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1. Introduction

The idea that economic theory generates “inequalities” permeates modern economics. Its

implications for empirical analysis appears at least as far back as the revealed preference theory

of Samuelson (1938) who emphasized the ordinal nature of preferences and its relationship to

consumer choice.1 Samuelson (1938)’s goal of connecting preferences to observed behavior

through revealed preferences is also one central theme of this chapter. Because of the

role of inequalities and optimizing behavior in economic theory, and the role of theory in

directing both the questions and the forms of analysis in empirical work, it is difficult to

give a comprehensive review of the literature that followed. Perhaps the earliest use of

inequalities from theory to direct estimation in a context that is clearly relevant for Industrial

Organization is in Marschak and Andrews (1944)’s analysis of production functions. They use

inequalities derived through second order optimality conditions along with sign restrictions

to constrain the parameters of the production function to regions of the parameter space.2

The Marschak and Andrews (1944) paper uses inequalities in the context of analyzing the

implications of theory for choices of a continuous variable (second order conditions), whereas

the literature since deals also with choice sets with some possible discreteness.

Much of the early literature emphasized testing of either important economic hypotheses

about the utility and/or production function, or of the existence of a model that is compatible

with the data and optimizing behavior. Aided by the advances in computing power and the

associated increase in the richness of the data available, the use of moment inequalities and

partially identified models has expanded to enable the researcher to do richer analysis of

policy and environmental changes, particularly, but not solely, those that involve interacting
1Other relevant contributions to this strand of thought, often as applied to consumer and producer theory
that explicitly considers inequalities and sets is Afriat (1967, 1973), Hanoch and Rothschild (1972), Diewert
(1973), Varian (1982, 1983, 1984) and McFadden (2005). See also Deaton (1986), Crawford and De Rock
(2014), and Chambers and Echenique (2016) for reviews of revealed preferences in general.
2Chapter 2 of Nerlove (1965), titled “Partial identification: the Marschak-Andrews approach,” describes
the contribution of that approach as one where “Marschak and Andrews use restrictions on the parameter
values obtained from profit maximizing conditions and economic interpretations of the residuals in the
production function and in the profit maximizing conditions to achieve partial identification of the parameters
of Cobb-Douglas production functions.”
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agents. Examples which illustrate this fact are used liberally in Sections 3 and 4 below

and involve: (i) the use of weaker, and hence more credible, assumptions in estimation, (ii)

circumventing computational issues in problems where neither the researcher nor the decision

maker could be expected to compute the action that generated the highest expected return,

(iii) examining the nature of beliefs and the information sets that generated them, and (iv)

allowing for disturbances that differentiate between the expectations that induced agents’

actions and the measures of returns the analyst has access to.

These and other applications of moment inequalities and partially identified models raise a

number of methodological issues. Empirical work that involves a theoretical structure that

can be used to analyze (past or likely future) behavior requires an “identification strategy”

to guide estimation. The estimator can be viewed to be a set- or a single-valued- mapping

from the data to the parameters of interest. The identification strategy sets out the logical

argument behind the econometrician’s use of the assumptions and the process generating the

data to learn about the parameters of the model. Therefore, an identification strategy should

lead to parameter values that are consistent with the data and the model. These parameter

values are then used to obtain answers to the questions of interest.

Point identification is the case familiar from standard textbook treatments of econometrics.

However, entertaining only models that lead to a unique value of the parameters of interest

restricts the class of models that one can study, and one goal of this chapter is to dispose of

this binary view of identification (a parameter is either point identified or not) and enable

empirical work for models that are not point identified including moment inequality models.

This widens the class of models that can be analyzed for evaluation and prediction purposes. If

multiple values of the parameters are consistent with the data and the model, the parameters

are partially identified. Then it is possible only for the econometrician to conclude that

the true value of the parameter lies within the set of possible values compatible with the

assumptions and the data.3

3Within econometrics broadly there are many instances of models that are partially identified, with examples
ranging from models of treatments effects that avoid making strong random assignment of treatment
assumptions, to models with missing or censored or mismeasured data, and to nonlinear instrumental variable
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Section 2 of this chapter formalizes the distinctions between the various notions of iden-

tification from the population of interest and their relationship to alternative estimators

obtainable from a given data set, while Section 5 reviews the literature on alternative ways of

forming those estimators. Among the applications referred to above, those with multiple de-

cision makers introduce special considerations in both identification and estimation. In these

models, the profit (or utility) functions depend on the decisions of other decision makers. This

implies that the model can admit multiple “rest points” or equilibrium outcomes and makes

the relationship between the observed data and the model parameters more complicated.

Generally, in such models, if estimation is based on an equilibrium assumption, then without

further assumptions there is not a unique map from the parameters to the distribution of the

observed data. As a result the econometrician no longer has a standard likelihood function to

guide choosing an “efficient estimator” corresponding to a point identification result. Section

2 defines a notion of “sharpness” of an identified set, the set of parameter values that are

subject to all of the restrictions available from the data and the assumptions, while Section

5 considers associated estimators. Note that “efficiency” concerns the statistical properties

of the estimator, whereas “sharpness” concerns the identification strategy. The multiplicity

problem is also important when we consider analyzing the equilibrium likely to be generated

by a new policy, as then in general we cannot use past data to predict the equilibrium chosen

in the future.

Section 3 starts out by specifying a set of assumptions that enables us to use revealed

preference inequalities to guide estimation for the cases considered in this chapter. The

resulting framework allows for: strategic interaction, measurement and misspecification errors,

and differences between the distribution the agent conditions on when it makes its decisions

and the data generating process underlying the empirical distributions the analyst observes.
models. For examples see Manski (1989, 1990, 1996, 1997, 2003, 2009), Manski and Pepper (2000, 2009),
Hotz, Mullin, and Sanders (1997), Molinari (2010), Okumura and Usui (2014), Kline and Tamer (2018), Nevo
and Rosen (2012), Santos (2012), Kline (2016b), Chesher and Rosen (2017), Horowitz and Manski (1995),
Horowitz and Manski (2000), Manski and Tamer (2002), Molinari (2008), Cross and Manski (2002), Molinari
and Peski (2006), Fan, Sherman, and Shum (2014), and many others. Recent summaries of this literature
include Tamer (2010), Ho and Rosen (2017), and Molinari (2020).
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Examples from empirical work in Industrial Organization illustrate how the use of moment

inequalities enhances both our ability to account for these phenomena and to empirically

analyze problems which would be considerably less tractable using other techniques. This

section also introduces alternative estimation strategies and the assumptions underlying

them.

Section 4 discusses a particular implementation of revealed preference. This implementation

is motivated by and derived from the standard discrete choice literature. This generalized

discrete choice approach uses parametrizations of player payoffs and assumptions on behavior

to derive restrictions on the parameters from the observed data. The choice models used are

stochastic from the perspective of the econometrician because of variables that determine

choice that are not observed by the econometrician. Sections 3 and 4 also consider alternative

assumptions that enable us to analyze likely counterfactual equilibria. Given that the result of

partial identification analysis is a set of values for the parameters, empirical research requires

an approach for conveying the identified sets to the reader. Section 4 of this chapter also

provides a detailed illustration of how this can be done, and in so doing reviews the problems

that arise in analyzing interacting agent models with a complete information assumption.

Estimation and inference in partially identified models requires special statistical method-

ology, which is reviewed in Section 5, specifically the literature on the moment inequality

approach, the criterion function approach, the random sets approach, and the Bayesian

approach. Finally, Section 6 discusses some further issues surrounding implementation of

partial identification strategies.

2. Definitions and background

Identification and partial identification concern what can be learned about a quantity

of interest, given the assumptions used and the distribution of the data in the population

of interest.4 If the true value of the quantity of interest can be learned, there is point
4For the definition of point identification see (e.g., Matzkin (2007) and more recently Lewbel (2019)), while
for the definition of partial identification (e.g., Manski (2003)).
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identification. This happens when only the true value of the parameter could have generated

the population distribution, given the assumptions. If the true value of the quantity of interest

can only be learned to be restricted to be within some set, there is partial identification. This

happens when multiple specifications of the parameter could have generated the population

distribution, given the assumptions.

Even in the simplest empirical settings, identification is always studied in the context of a

statistical model. The statistical model could be as simple as the model of i.i.d. sampling from

the distribution of a random variable, with no further “model” for that random variable. In

general, a statistical model is simply a formal mathematical relationship between a parameter

θ and the observed data. This can be a fully parametric model, where the statistical

model results in a distribution of the data for each value of θ. Alternatively, this can be a

semiparametric model, where for instance the statistical model might result only in statements

about the moments of the data for each value of θ (as in linear regression). A statistical

model may or may not be based on an economic model of the sort studied by economic

theorists. As illustrated below, the formal definition of identification depends on the setup of

the model and assumptions underlying the model used by the econometrician. Throughout,

suppose the parameter of the model is θ.

The sharp identified set ΘI is the set of all values of θ that are compatible with all the

assumptions and the distribution of the data in the population of interest. By definition every

value of the parameter in ΘI could have generated the population data and is compatible with

the assumptions. Therefore, with “infinite data” from the population, it would be possible to

learn that the true value of the parameter is in ΘI , and further it would not be possible to

learn more about the true value of the parameter. That is, learning the sharp identified set

corresponds to learning the most that can possibly be learned about the true value of the

parameter given the assumptions and an “infinite” data set from the population.

A non-sharp identified set Θ̃I , sometimes called an outer set, is a set of values of θ that

contains all values of the parameter that are compatible with the assumptions and the

distribution of the data in the population of interest. However, unlike with a sharp identified
6



set, it is allowed that some values of the parameter in Θ̃I may not be compatible with some

of the assumptions and/or the population data. Therefore, it is possible to learn that the

true value of the parameter is in Θ̃I , but some values of the parameter in Θ̃I could not

be the true value of the parameter, if indeed they are incompatible with the assumptions

and/or the population data. In that sense, learning a non-sharp identified set corresponds to

learning something about the true value of the parameter, but possibly not everything that

can be learned given the assumptions and the population data. By definition, ΘI ⊆ Θ̃I . In

some models, finding the sharp identified set can be difficult, specifically because it can be

difficult to prove that all parameter values in the candidate sharp identified set are indeed

compatible with all of the assumptions and the distribution of the data in the population. It

can be much simpler to find a non-sharp identified set, which only requires a proof ruling out

certain parameters values as not compatible with at least some of the assumptions and the

distribution of the data in the population.

Similar definitions apply to identification of other objects of interest δ, like components or

functions of a (vector-valued) θ.

For a formal definition of identification, begin with the kind of model for which defining

identification is the simplest. These models result in a distribution of the data for every

value of the parameter, as follows. Suppose the econometrician is working with a model that

implies that the econometrician observes i.i.d. draws of Wi for i = 1, 2, . . . , N from some

distribution F (W ). The econometric model provides the econometrician with distributions

Pθ(W ) for each value of the parameter θ in the parameter space Θ, so that the distribution

of the observed data is F (W ) = Pθ0(W ) with θ0 being the true value of the parameter.

For example, in a structural model of decision makers, Wi could be the observed behavior

of decision maker i and Pθ(W ) could be the structural model that generates the observed

behavior of the decision makers on the basis of the parameter θ, which for example could

determine the utility functions of the decision makers. With an “infinite sample” from the

population, the econometrician can treat F (W ) as a known quantity. The identification
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problem concerns what can be learned about θ based on F (W ) and any other assumptions

used by the econometrician. Note that the form of Pθ(W ) itself reflects modeling assumptions

used by the econometrician, but the econometrician may have other assumptions about θ, like

non-negativity constraints or other information from prior sources. Formally, assumptions

can be represented either as part of the definition of the parameter space Θ, for example

non-negativity constraints on parameters, or on the model Pθ(·), for example functional form

assumptions or distributional assumptions.

The sharp identified set for θ is ΘI = {θ ∈ Θ : Pθ(W ) = F (W ) = Pθ0(W )}. Therefore, in

this category of model, the sharp identified set collects all values of the parameter that result

in the same distribution of the observable data as does the true value of the parameter. By

construction, θ0 ∈ ΘI , but there can also be other elements of ΘI . There is point identification

if ΘI = {θ0} is a singleton, and there is partial identification otherwise. A non-sharp identified

set Θ̃I would need to satisfy the condition that ΘI ⊆ Θ̃I , which implies that if θ /∈ Θ̃I then

Pθ(W ) 6= F (W ). Thus, all values θ 6∈ Θ̃I can be ruled out as candidate values of the true

value of the parameter, since such θ would result in a different distribution of the data.

Although the above captures the main idea of the definition of point identification and

partial identification, some of the specific details of the kind of model considered there do

not reflect typical empirical practice.

First, many models used in empirical practice are conditional models, in the sense that

they concern the distribution of W conditional on some observable X. In such cases, the

econometric model provides the econometrician with distributions Pθ(W |X = x) for each value

of θ and each x in the support of X. Conditional models leave unspecified the distribution of

X. Often, this is because the distribution of X is formally unrelated to θ. Alternatively, this

could be because the econometrician allows for the distribution of X to depend on θ, yet

does not use that dependence in the identification of θ. Now, with an “infinite sample,” the

econometrician can treat F (W |X = x) as a known quantity for all x in the support of X.

The sharp identified set for θ is ΘI = {θ ∈ Θ : Pθ(W |X = x) = F (W |X = x) = Pθ0(W |X =
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x) for all x ∈ Supp(X)}.5 Although conditional models (along with the distribution of X)

do imply a distribution for (W,X) similar to those considered above in unconditional models,

this representation of ΘI clarifies that the source of identification is how θ relates to the

conditional distribution of W |(X = x) and not how θ relates to the distribution of X by

itself.

Second, many models used in empirical practice do not result in a distribution of the data

for each value of the parameter, as did the models considered above. Rather, many models

used in empirical practice result in restrictions on the distribution of the data. As follows,

there are two related frameworks for considering such settings.

First, in some models there is a functional ψ(F (W ), θ) of the distribution of the data and

the parameter such that the model implies that the true value of the parameter θ0 satisfies

the restriction that ψ(F (W ), θ0) ∈ Ψ for some Ψ known by the econometrician. Although

it generally does not, Ψ might (implicitly) depend on F (W ) – in the same way that ψ(·)

can depend on F (W ) – and/or the assumptions. Consequently, if this restriction on θ0

involving ψ is the only restriction from the model, the sharp identified set is ΘI = {θ ∈ Θ :

ψ(F (W ), θ) ∈ Ψ}. Alternatively, if this restriction is only part of the restriction from the

model, the non-sharp identified set is Θ̃I = {θ ∈ Θ : ψ(F (W ), θ) ∈ Ψ}. Even though Θ̃I has

the same definition as ΘI , it differs by the supposition that the ψ(·) appearing in Θ̃I represents

only part of the restrictions from the model whereas the ψ(·) appearing in ΘI represents

all of the restrictions from the model. This formalizes that the econometrician learns that

the value of the parameter satisfies the restriction implied above. If there is more than one

value of the parameter that satisfies these restrictions, the parameter is partially identified.

Examples of restrictions are moment equality conditions and moment inequality conditions.

In moment equality condition models (e.g., Hansen (1982)), the model might imply that
5This definition depends on Supp(X) which is an important determinant of what can be learned about the
parameter of interest from the data available to the researcher. In particular, generally larger supports of X
result in more restrictions on θ according to this specification of ΘI , such that larger supports of X result in
smaller identified sets for θ. Further, the observed support of variables in small data sets can be smaller than
the support in large data sets (or the support in the population). If so, in empirical practice there can be
effectively fewer restrictions on θ in small data sets compared to the population identified set.
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E(m(W, θ0)) = 0 for some known function m(W, θ) of an observation W and the parameter

θ. In that case, ψ(F (W ), θ0) ≡
∫
m(W, θ0)dF (W ) and Ψ = 0. For example in the context

of moment conditions from a linear regression model Yi = Xiβ0 + εi, the econometrician

can assume that E(ε|X) = 0, implying the moment condition that E(X ′(Y − Xβ0)) = 0.

If the distribution of the unobservable ε is left unspecified, the model does not result in a

distribution of the data but rather just the moment condition that is a statement about the

data that depends on the value of the parameter. In moment inequality condition models, see

also Section 5.3, the model might say that E(m(W, θ0)) ≥ 0 for some known function m(W, θ)

of an observation W and the parameter θ. In that case, ψ(F (W ), θ0) ≡
∫
m(W, θ0)dF (W )

and Ψ = [0,∞). If there is more than one value of the parameter that satisfies these moment

inequality conditions, the parameter is partially identified. Moment inequality conditions

represent an important category of partially identified models and, as discussed in the

following sections, typically care should be taken in how to derive these inequalities from the

underlying economic theory model.

Another example of restrictions are models characterized by criterion functions, see also

Section 5.4. In such models, there is a function Q0(θ) that depends on the distribution

F (W ), such that θ0 can be characterized as some property of Q0(·). For example, it could

be that θ0 is characterized as solving Q0(θ0) = 0. In that case, ψ(F (W ), θ) = Q0(θ) and

Ψ = 0. Or, it could be that θ0 is characterized as solving θ0 = arg maxQ0(θ). In that case,

ψ(F (W ), θ) = Q0(θ)−maxQ0(θ) and Ψ = 0. In either case, if there is more than one value

of the parameter that solves ψ(F (W ), θ) = 0, the model is partially identified.

Second, and alternatively, many models used in empirical Industrial Organization are

incomplete, in the sense that the model results in a set of possible distributions of the

data for each value of the parameter. In such cases, the econometric model provides the

econometrician with a set of distributions of the observed data Pθ for each value of the

parameter θ. This means that the model says only that the distribution of the data will be

one of the distributions in Pθ when the parameter is θ. In particular, the distribution of

the observed data is an element of Pθ0 so that F (W ) ∈ Pθ0 . For example, in a structural
10



model with multiple decision makers based on a game theory model with multiple equilibrium

outcomes, the model including the assumption of equilibrium predicts only that one of the

equilibria is selected, but not which equilibrium is selected. See also Section 4. This results

in a set of possible distributions of the data, corresponding to all of the different ways

of selecting among the multiple equilibrium outcomes. Consequently, the identified set is

ΘI = {θ ∈ Θ : F (W ) ∈ Pθ}. This formalizes that the econometrician learns that the value of

the parameter satisfies the restriction implied above.

A restriction on the distribution of the data, like a moment condition, can be translated to

saying that the model results in multiple distributions of the data, namely all distributions of

the data that are compatible with the restrictions on the distribution of the data. Conversely,

multiple distributions of the data being consistent with the model can be translated to saying

that the model results in restrictions on the distribution of the data, namely the restriction

that the distribution of the data is within the set of distributions predicted by the model.

Therefore, the previous discussion is simply two different perspectives on the same underlying

phenomenon. Depending on the specific model, one or the other perspective can result in a

more straightforward identification analysis.

Finally, in some cases, the object of interest is a function δ(θ) of θ. For one example, it

can be that δ(θ) = θk is a particular component of θ = (θ1, θ2, . . . , θK). For another example,

it can be that δ(θ) represents a marginal effect in a non-linear model. Identification of δ(θ)

is related to but distinct from identification of θ. Building on the simplest representation

of an identified set from above, the identified set for δ(θ) is ∆I = {δ : ∃θ ∈ Θ s.t. δ =

δ(θ) and Pθ(W ) = F (W ) = Pθ0(W )}. Or building on the representation of an identified set

based on models that imply restrictions on the distribution of the data, the identified set

for δ(θ) is ∆I = {δ : ∃θ ∈ Θ s.t. δ = δ(θ) and ψ(F (W ), θ) ∈ Ψ}. In general, the identified

set for δ(θ) can be written as ∆I = {δ : ∃θ ∈ ΘI s.t. δ = δ(θ)}. If an identification strategy

provides an identified set for θ, then it is trivial to determine the identified set for δ(θ) by

simply applying δ(·) to all elements of the identified set for θ. However, it is possible that an

identification strategy directly provides an identified set for δ(θ) without necessarily providing
11



(directly) an identified set for θ. For example, an identification strategy might provide an

identified set for the finite-dimensional elements of θ, while not providing an identified set for

the infinite-dimensional elements of θ, like the distributions of unobservables. Note however

that any identified set ∆I for δ(θ) implies a corresponding (possibly non-sharp) identified

set for θ, {θ ∈ Θ : δ(θ) ∈ ∆I}. Indeed, it is possible that δ(θ) is point identified even if θ is

partially identified.

3. Revealed preference

Revealed preference is a basic building block of economic theory and underlies much of the

empirical work in Industrial Organization. The formal literature dates back to the classic

article by Samuelson (1938), and the underlying idea is both simple and powerful. If an

economic agent chose d from a feasible set of choices which included both d and d′, then the

agent expected to be better off as a result of choosing d then it would have been had it chosen

d′. There is no restriction on either the nature of the choice set or on whether the underlying

returns depend on the actions of competitors. This makes the logic of revealed preference

particularly attractive to the Industrial Organization community. Note however that the

revealed preference logic applies to expectations rather than realizations and is silent on the

relationship between the ex ante expectations and the observable variables that the applied

researcher has at their disposal. To use the insights from revealed preference in empirical

work these relationships must be specified.

3.1. Primitive assumptions. Pakes (2010) and Pakes, Porter, Ho, and Ishii (2015) provide

conditions which enable one to go from revealed preference to a consistent estimate of a

partially identified set. We begin with a definition of revealed preference which depends

on the agent’s expectation operator and the model for the returns from its actions that

the agent believes is true and so is used by the agent in forming its expectations. The

empirical probabilities of outcomes need not conform to the probabilities the agent assigns

to those outcomes, and the econometrician’s specification for the model that determine the

12



returns from the agent’s actions need not conform to the model the agent used in making its

decisions. The goal of this subsection is to provide a set of assumptions that connect the

agent’s expectations and perceived model of returns, to the data generating process and the

econometrician’s model of returns. The next subsection considers the implications of these

assumptions for estimation, while the final subsection provides examples which illustrate how

they have been used to illuminate issues of importance to Industrial Organization.

We begin with two assumptions that are needed to derive the inequality in the agent’s

expectations that revealed preference generates. An additional two conditions are then needed

to: (i) relate the probabilities of outcomes implicit in the agent’s expectation operator to

the empirical probabilities the analyst observes, and (ii) relate the model the agent used to

determine the returns from those outcomes and the analyst’s model of returns. As we shall

see, it is the latter assumptions that differentiate the econometric approaches that have been

used in Industrial Organization.

Two caveats before we start. First the focus will be on parametric models. Second though

special cases of the assumptions presented below underlie virtually all past applied work in

Industrial Organization, they are not the only assumptions that could be used, and we will

comment on alternatives. Hopefully our occasional references to non-parametric work and

weaker assumptions will induce colleagues to pursue these avenues further.

The agent’s perceptions. We start with the best response condition. If we assume a

parametric model and let π(di, d−i, yi, θ) be the profit agent i would earn as a result of

choosing di when its competitors chose d−i and yi is any other determinant of profits, and let

boldface variables denote variables that can be random to the decision maker then

C1 : E [π(di,d−i,yi, θ)|Ii] = sup
d∈Di

E [π(d,d−i,yi, θ)|Ii]

where Ii is the information set available to the agent when the decision is made, E(·) provides

the agent’s expectations conditional on that information, and Di is a set of feasible choices

that the agent considered.
13



The distributions of yi and d−i might change were the agent to make a different decision.

For example, this would occur in a two period model if di represented a first period decision

(say on the location of a product or a choice of a contracting partner), and yi represented

the prices chosen in the second period. Then yi is “endogenous” in the sense that when we

compare di to the counterfactual d′i we need to predict what the agent perceived y would

have been had it chosen d′. When this occurs we need a model for the response of yi to a

change in di. So our second condition, the counterfactual condition, is

C2 : (i) d−i = d−(di, zi) and (ii) yi = y(di,d−i, zi),

where zi ∈ Ii does not respond to changes in di, or d−i; that is zi is “exogenous”6.

Part (i) of C2 is always satisfied in both simultaneous move games and in single agent

“games against nature”, as in these cases d−i does not change when we assign a counterfactual

policy to agent i. In contrast, in dynamic games in which the returns to an agent’s action

depends on the responses of competitors both conditions (i) and (ii) require a specification of

the agent’s model for its competitors’ responses to counterfactual behavior. Condition (ii) is

typically also needed in “two-period” models with simultaneous moves in the first period.

These models often focus on an initial simultaneous move game (e.g. a location choice),

followed by a price setting game that conditions on the outcome of the initial period decision

(which depends on the counterfactual chosen) and determines profits (see Subsection 3.3 for

examples)7.
6Note that this definition of exogeneity does not refer to the relationship between variables that are, and
those that are not, observed by the analyst. The components of the model that are not observed by the
analyst are explicitly introduced below where their relationship to observable variables are explained.
7It is understood that if a model of competitor behavior is needed, as in the dynamic game example, it
may depend on additional parameters. Very little work has been done on the use of inequalities in dynamic
games. For a demonstration of their potential use in full information Nash equilibrium models see Berry and
Compiani (2020). Modelling frameworks for dynamics which allow for asymmetric information, such as those
in Fershtman and Pakes (2012) and Asker, Fershtman, Jeon, and Pakes (2020), are now being adapted for
empirical work, and lead naturally to the use of inequalities.
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The implication of combining C1 and C2 is that if d′ ∈ Di then

E [∆π(di, d′i,d−i, zi, θ)|Ii] ≡ E
[
π(di,d−i,yi, θ)− π

(
d′,d−(d′i, zi),y(d′i,d−i, zi), θ

)
|Ii
]
≥ 0.

(1)

To go from Equation (1) to a conditional moment inequality we can take to data we need:

(i) the relationship between the agent’s expectation operator and the expectations generated

by the data generating process (the DGP), and (ii) the relationship between the difference in

profits in Equation (1) and the econometrician’s approximation to that difference.

If E(·|·) is the expectation operator emanating form the DGP then all that is required for

(i) is

C3 : E [∆π(di, d′i, d−i, zi, θ)|Ii] ≥ 0⇒ E [∆π(di, d′i, d−i, zi, θ)|Ii] ≥ 0.

So “rational expectations”, that is E [∆π(di, d′i, d−i, zi, θ)|Ii] = E [∆π(di, d′i, d−i, zi, θ)|Ii], will

do but we can suffice with the “weak rationality” assumption from Pakes (2010), that agents

do not err on average. Indeed the yet weaker assumptions that agent’s are not pessimistic,

but could be overoptimistic, regarding the returns from the choice they made relative to

feasible alternatives would also do.

Given this assumption, there are two approaches to obtaining an empirical analogue to

Equation (1); we could either specify the distribution of primitives and attempt to calculate

the difference in expectations directly, or we could attempt to calculate the realizations of the

profit difference and then insure that our estimating equation is robust to expectational error.

If uncertainty can be ignored the two approaches are identical, while if there is significant

uncertainty in the environment the former approach requires additional assumptions, including

a selection mechanism when there is the possibility of multiple equilibria, and is typically

less computationally convenient. So the literature has focused on working with realizations.

With that in mind define

ν1(di, d′i, d−i, zi, θ) ≡ ∆πo(di, d′i, d−i, zi, θ)− E [∆πo(di, d′i,d−i, zi, θ)|Ii] ,
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where the ∆πo(·) is the observable approximation to the difference in profits that would be

constructed if all components of zi were observed. Then by construction

E[ν1(di, d′i, d−i, zi, θ)|Ii] = 0.

ν1(di, d′i, d−i, zi, θ) will contain; (i) expectational error generated by randomness in the

environment (that is from the difference between the information the agent has at its disposal

when making its decision and the determinants of the returns from that decision), (ii)

measurement error in profits, and (iii) that part of functional form misspecification that is

mean independent of the agent’s information sets. Depending on the issue studied and data

available, any one of these sources of error can be dominant. Expectational errors are likely

to occur in modeling decisions which generate returns after the decision is made, misspecified

profit functions occur when we use approximations to the true objective functions, and

measurement errors are thought to be pervasive in the measures of profits we have access to

and in cases where publication of the precise values of variables are limited by proprietary

contracts.

In addition not all of zi need be observed to (or even known to) the econometrician. If we

let xi be the variables that the econometrician can condition on, and define

∆πo(di, d′i, d−i, xi, θ) ≡ πo(di, d−i, xi, θ)− πo
(
d′i,d−(xi, d′i),y(d′i, d−i, xi), θ

)

then there is a second disturbance defined by

ν2(di, d′i, d−i, zi, xi, θ) ≡ ∆πo(di, d′i, d−i, zi, θ)−∆πo(di, d′i, d−i, xi, θ). (2)

This ν2(di, d′i, d−i, zi, xi, θ) is a result of variables that the agent has access to but the analyst

does not, and/or specification errors in the objective function that are correlated with the

information the agent conditions its decision on.
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The point to stress here is that it is z, and not x, which determines the agent’s decision, so

E[ν2(di, d′i, d−i, zi, xi, θ)|Ii] 6= 0.

This implies that if not accounted for, ν2(·) will cause a bias in the estimates (this is often

referred to as a selection bias).

Note that the components of xi may or may not be a subset of the components of zi. In

the case where the agent’s utility is a function of zi = (xi, εi) then the xi are components of

zi, and if either the agent’s or its competitors’ decisions depend on εi then ν2(·) need not be

mean zero conditional on Ii. However in a model with measurement error in a component

of zi the agent observes the true value of that component but the analyst only observes an

error prone measure of it. Then the measured component, that is x, is not contained in z.

As shown in the examples in Section 3.3.1 the structure of a consistent estimation algorithm

can depend on the source of ν2(·).

Collecting terms we have

∆πo(di, d′i, d−i, xi, θ) = E [∆π(di, d′i, d−i, zi, θ)|Ii]+ν1(di, d′i, d−i, zi, θ)−ν2(di, d′i, d−i, zi, xi, θ).

(3)

That completes the discussion of the framework that underlies the estimators discussed

below. Note that it avoids the specification of a full model of the decision making environment.

In particular it does not require specifications for; information sets, how the agents formulate

their expectations given their information, or for the complete choice sets of the agents. It

also gives the analyst flexibility to choose counterfactuals that give it the best chance of

obtaining precise information on the parameters of interest for the applied problem and

data at hand. As the examples will illustrate these properties have enabled researchers to

analyze complex problems with limited assumptions. Finally note that when applied to game

theoretic problems with multiple possible equilibria, the framework does not require the

analyst to specify an equilibrium selection mechanism, or to assume the selection mechanism
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is the same across markets, in order to obtain consistent set estimators8. Since there are

many cases where the equilibrium selection mechanism is difficult if not impossible for the

analyst to know, this is fortunate.

On the other hand there are drawbacks to limiting ourselves to not specifying a complete

model. It should be obvious that use of the restrictions from a full model of the decision

making environment when that model is correct could produce more powerful estimators in

the sense that the sharp identified will be (weakly) smaller. Perhaps more important, the

lack of a full specification and the possibility of multiple equilibria raises the issue of how to

analyze counterfactuals. Though we may be able to use data to determine which equilibrium

was played in the past, there generically will not be any data which tells us which outcome

will be chosen once we change the environment. That is if we do not know what underlies the

choice of equilibria that we see in the data, we are unlikely to know if that selection is likely

to change when we change the environment. We come back to a more complete description

of counterfactuals in models with multiple equilibrium in Section 6.3.2 below.

One final note before proceeding to the assumptions on the disturbance terms in Equation

3 which, together with assumptions C1 to C3, will lead directly to estimation strategies.

Sometimes it will be both possible and useful to use data to delve deeper into the primitives

that underlie C1 to C3. For example Dickstein and Morales (2018) (see example 8 below)

use the data to clarify the information available to agents when they make their decisions

(i.e. the contents of Ii above), while Doraszelski, Lewis, and Pakes (2018) investigate how

initially uninformed agents develop their beliefs on the actions of their competitors9.

Where possible, analysis of this sort is likely to lead to a far richer analysis of market

outcomes10. For example one way to resolve the multiplicity issue discussed above is to
8See Tamer (2003) for an early discussion of the impact of multiple equilibria on appropriate estimation
techniques for the special case of C1 to C3 we return to in Section 4 below.
9A closely related literature analyzes information sets and how they evolve in consumption theory and in
the analysis of education and labor market decisions. For early contribution see Flavin (1981) and Carneiro,
Hansen, and Heckman (2003).
10More fundamentally the theory literature has delved deeper into the conditions needed for different equilibria.
For example Aumann and Brandenburger (1995) show that full information Nash equilibrium (which is
a special case of our C1 to C3) requires mutual knowledge of the profit functions, common knowledge of
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structure how agents learn to adapt to the counterfactual environment. This would modify

C3 above to provide an explicit model for how beliefs on likely outcomes from different

policy choices in the counterfactual environment are formed11. It would also have the added

advantage of predicting the transition path from one equilibrium to another.

3.2. Paths to estimators. Given C1 to C3 the different estimation strategies differ in

their assumptions on the two disturbance terms in Equation 3. We begin with the two

extremes. One is for cases where the dominant sources of error are those that determine

ν1(di, d′i, d−i, zi, θ), and assumes ν2(di, d′i, d−i, , zi, xi, θ)’s influence on weighted averages of

∆πo(di, d′i, d−i, zi, θ) can be ignored. The other is for cases where the dominant sources of error

are those that determine ν2(di, d′i, d−i, zi, xi, θ), and assumes ν1(di, d′i, d−i, zi, θ)’s influence

on weighted average of ∆πo(di, d′i, d−i, zi, θ) can be ignored. Much of the applied work to

date has made one of these two assumptions. The examples in Section 3.3.1 provide ways

of adding structure to C1 to C3 that enable consistent set estimators when both types of

disturbances are important.

To obtain set estimators when ν2(d, d′, d−i, zi, xi, θ) = 0 we form positive valued functions

of variables known to the agent and observed by the analyst when it made its decision, say

{hj(xi)}j, and search for values of θ that made a metric in the j moments

∑
i

(
∆πo(di, d′i, d−i, zi, θ)

)
−
hj(xi) ≥ 0, (4)

beliefs/conjectures, and a common prior. One could attempt to use data to determine the extent to which
these assumptions are an adequate approximation to reality in different circumstances.
11There is an extensive experimental literature on learning (e.g. Erev and Roth (1998)), which might have
implications for empirical work. For example Feltovich (2000) concludes that belief based learning (e.g.
fictitious play) and the reinforcement learning models have been used intensively in computational work (e.g.
Pakes and McGuire (2001)) seem to perform about equally in a laboratory setting. Relatedly Salmon (2001),
using laboratory data on constant sum games, finds that standard econometric techniques have difficulty in
distinguishing between various learning models. These papers might suggest that the structure of the learning
model that a researcher imposes need not have a substantial effect on predicted outcomes. On the other hand
Lee and Pakes (2009) find that this was not the case in evaluating a possible merger in the banking industry.

19



where if f(·) is any function, f(·)− = min(f(·), 0), or the negative values of f(·)12. Minimizing

a metric in these moments penalizes values of θ that violate the revealed preference inequalities

and can generate set estimators that cover the true value of θ with sufficiently high probability.

Details of this, and the other estimation algorithms outlined in this section are given in

Section 5.

The path from the assumption that ∆ν1(d, d′, d−i, zi, θ), does not affect weighted averages

of the profits but ∆ν2(d, d′, d−i, zi, xi, θ) does to estimation differs with the nature of the

problem being investigated. If this is a game against nature, or a single agent problem, the

outcome is discrete, and z = (x, ε) we are back to the assumption of standard discrete choice

estimation algorithms, and there is a robust literature on estimators for that problem.

In game theoretic problems, the estimation algorithm depends on the extent to which the

εi, the variable that is unknown to the analyst but is known by the agent making the ith

decision, is known to its competitors. If it is fully revealed d−i will depend on εi and we must

treat the necessary conditions for the optimal choice of each agent as a system of equations. A

second alternative that has been used extensively in the applied literature on auctions is that

the competitors’ only know realizations of εi are random draws a particular distribution (for

an early creative use of inequalities to analyze auction see Haile and Tamer (2003)). These

two cases are both considered full information Nash equilibrium in most of the literature,

and we abide by that terminology. If competitors only receive a noisy signal on the value of

εi, say through past choices, the underlying game is one of asymmetric information. Then

we need to add a model of belief formation to C1 to C3 above and formulate policies and

estimators that are consistent with it.

The case that has been fully worked out and used in the empirical literature is the full

information Nash equilibrium case, typically with a parametric assumption on the distribution

of the vector of ε’s. Then to see if a particular value of θ is acceptable the analyst checks
12Notice that despite the assumption that ν2(·) = 0, components of zi that are not observed by the analyst
can be determinants of profits. Models with errors in variables are consistent with this set of assumptions (for
details see example 7 below). For another example say profits are additively separable in an error which is
mean independent of xi, zi is an exogenous determinant of the variance of that error, and agents are expected
profits maximizers. Then zi is a determinant of realized profits but does not effect expected profits.
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whether the vector of necessary conditions for equilibrium emanating from C1 to C3 are

satisfied. Details are given in Section 4 below, where it is noted that often one can add power

by adding information from the sufficient conditions for an equilibrium13.

Though the assumptions used in these two special cases might seem extreme, they should

be familiar from prior applied work. The assumptions used in rational expectation models

satisfy the condition that ∆ν2(d, d′, d−i, z̃i, zi, θ) = 014, and the assumptions used in the static

single agent discrete choice literature satisfy the assumption that ∆ν1(d, d′, d−i, zi, θ) = 0.

On the other hand it should be clear from the sources of these disturbances that both these

assumptions can be problematic in contexts of interest to Industrial Organization. We often

do not have access to all the information management keys off of in making their decisions,

our measures of profits (or discounted returns) are at best approximations, and since the

model’s controls maximize expected returns over some interval of time there are also likely to

be differences between expectations and realizations.

However we do not know of an estimator that can take account of both types of disturbances

without additional assumptions (additional to C1 to C3). Pakes (2010) and Pakes, Porter,

Ho, and Ishii (2015) did provide “high level” conditions which enable one to allow for both

types of disturbances, but they are subtle and not easy to check15. Since then others have

added to these conditions in ways that have proved effective for a number of classic Industrial

Organization problems.16

13A similar procedure works if the agent i only has partial information on ε−i but then checking equilibrium
conditions requires a specification for what agent i does know, and a way of integrating ε−i out of the best
response condition in C1. The latter becomes more complicated and requires more assumptions in models
where the yi in C2 is endogenous, that is responds to differences in di, as then we must check all possible
equilibrium for each draw on the value of ε.
14For an early use of rational expectations to rationalize an estimator based on these assumptions see Hansen
and Singleton (1982)’s first order conditions estimator for models with continuous controls.
15Their most general condition provides cases which generate an observable positive valued instrument,
say hj(zi) ∈ Ii, which is known to the agent at the time decisions are made and not positively correlated
with ∆ν2(d, d′, d−i, z̃i, zi, θ), and uses them to construct the averages in equation (4) that would be greater
than zero. It is essentially insuring the existence of valid instrumental functions that generate monotone
instrumental variables along the lines of Manski and Pepper (2000) and Manski and Pepper (2009).
16See Ho and Rosen (2017) for a more extensive review of empirical work using moment inequalities.
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As a result we proceed as follows. This subsection concludes with two examples that have

used the assumption that ν2(di, d′i, d−i, z̃i, zi, θ) = 0 to analyze problems that would have

been difficult, if not impossible, to analyze without the use of moment inequalities. Section

3.3.1, reviews seven examples that have added extra assumptions to enable the use of moment

inequalities of the same form as those in Equation 4 to generate consistent set estimators

when there are both ν1(·) and ν2(·) disturbances. Aside from their empirical importance,

each example focuses on a different econometric problem that appears frequently in Industrial

Organization. Then Section 4 considers algorithms that set ν1(d, d′, d−i, zi, θ) = 0, and uses

an example to illustrate how to construct identified sets from partially identified models.

3.3. Examples. We begin by looking at two examples that used the revealed preference

assumptions in C1 to C3, assume ν2(·) = 0, and provide information on I.O. topics that would

have been difficult to analyze without the use of moment inequalities. The first example is a

single agent problem, and the second involves a market of interacting agents.

We note that with hindsight both of these examples could have been modified to include

disturbances with ν2(·) properties were we willing to restrict the distribution of that dis-

turbance in one or more of the ways introduced in the examples in Section 3.3.1. So the

contributions of these papers, in both methodology and in empirical issues we can address,

can be adapted to a wide variety of applied problems.

Example 1: Single Agent Dynamic Discrete Choice With Large Choice Sets. Moment

inequalities have been used to circumvent computational problems in dynamic discrete choice

problems in which evaluating all possible sequences of choices is simply infeasible. These

models adapt the logic of the Euler perturbations used to circumvent computational problems

in the estimation continuous choice problem (see Hansen and Singleton (1982)’s classic article)

to problems with discrete choices17. That is they assume C1 to C3, use revealed preference

inequalities to compare the actual choice to alternative feasible choices, and employ the
17A related adaptation for problems with boundaries that are hit with positive probabilities is provided in
Pakes (1994).
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resultant moment inequalities in an estimation algorithm. We illustrate with influential

examples from the literature.

The first is due to Holmes (2011) who studies the sequence of location choices of Wal-Mart

stores. His model is a dynamic with rich geographic detail on the locations of Wal-Mart’s

stores and distribution centers. Given the enormous number of possible combinations of

store-opening sequences, it is not feasible to directly solve the dynamic programming problem.

Instead he uses a revealed preference approach to infer the magnitude of the density economies

resulting from closeness to distribution centers. In particular he analyzes how much sales

cannibalization of closely packed stores Wal-Mart is willing to suffer to achieve density

economies.

Holmes conditions on the number of stores and distribution centers that Wal-Mart opens

in different years, and analyzes the choices for the location of the stores that they open in

subsequent years. He obtains his revealed preference inequalities by constructing unbiased

estimate of the difference between the expected discounted value of profits resulting from

the realized sequence of store openings and the expected discounted value that Wal-Mart

would have obtained had it chosen an alternative sequence of store openings. Importantly

he restricts himself to “pairwise re-sequencing”; that is of changing the timing of opening

of two stores that did open. This eliminates the need for specifying candidate locations for

stores. It also implies that one need not compute returns from the two sequences for the

years after the year that the last of the couple being re-sequenced opened, as the profits after

that are the same for the actual and the counterfactual choice18. The actual perturbations

are chosen to focus in on the trade-off between store density, population size, and distance to

a distribution center. The analysis shows how to make one source of the economics of density

explicit, the cost of deliveries from the distribution center to local Wal-Marts, and quantifies
18The two sources of the ν1(·) disturbance likely in Holmes’ model are (i) measurement error in profits,
and (ii) the difference between expectations and realizations. If the perturbations coincide with a decision
by management today that determines opening over the period of the perturbation, then the estimator
is consistent if both sources of ν1(·) disturbances are present. If not, one has to rely on the assumption
that the ν1(·) disturbance is wholly measurement error as future decisions condition on realizations of the
expectational errors in the subsequent periods.
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its effects. His estimates show that the economics of density, measured in this way, are an

important part of Wal-Mart’s profitability.

A paper by Morales, Sheu, and Zahler (2019) uses related ideas in their analysis of “extended

gravity”; i.e. they show how firms current choices of export markets depend on the markets

they have serviced in the past, and analyze the implications of their finding. Given the

number of possible countries to export to the the full solution to their dynamic multinomial

discrete choice problem is not feasible. Instead they employ revealed preference and moment

inequalities to compare the returns from the observed and alternative sample paths to obtain

estimates of the needed parameters19. A somewhat different argument was used to analyze

“switching cost” in dynamic consumer choice by Illanes (2017) in his analysis of the choice of

pensions in Chile. He uses the necessary condition that the optimal choice must lead to a

higher discounted value than feasible alternatives, and an approximation to the difference in

discounted values from the two alternatives to develop inequalities that allow him to estimate

the parameters of the model. �

Example 2: Product Repositioning. Product repositioning refers to a change in the

characteristics of the products marketed by an incumbent firm. Recent work has shown

that there are a number of industries in which firms already in the market can change

the characteristics of their products as easily as they can change prices. As a result an

analysis of pricing responses to environmental change (for e.g. to a merger) that does not

take repositioning into account is likely to be seriously misleading, even in the very short

run. Examples include; Nosko (2010) analysis of the response of the market for CPU’s to

innovation, Eizenberg (2014)’s analysis of the impact of the introduction of the Pentium 4

chip in PC’s and notebooks, and Wollmann (2018)’s analysis of the impact of the bailout of

GM and Chrysler’s truck divisions (which we come back to below).
19The perturbations in this paper are chosen on the basis of purely exogenous factors, so provided the
sequence chosen for the perturbation was in the original choice set, the estimators will be consistent when
both measurement and expectational error are embedded in the ν1(·) disturbance.
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These models require estimates of the fixed costs of adding and of deleting products. For

simplicity assume these are constant across products (typically they would depend on product

characteristics) and equal to F , a parameter to be estimated. To estimate bounds on F go

back to Equation 1 and consider two sets of counterfactual choices;

• First construct the profits from counterfactual d′ that consist of all the products that

were marketed but a particular product, so that E [∆π(di, d′i, d−i, zi, θ)|Ii] represents

the perception of what the difference in profits would have been had the firm deleted

a product that was marketed.

• Then construct the profits from counterfactual d′ that consist of all the products that

were marketed plus a product that could have been marketed but was not, so that

E [∆π(di, d′i, d−i, zi, θ)|Ii] represents the perception of what the difference in profits

would have been had the firm added a product that was not marketed.

Assuming C1 and C2 and the weak rationality assumption that suffices for C3 above, we

expect the average difference from the first set of counterfactuals, that of deleting a product

that was marketed, to be larger then the fixed costs of marketing a product. Analogously the

difference in profits from adding a product that was not marketed should be less than the

fixed costs. So the two different sets of inequalities generate bounds on F .

Wollmann (2018) notes that the fact that trucks are “modular” in that different cabs can

be connected to different trailers, makes it easy to reposition products. His goal is to compare

ways of analyzing what would have happened to the truck market had there not been a

bail out of GM and Chrysler’s truck divisions. One way of analyzing the counterfactual

assumes only that prices would have changed, the second also allows the remaining firms to

reposition their products in response to the change in their competitors. To compute what

the counterfactual outcome would be he needs to select out which, among many possible

counterfactual equilibria, are likely to be realized. For this he uses a simple reinforcement

learning model (similar to that used in Lee and Pakes (2009)).
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The results below are taken from Wollmann (2018)’s Table 5. They look at two possible

responses to the bail out; one where the truck divisions of GM and Chrysler are simply

liquidated, and another where they are bought out by Ford. The rows provide changes in the

average markup, output, and compensating variation between the counterfactual and the

actual bailout. The left hand side of the table provides the counterfactual results when only

the prices of the remaining products are allowed to change. The right hand side provides the

results when the remaining incumbents firms are allowed to reposition their products when

GM and Chrysler leave the market. The differences between the two ways of calculating

counterfactuals are large, suggesting that analyzing counterfactuals by just looking at the

induced price changes and ignoring product repositioning would lead to seriously misleading

results, even in the very short run. �

Counterfactual Outcomes

Repositioning Ignored With Repositioning

Ford Acq. Liq. Ford Acq. Liq.

1. Markups (%) 10.9 4.0 0.8 0.0

2. Quantities (%) -5.1 -11.2 -1.3 -1.6

3. Comp. Variation ( Mill 2005$) 119 253 22 28

We now go on to models that use special structure to allow for both types of disturbances.

3.3.1. Richer assumptions on disturbances. As noted earlier the progress that has been

made in allowing for sources of disturbance that generate significant variance in both

∆ν2(d, d′, d−i, z̃i, zi, θ) and ∆ν1(d, d′, d−i, zi, θ) is through special structure on one or the

other disturbance. We illustrate with examples which contain methodology for doing so which

is likely applicable to many Industrial Organization problems. All of these examples abide by

conditions C1 to C3 in Section 3 and generate moment conditions of the form in Equation 4.

Examples 3 and 4 are cases where for each observation we can construct an alternative

choice, a d′, that is linear in ν2,i for every di chosen, a fact which allows them to use various
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forms of differencing to circumvent the selection problems. They can do this because the

choice sets are ordered in particular ways. The two examples differ in that Example 3 is a

single agent discrete choice problem, and Example 4 involves a market of interacting agents.

Example 3. This is from Katz (2007) who studies the costs that shoppers assign to driving to

a supermarket. This is important to the determination of zoning laws, public transportation,

..., but has been difficult to analyze because it is a two stage decision process (first choose a

supermarket and then products to purchase) and the second stage has a complex choice set

(all possible bundles at the chosen store).

The agent’s decision, or di, consists of the store chosen, say si, and the basket of goods

bought, say bi, so that di = (si, bi). Katz assumes that the agents’ utility functions are

additively separable functions of;

• utility from basket of goods bought,

• expenditure on that basket, and

• drive time to the supermarket.

So if zi are individual’s characteristics then the agent’s utility is

π(di, zi, θ) = U(bi, zi)− e(bi, si)− θidt(si, zi),

where e(·) provides expenditure, dt(·) provides drive time, and the free normalization is used

on expenditures (so the cost of drive time are in dollars).

To obtain revealed preference inequalities, Katz compares the actual choice, di, to the

alternative d′(di) of purchasing

• the same basket of goods,

• at a store which is further away from the consumer’s home then the store the consumer

shopped at.
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This eliminates both the need to specify the choice set and the need for a two stage problem.

Notice that the fact that the agent might have chosen a different basket at d′ then at d, just

reinforces the inequality.

Let E(·) be the agent’s expectation operator. Then we know that

E
[
∆π(di, d′(di), z)

]
=

−E
[
∆e(di, d′(di))

]
− θi E

[
∆dt(di, d′(di))

]
≥ 0.

Case 1: θi = θ0. An assumption which suffices for C3 above here is

N−1∑
i

E
[
∆e(di, d′(di))

]
−N−1∑

i

∆e(di, d′(di))→P 0,

N−1∑
i

E
[
∆dt(di, d′(di))

]
−N−1∑

i

∆dt(di, d′(di))→P 0

which would be true if, for e.g., agents were weakly rational. Then

−E
[
∆e(di, d′(di))

]
− θ E

[
∆dt(di, d′(di))

]
≥ 0 ⇒ −

∑
i ∆e(di, d′(di))∑
i ∆dt(di, d′(di))

→p θ ≤ θ0,

where the change of sign in the last inequality is a result of the fact that dt(·) < 0. Had we

taken an alternative store which was closer to the individual

−
∑
i ∆e(di, d′(di))∑
i ∆dt(di, d′(di))

→p θ ≥ θ0,

and when he uses both inequalities he gets an interval estimate of θ.

Case 2: θ2,i = (θ0 + ν2,i),
∑
ν2,i = 0. This case allows for a component of the cost of drive

times (ν2,i) that is known to the agent (since the agent conditions on it when it makes its

decision) but not to the econometrician. Then provided dt(di) and dt(d′(di)) are known to

the agent

E

 ∆e(di, d′(di))
∆dt(di, d′(di))

− (θ0 + ν2,i)
 ≤ 0, ⇒ 1

N

∑
i

 ∆e(di, d′(di))
∆dt(di, d′(di))

 →P θ ≤ θ0.

and as above we get bounds for θ.
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The first case does not allow for unobservables the agent knows but the researcher does

not generates its estimates as the ratio of averages, while in the second which does allow for

such unobservables obtains its bounds from an average of ratios.

Katz’s model is richer than this and allows for additional observable determinants of

supermarket choice and of drive time. He also compares his results to the drive times

obtained from a standard multinomial choice model taken from the relevant literature. Here

we provide the median estimates of the drive time coefficient he obtains from analyzing the

shopping behavior of Massachusetts shoppers.

The median estimate from the multinomial model was $240 per hour (the median wage in

this region is $17 per hour). The inequality estimators generated point estimates but tests

indicated that the model was accepted. Point estimates and very conservative confidence

sets for the two cases are

θi = θ0 : .204 [.126, .255].

which translates to a point estimate of $4 per hour and

θ2,i = θ0 + νi : .544 [.257, .666],

which translates to a point estimate $14 per hour.

Clearly both estimates are more reasonable than the multinomial estimate, but from the

fact that the median wage was $17 per hour and the more detailed results that use observable

store characteristics that are in the paper, the estimate that allows for a ν2 seem more

accurate. �

Example 4. This is taken from Joy Ishii (2004)’s thesis. She analyzes the welfare implications

of alternative market designs for the placement of ATM machines. Her model of the choices

of the number of ATM’s by firms in a given market is a semi-parametric ordered choice

problem. She constructs an estimate of bank i’s revenue should it chose di machines when its

competitors have d−i, given the exogenous variables zi; say ro(di, d−i, zi). In her base case she
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assumes the cost of servicing a machine is independent of the number of machines, but varies

over banks. Since the realized profit from the ATM’s is its revenues minus its costs we have

π(di, d−i, zi) = ro(di, d−i, zi)− (θ0 + ν2,i)di + ν1,i,d

where; θ0 + ν2,i are the costs of servicing an ATM by firm i, with θ0 equal to the mean of

those costs across firms so ∑i ν2,i = 0, and ν1,i,d contains measurement and expectational

error both of which are orthogonal to zi. Similar to Example 3 but working in a market

environment Ishii compares the choice actually made to alternative choices, say d′i. Revealed

preference implies

E [(ro(di, d−i, zi)− ro(d′i, d−i, zi))− (θ0 + ν2,i)(di − d′i) + (ν1,i,d − ν1,i,d′) | zi] ≥ 0

Provided ∀i, di − d′i = c for some constant c, when we take the average of this over the N

firms in the market we find

E

[
N−1∑

i

(
(ro(di, d−i, zi)− ro(d′i, d−i, zi)) + (ν1,i,d − ν1,i,dic)

)
− cθ0 | zi

]
≥ 0

This equation with c = 1 and c = −1 would generate upper and lower bounds for θ0.

However some of the banks have no ATM’s so c = −1 is not a feasible counterfactual for

those banks. Moreover dropping the observations with di = 0 before forming the inequalities

would generate a selection problem since those banks are likely to be banks with high costs of

servicing ATMs. To deal with the boundary problem an additional assumption, that the ν2,i

are i.i.d. with a distribution that is symmetric (about zero) is used. Extending the argument

of Powell (1986), the symmetry assumption allows for the use of the information from the

direction that is not truncated (for c > 0) to obtain a bound in the truncated direction

(c < 0). Details are provided in Pakes, Porter, Ho, and Ishii (2015). �

The next two examples use the special structure that ν2 is constant over a group of

observations. This assumption has been investigated in the panel data discrete choice
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literature where multiple choices for a given individual are observed and the ν2 is treated as

an individual and choice specific fixed effect (see Chamberlain (1980) for conditional logits

and Manski (1987) for non-parametric binary choice). The allowance for the fixed effect

generates the analogue to the within-between distinction that has been helpful in analyzing

models with continuous dependent variables. This because the factors that drive difference

in choices among different individuals (or firms) are often different those that drive changes

in the choices of a single individual (firm) over time. Since panel data has been increasingly

available to use for issues in I.O. we begin with the panel data examples, and then use the

same structure to revisit the entry literature taking explicit account of the fact that the two

period models are approximations meant to summarize the available data.

Example 5. We begin with a result in Pakes and Porter (2019), and in a modified form in

Shi, Shum, and Song (2018). They analyze choices allowing for “i” (i.e. individual or firm)

by product fixed effects. We then note that extensions of their results are able to analyze

two other problems that have hampered empirical literature for some time; distinguishing

between unobserved heterogeneity from state dependence (or switching costs) in demand

analysis (noted in this example), and interpreting the results from two period entry models

(the next example).

Consider decision makers with feasible choices d ∈ D in each of t = 1, . . . T periods. The

profit from each choice in period t is given by

π(di,t, d−i,t, zi,t, θ0) = ro(di,t, d−i,t, zi,t; θ0) + ν2,d,i + ui,t,d. (5)

Notice that though each agent has a different choice specific fixed effect (the ν2,i ≡ {ν2,i,d}d∈D),

those effects do not vary over time. Also we have used the notation ui,t,d here as a second

disturbance to make it clear that this disturbance could have either the properties of a ν1(·)

or an additional ν2(·) disturbance, provided that

• its marginal distribution is constant over time, and

• is independent of zi ≡ {zi,t}t.
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The {ui,t,d}t,d can be freely correlated both across time and across choices. Restricted versions

of these assumptions are used in the panel data discrete choice literature that emanated from

the articles cited above.

We begin by comparing choices across t for a given i assuming that individuals (i) are

independent draws from a larger population. Note that since neither the ν2 nor the distribution

of the u(·) differ across time periods, any difference in the probability of a given choice

between period s and period t is determined solely by comparing ro(di,s, d−i,s, zi; θ0) to

ro(di,t, d−i,t, zi; θ0). With this in mind let d1(·) be the choice with the largest difference in

r0(·) between the two periods

ro(d1 = di,t, d−i,t, zi; θ0)−ro(d1 = di,s, d−i,s, zi; θ0) ≥ max
d6=d1

[
ro(d = di,t, d−i,t, zi; θ0)−ro(d = di,s, d−i,s, zi; θ0)

]

while for j = 2, . . . D, the choice with jth largest difference is

ro(dj, ·)t − ro(dj, ·)s = max
d/∈{d1,...dj−1}

[
ro(d = di,t, d−i,t, zi; θ0)− ro(d = di,s, d−i,s, zi; θ0)

]
.

In words, d1 is the choice whose observed returns improves most between periods s and t, d2

improves the next most, and so on.

Now form sets of choices as follows: D1
i (θ) = d1

i (θ), D2
i (θ) = {d1

i (θ), d2
i (θ)}, · · · , DD−1

i =

{d1
i (θ), d2

i (θ), · · · , dD−1
i (θ)}. Pakes and Porter (2019) show that at θ = θ0

Pr(di,t ∈ Dj
i (θ0)|zi, d−i) ≥ Pr(di,s ∈ Dj

i (θ0)|zi, d−i), ∀j.

That is if the model’s profits for all options d ∈ Dj improves by more than all options c /∈ Dj

between periods s and t, then i will be more likely to choose an option d ∈ Dj at time t than

at time s20. This is true regardless of the value of the unobserved fixed effects. Moreover

given these assumptions, these inequalities are sharp.

Note that the model above allows the {ui,t,d}t,d to be freely correlated across t for a given

i. That is one way of allowing for correlation over time in choices that is not accounted
20Since these probabilities can be expressed as the expectation of indicator functions, estimation can proceed
as it does for Equation 4, and is explained after that equation.
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for observables. Pakes, Porter, Shepard, and Calder-Wang (2021) show that if we replace

the assumption that the marginal distribution of {ud,i,t}d,i,t is constant over time with the

stronger assumption that its distribution is i.i.d. over t then a model that allows for both

individual by product fixed effects (the ν2,d,i) and state dependence can be analyzed by

extending the result above. So this is a second way of modeling correlation over time that is

not accounted for by observables.

The model analyzed in Pakes, Porter, Shepard, and Calder-Wang (2021) is

π(di,t, d−i,t, zi,t, θ0) = ro(di,t, d−i,t, zi,t; θ0)− κχ{di,t−1 6= d}+ ν2,d,i + ui,t,d,

where χ{·} is the indicator function which takes the value of one if the condition inside is

satisfied and zero elsewhere. The interest in this model is due to the fact that, given its

assumptions, it can distinguish correlation over time that is due to unobserved components

of preferences (the {ν2,i,d}i,d ) from a “causal” effect of last period’s choice on the current

choice (κI{di,t−1 6= d}).

The distinction between state dependence and unobserved heterogeneity has been in the

econometric literature at least since the work of Heckman (1978b, 1981) and in many appli-

cations has significant policy implications. Examples of interest to Industrial Organization

include demand models with switching costs and unobserved heterogeneity. Pakes, Porter,

Shepard, and Calder-Wang (2021)’s empirical work analyzes demand for health insurance

choices and finds that allowing for state dependence has a major effect on price coefficients.

Another application is in the study of the impact of monitoring devices in (car or health)

insurance; there the researcher might want to distinguish whether the increase in compliance

is a result of adverse selection or moral hazard (see Abbring, Heckman, Chiappori, and

Pinquet (2003)). Finally several network models can be modelled in a similar way; that is do

two individuals in the same network make similar choices because they have similar tastes,

or is it because they communicate among themselves (see, for e.g. Conley and Udry (2010)).

Note that in the latter case i indexes a network and t indexes individuals within that network.
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Example 6 is from Pakes (2014) who considers what we can learn from two period entry

models. The early literature on entry worried about unobservable differences in profitability

across markets. Since higher market profitability was serially correlated it led to both more

incumbents and a larger incentive to enter. The resulting correlation between the profitability

differences and the extent of incumbency would lead to estimates of the impact of the number

and types of incumbents on the likelihood of entry that were significantly biased downward.

Given the importance of entry as an equilibrating force in markets it should not be surprising

that this worry generated a series of influential papers including those of Bresnahan and Reiss

(1990, 1991a,b) and Berry (1992).21 These papers were based on the two period models used

by our theory colleagues to develop intuition for what could happen in dynamic situations.

The resulting two period models were designed to produce a summary of incentives to enter

as a function of the number and type of incumbents that conditioned on market profitability.

However they; (i) abstracted from the fact that there was a history prior to the first period

and a future after the second, (ii) they typically used rough approximations to the static

profit functions, and (iii) they did not account for expectational errors. These are the reasons

why it is not correct to interpret the estimates obtained from these models as structural

models of the entry process. However if we are trying to produce summary statistics on

the relationship between entry and the number and type of incumbents conditional on the

profitability of different markets, we would want to have both a ν2 and a ν1 disturbance,

since the latter would allow for the approximation and expectational errors noted above.

To illustrate how much of a difference allowing for both types of error can make this

example computes the solution to a sequential Markov Perfect entry game, uses it to generate

data, and then uses that data to regress the value of entry on the number and type of

incumbents allowing for market size variables that differ by market. This is the true reduced

form regression which summarizes the relationship between entry and the number and type

of incumbents. The paper then uses the same data in two estimation algorithms, one that
21Related subsequent work includes Ellickson, Houghton, and Timmins (2013) who study differences between
large retailers, Aradillas-López and Rosen (2018) who study the number of stores different retailers open in
markets, and Mazzeo (2002) and Seim (2006) who study geographic location of entry decisions.
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allows for both ν2 and ν1 and another algorithm that allows for only ν2. The results are

compared to the reduced form regression described above. Note that here the ν2 variable is

common across firms in the same market, which gives us the structure needed to allow for

both types of disturbances.

This example uses the Pakes and McGuire (1994) algorithm to compute equilibrium to

Markov Perfect games in which potential entrants determine whether to enter in a given

location (East or West). Those that enter chose in each active period thereafter whether to

exit and if not whether to invest in a quality variable which evolves over time as a controlled

Markov process. Consumers are either located west or east and differ in their sensitivity

to price. Period profits are determined by a structural model of demand and costs, and a

Nash pricing equation. A panel of markets were simulated. The markets differed in a market

size variable which distributes as an exogenous Markov process with normally distributed

increments. At a given point in time this is common to the firms in a market. Incumbents

received i.i.d. cost and selloff value shocks and potential entrants received i.i.d. entry cost

shocks. Each market could have up to six incumbents, and those not active were potential

entrants.

The value of being active is calculated for each market in each time period and is regressed

against the exogenous variable and the following endogenous market characteristics; the

number of a firm’s competitors in the given location and quality, nl,q, the number with the

given quality n−q and the number in the same location and quality n−l. This generates the

summary we hope our estimators will replicate.

The model is then estimated two different ways neither of which have access to the market

size variable. One estimator assumes there are only ν2 errors and uses the algorithm described

in the next section (labelled GDC for generalized discrete choice in the table), the other

uses the algorithm described in Example 5 (labelled the P&P algorithm in the following

table). When we use the P&P algorithm of Example 5 we compare choices of different firms

in the same market at a given point in time.22 This because the ν2 fixed effect now has the
22Formally the i index in Equation 5 is now a market, and the t indexes firms.
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same value for all agents in a given market at a particular point of time. The ν1 are, by

construction, orthogonal to the current included variables as they are constructed as the

residual from a projection of the true values on those variables. So for the properties of

the P&P estimator to hold we have to additionally assume that the ν1 disturbances are

distributed independently of those variables and are identically distributed across firms at a

given time.

The coefficients from the summary regression and the confidence sets from the two estimators

are provided in the following table23. The underlying data set was large enough to provide

estimates of what is essentially the identified set.

Estimate of nl,q n−l n−q

True Data Summary; R2 = .74

1. This is OLS with Mkt Size∗ -0.72 (.01) -0.58 (.01) -0.07 (.01)

Analyst does not know market size

2. P-P Inequalities [-1.02,-0.68] [-0.81,-0.44] [-0.27,-0.03]

3. GDC Inequalities [-0.86,-0.70] [-0.32,-0.07] [0.12,0.24]
∗The market size variable’s coefficient was 1.59 (.01)

Row 1 provides the true reduced form coefficients for the column variables. The first point

to note is that the “state variables” on right hand side of the reduced form regression only

generate an R2 of .74. So the approximations generated by the regression of the true entry

value on those state variables is not nearly perfect. This imperfection is the source of the ν1

disturbance.

The confidence intervals for the two estimators (rows 2 and 3) both cover the true value of

the nl,q coefficient. However the confidence interval for the GDC estimator, the estimator

which ignores approximation error, does not cover the n−l coefficient and estimates a confidence
23The GDC estimator requires distributional assumptions; it was assumed that the analyst knew that the
firm specific shocks were exponential (as is true). The P&P estimator is non-parametric in the distribution of
the disturbances but does require a normalization.
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interval for the n−q estimator that is entirely in the wrong orthant. The P&P confidence

intervals cover all three coefficients. So just as not accounting for the ν2 disturbance in

Example 3 led to a misleading estimates in the supermarket example, not accounting for

the ν1 error in this example leads to misleading estimates of the true reduced form of this

example.

The P&P estimator does rely on knowing that the value of ν2 is common across a number

of observations. On the other hand just as in the within-between case for consumer demand,

this is a case where the purpose is to condition on a difference which is common to incumbents

and potential entrants, and consider the impact of number and type of incumbents conditional

on those differences. �

The next two examples incorporate ν1 disturbances generated by errors in either expectation

or measurement in a right hand side variable into models with a ν2 disturbance. The first

considers a discrete choice setting, the allocation of patients to different hospitals. It allows

for the ν1 disturbances to be in price, since the prices actually paid are not reported, and

controls for ν2 by allowing for thousands of fixed effects. The second “plugs in” an error-prone

measure of observed returns for the expected returns required by the model. This generates a

ν1 disturbance. The paper also allows for a determinant of expectations which is observed by

the agent but not be the analyst (the source of their ν2 disturbance). The latter generates a

selection term which depends on expected returns in a non-linear way. Their bounds require

only that the ν2 error have a log-concave distribution. The paper provides a creative way of

handling a problem (the difference between realized and expected returns) which is likely to

appear in many I.O. settings.

Example 7 Ho and Pakes (2014) study the impact of capitation contracts on the price

sensitivity of doctors who allocate women giving birth to alternative hospitals. They show

that the analysis requires hospital × severity fixed effects, and given that there were over one

hundred and fifty hospitals and a hundred severity groups, it was not practical to include
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them in a standard multinomial choice model. Since patients with different comorbidities

(the severity indicator), were allocated to different hospitals, the missing hospital × severity

interactions become ν2 errors.

In addition the actual prices charged to insurers were not observed. Prices were proprietary

information set out in contracts negotiated between the hospitals and health insurers. The

analysts observed only list prices which, on average, were about three times actual prices

and varied significantly across insurers for the same treatments at a given hospital. This

generated measurement error in price, in addition to the expectational error resulting from the

allocation being made without knowing the realized price which depended on the treatments

given at the hospital.

Inequalities from revealed preference are used to analyze this problem. The specification for

the expected welfare of woman i with insurer π and severity s who was allocated to hospital h,

say W (i, π, h, s), was linear in separate severity by hospital fixed effects, distance from home

to the hospital and a price term which was constructed from the list price and the hospital’s

average discount interacted with insurer specific dummies. Consider two women (i and i′)

who were; allocated to h and h′ 6= h hospitals, had access to both h and h′, had the same

insurance plan, and had the same highest comorbidity (which determines severity). Note

that if they differed in the extent of other comorbidities and they would differ in expected

price. Revealed preference implies

W (i, π, h, s)−W (i, π, h′, s) ≥ 0, and W (i′, π, h′, s)−W (i′, π, h, s) ≥ 0.

The analysis adds these two inequalities together, interacts the sum with positive valued

instruments, sums over couples of women, and finds the values of the parameter vector that

maintain the inequality. Since the inequality for i contains the difference between the h and

h′ fixed effects for severity s and that for i′ contains the difference between the h′ and h fixed

effect, the two fixed effects cancel in the sum. Moreover the averaging over (i, i′) couples

averages out the expectational and measurement error.
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The table below provides the percent capitation for the for-profit plans, the price coeffi-

cients from a multinomial logit discrete choice model with hospital fixed effects and fifteen

interactions between hospital and patient characteristics (the ML column), and the inequality

estimates of the price coefficients. The inequality estimates are for the whole sample but the

ML column is for only the least sick patients (lowest severity score).

When Ho and Pakes (2014) ran the ML column for the whole sample all price coefficients

were positive. When Ho and Pakes (2014) limit ML to the least sick patients three coefficients

are insignificant and the others all are more than an order of magnitude less than the

inequality estimates. The inequality estimates are strictly ordered by the capitation rates of

plans (the confidence intervals do not overlap) and are both statistically and economically

significant. The paper concludes that capitation generates allocations that lower hospital

costs, and goes on to quantify its effects and consider its relationship to observable measures

of quality. �

Price Coefficients

% θ̂p,π [CILB, CIUB]

π capit ML Inequalities

Pac/care 0.97 -.08 (.01) -1.50 [-1.68, -1.34]

Aetna 0.91 -.01 (.02) -0.92 [-0.95, -0.86]

HNet .80 -.04 (.01) -0.78 [-0.80, -0.44]

Cigna 0.75 -.02 (.02) -0.35 [-0.40, -0.33]

BC .38 .01 (.01) -0.29 [-0.31, -0.25]

Example 8. This example is taken from Dickstein and Morales (2018). That paper shows

how weak assumptions on what the analyst knows about how agents form their expectation

of returns can be used in discrete choice problems if one is willing to suffice with moment

inequalities. In particular they only require that the analyst knows some of the variables

in the decision maker’s information set when their expectations are formed and the weak
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rationality assumption version of C3. Added benefits of their approach are that they can

allow for measurement error in observed returns (provided that the instruments used are

independent of the measurement error), and they can test whether particular observable

variables were known to the decision marker when it made its decision.

The paper investigates the determinants of decisions to export. A firm i is assumed to

export to destination j if its expected returns from exporting there, E [ri,j,t|Ii,t], is greater

than its fixed cost, fi,j,t = xi,j,tθ + ν2,i,j,t, where ν2,i,j,t ∼ N(0, σ2). Ii,j,t is not known to the

analyst, but the analyst does know a subset of these variables, Zi,j,t ⊂ Ii,j,t. xi,j,t ∈ Zi,j,t.

ν2,i,j,t ∈ Ii,j,t, but it is not known to the analyst; i.e. ν2,i,j,t /∈ Zi,j,t and distributes independent

of it. The paper derives two sets of two inequalities.

Letting di,j,t = 1 if the firm exports and zero if not, and φ(·) be the normal density, revealed

preference implies

di,j,t
(
E [ri,j,t − xi,tθ|Ii,j,t]

)
−
∫ (E[ri,j,t|Ii,j,t]−xi,j,tθ)

ν2,i,j,t=−∞
φ(ν2)dν2 ≥ 0

where, as above, E(·|·) provides the agent’s expectations. Given C3, if we replace the first

E [ri,j,t|Ii,j,t] on the right hand side of this equation with the observed returns, say roi,j,t, and

evaluate we generates a ν1 error which is orthogonal to Zi,j,t. The paper shows that Jensen’s

inequality implies that if we do the same replacement in the upper limit of the integral,

evaluate at θ = θ0, and take expectation with respect to the DGP, we bound that integral

from below, so that the DGP’s expectation for the whole equation is positive condition

on Zi,j,t The revealed preference equation for not exporting is analogous and use of both

inequalities enable the analyst to obtain upper and lower bounds to coefficients.

The paper also derives odds based moments. That is the model implies that if Φ(·) is the

cumulative normal distribution

E
[
(1− di,j,t)

Φ (σ−1(E [ri,j,t|Ii,j,t]− xi,j,tθ]))
1− Φ (σ−1(E [ri,j,t|Ii,j,t]− xi,j,tθ]))

− di,j,t | Zi,j,t
]

= 0,
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and if we replace E [ri,j,t|Ii,I,t] in this expression with roi,I,t, evaluate it at θ = θ0, Jensen’s

inequality implies that this expression holds as an inequality. In this case the second inequality

is

E
[
di,j,t

1− Φ
(
σ−1[roi,j,t − xi,j,tθ]

)
Φ
(
σ−1[roi,j,t − xi,j,tθ]

)
− [1− di,j,t] | Zi,j,t

]
≥ 0.

A couple of final points on this example. First they did not require a normal distribution

for the ν2,i,j,t for their results; any log-concave distribution would do. Second the empirical

results in the paper are rather dramatic. They compare their estimates of fixed costs in

different Chilean industries to those estimated from; (i) a model with perfect foresight and

(ii) from a complete rational expectations model which conditions on the observable xi,j,t.

The perfect foresight estimates were often a factor of ten larger than the upper bound of the

inequality estimates and the rational expectations estimates were often a factor of four or

more larger than it. Given the importance of expectations in our models, this suggests we

should pay closer attention to how we model them. �

4. Generalized discrete choice approaches

This section provides an approach to identification in models with multiple interacting

decision makers that is motivated by and derived from the literature on discrete choice

modeling. The starting point is a set of observations on observable outcomes, covariates,

and possibly other variables. The analysis then uses the structure of discrete choice that

is derived from a well-specified game to relate these data to the payoff functions of the

decision makers (like the profit functions of firms) using varied sets of assumptions. These

assumptions vary in range and scope and include behavioral assumptions to functional form

and distributional assumptions. A key insight here is that payoffs are random from the point

of view of the econometrician, and hence in each market the econometrician gets a draw of

a payoff function from a distribution of payoff functions. The objective is to learn about

this population distribution of payoff functions for the purpose mainly of evaluation but
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also policy simulations. The main analysis we do here is under complete information in a

stylized framework which allows us to focus on intuition. We also point to generalizations to

nonparametric settings, weaker assumptions on information, and other modeling decisions.

4.1. Models of discrete games with complete information. There is another approach

to studying the econometrics of models with strategic interactions that follows at its core

the usual discrete choice approaches used initially in single agent choice problems. As in the

multiple agent models in the previous section, the defining feature of the models is that the

utility function of each of the decision makers also depends on the decisions made by the

other decision makers. For example, in a model of market entry, the utility functions are

the profit functions of the potential entrants, which depend on the entry decisions of the

other potential entrants, reflecting the impact of competition on profits. This approach here

takes as its initial objective identification of the utility functions (or payoff functions) of the

decision makers. Often, the ultimate objective, as in the previous section, is to use these

identification results to produce counterfactual predictions.

In various forms, econometric models based around game theory models have been studied

beginning with early work in Bjorn and Vuong (1984), Jovanovic (1989), Bresnahan and

Reiss (1990, 1991a,b), Berry (1992) and Tamer (2003), along with more standard models of

discrete choice with simultaneity in Heckman (1978a) and Blundell and Smith (1994). The

literature on the “econometrics of games” has been recently reviewed also in de Paula (2013)

and Aradillas-López (2020). Although this part focuses on the case of discrete action spaces,

Section 4.4 on auction models focuses on an importance instance of continuous action spaces.

In these models it is not possible to use the assumption that the decision makers maximize

utility, as would be familiar from standard models with a single decision maker, because

the utility functions of the decision makers depend on decisions made by the other decision

makers. The econometrician must make assumptions concerning how the decision makers

deal with this feature of their utility functions, which can involve making assumptions about

how the decision makers predict and respond to how the other decision makers will make
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their decisions (relating to the solution concept), and information assumptions about what

the decision makers know (relating to the information structure). In many ways, these

assumptions are interrelated, as the details of the solution concept will depend on the details

of the information structure as highlighted throughout this chapter.

We illustrate these ideas using a simple stylized two player entry game with complete

information where both players know their own and their opponent’s payoffs. This assumption

can be relaxed, as was a key highlight of the approach in the previous section. The structure

of this game is such that the payoffs are normalized so that each player i gets 0 payoff if it

takes action di = 0. Thus, π1(0, y2) = 0 = π2(y1, 0). This game is summarized in Table 1.

d2 = 0 d2 = 1
d1 = 0 (0, 0) (0, π2(0, 1))
d1 = 1 (π1(1, 0), 0) (π1(1, 1), π2(1, 1))

Table 1. A nonparametric two-player, two-action game in normal form

In this setting, we assume that the econometrician has access to an i.i.d. sample of realized

entry decisions on T observations of the game (d1t, d2t), for t = 1, . . . , T , where one can think

of the t subscript as market t. The identification problem is how to link these data to the

model of behavior based on the above game. At this point, the game is nonparametric in that

no further assumptions are made on the π’s. For now, the objects of interest are the best

response functions. The best response of firm i when the entry decision of firm −i is d−i is

denoted Bri(d−i). The argument d−i of the best response function refers to an entry decision

conjectured by the econometrician, not a realized entry decision observed in the data.24 The

best response functions are:

Br1(d2) = 1[d2 = 1]1[π1(1, 1) > 0] + 1[d2 = 0]1[π1(1, 0) > 0]
24Payoffs are assumed to be in general position, in the sense that firm i is never indifferent between entering
and not entering in response to an entry decision of firm −i. This is equivalent to π1(1, 1) 6= 0, π1(1, 0) 6= 0,
π2(1, 1) 6= 0 and π2(0, 1) 6= 0.
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and

Br2(d1) = 1[d1 = 1]1[π2(1, 1) > 0] + 1[d1 = 0]1[π2(0, 1) > 0].

We view the payoff function π across markets as random from the perspective of the econo-

metrician, and so the best response functions are also random from the perspective of the

econometrician. Then, this motivates one to consider the best response probabilities (where

this randomness is generated by the i.i.d. distribution over markets):

P (Br1(d2) = 1) = P
(
1[d2 = 1]1[π1(1, 1) > 0] + 1[d2 = 0]1[π1(1, 0) > 0] = 1

)

and

P (Br2(d1) = 1) = P
(
1[d1 = 1]1[π2(1, 1) > 0] + 1[d1 = 0]1[π2(0, 1) > 0] = 1

)
.

These are the probability distributions over the response to the decision of the other firm.

Notice here that P (Bri(d−i) = 1) is the probability from the perspective of the econometrician

that firm i would enter the market if firm −i were mandated to have entry decision d−i, and

firm i were allowed to re-optimize its entry decision. The econometrician then asks what

can be learned about these best response probabilities given observations on realized entry

decisions. This requires assumptions on behavior and here we illustrate with the requirement

of Nash equilibrium play25 allowing for mixed strategies. This requires the following condition.

If (d∗1, d∗2) is a Nash equilibrium choice for players 1 and 2, then it must be true that

π1(d∗1, d∗2) ≥ π1(d′1, d∗2) and π2(d∗1, d∗2) ≥ π2(d∗1, d′2) (6)

Here, this allows for mixed strategies in that if d∗1 (d∗2) are mixed strategies, then the π1 (π2)

are interpreted as expected payoffs with respect to the mixed strategy profile induced by

(d∗1, d∗2). A similar condition, termed a primitive condition, is used in Section 3 and in Pakes

(2010). To get an understanding of how realized entry data relates to the best responses,

consider the following question. If we observe (d1t = 1, d2t = 0) in market t, does it mean
25For more here on other forms of solution concepts such as rationalizability, see Kline and Tamer (2012).
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that (1, 0) lie on the best response curves defined above? In other words, does it mean that

Br1
t (d2t = 0) = 1[π1

t (1, 0) > 0] = 1 and Br2
t (d1t = 1) = 1[π2

t (1, 1) > 0] = 0

or equivalently that π1
t (1, 0) > 0 and π2

t (1, 1) < 0? The answer is negative in general, unless

we are assuming Nash equilibrium in pure strategies.26 This is because, with mixed strategies

even with Nash equilibrium, it is not necessarily the case that data lie on best response

functions. The actions realized from mixed strategies are not necessarily best responses to

each other.

The data that we observe allow us to obtain the probabilities of the four outcomes

(1, 1), (0, 0), (1, 0) and (0, 1). Identification explores the link between these observed probabil-

ities and the π’s. This randomness - that in different markets we observe different outcomes -

is a result of the fact that from the point of view of the econometrician, the π’s are nonde-

generate random variables that have a probability induced by a model of a game which is the

object of interest. To proceed forward, we require a specification of this model.

4.2. Simple game example. We illustrate some approaches to identification when we

assume equilibrium in pure strategies in the game above under a specification that only

includes “structural errors.” Let the payoff functions depend on a vector z = (z′1, z′2)′ that

is observed by both players. In addition, assume that for z1 = (x′1, ε1)′ and z2 = (x′2, ε2)′,

the econometrician observes both x1 and x2 but does not observe the scalars ε1 and ε2. As

in Pakes (2010), we term such unobservables “structural errors.” These are similar to the

standard unobservables in the discrete choice literature and are interpreted as part of the

payoff functions that are observed by the players but not by the econometrician. Therefore,

from the perspective of the econometrician, the payoff functions are random.

Often, standard assumptions from economic theory and the observable data imply only

weak restrictions on the utility functions. In particular, it can happen that there are multiple

specifications of the utility functions of the decisions makers that are compatible with the
26As a reminder, in games there are situations where the only Nash equilibrium uses mixed strategies.
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assumptions and that result in the same behavior of the decision makers, and therefore that

result in the same observable data. In such cases, the model is partially identified. The

main issues exist even in the simplest possible non-trivial game, with two players each of

which makes a binary decision. Within empirical Industrial Organization, this can be used as

a model of market entry where Kline and Tamer (2012) show that the model is not point

identified. This game can also be the building block for more complicated models, like models

of product positioning as mentioned in Section 4.3.1. In other subfields of economics, this

can be used for other purposes, including as a model of social interactions (e.g., Kline and

Tamer (2020)).

Here, we focus on using the above Nash equilibrium condition (Equation 6) in the context

of a parametric specification of the payoff functions. This utility function has a parametric

form that is assumed to depend in a linear and additively separable way on observables xi

and unobservables εi. It is useful to define x = (x1, x2) and ε = (ε1, ε2). Some observables

can be in both x1 and x2, reflecting market-level observable characteristics, for example some

measure of the “size” of the market available to the potential entrants. It is often important

to allow correlation between ε1 and ε2, to allow market-level unobservables. Linking this to

Section 3 above, this is where we do not have uncertainty from the perspective of the firms,

both firms know the payoff functions (and there is no misspecification), and the data are

not subject to any measurement error. So, the error ν1 is not present. But, ν2 represents

(ε1, ε2) and this ν2 is usually assumed to be statistically independent27 of x. The game can

be represented in normal form as in Table 2.

d2 = 0 d2 = 1
d1 = 0 (0, 0) (0, x2β2 + ε2)
d1 = 1 (x1β1 + ε1, 0) (x1β1 + ∆1 + ε1, x2β2 + ∆2 + ε2)

Table 2. A parametric two-player, two-action game in normal form

27It is possible to weaken the independence to quantile or median independence. However, mean independence
is not possible since it will not lead to any restrictions. This was shown in the context of binary choice models
in Manski (1988b).
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In this model applied to market entry decisions, xiβi + εi is the monopoly profits earned

by firm i, and xiβi + ∆i + εi is the duopoly profits earned by firm i, so that ∆i is the effect

that firm −i entering the market has on the profits earned by firm i. The discussion here will

take ∆i to be a fixed parameter, but ∆i can be modeled as a random parameter, depending

either on observable and/or unobservable characteristics of the firms. The condition that

firms earn 0 profits when not entering the market is both a reasonable approximation and

a normalization because only differences in utility functions have observable implications.

The typical goal of the econometrician is to identify the parameters β = (β1, β2) and the

distribution of ε = (ε1, ε2), although it is possible to consider other objects of interest with

different identification strategies. Linking back to the nonparametric specification of the

profit functions (and suppressing the functional dependence of the left hand sides of the

following equations on ε and x):

π1(d1, d2) = d1 × (x1β1 + ∆1d2 + ε1)

π2(d1, d2) = d2 × (x2β2 + ∆2d1 + ε2)

Using the assumption of Nash equilibrium in pure strategies, observing (d1t, d2t) in market t

implies the following inequalities:

d1t × (x1tβ1 + ∆1d2t + ε1t)− (1− d1t)× (x1tβ1 + ∆1d2t + ε1t) ≥ 0 (7)

d2t × (x2tβ2 + ∆2d1t + ε2t)− (1− d2t)× (x2tβ2 + ∆2d1t + ε2t) ≥ 0

This means that

observe (d1t, d2t) =⇒
(2d1t − 1)× (x1tβ1 + ∆1d2t + ε1t) ≥ 0

(2d2t − 1)× (x2tβ2 + ∆2d1t + ε2t) ≥ 0
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Further, if we take expectations28 of the above right hand side with respect to the population

distribution (“adding up” across markets), we get that

E[(2d1t − 1)× (x1tβ1 + ∆1d2t + ε1t)] = E[(2d1t − 1)(x1tβ1 + ∆1d2t)] + E[(2d1t − 1)ε1t] ≥ 0

E[(2d2t − 1)× (x2tβ2 + ∆2d1t + ε2t)] = E[(2d2t − 1)(x2tβ2 + ∆2d1t)] + E[(2d2t − 1)ε2t] ≥ 0

Notice here that the above moment inequalities are an implication of the model as we may

have multiple equilibria and so one can expect these inequalities to not necessarily use all the

information in the model assumptions (more on sufficient conditions below). The two terms

E[(2dit − 1)εit], i = 1, 2 above can be written as

Ex [E[εit|dit = 1, x]P (dit = 1|x)− E[εit|dit = 0, x]P (dit = 0|x)] .

These are the selection terms that are similar to ones in the usual selection models. It is

possible that if the ε’s are pure measurement errors that d and ε are independent. But, in

this case with structural errors, this selection term will not vanish and presents a serious

identification issue29 that would need to be dealt with. This is the fundamental identification

problem that the structural error method faces. When a decision is made based on variables

that are payoff relevant and observed by the agent and unobserved to the econometrician,

the econometrician must confront this selection problem.

Remark 1. The approach above that targets necessary conditions for Nash equilibrium

behavior is simpler to implement. For instance, when the data are assumed to lie on the best
28One does not need to use expectations only. Any functional that respects first order stochastic dominance
can be used here, such as a quantile.
29It is possible to try to use semiparametric econometric methods that are used for selection correction in
single agent models such as Ahn and Powell (1993). We do not pursue this here as using those matching
approaches -where one would need to match a nonparametric function- along with moment inequalities is an
open question.
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response functions, then at a given observed d = (d1, . . . , dK) for K players, we have

observe (d1t, . . . , dKt) =⇒

(2d1t − 1)× (x1tβ1 + S(d−1t; θ1) + ε1t) ≥ 0
...

(2dKt − 1)× (xKtβK + S(d−Kt; θK) + εKt) ≥ 0

where S(d−1t; θ1) is the impact of the observed actions of all players j 6= 1, and similarly for

S(d−Kt; θK). These necessary conditions can be generalized in a natural way to cover games

where the action space is nonbinary (such as deciding on the number of locations to enter in

a given market rather than just binary enter or not enter). This is attractive from a practical

perspective since these inequalities derived from necessary conditions of Nash equilibrium

behavior do not require that the econometrician solves for the equilibria of the game. They

also hold in general discrete games with non-binary actions and many players.

Finally, it would also be important to use the joint distribution of outcomes (given

covariates) to be able to address the question of inference on the correlation between ε1 and

ε2 which would represent market-specific unobservables. This in principle would be possible

if the above were treated as a system of moment inequalities where the covariance matrix of

these errors is part of the estimation procedures.

Remark 2 (Comments on the ν2 errors in Equation 2 above:). In general, as in the traditional

discrete choice literature, the analysis following the above proceeds with the assumption that

the “ν2” errors (the ε) are independent of the covariates x but are otherwise unrestricted.30

In particular, no restrictions are made on their support. Support restrictions in principle can

lead to identification power but these types of support restrictions are hard to motivate. The

independence of these errors and the covariates is an important and restrictive assumption.

For instance, it rules out the “y(·)” variables from the previous section, so we cannot have

for example prices among the explanatory variable x’s that could react to various actions d.
30For instance, in binary choice models, E[ε|d = 1, x] = E[ε|xβ+ ε ≥ 0, x]. When ε ⊥ x, this quantity is equal
to E[ε|ε ≥ −xβ] which is the usual selection term. Otherwise when ε and x are not independent, one would
usually need to model the joint distribution of ε and x.
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One way out of this is to model the determination of prices31. Other types of variables that

are ruled out by this independence assumption arise in “games played on networks” where

the game is played among firms that have decided to (endogenously, based on the x and

ε) connect together. This endogenous network formation game can lead to endogeneity of

variables that impact firm payoffs32.

Remark 3 (Comments on allowing for ν1 errors:). It is possible to explore the identification

problem when we allow for a particular source of ν1 error as in the last section. In particular,

first allow for only ν1 classical measurement error and no ν2 errors in the model of the

simple game above. A caveat in this model is that without ν2, we are assuming that the

variables the players observe are the same ones that are observed by the econometrician.33 In

the extreme case without ν1 and ν2 errors then markets with the same x should have the

same set of equilibrium outcomes, though with multiple equilibria, it is possible that the

realized equilibrium differs across markets with the same x. On the other hand, with only

measurement error (and no ν2) of classical kind, the model we have is one where we do not

observe x, rather we observe x∗i = xi + ηi for i = 1, 2, where ηi is uncorrelated with xi (or

statistically independent of xi). The inequalities in Equation 7 become

(2d1t − 1)× (x∗1tβ1 + ∆1d2t + η1tβ1) ≥ 0

(2d2t − 1)× (x∗2tβ2 + ∆2d1t + η2tβ2) ≥ 0

By construction, the measurement error ηt = (η1t, η2t) is correlated with x∗t . This is a discrete

choice model where measurement error in the covariate is the only error in the model. It is

possible here to explore an instrumental variable assumption that requires a random variable
31An example of this approach in the context of a fully parametric model is in Ciliberto, Murry, and Tamer
(2021).
32An example of games played on networks is the work of Kline (2015).
33This is clearly restrictive in these settings as the model may appear deterministic.

50



z that is independent of η but correlated with x (and hence x∗). We leave further development

of such methods for future research.

Another possibility for the existence of ν1 is specification error, but allowing for such an

error may be nontrivial. For instance, consider the nonparametric normal form game in

Table 1 above. Without allowing for the ν2 error, we can have that the econometrician uses a

misspecified version of the payoffs (the πs). For instance, the econometrician uses x1β1 + ∆1

instead of π1(1, 1) such that

π1(1, 1) = x1β1 + ∆1 + [π1(1, 1)− x1β1 −∆1] = x1β1 + ∆1 + ε1

and similarly for the other payoffs in Table 1. To proceed further, assumptions must be

made on ε1, reflecting the specification error. What is required here to allow for this kind

of misspeficication is to require that ε be independent of x. This is a strong assumption

in this setup as it would seem that this misspecification error is unlikely to satisfy this

independence assumption. In addition, from the point of view of the econometrician, the

identification problem is the same as the one above. One caveat of this approach to including

only specification error is that, for given covariate values, firms have the same payoffs in

every market.

4.3. Using both necessary and sufficient conditions for Nash equilibrium. The

generalized discrete choice approach uses both necessary and sufficient conditions of Nash

equilibrium behavior to obtain the sharp identified set. We explain this insight first and then

derive the sharp inequalities. The inequalities in Equation 7 use necessary conditions for

pure strategy Nash equilibrium: For instance, if we see the outcome (1, 0) in market t then,

this implies that

(y1t, y2t) = (1, 0) =⇒ x1tβ1 + ε1t ≥ 0 and x2tβ2 + ∆2 + ε2t ≤ 0

But, it is possible to also have the reverse logical implication in some cases: For instance (and

ignoring probability zero events when the payoffs are equal to zero), when x1tβ1 + ε1t ≥ 0
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and x2tβ2 + ε2t ≤ 0 then (1, 0) is a dominant strategy and hence we get

x1tβ1 + ε1t ≥ 0 and x2tβ2 + ε2t ≤ 0 =⇒ (y1t, y2t) = (1, 0)

The event (1, 0) is sandwiched between two events in terms of (ε1t, ε2t). Indeed, the inequality

from the left hand side (sufficient condition) is a region for ε where the only Nash equilibrium

(in pure strategies) is (1, 0) while the inequality from the right (necessary condition) is one

where (1, 0) is one of the equilibria. If for all realizations of the structural errors ε there is

uniqueness then necessary and sufficient conditions would yield to moment equalities. To

implement the above insight in a general model, we need to solve the game for essentially all

values (or many draws) of the εs (given covariates) and enumerate the equilibria for each one

of these draws.

We now analyze in detail the above game by using all the information. We use a parametric

assumption on the distribution of ε = (ε1, ε2) to obtain a set of moment conditions.34 Using the

assumption that the solution concept is pure strategy Nash equilibrium and the assumption

of complete information (i.e., the firms have common knowledge of the profit functions), and

the assumption that the unobservables are independent from the observables ε ⊥ x, the data

generating process from this model can be characterized by the following three equations

relating the observed probabilities of the outcomes on the left of the equation to the utility

functions on the right of the equation. This analysis assumes that ∆1 ≤ 0 and ∆2 ≤ 0, so

that there is a negative effect of competition on profits in the entry model. A similar analysis

can be conducted when it is assumed that ∆1 ≥ 0 and ∆2 ≥ 0

Figure 1 shows the mapping between the value of (ε1, ε2) and the outcome of the game, for

given specification of (x1, x2). Let Sβ(x1, x2) = {ε : −x1β1 ≤ ε1 ≤ −x1β1−∆1,−x2β2 ≤ ε2 ≤

−x2β2−∆2}. If (ε1, ε2) ∈ Sβ(x1, x2) for given (x1, x2), then there are two pure strategy Nash
34In principle, this approach remains possible without imposing this parametric distributional assumption
on the joint distribution of the errors, as one can then replace this joint distribution flexibly with a sieve
approximation. Methods of inference in partially identified models with unknown functions (densities in this
case) is a current topic of research in econometric theory. See for example Chen, Tamer, and Torgovitsky
(2011).
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ε2

ε1

(−x1β1,−x2β2)

(−x1β1 −∆1,−x2β2 −∆2)

(y1 = 1, y2 = 1)

(y1 = 0, y2 = 0)

(y1 = 0, y2 = 1)

(y1 = 1, y2 = 0)

Sβ(x1, x2)

Figure 1. Mapping from ε to outcomes

equilibria of the game. It is a Nash equilibrium for firm 1 to be a monopolist entrant, and it

is a Nash equilibrium for firm 2 to be a monopolist entrant. The realized entrant depends on

which equilibrium is selected.

The following equations characterize the model.

P (y1 = 0, y2 = 0|X = x) = P (ε1 ≤ −x1β1, ε2 ≤ −x2β2) (8)

P (y1 = 1, y2 = 1|X = x) = P (ε1 ≥ −x1β1 −∆1, ε2 ≥ −x2β2 −∆2)

P (y1 = 1, y2 = 0|X = x) = P (ε1 ≥ −x1β1, ε2 ≤ −x2β2 −∆2, ε /∈ Sβ(x1, x2))

+ P (y1 = 1, y2 = 0|X = x, ε ∈ Sβ(x1, x2))× P (ε ∈ Sβ(x1, x2))

The left hand sides of these equations are observed by the econometrician, so the identified

set consists of all specifications of β1, β2, ∆1, ∆2, and distributions of ε that are such that

the right hand sides of these equations match the left hand sides. There is no equation for
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P (y1 = 0, y2 = 1|X = x) displayed above because it would be redundant: by construction,

P (y1 = 0, y2 = 1|X = x) = 1−P (y1 = 0, y2 = 0|X = x)−P (y1 = 1, y2 = 1|X = x)−P (y1 =

1, y2 = 0|X = x), so the model predictions for P (y1 = 0, y2 = 1|X = x) do not place any

additional restrictions on the parameters of the utility function.

The first and second equations are straightforward. The first equation indicates that the

probability that neither firm enters the market is equal to the probability that neither firm

is profitable as a monopolist. This reflects that neither firm entering the market in a pure

strategy Nash equilibrium is equivalent to neither firm being profitable as a monopolist. The

second equation indicates that the probability that both firms enter the market is equal to

the probability that both firms are profitable as duopolists. This reflects that both firms

entering the market in a pure strategy Nash equilibrium is equivalent to both firms being

profitable as duopolists. These equations are not so different from equations that arise in

models with a single decision maker.

The third equation is the place that this model distinguishes itself from standard models

with a single decision maker. The third equation indicates that the probability that firm

1 enters the market as a monopolist is equal to the sum of two probabilities. The first

probability on the right hand side is the probability of the event that ε satisfies ε1 ≥

−x1β1, ε2 ≤ −x2β2−∆2, ε /∈ Sβ(x1, x2), in which case firm 1 being a monopolist is the unique

pure strategy Nash equilibrium. The second probability on the right hand side is the product

of the probability of the event that ε ∈ Sβ(x1, x2) times the conditional probability that firm

1 is a monopolist given that condition on profits. This reflects that when ε ∈ Sβ(x1, x2) there

are two pure strategy Nash equilibria in which one or the other firm enters the market as a

monopolist. In this particular model, this can be known as the region of multiple equilibria,

without any ambiguity. The assumption of pure strategy Nash equilibrium does not uniquely

predict the outcome of the game when the utility functions are in the region of multiple

equilibria, so empirical models must be augmented by a selection mechanism that does select

which of the potential equilibrium outcomes is realized in the data. In this particular model,

there is just one selection mechanism P (y1 = 1, y2 = 0|X = x, ε ∈ Sβ(x1, x2)) per value of X,
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because there is just one region of multiple equilibria, but in other models, there could be

multiple regions of multiple equilibria with different sets of potential equilibrium outcomes,

requiring multiple selection mechanisms.

In this specification of the model, the equilibrium selection mechanism conditions on

X = x and the event that ε ∈ Sβ(x1, x2). This suffices to write down an equation for

P (y1 = 1, y2 = 0|X = x) that can be used for identification analysis. In principle, however,

the equilibrium selection mechanism could condition on X = x and particular values of ε,

because the players know ε and therefore equilibrium selection can depend on ε. Therefore,

if assumptions are placed on the equilibrium selection mechanism, it can be more natural

to work with the selection mechanism that conditions on particular values of ε. Any such

assumptions would imply restrictions on P (y1 = 1, y2 = 0|X = x, ε ∈ Sβ(x1, x2)) after

integrating over ε.

Thus, it turns out that the event that firm 1 is a monopolist is not equivalent to an event

simply in terms of the utility functions, because of the existence of multiple equilibria. This

complicates the identification analysis.

In short, the equations relating the utility functions and the observed outcomes of the

game depends on the selection mechanism that selects the realized outcome from the set

of outcomes compatible with the assumptions. Without any further assumptions on the

selection mechanism, the econometrician knows only that the selection mechanism is a valid

probability, so P (y1 = 1, y2 = 0|X = x, ε ∈ Sβ(x1, x2)) ∈ [0, 1]. This results in the inequalities

that P (ε1 ≥ −x1β1, ε2 ≤ −x2β2 −∆2, ε /∈ Sβ(x1, x2)) ≤ P (y1 = 1, y2 = 0|X = x) ≤ P (ε1 ≥

−x1β1, ε2 ≤ −x2β2−∆2, ε /∈ Sβ(x1, x2)) +P (ε ∈ Sβ(x1, x2)). In models with multiple regions

of multiple equilibria, similar inequalities can be derived for each outcome that can arise as

part of a region of multiple equilibria, using the condition that the selection mechanisms

necessarily satisfy the condition of being a valid distribution, as in Ciliberto and Tamer

(2009).
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Remark 4. It is worth having an example of the identified sets in this setting, which can

also be used to discuss some common considerations when working with partially identified

models. In particular, this discussion shows how different displays of the identified set helps

with the understanding of what is being learned (or assumed) about the model.

Consider a case with β11 = 1 = β21 and β12 = 0.75 = β22 and ∆1 = −1.75 = ∆2.

Correspondingly, x11 = 1 = x21, reflecting an intercept. And, x12 and x22 are binary (0/1)

variables. Given the definition of identification in a conditional model, from the perspective

of identification, the specific distribution of x12 and x22 is not relevant, although the support

is relevant. In the region of multiple equilibria, there is equal probability that one or the

other potential entrant will be the monopolist entrant. Finally, ε is normally distributed with

mean zero, unit variances, and covariance of 0.3 between ε1 and ε2.

With this setup, the probability of a no-entry market outcome in which no firm enters ranges

between approximately 1% and approximately 5%, for different values of x. The probability

of a duopoly market outcome in which both firms enter ranges between approximately 8%

and approximately 30%, for different values of x. The probability of a monopoly market

outcome in which one firm enters comprises the rest of the probability, ranging between

approximately 70% and 87%, for different values of x. In other words, this setup models a

setting in which most markets are served by a single entrant.

The analysis assumes that ∆1 and ∆2 are non-positive, reflecting a negative effect of

competition on profits. The analysis also assumes that the unobservables have a normal

distribution with mean zero, unit variances, and unknown correlation. The correlation is

therefore a parameter of the model. Further, the analysis assumes that the correlation

between ε1 and ε2 is positive, and less than 0.95, reflecting a positive correlation between

the unobservables affecting the profits of the two potential entrants, allowing in particular

market-level unobservables. Because the assumption of unit variance of the unobservables is

the scale normalization, there are not any assumptions or scale restrictions on β.

Figure 2 displays the identified set for (β11, β12), the “non-strategic” parameters of the

utility function of player 1 associated with the intercept and the explanatory variable. Even
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Figure 2. Identified set for (β11, β12) without restrictions on the parameters
across players

with the parametric distributional assumption on the unobservables, in this setup there are

only relatively weak restrictions placed on the parameters given the assumptions and the data.

Although the true value of the parameter (1, 0.75) is necessarily contained in the identified

set, as represented by the blue star in the figure, perhaps contrary to intuition the true value

is not in the “middle” of the identified set.35

With partial identification, it is possible to explore how different assumptions influence

what can be learned about the parameters. One reasonable assumption in this setting is that
35Particularly when computing identified sets for a component θ1 of the parameter vector θ = (θ1, θ2) rather
than the entire parameter vector θ, there is some unavoidable numerical error. This is because, in order to
determine whether a particular value θ∗1 of θ1 is in the identified set, it is necessary to somehow profile over
possible values θ∗2 of θ2, to determine whether there is some such θ∗2 such that (θ∗1 , θ∗2) is in the identified
set. Because it is impossible to check literally every possible value of θ∗2 , some numerical tolerance must
be allowed, such that θ∗1 is determined to be part of the identified set if there can be found a θ∗2 such that
(θ∗1 , θ∗2) is at least approximately (up to numerical tolerance) in the identified (e.g., satisfies the restrictions
up to a numerical tolerance). The result is that the computed identified sets might contain some values of
the parameter that are not actually in the identified set; therefore, these computed identified sets can be
viewed as (slightly) non-sharp identified sets due to this numerical tolerance.
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Figure 3. Identified set for (β11, β12) with parameters restricted to be equal
across players

the parameters of the utility function of player 1 are equal to the parameters of the utility

function of player 2. This assumption is true in the data generating process. Figure 3 displays

the identified set for (β11, β12) with this additional assumption. In Figure 3 the identified set

is substantially smaller than the identified set in Figure 2, reflecting the additional restrictions

on the parameter implied by this additional assumption.

One way to see why there is such identifying power of the assumption of equality of

parameters across players is to display the identified set for the parameters across players,

without the assumption of equality across players. Figure 4 displays the identified set for

(β12, β22), which is the identified set for the slopes with respect to the explanatory variables,

across players. Much of this identified set would violate the assumption that the parameters

are equal across players. This explains why adding this assumption substantially shrinks the

size of the identified set.
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Figure 4. Identified set for (β12, β22) without restrictions on the parameters
across players

Often, the interaction effect parameters (∆1,∆2) are of particular interest. Figure 5 displays

the identified set for (∆1,∆2) without restrictions on the parameters across players. If the

parameters were restricted to be equal across players, then the identified set for ∆1 = ∆2

would be approximately [−1.93,−1.53].

In general with partially identified models, even with the specification of some of the

parameters of the model, there is still partial identification of the other parameters of the

model. This is evident from the figures displayed here, where for example even with the

specification of β11 there is still partial identification of β12.

However, in some models, the specification of some of the parameters of the model

corresponds to a unique specification of the rest of the parameters of the model that is

simultaneously in the identified set and compatible with that partial specification of the

parameter of the model. In general, the specification of some of the parameters of the
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Figure 5. Identified set for (∆1,∆2) without restrictions on the parameters
across players

model corresponds to a restricted set of specifications of the rest of the parameters of

the model that are simultaneously in the identified set and compatible with that partial

specification of the parameter of the model. For example, in this model, with the assumption

of equality of parameters across players, and using the distributional assumption on ε, any

given specification of the β parameters is compatible with a unique specification of the other

parameters (e.g., ∆, the correlation of the unobservables, and the selection mechanisms).36

This means that restrictions on some model parameters directly implies restrictions on other

model parameters, given the identified set. In an opposite extreme case where the identified
36From the equation for the (0, 0) outcome, it is possible to learn the correlation of the unobservables, the
only remaining unknown in that equation. This is because the bivariate normal CDF is strictly monotone
in the correlation parameter (e.g., Kotz, Balakrishnan, and Johnson (2000, page 255)). Then, from the
equation for the (1, 1) outcome, it is possible to learn ∆, the only remaining unknown in that equation. This
is because, evidently, the right hand side of this equation is strictly monotone in ∆. Then given that, it is
possible to learn the selection mechanisms P (y1 = 1, y2 = 0|X = x, ε ∈ Sβ(x1, x2)) from the equation for the
(1, 0) outcome.
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set is the Cartesian product of the identified sets for each component of the parameter of the

model, restrictions on some model parameters would imply no restrictions on other model

parameters.

A characteristic of the partial identification approach is the ease with which additional

assumptions can be used. Here, for example, it would be straightforward to introduce

assumptions on the selection mechanism, or further assumptions about the parameters.

The assumptions on the selection mechanism could be atheoretic ex ante bounds on the

selection mechanism or theoretical restrictions on the selection mechanism corresponding to

the imposition of refinements of Nash equilibrium.

There are two main kinds of identification strategies that establish conditions under which

the β and ∆ parameters are point identified. Correspondingly, under modest relaxations of

those conditions, those parameters can be expected to be partially identified with relatively

small identified sets.

The first kind of point identification strategy minimizes the assumptions on the selection

mechanism, and looks for other sources of identification. One source of identification is

the existence of values of firm-specific observables such that, when firms have those values,

the firms have dominant strategies to either enter or not enter the market regardless of

the decision of the other firms (e.g., Tamer (2003)). For example, in the above model, as

x2β2 →∞, firm 2 will enter the market with probability approaching 1, so firm 1 essentially

faces a decision problem with a single decision maker in which firm 1 chooses between being

a duopolist and not entering the market. Similarly, as x2β2 → −∞, firm 2 will enter the

market with probability approaching 0, so firm 1 essentially faces a single decision maker

problem in which firm 1 chooses between being a monopolist and not entering the market.

Therefore, looking at markets with x2β2 � 0 and separately with x2β2 � 0, firm 1’s profit

function can be learned using standard identification strategies for models with a single

decision maker. If the observables cannot drive the probability of decisions to 1 or 0, there

can be partial identification with tail restrictions on the distribution of the unobservables
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(e.g., Kline (2015)). Another source of identification are assumptions about the unobservables.

In particular, the assumption that the density of the unobservables is unimodal, along with

an assumption that the observables have enough variation but allowing for less variation

than required by the previous identification strategy, is sufficient for point identification (e.g.,

Kline (2016a)).

The second kind of identification strategy uses further assumptions on the selection

mechanism, which can include assumptions that certain variables are excluded from influencing

the selection mechanism (e.g., Bajari, Hahn, Hong, and Ridder (2011)) or assumptions that

the selection mechanism has a specific known form. Because this effectively reduces the

number of unknown parameters in the model, this is a source of identification. These kinds

of assumptions can be appealing when economically motivated. Among assumptions on

the form of the selection mechanism are assumptions that the selection mechanisms selects

among the potential equilibrium outcomes uniformly at random as in Bjorn and Vuong (1984)

and Kooreman (1994), or assumptions that the selection mechanism selects the potential

equilibrium outcome that is most favorable for a particular player as in Berry (1992) or Jia

(2008) or Nishida (2015). Assumptions on the selection mechanism can often be viewed as

equivalent to assumptions on the solution concept. For example, the common assumption

of a pure strategy equilibrium can be viewed as an assumption on the selection mechanism

relative to a model that would allow for mixed strategy equilibria.

This section has focused on the case of a game in which each player takes a single action,

but in some games each player takes multiple actions. One such setting is network formation,

where each player takes many actions corresponding to linking decisions with each of the

other players. This literature has been summarized in de Paula (2017).

4.3.1. Empirical applications. The literature has seen many empirical applications of these

kinds of models – albeit not always exactly the models discussed here, and not always from

a partial identification perspective due to the use of stronger assumptions. When these

models are used from a point identification perspective, in many cases that is because of
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additional assumptions on features of the model, like assumptions on the selection mechanism

and/or stronger distributional assumptions on the unobservables. The core model is often

nevertheless similar to described above. It is important to keep in mind that a common

characteristic of this literature is that each individual paper tends to work with a bespoke

model for the specific empirical application, sharing some commonalities reflected by the

general models discussed above. The following discussion inevitably glosses over the specific

features of the models used in each empirical application.

One common application is to entry behavior in airline markets, as in Reiss and Spiller

(1989), Berry (1992), Ciliberto and Tamer (2009), Kline and Tamer (2016), and Kline (2018).

Each instance of the game represents an airline market. An individual airline market is

defined to be a pair of airports, and the players are typically particular air carriers. In some

empirical exercises, because it can be difficult to deal with many players, some air carriers

are aggregated according to a shared size. For example, low cost carriers may be modeled to

be a single firm. Then, entry decisions concern whether particular air carriers provide regular

service between those airports.

The profit functions determine the post-entry profitability of airlines. Typically, profits are

modeled to depend both on airline-specific characteristics and market-specific characteristics.

A common airline-specific characteristic is the “presence” of a particular airline at the airports

in the market, the idea being that an airline that already serves a particular airport (from

third airports) is likely to find it more profitable to serve other airports from that airport

(e.g., Berry (1992)). This is plausibly excluded from the profit functions of rival airlines.

Common market-specific characteristics concern the characteristics of the two areas that the

airports serve, for example population. These market-specific characteristics may measure

the “size” of the market available to the potential entrants. The interaction effect parameters

are key objects of interest, reflecting the impact on profits of the entry of rival firms. For

specific empirical results, for example, Berry (1992) finds that airport prescence has an

important impact on profitability and Ciliberto and Tamer (2009) find that the policy impact
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of repealing the Wright Amendment would be to increase the number of markets served from

Dallas Love Field Airport.

Another common empirical application is to models of entry of “big box” retailers into

geographic markets. Jia (2008) studies decisions of Wal-Mart and Kmart, allowing for both a

competitive effect of entry on the profits of rivals and a chain effect of a particular firm having

stores in multiple markets. See also Nishida (2015) for allowing competition in the number

of stores, in addition to binary entry decisions. Holmes (2011) shows significant benefits

to profitability of Wal-Mart from their strategy of a dense network of stores. Ellickson,

Houghton, and Timmins (2013) finds important difference between retailers in terms of

characteristics like competitive effects and chain effects. Aradillas-López and Rosen (2018)

study decisions of Lowe’s and Home Depot, focusing on an ordered response decision of how

many stores a particular retailer opens in a particular market.

A final set of common applications concerns entry decisions of firms that are smaller than

“big box” retailers. Many papers study entry of smaller firms into geographic markets. As

such the considerations are often different from the literature on bigger retailers, for example

with less emphasis on chain effects. Mazzeo (2002) studies entry of roadside hotels, focusing in

particular on the role of the quality of the hotel on the competitive effects on other (possibly

different quality) hotels in the same market. Seim (2006) studies the geographic location of

entry decisions in the video store industry. Essentially the same basic model can also be

used to study network effects, viewing joining the network as “entering.” Ackerberg and

Gowrisankaran (2006) study adoption decisions of the automated clearinghouse payment

system, and the corresponding network effects.

Finally and more recently, Ciliberto, Murry, and Tamer (2021) extended the above discrete

choice based models to include two stage games where whether a firm decides to enter or

not depends on prices it expects to charge after entry. This combines both a discrete (entry)

and a continuous (pricing) component to the model and uses a two stage game with demand

conditional on entry estimated in the second stage. They apply this framework to studying

pricing and welfare in airline markets. There, the decision to enter and the payoff an airline
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receives from entry is a function of prices (and quantities) that the firm charges in equilibrium.

So, the payoffs in the simple entry game now depends on prices that are “endogenous.”

Also, similar models can be used to study empirical applications outside of empirical

Industrial Organization, perhaps most notably social interactions in the broad field of applied

microeconomics. For example, Soetevent and Kooreman (2007) and Card and Giuliano (2013)

use related models to study interactions in the behaviors of teenagers. Bjorn and Vuong

(1984) study interactions in the labor force participation decisions of married couples.

Another important set of empirical applications, but with empirical work that is more

along the lines of the methods of Section 3, concerns product repositioning, the idea that

firms respond to changes in the environment by changing the characteristics of the products

they offer. This can be viewed as entry of products, rather than entry of firms. Eizenberg

(2014) and Wollmann (2018) propose a two-stage model, where firms decide on product

choices in the first stage and prices in the second stage. Revealed preference inequalities

similar to those discussed in Section 3 are used to recover partial identification of the fixed

costs of offering each product.

4.3.2. Assumptions on information. The econometrician must make an assumption about

the information structure of the game, which concerns what the players know about the

other players. The discussion so far has focused on the case of complete information, where

all players in the game commonly know the utility functions of all players in the game.

Essentially, this means that the players commonly know X, ε, and the parameters of the

utility functions. However, from the perspective of the econometrician, X is observed but ε

is unobserved and the parameters of the utility function are also unknown.

It is possible to vary the assumption about what the players know. Another assumption

available to the econometrician is the assumption that the realizations of ε are the private

information of each player. This is an empirically relevant instance of incomplete information,

where players have private information about their utility functions.
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By definition, incomplete information is a useful model for applications where players do

not know everything about the profit functions of the other players. In particular, incomplete

information can be relevant for one-shot interactions against previously unknown players. On

the other hand, complete information can be a useful model for applications where players

know everything about the profit functions of the other players. Consequently, complete

information can be a useful model for the static long-run equilibrium that arises from a

repeated interaction.

With incomplete information, players form beliefs about what they do not know given

(conditional on) what they do know. When X is common knowledge among the players, it

follows that player i gets utility 0 from not entering, as with complete information, and gets

expected utility

xiβi + ∆iΠi(y−i = 1|X = x, εi) + εi

from entering, where Πi(y−i = 1|X = x, εi) is the beliefs that player i holds about the

probability that the other player enters the market, given the information available to player

i. Given the players use a threshold-crossing strategy,

yi = 1⇔ xiβi + ∆iΠi(y−i = 1|X = x, εi) + εi ≥ 0.

Consequently, with the additional assumption that the private information unobservables ε

are independent across players conditional on the common knowledge X,

Πi(y−i = 1|X = x, εi) = Πi(ε−i ≥ −x−iβ−i −∆−iΠ−i(yi = 1|X = x, ε−i)|X = x, εi)

does not depend on εi, so beliefs can be written Πi(y−i = 1|X = x) = Πi(y−i = 1|X = x, εi).

Then, a Bayesian Nash equilibrium is a specification of Π2(y1 = 1|X = x) and Π1(y2 =

1|X = x) that is a solution to the system of equations

Π2(y1 = 1|X = x) = P (ε1 ≥ −x1β1 −∆1Π1(y2 = 1|X = x)|X = x)

Π1(y2 = 1|X = x) = P (ε2 ≥ −x2β2 −∆2Π2(y1 = 1|X = x)|X = x).
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In general, there can be multiple solutions to this system of equations, corresponding to

the existence of multiple Bayesian Nash equilibria. Often, it can be assumed that there is a

finite number of Bayesian Nash equilibria.

In this literature, it is standard to assume either that there is a unique equilibrium or that

a single equilibrium is used in the data generating process (e.g., Bajari, Benkard, and Levin

(2007), Aradillas-López (2010) and Bajari, Hong, Krainer, and Nekipelov (2010)), without

assuming which equilibrium is used in cases of the existence of multiple equilibria. This

assumption can be true even if there are multiple equilibria in the underlying economic theory

model. Under this assumption, it follows that Π−i(yi = 1|X = x) = P (Yi = 1|X = x), so the

model can be written

P (Y1 = 1|X = x) = P (ε1 ≥ −x1β1 −∆1P (Y2 = 1|X = x)|X = x)

P (Y2 = 1|X = x) = P (ε2 ≥ −x2β2 −∆2P (Y1 = 1|X = x)|X = x).

Essentially, these equations reflect two binary choice models, with P (Y−i = 1|X = x)

included as an explanatory variable in the equation for the entry decision of player i.

Because P (Y−i = 1|X = x) is point identified directly from the observable data, the (point)

identification of the parameters (β,∆) follows from identification strategies for standard

binary outcomes models.

Without the assumption that a single equilibrium is used in the data generating process,

P (Y−i = 1|X = x) is a mixture of the probabilities that yi = 1 over the multiple equilibria

that are compatible with X = x. In particular, in general P (Y−i = 1|X = x) cannot be

equated to Πi(y−i = 1|X = x) for any particular Bayesian Nash equilibrium. Therefore, if

it is allowed that multiple equilibria are used in the data generating process, the previous

identification strategy is precluded: it is not possible to apply (point) identification strategies

for standard binary outcomes models. However, as described in Aradillas-López (2020), a

partial identification strategy that bounds the beliefs in the Bayesian Nash equilbria, and

therefore bounds the parameters of the model, is possible.
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For any specification of the unknown model parameters θ – which may include the finite-

dimensional parameters and the distribution of the unobservables, and for any specification

X = x, let Πi,L,θ(y−i = 1|X = x) be the smallest belief that player i has that y−i = 1.

Smallest means among beliefs that arise as part of a Bayesian Nash equilibrium. And let

Πi,U,θ(y−i = 1|X = x) be the greatest belief that player i has that y−i = 1 that arises as part

of a Bayesian Nash equilibrium. These quantities are known by the econometrician since they

arise from the underlying economic theory model, for any given θ. Using the threshold-crossing

representation of the strategy, and assuming that ∆i ≤ 0, xiβi+∆iΠi,U,θ(y−i = 1|X = x)+εi ≥

0⇒ yi = 1 because if it is profitable for player i to enter the market even given player i’s most

pessimistic beliefs that arise in a Bayesian Nash equilibrium, player i will enter the market in

any Bayesian Nash equilibrium. Similarly, yi = 1⇒ xiβi + ∆iΠi,L,θ(y−i = 1|X = x) + εi ≥ 0

because if player i enters the market in any Bayesian Nash equilibrium, it must be profitable

to enter the market given player i’s most optimistic beliefs that arise in a Bayesian Nash

equilibrium. Similar inequalities could be derived assuming ∆i ≥ 0. Therefore,

P (εi ≥ −xiβi −∆iΠi,U,θ(y−i = 1|X = x)|X = x) ≤ P (Yi = 1|X = x)

≤ P (εi ≥ −xiβi −∆iΠi,L,θ(y−i = 1|X = x)|X = x)

These inequalities are restrictions on the parameters, based on the distribution of the

observed data, and therefore a source of identification. In general, multiple specifications of

the parameters are compatible with these restrictions, resulting in partial identification.

Grieco (2014) shows that it is not necessary to choose between a model with complete

information and incomplete information, proposing a model with a flexible information

structure that nests complete information and incomplete information, and establishes partial

identification results. More recently, Magnolfi and Roncoroni (2017) study the question of

inference on discrete games with weak assumption on information. This approach is motivated

by recent theory work on robust mechanism design (see Bergemann and Morris (2005)) and

tries to explore the identified feature of an entry game using correlated equilibria.
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4.4. Models of auctions. Auctions are instances of incomplete information games that are

of particular importance to empirical Industrial Organization. Often, auctions are used to

allocate a valuable object (or objects) when there is either heterogeneity and/or uncertainty

about the potential buyers’ valuations of the object. Correspondingly, identification of

auction models is a important literature reviewed for example in Athey and Haile (2007) and

Hendricks and Porter (2007).

In a typical auction model with private values, with a single object being auctioned, each of

N participants in the auction has a privately known valuation θi for the object being auctioned.

Valuations for all N bidders, θ = (θ1, θ2, . . . , θN ), are drawn from the joint distribution F (θ).

Based on their valuation, each bidder places a bid bi(θi). Generally, the auction is characterized

by functions xi(bi, b−i) ∈ [0, 1] and ti(bi, b−i). Generally, xi(bi, b−i) ∈ {0, 1} indicates whether

or not bidder i is allocated the object, given the bids of all bidders, but xi(bi, b−i) ∈ (0, 1)

can be allowed to indicate the probability that bidder i is allocated the object, particularly

in cases of random allocation when there is a tie for high bid. The ti(bi, b−i) object indicates

the (expected) transfer paid by bidder i, given the bids of all bidders. In most auction types,

the high bidder wins and pays some transfer. The utility of bidder i given an allocation

xi ∈ {0, 1} of the object and a transfer payment ti is θixi− ti, so the expected utility of bidder

i given its valuation θi and based on placing bid bi is θiE(xi(bi, b−i)|θi) − E(ti(bi, b−i)|θi).

Bidders place the bid that maximize this expected utility. There are multiple reasons that

partial identification can arise in the empirical analysis of auctions.

In an idealized ascending auction, otherwise known as an English auction, based specifically

on the button auction model of Milgrom and Weber (1982), and with private values, there is

a unique dominant strategy equilibrium: each bidder bids that biddder’s valuation. Conse-

quently, the corresponding identification problem is straightforward, since bids directly reveal

valuations. However, the button auction may not reflect important features of real-world

ascending auctions. In the button auction the price continuously increases, with bidders

dropping out of the auction until only one bidder remains. In real world ascending auctions,
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for example there can be “jump bids” which result is discontinuous increases in the price,

and other deviations from the button auction model.

If the real world auction deviates from the button auction then it need not be the case that

bids are equal to valuations, resulting in a more complicated identification problem. Moreover,

it can be difficult to theoretically model real world auctions that deviate from the button

auction. With this motivation, Haile and Tamer (2003) propose two assumptions that relate

observed bids to valuations that are credible in ascending auctions even without the button

auction model. The first assumption is that bids are weakly less than the corresponding

valuation, so bi(θi) ≤ θi. It would not make sense for bidder i to bid more than θi, because

that would open up the possibility that bidder i wins the auction and pays more than its

valuation. The second assumption is that a bidder that loses the auction has a valuation that

makes it un-profitable to beat the winning bid, so θi ≤ b∗ + ∆ where b∗ is the winning bid

and ∆ ≥ 0 is the minimum bid increment. It would not make sense for bidder i to let another

bidder win, when bidder i could win and make a profit. These assumptions are satisfied

in the button auction model, but do not require the button auction model, and indeed do

not require any particular model of the auction. The first assumption generates an upper

bound on the distribution of valuations, and the second assumption generates a lower bound

on the distribution of valuations. If the true data generating process is the button auction

model, the lower bound equals the upper bound, so the identification result turns into a

point identification result. In an empirical application to U.S. Forest Service auctions, Haile

and Tamer (2003) find that the identified set for the distribution of valuations is tight, while

finding somewhat wider bounds on the optimal reserve price. Chesher and Rosen (2017) use

generalized instrumental variables to derive the sharp identified set.

An important object of interest in auction models is the reserve price. Optimal auction

theory can be used to determine the optimal reserve price that results in the maximum

revenue to the auctioneer, when the distribution of valuations is known. If the distribution of

valuations is known only to be within a set of possible values, as with partial identification,

Haile and Tamer (2003) show the optimal reserve price can correspondingly be partially
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identified to be within a set of possible values. Given that the optimal reserve price is only

partially identified, Aryal and Kim (2013) propose a decision-theoretic rule for choosing

the reserve price to use. In a related setup, Song (2014) propose a decision-theoretic rule

for point decisions from an interval identified set, applying in particular to the choice of

the reserve price. A closely related object of interest is the auction revenue under different

auction formats and different reserve prices. Tang (2011) establishes partial identification of

the revenue from alternative auctions formats with optimal reserve prices, when the observed

data comes from a first-price auction, allowing for both private values and common values

based on an affiliated signals and valuations model.

Unobserved heterogeneity is often a concern in empirical analysis of auctions, see e.g. Haile

and Kitamura (2019). With unobserved heterogeneity, bidder valuations are drawn from a

distribution conditional on the unobserved heterogeneity that is known to the bidders but

not known to the econometrician. Hence, with unobserved heterogeneity, different auctions

have valuations drawn from different distributions. Under suitable assumptions, sometimes

more than directly predicted by economic theory, it is possible to point identify objects of

interest even with unobserved heterogeneity, as summarized in Haile and Kitamura (2019).

Under weaker assumptions, Armstrong (2013) shows that it is possible to partially identify

objects of interest including the expected value of bidder valuations, the expected value of

the highest valuation, and expected profits of a bidder, in a sealed bid first price auction with

unobserved heterogeneity.

Endogenous participation of bidders, otherwise known as entry into auctions, is also often

a concern in empirical analysis of auctions. Based on a model of private values, where each of

the potential bidders observes a signal of their value before choosing whether to pay an entry

cost, Gentry and Li (2014) establish partial identification of the distribution of valuations

based on variation in entry. With enough entry variation, the result is point identification.

Focusing on the general issue of entry, Gentry and Li (2014) works for many standard auction

formats.
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The (lack of) observability of all bids is yet another important consideration in the empirical

analysis of auctions. For example, in general it can be difficult/impossible to observe the

highest “bid” in an ascending auction in situations where that “bid” is effectively never placed

given that the auction concludes when all of the other bidders have dropped out of the auction.

In second price and ascending auctions, Komarova (2013) considers partial identification

of the distribution of valuations under different conditions on the observed data, without

assumptions that valuations are independent across bidders. In ascending auctions with

correlated values, Aradillas-López, Gandhi, and Quint (2013) considers partial identification

directly of the objects of interest, specifically bidder and seller profits, sidestepping the

identification of the distribution of bidder valuations, using variation in the number of bidders

in different auctions, assuming only the transaction price and number of bidders are observed.

Coey, Larsen, Sweeney, and Waisman (2017) shows the same bounds are valid when the

distribution of valuations are allowed to be asymmetric when bidder identities are unobserved,

and propose related, tighter bounds when bidder identities are observed.

Auctions involving the allocation of multiple units are yet another important consideration

in the empirical analysis of auctions, see e.g. Hortaçsu and McAdams (2018). In these auctions,

bidders are observed to place the same bid for multiple units, either as an equilibrium outcome

or as a restriction of the auction format, even if they have different valuations for the multiple

units. McAdams (2008), Hortaçsu and McAdams (2010), and Kastl (2011) show how this

can result in partial identification results.

Similar to the use of weaker assumptions on the solution concept in models of games with

discrete action spaces, it is possible to use weaker assumptions on the solution concept in

auction models. Based on bidders participating in multiple independent auctions, Gillen

(2009) and An (2017) establishes partial identification and point identification results in a

first-price auction where beliefs follow from “level-k” thinking. See also Aradillas-López and

Tamer (2008). An (2017) shows this model is observationally equivalent to an asymmetric

distribution of valuations.
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Finally, there is a developing literature on identification with weak assumption on infor-

mation motivated by the work of Bergemann and Morris (2005). See also Magnolfi and

Roncoroni (2017) in the context of discrete games. Information, or what players know and the

signals they receive, plays a key role in strategic setups where in a Bayesian Nash equilibrium

this information is used to derive the equilibrium mapping. In empirical work, we rarely have

access to the information players use and so it is natural to ask what can be learned about

the fundamentals (such as utilities and payoffs) under weak assumptions on information.

In an auction setup, Syrgkanis, Tamer, and Ziani (2017) study this question and use the

results between Bayesian correlated equilibria and Bayesian Nash equilibrium. The statistical

setup is a high dimensional linear program where it is possible to use the distribution of

observed bids to recover features of the distribution of valuations. In addition, the same linear

programming structure can be used to then simulate policy questions. The linear program

is a moment inequality problem where the linear structure can be used in a computational

simple way.

4.5. Alternative assumptions. Finally, there have been attempts to use other frameworks,

and this subsection refers to some relevant parts of that literature. Perhaps the best known

is the program evaluation literature. In settings with multiple decision makers, the standard

assumptions and approaches of the program evaluation literature generally do not apply.

This is because the outcome of any given decision maker generally depends on the decisions

(or other characteristics) of the other decision makers. In short, the representation of a

counterfactual outcome as depending only on the same decision maker’s treatment is generally

not valid in models with multiple decision makers.37 Indeed the interaction between decision

makers can generate multiple responses from a given set of exogenous treatments, so there

can be multiple potential outcomes in response to a specified set of exogenous treatments,

depending on which equilibrium is selected (for a discussion in nonparametric versions of

simple games, see Kline and Tamer (2020)). Also, in cases with mixed strategies (or where
37More formally, such setups generally violate the Stable Unit Treatment Value Assumption as summarized
by Imbens and Rubin (2015, Section 1.6).
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equilibria are in terms of distributions over actions), the link between the observed data and

the underlying outcomes is complicated.

It is possible to augment the standard treatment response models to allow for interactions,

as in Manski (2013) and Lazzati (2015). That is, the response function for i can be augmented

to depend on the treatments assigned to j 6= i, and further structure could be imposed. If that

structure mimicked the relevant market and a maximizing assumption, or some other model

of how behavior responds to incentives, one would come back to a framework resembling the

one we propose or one of the extensions discussed elsewhere.

An alternative that is closer to the Industrial Organization theory that much of empirical

Industrial Organization relies on, are solution concepts that replace the description of agents’

behavior with weaker restrictions. This includes the use of the concepts of rationalizability

(Bernheim (1984) and Pearce (1984)) and of iteratively dominated strategies (see the discussion

in Tan and da Costa Werlang (1988)). Using weaker assumptions about the solution concept

necessarily results in less ability to learn about objects of interest. On the other hand it may

allow us to get a better approximation to agent’s behavior. This is an avenue worth pursuing

in the context of actual applied problems.38

Similarly weakening the parametric assumptions on the return function could help us

to better approximate behavior and/or focus on a key parameter that determines market

outcomes. For example Kline and Tamer (2012) shows that it is sometimes possible to

partially identify the best response functions without assuming a particular form of the utility

function, nor distributional assumptions on the unobservables. The identification comes

exclusively from assumptions from economic theory and the data, rather than from functional

form assumptions. Relatedly de Paula and Tang (2012) study whether it is possible to identify

the sign of the interaction effects between firm responses in an incomplete information game.

The sign is particularly important because it underlies the determination of whether policies
38The experimental literature has also proposed many candidates, including models of limited strategic
reasoning including level-k thinking models and cognitive hierarchy models (e.g., Costa-Gomes, Crawford,
and Broseta (2001), Camerer, Ho, and Chong (2004), Costa-Gomes and Crawford (2006), Crawford and
Iriberri (2007)). Much of this appears in recent books and reviews, including Camerer (2011) and Crawford,
Costa-Gomes, and Iriberri (2013)
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are strategic substitutes or strategic complements, which can be of fundamental importance

in evaluating possible policy changes. In other applications, like models of social interactions,

the sign of interaction effects determines whether there are positive peer effects (a peer taking

the behavior increases the utility of taking the behavior) or negative peer effects (a peer

taking the behavior decreases the utility of taking the behavior). A key feature of their

identification strategy is the fact negative interaction effects result in negatively correlated

responses within markets, and positive interaction effects results in positively correlated

responses within markets.

5. Estimation and inference

Standard approaches to estimation and inference are based on the assumption of point

identification. Estimation and inference in partially identified models is fundamentally

different, because the objects of interest are set-valued rather than singleton-valued. This

issue was recognized even before partial identification became popular, in particular in

Phillips (1989). As discussed in the previous sections, identification in models used in

empirical Industrial Organization presents some unique issues, compared to identification in

models used in other fields of economics. However, estimation and inference can basically

follow the general literature on partially identified models, which has been summarized

most recently, for example, in Canay and Shaikh (2017) and Molinari (2020). Following

the literature, the discussion focuses on frequentist approaches in Sections 5.1-5.5, with a

separate discussion of Bayesian approaches in Section 5.6.

Estimation and inference in partially identified models requires a measure of distance

between two sets, namely the true identified set and an estimate of the identified set. The

literature has focused on the Hausdorff distance. The Hausdorff distance between sets A and

B is dH(A,B) = max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)}, where d(·, ·) is a distance

defined on the elements of the parameter space. The Hausdorff distance dH(A,B) is small

when two conditions hold: every element a ∈ A is “close” to at least one element of B
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and every element b ∈ B is “close” to at least one element of A. In some instances, the

representation dH(A,B) = supc∈A∪B | infa∈A d(c, a)− infb∈B d(c, b)| is convenient.

5.1. Estimation. As a typical starting point, estimation of partially identified models

involves replacing population quantities in the representation of the identified set with

corresponding sample quantities. This is the analogy principle (e.g., Goldberger (1968),

Manski (1988a)) familiar in point identified models, as applied to partially identified models.

The first question is whether such an estimator is consistent. In general, consistency of

an estimator concerns the distance between the estimator and true value. Based on the

Hausdorff distance, an estimator Θ̂I,N of the identified set is consistent if dH(Θ̂I,N ,ΘI)→p 0,

which means the Hausdorff distance between the estimate and the identified set converges

in probability to 0 as sample size increases. Although it is tempting to think otherwise,

consistency of the sample analogue estimators of the population quantities in the representation

of the identified set does not necessarily imply consistency of the sample analogue estimator

Θ̂I,N .

For an illustration of some of the main technical ideas surrounding estimation in partially

identified models, and for simplicity of exposition, consider the problem of estimating a

scalar component of a partially identified parameter. If ΘI is convex (or connected), then

the identified set for any scalar component δ of θ is an interval. The identified set for δ can

be an interval even if ΘI is not convex. Suppose further that the identified set for δ can be

represented in terms of population expected values as in ∆I = [E(YL), E(YU )], where YL and

YU are (known functions of) random variables in the observed data set. Unless the model is

misspecified, E(YL) ≤ E(YU ), because otherwise ∆I = ∅, implying there would be no value of

δ that is compatible with the assumptions and the observed data. In fact, checking whether

the identified set is empty is one proposed method for checking for correct specification in

partially identified models.

Then ∆̂I,N = [EN(YL), EN(YU)] is the analogy principle estimator of ∆I that replaces

population quantities in the representation of ∆I with the corresponding sample quantities.
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In particular, EN (·) is the sample average from a sample of size N . Suppose that EN (YL)→p

E(YL) and EN(YU)→p E(YU). Using the second representation of the Hausdorff distance,

dH(∆I , ∆̂I,N) =


max{|E(YL)− EN(YL)|, |E(YU)− EN(YU)|} if EN(YL) ≤ EN(YU)

undefined if EN(YL) > EN(YU)
.

dH(∆I , ∆̂I,N) is undefined when EN(YL) > EN(YU) because in that case ∆̂I,N = ∅. Some

sources would define dH(A, ∅) =∞ when A 6= ∅, but that difference in definition does not

impact the analysis.

With this setup, it is possible to study whether ∆̂I,N is a consistent estimator. There

are two cases to consider: E(YL) < E(YU) and E(YL) = E(YU). If E(YL) < E(YU), then

P (EN (YL) ≤ EN (YU ))→ 1, so the first line of the expression for dH(∆I , ∆̂I,N ) is the relevant

case for asymptotic analysis, and therefore dH(∆I , ∆̂I,N) →p 0 because EN(YL) →p E(YL)

and EN(YU) →p E(YU). If E(YL) = E(YU), then in general39 P (EN(YL) ≤ EN(YU)) 6→ 1,

because P (EN (YL) ≤ EN (YU )) ≡ P (
√
N(EN (YL)−EN (YU )) ≤ 0) ≈ Φ(0) = 1

2 when a central

limit theorem applies with positive asymptotic variance,40 in which case even in large samples

there is non-vanishing probability that ∆̂I,N = ∅ and therefore dH(∆I , ∆̂I,N ) 6→p 0 since there

is non-vanishing probability that dH(∆I , ∆̂I,N) is undefined.

In words, if ∆I is a non-degenerate interval, then ∆̂I,N is consistent. However, if ∆I is

a singleton, equivalent to δ being point identified, then ∆̂I,N is not consistent in general.

It may be surprising that ∆̂I,N = [EN(YL), EN(YU)] is not a consistent estimator of ∆I =

[E(YL), E(YU)] when E(YL) = E(YU), considering the endpoints of ∆̂I,N are consistent

estimators of the endpoints of ∆I when EN(YL) →p E(YL) and EN(YU) →p E(YU). This

does not imply consistency of ∆̂I,N because [a, b] = ∅ when a > b, so even if EN(YL) ≈

E(YL) = E(YU) ≈ EN(YU) it may be that EN(YL) > EN(YU) and therefore ∆̂I,N = ∅ while
39Note that even if E(YL) = E(YU ), it is still possible that P (EN (YL) ≤ EN (YU )) → 1, specifically when
EN (YL)− EN (YU ) has zero asymptotic variance, for example because the underlying realizations of YL and
YU are equal. This does arise in some relevant cases, for example with interval censored data, with the
YL = YU case being the case where each “interval” is actually a singleton.
40Note that the standard “scaling” by the asymptotic variance would not impact the result.
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∆I = {E(YL)} = {E(YU )}. Although illustrated in this particular case of an interval identified

set, it is important to keep in mind that in general similar issues arise when working with

partially identified models, where the “geometry” of the identified set plays a role in the

properties of the estimator. For similar reasons, inference in partially identified models is

complicated in particular in these cases.

Obviously, the case that ∆I is a singleton is an important special case. Practically, this

analysis suggests that ∆̂I,N may perform poorly in finite samples when E(YL) ≈ E(YU),

such that ∆I is a “small” interval, since in that case there is non-negligible finite sample

probability that EN(YL) > EN(YU) and hence ∆̂I,N = ∅.

Based on such considerations, an alternative estimator of the identified set is ∆̂ε
I,N =

[EN (YL)− εN , EN (YU ) + εN ] where εN > 0 is a sequence that satisfies εN → 0. Compared to

∆̂I,N , ∆̂ε
I,N is consistent under more general conditions. However, ∆̂ε

I,N introduces the tuning

parameter εN that directly impacts the estimation results. For ∆̂ε
I,N ,

dH(∆I , ∆̂ε
I,N) =


max{|E(YL)− EN(YL) + εN |, |E(YU)− EN(YU)− εN |} if EN(YL) ≤ EN(YU) + 2εN

undefined if EN(YL) > EN(YU) + 2εN
.

If εN
√
N → ∞, then P (EN(YL) > EN(YU) + 2εN) → 0.41 Therefore, as long as εN → 0

sufficiently slowly, dH(∆I , ∆̂ε
I,N)→p 0 even when ∆I is a singleton.

Similar ideas of “expanding” the estimate of the identified set apply more generally, with

more complicated analyses used in other settings. In this particular setup, the rate of εN can

be directly tied to the rate of convergence of the sample averages. In settings with “large”

identified sets, which in this setup means E(YL) is not “close” to E(YU) and often is the

case with partially identified models, these considerations about “expanding” the estimate of

the identified set are less relevant. The need to “expand” the identified set can also arise in

misspecified models in which the true identified set is empty, and the econometrician aims
41If E(YL) − E(YU ) = a < 0, then P (EN (YL) − EN (YU ) ≤ 0) ≥ P (|EN (YL) − EN (YU ) − a| < −a) → 1,
implying P (EN (YL) − EN (YU ) > 2εN ) → 0. If E(YL) = E(YU ) and a central limit theorem applies to√
N(EN (YL)− EN (YU )), then P (

√
N(EN (YL)− EN (YU )) ≥ 2εN

√
N)→ 0.
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to report a “pseudo-true” identified set.42 Another possibility notes that EN(YL) > EN(YU)

happens with non-negligible probability in large samples only when the parameter is point

identified with δ = E(YL) = E(YU), which implies corresponding estimators of δ. Unlike the

previous estimators which can be the empty set, this results in an estimate of the identified

set that is non-empty regardless of the degree of misspecification of the model, which may or

may not be a desirable property.

5.2. Overview of inference. Inference in partially identified models tends to present

additional challenges. First, there is a difference between inference on the identified set and

inference on the elements of the identified set. Such a consideration does not arise in point

identified models, when the identified set is a singleton.

One inference target is a confidence set for the identified set. A confidence set CN,α for

the identified set ΘI is defined to be a set-valued function of the data, that at least satisfies

the condition that lim infN→∞ P (ΘI ⊆ CN,α) ≥ 1 − α for specified α ∈ (0, 1). With this

definition, CN,α contains the identified set ΘI with at least repeated sampling probability

1 − α in large samples. This definition allows the confidence set to be conservative, since

the confidence set is allowed to contain the identified set with probability greater than the

nominal level 1 − α. Sometimes it is possible to establish a confidence set satisfies the

condition that limN→∞ P (ΘI ⊆ CN,α) = 1−α. With this condition, CN,α is an asymptotically

valid confidence set for the identified set, and not conservative.

Another inference target is a confidence set for the elements of the identified set. A

confidence set CN,α for the elements of the identified set ΘI at least satisfies the condition

that lim infN→∞ P (θ′ ∈ CN,α) ≥ 1−α for any θ′ ∈ ΘI . With this definition, CN,α contains any

given element of the identified set ΘI with at least repeated sampling probability 1−α in large

samples. This definition allows the confidence set to be conservative. Sometimes it is possible
42Empirical work can result in empty identified sets, particularly when there are many inequalities or
restrictions on the parameters, because models are generally mis-specified. Still, policy decisions are going to
be made, and the question is whether the audience can trust a particular estimate more than the alternative
estimates that are available.
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to establish a confidence set satisfies the further condition that limN→∞ P (θ′ ∈ CN,α) = 1− α

at least for some θ′. With this condition, CN,α is an asymptotically valid confidence set for

the elements of the identified set, and not conservative for those θ′.

A confidence set for ΘI treats ΘI per se as the object of interest. However, there can be

situations where the “true value” of the parameter θ0 is the object of interest. This suggests

constructing a confidence set for θ0 rather than ΘI . Of course, the true value necessarily

satisfies θ0 ∈ ΘI , so a confidence set for the elements of the identified set is guaranteed to

contain the “true value” θ0 with at least probability 1− α in repeated large samples. There

are also cases where a confidence set for the identified set is identical to a confidence set for

the true parameter.43 However and more generally, a confidence set for the elements of the

identified set is not guaranteed to contain all values of the parameter that are compatible

with the assumptions and the observed data. Essentially, a confidence set for the elements

of the identified set corresponds to “testing” individual specifications of θ for compatibility

with the assumptions and the observed data. By definition, a confidence set for the identified

set is also a confidence set for the elements of the identified set, but a confidence set for

the elements of the identified set is not necessarily a confidence set for the identified set.

Therefore, a confidence set for the identified set tends to be larger than a confidence set

for the elements of the identified set. Henry and Onatski (2012) provides a robust control

argument for preferring inference for the identified set.

In partially identified models, uniform validity of inference is important. The previous

conditions that characterized confidence sets concerned pointwise validity, where “pointwise”

means (implicitly) assuming a single fixed data generating process. Uniform validity of

confidence sets requires conditions that hold uniformly across a set of data generating

processes. A confidence set for the identified set is uniformly valid over P if it satisfies

the condition that lim infN→∞ infP∈P P (ΘI ⊆ CN,α) ≥ 1− α where P is a space of possible

data generating processes. This means that, for sufficiently large sample size, and then
43In likelihood settings with density pθ, any θ that belongs to the identified set is defined as one where
pθ = p0, the true data density. And so, for any such θ the LR statistic just depends on p0 (and of course an
estimator p̂ of p0).
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for any data generating process in P, the confidence set contains the identified set with

repeated probability approximately at least 1− α. Pointwise validity can be written with

quantifiers reversed: infP∈P lim infN→∞ P (ΘI ⊆ CN,α) ≥ 1− α. With pointwise validity, the

minimum sample size Nε such that P (ΘI ⊆ CN,α) ≥ 1 − α − ε for N ≥ Nε can depend on

the data generating process. With uniform validity, the minimum sample size Nε such that

P (ΘI ⊆ CN,α) ≥ 1−α−ε for N ≥ Nε cannot depend on the data generating process. In words,

pointwise validity says that for any given data generating process, there is a large enough

sample size such that the confidence set contains the identified set with at least probability

1−α. Possibly the sample size depends on the data generating process. A stronger condition

is that the same sample size is large enough such the confidence set contains the identified

set with at least probability 1− α, for any data generating process in P .

If a confidence set is not uniformly valid over P , then for any sample size, there is a data

generating process in P such that the confidence set does not contain the identified set with

at least probability approximately 1− α. Such a confidence set could still be pointwise valid

if, given any data generating process in P , there is a large enough sample size such that the

confidence set contains the identified set with at least probability 1 − α. This distinction

is de-emphasized in point identified models, because in many point identified models the

distinction between pointwise validity and uniform validity is negligible. See also Canay

and Shaikh (2017) for more on this point. Essentially, uniformity tends to fail, even if the

confidence set is pointwise valid, when for any sample size, it is possible to find a data

generating process in P such that the asymptotic approximation is not a good approximation

for that sample size. In particular, in moment inequality condition models, the number of

moment inequality conditions that hold as equalities is relevant for the asymptotic distribution

in many approaches to inference, and this depends discontinuously on the data generating

process, resulting in potential failures of uniformly valid inference. Uniform validity of a

confidence set depends on the specific construction of the confidence set, in addition to the

model in which the confidence set is used.
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The chapter discusses some approaches to inference in partially identified models. We will

start with the moment inequality approach, the criterion function approach, and the random

set approach. In many cases, these different approaches are just different perspectives on

the same underlying statistical problem. For example, the moment inequality approach is

a special case of the criterion function approach. The chapter also discusses the Bayesian

alternative to frequentist inference.

5.3. Moment inequality approach. Some empirical models imply that the true value

of the parameter θ0 satisfies restrictions of the form E(m(W, θ0)) ≥ 0, where m(·) =

(m1(·),m2(·), . . . ,mJ(·)) is a vector-valued function that is known by the econometrician.

Such restrictions are known as unconditional moment inequality conditions. See for example

Section 3. Correspondingly, the identified set is ΘI = {θ : E(m(W, θ)) ≥ 0}. Other empirical

models imply that θ0 satisfies restrictions of the form E(m(W, θ0)|X = x) ≥ 0 for all x.

Such restrictions are known as conditional moment inequality conditions. Correspondingly,

the identified set is ΘI = {θ : E(m(W, θ)|X = x) ≥ 0 for all x}. Any conditional moment

inequality condition implies the infinite set of unconditional moment inequality conditions

of the form E(m(W, θ0)g(X)) ≥ 0 for any non-negative function g(·). A similar approach is

taken, for example, in the textbook analysis of a linear model with point identification when

converting the conditional moment conditions of the form E(Y −Xβ0|X = x) = 0 that arises

from the assumption that Y = Xβ0 + ε and E(ε|X = x) = 0 into unconditional moment

conditions like E(X ′(Y −Xβ0)) = 0. Sometimes the g(·) is known as an instrumental function.

Much of the econometric theory literature on models with conditional moment inequalities

essentially converts the model into a model with unconditional moment inequalities. Although

moment inequality conditions are sometimes viewed as equivalent to partial identification,

there can be partially identification results that do not result in moment inequality conditions

in a natural way.

The combination of two moment inequality conditions E(me(W, θ0)) ≥ 0 and E(−me(W, θ0)) ≥

0 results in the moment equality condition E(me(W, θ0)) = 0. Therefore, moment equality
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conditions are a special case of moment inequality conditions. However, including moment

equality conditions as the combination of two moment inequality conditions often requires

particular care in the theoretical analysis, because it means that two elements of the vector

m(W, θ) are perfectly negatively correlated. Some inference approaches explicitly allow for

moment inequality conditions and moment equality conditions, treated separately. If moment

equality conditions are to be used alongside moment inequality conditions, it is important to

verify that the inference approach adequately accommodates this.

Generally, estimation of a model based on moment inequality conditions is straightforward.

The estimate of the identified set is the set of θ that satisfy the sample analogue of the

moment inequality conditions, possibly with the “expansion” discussed above. However, in

many cases such an estimator is biased in small samples towards finding a too-small identified

set, so it may be desirable to bias-correct the sample-analogue estimator, as discussed for

example in Haile and Tamer (2003), Kreider and Pepper (2007), Andrews and Shi (2013),

and Chernozhukov, Lee, and Rosen (2013). Kaido and Santos (2014) study efficiency bounds

when the moment inequalities and thus identified set is convex, finds the plug-in estimator

is consistent, and proposes a valid bootstrap. Bootstrap validity has been explored more

generally in moment inequality models, as discussed below.

Inference in moment inequality conditions is not straightforward. In unconditional moment

inequality condition models, the hypothesis that θ′ ∈ ΘI for a particular candidate value

of the parameter θ′ is equivalent to the hypothesis that E(m(W, θ′)) ≥ 0. Essentially, this

amounts to testing non-negativity of a particular finite-dimensional population mean. In

conditional moment inequality models, the hypothesis that θ′ ∈ ΘI for a particular candidate

value of the parameter θ′ is equivalent to the hypothesis that E(m(W, θ′)g(X)) ≥ 0 for any

non-negative function g(·). Essentially, this amounts to testing non-negativity of a particular

infinite-dimensional population mean. Consequently, inference in moment inequality models

involves many of the problems that arise in testing for non-negativity of a population mean.

Finally, in some instances, the moment inequalities can only be based on zero correlation
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between an unobservable and a covariate, in which case by construction there is a finite set

of unconditional moment inequalities.

One of the central difficulties is that the asymptotic distributions of the proposed test

statistics tend to be not pivotal, meaning that they depend on unknown features of the

data generating process. Before turning to the econometric theory issues, one particular

implication relevant for empirical research is that the critical value must be determined

for each candidate value of the parameter, a potentially computationally expensive step.

Generally, this problem becomes more serious with increasing numbers of moment inequality

conditions. Related computational problems tend to arise when the dimension of Θ is large

and when using a two-step estimator, with a first step that does something like estimating

Nash prices that go into the calculation of the profitability of different actions.

The asymptotic distributions of the proposed test statistics tend to depend on which of

the moment inequality conditions hold as equalities in the population, in the sense that

E(mj(W, θ′)) = 0 for certain j ∈ {1, 2, . . . , J}. In particular, this means that the asymptotic

distributions depend discontinuously on this unknown feature of the data generating process.

The moment inequality conditions that hold as strict inequalities tend to not influence the

behavior of the test statistic, essentially because the test statistics measure the violation

of the restrictions that E(m(W, θ′)) ≥ 0, and if a particular moment inequality condition

indeed holds strictly as E(mj(W, θ′)) > 0, then even with only modest sample sizes it will

be evident with near certainty that moment inequality condition is not violated. Of course,

the econometrician does not ex ante know whether E(mj(W, θ′)) > 0 or E(mj(W, θ′)) = 0

for any particular θ′ that satisfies all of the moment inequality conditions, and therefore the

asymptotic distributions of the proposed test statistics depend on unknown features of the

data generating process. This contrasts with textbook moment equality condition models á

la Hansen (1982), where the econometrician presumes that all moment equality conditions

hold as equalities by construction for the true value of the parameter.

One possible response to this problem is to find the “least favorable” asymptotic distribution

which results in the largest critical value across all relevant values of the unknown parameters,
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an approach taken for instance in Rosen (2008). Generally, the “least favorable” asymptotic

distribution corresponds to assuming, for purposes of calculating the critical value, that all of

the moment inequality conditions hold as equalities. This approach can result in critical values

that are “too large” resulting in conservative inference such that the resulting confidence sets

are “too large.” However, an important advantage is that this approach does not require

determining a different critical value for each value of the parameter. Another possible

response is to try to “estimate” which of the moment inequality conditions hold as equalities,

and impose that on the determination of the critical value, as in the generalized moment

selection approach of Andrews and Soares (2010). Andrews and Barwick (2012) compare

many of the proposed methods from the literature, and propose a recommended approach. By

taking a particular “two-step” approach that determines which moment inequality conditions

hold as strict inequalities based on a particular confidence interval for the moments relevant

for the moment inequality conditions, Romano, Shaikh, and Wolf (2014) are able to achieve

computational speed gains. Menzel (2014) and Chernozhukov, Chetverikov, and Kato (2019)

consider the problem of many moment inequality conditions, a common situation in empirical

practice where the model can imply more moment inequality conditions than there are

observations in the observed data to estimate the moment inequality conditions, including

possibly arising from conversion from unconditional moment inequality conditions.

The earlier results applied to models with unconditional moment inequality conditions,

but some models involve conditional moment inequality conditions. A set of conditional

moment inequalities can be converted into an infinite number of unconditional moment

inequalities, as done in Andrews and Shi (2013). The methods of Andrews and Shi (2013)

have been implemented in Stata as the cmi_test command in Andrews, Kim, and Shi (2017).

Andrews and Shi (2014) further allow for the possibility of a nonparametric or semiparametric

parameter, allowed to be different for different values of a conditioning variable. The choice

of test statistic is particularly important in moment inequality condition models. Armstrong

(2014, 2015) show some advantages of a particular Kolmogorov-Smirnov statistic. Aradillas-

López, Gandhi, and Quint (2016) and Lee, Song, and Whang (2018) are inference methods
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based on a one-sided Lp test. Chernozhukov, Lee, and Rosen (2013) study “intersection

bounds” which includes conditional moment inequalities, using a precision-corrected sup/inf

estimator of the bounds. The methods of Chernozhukov, Lee, and Rosen (2013) have been

implemented in Stata as the cmi_test command in Chernozhukov, Kim, Lee, and Rosen

(2015).

Uniform validity of inference is an important problem in models with moment inequality

conditions, following Imbens and Manski (2004). Uniform validity of inference concerns

whether tests reject true null hypotheses at (no more than) the nominal rate (in large samples)

even for the least favorable data generating process. The failure of uniformly valid inference

would imply that, for any sample size, there is a data generating process such that the test

rejects true null hypotheses at above the nominal rate, resulting in confidence sets that are

“too small.” Practically, failure of uniformly valid inference in models with moment inequality

conditions tends to happen when the parameter is actually point identified or has smaller

identified set such that the parameter is “almost” point identified. In particular, for any fixed

sample size, Imbens and Manski (2004) show a confidence interval with nominal 95% coverage

that indeed has (approximately) 95% coverage when the parameter is partially identified but

only 90% coverage when the parameter is point identified. This is a failure of uniformity since

the coverage is below the nominal rate when there is point identification. Therefore, much of

the more recent econometric theory literature takes special care to establish uniformly valid

inference.

Although it is common empirical practice to use a bootstrap or other resampling method

for inference, particularly in settings where other inference methods are not easily available

to the empirical researcher, it is important to note that standard bootstrap methods are

not valid in moment inequality methods. This is related to the invalidity of the bootstrap

in other settings with inequality constraints, as discussed in Andrews (2000) and Horowitz

(2019). However, various modified bootstrap methods are known to be valid, as in Bugni

(2010) and Canay (2010).
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Inference on functions of the parameters, or components of the parameters, in partially

identified models introduces additional challenges. In point identified models with an

asymptotically normal estimator, this can be accomplished based on using the delta method,

or just the corresponding component of the asymptotic distribution, respectively. Without the

possibility of such an “asymptotically normal” estimator in a partially identified model, that

approach is not possible in a partially identified model. Nevertheless, with a confidence set for

(the elements of) the identified set, it is possible to project that confidence set to any function

of the parameter, or component of the parameter. However, such a confidence set can have

coverage rates substantially above the nominal rate, particularly when the parameter has more

than just a few dimensions. Correspondingly, the power of the corresponding test would be low,

making it difficult to reject false hypotheses about the function/component of the parameter.

Bugni, Canay, and Shi (2017) and Kaido, Molinari, and Stoye (2019) have proposed methods

for avoiding conservativeness of confidence sets for functions/components of the parameter in

models with moment inequality conditions. With different additional “linearity” assumptions

on the structure of the moment inequalities, Cho and Russell (2018), Andrews, Roth, and

Pakes (2019), Flynn (2019), and Gafarov (2019) establish potentially computationally more

appealing confidence sets for objects of interest, among other contributions. It is worth

emphasizing that in a large class of models, it is possible to characterize the identified set

using solutions to linear programs. This linear program characterization of the identified is

helpful as it makes the computational problem (used to conduct inference for example) much

easier. See for instance Syrgkanis, Tamer, and Ziani (2017).

Misspecification in partially identified models can have effects on the results that can

be unexpected. Ponomareva and Tamer (2011) show that estimates of an assumed linear

model with partially identified parameters due to interval-censoring of the outcome do not

necessarily “approximate” a non-linear model, as would be the case in textbook ordinary

least squares analysis of a linear model. Furthermore, if the true data generating process is

non-linear, but the assumed model is linear, the result can be tight bounds on the parameters

of interest due to very few “linear functions” fitting in between the “non-linear bounds.” This
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suggests further reasons for only using credible assumptions, already a main theme of the

partial identification literature and a main driver for using moment inequality approaches.

5.4. Criterion function approach. Some empirical models can be characterized by a

non-negative objective function Q(θ) ≥ 0 such that the identified set is ΘI = {θ : Q(θ) = 0}.

For example, moment inequality conditions can be characterized by a criterion function with

those properties. If the true value of the parameter θ0 satisfies moment inequality conditions

E(m(W, θ0)) ≥ 0, then Q(θ) = ||min(E(m(W, θ)), 0)||2, where min(E(m(W, θ)), 0) is the

element-wise minimum of the elements of the vector E(m(W, θ)) and 0. If all elements of the

vector E(m(W, θ)) are non-negative, then Q(θ) = 0. If any element of the vector E(m(W, θ))

is negative, then Q(θ) > 0. Therefore, E(m(W, θ)) ≥ 0 if and only if Q(θ) = 0.

If there is a sample objective function QN(θ) that estimates Q(θ), then Chernozhukov,

Hong, and Tamer (2007) shows that ΘI,N = {θ : QN (θ) ≤ εN} estimates ΘI in the Hausdorff

distance when either εN = 0 or εN > 0 with εN → 0 at an appropriate rate, depending on

the properties of the objective function. For example, with moment inequality conditions,

QN(θ) = ||min(EN(m(W, θ)), 0)||2. Roughly, connecting the criterion function approach to

the previous discussion of estimating the identified set ∆I when ∆I is an interval, the εN = 0

case corresponds to ∆̂I,N , and εN → 0 case corresponds to ∆̂ε
I,N .

Based on determining a critical value cN,α that accounts for the sampling variability of

supθ∈ΘI
QN (·), Chernozhukov, Hong, and Tamer (2007) show that CN,α = {θ : QN (θ) ≤ cN,α}

is a valid pointwise confidence set for the identified set in the sense that lim infN→∞ P (ΘI ⊆

CN,α) ≥ 1 − α. The critical value can be determined either by subsampling or based

on asymptotic approximations for particular forms of the objective function. Similarly,

based on determining a critical value cN,α that accounts for the sampling variability of

QN(θ), Chernozhukov, Hong, and Tamer (2007) show that CN,α = {θ : QN(θ) ≤ cN,α}

is a valid pointwise confidence set for the elements of the identified set in the sense that

lim infN→∞ P (θ′ ∈ CN,α) ≥ 1− α for any θ′ ∈ ΘI . Romano and Shaikh (2008) and Romano

and Shaikh (2010) also consider inference for partially identified models with an objective
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function representation, respectively considering inference for the elements of the identified

set and for the identified set. Their approach is proven to be uniformly valid, avoids the need

for estimating the identified set when determining the critical value, and can be smaller while

maintaining coverage rates. More recently and similar to the above, Chen, Christensen, and

Tamer (2018) consider inference on the identified set that is defined as the maximizer of an

objective function (this covers GMM and likelihood for example). However, the construction

of the confidence set is based on simulation draws from a quasi posterior that is constructed

by combining this objective function with a prior. In some instances, this approach leads to

easy to compute confidence sets.

5.5. Random set approach. A key insight and distinguishing feature of the random set

approach to partial identification is the recognition that many models exhibiting partial

identification can be represented as involving a set of random variables that are compatible

with the assumptions and the observed data. Essentially, a set of random variables is a

random set. The random set approach to partial identification has been summarized by

Beresteanu, Molchanov, and Molinari (2012), and Molchanov and Molinari (2014, 2018). Early

and influential work in this approach includes Beresteanu and Molinari (2008), Beresteanu,

Molchanov, and Molinari (2011), and Beresteanu, Molchanov, and Molinari (2012).

It is possible to give enough basic background relevant for the purposes of this chapter

without getting too much into the technical details of random set theory. See Molchanov

(2017) or the above cited works for the technical details. Essentially, a “random closed set” X

is a closed set that informally is “random” (i.e., a mapping from the elements of an underlying

probability space to the space of closed sets) and, more formally, is “measurable” in the sense

that {X ∩K 6= ∅} is a measurable event with respect to the underlying probability space

for any given compact set K. In other words, the probability that X intersects any given

compact set K is defined. The probability that X intersects K is known as the “hitting”

probability. Then, a “selection” of a random set X is a random quantity x, also a mapping

from the elements of the underlying probability space, whose realization is contained in

89



X for every realization of the underlying probability space. Informally, the random set

contains the random selections. More formally, Artstein’s inequality says that the set of

distributions of the set of selections of a random set are exactly those distributions F such

that F (K) ≤ P ({X ∩K 6= ∅}) for all compact sets K. Essentially, this characterizes the

possible distributions of the “selection” associated with a random set. Finally, the Aumann

expectation of a random set X is the closure of the set of expected values of the integrable

selections of X. There exist laws of large numbers and central limit theorems for random

sets.

Random sets relate to partial identification because often in partially identified models it

is relevant to work with sets of random variables, hence random sets. For example, suppose

an unobserved random variable Y is known to satisfy the inequality conditions YL ≤ Y ≤ YU

with probability 1, where (YL, YU) are observed random variables. Then, Y is a selection

from the random set [YL, YU ].

Molinari (2020) is a review of the partial identification literature largely from the perspective

of random set theory. Beresteanu and Molinari (2008) prove validity of proposed inference

methods for partially identified models in which the identified set can be given a suitable

random set representation. Beresteanu, Molchanov, and Molinari (2011) characterize the

sharp identified set for a class of models with convex moment predictions in terms of random

set theory, which in particular holds for many models based on game theory. Galichon

and Henry (2011) use optimal transport theory, related to random set theory, to establish

a characterization of the sharp identified set in discrete games with pure strategy Nash

equilibria with distributional assumptions on the unobservables. As detailed in that paper,

the introduction of core determining classes reduces the computational burden. Henry, Méango,

and Queyranne (2015) prove a different characterization of the identified set, allowing for

combinatorial optimization methods, which further reduces computational burden. Bontemps,

Magnac, and Maurin (2012) consider linear models with some emphasis on instrumental

variables.
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5.6. Bayesian approach. In point identified models, particularly parametric or semi-

parametric models, frequentist confidence sets and Bayesian credible sets are essentially

the same quantity. That is, for a parameter in a point identified model, a (1−α)% confidence

set is essentially the same as a (1− α)% credible set. One implication is that the prior used

in the Bayesian analysis has negligible impact on the posterior in large samples. Essentially,

the data “overwhelms” the prior in large samples. Another implication is that reported

frequentist confidence sets can be used as a Bayesian credible set, and vice versa.

In a partially identified model, the prior can influence the posterior even in large samples,

in particular by shaping the posterior distribution on the identified set. This can happen

because the data only is informative about the location of the identified set, but not the

location of the true value of the parameter within the identified set, and so the prior can still

play a role in shaping the posterior on the identified set. In some extreme cases when the data

reveals nothing about the parameter, the prior and posterior can be exactly the same, as in

Poirier (1998). This means, in particular, that the Bayesian analysis of a partially identified

model can appear to result in information about or even “rule out” certain parameter values

because of prior information against those parameter values, rather than information coming

from the data. In particular, Moon and Schorfheide (2012) proved that a (1− α)% credible

set tends to be “too small” to be a (1 − α)% confidence set. Liao and Jiang (2010) study

in particular the posterior for a parameter that is partially identified by moment inequality

conditions, requiring a limited information likelihood approach to deal with the fact that

such a model does not specify a distribution of the data, and come to the same conclusion. It

is also possible to test the moment inequality conditions, without a prior over the parameter,

as in Kline (2011).

Therefore, Bayesian analysis of partially identified models comes with certain tradeoffs.

First, partial identification does not necessitate any change to the Bayesian approach to

inference. Partial identification does necessitate changes to frequentist approaches to inference.

Simply as a practical matter, this is a substantial advantage of the Bayesian approach. The

posterior can still be derived as usual in partially identified model. The posterior can have
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potentially undesirable properties, such as depending on the prior even in large samples, but

it is nevertheless the posterior. There is no definitional reason why a posterior must not

depend on the prior in large samples, or indeed have any other particular property, other

than following from the appropriate Bayesian updating logic. To this point, Lindley (1972,

page 46) famously wrote that “unidentifiability causes no real difficulties in the Bayesian

approach.” Of course, as discussed also below, if the prior is “wrong” in some sense then the

posterior will also be “wrong.” On the other hand, applying frequentist inference methods for

point identified models to partially identified models is necessarily incorrect.

Second, if the prior information really is believed by the econometrician, at least to the

same degree of belief as the econometrician has in other parts of the model like the likelihood,

it can be useful to include the prior information in the analysis. Indeed, not including credible

prior information can result in unnecessarily learning less about the parameter than it is

possible to learn. The chapter returns to this point later, as a discussion about assumptions

in general. Of course, if the prior information is not credible, then it should not be used, and

Bayesian analysis based on such prior information can be viewed with skepticism particularly

in partially identified models where the data do not dominate the prior leading to poor results.

It may be relevant to take special care to be clear that the results depend on the prior beliefs,

but that would be true also for Bayesian analysis of point identified models in small samples

where the data does not dominate the prior. It may be relevant to report both an estimate

of the identified set and also the posterior, as suggested by Moon and Schorfheide (2012).

Another possibility is to report Bayesian inference about the identified set, rather than about

the parameter, as in Kline and Tamer (2016).

Third, many of the complications with frequentist inference stem from the fact that the

asymptotic distribution of the proposed test statistics depends discontinuously on unknown

properties of the data generating process. Put simply, this concerns repeating sampling

behavior, and so this is not important for the Bayesian analysis. One particular advantage is

that the Bayesian approach does not involve the determination of a critical value, which can

be computationally burdensome in some frequentist approaches to inference, especially when
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a different critical value must be determined for each value of the parameter because of the

discontinuities in the asymptotic distribution. A related advantage of the Bayesian approach

is that it faces essentially no additional difficulties when doing inference on functions of the

parameters or components of the parameters.

As with frequentist inference in partially identified models, there is a choice between

Bayesian inference for the identified set and Bayesian inference for the elements of the

identified set. Standard implementations of Bayesian inference will result in the latter, in

that they result in a posterior for the parameter. However, it is also possible to consider

Bayesian inference for the identified set. If so, a few different approaches are possible. Kline

and Tamer (2016) is based on the existence of a representation of the identified set that is

a mapping from a point identified parameter (the reduced form) to the identified set for

the parameter of interest, a feature of many partially identified models. This approach has

potential computational advantages compared to other (frequentist) inference methods, as

it simply requires draws from the posterior of the point identified model and computation

of the identified set as a function of the point identified model. In that setup, the prior

is placed on the point identified parameter, which in many cases are summary statistics

of the data, like the probabilities of different market outcomes in an entry game model.

By using an appropriate prior/likelihood for discrete outcomes, like entry decisions, the

model automatically respects the fact that the entry probabilities must be valid probabilities.

It is straightforward also in that setup to use “weak priors” or priors based on minimal

distributional assumptions, for the point identified parameter, like the Bayesian bootstrap.

In addition, in models based on likelihoods or objective functions such as GMM (and

moment inequalities), and in cases where an explicit reduced form mapping may not be

available, Chen, Christensen, and Tamer (2018) provides a quasi-Bayesian approach that

allows the econometrician to draw via Monte Carlo simulations from a proposed quasi-

likelihood and then use these draws to construct confidence regions for the identified set.

These confidence regions have attractive large sample (frequentist) coverage properties and

work well in practice.
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Liao and Simoni (2019) is based on a convex identified set, a feature of many partially

identified models, and is based on the support function of the identified set. This approach

also can have computational advantages in particular due to the convexity. Giacomini and

Kitagawa (2021) take a multiple-prior robust Bayesian approach, focusing on convex identified

sets or the convex hull of non-convex identified sets.

6. Implementation of partial identification

6.1. Computational considerations. In point identified models, the computational prob-

lem associated with estimation of the parameter often boils down to finding the solution to

an equation of the form QN(θ) = 0 or finding the solution to a maximization problem of the

form maxθ∈Θ QN(θ). Although this can be a computationally intensive problem, there is a

vast literature in computer science providing algorithms for solving these problems. As a

practical matter, this means that an empirical researcher can in many cases simply apply

existing implementations of the algorithms to the relevant problem.

In partially identified models, the computational problem often boils down to finding all of

the solutions to an equation of the form QN(θ) = 0, or perhaps QN(θ) ≤ εN , or finding all

of the (approximate) solutions to a maximization problem of the form maxθ∈Θ QN(θ). This

is the characterization of a partially identified model from the criterion function approach

from Section 5.4, which nests other setups including moment inequality models from Section

5.3. As a consequence, it is not possible anymore to simply apply existing implementations

of solver algorithms or optimization algorithms, when such algorithms return only a single

solution. The computational approaches in partially identified models depends on the specifics

of the model.

One possibility is a grid search, or guess-and-verify approach, that essentially amounts to

checking, for many candidate values θ′ of the parameter, whether QN(θ′) ≈ 0 or QN(θ′) ≈

maxQN (θ) as appropriate for the model. This is slow, depending in part on the computational

cost of evaluating QN(·) and in part on the dimension of θ which influences the number of
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values of θ′ that need to be checked. Inference with this approach is even slower, in particular

when the inference method requires determining a different critical value for each candidate

value of the parameter. Inference methods that do not have this feature are therefore of

particular relevance when it is computationally costly to evaluate QN(·) and/or when θ has

more than just a few elements. This grid search can focus on, or at least begin with, regions of

the parameter space that are reasonable based on previous studies. In some cases, a non-sharp

identified set can be easier to compute (for example because it is based on fewer moment

inequality conditions, or has a simple closed form representation), which is another starting

point for the grid search for the sharp identified set. Also, the grid search is embarrassingly

parallel, and thus computational speedup is almost directly proportionate to the number of

processing units in a parallel computing environment.

Another possibility is available when it is possible to determine a representation of the

identified set that is less computationally costly to evaluate. One such case is when the

identified set can be written directly in terms of population means of the observable data,

for example ΘI = {θ : E(YL) ≤ θ ≤ E(YU)}. In such a case, the computational burden is

reduced essentially to zero, at least for estimation. Inference can still be slow for the reasons

outlined above. Another such case is when the identified set can be written in terms of a

less costly computational problem, for example a linear programming problem rather than a

non-linear programming problem.

In instances where computation is overly burdensome, it is possible to take other approaches.

In particular, it is possible to work with non-sharp identified sets that are easier to compute,

at the cost of learning less about the parameter. For example, in moment inequality models,

computational cost is generally increasing in the number of moment inequality conditions

used. If the econometrician uses fewer moment inequality conditions than are actually implied

by the model, there can be a computational speedup at the cost of learning less than would be

learned if all moment inequality conditions were used. Based on understanding the model, it

may be possible to drop the moment inequality conditions that provide less information about

the parameter. Indeed, in some models, some moment inequality conditions are redundant, in
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that they are implied by other moment inequality conditions, and therefore they provide no

additional information about the parameter but do impose a computational cost when used.

6.2. Simulation based approaches. In some instances, models can be estimated using

simulation based methods that are shown to be theoretically attractive and computationally

simple. We highlight two approaches that can be used: Kline and Tamer (2016) and Chen,

Christensen, and Tamer (2018).

In Kline and Tamer (2016), there is an explicit mapping from a reduced form parameter

(often summary statistics of the data) to the identified set and Bayesian approaches are then

used to map the posterior of these reduced form parameters to the identified set. For instance,

consider moment inequalities of the form

P (Y |X = x) ≤ m(x; θ)

where data on (Y,X) are available, m(·) is a known (up to θ) mapping and the parameter

of interest is θ. For instance, P (Y |X = x) can be the observed probabilities of the entry

decisions in an entry game. The identified set is ΘI = {θ : P (Y |X = x) ≤ m(x; θ) ∀x ∈ SX}

where SX is the support of X. Suppose also that SX is a finite set. The above maps P (Y |X)

to ΘI via the above inequalities. The basic idea of Kline and Tamer (2016) is to first construct

posterior distributions on the finite dimensional vector P (Y |X) and use draws from this

posterior to construct a posterior distribution for ΘI via the identified set mapping.

In Chen, Christensen, and Tamer (2018) on the other hand, the starting point is an optimal

objective function L(θ). This can be a likelihood, an optimally weighted GMM, or optimal

moment inequality objective function. The identified set of interest here is

ΘI =
{
θ ∈ Θ : L(θ) = sup

ϑ∈Θ
L(ϑ)

}
.

This ΘI may be a proper (nonsingleton) set or a singleton. Similar to Chernozhukov and

Hong (2003), Chen, Christensen, and Tamer (2018) uses draws from a quasi posterior that

uses the sample analog LN (θ) of L(θ). These draws are based on the QLR objective function
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QN(θ) = 2N [LN(θ̂) − LN(θ)] where LN(θ̂) = supθ∈Θ LN(θ) + op( 1
N

). So, to construct a

confidence set for ΘI for instance, Chen, Christensen, and Tamer (2018) recommends one to

obtain draws {θ1, . . . , θB} from the quasi-posterior ΠN :

Πn(A | data) =
∫
A e

NLN (θ)dΠ(θ)∫
Θ e

NLN (θ)dΠ(θ) , A ∈ B(Θ)

for some prior Π on Θ, the parameter space. Then, a 100α% MC confidence set for ΘI is:

Θ̂α = {θ ∈ Θ : LN(θ) ≥ ζmcN,α}

with ζmcN,α being the (1− α) quantile of {LN(θ1), . . . , LN(θB)}.

For instance, for the two player entry game in Section 4 above, the likelihood of the i-th

observation based on normal errors (similar to Equation 8 above):

κ00(θ) = P (ε1 ≤ −β1, ε2 ≤ −β2)

κ11(θ) = P (ε1 ≥ −β1 −∆1, ε2 ≥ −β2 −∆2)

κ10(θ) = s× P (−β1 ≤ ε1 ≤ −β1 −∆1, −β2 ≤ ε2 ≤ −β2 −∆2)

+ P (ε1 ≥ −β1, ε2 ≤ −β2)

+ P (ε1 ≥ −β1 −∆1,−β2 ≤ ε2 ≤ −β2 −∆2)

where s denotes the equilibrium selection probability which is here treated as a parameter

to be estimated. It is clear that the above choice probabilities do not point identify the

parameter vector θ = (β1, β2,∆1,∆2, ρ, s) where ρ is the correlation of the normal errors (nor-

malized to have variance 1). The likelihood of the i-th observation (D00,i, D10,i, D11,i, D01,i) =

(d00, d10, d11, 1− d00 − d10 − d11) is:

l(θ) = [κ00(θ)]d00 [κ10(θ)]d10 [κ11(θ)]d11 [1− κ00(θ)− κ10(θ)− κ11(θ)]1−d00−d10−d11

The objective function L(θ) that is used in the simulation procedure above would then be

the likelihood of the data. Simulation and empirical results for this model are provided in
97



Chen, Christensen, and Tamer (2018) where sequential Monte Carlo algorithms are used to

obtain the sequence of draws.

More generally, as long as one obtains an optimal objective function such as a likelihood,

one can then use the above quasi posterior to construct valid frequentist confidence sets44 for

ΘI .

6.3. Reporting empirical results from a partially identified model.

6.3.1. The overall identified set, marginal identified sets, or the identified sets for objects

of interest. In partially identified models, as with point identified models, it is common

in empirical practice to report results for individual components of the parameter. If

θ = (θ1, θ2, . . . , θK) is the parameter of the model, the identified set for θ is ΘI and the

identified set for any individual component θk is ΘI,k. It is common empirical practice to

report the identified sets ΘI,k, for example the identified sets of the coefficients of a linear

function that parameterizes some important part of the model, like the utility function.

The collection of the identified sets ΘI,k for all individual components of the parameter

contains less information about the parameters than does the identified set ΘI for the overall

parameter. When ΘI is known by the econometrician to be the Cartesian product of ΘI,k’s,

the information contained in the ΘI,k’s is the same as the information contained in ΘI .

Otherwise, in general, ΘI contains information about restrictions on the parameter across

components of the parameter: certain specifications of some components of the parameter

can imply restrictions on other components of the parameter.

In such cases, it can be useful for empirical research to report ΘI , or at least the identified

set for relevant combinations of the components of the parameter. For example, if θ1 and

θ2 are of particular interest, it can be useful to report the identified set for (θ1, θ2), rather

than the identified set for θ1 and the identified set for θ2. If the audience of the empirical

research has prior beliefs about θ1, reporting the identified set for (θ1, θ2) allows the reader to
44Chen, Christensen, and Tamer (2018) contains procedures to construct confidence sets for subsets of θ.
Also, Chen, Christensen, and Tamer (2018) contains a simple grid search based procedure (no simulation
draws required) that allows one to obtain confidence intervals on scalar subvectors of θ (such as ∆1) by
comparing a profiled version of the objective function to a χ2 cutoff.
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draw conclusions about θ2. In particular, if the audience has information that restricts θ1 to

be within a proper subset of ΘI,1, which in particular could happen if some other empirical

research reports a narrower identified set for θ1, the audience can use that combined with the

identified set for (θ1, θ2) to come up with an identified set for θ2 that is a proper subset of

ΘI,2. For example, in the context of the model of market entry from Section 4, reporting the

identified set for (β1,∆1, β2,∆2) makes it possible for the audience to use information about

β1 (the effect of observable characteristics of the firms and the market on profits) to draw

conclusions about ∆1 (the competitive effect of entry on profits), for example.

If θ has one, two, or three real-valued components, then it is possible to visually report

the identified set for θ. If θ has more than three real-valued components, or if θ contains

components that are not real-valued (e.g., a distribution of an unobservable), then it can be

much more difficult to visually report the identified set for θ. One possibility is to partition θ

into θ = (θ(1), θ(2)), where θ(1) contains at most three real-valued components. Then, it is

possible to report a collection of identified sets for θ(1) at various specified values for θ(2).

This can demonstrate to the audience how the identification region of θ(1) depends on θ(2).

This consideration is unique to partially identified models. In point identified models, the

collection of estimates of all individual components θk is exactly as much information as

an estimate of θ. This is a trivial observation, but contrasts with the situation in partially

identified models.

In some cases, it is relevant to report the identified set for some other object of interest.

One such case is the identified set for counterfactual outcomes, perhaps under alternative

policy interventions. Counterfactuals in models with incompleteness, for example multiple

equilibria, present particular questions even setting aside partial identification, as discussed

in Section 6.3.2. Other such cases include other functions of the parameters, for example

marginal effects in non-linear models. In all such cases, inference methods that accommodate

working with functions of the parameter, rather than just the parameter itself, are necessary,

and were discussed in Section 5.
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6.3.2. Counterfactuals in models with incompleteness and/or multiple equilibria. Often, par-

tial identification arises in models with incompleteness and/or with multiple equilibria.

Regardless of the point identification or partial identification of the parameters of the model,

counterfactual predictions in these models require that the econometrician state how the

counterfactual outcomes are determined in cases of incompleteness and/or multiple equilibria.

Obtaining predictive distributions for the purposes of evaluating policy counterfactuals is an

important component of any applied work in economics and naturally the ability to provide

model anchored counterfactuals using data is the natural next step for any inference approach.

One possibility in the current setup is to report counterfactual predictions that make

no assumption on the selection mechanism. A necessary implication of this is that the

counterfactual outcomes can only be predicted to be within some bounds, corresponding

to the multiple equilibrium outcomes. In general, this approach sticks most closely to the

conclusions from the theoretical model, but it may be desirable to consider approaches that

result in tighter counterfactual predictions. In addition, enumerating the set of equilibria may

be computationally intensive and can be totally impractical in some models. This problem

is not generic to partially identified or moment inequality models and are more a function

of prediction in models with multiple equilibria. Generally in these models, counterfactual

predictions will be partially identified unless the selection mechanism is point identified (and

assumed to also apply to counterfactuals).

Another possibility is to use the identified set for the selection mechanism to refine the

counterfactual predictions. In some models, this might entail using point identification

of the selection mechanism. However, caution is warranted with this approach. Relative

to the utility functions, it is comparatively less clear whether the selection mechanism is

policy-invariant (e.g., Lucas (1976)), and as such it may be a concern that the selection

mechanism in the observed data is not reflective of the selection mechanism in counterfactual

worlds. Fundamentally the problem is we don’t know what causes the observed selection, so

we don’t know if the counterfactual will change the selection.
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With the aim of tighter counterfactual predictions, another possibility is to report coun-

terfactual predictions using the assumption of a known, specific selection mechanism. If

the model parameters are partially identified, the counterfactual predictions generally will

also be partially identified, even with the assumption of a specific selection mechanism. In

some cases, counterfactual outcomes allowing for any selection mechanism can be bounded

by the counterfactual outcome based on a specific selection mechanism. For example, the

counterfactual outcome of a particular firm is necessarily less than the counterfactual outcome

in the case when the selection mechanism selects the equilibrium that maximizes that outcome.

In that circumstance, using counterfactual predictions based on a specific selection mechanism

can simplify the interpretation or computation of the results, and does not change what

information the econometrician is reporting. In some cases, the assumption of a known

selection mechanism can be used in the identification strategy for model parameters; in other

cases, the assumption of a known selection mechanism can be used only for the purposes of

counterfactual predictions. See for example the discussion in Section 4 for assumptions on

the selection mechanism.

Yet another possibility is to use some more theoretically motivated way of selecting among

the multiple equilibria. Lee and Pakes (2009) suggest using learning models, specifically

either a best-response dynamics model of learning or a fictitious play model of learning.

By computing which equilibria these learning models converge to, given the primitives of

the underlying model, it is possible to come up with counterfactual predictions in response

to a policy intervention, particularly when the learning process “begins” at a reasonable

“pre-intervention” point. Note though that in these models it is likely that this learning

dynamics converges to a distribution of equilibria, assigning probabilities to the different ones.

So, one may be able to present this distribution over equilibria or moments of it. See also

Wollmann (2018). Jun and Pinkse (2020) consider multiple approaches for point prediction of

counterfactual outcomes in a complete information game, along the lines of those considered

in Section 4, ultimately recommending a maximum entropy approach. Essentially, the

maximum entropy approach makes predictions based on the specification that the unknown
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selection mechanism is as close to the uniform distribution as possible given the assumptions

and observable data, since the uniform distribution maximizes entropy when there are not

constraints.

7. Conclusions

Compared to point identification results, partial identification necessarily results in the

econometrician learning less about the object of interest. In some applications, this can imply

that there are equivocal answers to major qualitative questions like whether a particular

policy intervention will have a positive effect or negative effect on targeted outcomes, with

the answer being that both a positive effect and a negative effect are compatible with the

assumptions and the data. In other applications, this can imply that there are definitive

answers to major qualitative questions like whether a particular policy intervention will

have a positive effect or negative effect on target outcomes, yet less equivocal answers to

quantitative questions like the magnitude of the effect of the policy intervention.

Manski (2003, page 1) and Manski (2009, page 3) has referred to the tradeoff between

the strength of the assumptions and the credibility of the results as the Law of Decreasing

Credibility. Further, almost by definition, strictly weaker assumptions are simultaneously

weakly more credible and result in learning weakly less about the objects of interest.45

Generally, empirical research tries to achieve the twin goals of being credible and coming

to definitive conclusions. Unfortunately, as above, there is generally some tradeoff between

these goals. Prioritizing point identification entails a very strong position on the tradeoff

between the credibility of the assumptions and the definitiveness of the empirical findings.

Although it can be good for researchers to find the strongest assumptions that are credible in

a given empirical setting, it is not clear that should necessarily lead to learning a lot about the
45However, there are important instances where strictly weaker assumptions are strictly more credible and
yet result in learning the same amount about the objects of interest. In those instances, essentially there
is a free lunch. One familiar example of this phenomenon is when point identification can be established
under both weaker and stronger assumptions, often with the point identification result based on stronger
assumptions appearing in the literature before the point identification result based on weaker assumptions.
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objects of interest. It can be an important result to show that under the strongest credible

assumptions, not much can be learned about the objects of interest. Further, particularly for

identification strategies that are constructive, it can be possible to report and focus on “why”

not much can be learned about the objects of interest and, perhaps, correspondingly collect

additional data. For instance, if some sort of “non-response” is an important factor, then

the econometrician can consider whether it would be possible to incentivize higher response

rates (e.g., Horowitz and Manski (1998)). Research that provides guidance for collection of

more informative data can be an important contribution to the literature. Moreover, in some

cases, the only known identification strategy is a partial identification strategy.

On the other hand, partial identification results are not per se necessarily better than point

identification results. Again, there is a tradeoff between assumptions and conclusions. That

tradeoff does not necessarily favor using weaker assumptions in all cases. Reporting identified

sets based on unnecessarily weak assumptions can lead to unnecessarily pessimistic conclusions

about the inability to learn much about the object of interest. Even if an assumption is at best

“approximately” true, it can be worthwhile to use that assumption as an approximation, as

compared to avoiding the use of that assumption entirely. It is not necessarily good research

practice to avoid using credible assumptions, or reasonable assumptions, or assumptions

that are motivated by economic theory simply for the purpose of not using assumptions.

On the basis that assumptions and data are twin inputs to the empirical research finding,

avoiding using credible or reasonable assumptions would be roughly the same as avoiding

using imperfect but reasonable data.

It is also important to alert empirical researchers using moment inequalities to the problem

of misspecification. Again, the motivation for the use of weak assumptions is the tradeoff

between the strength of assumptions and credibility of the results. However, moment

inequality models in general can still be misspecified. In that case, since the “true” identified

set is empty (because the intersection of these moment inequalities is empty), so estimates

from such (misspecified) models (especially ones that use many moment inequalities) appear

to be “tight” and so researchers in these cases can get point-like estimates in a partially
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identified model. A note of caution here is in order. Empirical researchers using these models

should try to probe as to whether these estimates are sensitive to the choice of the set of

moment inequalities used for instance,46 or other specification of the model. The theoretical

literature47 on misspecification in econometrics and especially in partially identified models

and moment inequality models is not as developed and we view work there as important

given its relevance to empirical work.

Another issue is that software implementations of the methods for estimation and inference

in partially identified models are limited. Recent implementations in Stata include the work of

Chernozhukov, Lee, and Rosen (2013) in clrbound and related commands in Chernozhukov,

Kim, Lee, and Rosen (2015), the implementation of Manski and Pepper (2000) and related

papers in tebounds in McCarthy, Millimet, and Roy (2015), and the implementation of

Andrews and Shi (2013) in cmi_test in Andrews, Kim, and Shi (2017). More recently,

computationally simpler inference approaches such as Chen, Christensen, and Tamer (2018),

Chernozhukov, Chetverikov, and Kato (2019), Cox and Shi (2019), Kaido, Molinari, and

Stoye (2019), and Kline and Tamer (2016) can be used for both full and subvector inference.

Overall, in this chapter, we highlighted approaches to identification and inference in

models in Industrial Organization with partial identification and/or moment inequalities.

The attractiveness of these methods from an applied econometrics perspective is that the

econometrician is able to learn about the parameters in models of interest without using the

strong assumptions required for these models to be point identified. Rather, the methods

(moment inequalities or others) are derived directly from optimizing behavior, are built on

assumptions that are theoretically motivated, and econometric methods are available to

provide theoretically attractive inference results.

46For instance, one can examine whether the estimates change substantially when using a different set of
moment inequalities. This usually is a sign that the model is misspecified and as with misspecified models in
general, different moments estimate different parameters (or pseudo-true value). So, care should be taken
when comparing estimates from different sets of (misspecified) moment inequalities as these may be estimating
different parameters.
47For some work on this, see Ponomareva and Tamer (2011) and Andrews and Kwon (2019).
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