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Over the last seventy-five years, the debt of high-income nations has mostly increased,
while prospects for government surpluses are dimming.1 Specifically, the 2019 Long-Term
Budget Outlook by the U.S. Congressional Budget Office predicts steady deficits, if not
rising ones, for thirty years. In the same vein, the slowdown or even decline in population
growth (Jones (2020)) as well the reduction in technological progress mirrored in reduced
GDP growth rates would seem to make it unlikely that successful debt reduction is possible
in the foreseeable future.2 In this paper, we show that, if a government’s debt starts below
a well-defined ceiling, deficits can persist and interest rates can remain low.

Working in a similar framework, Blanchard (2019) suggests that, in the current situation
of low interest rates, an increase of government debt may be feasible and beneficial.3 He
writes: “If the interest rate paid by the government is less than the growth rate, then the in-
tertemporal budget constraint facing the government no longer binds. What the government
can and should do in this case is definitely worth exploring.”

When the discount rate on a safe security is lower than the perpetual rate of growth of
its payoffs, there are three possibilities for its price: it is equal to plus or to minus infinity,
or, if it is finite, the price contains a positive bubble that offsets a negative infinite present
value of future payoffs. In the “high-income” countries of today, the riskless rate is below
the growth rate while it is likely simultaneously that the governments will not default and
that their future primary budgets will remain in deficit.4 Yet the prices of government bonds
in the financial market are finite and positive. Our first goal is to provide an explanation of
this paradoxical situation. In this regard, we establish the basic idea that government bond
prices necessarily include a bubble.

One important aspect that Blanchard did not indicate is how deeply the government can
go into debt. Our second goal, therefore, is to show that, even if a bubble is present in the
price of government debt, which means that a Ponzi scheme is being run, the amount of
debt that can be placed in the market is not infinite; there is still an upper bound on it. We
call “debt capacity” the ceiling on the outstanding amount of debt. When staying within
debt capacity, the bubble makes it possible for the total market value of government debt
to be strictly positive even when the government budget is forever in deficit, which seems to
reflect today’s situation.

1Historically, sovereigns have borrowed to finance wars. Only in the 19th century governments started to
systemically borrow to build ports, railways, roads, schools and universities. Despite this history, there are
only three successful debt reduction episodes: Great Britain after the Napoleonic Wars, the United States in
the last third of the 19th century, and France in the decades leading up to 1913; see Eichengreen, El-Ganainy,
Esteves, and Mitchener (2019).

2Only a few countries seem to defy this trend. With its “debt brake” constitutional amendment, Germany
is actively doing that: “The federal and state budgets shall in general be balanced without proceeds from
borrowing. The federal and state governments can provide for rules to take into account the effects of
deviations from normal cyclical developments, as well as a derogation for natural disasters or exceptional
emergency situations that are beyond the control of the state and significantly affect the state’s financial
situation. A corresponding repayment plan must be provided for any derogation.” Constitution of the Federal
Republic of Germany, Article 109, Section 3.

3See also Furman and Summers (2020).
4While there is some uncertainty about whether interest rates are below growth in the data, Blanchard

(2019) contains strong and robust evidence in favor of the view that interest rates are below growth. For
instance, in the United States since 1950 even the nominal 10-year rate with an average of 5.6 percent is
below the nominal GDP growth with an average of 6.3 percent.
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In a recent talk, Sims (2020),5 refers to debt issuance when the rate of interest is below the
rate of growth as “zero fiscal cost debt.” Yet, he states: “When the real interest rate on debt
is below the growth rate of the economy, the government can issue and roll over debt forever
without backing it by new taxes and still see the debt-to-GDP ratio shrink over time. But
this only applies when the government makes a one-time increase in debt unaccompanied by
increased taxation. This is not the situation we’re in, even when it concerns pandemic relief
spending. Given past, steady spending increases without tax increases, we unfortunately
cannot view pandemic relief spending as a single, wartime increase in debt. Ultimately,
these steady increases will affect the interest rate on debt and require dynamic solutions.” In
other words, the zero fiscal cost of today may foreshadow a much larger one later. The true
fiscal cost of excessive government debt issuance cannot be assessed just from the current
rate of interest or any current macroeconomic variable, or on the basis of an exogenous future
path of the rate of interest. Rather, it should be assessed in a dynamic context reflecting
anticipated deficits and population growth, going forward. For that, one must determine
the future path of the rate of interest and one needs a dynamic model of growth and capital
accumulation, with interest rate being affected by the government primary deficit/surplus
directly or indirectly. Even when the market value of the debt is not equal to the present
discounted value of future surpluses, the dynamics of the debt remain a function of the
dynamics of the budget deficit. Our third goal is to develop such a model. We study debt
sustainability with a primary government deficit that varies with the growth of the economy.
Extant models assume a fixed path for the deficit. We fix the relation that ties the budget
to the economy by assuming that it arises from a social-security scheme; it is then driven
by the fundamentals of the economy, namely, the terms of the scheme, population growth,
preferences and production technology.

Several economic settings allow the presence of a bubble. In this paper, we consider
the overlapping-generations (OLG) setting. Its initiator, Samuelson (1958), had already
indicated that the “social contrivance of money” was welfare improving because it bridged
the non coincidence of needs of different generations. Wallace (1980) mused at the time of his
writing that “neither [Samuelson] nor most economists seem to take it seriously as a model
of fiat money.”6 The reason was that money is needed obviously as an every-day device, not
one used across generations as a form of social security.7 But an application of the very same
argument to government debt (alongside money or without it) seems vividly relevant and
realistic given that all of us will die while the government will exist forever. Along that line,
Diamond (1965) sets the debt per capita to be constant and introduces the taxes needed
to pay for the cost of financing. The stable steady state he obtains is not “efficient” (i.e.,
welfare maximizing) for the well-known reason that each generation, in order to finance their
retirement, saves in excess of what they would if the welfare of all generations were optimized.
In Tirole (1985), there is no deficit and, therefore, also no government debt; however, Tirole

5See Christopher Sims: “How to worry about government debt” at
https://bcf.princeton.edu/events/christopher-sims-how-to-worry-about-government-debt/.

6Contributions pertaining to OLG as a model of fiat money include: Shell (1971), Wallace (1980), and
Kocherlakota (1998) among many others.

7A variation on the same reasoning appears in Kiyotaki and Wright (1989), which is the foundation of
the so-called “New Monetarism” school. Instead of generations overlapping partially, traders with different
needs meet randomly and, for that reason, benefit from a universal medium of exchange.
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shows that a rational, intergenerational bubble (a finite one in his case) can exist and lead
to an unstable steady state, at which welfare is optimal (i.e., is at the Golden Rule). We
show that the bubble in his model can be interpreted as a one-time issuance of government
debt to finance a one-time government expenditure. In addition, we allow further issuance
dynamically to finance additional government deficit each period. Chalk (2000) was perhaps
the first to point out that government debt is determined by the real side of the economy
and that there is an upper bound on its size.8 Yet, he also assumes that the exogenously
determined deficit per capita (occasioned by a wasteful expenditure) is constant. Further,
in his variant of Diamond’s model, agents work all periods and, therefore, there is no role
for social security.9

Brunnermeier, Merkel, and Sannikov (2021) adopt another setting. Instead of overlapping
generations, they consider an incomplete market model featuring infinitely-lived log-utility
agents. The capital owned by each agent is exposed to counter-cyclical idiosyncratic risk
because a “skin-in-the game” constraint requires the agent to hold more than a minimum
amount of his capital, while the rest is tradable. Each agent is equipped with a strictly
positive personal stochastic discount factor and applies a transversality condition written
with it. When doing that, all agents value any traded security at one and the same market
price and, relative to each agent’s own discount factor, there is no bubble. However, if one
compares the market price with the present value of future surpluses calculated with an
unweighted average stochastic discount factor, which does not put a price on idiosyncratic
risk, there is a deviation, which can be viewed as a bubble, although that bubble differs
conceptually from ours. In particular, the bubble causes riskless government debt to trade
at a higher price than it would under the average discount factor. According to the authors,
it is possible, when the present value of future surpluses is negative, for the bubble on
government debt to give that debt a strictly positive market value.10

In the absence of a bubble, it is also conceivable to explain the current valuation of
government bonds by recognizing that the government budget is a risky cash flow. A recent
study by Jiang, Lustig, Nieuwerburgh, and Xiaolan (2021) aims to explain, as we do, the
valuation gap of government debt, which is the gap between the value of the debt observed in
the financial market and the present value of future primary surpluses. It features a thorough
empirical investigation of the stochastic process of government surplus, – carefully estimating
separate processes for government income and government expenditures –, postulates an
exponential affine stochastic discount factor for infinitely lived investors and derives the
risk premium of government debt. The authors dismiss a rational bubble as a possible
explanation of the gap on the grounds that the value of the debt would become infinite if
the transversality condition on debt were violated. We show below that, in the presence of
a perpetual deficit and a rate of interest lower than the rate of growth, the debt per capita
in an OLG model can be positive and finite at all times while containing a bubble that is
positive infinite. The reason is that the present value of future surpluses is at minus infinity,
the sum of the two remaining finite. They also state that “In rational bubble models, the
debt/GDP ratio declines over time,” which is inconsistent with a valuation gap that grows

8For a treatise on dynamics and policies in overlapping-generations models see De la Croix and Michel
(2002).

9In Appendix B, we compare our model to previously published ones.
10See also Brunnermeier, Merkel, and Sannikov (2020).
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empirically faster than GDP. In our model, the debt/GDP ratio can rise either temporarily
or permanently.

Specifically, Jiang, Lustig, Nieuwerburgh, and Xiaolan (2021) propose a convenience yield
on government debt as the explanation of the valuation gap but acknowledge that it falls
short of the mark quantitatively. They also acknowledge that the convenience yield does not
explain a positive value for the debt when the primary surplus is permanently negative (see
their Figure 10, Panel (a)). In our paper, we propose an explanation that is complementary
to theirs and show that the more traditional OLG rational bubble is capable of explaining
that last fact.

Blanchard (2019), Brunnermeier, Merkel, and Sannikov (2021) and Jiang, Lustig, Nieuwer-
burgh, and Xiaolan (2021) all analyze a stochastic economy. We choose to first study the
debt capacity of a government in a deterministic economy because our investigations and
policy experiments hinge more on the dynamics of debt than on the nature of the shocks.
They are equally meaningful and more transparent in the simpler, deterministic setting. We
now describe these investigations.

Under conditions in which the rate of interest is below the growth rate, the steady states
of our model, when they exist, come in a pair. That pair is the foundation of debt capacity.
One steady state is unstable; for a given initial capital stock, there is one unique saddle path
emanating from a unique level of government debt that leads to it; we call “debt capacity”
the threshold level at the initial point in time. One steady state is stable (and requires a
lower deficit); for a given initial capital stock, many paths, from a range of values for an
initial value of government debt, lead to it.11 In our variant of the Diamond model, the value
of the interest rate is not sufficient to determine whether debt is sustainable or desirable.
The amount of outstanding debt (captured by the Debt-to-GDP ratio) also matters. It is
for this reason that the notion of debt capacity and the knowledge of its value are essential.

We extend the model and its concept of debt capacity to two policy-relevant settings.
First, one might be concerned that a high, potentially explosive level of nominal debt pro-
duces high inflation. To investigate this issue, we allow the government, in addition to
collecting taxes and paying benefits, to intervene in the money market following a Taylor
rule, as a way to fix the nominal rate of interest. Explosive real debt also leads to explosive
inflation and seignorage revenues increase debt capacity markedly.

Second, as debt capacity depends on growth, one might hope that endogenous produc-
tivity increases would raise the limit. We, therefore, ask whether a government can increase
its debt capacity by subsidizing innovation which ultimately raises productivity and growth.
To answer this question, we adjust our framework along the lines of a revised Romerian ap-
proach but let the government finance R&D in addition to paying for social security. Overall,
our numerical illustrations under these varied scenarios show that public R&D spending does
not lift debt capacity miraculously.12

11For some combination of parameter values, the two steady states coincide, in which case stability prevails
when approaching the steady state from one side only.

12Compare to the statement by Prime Minister Draghi and President Macron in the Financial Times,
December 23, 2021: “We need to have more room for manoeuvre and enough key spending for the future
and to ensure our sovereignty. Debt raised to finance such investments, which undeniably benefit the welfare
of future generations and long-term growth, should be favoured by the fiscal rules, given that public spending
of this sort actually contributes to debt sustainability over the long run.”
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In policy experiments, we use the notion of debt capacity to explore the government
responses that are needed in case debt, for whatever reason, exceeds it. These capture the
complete fiscal cost of exceeding debt capacity today. We also explain how debt could come
to exceed debt capacity. For that, we develop a scenario of unexpected population-growth
declines. We again calculate the needed policy response. The more delayed the response,
the larger it has to be. Our model can arguably be interpreted as saying that it is better to
implement a policy that reduces the debt automatically during normal times, as a way to
aim towards the stable steady state.

That part of our paper is closest to the vast literature that developed tax and social-
security policy scenarios in an OLG context.13 The applied models of that literature are much
more detailed and incorporate more features than we have here, going as far as to imbed tax
calculators corresponding to the tax law of a specific year (see Moore and Pecoraro (2018)),
or to include a population of 55 generations (Diamond and Zodrow (2006)). Their purpose
is advisory; it is to forecast the effects of specific aspects of tax reforms: general lowering of
taxes, or replacement of one form of tax by another. Many of these papers take the rate of
interest as exogenous. They also take the amount of debt of a base year as given, without any
emphasis on the largest viable amount of debt. Some address the issue of the financing of a
tax reform (Diamond (2005), Diamond and Viard (2008)) but all of them consider scenarios
in which, at the tail end of the tax reform, a change in tax will restore budget balance, so
that the so-called “intertemporal budget constraint” of the government binds with a value
of debt equal to present discounted value of future surpluses. In other words, a no-Ponzi
condition and a return to a stable steady state is assumed implicitly or explicitly. The lesson
from our paper regarding advisory work is that the set of scenarios to be considered can
and should be greatly expanded to allow for the permanent presence of a bubble, and for a
definition of debt sustainability and debt capacity that is grounded on the unstable steady
state.

The balance of the paper is organized as follows. Section 1 presents a deterministic
model with perpetual refinancing of a social-security driven government deficit. Section 2
contains our definition of debt capacity and a study of the comparative statics of it. Section
3 contains policy experiments and describes the consequences of a decline in the population
growth rate. In Section 4, we turn to two extensions of the model: first, we examine the
implications for inflation of a high level of nominal government debt and consider the role
of the central bank; second, we envision the possibility that the government may sustain
its debt by subsidizing R&D, in addition to supporting a social-security scheme. The final
section contains the conclusion.

1 A deterministic model of perpetual refinancing

1.1 The components of the system

We build an overlapping-generations model with population growth and physical capital
accumulation. The economy comprises a production sector, a household sector and a gov-

13That literature issued from Summers (1981) and Auerbach and Kotlikoff (1987). For a thorough survey,
see Zodrow and Diamond (2013).
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ernment sector.
The production function is

Yt = F (Kt,Λt)

where Kt and Λt are the inputs of capital and labor. The function F is continuous, twice
differentiable, homogeneous of degree 1 in its two arguments, strictly increasing and strictly
concave in each. To exploit the homogeneity, we write

kt ,
Kt

Lt
; f (kt) , F (kt, 1)

In applications, the production function will be of the constant-elasticity of substitution
(CES) type

Yt = A× [αKρ
t + (1− α) Λρ

t ]
1
ρ ; ρ < 1 (1)

where ρ = (η − 1) /η and η is the elasticity of technical substitution (ETS) between capital
and labor, and A > 0, 0 < α < 1, K > 0, Λ > 0. At time 0, the economy starts with a
capital stock equal to K0. At t 6= 0, the capital stock Kt is set aside at time t−1 and chosen
by the generation born at time t− 1. It depreciates at the rate δ < 1 per period.

The households/investors: Like in Diamond (1965), we introduce the following no-
tation and assumptions: ctt is the consumption at date t of one household of the generation
born at date t while ctt+1 is the consumption at date t + 1 of the generation born at date
t. Lt is the exogenous number of individuals in the generation born at time t. Their lives
are summarized with two periods and they work at the first point in time only; their supply
of labor is inelastic. Lt grows at the constant rate n per period. The number n stands for
population growth but possibly also for labor-augmenting technical progress. It is a catch-
all for all forms of exogenous perpetual growth. We examine technical progress explicitly in
Section 4.2.

Generations are born with an endowment of only one kind: their labor force. They collect
a wage bill wtLt. At time 0, there are only “old” people born notionally at time −1 with
arbitrary consumption c−1

0 .
The two-points in time utility functions of all generations are the same:

U
(
ctt, c

t
t+1

)
= u

(
ctt
)

+ βu
(
ctt+1

)
; t ≥ 0

where u is a continuous, twice differentiable, strictly increasing and strictly concave function.
In applications, the function u will be a power function u (c) = c1−ζ/ (1− ζ) ; ζ > 0 with,
therefore, an elasticity of intertemporal substitution (EIS) equal to 1/ζ.

The financial market: Two assets are traded in the financial market, the maturity of
which is immaterial. One is a bond, which is a claim on the government and the other is the
direct ownership of the capital that serves as input into the production system, and which
can be rented to production facilities. In this deterministic world, the young households are
indifferent between physical capital and government debt, so that we let them choose not
each one separately but their sum which is called “savings” st. In total, they save an amount
stLt at time t.
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In other words,
st × Lt , Kt+1 +Gt+1

in which Gt+1 is the time-t exiting amount of government held, and which can be restated
on a per capita basis as:

st , (1 + n) (kt+1 + gt+1) (2)

where gt , Gt/Lt.
The two assets being perfect substitutes in demand, they bring the same rate of return.

The one-period rate of return or rate of interest quoted at time t is called rt+1.
Taxation and spending: Taxation is in the form of a contribution to the social-security

system. The time-t young make a total social-security contribution of Ltτwt, where τ is the
social-security tax rate.

Government spending is in the form of social-security defined benefits paid to the old
households on the basis of the wages they were earning when young. Specifically, at time
t the old receive a total social-security benefit of Lt−1θwt−1, where θ is the social-security
benefit ratio. In Appendix A, we show that social security is a welfare-improving form
of spending.14 Throughout we consider the case in which the primary budget deficit is
structural: τ < θ × (1 + n).

With this notation, the simultaneous flow budget constraints at time t are as follows:
for the young household,

ctt + st = (1− τ)wt

for the old household,
ct−1
t = st−1 × (1 + rt) + θ × wt−1

for the government,

−Gt+1 + θ × wt−1 × Lt−1 = τ × wt × Lt − (1 + rt)Gt

where Gt is the total debt with which the government enters time t and Gt+1 is the debt
with which it exits time t.

Market clearing: The labor market clears

Λt = Lt

and the market for goods clears

Lt × ctt + Lt−1 × ct−1
t +Kt+1 = F (Kt, Lt) + (1− δ)Kt

1.2 Difference equations and steady states

By writing the first-order conditions of a household, who owns the production facility and
rents it out, and imposing market clearing, the difference-equations system governing the

14See the policy recommendation of L. Summers, Washington Post, Jan 7, 2020.
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evolution of the economy, stated on a per capita basis, is15

∂
∂ctt+1

U
(
ctt, c

t
t+1

)
∂
∂ctt
U
(
ctt, c

t
t+1

) =
1

1 + rt+1

(3)

f ′ (kt)− δ = rt (4)

f (kt)− ktf ′ (kt) = wt (5)

ctt + st = (1− τ)wt (6)

ct−1
t = st−1 × (1 + rt) + θ × wt−1 (7)

− (1 + n) gt+1 + θ × wt−1
1

1 + n
= τwt − (1 + rt) gt (8)

ctt +
1

1 + n
ct−1
t + (1 + n) kt+1 = f (kt) + (1− δ) kt (9)

For each generation, it would be suboptimal to finish its life with total savings of capital
and government-debt holdings greater than zero. And default is not allowed, so that their
total savings at the end of their life are set exactly to zero. These are the only terminal
conditions of optimality that are present in the model; they have already been coded into the
system of equations above. In this overlapping-generations setting, no terminal conditions
should be imposed at “the end of time.” No so-called transversality conditions apply at
infinity.16,17 For that reason, the system is a “forward” system of equations, with initial
conditions to be specified only. It is almost entirely backward looking; this is a case of rational
myopia, in which future events beyond one period need not be considered by economic agents.
We introduce an important exception to the myopia principle in Remark 1 below.

Equations (4) and (5) allow us to define rt and wt as functions r (kt) and w (kt):

r (kt) = f ′ (kt)− δ; w (kt) = f (kt)− ktf ′ (kt)

The function r (kt) is strictly decreasing and bounded below by −δ. Substituting Equation
(7) shifted forward and Equation (6) into Equation (3) gives

β
u′ (st × (1 + rt+1) + θ × wt)

u′ ((1− τ)wt − st)
=

1

1 + rt+1

and, given the monotonicity of the function u′ and customary Inada assumptions allows us
to find a solution for st. Define a supply-of-savings or demand-for-assets function

st = s (wt, rt+1)

15In accordance with Walras law, the system made of equations ((2),( 3)-(9)) contains a redundant equa-
tion: (3)-(9) implies (2) and ((2),( 3)-(8)) implies (9).

16They apply as necessary conditions of optimality when an agent with an infinite lifetime maximizes his
lifetime utility. There is no such agent in this economy.

17As a technical point, one could note that, if the “end of time” were finite, some terminal conditions could
be imposed, and the solution could be calculated backward, resulting in a unique initial situation. Increasing
the end of time forever in the backward solution with a range of terminal values gives the same result as
does the forward solution.
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At the end of its two-period life each household consumes its entire wealth, including the
value of the capital stock, which is part of its savings, which it sells to the young, leaving
nothing behind.

Equations (6), (7) and (9) form a linear system 1 0 1
0 1 0
1 1

1+n
0

×
 ctt
ct−1
t

st

 =

 (1− τ)wt
st−1 × (1 + rt) + θ × wt−1

f (kt) + (1− δ) kt − (1 + n)kt+1


which can be solved easily to provide the demand for savings (supply of assets)

st =
[

1 1
1+n

−1
]
×

 (1− τ)wt
st−1 × (1 + rt) + θ × wt−1

f (kt) + (1− δ) kt − (1 + n)kt+1


We are ready to reduce the eight-equation system to two difference equations or even one

of second-order. That can be done in two, equivalent ways. We can, first, equate demand
and supply and get an equation relating kt+1 to kt and kt−1, which is, therefore, a stand-alone
second-order difference equation:18

s [w (kt) , r (kt+1)] =
[

1 1
1+n

−1
]

×

 (1− τ)w (kt)
s [w (kt−1) , r (kt)]× (1 + r (kt)) + θ × w (kt−1)

f (kt) + (1− δ) kt − (1 + n)kt+1

 (10)

Initial conditions are set by the initial capital stock k0 = K0/L0. Suppose for a moment
that k1 = K1/L1 were also given. Equation (10) would then provide the path of the capital
stock autonomously and the evolution of government debt would just follow from difference
Equation (8).

Since, however, k0 and k1 are not given jointly, debt must be part of initial conditions
and the government budget equation (8) must be brought in. For easier interpretation, define
the social-security deficit as19

dt , d (kt−1, kt) =
θ

1 + n
w (kt−1)− τ × w (kt) (11)

The two-equation systems is

s [w (kt) , r (kt+1)] = (1 + n) (kt+1 + gt+1) (12)

(1 + n)gt+1 = (1 + r (kt)) gt + d (kt−1, kt)

Formulation (10) is sufficient for the study of steady states while formulation (12) high-

18As in the linear multiplier-accelerator model of Samuelson (1939).
19There are two ways to specify social-security deficit dt in our model: benefits indexed on wage earned

while working (Equation (11)) or benefits indexed on current wage dt = θw (kt) / (1 + n) − τw (kt). The
first way is more consistent with reality but causes the model to be second order in capital (involving
kt−1, kt, kt+1).
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lights the interaction along a path between government debt and the capital stock, and is
more traditional in the literature.20 In Appendix B, we show the novelty of the our formu-
lation as compared to extant models.

Figure 1: The dynamics of the capital stock. Illustration with log utility and Cobb-
Douglas production function. The surface represents the relationship kt+1 (kt, kt−1).
Parameter values are: n = (1 + 0.02)25 − 1, α = 0.2, β = 0.9925, δ = 1 − (1 − 0.1)25,
θ = 0.165, τ = 0.1.

We define a steady state as a situation in which Kt/Lt is a constant k over time. A
steady state must solve Equation (10) with kt+1 = kt = kt−1. Figure 1 illustrates the way in
which steady states are determined.

20Formulation (12) can be shifted forward to produce a first-order system in (kt+1, gt+2):

s (w (kt) , r (kt+1)) = (1 + n) (kt+1 + gt+1)

(1 + n)gt+2 = (1 + r (kt+1)) gt+1 + d (kt+1, kt+1)
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Example 1. Particularizing the problem, there exists an analytical solution for the steady
states in the special case of logarithmic utility (isoelastic with ζ = 1) and Cobb-Douglas
production function: Equation (1) with ρ→ 0 gives

F (k, 1) = Akα; w = A (1− α) kα; r = Aαkα−1 − δ (13)

It is a bit simpler to rewrite the equation system with x , r+δ as an unknown. The equation
is cubic in x. There exist explicit but fairly cumbersome formulae for the roots of a cubic
equation. Here, we just give a numerical example. Suppose that a period of the model is equal
to twenty-five years and that: n = (1 + 0.02)25 − 1, α = 0.2, β = 0.9925, δ = 1− (1− 0.1)25,
θ = 0.165, τ = 0.1.
The cubic equation of x has two positive real roots:
Root 1: x = 1.27512 (3.343%/year), k = 0.0987074, r = 1.198%/year, locally stable.
Root 2: x = 1.55597 (3.825%/year), k = 0.0769635, r = 1.968%/year, locally unstable.
Roots 1 and 2 are displayed in Figure 1.
In the absence of social security and debt (θ = 0, τ = 0), there would have been only one root
at k = 0.144993.

Example 2. With logarithmic utility, CES production (1) with ρ = −1 (ETS equal to 1/2),
and other parameters as in the previous example there exists only one real root of the steady-
state equation, which is:
x = 1.56976 (3.847%/year), k = 0.196178, r = 2.002%/year. With these parameters, there
is no solution with r < n. But see Section 2.1 for a broader study of existence with CES
production.

In general cases, non linear Equation (10) with kt+1 = kt = kt−1 = k is not in polynomial
form. One can still solve it numerically with the limitation that one does not know how
many roots it has in total. For that reason, we assume that the relationship between kt+1

and the two arguments (kt, kt−1), which is implicit in (10), is concave against kt and that
this concavity dominates, in case they are contrary, over the curvature against kt−1. Then
there exist at most two steady states, the steady state with the lower value of k being locally
unstable.

So far, we have derived the law of motion of k starting from given k0 and k1. This solution
procedure has allowed us to determine the steady states without any consideration of the
behavior of government debt. It remains to endogenize k1 if k0 is given or k0 if k1 is given.
Assume that the initial amount of debt, set by history, is contractually denominated as a
real amount.21 Then k1 actually follows from k0 and the definition of savings (2) written at
time 0:

s [f (k0)− k0f
′ (k0) , f ′ (k1)− δ] = (1 + n) (k1 + g1)

where it is most convenient to take g1 (as opposed to g0) as initial condition for the govern-
ment debt.22 In total, initial conditions are set by the initial capital stock k0 = K0/L0 and
the amount of debt g1 = G1/L1 with which the government leaves time 0 or, equivalently, by

21The alternative of nominal denomination is explored in Section 4.1 below.
22Otherwise, one would have to specify in an ad hoc fashion the amount of benefits paid to the old

generation at time 0.
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k1 and g1. The law of motion of government debt then follows from the government budget
constraint, Equation (8).

Rolling over Equation (8) one gets

Proposition 1. The value of debt is

g1 =
1

1 + n

T−1∑
t=1

−dt∏t
u=1

1+ru
1+n

+
gT∏T−1

u=1
1+ru
1+n

;∀T > 1

= lim
T→+∞

1

1 + n

T−1∑
t=1

−dt∏t
u=1

1+ru
1+n︸ ︷︷ ︸

PV of current and future surpluses

+
gT∏T−1

u=1
1+ru
1+n︸ ︷︷ ︸

Bubble

(14)

The proof is in Appendix C. Proposition 1 gives a decomposition of the time-1 value of
debt: with r (k) < n and dt > 0, the first component becomes negative infinite, and the
second positive infinite as T → +∞.

Their sum can very well be finite. Indeed, call g a steady-state per-capita value of gov-
ernment debt; as per Equation (8):

g =
−d (k)

r (k)− n
; d (k) =

θ

1 + n
w (k)− τ × w (k) (15)

where the formula is valid if n 6= r (k). In the Cobb-Douglas special case,

g =
y

r (k)− n

(
τ − θ

1 + n

)
(1− α) (16)

When there exists a steady state k of the capital stock per capita, then there exists a steady
state value g of government debt per capita.

In a steady state, it may very well happen that the government’s social-security budget
per capita is permanently in deficit (d > 0), while, if r (k) < n, government debt still has
positive market value. That, in a nutshell, is the point made by Blanchard (2019). Obviously,
although the formula looks like the Gordon formula or the summation of a geometric series,
the value of government debt, in the case r (k) < n, cannot be equal to the present value
of future primary surpluses. The government debt contains a positive rational bubble, along
the lines of Tirole (1985).

With a zero deficit, Tirole (1985) shows that there exists a starting value of the bubble
for which a saddle path leads to a steady-state, non-zero, per-capita finite bubble, which
lasts forever and brings about the efficient (Golden rule) outcome r (k) = n. Below that
starting value, the bubble eventually reaches zero (at the stable steady state). In contrast,
in our model, in every period with a jointly determined social-security deficit new debt is
issued and old debt is rolled over. In a steady state, the per-capita value of debt is given
by the Gordon growth formula (15). Whenever there is a deficit, d > 0 that is, and the
interest rate is smaller than growth, the government finances each and every deficit with
more debt. Deficits occur forever, total debt per capita remains positive in market value
and finite and, hence, contains a rational bubble. Deficits in the steady states imply that
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r (k) < n and vice versa, a configuration that best reproduces current economic conditions.
Whether in the stable or in the unstable steady state, if there is a permanent deficit, the
bubble component of debt is positive and larger, in absolute value, than the present value of
surpluses. To the opposite, when the steady-state social-security scheme produces surpluses,
we have r (k) > n.23

2 The definition of debt capacity

In this section, we continue to assume that the initial amount of debt, set by history or reset
by fiat, is contractually denominated as a real amount and we turn to the important matter
of global convergence or divergence.

Consider a parametrization in which a stable steady state produces a deficit period by
period financed by a never ending issuance of debt while the real rate of interest is lower
than the real rate of growth of the economy. The economy might be (already) at the stable
steady state or on its way to it. Figure 2 illustrates the fact that many paths with many
levels of deficit-to-GDP (or debt to GDP) ratios all lead to the same stable steady state.
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Figure 2: The paths of the debt per capita and the capital stock per capita for
two initial values k1 and several initial values g1. Illustration with log utility and
Cobb-Douglas production function. Parameter values are: n = (1 + 0.02)25 − 1, α = 0.2,
β = 0.9925, δ = 1 − (1 − 0.1)25, θ = 0.165, τ = 0.1. The stable steady state is marked “S”
and the unstable one “U”.

Example 3. Example 1 continued: the joint dynamics of the capital stock and the debt are
illustrated in the diagram of paths Figure 2. The diagram also shows the two loci gt = gt+1

23Farmer and Zabczyk (2020) state that, if the economy is dynamic efficient (r > n), the bubble term
vanishes as long as per-capita debt gs does not explode as s→ +∞.
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and kt−1 = kt = kt+1.24 Their two intersections are the two steady states, where the stable
steady state is marked “S” and the unstable one “U”.

Definition 1. Debt capacity for a given level of k0 is the highest level of g1 such that con-
vergence occurs without any change of policy parameters (θ, τ).

Debt capacity is also the level of debt today that would lead to the unstable steady state
along a saddle path. Provided debt starts from any level strictly within capacity, it converges
to the stable steady state. The limitation on the level of debt exists despite the myopia of
each individual generation. It is not due to concern about the welfare of future generations.
Old generations and young generations trade with each other and hence one might think that
through this trading current generations care, at least indirectly, for future generations. But
they simply do not do that in an OLG setting. Please, note that our definition is not based
on the existence or inexistence of a locally stable steady state. There exists one anyway but
the non linearity in the model is such that the economy does not converge to it when debt
starts above capacity.

To make more concrete the threshold between convergence and divergence, we display
in Figure 3, for initial conditions (k1, g1), the contour that separates the area of divergence
(upper, shaded area) from the area of convergence.

Example 4. Example 1 continued: we include in the top plot in Figure 3 a diagram of paths
in the plane of the ratio of debt g to annual output (y/25) versus the real rate of interest
r. The diagram shows that, for the higher of the two initial capital stocks displayed, a g1

of 0.0137 (which is about 52.45% of annual output), and for the lower one a g1 of 0.020
(which is 89% of annual output), lead to the unstable steady state. At the unstable steady
state itself, the debt is 89.17% of annual output. At the stable steady state, the debt is about
4% of annual output. We also display in the bottom plot in Figure 3 the paths in the plane
of the ratio of budget deficit to output d/y versus the real rate of interest r. The ratio d/y
can be viewed as a Maastricht criterion. We see that the deficit ratio is 0.046% (1.15% of
annual output) in both steady states.25

An economy can start above debt capacity, on a seemingly explosive path, if it can be
anticipated that the government will, at some point, increase the tax rate, τ , decrease the
social-security benefit ratio, θ, or both, in order to help return to a sustainable steady state.
In Section 3 below, we examine such policy responses.

When the debt does not converge, one can call it “divergent” or “explosive”. But it is
more properly called “unsustainable” or, at most, “potentially explosive.” As it exploded,
the debt, inclusive of its bubble, would crowd out physical capital, since total saving cannot
explode. Hence it could also be forecast that physical capital would become negative, which
is impossible. Since this would be known to the last generation that lived just before this
happened, the debt and the capital could not be sold to them; it would have zero market
value. It then could not be sold to the previous generation and so on; hence, any equilibrium

24These are the loci as per the second formulation. As per the first formulation, the locus kt−1 = kt = kt+1

is made of two vertical straight lines and the locus gt = gt+1 of two horizontal lines.
25For the Cobb-Douglas production function, w(k)/f(k) is independent of k and the steady-state deficit-

output ratio is (θ/ (1 + n)− τ) (1− α).
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Figure 3: The paths of the debt ratio and the real interest rate and of the deficit
ratio and the real interest rate for two initial values k1 and several initial values
g1. Illustration with log utility and Cobb-Douglas production function. Parameter values
are: n = (1 + 0.02)25 − 1, α = 0.2, β = 0.9925, δ = 1 − (1 − 0.1)25, θ = 0.165, τ = 0.1.
The stable steady state is marked “S” and the unstable one “U”. g is debt per capita; y is
output per capita over 25 years and d is deficit over 25 years.
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with explosive debt would unravel. This means that rational explosive paths cannot even
begin: the debt cannot be sold, or has zero market value, even at the initial date.

Remark 1. Although, when convergent, the debt is calculated forward (see the paragraph
after Equations (3) to (9)), the bounds to be placed on it are forward looking, and, therefore,
calculated backward. That is, indeed, true for the saddle path that leads to the unstable steady
state. By the same token, when no steady state exists in our model, there can be no debt at
all, as all paths would be divergent.

2.1 Existence

We now explore the existence of an unstable steady state and the comparative statics of
it, under the assumption that the utility function of the private sector is isoelastic (u (c) =
c1−ζ/ (1− ζ) ; ζ > 0). The savings function is then explicit:

s (wt, rt+1) = wt
β

1
ζ (1− τ)− θ (1 + rt+1)−

1
ζ

β
1
ζ + (1 + rt+1)1− 1

ζ

(17)

More importantly, the wage wt appears in it as a factor. That allows us to recast the steady-
state equation (10) with kt+1 = kt = kt−1 = k, in a way that places the preference parameters
on one side of the equation and the production parameters on the other side, provided one
puts r in the role of the unknown variable:

s (1, r)× n− r
1 + n

= κ (r)
n− r

w (κ (r))
− τ +

θ

1 + n
(18)

where κ (r) is defined as the function inverse of f ′ (k) − δ (a decreasing function). Equiva-
lently, since r = n is evidently not a solution as long as −τ + θ/ (1 + n) 6= 0, we can write
the above as:

s (1, r)× 1

1 + n
= κ (r)

1

w (κ (r))
+
−τ + θ

1+n

n− r
(19)

Savings divided by wage is equal to capital over wage plus government debt over wage. The
function s (1, r) depends on preference parameters β and ζ (and fiscal parameters τ , θ) while
κ (r) and w (κ (r)) depend only on production parameters, and −τ+θ/ (1 + n) is a composite
budget deficit parameter.

We restrict our search to the class of steady states in which the rate of interest r satisfies
r < n. The reason we invoke for this restriction is relevance to the current government-
debt situation of developed countries. Referring to steady-state equation (15) above, these
countries run a deficit (d > 0) and their debt has positive market value (g > 0). It must be,
therefore, that r < n, with the result that the three terms of Equation (19) are all positive.26

When is there a steady state in that class? The answer to the question depends very
much on the EIS 1/ζ and on the ETS η = 1/(1− ρ) between capital and labor.

26Of course, we cannot assume that these countries are in a steady state. The assumptions we make is
that the path of the rate of interest followed by an economy cannot get above n when initial conditions are
r0 < n and g0 or g1 is below debt capacity. We verify these assumptions when we find a solution r below n.
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The savings function (17) on the left-hand side of formulation (19) is well-known to be
monotonic in the rate of interest. It is monotonically increasing when the EIS is greater than
1, so that the substitution effect dominates the income effect of the rate of interest, and
monotonically decreasing otherwise. As the EIS changes, the graph of the function in the
(r, s) plane pivots around the point (1/β − 1, (1− τ − θ) / (1 + β−1)).

Assume further that the production function is CES, as in Equation (1) above. For that
production function, the ratio w/k is equal to

(1− α)
1

k
(1 + α× (kρ − 1))

1−ρ
ρ

which is a decreasing function of k. Hence, on the right-hand side of formulation (19), the first
term is a decreasing function of r. The second term, however, rises sharply as r approaches n
from below. As a result, the graph of the right-hand side goes through a minimum point. If
and when the savings function of the left-hand side passes below that minimum, there does
not exist a steady state. If and when the savings function of the left-hand side crosses the
graph of the right-hand side above that minimum, there exist two steady states, in both of
which r < n.
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Figure 4: Condition of existence of steady states with r < n. For a given value of
the elasticity of intertemporal substitution 1/ζ, the elasticity of technical substitution η
must not fall in the shaded area below the frontier. The utility function is the isoelastic
and the production function is CES. Parameter values other than EIS and ETS are: n =
(1 + 0.02)25 − 1, α = 0.2, β = 0.9925, δ = 1− (1− 0.1)25, θ = 0.165, τ = 0.1.

In Figure 4 we display the domain of existence of a steady state such that r < n, in the
space of 1/ζ (the EIS) on the x-axis and η (the ETS) on the y-axis. We have chosen a range
for the EIS that is empirically relevant (see Hall (1988), Attanasio and Weber (1995) and
Kaltenbrunner and Lochstoer (2010)). Given the other parameter values indicated in the
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caption of the figure, the resulting minimal values of the ETS are not far below 1, which is
the traditional Cobb-Douglas reference case. Below that frontier there does not exist any
debt capacity; government debt is explosive or unsustainable for any initial debt or asset
level.

2.2 Comparative statics

Within the domain of existence, we plot on the x-axis of the top plot in Figure 5 the values
of the rate of interest r at the locally stable (solid graph segments) and locally unstable
(dotted graph segments) steady states for several values of the EIS and ETS. The value of
the rate of interest at the stable steady state is a decreasing function of the ETS, the more
so as the EIS is higher. As the ETS rises the value of the rate of interest at the unstable
steady state rapidly approaches r = n, the more so as the EIS is higher.

In the bottom plot of Figure 5, we display (as the dotted graph segments) the corre-
sponding values of the long-run debt capacity, which is the debt per capita at the unstable
steady state. For low values of the ETS η, which are close to the frontier of non existence
of a steady state, the debt capacity is not far from zero but it rises rapidly as the ETS rises
toward its higher levels, the more so as the EIS is higher.

3 Policy experiments and demographic scenarios

We now make use of the concept of debt capacity to run policy experiments. If future policies
that are stabilizing are anticipated, wrongly or rightly, debt may start above capacity on
a seemingly explosive path. The stabilizing responses that are needed represent the true
fiscal cost of exceeding debt capacity. We illustrate such scenarios in Figure 6. As before,
the debt capacity per capita at the initial point in time is g1 = 0.0137 (debt/annual output
= 52.45%), which is on the saddle path leading to the steady state marked U. If the debt
starts above that level, it embarks on a seemingly explosive path that is rectified after one
period of 25 years, by means of an increase in the wage tax rate τ , in order to put the
economy on another saddle path. Notice a very important effect of this rectification. The
steady state that follows rectification features a rate of interest that is above the Golden rule
rate equal to the rate of population growth n = 2%/year. Correspondingly, the new steady-
state primary budget is in surplus. The reason is that the initial steady state was close to n,
leaving little room for extra debt. All the same, the delay in the response generally goes in
the direction of forcing a higher tax increase.

In Table 1, we calculate the needed quantitative responses. When the response is imme-
diate (M = 0), an initial debt equal to 114.61% of annual output requires a tax of 11.83%,
which is above the 10% considered so far and leads to a steady-state rate of interest equal to
2.6%/year. When the response is delayed to the next generation (M = 1), the tax rate for
the same initial debt must be raised to 12.81%, which leads to a much larger steady-state
surplus and a larger steady-state interest equal to 2.83%/year. We see again that, as the
government delays the policy response, the new tax rate required to prevent the government
debt from exploding may be sufficiently high to cause a switch to r > n and to a huge
primary surplus.
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Figure 5: Steady-state values of the yearly rate of interest r (on the x-axis) of the
top plot and debt per capita (bottom plot) for different values of the elasticity
of intertemporal substition 1/ζ and of the elasticity of technical substitution
η = 1/ (1− ρ). The solid graph segments show the values at the stable steady state and
the dotted segments the values at the unstable steady state. The utility function is the
isoelastic and the production function is CES. Parameter values other than EIS and ETS
are: n = (1 + 0.02)25 − 1, α = 0.2, β = 0.9925, δ = 1− (1− 0.1)25, θ = 0.165, τ = 0.1.
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Figure 6: The paths of the debt ratio and the rate of interest when debt starts
above capacity and a policy response takes place at time 2. Parameter values are:
n = (1+0.02)25−1, α = 0.2, β = 0.9925, δ = 1−(1−0.1)25, θ = 0.165, τ = 0.1. Initial capital
per capita is k = 0.12 with r = 0.006, which is a high amount of capital and a low rate of
interest in the context of our model illustration. Debt starts on or above the debt-capacity
saddle path (g1 = 0.0137, which is a debt-output ratio equal to 0.5245). The policy response
is indicated in the column labelled “τ” in Table 1.
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Initial Initial debt τ Steady- Steady- Steady-
debt /annual state state debt state deficit
per output r/year /annual /output

capita output
M = 0 0.0300 1.1461 0.1183 0.0260 1.3714 −0.3552

0.0250 0.9551 0.1111 0.0240 1.2394 −0.2098
0.0200 0.7641 0.1052 0.0221 1.0940 −0.0934
0.0137 0.5245 0.1000 0.0197 0.8917 0.0115

M = 1 0.0300 1.1461 0.1281 0.0283 1.5030 −0.5508
0.0250 0.9551 0.1156 0.0253 1.3264 −0.3007
0.0200 0.7641 0.1068 0.0226 1.1385 −0.1248
0.0137 0.5245 0.1000 0.0197 0.8917 0.0115

M = 2 0.0300 1.1461 0.1569 0.0336 1.7442 −1.1263
0.0250 0.9551 0.1264 0.0279 1.4821 −0.5157
0.0200 0.7641 0.1099 0.0236 1.2130 −0.1856
0.0137 0.5245 0.1000 0.0197 0.8917 0.0115

Table 1: Tax rate, interest rate, and deficit responses to over-capacity initial debt.
Parameter values are: n = (1+0.02)25−1, α = 0.2, β = 0.9925, δ = 1−(1−0.1)25, θ = 0.165,
τ = 0.1. Initial capital per labor is k = 0.12 with r = 0.006, which is a high amount of
capital and a low rate of interest in the context of our model illustration. Debt starts on
or above the debt-capapcity saddle path. The policy response can take place at the intitial
point, M = 0, or with a delay, M = {1, 2}.

Steady-state Steady-state debt Steady-state
τ r/year /annual output deficit/output

Initial drop to 1%/year
M = 0 0.1288 0.0101 0.6990 −0.0021
M = 1 0.1339 0.0130 1.0458 −0.104
M = 2 0.1500 0.0180 1.5215 −0.4275

Initial drop to 1.5%/year then to 1%/year
M = 0 0.1301 0.0111 0.8206 −0.0282
M = 1 0.1399 0.0152 1.2721 −0.2245
M = 2 0.1673 0.0218 1.7919 −0.7729

Table 2: Tax rate, interest rate, debt and deficit responses to declining population
growth. Parameter values are: n = (1+0.02)25−1, α = 0.2, β = 0.9925, δ = 1− (1−0.1)25,
θ = 0.165, τ = 0.1. Initial capital per labor is k = 0.12 with r = 0.006, which is a high
amount of capital and a low rate of interest in the context of the model. Debt starts on the
saddle path, which means at capacity (debt per capita g1 = 0.0137, which is debt/annual
output = 0.5245 ). At the initial point in time, or at the initial point and then again at the
second point in time, the annual population growth rate drops to the levels indicated. The
policy response can take place immediately, M = 0, or with a delay, M = {1, 2, 3}.
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We also explain how debt could come to exceed debt capacity. Debt may become un-
sustainable, for instance, because of a drop in the growth rate of the population. For that
reason, we turn to a major concern that one might have regarding the debt capacity of a
government. In real life, population growth has been in decline in every single industrialized
economy. In our model, when the population growth rate falls, the debt capacity shrinks and
the economy may move to an exploding path, which, as we saw, would actually unravel. Here
again, in case of explosion, the government could no longer sell its debt unless it increased
taxes, or promised to do so, and thereafter embarked on a new saddle path.

To generalize the principle that the later the policy response, the larger it has to be, we
develop scenarios of population-growth declines, starting debt exactly on the saddle path
and varying the timing of the response. Specifically, we start with a high k (0.12) and with
a debt at capacity (debt over annual output equal to 52.45%). In the first scenario, the rate
of population growth is 1%/year instead of 2%/year. The policy response can take place
immediately (M = 0) or with a delay of several quarter centuries (M = {1, 2}). The top
panel of Table 2 indicates the value to which the government must raise the contribution
or tax rate τ in order to stay on a saddle path and avoid an unsustainable situation. It is
clear from this panel that, if the government increases the tax rate with delay (M > 0), it
must raise it more: changing the tax rate in the same period as the decline in n requires
an increase from 10% to 12.9% while two periods after the decline in the population growth
rate an 15% tax is required.

In the second scenario (bottom panel of Table 2), the rate of population growth is
1.5%/year initially and drops 1%/year at the next generation. If this demographic evolu-
tion is anticipated by the government so that it acts right at the initial point in time, the tax
needed for sustainability is only 13%, whereas, if it waits till the second drop in population
growth, the tax must be as high as 16.7%. In both scenarios, the need arises in case of delay
to generate a huge steady-state budget surplus.

The true fiscal cost of excessive government debt issuance should be assessed in a dynamic
context reflecting anticipated deficits and population growth going forward. A switch to
surpluses may be needed in the future, either through increased tax rates, reduced social-
security benefits, or both, all being politically painful. Our model can arguably be interpreted
as saying that it is better to implement a policy that reduces the debt automatically during
normal times, as a way to aim towards the stable steady state, so that a safety margin
remains in case growth drops.

4 Extensions

We have shown so far how debt capacity can be defined on the basis of a very simple
OLG model with growth. In this section, we want to enrich the model, give it more policy
substance and open the way towards future implementation. Specifically, we consider two
additional forms of intervention by the government. First, we aim to increase our model’s
degree of realism by introducing nominal considerations. For that, we allow the government
(not distinguished from the central bank) to issue nominal debt and to buy and sell it as
a way to implement a form of monetary policy. Second, we ask whether a government can
increase its debt capacity by subsidizing innovation which ultimately raises productivity and
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growth.

4.1 Money and the role of the central bank

One might be concerned that a high, potentially explosive level of nominal debt would
produce high inflation. The prospect of the money vs. bond trades of the central bank,
and of monetization of the debt, might modify the debt capacity of the government, because
households must hold money whereas they choose freely to hold bonds.

To investigate these issues, we now assume realistically that the initial amount of debt,
set by history, is contractually denominated as a nominal amount, this debt being now the
consolidated debt of the government and the central bank. We allow the government to
intervene in the money market, buying and selling bonds, as a way to fix the nominal rate of
interest in accordance with a Taylor rule, in addition to collecting taxes and paying benefits.
As before, government debt is a one-period debt. Let the nominal rate of interest be it.

Let M1,t be the young households’ total money demand in real units (total nominal
money balances deflated by the price level Pt) and m1,t = M1,t/Lt is the per capita money
demand in real units. They need it because they must turn into cash their wage, which is
paid to a bank account. Cash can be withdrawn by taking trips to the bank. Each trip costs
a fixed real amount ν. Old households do not demand money: the social-security benefits
are paid directly in cash. The per capita cost of trips to the bank is refunded to the young
households, as a real lump-sum amount coming from outside resources and equal to:

ζ1,t = (1− τ)× wt ×
ν

2×m1,t

The simultaneous budget constraints at time t are as follows:
for the young household,

ctt + st +m1,t = (1− τ)× wt ×
(

1− ν

2×m1,t

)
+ ζ1,t (20)

for the old household,27

ct−1
t = st−1 × (1 + it)

Pt−1

Pt
+m1,t−1

Pt−1

Pt
+ θ × wt−1 (21)

for the government

−Gt+1 −M2,t + θwt−1Lt−1 = τwtLt − (1 + it)
Pt−1

Pt
Gt −

Pt−1

Pt
M2,t−1

or,

−(1 + n)gt+1 −m2,t + θ × wt−1
1

1 + n
= τ × wt − (1 + it)

Pt−1

Pt
gt −

Pt−1

Pt

1

1 + n
m2,t−1 (22)

where M2,t is the total money supply in real units and m2,t = M2,t/Lt, Gt is the total debt

27Please, observe that seignorage is not refunded.
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in real units (total nominal debt deflated by Pt) with which the government enters time t
and Gt+1 is the debt in real units with which it exits time t, and gt , Gt/Lt.

The behavior of the government is dictated by the following Taylor rule:

1 + it+1 = (1 + ı̄)×

(
Pt+1

Pt

1 + π̄

)φ

;φ ≥ 0;φ 6= 1 (23)

The first-order conditions of the firms (Equations (4) and (5)) are as they were in Section 1.
As for the young households, they follow

∂
∂ctt+1

U
(
ctt, c

t
t+1

)
∂
∂ctt
U
(
ctt, c

t
t+1

) =
1

1 + it+1

Pt+1

Pt
(24)

m1,t =

√
(1− τ)× wt ×

(
ν
2

)
1− 1

1+it+1

(25)

Given money demand (25), the savings decision that follows from condition (24) is again
given by formula (17) but with constant parameters τ and θ replaced by variables τ ∗t and θ∗t
that absorb the effect of cash holdings including seignorage, and are defined as:

τ ∗t , τ +
mt

wt

θ∗t , θ +
Pt
Pt+1

mt

wt

Market clearing is still as it was in Section 1, but m1,t = m2,t is an additional market-
clearing equation. The initial conditions are set by the initial capital stock k0 = K0/L0 and
the amounts of nominal debt and money G0 × P0 and M2,0 × P0 (these products are given
numbers) with which the government leaves time 1.

Example 5. (Example 1 continued with the addition of money) The resulting difference
equations system, made of Equations (12) and (25) with τ and θ replaced by variables τ ∗t
and θ∗t , can be simulated. The resulting paths are shown in Figure 7 displaying the ratio of
debt g to annual output (y/25) vs. the nominal rate of interest.

If ever debt exceeded debt capacity and the real rate were on a putative explosive path,28

the capital stock would approach zero and the real rate of interest would rise forever, as in
the model without money. When φ > 1, the nominal rate of interest and, with it, the rate
of inflation would increase forever, in a form of hyperinflation. When φ < 1, the opposite
would be true.29 This shows that the degree of reaction of monetary policy makes a massive
inflationary difference in the behavior of the economy. Here, we depart in an important way
from models that rely on linearization, which conclude (this is the “Taylor principle”) that
φ > 1 is necessary for local and, therefore, global stability. As noted above, our analysis of
sustainability is not based on the existence of a local steady state.

28Here again, explosive paths will unravel.
29In both cases, there would still exist a stable steady state. But that is not our focus at this point.
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Figure 7: The paths of the debt ratio and the nominal interest rate. Illustration with
log utility and Cobb-Douglas production function. Parameter values are: n = (1+0.02)25−1,
α = 0.2, β = 0.9925, δ = 1− (1− 0.1)25, θ = 0.165, τ = 0.1, φ = 0.5 (top plot) and φ = 1.5
(bottom plot), ı̄ = 0.03, π̄ = 0.02, ı̄ = 0.03, ν = 0.0002. The starting points (k1, g1)
of the paths (and the starting price level P0) are derived from the true initial conditions
(k0, G0 × P0,M2,0 × P0). The stable steady-state is marked “S” and the unstable one “U”.
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Monetary policy also affects debt capacity, as displayed in Tables 3 and 4, in which we
calculate capacity at the unstable steady state and at the initial point, respectively. At a
steady state, all per-capita quantities are constants (let 1 + π , Pt+1/Pt); therefore, we can
drop the time script in Equations (12) (written with τ ∗ and θ∗):

g

w
=

1

n− r

(
θ∗

1 + n
− τ ∗

)
1

1 + n
s (1, r, τ ∗, θ∗) =

k

w
+
g

w

where:

τ ∗ = τ +
m

w

θ∗ = θ +
1

1 + π

m

w

m =

1

2
ν (1− τ)w

[
1− 1

1 + ı̄

(
1 + π

1 + π̄

)−φ]−1


1
2

Combining these equations, we obtain the steady-state condition for the real rate of interest
r:

1

1 + n
s (1, r, τ ∗, θ∗) =

k

w
+

1

n− r

(
θ∗

1 + n
− τ ∗

)
For the Cobb-Douglas production function, the steady-state condition reads:

1

1 + n
s (1, r, τ ∗, θ∗) =

1

r + δ

α

1− α
+

1

n− r

(
θ∗

1 + n
− τ ∗

)
so that

g

y
=

1

n− r︸ ︷︷ ︸
g/d

(
θ∗

1 + n
− τ ∗

)
︸ ︷︷ ︸

d/w

(1− α)︸ ︷︷ ︸
w/y︸ ︷︷ ︸

d/y

Money balances affect debt capacity through two channels. Implicitly, cash holding m
affects capital accumulation. Explicitly, it affects debt capacity g/y through the term d/w,
which contains seignorage revenues:

d

w
=

θ∗

1 + n
− τ ∗ =

(
θ

1 + n
− τ
)

︸ ︷︷ ︸
d/w without cash

+

(
1

(1 + n) (1 + π)
− 1

)
m

w︸ ︷︷ ︸
cash effect

The top panel of Table 3 shows for φ > 1 how money affects the unstable steady state:
it increases markedly the steady-state debt capacity for all the values displayed of the cost
parameter ν and of the policy parameter ı̄. This is true whether the government debt ratio
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is viewed as being g/annual y or (m+ g) /annual y. For instance, for φ = 1.5, ν = 0.0002
and ı̄ = 0.01, the debt to annual output ratio goes from 89% in the economy without money
(ν = 0) to 128% in the economy with money, while debt plus money goes from 89% to 157%.
This is because the government budget turns from a deficit of 1% to a surplus of 25% arising
from seignorage revenues. The nominal rate of interest is increased moderately while the real
rate of interest is increased very moderately under the effect of money hoarding, which is
crowding out physical capital a little.

Money also affects debt capacity at time 1 differently depending on the value of the initial
capital stock (k1 = 0.05 vs. k1 = 0.12) with corresponding real interest rate. The effect is
in line with the steady-state effects that we just outlined. See Table 4. For instance, for
φ = 1.5, ν = 0.0002 and ı̄ = 0.01, debt over annual output goes from 52% to 97% for the
higher value of the initial capital stock, and from 93% to 123% for the lower one.

When φ < 1, debt capacity at the unstable steady state is again increased by the presence
of money but less strongly than when φ > 1. For instance, for φ = 0.5, ν = 0.0002 and
ı̄ = 0.03,30 the debt to output ratio goes from 89% in the economy without money (ν = 0) to
98% in the economy with money, while debt plus money goes from 89% to 146%. Again the
government budget turns from a deficit to a surplus arising from seignorage revenues. The
nominal rate of interest is reduced while the real rate of interest is increased very moderately
under the effect of money hoarding.

The effect at time 1 is once again in line with the steady-state effects. See Table 4. For
instance, for φ = 0.5, ν = 0.0002 and ı̄ = 0.03, debt over annual output goes from 52% to
76% for the higher value of the initial capital stock, and from 93% to 80% for the lower one.

4.2 Innovation

In the model developed so far, the only source of perpetual growth is population growth (or
exogenous technical progress). However, in today’s economy, productivity, thanks to inno-
vation, keeps rising. As a second extension, we would like to know whether the government
can increase its debt capacity by subsidizing innovation and fostering growth. To determine
to what extent innovation can modify a government’s debt capacity, we borrow a model
from the literature on endogenous growth but let the government finance R&D, in addition
to paying for social security. Strictly speaking, growth by innovation is endogenous when
R&D is decided by the private sector. Our focus, however, is on government expenditure.
We choose a model of innovation that allows policy to have a direct effect on growth.31

The modifications to the specification of the economy are as follows.
The households/investors: intermediate goods are produced in varieties i, the cardinal

number Bt of which grows like population (Bt = Lt). This assumption captures the fact

30When φ = 0.5, existence of the equilibrium demands higher values of the parameter ı̄ than in the case
φ = 1.5.

31See Aghion and Howitt (1998), Dinopoulos and Thompson (1998), Peretto (1998), and Young (1998).
We use a reduced form formulated by Jones (1999) that is also used in the empirical paper of Laincz and
Peretto (2006). Ferraro and Peretto (2020) develop a model of quality-improving innovation and firm entry
and exit that allows them to study the evolution of government debt, like we do. However, they consider
the case of no physical capital and of infinitely-lived households that satisfy a no-Ponzi scheme requirement.
They find one steady state.
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φ = 1.5
ı̄ = 0.01 ı̄ = 0.02 ı̄ = 0.03

ν = 0 ν = 0.0002 ν = 0 ν = 0.0002 ν = 0 ν = 0.0002
m / annual y 0 0.2873 0 0.2933 0 0.3042

cost / annual y NaN 0.2702 NaN 0.2645 NaN 0.2548
g / annual y 0.8917 1.2778 0.8917 1.2653 0.8917 1.2434
d / annual y 0.0115 −0.2566 0.0115 −0.2496 0.0115 −0.2376

(m+ g) / annual y 0.8917 1.5651 0.8917 1.5586 0.8917 1.5476
annual r 0.0197 0.0247 0.0197 0.0246 0.0197 0.0245
annual i 0.1029 0.1194 0.0814 0.0973 0.0603 0.0754

φ = 0.5
ı̄ = 0.03 ı̄ = 0.04 ı̄ = 0.05

ν = 0 ν = 0.0002 ν = 0 ν = 0.0002 ν = 0 ν = 0.0002
m / annual y 0 0.4744 0 0.3637 0 0.3235

cost / annual y NaN 0.1619 NaN 0.2122 NaN 0.2392
g / annual y 0.8917 0.9810 0.8917 1.1374 0.8917 1.2066
d / annual y 0.0115 −0.1260 0.0115 −0.1857 0.0115 −0.2185

(m+ g) / annual y 0.8917 1.4554 0.8917 1.5011 0.8917 1.5301
annual r 0.0197 0.0231 0.0197 0.0239 0.0197 0.0243
annual i 0.0202 0.0168 0.0399 0.0357 0.0600 0.0553

Table 3: Debt capacity with money at the unstable steady state. Illustration with
log utility and Cobb-Douglas production function. Parameter values are: n = (1+0.02)25−1,
α = 0.2, β = 0.9925, δ = 1− (1− 0.1)25, θ = 0.165, τ = 0.1 and ı̄ = 0.03 and π̄ = 0.02. The
starting points (k1, g1) of the paths (and the starting price level P0) are derived from the
true initial conditions (k0, G0 × P0,M2,0 × P0).
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φ = 1.5
ı̄ = 0.01 ı̄ = 0.02 ı̄ = 0.03

ν = 0 k1 = 0.05 k1 = 0.12 k1 = 0.05 k1 = 0.12 k1 = 0.05 k1 = 0.12
saddle g1 0.020471 0.013729 0.020471 0.013729 0.020471 0.013729

saddle g1 / annual y1 0.931720 0.524497 0.931720 0.524497 0.931720 0.524497
saddle m1 / annual y1 0 0 0 0 0 0

ν = 0.0002 k1 = 0.05 k1 = 0.12 k1 = 0.05 k1 = 0.12 k1 = 0.05 k1 = 0.12
saddle g1 0.026981 0.025377 0.026808 0.024051 0.026511 0.020929

saddle g1 / annual y1 1.228034 0.969492 1.220124 0.918837 1.206619 0.799574
saddle m1 / annual y1 0.293928 0.273720 0.299228 0.281976 0.308679 0.297504

φ = 0.5
ı̄ = 0.03 ı̄ = 0.04 ı̄ = 0.05

ν = 0.0002 k1 = 0.05 k1 = 0.12 k1 = 0.05 k1 = 0.12 k1 = 0.05 k1 = 0.12
saddle g1 0.017554 0.019787 0.023343 0.023070 0.025129 0.024728

saddle g1 / annual y1 0.798957 0.755931 1.062419 0.881348 1.143719 0.944707
saddle m1 / annual y1 0.519752 0.413702 0.382012 0.332045 0.335905 0.299802

Table 4: Debt capacity with money at the initial time 1. Illustration with log utility
and Cobb-Douglas production function. Parameter values are: n = (1+0.02)25−1, α = 0.2,
β = 0.9925, δ = 1 − (1 − 0.1)25, θ = 0.165, τ = 0.1,, ı̄ = 0.03 and π̄ = 0.02. The starting
points (k1, g1) of the paths (and the starting price level P0) are derived from the true initial
conditions (k0, G0 × P0,M2,0 × P0).

that more people generate more varieties; see Jones (1999). For continuity with the previous
specifications, in which the population growth rate n stood for all exogenous forms of growth,
we now reduce that number to make room for endogenous growth.32

Before they can be consumed or reinvested, varieties of intermediate goods are turned
into a final good, the amount produced being Yt:

Yt =

(∫ Bt

0

X
1
θY
i,t di

)θY
where θY > 1, Xit is the input of each variety of intermediate good and

∫ Bt
0
di = Bt. We

look for an equilibrium that is symmetric across varieties:
∫ Bt

0
Xi,tdi = BtXi,t = Xt. In other

words, total production of intermediate goods is Xt = BtXi,t.
The production function for each variety i is

Xi,t = AtF (Ki,t,Λi,Y,t)

where Ki,t and Λi,Y,t are the inputs of physical capital and labor into the production process
of variety i, At > 0 is knowledge capital applicable in a non rival way to the production of

32That is, we solve for a new number n such that, when research activity is at a zero level, the overall
growth rate, including population growth and varieties growth, remains what it was before. See Footnote
33.
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all varieties. With symmetric use of capital and labor for the production of each variety,

Xi,t = At
F (Kt,ΛY,t)

Bt

so that

Xt = AtF (Kt,ΛY,t)

Yt =

(
BtX

1
θY
i,t

)θY
= BθY

t Xi,t = BθY −1
t AtF (Kt,ΛY,t)

The production and accumulation of knowledge capital: is controlled by govern-
ment expenditure. It evolves as

At+1 − At =
θALA,tAt

Bt

where θA > 0 is the productivity of labor in knowledge production and LA,t is the amount
of labor devoted by the government to knowledge production. As the number of varieties
rises, more research labor is required to increase knowledge.

Taxation and spending: the government budget constraint becomes

−Gt+1 + θwt−1Lt−1 + wtLA,t = τwtLt − (1 + rt)Gt

Market clearing: the labor market clears

ΛY,t + LA,t = Lt

and the market for final goods clears

Ltc
t
t + Lt−1c

t−1
t +Kt+1 = BθY −1

t AtF (Kt,ΛY,t) + (1− δ)×Kt

Difference equations and steady states: Suppose that the government pays for a
constant proportion sA of labor to be involved in R&D: LA,t = sA × Lt. With that, the
difference-equations system governing the evolution of the economy, stated on a per capita
basis, still contains Equations (3,6,7) together with:
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BθY −1
t Atf

′
(

kt
1− sA

)
− δ = rt (26)

BθY −1
t At

[
f

(
kt

1− sA

)
− kt

1− sA
f ′
(

kt
1− sA

)]
= wt (27)

− (1 + n) gt+1 + θwt−1
1

1 + n
+ wtsA = τwt − (1 + rt) gt (28)

ctt +
1

1 + n
ct−1
t + (1 + n) kt+1 = (1− sA)BθY −1

t Atf

(
kt

1− sA

)
+ (1− δ)× kt (29)

At+1 − At =
θALA,tAt

Bt

(30)

Equations (26) and (27) allow us to define rt and wt as functions r (kt, At, Bt) and
w (kt, At, Bt). The savings function st = s (wt, rt+1) is unchanged. Proceeding to equate
demand and supply, as we did in Section 1, we get an equation relating kt+1 to kt and kt−1

s [w (kt, At, Bt) , r (kt+1, At, Bt)] =
[

1 1
1+n

−1
]

×

 (1− τ)w (kt, At, Bt)
s [w (kt−1, At−1, Bt−1) , r (kt, At, Bt)]× (1 + r (kt, At, Bt)) + θ × w (kt−1, At−1, Bt−1)

(1− sA)BθY −1
t Atf

(
kt

1
1−sA

)
+ (1− δ) kt − (1 + n)kt+1


(31)

The evolution of the debt follows from Equation (28).
Given the similarity of equation system (31) with the previous one (10), one can safely

state that, under similar conditions, there will be again two steady states, in each of which,
however, growth per capita is no longer zero. That is, there are two “expansion paths”
with the same growth rate (see below the calculation of the growth rates) but differing
interest rates. One of them is stable as all paths that start in the debt-capacity region (to
be determined) approach it; the other is unstable as all paths that do not start within the
debt-capacity region diverge from it.

We turn to the calculation of growth rates on a steady-state path. The stock of knowl-
edge capital At evolves autonomously as does the population. From Equation (30), for
a constant policy sA, its growth rate, denoted $A, is equal to θAsA (independently of a
steady-state assumption). For a Cobb-Douglas production function, Equation (26) says that
BθY −1
t At [kt/ (1− sA)]α−1 is constant:

(1 +$A) (1 + n)θY −1 (1 +$)α−1 = 1

which gives the steady-state rate of growth $ of capital per capita kt (a rate which, in
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Figure 8: Debt capacity over annual output, deficit over output, growth condition,
rate of growth per year and rate of interest per year as a function of sA at
the unstable steady state. Illustration with log utility and Cobb-Douglas production
function. The lines stop at value of sA for which the unstable steady-state does not exist.
In these examples we set the population growth rate such that the compounded growth
rate is at 0.02year for sA = 0; see footnote 33. We use α = 0.2 and θY = 4/3 implying
nnew = 0.01408/year (0.4183 over 25 years), and θA = 9.4. The other parameter values are
identical to what they are in the other figures.
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previous sections, was equal to 0)33

1 +$ =
[
(1 +$A) (1 + n)θY −1

] 1
1−α

=
[
(1 + θAsA) (1 + n)θY −1

] 1
1−α

Output per capita y, debt per capita g, deficit per capita d and the wage rate w all grow at
that same rate at any steady state.

As we did before in the case of a Cobb-Douglas production function, where:

r (kt, At, Bt) = BθY −1
t Atα

(
kt

1− sA

)α−1

− δ

w (kt, At, Bt) = BθY −1
t At ×

(
kt

1− sA

)α
− kt

1− sA
[r (kt, At, Bt) + δ]

we can write the equation for the steady-state interest rate r (analogous to Equation (19))

1

(1 + n) (1 +$)
s (1, r) =

1− sA
r + δ

α

1− α

+
1

(1 + n) (1 +$)− (1 + r)

(
θ

(1 + n) (1 +$)
− (τ − sA)

)
(32)

and calculate the steady-state debt-capacity ratio, which is debt per output at the unstable
steady-state, as we did before in Equation (16):

g

y
=

1

(1 + n) (1 +$)− (1 + r)︸ ︷︷ ︸
total growth rate minus interest rate

(
θ

(1 + n) (1 +$)
− (τ − sA)

)
︸ ︷︷ ︸

d/w

1− α
1− sA︸ ︷︷ ︸
w/y

(33)

Equation (33) relates debt over output to deficit over output, where the deficit in the
form d/w is adjusted by 1−α, as before but also by 1/ (1− sA) for the fact that some labor
is diverted from the production of goods to the production of knowledge. That deficit is
discounted, with the inclusion of a bubble, in a manner that is analogous to formula (15) of
the basic model. The denominator is positive when the debt contains a bubble. We view the
sign of the denominator as a “growth condition”. One would expect two opposing effects:
R&D enhances growth but deepens the deficit of the government. Specifically, one would
hope for a hump shaped relation where initially increasing sA the growth effect of an increase
in R&D dominates and thus the debt capacity increases. For some large enough value of sA
the deficit would then increase faster than growth implying that the debt capacity declines.

The plots in Figure 8 confirm this intuition. We display the way debt capacity changes
as one varies the policy parameter sA. The graphs are drawn for θA = 9.4 (the degree to

33In these equations, as explained above, n is reduced to a number nnew such that

(1 +$|sA=0) (1 + nnew) = 1 + nold

(1 + nnew)
θY −1

1−α +1
= 1 + nold

For 1 + nold = (1.02)
25

, nnew = 0.4183 ( over 25 years), which is 0.01408/year.
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which the growth of knowledge responds to R&D labor input) and for θY = 1.33, which
corresponds to an elasticity of substitution between varieties equal to 4, a number accepted
often by macroeconomists (see, for instance, Gaĺı (2015)). The behavior of debt capacity
against sA is the result of several competing effects. First, in the denominator, an increase
in R&D spending opens a race between the total growth rate (1 + n) (1 +$) − 1 and the
rate of interest r, both of which increase with sA, as the right-hand panels indicate. Second,
in the deficit, which is the numerator, the race is between the rate of growth, which lightens
the burden of benefits paid to the old and the rate of spending on R&D. We see that the
steady-state debt capacity rises from 89.17% (see Example 4) to a highest value of about
94% for about the value of sA that minimizes the deficit (second panel on the left-hand side)
and also, approximately, for the value that minimizes the discount factor in the denominator
(third panel on the left-hand side).34

Overall, we do see a hump-shaped relation between g/annual y and sA but the hump
occurs for small values of sA of about 1%. Most high-income countries already spend more
than 2% on R&D. Therefore, for most parameter configurations, steady-state debt capacity
is not increased, or is even reduced, by an increase in public R&D spending beyond what
it is already. Overall, this exercise does not show that public R&D spending miraculously
lifts debt capacity. It remains conceivable that spending on education would have a larger
impact.35

5 Conclusion

In an overlapping-generations economy with capital accumulation and a realistic social-
security scheme, where debt covers deficits from the scheme, debt is welfare improving and
can have positive market value even if the government budget is forever in deficit. This is
because government debt contains a rational bubble. Of two steady states we found, the
unstable one has higher debt to GDP ratio and is closer to the Golden-rule economy. In that
sense, it appears to be a good idea to let the debt rise if it is not already at its capacity level.

We have shown that, even when the cost of financing is very low, one cannot push the
level of debt beyond some amount. We have defined debt capacity as the level of debt
that leads to an unstable steady state. Whenever the market value of debt is below debt
capacity, the debt converges to a stable steady state. If it is above, it is unsustainable. We
have followed the economy along an explosive path and shown that government debt crowds
out physical capital to extinction, so that by anticipation such paths actually unravel, which
means that debt is unsustainable.

Steady states, however, may not exist. When none exists, there is no capacity for debt.
We have explored the issue of existence among equilibria for which the real rate of interest
is below the real rate of growth, in accordance with the situation in today’s world. And,

34For 9.4 < θA ≤ 1, there exists a range of values of sA over which the deficit turns into a surplus and the
denominator (1 + n) (1 + ω)− (1 + r) switches sign, indicating an absence of bubble. Over that range, that
is, the unstable steady-state rate of interest is larger than the total growth rate. We have chosen θA < 9.4
for the reason, invoked earlier, that we expect the governments of high-income countries to remain in deficit
forever.

35See Akcigit, Pearce, and Prato (2020).
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when steady states exist, we have shown how debt capacity varies with the parameters of the
model, the key ones – beyond population growth and structural deficit – being the elasticity
of intertemporal substitution in the lifetime utility and the elasticity of substitution between
capital and labor.

We have used this basic idea to run policy experiments. If future policies that are
stabilizing are anticipated, wrongly or rightly, debt may start above capacity on a seemingly
explosive path, which may be slow and last several generations. The stabilizing responses
that are needed sooner or later represent the true “fiscal cost” of exceeding debt capacity.
By way of illustration, we have examined demographic scenarios, which can lead to debt
becoming unsustainable.36

We have extended the model and its concept of debt capacity to two policy-relevant set-
tings. First, we have shown in a monetary version of the economy that debt explosion means
inflation explosion as well, although the seignorage revenue does increase debt capacity. Sec-
ond, adding growth by innovation to our model, we have shown that, in all cases considered,
a government R&D subsidy raises debt capacity for small subsidy amounts but, for larger
subsidy rates, worsens it.

The first policy implication of our model is that it is not enough to compare interest
rates to growth rates to draw any conclusion about the sustainability of debt; amounts of
debt outstanding also matter. They must remain within debt capacity.

Secondly, the debt capacity is related to parameters of the economy. When near a cliff
edge, it is useful to find out where the edge is located. Our model is a first attempt, in a
realistic policy setting, at locating the edge.

Are the high-income country government debt levels close to debt capacity right now?
Careful econometric estimation of our model will have to be carried out before precise, quan-
titative answers can be given. We have provided some illustrative numerical examples; these
suggest that the current debt levels of high-income countries are close to debt capacity right
now. We see steady increases in deficits and government debt levels relative to GDP. We do
not, so far, see that social-security benefits, or other governmental services, or governmental
spending more generally, are being reduced. To make things worse, population growth rates
are declining and even turning negative or are, at least, predicted to turn negative. All of
these developments but, especially, the reduced population and economic growth rates, leave
little debt capacity to spare.

36There is evidence suggesting that productivity has declined over the last few decades. The effect of such
a decline is similar.
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Appendixes

A Social security

In this appendix, we provide the rationale for having chosen to incorporate social security in
our model as the form of government spending. We verify that, when the rate of interest is
below the rate of growth, a social-security scheme, balanced or unbalanced, can be welfare
improving, which is the reason for which we chose that form of government spending as an
illustration. We focus on the steady-state lifetime welfare, which we define as in Diamond
(1965). In either the stable or unstable steady state, the lifetime utility of one person is
constant, generation after generation.

Five configurations are considered here, the first two being viewed as benchmarks: the
Diamond (1965) equilibrium with no social security and no debt, the bubbly equilibrium of
Tirole (1985) with zero deficit and no debt, the equilibrium with balanced security and zero
government debt as in Blanchard and Fischer (1989), the equilibrium with balanced social
security with pure roll-over government debt, and finally equilibrium with social security in
deficit, financed by government debt.

The Diamond equilibrium is inefficient for the well-known reason that each generation,
in order to finance their retirement, saves in excess of what they would if the welfare of all
generations were optimized. As there is too much capital,37 the steady-state utility is strictly
smaller than in the Golden-rule equilibrium, which can be reached in the Tirole bubbly,
zero-deficit equilibrium. These two facts are reflected in our Figure 9 (Example 1 continued)
by the solid green line, which is below the solid blue line.

Because the government is infinitely lived, it alone can issue debt that can be perpetually
refinanced and, for that reason, can contain a bubble component. When the stock of capital
is too high,38 our Figure 9, – plotted against the level of benefits and for two levels of
contributions (taxes) of 5% and 10% –, illustrates the fact that a budget deficit generated by
social security and financed by debt can be a welfare-improving form of spending, relative
to the competitive Diamond equilibrium.

The figure shows the special case of the equilibrium with balanced social security and no
debt. That configuration can only approach the welfare optimum and never be equal to it.

More importantly, the figure shows that, with deficit social security, the unstable steady
state, when it exists and assuming one can stay there, produces a larger utility per labor
than the competitive equilibrium of Diamond (1965). For the special cases with zero deficit,
such as θ/(1 + n) = τ = 0.05 and θ/(1 + n) = τ = 0.10, the unstable steady state with
bubbly debt can actually reach the Golden Rule equilibrium, as does Tirole’s bubble.

The stable steady states of equilibria with deficit social security also produce a welfare
improvement, but only for sufficiently high values of the benefits. For lower values of the

37This comes with the caveat that in case of endogenous productivity growth, there are two kinds of
capital: physical capital and knowledge capital. Knowledge capital may be too low, while physical capital is
too high. See Section 4.2.

38If, to the opposite, the stock of capital were below the welfare optimum (the rate of interest is above the
one in the welfare optimum), the proceeds of government debt issue could, of course, be used for investment.
But that is not the case considered here.
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Figure 9: Steady-state utilities. Illustration with log utility and Cobb-Douglas production
function. The parameter values are identical to what they are in the other figures. In the
plot, we vary the social-security benefit, θ, and show the resulting steady-state utilities in the
Diamond and Tirole models and in our stable and unstable steady-states, and for a special
case without debt. Five configurations are considered: the Diamond (1965) equilibrium with
no social security and no debt, the bubbly equilibrium of Tirole (1985) with zero deficit
and no debt, the equilibrium with fully funded social security and zero government debt,
the equilibrium with fully funded social security with pure roll-over government debt, and
finally equilibrium with social security in deficit, financed by government debt.
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benefits, it is also possible for the stable steady state to exhibit smaller utility per capita
than the competitive equilibrium of Diamond (1965).

B Comparison of the second formulation (12) with pre-

vious models

In an attempt to enhance policy realism, our model generalizes a number of preexisting
models described below:

• Diamond (1965): d (kt−1, kt) = −ϕ. The deficit is negative; a constant tax on the
young yields a government surplus.

s (w (kt) , r (kt+1)) = (1 + n) (kt+1 + gt+1)

(1 + n)gt+1 = (1 + r (kt)) gt − ϕ

• Tirole (1985): d (kt−1, kt) ≡ 0. A bubble g is present while the government pays and
collect nothing.

• Chalk (2000): d (kt−1, kt) = d > 0. The deficit arises from a constant, wasteful
expenditure.

s (w (kt) , r (kt+1)) = (1 + n) (kt+1 + gt+1)

(1 + n)gt+1 = (1 + r (kt)) gt + d

• Tirole (1985) focuses on a special case of Diamond with d ≡ 0. Chalk (2000) focuses
on a special case opposite to Diamond where d > 0 and is constant (i.e., negative tax
ϕ < 0).

• De la Croix and Michel (2002) contains a synthesis of the models that existed at
the time of their writing.

• Our Model: d (kt−1, kt) = θ
1+n

w (kt−1)− τw (kt). A tax τw (kt) is levied on the young

and a benefit θ
1+n

w (kt−1) is paid to the old.

s (w (kt) , r (kt+1)) = (1 + n) (kt+1 + gt+1)

(1 + n)gt+1 = (1 + r (kt)) gt + d (kt−1, kt)

C Proof of Proposition 1

The government budget or debt evolution is

−Gt+1 + θtwt−1Lt−1 = τtwtLt − (1 + rt)Gt
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which we first rewrite as

− (1 + n) gt+1 + θtwt−1
1

1 + n
= τtwt − (1 + rt) gt

then as

(1 + n) gt+1 = (1 + rt) gt + dt where dt = θtwt−1
1

1 + n
− τtwt

Rearranging leads to

gt =
1 + n

1 + rt

(
gt+1 −

dt
1 + n

)
Rolling over from t = 1 to T > 1 leads to

g1 =
1 + n

1 + r1

(
g2 −

d1

1 + n

)
=

1 + n

1 + r1

1 + n

1 + r2

g3 −
1 + n

1 + r1

1 + n

1 + r2

d2

1 + n
− 1 + n

1 + r1

d1

1 + n

=
1 + n

1 + r1

1 + n

1 + r2

1 + n

1 + r3

g4 −
1 + n

1 + r1

1 + n

1 + r2

1 + n

1 + r3

d3

1 + n
− 1 + n

1 + r1

1 + n

1 + r2

d2

1 + n
− 1 + n

1 + r1

d1

1 + n
...

g1 =
1

1 + n

T−1∑
t=1

−dt∏t
u=1

1+ru
1+n

+
gT∏T−1

u=1
1+ru
1+n

∀T > 1

g1

T−1∏
u=1

1 + ru
1 + n

− 1

1 + n

T−1∑
t=1

T−1∏
u=1

1 + ru
1 + n

−dt∏t
u=1

1+ru
1+n

= gT

gT = g1

T−1∏
u=1

1 + ru
1 + n

+
1

1 + n

T−1∑
t=1

(
T−1∏
u=t+1

1 + ru
1 + n

)
dt

Finally, letting T → +∞ completes the proof.
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