0.06) (0.06)

Cognitive uncertainty -0.44∗∗∗ -0.42∗∗∗ -0.42∗∗∗ -0.42∗∗∗
(0.06) (0.06) (0.08) (0.08)

Set FE Yes Yes Yes Yes Yes Yes

Payment amount FE Yes Yes Yes Yes Yes Yes

Demographic controls No No Yes No No Yes

Observations 1948 1948 1948 2000 2000 2000
R2 0.02 0.07 0.09 0.05 0.08 0.09

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Each subject
makes three decisions for a given set, which give rise to two observations / composite normalized indifference
points. The first is given by the normalized indifference point for a decision over the respective long horizon.
The second is given by the product of the two normalized indifference points for the decisions over the two
respective short horizons. Set fixed effects include fixed effect for each pair of decision problems that exhibit
a front-end delay structure. Set 1: {0, 6m}, {6m, 12m} and {0m, 12m}. Set 2: {0, 4m}, {4m, 8m} {0m, 8m}.
Demographic controls include age, gender and income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

and Voucher Main. In both sets of experiments, we see strong evidence for the existence
of subadditivity, see columns (1) and (4). In line with our hypothesis, the difference in
observed patience between long and short intervals increases significantly in CU, see the
interaction term in columns (2)–(3) and (5)–(6).

6.2.4 Front-End Delay Effects

Finally, we study the link between CU and front-end delay effects. These refer to the
regularity that people exhibit greater patience in a decision problem in which both pay-
ment dates are moved forward by a constant. For example, people frequently appear
more patient in tradeoffs between {6m, 12m} than between {0, 6m}. Recall that we
predicted and pre-registered that cognitive uncertainty is uncorrelated with front-end
delay effects. Therefore, an effective way to view these analyses is that they are a type
of placebo exercise.

As summarized in Cohen et al. (2020), front-end delay effects are often but not al-
ways present in choices over monetary amounts. In our context, columns (1) and (4)
document that we find highly significant and quantitatively large evidence for the pres-
ence of front-end delay effects. More importantly for our purposes, we find that the
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Table 3: Cognitive uncertainty and front-end delay effects

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

(1) (2) (3) (4) (5) (6)

1 if front end delay 3.07∗∗∗ 2.56∗ 2.47∗ 2.74∗∗∗ 4.98∗∗∗ 5.18∗∗∗
(0.85) (1.32) (1.30) (0.86) (1.68) (1.67)

Front-end delay × Cognitive uncertainty 0.048 0.049 -0.055 -0.064
(0.05) (0.05) (0.05) (0.05)

Cognitive uncertainty -0.30∗∗∗ -0.28∗∗∗ -0.24∗∗∗ -0.23∗∗∗
(0.05) (0.05) (0.06) (0.06)

Set FE Yes Yes Yes Yes Yes Yes

Payment amount FE No No Yes No No Yes

Demographic controls No No Yes No No Yes

Observations 2393 2393 2393 2337 2337 2337
R2 0.00 0.05 0.06 0.01 0.05 0.05

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Set fixed
effects include fixed effect for each pair of decision problems that exhibit a front-end delay structure.
Set 1: {0, 6m} and {6m, 12m}. Set 2: {0, 4m} and {4m, 8m}. Demographic controls include age,
gender and income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

correlation between front-end delay effects and cognitive uncertainty is either small
and statistically insignificant (columns (2)–(3)) or even goes in the opposite direction
(columns (5)–(6)). This is despite a relatively large sample size of N = 2,393 decisions
(645 subjects) in Money Main and N = 2,337 decisions (500 subjects) in Voucher Main.

6.3 Taking Stock: Modeling Approaches vs. Evidence

As noted earlier, our primary contribution is to document the relevance of noisy cog-
nition for intertemporal choice, rather than to definitively disentangle different classes
of random choice models that often make similar predictions (and each of which come
in different variants). This being said, a comparison of the empirical results with the
discussion in Section 3 allows us to draw some tentative conclusions about which types
of models explain the patterns better than others. A crucial role in this regard play the
choice patterns regarding subadditivity and front-end delay effects. The main reason
is that the cognitive-noise-in-action-space framework and the random response model
that we sketched in Section 3 predict that cognitive noise is correlated with subadditiv-
ity but not with front-end delay effects. Random preference models and the cognitive
noise model of Gabaix and Laibson (2017), on the other hand, both predict that cogni-
tive noise is linked to front-end delay effects but not to subadditivity. Given that we find
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that cognitive uncertainty is predictive of subadditivity but not of front-end delay effects,
we conclude that random preference models and the approach of Gabaix and Laibson
(2017) and Gershman and Bhui (2019) do not explain all aspects of the evidence.

6.4 Robustness

Omitted variables. Given that all analyses up to this point are correlational in nature,
a potential concern is the existence of a stable participant characteristic other than cog-
nitive uncertainty that somehow generates the results. While we are not aware of other
characteristics that could plausibly lead to higher implied impatience over short hori-
zons, yet lower implied impatience over long horizons, we perform a robustness check
by including participant fixed effects in our main regression in Table 1. By definition,
these soak up fixed subject characteristics such as overall cognitive ability. As a result,
inelasticity with respect to variation in the time delay is identified purely off of within-
participant-across-task variation in CU. As we document in Appendix Table 9, the results
remain statistically significant conditional on these subject fixed effects.

Direct elicitation experiments. Up to this point, all results were derived from exper-
iments in which intertemporal choice behavior was elicited using choice lists. To doc-
ument that the logic of CU and inelasticity extends to another elicitation technique,
treatmentMoney Main also included a direct elicitation component, see Section 4. Here,
subjects were directly asked howmuch they value a hypothetical payment of $y in t = t2

in terms of a payment to be received today. To answer this question, subjects directly
typed a dollar amount into a text box. After each decision, subjects indicate their cog-
nitive uncertainty by indicating their subjective probability that their true valuation for
the later payment actually lies within ±$1 of their stated valuation.

Appendix D shows that these direct elicitation experiments deliver very similar re-
sults as the ones reported thus far. Specifically, we find that (i) CU is significantly cor-
related with across-trial choice variability; (ii) CU is strongly correlated with short-run
impatience over one week; (iii) CU is correlated with decreasing impatience; (iv) CU
is correlated with subadditivity; and (iv) CU is again uncorrelated with front-end de-
lay effects. Thus, all of our results from the MPL experiments replicate using the direct
elicitation technique.

7 Model Estimations

We proceed by estimating eq. (2) from Section 3 to gauge how well such a reduced-form
model fits the data, and howmuch themeasurement of cognitive uncertainty contributes
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to model fit. In eq. (2), the weight λ depends on the magnitude of cognitive noise. We do
not observe cognitive noise itself but cognitive uncertainty, denoted pCU . We proceed by
using the heuristic approximation λ= 1−αpCU , where α≥ 0 is a nuisance parameter to
be estimated. With CRRA utility and larger-later payment x ≡ ct2

≥ 1, eq. (2) suggests
that the mean observed choice in our experiments is determined as

E[ao] = λ(pCU) ·E[s] · x + (1−λ(pCU)) · d · x

= (1−α · pCU) · (δ∆t)1/γ · x + (α · pCU) · d · x (7)

This equation, amended by a mean-zero error term, can be estimated using straightfor-
ward nonlinear least squares techniques. Specifically, we observe ao, ∆t and pCU , and
estimate δ, d and α.21 To assess and compare model fit, we estimate four model vari-
ants. First, a baseline exponential discounting model in which we ignore CU (i.e., we set
α = 0). Second, also for benchmarking purposes, a β − δ model, which also precludes
a role for CU. Finally, we estimate both of these variants including CU.22

Notice that the estimate of d has two potential interpretations. Under the Bayesian
cognitive noise interpretation, d is a constant cognitive default action that people anchor
on. Under the random response interpretation, d is the mean of the distribution function
F(·) from which random responses are drawn.

Aggregate estimates. We begin by estimating the model across subjects, treating the
data as if it was generated by one representative agent. Table 4 summarizes the model
estimates across the three different types of experiments that we report in this paper.
There are five main takeaways. First, in line with prior research, a pure exponential dis-
countingmodel fits the data poorly. Second, a beta-delta model fits the data considerably
better, but not nearly as well as a model that includes both exponential discounting and
CU (see the Akaike Information Criterion values in the last row). Third, a model that
includes both a role for taste-based present bias and CU performs best. This – in line
with our results on front-end delay effects – again highlights that a desire for imme-
diate gratification and cognitive noise are distinct and complementary objects. Fourth,
ignoring CU in the estimations considerably inflates the role of present bias β . Fifth,
the estimates are strikingly similar across experiments; in particular, the estimated d is
always around 50% of the larger-later reward.

To put these estimates in perspective, note that our setup in which the earliest reward
lies several hours in the future likely underestimates the true extent of present bias. Even

21The risk aversion parameter, γ, is separately estimated on our risky choice experiments in the final
part of the study, and taken as given in the intertemporal choice estimations.

22The amended estimation equation for β−δ−CU is given by ao = (1−α·pCU)·(βδ∆t)1/γ+(α·pCU)·d.
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Table 4: Estimates of model parameters across experiments

Money Main MPL Money Main Direct Elicitation Voucher Main MPL

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

β −δ β −δ β −δ
δ β −δ δ− CU −CU δ β −δ δ− CU −CU δ β −δ δ− CU −CU

δ̂ 0.96 0.98 0.97 0.98 0.97 0.99 0.98 0.99 0.94 0.95 0.95 0.95

β̂ 0.77 0.86 0.76 0.85 0.89 0.95

d̂ 0.51 0.49 0.52 0.49 0.57 0.56

AIC 64,148 63,165 61,904 61,701 32,247 31,391 30,993 30,791 46,980 46,652 45,853 45,817

Notes. Estimates of different versions of (7). MPL = multiple price list. AIC = Akaike Information Criterion. Each column
corresponds to a separate model estimation. Columns (1), (5), (9): set β = 1 and α = 0. Columns (2), (6), (10): set α = 0.
Columns (3), (7), (11): set β = 1. All estimated standard errors (computed based on clustering at the subject level) are smaller
than 0.02. In estimations that include CU, we also estimate the nuisance parameter α (not reported). All estimations are
conducted by setting a CRRA parameter of γ= 0.94, which is the population-level risk aversion that was separately estimated
on the risky choice data. The exponential parameter δ is the monthly discount factor.

though we find clear evidence for β < 1, recent experimental work suggests that most
discounting occurs in the first few hours following a decision (e.g., Augenblick, 2018),
something that is not captured in our experimental paradigm.

Figure 7 visualizes the fit of the various estimated models for treatmentMoney Main,
separately for decision problems in which the early payment date is today or in the
future.23 The figures are constructed by generating predicted values, based on the pa-
rameter estimates in Table 4. We again see that exponential discounting fits the data
very poorly. Likewise, almost by construction, the canonical beta-delta model fits poorly
when the early payment date is in the future.2⁴ On the other hand, when the early pay-
ment date is today, the beta-delta model performs well in fitting behavior over relatively
short time delays, but (as is well-known) performs relatively poorly in capturing the
strong flattening out of the observed data for long time delays.

The delta-CU model, on the other hand, captures several key aspects of the data.
First, it partly accounts for some of the extreme impatience over short horizons. Second,
the model accounts much better (though also somewhat imperfectly) for the strong
compression effects over long horizons. Third, the delta-CU model matches the data
reasonably well both when the early payment date is today and when it is in the future.

Individual-Level Estimates. Estimating any intertemporal choice model at an aggre-
gate level is problematic because participants might have heterogeneous discount factors
(Weitzman, 2001; Jackson and Yariv, 2014). Therefore, we proceed by estimating the

23Appendix Figure 14 shows analogous results for Voucher Main.
2⁴The different model fit for the exponential discounting and the beta-delta model for the case of

t1 > 0 result from the fact that we estimate both models on all data, including those with t1 = 0.
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Figure 7: Model fit vs. data in Money Main. The model predictions are computed as fitted values of the
parameter estimates in Table 4.

model at the level of individual subjects.2⁵ We report the results in Appendix Table 10.
To summarize, there is substantial individual-level variation in estimated model param-
eters. For most parameters, the center of the estimated coefficient distributions is well in
line with the parameters in our representative-agent estimation.2⁶ The empirical distri-

2⁵To increase power in these individual-level estimations, we restrict attention to treatment Money
Main, in which each subject completed both 12 MPLs and 6 direct elicitation tasks.

2⁶An exception is the the present bias parameter β . We find less pronounced present bias (larger β)
in our individual estimations than the aggregate ones, in line with the theoretical insight that aggregate

30



bution of d̂ is roughly bell-shaped with a center around d̂ ≈ 0.5, with two pronounced
spikes at d̂ = 1 and d̂ = 0.

Discussion. Our estimations consistently suggest that a potential cognitive default ac-
tion or mean random response is given by roughly 50% of the larger-later payment.
This is true both in experiments with price lists and in direct elicitation experiments.
Of course, given the available evidence, we do not intend to take a strong stance on
whether this estimate will be context-specific. While we suspect that it will be (see the
discussion in the Conclusion), it is also interesting to note that the “central” nature of the
estimated d jives well with a large body of work in both economics and psychology that
suggests that people’s heuristic responses to decision problems tend to be intermediate
in nature. In psychology, this well-known finding has come to be known as the “cen-
tral tendency effect” (Hollingworth, 1910), which appears across a large set of decision
domains. Indeed, in joint work with cognitive psychologists, we have documented that
central tendency effects in various perceptual domains are strongly linked to cognitive
uncertainty (Xiang et al., 2021). In economics, a related effect is the so-called compro-
mise effect (see, e.g., Beauchamp et al., 2019, for an example in risky choice), which
captures that people tend to indicate indifference values that are in the “center” of a
choice set.

8 Why Cognitive Microfoundations Matter

It may not be immediately obvious why it is important for economists to understand
that intertemporal choice is to a large degree governed by bounded rationality rather
than only preferences, if reduced-form discount functions such as variants of the gener-
alized hyperbola generally perform reasonably well in fitting data (even if for the wrong
reasons). While we believe that understanding cognitive microfoundations is scientifi-
cally valuable in its own right, we now additionally show that understanding cognitive
mechanisms matters for economic predictions and, potentially, policy.

8.1 Complexity and Hyperbolic Discounting

A main implication of a preferences-based account is that the hyperbolic shape of dis-
counting is fixed. Our account, on the other hand, predicts that economically-relevant
phenomena such as short-run impatience and hyperbolic discounting will be more pro-
nounced in environments that increase cognitive noisiness. In the absence of theoretical

quasi-hyperbolic discounting can partly result from the aggregation of preferences of individuals with
different discount factors.
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guidance for what determines cognitive noise, we conjecture that the magnitude of cog-
nitive noise will be a function of (i) the complexity of the decision problem and (ii) the
availability of cognitive resources for deliberation of the problem.

Task complexity. Because there is no widely accepted definition for task complexity,
we implement two treatments that plausibly increase the perceived complexity of the
intertemporal decision problems. Here, one treatment is aimed at increasing the com-
plexity of the time delay, while the other treatment increases the complexity of mentally
simulating payoffs and resulting utils. Specifically, in Money Complex Dates, we imple-
mented the same procedures as inMoney Main, except that all payout dates in the choice
lists were represented as a math task. For instance, “In 1 year” could be represented as
“In (6*2/3-3) years AND (3*6/2-9) months AND (5*4/2-10) days.” Appendix Figure 18
provides a screenshot.

In treatment Money Complex Amounts, we again implemented the same procedures
as in Money Main, except that, for the delayed option A in a choice list, the monetary
amount was again represented as a math problem, such as “$(4*8/2)+(8*9/2)-12”. Ap-
pendix Figure 19 provides a screenshot. Relative to our baseline condition, this treatment
leaves the complexity of the display of payment dates constant, but makes determining
the consumption implications of a choice option more difficult.

Availability of cognitive resources. To manipulate the cognitive resources that people
have at their disposal to mentally simulate their true indifference point, prior literature
has worked with cognitive load or time pressure / waiting periods (Deck and Jahedi,
2015; Imas et al., 2021; Ebert, 2001). The main result in this literature is that having
fewer cognitive resources available generally leads to lower revealed patience. Yet, in
these studies, researchers implemented relative short time delays. Our account predicts
that people act as if they are actually more patient over long horizons when they have
fewer cognitive resources available. In our treatmentMoney Load, participants are tasked
with simultaneously (i) completing the intertemporal choice problems over money de-
scribed in the previous section and (ii) adding up red numbers that appeared at random
intervals next to the choice list.2⁷

An obvious issue with our complexity and load manipulations is that cognitive effort
and resulting response times are endogenous: in principle, it is conceivable that subjects
in the more complex conditions take substantially longer to complete the tasks, so that
no effect on CU would be visible. To prevent this, we implemented a time limit of 25
seconds per choice list in each of these conditions, including in a replication of treatment

2⁷We also separately implemented a within-subject design that manipulated the presence of the num-
ber counting task within subjects across tasks. The results are very similar, see Appendix F.
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Figure 8: Observed discounting with t1 = 0 in Money Main replication (N = 1,932) and Money Complex
Amounts (N = 1, 836). Normalized indifference points are given by the midpoint of the switching inter-
val in a choice list, divided by the larger-later payout amount (in %). The figure shows averages across
decisions. Whiskers show standard error bars, computed based on clustering at the subject level.

Money Main that we administered in the same experimental sessions. See Appendix E for
example screenshots for all treatments. We conducted these experiments with a separate
sample of 617 participants, in which each participant was randomly assigned to one of
the four treatments (Money Complex Dates, Money Complex Amounts, Money Load and
Money Main Replication).

Results. We find that all three treatment variations substantially increase stated CU rel-
ative to the replication of our main treatment. The magnitude of the increase is between
5 and 12 percentage points (20% to 50%, respectively), p < 0.01 for all comparisons
to the baseline replication. Turning to intertemporal choice behavior, Figure 8 summa-
rizes the results for treatment Money Complex Amounts. We see that the indifference
points in the more complex treatment are more compressed around 50% compared to
the replication of the baseline treatment. As a result, participants in the more complex
treatment behave as if they are more impatient over short horizons but less impatient
over long ones. Appendix E summarizes the results for treatmentsMoney Complex Dates
and Money Load, which look very similar. See Appendix Table 17 for statistical tests. In
all, we see that acknowledging a role of cognitive noise facilitates improved predictions
about the context-dependence of hyperbolicity.
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8.2 Choice Architecture

In contrast to preferences-based theories of extreme short-run impatience, an account of
cognitive uncertainty predicts that short-run impatient choices will often be associated
with a sense of “nervousness” that the decision reflects an error. Thus, people may be
open to (or even actively seek out) advice about how to behave. To study the relevance
of cognitive uncertainty for choice architecture, we test whether it is indeed true that
people with cognitive uncertainty about a given decision are more likely to follow the
advice of an outside expert. This is arguably a strong hypothesis because variation in
intertemporal decisions surely partly reflects genuine heterogeneity in preferences (e.g.,
in δ). Given that outside experts will rarely know the decision-maker’s true preferences,
following the advice of an expert is a double-edged sword: it may reduce the probability
of making mistakes, but increase the probability of doing something that goes against
one’s individual preferences.

To assess the relevance of cognitive uncertainty for advice-seeking and choice ar-
chitecture, we implement treatment Voucher Advice. This treatment follows exactly the
same protocol as Voucher Main, except that it introduces a piece of advice. In the first
choice list, we fixed the early payment date at today and varied the delayed payment
date between one week and two months. After the participant had indicated their de-
cisions in this choice list and their cognitive uncertainty, we presented a surprise an-
nouncement:2⁸

We surveyed a few academic economists about which advice they would give
to participants in this study regarding which decisions to make. These academic
economists recommend that participants choose the delayed Voucher A in all
rows of the choice list you just completed. We recognize that decisions like these
depend on your own preferences, so we neither encourage nor discourage you
to follow this advice. However, should you wish to revise your decision, you can
do so in the choice list below. The choices that are indicated right now are those
that you made yourself a few seconds ago.

We pre-registered the sample size and our prediction that cognitive uncertainty is asso-
ciated with a higher likelihood of following expert advice by revising a previous decision
at https://aspredicted.org/jk5s5.pdf.

Experimentals like these are potentially subject to experimenter demand effects, ac-
cording to which participants revise their decisions purely because they believe that the

2⁸No deception was involved in the design of the study because we actually polled Harvard-based
economists for advice. We suspect that the reason why people are comfortable articulating advice in such
situations is that – over timeframes of one week to two months as in our study – even mildly impatient
decisions imply absurdly high discount rates.
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Choice revisions as function of cognitive uncertainty

Figure 9: Probability of revising decision towards higher patience, as a function of cognitive uncertainty
(N = 153). The figure is constructed controlling for the normalized indifference point before seeing advice.
In other words, the y-axis shows the residual probability of revising the decision after the initial choice is
partialed out through an OLS regression.

experimenter would like them to. In our context, this “level effect” is irrelevant because
we are only interested in the differential responsiveness to advice of participants with
and without cognitive uncertainty. Our identifying assumption is therefore that cogni-
tively uncertain subjects are not subject to stronger demand effects.

In our data, 34% of participants revise their decision upon seeing advice, where al-
most all revisions are in the direction of higher patience. Figure 9 shows the relationship
between cognitive uncertainty and choice revisions towards the advice of full patience.2⁹
We see that participants with strictly positive cognitive uncertainty are 16 percentage
points (80%) more likely to revise their choice, p < 0.01.

9 Discussion

Contribution. Much of behavioral economics views intertemporal choice, and famous
empirical regularities, as largely determined by non-standard discount functions (pref-
erences). This paper argues for and empirically documents an important role of cog-
nitive noise and complexity for intertemporal decision-making. An innovation of our
study is that we directly measure and exogenously manipulate cognitive noise through
self-reported cognitive uncertainty. Using this tool, we document that a large share of

2⁹Because subjects with higher cognitive uncertainty on average state lower indifference points in their
initial decision, they have more “room” to adjust. We control for this by residualizing the y-axis of Figure 9
from the initial normalized indifference point through a linear regression (the results are even stronger
without this adjustment).
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short-run impatience and hyperbolic discounting are driven by bounded rationality and
cognitive noise, rather than impatient preferences. These insights matter not just from
a scientific perspective but arguably have real economic implications. On the intensive
margin of decision-making, hyperbolic discounting depends on complexity. On the ex-
tensive margin, cognitively uncertain people welcome the advice of experts even when
those experts don’t know their preferences. While we emphasize throughout the paper
that cognitive noise is complementary to (rather than replaces) taste-based present bias,
we have shown that cognitive noise provides a better account of many of key economic
phenomena that are often ascribed to present bias. In all, we interpret these results as
providing some of the first direct empirical evidence that cognitive noise and cognitive
uncertainty are relevant for a broad set of economic aspects of intertemporal choice.

Link to cognitive effects in intertemporal choice research. We conjecture that our
account of cognitive uncertainty provides a rationale for extant empirical findings about
“cognitive” effects in intertemporal choice research. The perhaps most widely-known re-
sult on cognition and intertemporal choice is that, if the time delay is relatively short,
a lower availability of cognitive resources is associated with less patient decisions. At
the same time, Ebert (2001) presents evidence that suggests that, over long horizons,
a lower availability of resources makes people more patient. Our account of the link be-
tween inelasticity and cognitive uncertainty reconciles this somewhat puzzling combi-
nation of results. Moreover, Cubitt et al. (2018) present intriguing evidence that people’s
decisions are much less sensitive to variation in the time delay when intertemporal deci-
sions involve cross-domain comparisons (car now vs. vacation later) than when they only
concern within-domain comparisons (car now vs. nicer car later). While no preferences-
based intertemporal model predicts such effects, we conjecture that they are driven by
higher cognitive noisiness in cross-domain comparisons.

Limitations. Our paper does not purport to explain nearly all intertemporal choice
anomalies. One regularity that our study does not address are well-known framing ef-
fects, such as the speed-up / delay asymmetry (Loewenstein and Prelec, 1992) or date /
delay effects (Read et al., 2005). At the same time, we do conjecture a potential link
between such framing effects and our work: if one choice option is presented to people
as the default that they can “speed up” at a cost, it seems plausible that people use that
option as a cognitive default. Based on this idea, we conjecture that speed-up / delay
asymmetries are more pronounced when cognitive uncertainty is high.

More generally, this conjecture highlights that further research is needed to under-
stand potential cognitive default actions. In this paper, we estimate the default action to
be “intermediate,” which is consistent with various documentations of central tendency

36



effects in cognitive psychology. Yet, it is important to note that the specific intertemporal
choice context we study is one with which people have little or no experience. Future
research will explore how potential cognitive default actions depend on experience and
contextual influences.
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ONLINE APPENDIX

A Derivations for Bayesian Cognitive Noise Model

A.1 Model setup

Below we discuss the main behavioral predictions of a Bayesian cognitive imprecision
model as outlined in Section 3. Suppose the DM has access to a mental simulation of
the optimal action that we conceptualize as a “cognitive signal” S. We assume that S is
an unbiased estimate of a∗, the normalized indifference point3⁰, and follows a scaled
binomial distribution,

S ∼
1
n2

Bin(n2, a∗), (8)

such that 0 < S < 1. The parameter n2 controls the precision of the mental simulation.
The subjective likelihood of the utility-maximizing action based on a randomly drawn
internal representation {S = s} can then be represented by a binomial distribution:

L (a∗|S = s) = P(S = s|a∗, n2) =
�

n2

sn2

�

(a∗)sn2(1− a∗)(1−s)n2 . (9)

The DM holds a prior about his utility-maximizing action, A, which we broadly think of as
the mathematical analogue of a decision maker’s initial reaction to a choice problem. We
assume that this prior can be represented by a Beta distribution, A∼ Beta(n1d , n1(1−
d)). Here, d is the prior mean and carries the interpretation of a “cognitive default”
action that the DM would take before deliberating about the problem. The parameter
n1, on the other hand, reflects the DM’s confidence in (or precision of) their prior.31 Note
that the default action represents a fraction of the larger-later consumption, rather than
an absolute consumption level.

A Bayesian DM accounts for the noisiness of his mental simulation by implicitly form-
ing a posterior assessment of the utility-maximizing action. Given a Beta-distributed
prior and a Binomial signal, this posterior belief, A

�

�{S = s}, is also Beta-distributed.32
The DM’s observed action given a mental signal is assumed to be the posterior mean:33

ao = E[A
�

�{S = s}] = λs+ (1−λ)d with λ= n2/(n1 + n2). (10)

3⁰This interpretation is possible since u(c) = cα.
31Note that n1 = a + b is a re-parameterization of the typical shape parameters a and b of the Beta

distribution. n1 is inversely related to the variance of the prior, σ2
A =

d·(1−d)
1+n1

.
32Specifically, AS=s ∼ Beta(sn2 + n1d , n2(1− s) + n1(1− d)).
33Focusing on the posterior mean is without much loss in the present context because the mean of a

Beta(a,b) variable is a/(a+ b), the mode is (a− 1)/(a+ b− 2) and the median lies between the two.
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This endogenizes the decision rule we posited in equation (2) of Section 3. Crucially, a
more precise mental simulation (higher n2) has a direct, negative effect on the weighting
factor λ, which implies a lower weight on the cognitive default action. In the following
subsection, we will thus focus on deriving behavioral predictions for changes in λ. In
subsection A.3, we characterize cognitive uncertainty in the context of this model.

A.2 Derivations for behavioral predictions

All theorems and derivations in this subsection will solely concern a given subject’s mean
observed action, i.e., their average response aggregating across many unbiased signals.
Given E[S] = a∗, we define:

ae := E[ao] = λ · a∗ + (1−λ) · d. (11)

where λ ∈ [0,1] is our representation of cognitive precision. We derive the following be-
havioral predictions under the assumption of a canonical exponential discount function,
D(t) = δt , in order to disentangle the effect of shrinkage to a default from the pre-
dictions generated by present bias. Hence, a∗ = u−1(δ∆t) with u(c) = cα,α > 0. Since
α > 0, we may allow δ to absorb α and in effect take α = 1 in the proofs. As before
(Section 6.2.2), we define:

RRR := ln(
1
ae
) = − ln(ae), δH := e−

RRR
∆t (12)

as the required rate of return and implied annualized discount factor. We will use
the required rate of return per unit of time,

r :=
RRR
∆t

, (13)

as our measure of per-period impatience. We define short horizons as those time hori-
zons where an exponential discounter behaves more patiently than a subject playing the
default action:

SH := {∆t
�

� a∗ > d} (14)

Long horizons, LH, are similarly defined by:

LH := {∆t
�

� a∗ < d} (15)

We now turn to the theoretical predictions underlying the pre-registered predictions
spelled out in Section 3.
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Theorem 1 (Impatience over different time horizons).

(i) Higher cognitive precision leads to less per-period impatience over short horizons.

∂ r
∂ λ

�

�

∆t∈SH < 0 (16)

(ii) Higher cognitive precision leads to more per-period impatience over long horizons.

∂ r
∂ λ

�

�

∆t∈LH > 0 (17)

Proof. Note that:

∂ ae

∂ λ
= a∗ − d, (18)

by definition. Hence, the sign of eq. (18) depends on whether it is evaluated over a short
or long time horizon. We may now differentiate:

∂ r
∂ λ
=

1
∆t
∂ RRR
∂ λ

(19)

= −
1

ae∆t
∂ ae

∂ λ
(20)

Since we trivially have ∆t, ae > 0, the sign of ∂ r/∂ λ is given by eq. (18) and the
definitions (14) and (15), which yields the result.

We note the trivial corollary that delivers Prediction 1 in the main text:

Corollary 1.1. Subjects with perfect cognitive precision, λ= 1, have less pronounced short
run impatience than those with imperfect cognitive precision, whereas the opposite is true
concerning long run impatience.

Given our measure of per-period impatience, we may show that per-period impa-
tience decreases in the time delay (∆t).

Proposition 1 (Decreasing per-period impatience).

(i) For those with complete cognitive precision, λ = 1, per-period impatience is constant
in the time delay. Formally,

∂ r
∂∆t

�

�

�

λ=1
= 0 (21)

(ii) For those with imperfect cognitive precision, λ ∈ (0,1), per-period impatience de-
creases in the time delay. In other words:

∂ r
∂∆t

�

�

�

λ<1
< 0 (22)
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Proof. We will consider the two cases: (i) λ= 1; (ii) λ ∈ [0, 1) separately.
In the case λ= 1 we trivially note that:

r =
− ln |ae|
∆t

= − ln |δ| (23)

Hence, we have that:
∂ r
∂∆t

= 0 (24)

For λ ∈ (0, 1), note that δ < 1 implies:

∂ RRR
∂∆t

= −
λδ∆t ln |δ|

ae
> 0 (25)

∂ 2RRR
(∂∆t)2

= −
λ(1−λ)δ∆t d ln2 |δ|

(ae)2
< 0 (26)

meaning that the RRR is concave in ∆t. The following expression describes how the
RRR per unit of time changes in the time delay:

∂ r
∂∆t

=
∂ RRR
∂∆t ∆t − RRR

∆t2 (27)

A sufficient condition for (27) to have negative sign is therefore:

∆t ·
∂ RRR
∂∆t

< RRR (28)

We may now define the function:

g := RRR−
∂ RRR
∂∆t

∆t (29)

and differentiate to find:
∂ g
∂∆t

= −
∂ 2RRR
(∂∆t)2

∆t ≥ 0 (30)

We note that at ∆t = 0 we have:

g(0) = RRR(0) = − ln |λ+ (1−λ)d|> 0 (31)

since 0< d,λ < 1. Hence, we find that g is positive for all ∆t > 0:

g > 0
�

�∆t > 0 (32)

substituting in the definition of g shows that (28) is satisfied yielding the result.

The following corollary underlies Prediction 2 in the main text:
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Corollary 1.1. The magnitude of per-period impatience’s decrease in the time delay is
smaller for those with perfect cognitive precision than for those with imperfect cognitive
precision. Locally, this provides:

∂ 2r
∂ λ∂∆t

�

�

�

λ=1
> 0 (33)

Proof. Note that the previous proposition provides that dr/d∆t < 0 for λ < 1 and is
equal to zero for λ= 1. The result follows.

It is important to note that the above theorems make no assumptions concerning the
start time t1 or end time t2; but rather, only depend on the time delay∆t = t2− t1. This
is in line with our Predictions 1 and 2, which cover both delays starting in the present
and in the future.

Next, we turn to the phenomenon of subadditivity. Subadditivity arises purely as a
result of cognitive noise – as is well-known, β −δ preferences do not generate subaddi-
tivity.

Theorem 2 (Subadditivity). Those subjects reporting cognitive uncertainty and an interior
default will exhibit subadditivity in their choices. In other words, for λ ∈ [0,1), d ∈ (0, 1)
we claim:

SA := (RRRt1,t2
+ RRRt2,t3

)− RRRt1,t3
> 0 (34)

Since RRR only depends on the time delay and not the start time, it will be convenient
to replace t1, t2, t3 with the variables:

∆t1 := t2 − t1, ∆t2 := t3 − t2

Taking ae as a function of the time delay, our subadditivity condition can be rewritten
as:

SA> 0 (35)

ln |
ae(∆t1 +∆t2)

ae(∆t1)ae(∆t2)
|> 0 (36)

ae(∆t1 +∆t2)
ae(∆t1)ae(∆t2)

> 1 (37)

ae(∆t1 +∆t2)> ae(∆t1)a
e(∆t2) (38)

Before we proceed to the proof, let us illustrate the effect of cognitive uncertainty on
strict subadditivity through consideration of the edge cases λ ∈ {0,1}, d ∈ {0, 1}. With
perfect cognitive precision, λ = 1, the model reduces to standard exponential discount-
ing and using (38) shows that there is no subadditivity:

δ∆t1+∆t2 = δ∆t1 ·δ∆t2 (39)
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In the presence of no cognitive precision, λ= 0, using (38) shows that there is subaddi-
tivity for any interior cognitive default d ∈ (0,1):

d > d2 (40)

Having discussed the corner cases we now proceed to the proof.

Proof. By (38) the existence of subadditivity is equivalent to:

ae(∆t1 +∆t2)> ae(∆t1)a
e(∆t2) (41)

λδ∆t1+∆t2 + (1−λ)d > [λδ∆t1 + (1−λ)d][λδ∆t2 + (1−λ)d] (42)

> λ2δ∆t1+∆t2 + (1−λ)2d2 +λ(1−λ)(δ∆t1 +δ∆t2) (43)

Gathering our terms to the left hand side we find:

(λ−λ2)δ∆t1+∆t2 + (1−λ)d(1− (1−λ)d)− (λ−λ2)d(δ∆t1 +δ∆t2)> 0 (44)

Since λ 6= 1 we may divide both sides by (1−λ) to yield:

λ(δ∆t1+∆t2 − d(δ∆t1 +δ∆t2)) + d(1− (1−λ)d)> 0 (45)

We may define a function, g(d) by:

g(d) := λ(δ∆t1+∆t2 − d(δ∆t1 +δ∆t2)) + d(1− (1−λ)d) (46)

so that subadditivity is equivalent to g > 0
�

�d ∈ (0, 1). We now prove this claim. Note
that g is quadratic in d with negative second derivative:

∂ 2 g
∂ d2

= −2(1−λ)< 0 (47)

Accordingly, its unique minima on an interval will be found on the boundary points of
the interval. In our case the boundary points are d ∈ {0, 1}. At d = 0 we find:

g(0) = λδ∆t1+∆t2 > 0 (48)

At d = 1 we have:
g(1) = λ(1+δ∆t1+∆t2 −δ∆t1 −δ∆t2) (49)
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If we view g(1) as function of ∆t1, with, h(∆t1) := g(1), then we may note that:

h(0) = 0 (50)
dh

d∆t1
= λ(δ∆t2 − 1)δ∆t1 ln |δ| ≥ 0 (51)

since δ ∈ (0, 1),∆t1 ≥ 0,∆t2 ≥ 0. Consequently, we see that g(1)≥ 0 andmay conclude
that g > 0 for d ∈ (0, 1).

The following corollary delivers Prediction 3 in the main text.

Corollary 2.1. The magnitude of subadditive behavior is greater for those with lower cog-
nitive precision than for those who are certain (λ= 1).

Proof. For those who are certain, we have that SA = 0, whereas for those that exhibit
any uncertainty we have SA> 0.

Theorem 3. There are no front-end delay effects.

Proof. As mentioned earlier, RRR is a function of the time delay, ∆t, not the individual
start and end times. This precludes the existence of front-end delay effects. Formally, for
any l > 0,

∆F E := RRR0,t2
− RRRl,t2+l = ln

�

λu−1 (δt2) + (1−λ)d
λu−1 (δt2) + (1−λ)d

�

= 0. (52)

The corresponding corollary underlying Prediction 4 in the main text is:

Corollary 3.1. An increase in cognitive precision doesn’t affect front-end delay effects.

A.3 Derivations for Cognitive Uncertainty Measure

As laid out in Section 3, the DM subjectively perceives his optimal action as a distribution
conditional on his noisy signal. This means: while the agent’s loss function induces him
to play ao = E[A

�

�{S = s}], the underlying perceived posterior distribution of the optimal
action is Beta-distributed:

A
�

�{S = s} ∼ Beta



sn2 + n1d
︸ ︷︷ ︸

≡a

, n2(1− s) + n1(1− d)
︸ ︷︷ ︸

≡b



 (53)

where n2 is the signal precision. Now, let us restate our definition of cognitive uncer-
tainty,

pCU := P(|A
�

�{S = s} −E[A
�

�{S = s}]|> c), (54)
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for fixed constant c. The objective of this subsection is to establish that increases in
signal precision decrease cognitive uncertainty. Below, we develop two sets of results
about this relationship. First, Corollary 2.1 provides a limit argument showing that any
desired decrease in cognitive uncertainty can be achieved by an increase in signal preci-
sion. Second, to shed light on the case with low signal precision, Theorem 4 shows that
cognitive uncertainty decreases with signal precision when using the closest Gaussian
approximation of the Beta distribution.

To begin, we prove:

Proposition 2. ∀κ > 0,∀ε > 0,∃N ∈ N such that pCU < ε for n2 > N .

Proof. By Chebyshev’s inequality we see that for any positive number, κ:

pCU <
Var(A

�

�{S = s})
κ2

(55)

and, since A
�

�{S = s} ∼ Beta(n2s+ n1d, n2(1− s)+ n1(1− d)) its variance is found to be:

Var(A
�

�{S = s}) =
(n2s+ n1d)(n2(1− s) + n1(1− d)),

(n1 + n2)2(n1 + n2 + 1)
= O(n−1

2 ) (56)

Accordingly, we find:
lim

n2→∞
pCU = 0 (57)

Which in turn yields the proposition.

This proposition yields the following corollary:

Corollary 2.1. Holding the signal value constant {S = s} and given a base level of signal
precision, n2, there exists a constant∆n such that a desired decrease in cognitive uncertainty
may be accomplished by increasing the signal precision by more than ∆n.
Formally, given a base signal precision, n2, and a desired decrease in cognitive uncertainty,
δ ∈ (0, pCU), there exists a quantity, ∆n ∈ N, such that:

n2′> n2 +∆n→ pCU − pCU ′> δ (58)

with n2′ and pCU ′ being the new signal precision and cognitive uncertainty respectively.

Proof. Given a signal precision n2 and cognitive uncertainty, pCU , we may apply the
proposition to ε = pCU −δ. We then find that ∆n= N − n2. The result follows.

In essence, this corollary formally states the intuition that any desired decrease in
cognitive uncertainty may be accomplished through an increase in signal precision.
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For a better approximation in cases of low signal precision, it is necessary to develop
approximations of the Beta distribution. One such approximation follows from the Cen-
tral Limit Theorem. We first prove a useful result:

Proposition 3. Let Bi ∼ Beta(ai, bi), ni = ai + bi and ∀i ∈ N, ai
ai+bi

= µ, then

Bi
d
−→N

�

µ,
µ(1−µ)

ni

�

as ai, bi →∞.

To prove this proposition we require the following lemma:

Lemma 3.1. Let Yn ∼ Gamma(na, 1) then Yn
d
−→N (na, a) as n→∞.

Proof. Since the sum of Gamma variables follows a Gamma distribution,3⁴ we see that
Yn has the same distribution as:

X̃ =
n
∑

i=1

X i

where X i are i.i.d. random variables sampled from Gamma(a, 1).
Now, by the Central Limit Theorem, we have:

s

n
a

�

X̃
n
− a

�

d
−→N (0,1) (59)

which yields:
Yn

d
−→N (na, na) (60)

We are now in a position to prove our proposition.

Proof. Let X i ∼ Gamma(ai, 1) and Yi ∼ Gamma(bi, 1) be independent random vari-
ables. Then we know3⁵ that:

Zi = g(X i, Yi) :=
X i

X i + Yi
∼ Beta(ai, bi)

Note, that if we scale both X i and Yi by (ai + bi)−1 that Zi remains unchanged. Further-

3⁴Let Xn ∼ Gamma(an, 1) and Yn ∼ Gamma(bn, 1) be independent Gamma variables. Then Zn =
Xn + Yn ∼ Gamma(an + bn, 1).

3⁵This may be verified by consideration of the joint density of X i , Yi; making the transformation V =
X i + Yi , with Wi as defined earlier; and finding the marginal density of Wi .
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more, by our lemma above, we have:

�

X i
ai+bi

Yi
ai+bi

�

d
−→N

��

ai
ai+bi

bi
ai+bi

�

,

�

ai
(ai+bi)2

0

0 bi
(ai+bi)2

��

(61)

d
−→N

��

µ

1−µ

�

,

�

µ

ni
0

0 1−µ
ni

��

(62)

We now employ the Delta method. A Taylor expansion of g(x , y) yields that to first
order:

g(x , y)≈ g(x0, y0) +∇g(x0, y + 0) · (x − x0, y − y0) (63)

≈ g(x0, y0) + (
y0

(x0 + y0)2
,
−x0

(x0 + y0)2
) · (x − x0, y − y0) (64)

Accordingly, we find that:

Zi = g(X i, Yi) (65)

≈ g(µ, 1−µ) + ((1−µ),−µ) · (X i −µ, Yi − (1−µ)) (66)

d
−→ µ+ ((1−µ),−µ) · N

��

0

0

�

,

�

µ

n 0

0 1−µ
n

��

(67)

d
−→N

�

µ,
�

1−µ −µ
�

�

µ

n 0

0 1−µ
n

��

1−µ
−µ

��

(68)

d
−→N

�

µ,
µ(1−µ)

ni

�

(69)

This proposition provides the simplest Gaussian approximation of the Beta distribu-
tion; however, this approximation may be put on more intuitive grounds by taking into
account geometric aspects of density function. In this case, we will consider the peak
and the points of inflection. For a Gaussian, the mode is found at µ and the points of
inflection are found at µ±σ. For the Beta distribution we have that the mode is given
by:

m=
a− 1

a+ b− 2
=

nµ− 1
n− 2

(70)

When a, b > 2 the Beta’s density function is bell shaped and we may find the points
of inflection about the mode. If we define the constant:

κ :=
1

a+ b− 2

√

√(a− 1)(b− 1)
a+ b− 3

(71)
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the points of inflection may be written as m ± κ. Note that κ/σ → 1 and m → µ as
n→∞. Accordingly, we may employ the following approximation:

Beta(a, b)≈N (m,κ) (72)

The goodness of fit for this approximation for our purposes may shown empirically.
Using this approximation, we may return to our original goal of demonstrating that
cognitive uncertainty decreases in the signal precision and claim:

Proposition 4. Let N1(m1,κ2
1) be the normal approximation to A1 ∼ Beta(a1, b1) and

N2(m2,κ2
2) the normal approximation to A2 ∼ Beta(a2, b2)with: a1, a2, b1, b2 > 2, a1

a1+b1
=

a2
a2+b2

and a2 > a1, b2 > a1 then for fixed c ∈ (0,mini=1,2{mi, 1−mi}):

P(|N2 −m2|< c)> P(|N1 −m1|< c) (73)

where mi is the mode of Ai and κi is the distance from the mode to the points of inflection
for Ai.

Proof. We note that:
P(|Ni −mi|< c) = P(|Z |< c/κi) (74)

and that κ as defined in (71) satisfies3⁶ ∂ κ/∂ a,∂ κ/∂ b < 0 for a, b > 2. Accordingly,
we have that κ2 < κ1. Hence, we see that:

P(|N1 −m1|< c) = P(|Z |< c/κ1)< P(|Z |< c/κ2) = P(|N2 −m2|< c) (75)

This provides us with our final result:

Theorem 4. Holding the signal {S = s} constant, cognitive uncertainty decreases with
increases the signal precision in the Gaussian approximation eq. (72).

∆pCU

∆n2
< 0 (76)

Proof. Apply the previous propositionwith respect to the values of a, b from eq. (53).

3⁶Just reparametrize it under a = x + 1, b = y + 1 and square the expression.
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B Additional Figures

Figure 10: Screenshot of an example decision screen in Money Main

Figure 11: Screenshot of an example cognitive uncertainty elicitation screen in Money Main
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Figure 12: Observed discounting with t1 > 0 in Money Main (top panel, N = 2792) and Voucher Main,
N = 2154 (bottom panel). The figure shows averages across decisions. Whiskers show standard error
bars, computed based on clustering at the subject level.
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Table 6: Cognitive uncertainty and across-trial choice variability

Dependent variable:
Abs. diff. b/w normalized indifference points

Treatment: Money Main Voucher Main

(1) (2) (3) (4) (5) (6)

Ave. cognitive uncertainty 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Time delay FE No Yes Yes No Yes Yes

Demographic controls No No Yes No No Yes

Observations 1290 1290 1290 1000 1000 1000
R2 0.03 0.04 0.04 0.03 0.04 0.04

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the
subject level. The dependent variable is computed as absolute difference between the
normalized indifference points in two repetitions of the exact same choice list. The
independent variable is average cognitive uncertainty across the two repetitions of
the choice list. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 7: Cognitive uncertainty and impatience over one week

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

Sample: t1= 0 t1> 0 t1= 0 t1> 0

(1) (2) (3) (4) (5) (6) (7) (8)

Cognitive uncertainty -0.66∗∗∗ -0.65∗∗∗ -0.58∗∗∗ -0.55∗∗∗ -0.66∗∗∗ -0.65∗∗∗ -0.61∗∗∗ -0.64∗∗∗
(0.10) (0.11) (0.11) (0.10) (0.13) (0.13) (0.16) (0.14)

Payment amount FE No Yes No Yes No Yes No Yes

Round FE No Yes No Yes No Yes No Yes

Demographic controls No Yes No Yes No Yes No Yes

Observations 350 350 218 218 404 404 152 152
R2 0.20 0.23 0.20 0.30 0.15 0.18 0.21 0.34

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The sample
includes decisions in which the time delay is given by one week. Columns (1)–(2) and (5)–(6) include
those trials in which the early payment date is today, and columns (3)–(4) and (7)–(8) those in which the
early payment date is in the future. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Cognitive uncertainty and insensitivity to time delays: Including participant fixed effects

Dependent variable:
Normalized indifference point

Treatment: Money Main Voucher Main

Sample: t1= 0 t1> 0 t1= 0 t1> 0

(1) (2) (3) (4) (5) (6) (7) (8)

Time delay (years) -6.99∗∗∗ -6.96∗∗∗ -6.77∗∗∗ -6.81∗∗∗ -33.9∗∗∗ -34.0∗∗∗ -30.7∗∗∗ -30.9∗∗∗
(0.36) (0.36) (0.40) (0.39) (1.99) (1.96) (3.88) (3.89)

Time delay × Cognitive uncertainty 0.055∗∗∗ 0.055∗∗∗ 0.044∗∗∗ 0.045∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.30∗ 0.30∗
(0.01) (0.01) (0.01) (0.01) (0.07) (0.07) (0.16) (0.16)

Cognitive uncertainty -0.26∗∗∗ -0.26∗∗∗ -0.28∗∗∗ -0.28∗∗∗ -0.30∗∗∗ -0.30∗∗∗ -0.42∗∗∗ -0.41∗∗∗
(0.04) (0.04) (0.05) (0.05) (0.06) (0.06) (0.09) (0.08)

Payment amount FE No Yes No Yes No Yes No Yes

Round FE No Yes No Yes No Yes No Yes

Participant FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 4948 4948 2792 2792 3846 3846 2154 2154
R2 0.66 0.66 0.68 0.69 0.73 0.74 0.71 0.71

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Columns (1)–(4) include
data from Money Main, where columns (1)–(2) restrict attention to decision problems with t1 = 0 and columns (3)–(4)
to problems with t1 > 0. An analogous logic applies to columns (5)–(8) for Voucher Main. Demographic controls include
age, gender and income bucket. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

62



Table 10: Distribution of participant-level estimates of model parameters

Money Main (MPL & Direct Elicitation)

(1) (2) (3) (4)

β −δ
δ β −δ δ− CU −CU

Median Median Median Median
(25 / 75 pctl.) (25 / 75 pctl.) (25 / 75 pctl.) (25 / 75 pctl.)

δ̂ 0.96 0.97 0.97 0.97
(0.90 / 0.99) (0.92 / 0.99) (0.91 / 0.99) (0.92 / 0.99)

β̂ 0.88 0.96
(0.66 / 0.99) (0.74 / 1.00)

d̂ 0.51 0.51
(0.27 / 0.73) (0.25 / 0.73 )

Notes. Distribution of estimates of different versions of eq. (7) estimated
at the subject level. MPL = multiple price list. Each column corresponds
to a separate model specification. Column (1): set β = 1 and pCU =
0. Column (2): set pCU = 0. Column (3): set β = 1. All estimations
accommodate utility curvature: a representative-agent CRRA parameter
of γ̂= 0.94was separately estimated on the risky choice data and used in
the participant-level estimations on the intertemporal choice data. The
exponential parameter δ is the monthly discount factor.

Table 11: Correlations between participant-level estimates of model parameters in β−δ−CU specification

δ̂ β̂ d̂ Mean stated CU

δ̂ 1.000

β̂ 0.198∗∗∗ 1.000
(0.000)

d̂ -0.169∗∗∗ -0.015 1.000
(0.000) (0.705)

Mean stated CU -0.100∗ -0.024 -0.096∗ 1.000
(0.011) (0.546) (0.015)

Notes. Pairwise correlations of participant-level estimates of equation
(7). p-values shown in brackets. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

D Direct Elicitation Experiments

As part of ourMoney Main experiments, each subject completed six additional intertem-
poral choice problems that were administered in a direct elicitation format rather than
using MPLs. That is, in each of these decisions, subjects were directly asked which mon-
etary amount to be received in t = t1 is worth as much to them as receiving $y2 in
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Figure 15: Screenshot of an example decision screen in the direct elicitation part of Money Main

t = t2, see Figure 15 for an example screenshot.3⁷ After participants had indicated their
indifference amount, the next screen again elicited cognitive uncertainty, see Figure 16.

We here replicate all of our main analyses using these direct elicitation data. First,
Table 12 shows that cognitive uncertainty is again significantly correlated with the mag-
nitude of across-trial inconsistencies (choice variability), as defined by the absolute dif-
ference in normalized indifference points across two repetitions of the same question.

Second, Table 13 documents that cognitive uncertainty is strongly and significantly
correlated with impatience over a horizon of one week. Third, columns (1)–(2) of Ta-
ble 14 document that cognitive uncertainty is highly predictive of a reduced sensitivity
of intertemporal choice behavior with respect to variation in the time delay, as we can
infer from the significant interaction term. Columns (3)–(4) show the same patterns by
documenting that cognitive uncertainty is strongly predictive of decreasing impatience
as the time delay increases, as we can again infer from the significant interaction term.
Figure 17 visualizes these patterns.

Next, Table 15 documents that subadditivity effects strongly increase in cognitive
uncertainty, see columns (2)–(3), (5)–(6) and (8)–(9). Indeed, as we can see from the
usually insignificant raw term “1 if long interval”, there is no significant evidence for
subadditivity among subjects who indicate cognitive uncertainty of zero.

Finally, Table 16 replicates the result that cognitive uncertainty is uncorrelated with
front-end delay effects. This again highlights that “not anything goes” but that cognitive
uncertainty is only predictive of a specific set of empirical regularities as pre-registered.

3⁷The only difference between the choice problems in the direct elicitation experiments and the MPL
is that (to save time) we only elicited direct elicitation problems in which the early payment date was
today.
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Figure 16: Screenshot of an example cognitive uncertainty elicitation screen in the direct elicitation part
of Money Main

Table 12: Cognitive uncertainty and across-trial choice variability: Direct elicitation

Dependent variable:
Abs. diff. b/w normalized indiff. points

(1) (2) (3)

Ave. cognitive uncertainty 0.083∗∗ 0.079∗∗ 0.079∗∗
(0.03) (0.04) (0.04)

Time delay FE No Yes Yes

Demographic controls No No Yes

Observations 645 645 645
R2 0.01 0.02 0.02

Notes. OLS estimates, robust standard errors (in parentheses) are clus-
tered at the subject level. The dependent variable is computed as abso-
lute difference between the normalized indifference points in two rep-
etitions of the exact same choice list. The independent variable is aver-
age cognitive uncertainty across the two repetitions of the choice task.
All observations are from the direct elicitation experiments. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 13: Cognitive uncertainty and impatience over one week: Direct elicitation

Dependent variable:
Normalized indifference point

(1) (2) (3)

Cognitive uncertainty -0.59∗∗∗ -0.59∗∗∗ -0.57∗∗∗
(0.10) (0.11) (0.11)

Payment amount FE No Yes Yes

Demographic controls No No Yes

Observations 327 327 327
R2 0.13 0.17 0.17

Notes. OLS estimates, robust standard errors (in paren-
theses) are clustered at the subject level. The sample in-
cludes decisions in which the time delay is given by one
week. All observations are from the direct elicitation ex-
periments. In these experiments, the early payment date
is always today. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 14: Cognitive uncertainty and diminishing impatience: Direct elicitation

Dependent variable:
Normalized indifference point Implied per-period patience δ_H

(1) (2) (3) (4)

Time delay (years) -7.16∗∗∗ -7.08∗∗∗ 0.043∗∗∗ 0.044∗∗∗
(0.49) (0.48) (0.00) (0.00)

Time delay × Cognitive uncertainty 0.091∗∗∗ 0.084∗∗∗ 0.0011∗∗∗ 0.0011∗∗∗
(0.02) (0.01) (0.00) (0.00)

Cognitive uncertainty -0.43∗∗∗ -0.40∗∗∗ -0.0050∗∗∗ -0.0047∗∗∗
(0.05) (0.05) (0.00) (0.00)

Payment amount FE No Yes No Yes

Demographic controls No Yes No Yes

Observations 3870 3870 3870 3870
R2 0.17 0.19 0.17 0.19

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. All obser-
vations are from the direct elicitation experiments. In these experiments, the early payment date is always
today. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

66



0

20

40

60

80

100

N
or

m
al

iz
ed

 in
di

ff
er

en
ce

 p
oi

nt

0 12 24 36 48 60 72 84
Time delay (months)

Cognitive uncertainty = 0 Cognitive uncertainty > 0
±1 std. error of mean

Direct elicitation

0

.2

.4

.6

.8

1

Im
pl

ie
d 

pe
r-

pe
ri

od
 p

at
ie

nc
e

0 12 24 36 48 60 72 84
Time delay (months)

Cognitive uncertainty = 0 Cognitive uncertainty > 0
±1 std. error of mean

Direct elicitation

Figure 17: Observed discounting in the direct elicitation experiments (top panel, N = 4,614). Normalized
indifference points are given by themidpoint of the switching interval in a choice list, divided by the larger-
later payout amount (in %). Per-period patience is computed as δH(ao) ≡ e−RRR/∆t = (ao)1/∆t , where ao

is the observed normalized indifference point.
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Table 16: Cognitive uncertainty and front-end delay effects: Direct elicitation

Dependent variable:
Normalized indifference point

(1) (2) (3) (4)

1 if front end delay 5.54∗∗∗ 5.28∗∗∗ 5.26∗∗∗ 5.27∗∗∗
(0.69) (1.32) (1.32) (1.31)

Front-end delay × Cognitive uncertainty 0.060 0.061 0.056
(0.06) (0.06) (0.06)

Cognitive uncertainty -0.35∗∗∗ -0.35∗∗∗ -0.32∗∗∗
(0.06) (0.06) (0.06)

Set FE Yes Yes Yes Yes

Payment amount FE No No Yes Yes

Demographic controls No No No Yes

Observations 1290 1290 1290 1290
R2 0.01 0.06 0.07 0.10

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the
subject level. All observations are from the direct elicitation experiments. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

69



E Complexity and Load Experiments

E.1 Screenshots of Decision Screens

Figure 18: Screenshot of an example decision screen in Money Complex Dates
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Figure 19: Screenshot of an example decision screen in Money Complex Amounts

Figure 20: Screenshot of an example decision screen in Money Load
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E.2 Results

Table 17 summarizes the results for all treatments that manipulate either complexity or
cognitive load. For each of the three treatment variations, we compare behavior to the
treatment Money Main replication, which was administered along with the complexity
and load treatments. Columns (1)–(3) show the results for choice problems in which
the early date is today, while columns (4)–(6) summarize analogous results for t1 > 0.
Througout, the positive interaction coefficients between the time delay and the more
complex / load treatments indicate that people’s decisions are more inelastic to the time
delay when the choice problems are more complex or they are placed under cognitive
load. Figures 21–25 visualize these patterns.

Table 17: Complexity and load manipulations

Dependent variable:
Normalized indifference point

Sample: t1= 0 t1> 0

(1) (2) (3) (4) (5) (6)

Time delay (years) -4.97∗∗∗ -4.94∗∗∗ -4.89∗∗∗ -4.84∗∗∗ -4.84∗∗∗ -4.85∗∗∗
(0.55) (0.54) (0.55) (0.62) (0.62) (0.62)

1 if Complex Dates 3.17 1.38
(3.00) (2.94)

Time delay × 1 if Complex Dates 2.97∗∗∗ 3.36∗∗∗
(0.79) (0.88)

1 if Complex Amounts 0.86 -2.63
(2.91) (3.00)

Time delay × 1 if Complex Amounts 2.07∗∗∗ 2.43∗∗∗
(0.75) (0.84)

1 if Load -2.34 -2.68
(3.04) (3.04)

Time delay × 1 if Load 1.64∗∗ 2.00∗∗
(0.78) (0.82)

Payment amount FE Yes Yes Yes Yes Yes Yes

Demographic controls Yes Yes Yes Yes Yes Yes

Observations 2381 2405 2428 1339 1363 1352
R2 0.08 0.08 0.10 0.07 0.06 0.07

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level.
Columns (1)–(6) include data from Money Main Replication, Money Complex Dates, Money Complex
Amounts and Money Load. Columns (1)–(3) restrict attention to decision problems with t1 = 0 and
columns (4)–(6) to problems with t1 > 0. Demographic controls include age, gender and income
bucket. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 21: Observed discounting with t1 > 0 in Money Main replication (N = 161 subjects) and Money
Complex Amounts (N = 153 subjects). Normalized indifference points are given by the midpoint of the
switching interval in a choice list, divided by the larger-later payout amount (in %). The figure shows
averages across decisions. Whiskers show standard error bars, computed based on clustering at the subject
level.
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Figure 22: Observed discounting with t1 = 0 in Money Main replication (N = 161 subjects) and Money
Complex Dates (N = 149 subjects). Normalized indifference points are given by the midpoint of the switch-
ing interval in a choice list, divided by the larger-later payout amount (in %). The figure shows averages
across decisions. Whiskers show standard error bars, computed based on clustering at the subject level.
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Figure 23: Observed discounting with t1 > 0 in Money Main replication (N = 161 subjects) and Money
Complex Dates (N = 149 subjects). Normalized indifference points are given by the midpoint of the switch-
ing interval in a choice list, divided by the larger-later payout amount (in %). The figure shows averages
across decisions. Whiskers show standard error bars, computed based on clustering at the subject level.
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Figure 24: Observed discounting with t1 = 0 in Money Main replication (N = 161 subjects) and Money
Complex Dates (N = 154 subjects). Normalized indifference points are given by the midpoint of the switch-
ing interval in a choice list, divided by the larger-later payout amount (in %). The figure shows averages
across decisions. Whiskers show standard error bars, computed based on clustering at the subject level.
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Figure 25: Observed discounting with t1 > 0 in Money Main replication (N = 161 subjects) and Money
Complex Dates (N = 154 subjects). Normalized indifference points are given by the midpoint of the switch-
ing interval in a choice list, divided by the larger-later payout amount (in %). The figure shows averages
across decisions. Whiskers show standard error bars, computed based on clustering at the subject level.

F Results for Within-Subject Cognitive Load Experiment

In addition to the between-subject manipulation of cognitive load presented in Appendix
E, we ran a within-subject version of this experiment. As in Money Main, subjects com-
pleted 12 choice lists involving hypothetical monetary payments. 6 of those rounds were
NOLOAD rounds which were exactly identical to Money Main. In the other 6, randomly
selected LOAD rounds, subjects faced a non-binding time limit of 15 seconds to com-
plete the choice list and were instructed to sum up numbers that were flashed on the
choice list screen in random intervals. There was no time limit and not number-counting
task on the subsequent cognitive uncertainty elicitation screen. Following their cogni-
tive uncertainty statement, subjects were prompted to enter the sum of numbers that
we flashed on the choice list. Similar to treatment Money Load, our prediction was that
in LOAD rounds subjects have relatively fewer cognitive resources available to fill out
the choice list than in NOLOAD rounds. The manipulation should therefore lead to more
pronounced insensitivity to time delays in LOAD rounds.

The predictions and sample size for this treatment were pre-registered at https:
//aspredicted.org/av2y2.pdf. We find that relative to NOLOAD rounds, the cogni-
tive load manipulation increases average stated cognitive uncertainty by 9.2 percentage
points (41%). Table 18 summarizes the effect of this treatment on intertemporal choices.
They are in line with our predictions. In rounds with cognitive load, observed choices
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display substantially reduced sensitivity to the length of the time delay. These findings
confirm our results from treatmentMoney Load at the subject level and suggest that the
availability of cognitive resources is a source of cognitive imprecision that leads to more
compressed intertemporal choice behavior.

Table 18: Cognitive load and insensitivity: Within-subject evidence

Dependent variable:
Normalized indifference point

Sample: t1= 0 t1> 0

(1) (2) (3) (4)

Time delay (years) -5.26∗∗∗ -5.27∗∗∗ -6.37∗∗∗ -6.45∗∗∗
(0.43) (0.43) (0.50) (0.50)

Time delay × 1 if cognitive load 2.33∗∗∗ 2.37∗∗∗ 3.81∗∗∗ 3.90∗∗∗
(0.63) (0.63) (0.70) (0.71)

1 if cognitive load -1.14 -1.15 -7.90∗∗∗ -7.99∗∗∗
(1.03) (1.03) (1.33) (1.33)

Payment amount FE No Yes No Yes

Demographic controls No Yes No Yes

Subject FE Yes Yes Yes Yes

Observations 2894 2894 1966 1966
R2 0.70 0.70 0.68 0.68

Notes. OLS estimates, robust standard errors (in parentheses) are clustered
at the subject level. The sample includes decisions from the within-subject
cognitive load experiment. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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G Experimental Instructions

G.1 Money Main
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G.2 Voucher Main
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