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1 Introduction

To what extent did an expansion and contraction of credit drive the 2000s housing boom

and bust? This question is central to understanding the dramatic movements in housing

markets that precipitated the Great Recession and to the effectiveness of macroprudential

policy tools, yet more than a decade later there is no consensus on its answer. Some

papers, such as Favilukis, Ludvigson, and Van Nieuwerburgh (2017), argue that changes

in credit conditions can explain the majority of the movements in house prices in the

2000s.1 In contrast, papers such as Kaplan, Mitman, and Violante (2020) argue that credit

conditions explain virtually none of the boom and bust in house prices, which are instead

dominated by changes in beliefs.2

This paper makes sense of these divergent findings by elucidating the source of dis-

parate results and quantitatively assessing the role of credit in driving the 2000s housing

boom and bust.3 Our analysis proceeds in four steps. First, we intuitively illustrate why

existing models are at odds. Second, we develop and implement an empirical strategy

to estimate where reality falls on the spectrum of possible models. Third, we construct a

modeling framework flexible enough to nest this spectrum and match our empirical find-

ings. Fourth, we use our calibrated model to quantify the role of credit changes in driving

the 2000s housing boom and bust.

To begin, we show that the key difference between these disparate findings is the de-

gree to which credit insensitive agents can absorb credit-driven demand by constrained

1Favilukis et al. (2017) find that 60% of the rise in price to rent ratios can be explained by credit alone
and all of the rise can be explained by a combination of credit and business cycle shocks.

2For more examples, Landvoigt, Piazzesi, and Schneider (2015), Greenwald (2018), Guren, Krishna-
murthy, and McQuade (2020), Garriga, Manuelli, and Peralta-Alva (2019), Garriga and Hedlund (2020),
Garriga and Hedlund (2018), Justiniano, Primiceri, and Tambalotti (2019), and Liu, Wang, and Zha (2019)
analyze models that imply credit conditions played a key role in the boom and bust, while Kiyotaki,
Michaelides, and Nikolov (2011) study a model in which credit conditions played only a limited role.

3Since credit standards are endogenously set by lenders, the division between credit factors and other
factors may not be obvious. For example, overoptimistic beliefs can both raise house prices on their own,
and cause lenders to relax credit standards (Foote, Gerardi, and Willen (2012)). In this paper, we define
the role of credit to be the difference in outcomes between what occurs when credit conditions change
compared to a counterfactual in which credit conditions were exogenously held fixed, regardless of the
ultimate cause of the improvement in credit conditions.
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agents, which in turn depends on the degree of segmentation in housing markets. This

mechanism is clearest and most important in the rental market. In models with perfectly

segmented rental markets (most commonly, there is no rental market), favorable credit

conditions increase demand for housing by borrowers who compete with each other for

the same properties, bidding up house prices. In contrast, models with perfectly inte-

grated rental markets feature deep-pocketed landlords who are willing to trade an un-

limited amount of housing at a price equal to the present value of rents. Since landlords

are assumed not to use credit and credit has little effect on rents, changes in credit con-

ditions do not influence landlords’ reservation price, and the price is effectively fixed.

As a result, a credit expansion leads many households to buy housing from landlords,

increasing the homeownership rate but not house prices.

The vast majority of models in the literature fall under one of these two paradigms,

which can be represented by perfectly inelastic and perfectly elastic “tenure supply”

curves in price-rent ratio versus homeownership rate space. These tenure supply curves

reflect the relative price schedules at which landlords are willing to supply owned rela-

tive to rented housing at a given amount of total housing supply and are distinct from the

absolute supply of housing via the construction sector. In this paper, we allow for the pos-

sibility of intermediate levels of frictions between these two extremes, with the relative

strength of the price-rent and homeownership responses determined by the slope of the

tenure supply curve. This slope consequently provides a new and important empirical

moment to be matched by any model seeking to study the influence of credit on house

prices.

To measure the slope of the tenure supply curve, we follow the traditional approach

of using demand instruments. We estimate this slope as the relative elasticity of the price-

rent ratio to an identified credit shock, compared to the elasticity of the homeownership

rate to that same shock. For our identified credit shock, we look to the existing litera-

ture for three different identification strategies. The first and most statistically powerful

approach follows Loutskina and Strahan (2015) (hereafter LS) in instrumenting for local

2



credit using differential city-level exposure to changes in the conforming loan limit. The

second approach follows Di Maggio and Kermani (2017) (hereafter DK) in exploiting the

2004 preemption of state-level anti-predatory-lending laws for national banks by the Of-

fice of the Comptroller of the Currency. The third and final approach follows Mian and

Sufi (2019) (hereafter MS) who follow Nadauld and Sherlund (2013) in using differential

city-level exposure to a rapid expansion of the private label securitization market through

heterogeneity in bank funding sources.

Despite relying on different sources of identification and operating through different

segments of the mortgage market, our three empirical approaches deliver largely consis-

tent findings. All three sets of approaches indicate that shocks to credit supply signifi-

cantly increase house prices and the price-rent ratio, but have a much smaller and rarely

statistically significant effect on the homeownership rate. The resulting slope estimates

range from three to infinity, depending on the instrument and horizon, implying a sub-

stantial degree of segmentation.

To interpret these slopes economically, we construct a dynamic equilibrium model

building on Greenwald (2018) in which house prices, rents, and the homeownership rate

are all endogenous. Our primary modeling contribution is to tractably incorporate het-

erogeneity in landlord and borrower preferences for ownership, which allows our model

to feature a fractional and time-varying homeownership rate. Our framework nests both

full segmentation and zero segmentation between rental and owner-occupied housing, as

well as a continuum of intermediate cases. We calibrate the key parameter determining

segmentation to directly match our empirical impulse responses, then use the model to

compute the role of credit in driving the 2000s housing boom. We find that a relaxation

of credit standards in isolation explains 34% of the rise in the price-rent ratio observed in

the boom, with a lower bound of 26% accounting for parameter uncertainty. These results

contrast to -1% explained by the model with no segmentation, and the 38% explained by

the model with full segmentation, implying that our estimated frictions are strong and

closer to the fully segmented case.
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The role played by credit is even larger after incorporating factors beyond credit stan-

dards. Combining a 2ppt decline in mortgage rates alongside the relaxation of credit

standards allows our benchmark model to explain 72% of the observed rise, compared to

4% under no segmentation, and 82% under full segmentation. Last, we consider exper-

iments in which we add sufficient exogenous borrower and landlord demand shocks —

for instance due to expectations of future prices or rents — to explain the entire boom in

price-rent ratios and homeownership. Removing credit relaxation from this “full boom”

scenario reduces the observed rise in price-rent ratios by 55%, which is larger than the

34% explained by credit standards in isolation due to strong nonlinear interactions be-

tween credit standards and non-credit factors. In contrast, under the no segmentation

model removing credit relaxation from the full boom would reduce the rise in price-

rent ratios only negligibly (5%). These results imply that macroprudential policies that

tighten mortgage credit standards such as loan-to-value (LTV) and payment-to-income

(PTI) ratios can be effective at slowing house price growth but only in the presence of the

significant segmentation we find in our benchmark economy.

Our baseline model assumes that landlords do not use credit and that the saver hous-

ing stock is entirely segmented from the borrower housing stock. To close our analysis,

we relax each of these assumptions in turn. When landlords use credit, a credit supply

expansion also shifts supply outward. This leads to a larger price-rent ratio response and

smaller homeownership rate response than under our benchmark model, implying our

baseline results are a lower bound for the effect of credit on the price-rent ratio. Uncon-

strained savers can also dampen credit-induced house price fluctuations if their housing

demand is not segmented from borrowers as shown by Justiniano, Primiceri, and Tam-

balotti (2015), Kiyotaki et al. (2011), and Landvoigt et al. (2015). We extend our model

to allow for frictionlessly integrated saver and borrower housing stocks and find that

while this reduces the effect of credit on price-rent ratios by roughly 25%, changes in the

price and quantity of credit still explain 54% of the observed rise in price-rent ratios over

the boom period. In practice, however, the saver market is quite segmented due to the
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indivisibility, quality, and location of saver houses, which are absent from our model.4

We thus consider this extension to represent an extreme lower bound on the influence of

credit on house prices.

In summary, the ability of owners who do not use credit, such as landlords or uncon-

strained households, to absorb credit-driven demand by constrained households deter-

mines the extent to which shifts in credit supply influence house prices and the home-

ownership rate. Our empirical finding that price-rent ratios respond significantly more

to a credit supply shock than homeownership rates implies that this margin is subject to

substantial frictions, so that prices do respond to credit in a meaningful way. Mapped

into our structural model, these frictions are sufficient for credit changes to have driven

an important share of the rise in house prices during the 2000s housing boom.

Related Literature. Our paper relates to several literatures. Empirically, our analysis

builds on prior analyses of the causal effect of credit and interest rates on house prices

including Glaeser, Gottlieb, and Gyourko (2012), Adelino, Schoar, and Severino (2015),

Favara and Imbs (2015), Loutskina and Strahan (2015), Di Maggio and Kermani (2017),

Mian and Sufi (2019), and Gete and Reher (2018). These results, however, cannot be di-

rectly mapped into the share of the boom and bust explained by credit unless the quasi-

random variation they use corresponds exactly to the shocks that drove the boom and

bust. We build on this literature by adding measures of the causal effect of credit on the

homeownership rate, and showing that the ratio of the responses of the price-rent ratio

to those of the homeownership rate can identify structural elasticities. These elasticities

can be mapped into a structural model to assess the effect of credit on house prices for an

arbitrary set of shocks, including those that correspond to the 2000s boom and bust.

Given this focus, our closest empirical counterpart is Gete and Reher (2018), who also

measure the impact of an identified credit shock on both the price-rent ratio and home-

4These absences are not specific to our framework but are nearly ubiquitous in the macro-housing mod-
eling literature, which typically allows the total housing stock to be frictionlessly reshuffled between vari-
ous sized houses. This is inconsisetnt with indivisibility.
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ownership. Based on a different identification scheme than the three we use in this paper,

Gete and Reher (2018) estimate a response of the price-rent ratio that is 85 times larger

than the response of the homeownership rate. These estimates correspond to very strong

frictions consistent with our estimates in Section 4.

In terms of applied theory, our work relates to papers that study the effect of credit

supply on house prices such as Favilukis et al. (2017), Kaplan et al. (2020), Kiyotaki et al.

(2011), Greenwald (2018), Guren et al. (2020), Garriga et al. (2019), Garriga and Hedlund

(2020), Garriga and Hedlund (2018), Justiniano et al. (2019), Liu et al. (2019), and Huo

and Rios-Rull (2016). Closest is Landvoigt et al. (2015), who use an assignment model

calibrated to micro data to study endogenous segmentation between constrained and

unconstrained homeowners, who sort into homes of different quality. Landvoigt et al.

(2015) find that credit is important in explaining the larger boom observed at the bottom

of the quality distribution. We see these results as highly complementary to our work.

While our model of borrower-saver segmentation is much more simplistic, our tractable

approach allows us to embed a similar set of frictions in a complete general equilibrium

model of housing and mortgages that provides for a richer set of counterfactuals.

The modeling framework we employ also connects to work using tractable macro-

housing models, including Campbell and Hercowitz (2005), Eggertsson and Krugman

(2012), Garriga, Kydland, and Sustek (2015), Ghent (2012), Kiyotaki et al. (2011), Iacoviello

(2005), Iacoviello and Neri (2010), Liu, Wang, and Zha (2013), Monacelli (2008), and Rogn-

lie, Shleifer, and Simsek (2014). Our contribution relative to this literature is to provide

a tractable methodology for incorporating fractional and time-varying homeownership

rates and providing a new empirical moment to discipline it.

Last, our paper relates to work on macroprudential policies. Because mortgage credit

dominates household balance sheets, many macroprudential policies only work if credit

affects house prices. Similarly, the effectiveness of ex-post debt reduction and foreclosure

policies (Guren and McQuade (2020), Mitman (2016), Agarwal, Amromin, Ben-David,

Chomsisengphet, Piskorski, and Seru (2017a), Agarwal, Amromin, Chomsisengphet, Land-
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voigt, Piskorski, Seru, and Yao (2017b), Hedlund (2016)) and mortgage design (Guren

et al. (2020), Greenwald, Landvoigt, and Van Nieuwerburgh (2020), Campbell, Clara, and

Cocco (2020), Piskorski and Tchistyi (2017)) is amplified to the extent that these policies

affect house prices.

Overview. The rest of the paper is structured as follows. Section 2 presents the supply

and demand model diagrammatically in order to generate intuition and to motivate our

estimation of the causal effects of credit on the homeownership rate and price-rent ratio.

Section 3 describes our data and empirical methodology. Section 4 presents our empirical

results. Section 5 presents the model, Section 6 describes its calibration, and Section 7

presents our model results. Section 8 extends the model to include landlord credit and

flexible saver housing demand. Section 9 concludes.

2 Intuition: Supply and Demand

Before we turn to the empirics and model, we present the intuition for how the rental

market influences transmission from credit into house prices. This intuition motivates the

structure of our model as well as our empirical focus on the causal effects of credit supply

on the price-rent ratio and homeownership rate as sufficient statistics for calibration.

To begin, Figure 1 displays the evolution of the price-rent ratio and homeowner-

ship rate since 1965. Assuming that housing is either owned by households or by land-

lords/investors, each point on this plot represents an equilibrium between demand, the

relative price (price-rent ratio) the marginal renter is willing to pay to own a home, and

supply, the relative price at which the marginal landlord is willing to sell that home.

The figure shows that these equilibria were fairly stable in the pre-boom era (1965-

1997), with most observations clustered in the lower left portion of the figure. However,

this pattern changed dramatically during the 1997-2006 housing boom, during which the

price-rent ratio and homeownership rate increased in tandem to unprecedented levels.
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Figure 1: Price-Rent Ratio vs. Homeownership Rate

Note: The figure displays national data at the quarterly frequency. The price-rent ratio is obtained from the
BEA and Flow of Funds, as the ratio of the value of residential housing owned by households (FRED code:
BOGZ1FL155035013Q) to the value of owner-occupied housing services (FRED code: A2013C1A027NBEA).
We use an interpolation scheme to convert owner-occupied housing services from annual to quarterly (see
Appendix B.5). The homeownership rate is obtained from the census (FRED code: RHORUSQ156N).

Following the start of the bust in 2007, these variables reverse course, traveling nearly the

same path downward that they ascended during the boom, and finally ending up close

to the typical values from the pre-boom era.

To understand what forces could cause these patterns, we present a simple supply and

demand treatment that illustrates the key forces in the equilibrium model we develop in

Section 5. As in Figure 1, we use the price-rent ratio on the y-axis and the homeownership

rate on the x-axis. These axes thus represent the relative price and relative quantity of

owned vs. rented housing. We use relative rather than absolute prices and quantities

of housing to ensure that changes are driven by the rent versus own margin rather than

the construction margin.5 As such, the “tenure supply” curve is the menu of price-rent

ratios at which landlords are willing to supply differing amounts of rented housing to

the owner-occupied market — leading to different homeownership rates — at a given

5For example, new housing construction typically increases the quantity of housing and decreases its
price, but has no clear impact on either the price-rent ratio or the share of housing that is owner occupied.
Our definitions eliminate these fluctuations which are not relevant for our analysis.
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(d) Intermediate Case 2

Figure 2: Supply and Demand Treatment of Model Intuitions

amount of aggregate housing supply. We note that this margin is distinct from changes

in the absolute quantity of housing units via the construction sector.

Demand for owner-occupied housing comes from constrained households who re-

quire mortgages to own. As the price-rent ratio rises, more of these households prefer

renting to owning, creating a downward slope. Supply comes from landlords who de-

cide whether to sell units of rental housing to households as owner-occupied housing.

The slope of the tenure supply curve reflects the willingness of landlords to sell more

units as the price-rent ratio rises, while shifts in the tenure supply curve reflect changes

in the landlords’ fundamental value of houses relative to rents.6

6If landlords require credit, a credit supply shock would also shift the tenure supply curve upward. We
abstract from landlord credit in our baseline model but return to it in Section 8.
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Our supply-and-demand framework is displayed graphically in Figure 2. To begin,

Panel (a) shows the case of perfect segmentation, in which units cannot be converted be-

tween owner-occupied and renter-occupied, and the homeownership rate is exogenously

fixed. This example nests specifications such as Favilukis et al. (2017), Justiniano et al.

(2015), and Greenwald (2018), in which households cannot rent housing, corresponding

to a fixed homeownership rate of 100%. In our framework, this corresponds to a perfectly

inelastic tenure supply, indicated by the vertical line in Panel (a). This curve intersects the

downward sloping demand curve to generate an equilibrium in price-rent versus home-

ownership rate space.

From this starting point, we can consider the impact of a credit expansion that shifts

demand outward from the solid curve D to the dashed curve D′, as improvements in ac-

cess to or cost of financing makes more households willing to purchase instead of renting

at a given price. Despite this increase in demand, these households have no one to trade

with except each other. As a result, under a perfectly inelastic (segmented) tenure supply

curve, this increased demand translates directly into an increase in house prices, while the

homeownership rate remains fixed. These models thus produce large effects of credit on

house prices during the housing boom, but cannot reproduce the rise in homeownership

displayed in Figure 1.

Panel (b) considers the alternative extreme case of a frictionless rental market in which

identical risk-neutral and deep-pocketed landlords transact with households, similar to

the baseline model of Kaplan et al. (2020). This specification leads to a perfectly elastic

(horizontal) tenure supply curve, since landlords are willing to buy or sell an unlimited

amount of housing at a price equal to the present value of rents, which pins down prices.

Since this present value does not directly depend on credit, an expansion of credit that

induces an outward shift of demand increases the homeownership rate but not the price-

rent ratio. Consequently, a credit expansion cannot explain the dual rise in price-rent

ratios and homeownership. Instead, reproducing the empirical pattern requires a separate

upward shift in the tenure supply curve, indicated by the horizontal dashed line in Panel
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(b). Since prices are equal to the present value of rents in this model, a shock to future

rents is required to move prices relative to current rents, such as the shock to future rental

beliefs used in Kaplan et al. (2020).7

While the literature to date is centered around these polar cases of perfect segmenta-

tion and zero segmentation, this paper introduces a framework that allows for interme-

diate levels of frictions, which corresponds to an upward tenure sloping supply curve

as in Panel (c). In this case, a credit expansion that shifts housing demand causes an in-

crease in both the price-rent ratio and the homeownership rate as the equilibrium moves

up the tenure supply curve. Panel (c) shows that such a model can in principle explain

the joint empirical pattern observed during the housing boom with only a single shock.

However, we could also combine a flatter tenure supply curve with a shift in supply to

obtain the same equilibrium movement in house prices and homeownership, as in Figure

(d). Indeed, any slope of the tenure supply curve could be combined with the appropri-

ate shift in tenure supply to generate the observed dynamics. Ultimately, to disentangle

these competing explanations, we need to discipline the slope of the tenure supply curve.

We do so empirically. As is typical in the simultaneous equations literature, the slope

of the tenure supply curve can be uncovered using a shock to demand. In Section 3 we use

a set of credit supply shocks from the literature that provide exactly this type of variation

by increasing demand for owner-occupied housing to estimate the elasticity of tenure

supply. With this slope in hand, we then write down a structural model that we calibrate

to this estimated slope and use the calibrated model to decompose the role of credit in the

2000s housing boom and bust.

3 Empirical Approach

Motivated by the intuition in Section 2, our goal is to estimate the slope of the tenure

supply curve, equal to the ratio of the elasticity of the price-rent ratio to an identified

7A shift in landlord discount rates for the same set of rental cash flows would have a similar effect.
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demand shock (an expansion of credit) to the elasticity of the homeownership rate to

that same shock. Doing so using ordinary least squares (OLS) is problematic because

credit is endogenous and housing market conditions can naturally affect credit supply.

Furthermore, credit measures may be subject to measurement error. To address these

issues, we seek an instrument for credit supply.

We use three different off-the-shelf identification approaches from the literature to

instrument for credit supply. While all three approaches are limited in their statistical

power, particularly for homeownership rates, all three provide consistent results and

thus reinforce one another. In the remainder of this section, we present our data, our

basic regression framework, and then describe each empirical approach. Details on our

instruments’ first stages and robustness checks can be found in Appendix B.

3.1 Data

We construct an annual panel at the core-based statistical area (CBSA) level that merges

together data on house prices, rents, homeownership rates, credit, and controls. The data

set is slightly different for each empirical approach we use, so we describe the common

data sources first, then present these variations in Sections 3.2 - 3.4. Further details on our

data construction can be found in Appendix B.

For house prices, we use the CoreLogic repeat sales house price index collapsed to an

annual frequency, and check robustness to using the FHFA indices in the Appendix. For

credit we use Home Mortgage Disclosure Act (HMDA) data, which we collapse to the

CBSA level. Our main measure of credit is the dollar volume of loan originations; in the

Appendix we assess robustness using the number of loans and the loan-to-income ratio.

For rents, we use the CBRE Economic Advisors Torto-Wheaton Same-Store rent in-

dex (TW index), a high-quality repeat rent index for multi-unit apartment buildings.8 It

8CBRE EA uses data on effective rents, which are asking rents for newly-rented units net of other leasing
incentives. CBRE builds a historical rent series for each building and computes the index as the average
change in rents for identical units in the same buildings. CBRE does not use the standard repeat sales
methodology because rent data is available for most buildings continuously, so accounting for many peri-
ods of missing prices is unnecessary.
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is available quarterly for 53 CBSAs beginning in 1989 and 62 CBSAs beginning in 1994.

Although using the TW index limits our sample sizes, it improves on rent measures typ-

ically used in the literature in two ways. First, its repeat sales methodology is preferable

to median rent measures typically used in the literature, which are biased by changes

in the composition of leased units. Second, while median rents tend to be sticky and

slow moving due to contractual rigidies, the TW index uses asking rents on newly-leased

apartments, which better reflect current market conditions. Since the price-rent ratio is

meant to capture the rent a unit could command if leased instead of sold, rent measures

using newly-leased apartments are more appropriate for constructing this ratio.

Our homeownership data come from the Census Housing and Vacancy Survey (HVS),

which provides annual estimates of the homeownership rate at the CBSA level from 1986

to 2017. These data are only available for an unbalanced panel of 82 CBSAs and are some-

what noisy as they are obtained from a supplement to the Current Population Survey with

only 72,000 households nationwide. The HVS is also complicated by decennial changes

in CBSA definitions. In the baseline results, we treat CBSAs where changing definitions

increase or decrease the homeownership rate significantly as separate CBSAs, but present

robustness checks in the Appendix dropping any CBSA that experiences a changing def-

inition.9 For robustness, we supplement our data with alternative homeownership rates

from the American Community Survey (ACS), which are available for a larger pool of

cities than our baseline measure but begin only in 2005.

3.2 First Empirical Approach: Loutskina and Strahan (2015)

Our first and most statistically powerful empirical approach follows LS in using a shift-

share instrument based on the conforming loan limit (CLL). The CLL represents the max-

imum loan size eligible for securitization by Fannie Mae and Freddie Mac. Because mort-

9Specifically, we use county-level data on homeownership rates for the full population of households
from the adjacent decennial Censuses. If the homeownership rate changes by more than 5%, we treat
the CBSA before and after the change as different CBSAs, creating an unbalanced panel. This approach
uses the full data but ensures that fixed effects and impulse responses are not affected by a jump in the
homeownership rate due to CBSA definition changes.
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gages backed by Fannie Mae and Freddie Mac receive subsidized interest rates, an in-

crease in the CLL represents an increase in the incidence of this subsidy and a positive

shock to the supply of mortgage credit for borrowers newly able to take advantage of it.

The operating principle of the instrument is that the same nationwide change in the

CLL should have stronger effects in cities where a larger fraction of loans are close to this

threshold since more new loans should shift from being unsubsidized to subsidized.10

For a concrete example, an average of 7.2% of loans originated in San Francisco over our

sample fall within 5% of the next year’s conforming loan limit, compared to an average

of only 0.4% in El Paso. Our instrument exploits the fact that a change in the CLL should

therefore have a bigger average effect in San Francisco than in El Paso.

To construct an instrument that exploits this CLL variation, we follow LS and define:

Zi,t =

 ShareNearCLLi,t ×%ChangeInCLLt

ShareNearCLLi,t ×%ChangeInCLLt × SaizElasticityi

 .

To measure the share of homes with loans near CLL, we follow LS in using the fraction of

mortgage originations in the prior year that are within 5 percent of the current year’s CLL

in the HMDA data. We also follow LS in using both the standard share-shift and a triple

interaction with the housing supply elasticity as estimated by Saiz (2010) as instruments

to allow for potential heterogeneity in the effect of the CLL change by housing supply

elasticity. Since the CLL has occasionally varied by region, we use only changes in the

national CLL to construct our instrument.11

We then estimate the impulse response of a change in credit Ci,t on an outcome vari-

able of interest Yi,t using a local projection instrumental variables (LP-IV) approach.12

10See Adelino et al. (2015) for an implementation of this empirical strategy based directly on house prices
rather than loan sizes.

11As part of the HERA legislation in 2008, Congress created more transparent procedures for changing the
national CLL. The legislation also allowed the CLL to rise by more in high-cost cities if their local house price
index grew sufficiently quickly. This would violate an instrumental variable’s exclusion restriction because
the change in the CLL would be mechanically correlated with lagged local outcomes. Consequently, in
constructing the instrument we use the change in the national CLL regardless of the change in the local
CLL in high-cost areas.

12In our empirical application, Ci,t is the volume of new purchase loan origination in location i at time t;
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This approach generalizes the Jordà (2005) local projection methods to use exogenous in-

strumental variables for identification as in Ramey (2016) and Ramey and Zubairy (2018).

We extend this to the panel context and add CBSA and time fixed effects following Chen

(2019).

In particular, we use two-stage least squares to estimate:

log(Yi,t+k) =ξi + ψt + βk∆ log(Ci,t) + θXi,t + εi,t (1)

∆ log(Ci,t) =φi + χt + γZi,t + ωXi,t + ei,t, (2)

for k = 0, ..., 5, where βk is our coefficient of interest, ξi and φi are location fixed effects

in the second and first stages, respectively, ψt and χt are time fixed effects, and Xi,t are

controls. We cluster the standard errors by CBSA.

The formal identification conditions for the panel LP-IV specification following Stock

and Watson (2018) are not only relevance and contemporaneous exogeneity but also ex-

ogeneity at all leads and lags. This requires that our instruments be independent of one

another. To address the potential failure of this condition due to serial correlation, we

follow Ramey (2016) and Ramey and Zubairy (2018) in including two lags each of our

instruments Zi,t, our outcome variable log(Yi,t), and our first stage variable ∆ log(Ci,t) as

controls. We supplement these with a number of additional control variables to ensure

that our estimates are based purely on the share-shift variation in our instrument. We

include both CBSA effects, which absorb any average differences across areas including

their supply elasticity, and time fixed effects, which absorb aggregate conditions includ-

ing any average effects of the CLL on the national housing and mortgage markets. We

also directly control for ShareNearCLLi,t and its lag as control variables so that time vari-

ation in this share is not driving our estimates.

The identifying assumption for this first empirical approach is that conditional on our

controls there is no unobservable variable that varies with both the fraction of loans orig-

we consider other measures of credit in the Appendix.
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inated in the previous year close to the CLL (or its interaction with the Saiz elasticity) and

that also varies with changes in the national CLL. For example, one might be concerned

that cities with higher prices tend to be more exposed to national business cycles, and that

CLL changes are also correlated with these cycles. To address such concerns, we conduct

robustness checks in the Appendix demonstrating that time-varying city characteristics

are not driving our results.

Since we are also interested in estimating the slope of the tenure supply curve directly,

we also modify the LP-IV approach to directly estimate the impulse response of the slope.

To do so, we use the homeownership rate as Yi,t+k and replace ∆ log(Ci,t) with the price-

rent ratio log(PRRi,t+k) in the first stage.13 The coefficients βk then represent the inverse

of the slope of the supply curve. We estimate this inverse slope rather than the slope

itself because in practice the instrument has a far stronger effect on price-rent ratios than

homeownership rates. As a result, so the first stage is much stronger for estimating the

inverse slope by IV than for estimating the slope directly, which would suffer from severe

weak instrument problems.

For our sample, we use an unbalanced panel of 62 CBSAs with both rents and home-

ownership rates from 1992 to 2016 for our analysis, although we note that most of the

identifying variation is obtained over the period 1992 to 2006 since the national CLL is

fixed through the bust and rebound.14

3.3 Second Empirical Approach: Di Maggio and Kermani (2017)

Our second approach follows DK by exploiting an expansion of credit that occurred due

to the OCC’s 2004 preemption of state-level anti-predatory-lending laws (APLs) for na-

tional banks. States implemented APLs in 1999 to limit the terms of mortgages made to

riskier borrowers. The preemption thus allowed national banks to expand credit more

13Because we want to obtain the ratio of the price-rent and homeownership rate response at the same
horizon, we use the price-rent ratio k periods ahead in our first stage, instead of the contemporaneous
credit growth ∆ log(Ci,t) in our previous regressions. In all cases we use the time t instrument.

14In practice, the CLL never adjusts downward, so it typically remains flat during housing downturns
until prices pass their previous peak.
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readily to riskier borrowers, providing a shock to the supply of credit. DK identify credit

supply shocks by comparing counties with different exposures to national banks that

were regulated by the OCC before and after the change. We adapt their approach but do

so at the CBSA level in order to use homeownership rate data that is only available for

metropolitan areas.

We define the DK instrument as:

Zi = APL2004 ×OCC2003,

where APL2004 is an indicator for whether the state that the majority of the CBSA resides

in has an anti-predatory-lending law by 2004, and OCC2003 is the share of mortgage orig-

inated by OCC-regulated banks in 2003, obtained from HMDA data.

Because this instrument only induces variation across cities in response to a single

credit supply event, we follow DK in using an event study approach in place of the LP-

IV approach we use for the LS instrument, which requires variation in the instrument

both across cities and over time. We follow much of the literature and focus on the re-

duced form regressing the outcome variables directly on the instrument. This is sufficient

to obtain the slope of the supply curve, but implies that we cannot interpret coefficient

magnitudes in units of credit.

In particular, we estimate the regression:

log(Yi,t) = ξi + ψt + ∑
k 6=τ

βkZi1t=k + θXi,t + εi,t. (3)

The coefficients βk represent the reduced form effect of the instrument at each date in

time relative to a base period τ for which β is normalized to zero. To ensure that only the

interaction of APL2004 and OCC2003 is used for identification, we follow DK in controlling

for both of these variables directly in addition to including CBSA and year fixed effects (ξi

and ψt). Our controls (Xi,t) include the lag of the outcome variable as well as all additional

controls used by DK in their original analysis, with the exception of a proprietary measure
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of the share of loans originated to subprime borrowers that is not crucial for their results.

Since this identification strategy is similar to a difference-in-difference with Zi measuring

exposure, a key test of the identifying assumptions is that there are parallel pre-trends or

equivalently that β is equal to zero prior to date τ.

The identifying assumptions are similar to a differences-in-differences approach: there

must be parallel trends in the absence of treatment. DK provide extensive support for this

identifying assumption in their paper, and we replicate this finding of no pre-trends prior

to 2003 in our empirical specifications.

We follow DK in estimating equation (3) using growth rates for Yi,t, so that the out-

come variable is the log change in house prices or homeownership rates. To obtain an

impulse response in levels, we then add up the coefficients of interest from the base pe-

riod to each indicated period and compute standard errors by the delta method.

DK kindly provided us with their data set, and we use their data directly collapsed

to the CBSA level to be as consistent with their paper as possible. We then merge in

CBSA-level CoreLogic house price index and census homeownership rates. This yields

262 CBSAs from 2001 to 2010 for house prices and 82 CBSAs from 2001 to 2010 for home-

ownership rates. Due to the limited power of a single event study, we focus on house

prices rather than price-rent ratios, which would require cutting our sample further to

the subset with available rent data. We follow DK by weighting our regressions by pop-

ulation and by clustering standard errors by CBSA. For homeownership rates, we drop

cities that have a change in Census homeownership definitions in 2005.

3.4 Third Empirical Approach: Mian and Sufi (2019)

Our third approach exploits differential city-level exposure to the 2003 expansion in pri-

vate label securitization (PLS) to identify the effect of credit supply on prices and home-

ownership rates based on MS and Nadauld and Sherlund (2013). MS build on evidence

from Justiniano, Primiceri, and Tambalotti (2017) of a sudden, sizable, and persistent ex-

pansion in PLS markets in late 2003 that persists until the crash. MS argue that the PLS
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expansion had a larger effect on lending by mortgage lenders that rely on non-core de-

posits to finance mortgages, measured at the bank level as the ratio of non-core liabilities

to total liabilities (NCL). They hypothesize that NCL banks, which are funded less by de-

posits, should have a greater exposure to the PLS expansion, and show that high NCL

banks did in fact expand their lending more after following roughly parallel trends prior

to 2002. Like the DK instrument, this approach isolates a non-prime credit supply shock,

in contrast to the LS shock that directly affects prime borrowers only.

The MS instrument is defined as:

Zi = NCLShare2002
i ,

where NCLShare2002
i is MS’s measure of CBSA-level exposure to high NCL lenders, equal

to the origination-weighted average of lender-level NCLs in a CBSA based on 2002 origi-

nations. MS argue that the city-level NCL exposure satisfies the relevant exclusion restric-

tion and is a valid instrument for credit. Because this instrument also induces variation

across cities in response to a single event, we use the same reduced form event study ap-

proach (3) that we use for the DK instrument. We follow MS in weighting by the number

of housing units and including year and CBSA fixed effects, and cluster at the CBSA level.

The MS instrument is underpowered using only the CBSAs for which we have Census

HVS homeownership rates. Consequently, for this empirical approach we expand our

data set by using ACS data for homeownership rates and FHFA data for house prices.

This ACS-FHFA data sample covers 245 CBSAs from 1990 to 2017 for prices and 245 CB-

SAs from 2005 to 2017 for the homeownership rate. However, this means that we must

use house prices in place of our preferred outcome variable, the price-rent ratio.15 Using

this data sample also prevents us from setting the base year of 2002 used by MS because

15We do not use the ACS homeownership rates for the LS instrument because the ACS begins in 2005
and most of the variation in the conforming loan limit comes before 2005. The ACS does have rents, but
they are average rents rather than new rents. Due to the long term nature of leases, average rents move
much less than new rents, so a price-rent ratio constructed with ACS data looks nearly identical to the same
regression using prices as an outcome.
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our ACS homeownership rate data begins in 2005. We instead use 2013 as the base year,

since our estimates imply that the house price response returned to its 2002 level in 2013.

Our results are robust to using peak-to-trough changes rather than a particular base year.

4 Empirical Results

4.1 Loutskina-Strahan LP-IV Results

Figure 3 plots the impulse responses of our outcome variables to credit growth (βk in

equation (1)) using LP-IV and the LS instrument. Beginning with Panel (a), we observe

that the price-rent ratio rises for two years following the shock before peaking at an in-

crease of 0.471. Our estimates are significant at the 5% level in years 2 through 5. The

smaller and statistically insignificant responses in years 0 and 1 are typical of house price

dynamics, which exhibit sluggish reactions and short run momentum (Guren (2018)).

Decomposing this result, this behavior of the price-rent ratio is due to a larger hump-

shaped response of house prices, which peak at 0.784 after two years (Panel (c)), and

a hump-shaped response of rents, which reaches 0.160 at the same horizon (Appendix

Figure B.1). Our results for the effect of credit on house prices are consistent with those

found in the literature, such as Glaeser et al. (2012), Adelino et al. (2015), Favara and Imbs

(2015), and Di Maggio and Kermani (2017). For instance, Favara and Imbs (2015) find an

elasticity of house prices to loan volumes over one year of 0.134, which is extremely close

to our estimate of 0.133 at the same horizon.16

In contrast to our results on price-rent ratios and house prices, we find no significant

response of homeownership rates to credit shocks. While this is in part due to lower sta-

tistical power stemming from a noisier data set, the point estimates are also consistently

small, reaching 0.037 after two years, and peaking at 0.101 after 5 years. For a naive “back-

of-the-envelope” measure of the relative slope, we can simply divide the point estimates

16We find a larger response of rents than Favara and Imbs, likely because we are using the TW rent index,
which provides the rent of a newly-rented multi-family unit using a repeat sales methodology, rather than
stickier median rents as used by prior literature.
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Figure 3: Loutskina-Strahan Instrument LP-IV Impulse Responses
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Notes: 95 % confidence interval shown in red bars. The figure shows panel local projection instrumental
variables estimates of the response of the indicated outcomes to dollar credit volume. For panels (a) to (c),
the first and second stages are indicated in equations (2) and (1), respectively. The two instruments are
ShareNearCLLi,t ×%ChangeInCLLt. and ShareNearCLLi,t ×%ChangeInCLLt × Z(SaizElasticityi). Control
variables include ShareNearCLLi,t and its lag, lags of both instruments, and two lags of both the outcome
variable and the endogenous variable. For panel (d), use the homeownership rate as our outcome variable
and replace the log credit growth at time t with the log price-rent ratio at time t + k to obtain a coefficient
for the inverse supply curve slope. All standard errors are clustered by CBSA.

in Panel (a) by those in Panel (b) to obtain ratios of 12.83 at the 2-year horizon, 5.22 at the

3-year horizon, -22.50 at the 4-year horizon, and 2.93 at the 5-year horizon, corresponding

to a range of slopes between 2.9 and infinity.17

Beyond these naive ratios, we pursue a more econometrically precise approach by di-

rectly estimating the inverse of this ratio. We reestimate our IV specification (1) - (2) using

17Since a downward sloping supply curve is implausible, negative inverse ratios are best interpreted as
infinite (perfectly inelastic) slopes, since these offer the smallest possible ratio of the homeownership rate
response to the price-rent ratio response.
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the homeownership rate as the outcome variable Yi,t+k and the price-rent ratio in period

t + k in place of log credit growth as the independent variable. As described in Section 3,

we estimate the inverse slope (response of homeownership relative to response of price-

rent) because our imprecise results in Figure 3 Panel (b) would yield a weak first stage if

the homeownership rate were used as the independent variable. Panel (d) shows that the

inverse slope is small and not statistically different from zero, with point estimates of 0.05

at the 2-year horizon, 0.24 at the 3-year horizon, -0.22 at the 4-year horizon, and 0.02 at the

5-year horizon.18 Inverting these estimates yields supply curve slopes between between

4.2 and infinity. The upper bounds of the 95% confidence intervals for the inverse slope

are 0.37 at the 2-year horizon, 0.56 at the 3-year horizon, 0.12 at the 4-year horizon, and

0.38 at the 5-year horizon, corresponding to lower bound estimates of the (non-inverted)

slope between 1.8 and 8.4.

4.2 Di Maggio-Keramani APL Preemption Results

Figure 4 shows the results for the reduced form event study using the DK instrument. As

a reminder, we estimate equation (3) with house prices as the outcome in log changes and

then cumulate the coefficient β coefficients from the base period to the indicated period

to obtain an IRF in levels.

Panel (a) displays the response of house prices for the sample of CBSAs for which

we have homeownership rate data. This differs slightly from the original DK estimation,

which used a broader sample of cities.19 The impulse response shows no significant pre-

trends are evident prior to 2003. After 2004, the results demonstrate a classic hump-

shaped impulse response for house prices peaking in 2007 at 1.60, which is significant at

the 5% level. Panel (b) of Figure 4 shows the impulse response for homeownership rates

is generally smaller, peaking in 2006 at 0.51, and is far from statistically significant. A

18We omit the ratios for the 0-year and 1-year horizons since Panel (a) implies that our first stage is not
statistically significant at these horizons.

19Using the broader sample of CBSAs we are able to largely reproduce DK’s results (see Figure B.10).
Cities with homeownership rate data tend to be larger, more inelastic cities, leading us to find larger re-
sponses of house prices than in the original DK estimation.
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Figure 4: Di Maggio-Kermani APL Preemption Reduced Form
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Notes: 95 % confidence interval shown in red bars. Each panel shows estimates of the cumulative
sum from 2003 of βk for each indicated year estimated from equation (3), with the instrument being
Zi = APL2004 × OCC2003 and 2003 being the base year. The regression is weighted by population and
standard errors are clustered by CBSA. The controls include median income growth, population growth,
the Saiz (2010) elasticity interacted with a dummy for post-2004, the fraction of loans originated by HUD-
regulated lenders interacted with a dummy for post-2004, and the fraction of HUD-regulated lenders in-
teracted with a dummy for APLs. The controls are as Di Maggio and Kermani (2017) except our data is at
the CBSA level and omits a control for the fraction of loans originated that are subprime (FICO under 620),
which is based on proprietary data. All regressions are weighted by population and standard errors are
clustered by CBSA as in the DK paper.

simple division of the values yields slopes of 6.72 in 2005, 3.67 in 2006, and 3.40 in 2007.20

4.3 Mian-Sufi PLS Expansion Results

Figure 5 displays our estimated βk coefficients by year for the Mian and Sufi NCL share in-

strument. As a reminder, while the PLS market expansion is in 2002, we have normalized

2013 to be the base year due to data availability, and also use house prices as the outcome

due to power concerns. Panel (a) shows a zero effect on prices prior to 2002, followed

then a hump-shaped impulse response, in line with our previous results. Panel (b) shows

a positive and statistically significant effect of the NCL share on homeownership rates be-

20As in Section 3.2, we focus on slopes in periods with house prices responses that appear at or close to
the peak and are not still in the process of sluggish adjustment, as these provide the best analogue to the
corresponding moment in the model. We similarly report years satisfying these criteria for our MS results
in Section 4.3 below.
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Figure 5: Mian-Sufi PLS Expansion Reduced Form
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Notes: 95 % confidence interval shown in red bars. Panels A and B shows estimates of the effect of a city’s
NCL share on each outcome based on estimating equation (3) with the instrument being Zi = NCLShare2002

i
and 2013 being the base year. For panel C, we use the same controls but the outcome variable is the home-
ownership rate and the credit variable is replaced with log house prices to obtain a coefficient for the inverse
supply curve slope All standard errors are clustered by CBSA as in the MS paper.

ginning in 2005 that also mean reverts over time. Examining the coefficients reveals that

the effect of house prices peaks in 2006 at 1.19 while the effect on the homeownership rate

also peaks in 2006 at 0.27. A simple division of these point estimates yields a slope of 4.49,

while the same exercise using the 2007 coefficients yields a ratio of 4.48.

4.4 Summary

While all three of our empirical strategies have limitations, they each find evidence for a

slope of the supply curve of at least three, and often higher. We obtain these consistent

results even though our instruments rely on completely distinct sources of variation and

influence different segments of the mortgage market, with the LS instrument affecting

credit to prime borrowers and the DK and MS instruments affecting credit to more risky

borrowers. While future work is needed to refine these estimates, our finding of broad

agreement across specifications leads us to conclude that our general finding that house

prices response more than homeownership rates in response to a shock to credit supply is
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robust. In Section 6, we use a model to provide economic interpretation of these numeric

slope values, showing that our empirical estimates provide clear lower bounds on the

degree of segmentation needed to match the data.

5 Model

This section develops an equilibrium model that we use to quantitatively evaluate the

role of credit in driving house prices, with a focus on the 2000s boom-bust cycle.

Demographics. There is a representative borrower, landlord, and saver, denoted B, L,

and S, respectively. Each is infinitely lived. We assume perfect risk sharing within each

type, allowing for aggregation to a representative agent of each type.

Housing Technology. Housing is produced by construction firms (described below)

whose supply at the end of period t is denoted H̄t. Housing can be owned either by

borrowers, by savers, or by landlords, where landlords in turn rent the housing they own

to borrowers. We denote borrower-owned housing as HB,t and landlord-owned rental

housing as HL,t. Housing produces a service flow proportional to its stock, and is sold ex-

dividend (i.e., after the service flow is consumed). It requires a per-period maintenance

equal to fraction δ of its current value.

While housing is traded by borrowers and landlords, our main specification imposes

that savers always demand the fixed quantity of housing H̄S. This is equivalent to assum-

ing a completely segmented housing market, in which savers and borrowers consume

different types of housing (e.g., live in different neighborhoods, occupy different quality

tiers). This restrictive and important assumption shuts down any margin for borrowers

and savers to transact housing, equivalent to fully segmented housing markets between

these two groups. In Section 8, however, we relax this assumption to allow savers to

freely trade housing with borrowers. For notational convenience, we denote the stock of
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housing not owned by savers, and therefore ultimately inhabited by borrowers as either

owners or renters, as Ĥt = H̄t − H̄S.

Preferences. Borrowers and savers both have log preferences over a Cobb-Douglas ag-

gregator of nondurable consumption and housing services:

Uj =
∞

∑
t=0

βt
j log

(
c1−ξ

j,t hξ
j,t

)
, j ∈ {B, S}

where c represents nondurable consumption, and h represents housing services. To nest

typical specifications in the literature, we assume that landlords are risk neutral and max-

imize:

UL =
∞

∑
t=0

βt
LcL,t.

Risk neutrality aligns with the interpretation of landlords as a foreign-owned, profit-

maximizing firm as in e.g., Kaplan et al. (2020).

Asset Technology. Borrowers and landlords can trade long-term mortgage debt with

savers at equilibrium, with the mortgage technology following Greenwald (2018). Bor-

rower debt is denoted MB,t while landlord debt is denoted ML,t. Debt is issued in the form

of fixed-rate perpetuities with coupons that geometrically decay at rate ν. This means

that a mortgage that is issued with balance M∗ and rate r∗ will have payment stream of

(r∗ + ν)M∗, (1− ν)(r∗ + ν)M∗, (1− ν)2(r∗ + ν)M∗, etc. Mortgage loans are prepayable,

with exogenous fraction ρ prepaying their loans in a given period, and are also nominal,

meaning that real balances decay each period at the constant rate of inflation π.

As in Greenwald (2018), the average size of new loans for borrower i (denoted M∗i,t) is

subject to both loan-to-value (LTV) and payment-to-income (PTI) limits at origination:

M∗i,t ≤ θLTV ptH∗i,t (4)

M∗i,t ≤
(
θPTI −ω

)
incomei,t

r∗B,t + ν + α
, (5)

26



where pt is the price of housing, H∗i,t is the borrower’s new house size, and ω and α are

offsets used to account for non-housing debts, and taxes and insurance, respectively.

Ownership Benefit Heterogeneity. Without additional heterogeneity, the model would

be unable to generate a fractional and time-varying homeownership rate. If all borrowers

have the same valuation for housing and all landlords have the same valuation for hous-

ing, then whichever group has the higher valuation will own all the housing, leading to

a homeownership rate of either 0% or 100%. In order to generate a fractional homeown-

ership rate, we thus need to impose further heterogeneity in how agents value housing

within at least one of these types. Our key modeling contribution in this paper is to intro-

duce this within-type heterogeneity.

We impose this heterogeneity in a simple way, by assuming that agents receive an ad-

ditional service flow (either positive or negative) from owning housing. For parsimony,

we assume that if borrower i owns one unit of housing, he or she receives surplus equiva-

lent to ωi,t times the market rent for that unit, where ωB
i,t ∼ Γω,B is drawn i.i.d. across bor-

rowers and time. Symmetrically, if a landlord owns unit i of housing, he or she receives

surplus equivalent to ωL
i,t ∼ Γω,L times the market rent for that unit. Because we perceive

these benefits and costs, particularly those of the borrower, as likely non-financial, we

rebate them lump-sum to households, so that they do not have any effect on the resource

constraint at equilibrium. Since we apply borrower heterogeneity at the household level,

but landlord heterogeneity at the property level, the two dimensional sorting problem

is trivial: all properties with sufficiently low ωL are owned, and they are owned by the

households with the largest ωB.

There are several forms of heterogeneity that would map intuitively into this frame-

work. On the borrower side, heterogeneity in the value of ownership likely stands in for

household age, family composition, ability to make a down payment, and true personal

preference for ownership. On the landlord side, we conjecture that the biggest source

of heterogeneity is on the suitability of different properties for rental, as documented for
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instance by Halket, Nesheim, and Oswald (2020). For example, while urban multifam-

ily units can be efficiently monitored and maintained in a rental state, the depreciation

and moral hazard concerns for renting a detached suburban or rural house may be much

higher. Under this interpretation, at high homeownership rates, the marginal converted

property is easy to convert and maintain, and is valued highly by landlords relative to

the rent it produces. At low homeownership rates, by contrast, the marginal converted

property is relatively costly to maintain as a rental property, and landlords are willing to

part with it at a lower price-rent ratio.

The degree of dispersion of the distributions Γω,B and Γω,L map into the slopes of the

demand and tenure supply curves, respectively, in Section 2. The more dispersed are the

ownership benefits, the steeper is the slope, as the marginal valuation changes rapidly as

we move along the distribution. In contrast, a distribution with low dispersion will yield

a flatter, more elastic curve, as agents share highly similar valuations, implying that prices

move little as the homeownership rate, and the identities of the marginal owner/renter

and landlord vary.

Borrower’s Problem. The borrower maximizes expected lifetime utility subject to the

borrowing constraints (4), (5), and the budget constraint

cB,t ≤ (1− τ)yB,t︸ ︷︷ ︸
after-tax income

+ ρB

(
M∗B,t − π−1(1− νB)MB,t−1

)
︸ ︷︷ ︸

net mortgage iss.

−π−1(1− τ)XB,t−1︸ ︷︷ ︸
interest payment

− νBπ−1MB,t−1︸ ︷︷ ︸
principal payment

− ρB pt
(

H∗B,t − HB,t−1
)︸ ︷︷ ︸

net housing purchases

− δptHB,t−1︸ ︷︷ ︸
maintenance

− qt (hB,t − HB,t−1)︸ ︷︷ ︸
rent

+

(∫
ω̄B,t−1

ω dΓω,B

)
qtĤt−1︸ ︷︷ ︸

owner surplus

+ TB,t︸︷︷︸
rebates

,

where yB,t is exogenous outside income and qt is the rental rate (i.e., the price of housing

services). The optimal policy is for all borrowers with owner utility shock ωi,t > ω̄t to

choose to buy housing. By market clearing, ω̄B,t = Γ−1
ω,B(1 − HB,t/Ĥt), which ensures

that the fraction of borrowers choosing to own is equal to the fraction of borrower-owned

housing. Income is taxed at rate τ, while mortgage interest payments are tax deductible.
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The laws of motion for the mortgage balance MB,t, interest payment XB,t, and stock of

owned housing HB,t are:

MB,t = ρBM∗B,t︸ ︷︷ ︸
new loans

+ (1− ρB)(1− νB)π
−1MB,t−1︸ ︷︷ ︸

old loans

XB,t = ρBr∗B,tM
∗
B,t︸ ︷︷ ︸

new loans

+ (1− ρB)(1− νB)π
−1XB,t−1︸ ︷︷ ︸

old loans

HB,t = ρBH∗B,t︸ ︷︷ ︸
new housing

+ (1− ρB)HB,t−1︸ ︷︷ ︸
old housing

.

Landlord’s Problem. The landlord’s problem is similar to that of the borrower, with

two key exceptions: (i) the landlord only sells housing services to the borrower instead of

consuming them, and (ii) the landlord does not use credit — an assumption we relax in

Section 8. The landlord’s budget constraint is:

cL,t ≤ (1− τ)yL,t︸ ︷︷ ︸
after-tax income

− pt (HL,t − HL,t−1)︸ ︷︷ ︸
net housing purchases

− δptHL,t−1︸ ︷︷ ︸
maintenance

+ qtHL,t−1︸ ︷︷ ︸
rent

+

(∫
ω̄L,t−1

ω dΓω,L

)
qtĤt−1︸ ︷︷ ︸

owner surplus

+ TL,t︸︷︷︸
rebates

,

and the market clearing condition ω̄L,t = Γ−1
ω,L(1− HL,t/Ĥt).

Saver’s Problem. The saver’s budget constraint is:

cS,t ≤ (1− τ)yS,t︸ ︷︷ ︸
after-tax income

− pt
(

H∗S,t − HS,t−1
)︸ ︷︷ ︸

net housing purchases

− δptHS,t−1︸ ︷︷ ︸
maintenance

+ TS,t︸︷︷︸
rebates

+ π−1(r̄B + νB)MB,t−1︸ ︷︷ ︸
total payment

− ρB

(
exp(∆B,t)M∗B,t − π−1(1− νB)MB,t−1

)
︸ ︷︷ ︸

net mortgage iss.

,

where the wedge ∆j,t is a time-varying tax, rebated to the saver lump sum at equilibrium,

that allows for time variation in mortgage spreads. A value of ∆j,t > 0 implies that the

mortgage rate exceeds the rate on a risk-free bonds with the payment structure, allowing

for exogenous variation in mortgage spreads. In addition to the budget constraint, the
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saver must also satisfy the fixed housing demand constraint HS,t = H̄S at all times.

Construction Firm’s Problem. New housing is produced by competitive construction

firms. Similar to Favilukis et al. (2017) and Kaplan et al. (2020), we assume that housing

is produced using nondurable goods Z and land Lt according to the technology:

It = Lϕ
t Z1−ϕ

t

H̄t = (1− δ)H̄t−1 + It,

where L̄ units of land permits are auctioned off by the government each period, with the

proceeds returned pro-rata to the households. Each construction firm therefore solves:

max
Lt,Zt

ptL
ϕ
t Z1−ϕ

t − pLand,tLt − Zt,

where pLand,t is the equilibrium price of land permits, and the price of nondurables is

normalized to unity.

Equilibrium. A competitive equilibrium economy consists of endogenous states

(HB,t−1, MB,t−1, XB,t−1, H̄t−1), borrower controls (cB,t, hB,t, M∗B,t, H∗B,t), landlord controls

(cL,t, HL,t), saver controls (cS,t, M∗B,t), construction firm controls (Lt, Zt), and prices (pt, qt, r∗B,t)

that jointly solve the borrower, landlord, saver, and construction firm problems, as well

as the market clearing conditions:21

Housing: H̄t = HB,t + HL,t + H̄S

Housing Services: H̄t = hB,t + H̄S

Housing Permits: L̄ = Lt

Resources: Yt = cB,t + cL,t + cS,t + Zt + δptH̄t.
21In a slight abuse of notation we allow both the saver and borrower to choose M∗B,t as controls, and

implicitly impose that these values must be equal in equilibrium.
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5.1 Key Equilibrium Conditions

We now present the key equilibrium conditions of the model, while reserving the full set

of equilibrium conditions to Appendix A.1. These key equations are the optimality condi-

tions for borrower and landlord housing, respectively which correspond to the inverted

demand and tenure supply curves:

pDemand
t (HB,t) =

Et

{
ΛB,t+1

[
(1 + ω̄B,t)qt+1 +

(
1− δ− (1− ρB)CB,t+1

)
pt+1

]}
1− CB,t

(6)

pSupply
t (HB,t) = Et

{
ΛL,t+1

[
(1 + ω̄L,t)qt+1 + (1− δ) pt+1

]}
. (7)

pDemand
t is the price at which borrowers are willing to purchase quantity HB,t, and pSupply

t

is the price at which landlords are willing to provide quantity HB,t to the market, which by

market clearing is equivalent to landlords choosing quantity HL,t = Ĥt− HB,t of housing.

These are standard asset pricing equations that state that the asset price is equal to the

expected future payoff discounted by the relevant stochastic discount factors, here ΛB,t+1

for borrowers and ΛL,t+1 for lenders. The supply schedule (7) simply sets the current

price equal to the present value of the next period cash flow (rent) for the marginal land-

lord (1+ ω̄L,t)qt+1 plus the next period value of the housing after maintenance costs. The

demand schedule (6) is similar, but is influenced by the ability of borrower housing to col-

lateralize debt, which is valued by borrowers. This enters through the marginal collateral

value term CB,t, which represents the shadow value of the additional credit that can be

collateralized by an additional dollar of housing (see Section A.1 for details).22 A relax-

ation of credit standards or a decrease in the cost of credit allows housing to collateralize

more or cheaper credit, raising this marginal value CB,t, and increasing the reservation

price. As a result, changes in credit conditions directly shift the demand schedule (6).

These equations map directly into the supply and demand framework of Section 2,

22The exact definition is CB,t ≡ µB,tFLTV
t θLTV as in Greenwald (2018). An extra dollar of housing can

collateralize θLTV of new debt for an LTV-constrained borrower, of which there are fraction FLTV
t . Finally,

the Lagrange multipler µB,t on the borrowing constraint converts from the quantity of new credit to the
value of that credit from the borrower’s perspective.
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where the demand and tenure supply schedules map into the ω̄j,t terms. Recall that these

terms are defined by ω̄B,t = Γω,B(1− HB,t/Ĥt) and ω̄L,t = Γω,L(1− HL,t/Ĥt). As HB,t

increases, so does the fraction of owner-occupied housing. This pushes down ω̄B,t, as the

marginal household becomes increasingly less suited for ownership, generating a down-

ward sloping demand curve. At the same time, ω̄L,t rises as the marginal unit becomes

more and more favorable for rental, generating an upward sloping supply curve. In equi-

librium, the level of owner-occupied housing HB,t adjusts so that pDemand
t = pSupply

t , and

the market clears. The degree of dispersion in the Γω,B and Γω,L distributions determine

how much the ω̄j,t terms change with the homeownership rate, which governs the slopes

of the demand and supply curves, respectively.

6 Model Quantification

We calibrate our model at quarterly frequency to jointly match several targets from the

literature along with our key empirical moment, with the full set of calibrated parameters

displayed in Table 1. Our main calibration of all parameters except for σω,L is presented

in Section 6.1, while our calibration of σω,L to directly match our regressions in Section 4

follows in Section 6.2.

6.1 Main Calibration

Demographics and Preferences To determine the borrower population share, we use

the 1998 Survey of Consumer Finances. In the model, borrowers are constrained house-

holds whose choice of rental vs. ownership is influenced by credit conditions. Corre-

spondingly, we identify a household as a “borrower” in the data if it either (i) owns a

home and its mortgage balance net of liquid assets is greater than 30% of the home’s

value, or (ii) does not own a home. We believe both of these groups would likely find

it difficult to purchase a home without credit. This procedure yields a population share

of χB = 0.626 and an income share of sB = 0.525. For landlord demographics, we con-
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Table 1: Parameter Values: Baseline Calibration (Quarterly)

Parameter Name Value Internal Target/Source

Demographics and Preferences

Borrower pop. share χB 0.626 N 1998 SCF
Borrower inc. share sB 0.525 N 1998 SCF
Landlord pop. share χL 0 N Normalization
Borr. discount factor βB 0.974 Y PMI Rate (see text)
Saver discount factor βS 0.992 Y Nom. interest rate = 6.46%
Landlord discount factor βL 0.974 Y Equal to βB
Housing utility weight ξ 0.2 N Davis and Ortalo-Magné (2011)
Saver housing demand H̄S 5.299 Y Steady state optimum

Ownership Benefit Heterogeneity

Landlord het. (location) µω,L -0.109 Y Avg. homeownership rate
Landlord het. (scale) σω,L 2.877 Y Empirical elasticities (Section 6)
Borr. het. (location) µω,B 0.217 Y Borr. VTI (1998 SCF)
Borr. het. (scale) σω,B 0.319 Y Implied subsidy (see text)

Technology and Government

New land per period L̄ 0.090 Y Residential inv = 5% of GDP
Land share of construction ϕ 0.371 N Res inv. elasticity in boom
Housing depreciation δ 0.005 N Standard
Inflation π̄ 1.008 N 3.22% Annualized
Tax rate τ 0.204 N Standard

Mortgage Contracts

Refinancing rate ρ̄ 0.034 N Greenwald (2018)
Loan amortization ν 0.45% N Greenwald (2018)
Borr. LTV Limit θLTV

B 0.85 N Greenwald (2018)
Borr. PTI Limit θPTI

B 0.36 N Greenwald (2018)
Borr. PTI offset (taxes etc.) αB 0.09% N Greenwald (2018)
Landlord LTV Limit θLTV

L 0.000 N No landlord credit

sider the limit χL → 0 and assume that landlords do not receive labor income, instead

subsisting entirely on their rental earnings.23

For preferences, the key parameter is the borrower’s discount factor, βB, which de-

termines the level latent demand for credit in the economy, and in turn, how much a

relaxation of credit will influence household demand for owned housing. We infer this

parameter from the pricing on private mortgage insurance (PMI) — the additional fees

23Because landlord utility is linear in consumption, assumptions about their income and consumption
have essentially no impact on the results.
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and interest rates that a borrower must pay in order to obtain a high-LTV loan. This ap-

proach is motivated by the fact that many borrowers choose to pay for PMI, while many

do not, meaning that the typical borrower should be close to indifferent.24 We choose βB

so that the typical borrower would be indifferent between receiving a loan at 80% LTV,

and paying the exact FHA insurance scheme for a loan at 95% LTV: an up front fee of

1.75% of the loan, plus a spread of 80 basis points.25

For the other preference parameters, we assume a standard consumption weight pa-

rameter of ξ = 0.2 on housing, following the evidence in Davis and Ortalo-Magné (2011).

We set the saver discount factor to target a nominal interest rate of 6.46%, equal to the

average rate on 10-year Treasury Bonds in the immediate pre-boom era (1993 - 1997). We

set the saver’s fixed level of demand H̄S equal to the level they would choose in steady

state at prevailing prices. This implies that while saver demand is fixed in the short run,

it is at the correct “long run” equilibrium value. Last, we set the landlord discount rate

βL to be equal to βB. This calibration ensures that both borrowers and landlords discount

future housing services and rental cash flows at essentially equal rates. As a result, shocks

that shift the path of future rents will affect borrowers and landlords symmetrically, and

have little impact on the equilibrium homeownership rate.26

Ownership Cost Heterogeneity. The paper’s most novel modeling mechanism relates

to heterogeneity in the benefits to borrower and landlord ownership, represented by the

distributions Γω,B and Γω,L. We specify each of these as a logistic distribution, so that each

24For example, 37.7% of Fannie Mae purchase loans required PMI over the 1999-2008 boom period (source
Fannie Mae Single Family Dataset).

25We choose the FHA scheme because it is much simpler to implement in the model than the GSE insur-
ance scheme, where pricing is less transparent, and insurance premia are only paid until the borrower’s
LTV drops below 80%. However, the overall costs of the two forms of insurance are similar, as can be seen
in e.g., Goodman and Kaul (2017).

26For example, if borrower and landlord discount factors differ, shocks to expectations about future rents
will cause a large shift in ownership toward the type with a higher discount factor. In the absence of
additional disciplining information about the relative discount factors, we seek a calibration that avoids
these seemingly arbitrary shifts.
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c.d.f. is defined by:

Γω,j(ω) =

[
1 + exp

{
−
(

ω− µω,j

σω,j

)}]−1

j ∈ {B, L}.

For the borrower distribution, we set µω,B, the typical ownership utility for borrowers, to

target the average ratio of home value to income among borrowers who own homes in

the 1998 SCF, equal to 8.81 (quarterly).

We next calibrate the ownership dispersion parameter σω,B, which determines the rate

at which borrower households would switch between owning and renting as the price of

housing changes. Because σω,B must be identified from shifts in tenure supply (shocks to

house prices exogenous to borrower demand), our empirical estimates in Section 4 using

shifts in demand are not informative about this parameter. Instead, we use the empirical

estimates of Berger, Turner, and Zwick (2020), who study the impact of the First Time

Home Buyer credit, a 2009 - 2010 policy that subsidized the purchase of housing by up to

10% (capped at $8,000) for renter households that did not own in the three prior years.

Berger et al. (2020) estimate that this subsidy led 3.2% of eligible renters to switch to

ownership during the policy window (February 17, 2009 to July 1, 2010), a rate of 0.64%

per quarter. For our calibration, we choose σω,B = 0.319 so that exactly 0.64% of renters

(equal to 0.64% / 3.4% = 18.8% of “active” renters) would switch from renting to own-

ing if their housing purchases were given a 10% subsidy. While this calibration strategy

ignores some of the more nuanced details around this episode, the borrower dispersion

parameter σω,B is much less important for our results than the landlord dispersion pa-

rameter σω,L.27 This is because our core experiments shift the demand curve, then travel

along the supply curve, making the supply slope much more influential than the demand

slope (see Appendix Figure A.1 for sensitivity analysis).

For the landlord, we set µω,L to attain the correct homeownership rate among “bor-

27Such details include that not all households received the full subsidy due to income and value caps, the
finding by Berger et al. (2020) that the policy increased house prices, offsetting part of the subsidy, and the
potential that the share of “active” households in this episode differed from our steady state level of 3.4%.
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rowers” in the 1998 SCF (49.64%). Since all savers own in the model, this ensures an

overall homeownership rate of 68.50% at steady state, matching the 1998 SCF. Finally, the

landlord dispersion term σω,L — the key parameter in the model — is calibrated to match

our empirical estimates from Section 4, as described in detail in Section 6.2 below.

Technology and Government. For the construction technology, we set the amount of

new land permits issued per period so that residential investment Zt is 5% of total output

in steady state. For the land weight in the construction function ϕ, we note that ϕ/(1− ϕ)

is the elasticity of residential investment to house prices, and choose 0.371 so that this

elasticity is equal to the ratio of the peak log increase in the residential investment share

of output to the peak log increase in prices over the boom. We set housing depreciation

and the tax rate to standard values, and set inflation to be equal to the average 10-year

inflation expectation in the pre-boom era (1993-1997) following Greenwald (2018).

Mortgage Contracts. For the mortgage contract parameters, we follow Greenwald (2018),

who provides a detailed calibration for this mortgage structure.

6.2 Calibration of Landlord Heterogeneity to Our Empirical Results

We calibrate the dispersion in the landlord’s ownership cost σω,L — the model’s key pa-

rameter governing the slope of credit supply and the response of house prices to a change

in credit conditions — so that the model is able to reproduce as closely as possible the re-

sponses to an identified credit shock that we estimate in Section 4. In particular, we target

our estimates from the LS IRF of the price-rent ratio and homeownership rate displayed

in Panels (a) and (b) of Figure 3. We focus on the LS results because they are the most sta-

tistically precise, stem from a shock that is more straightforward to map into the model,

and produce responses that are measured in the ideal price-rent ratio outcome variable,

rather than the house price outcomes used with the DK and MS results.

Since a change in the conforming loan limit effectively adds a subsidy to the newly
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included mortgages, the model analogue of the empirical regression is a linearized im-

pulse response following a shock to the mortgage spread ∆B,t, which we assume follows

an AR(1). Once we compute our model impulse responses at quarterly frequency, we take

annual averages to map our model impulse responses into the annual frequency used in

our empirical regression. We then choose σω,L along with the size and persistence of the

shock to the mortgage spreads ∆B,t corresponding to the change in the conforming loan

limit to minimize the distance between the model and data impulse responses. The size

and persistence of the shock to mortgage spreads can be considered nuisance parameters

that are not of direct interest for our experiments, but important to pin down the scale

and temporal shape of the shock response, which are not directly identified by σω,L.

We set these three parameters to minimize the squared error between the model and

the data scaled by the statistical uncertainty around the empirical estimates, summarized

by the objective function:

Q = ∑
v∈{PR,HOR}

5

∑
k=2

(
IRFModel

v,k − βv,k

SEv,k

)2

, (8)

where IRFModel
v,k is the model impulse response for variable v (either the price-rent ratio or

the homeownership rate), βv,k is the corresponding estimate from Figure 3, and SEv,k is

the estimated standard error of βv,k. We restrict our estimation to the response at horizons

from two years to five years. We do so because our model produces responses that jump

on impact. This is typical in models of frictionless housing markets but contrasts with the

data, where house prices and price-rent ratios typically display hump-shaped responses

and momentum due to search and other frictions. Including the first two periods in our

estimation would thus lead the model to “compromise” by systematically understating

price-rent ratio growth at horizons of two to five years, in an attempt to reduce errors the

first two periods. To avoid this bias due to misspecification, we therefore only ask the

model to fit the data in periods after the two-year peak.

Our procedure estimates a landlord cost dispersion (σω,L) of 2.877, a mortgage spread
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Figure 6: Impulse Responses: Model vs. Data
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Notes: Grey squares and bands indicate our benchmark LS estimates from Figure 3 and their 95% confi-
dence intervals. These empirical estimates are plotted alongside the corresponding outputs of each model.
For each model, we compute a quarterly impulse response, then average over each year to obtain annual
responses. Panel (a) above corresponds to Panel (a) of Figure 3, while Panel (b) above corresponds to Panel
(b) of Figure 3, and Panels (c) and (d) correspond to Panel (d) of Figure 3. Shaded bands indicate the range
of outcomes from the lower bound estimate of σω,L = 0.810, obtained from a least squares fit of the top of
the 95% empirical confidence intervals in Panel (c), to the upper bound estimate of σω,L = ∞, equivalent to
the Full Segmentation case.

shock persistence of 0.965, and a mortgage spread shock size of -0.041, where a negative

shock size captures that spreads fall due to the subsidy. Our persistence and shock size

estimates indicate a persistent but non-permanent shock, and an annualized CLL subsidy

of 17bp, which falls in the typical range of 10bp - 24bp found in the literature (Adelino,

Schoar, and Severino, 2012).

To interpret our estimate of σω,L, Figure 6 displays our estimated empirical IRFs along-
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side the IRFs obtained from a model at our minimum-distance estimate (henceforth the

“Benchmark” model), as well as two polar economies, one with “Full Segmentation”, cor-

responding to σω,L → ∞, and one with “No Segmentation,” corresponding to σω,L = 0.

These polar economies correspond to the perfectly inelastic and perfectly elastic tenure

supply examples in Section 2, respectively. To isolate the role of our main parameter, we

only vary the value of σω,L, and use the same estimates for the persistence and size of the

shock across all three economies.

Panels (a) and (b) display results for the price-rent ratio and homeownership rate.

Our estimation is successful, as the Benchmark model (red line) delivers a close fit of the

empirical point estimates. The fit on the price-rent ratio is extremely close, while errors

are slightly larger for the homeownership rate, reflecting the lower statistical precision

around these estimates. In terms of slope, the Benchmark model delivers a response of

the price-rent ratio that is between 6.98 and 9.31 times that of the homeownership rate

depending on the horizon. Turning to polar models for comparison, the Full Segmen-

tation model (blue line) delivers a nearly identical path of the price-rent ratio, showing

that our Benchmark estimates imply heavy frictions and a large degree of segmentation.

However, the Full Segmentation model fails to deliver any increase in the homeowner-

ship rate. Last, the No Segmentation model delivers a much smaller rise in the price-rent

ratio, and a much larger rise in the homeownership rate, in line with the intuition from

Section 2.

We next compute a “credible set” for σω,L that reflects our 95% confidence interval for

the inverse tenure supply slope estimates in Figure 3 Panel (d).28 We choose values of

28We compute our credible set based on these ratio estimates, rather than the individual IRFs for two
reasons. First, these estimates jointly summarize uncertainty about both the price-rent ratio response and
the homeownership rate response into a single statistic at each horizon, which would otherwise be non-
trivial to combine. Second, part of standard errors for the individual IRFs represents uncertainty about the
absolute scale of the shock rather than the relative size of the responses. Removing the size of the shock as
a nuisance parameter allows for more statistical precision.
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σω,L to minimize the distance to the upper and lower ends of the 95% confidence interval:

QUB =
5

∑
k=2

(
IRFModel

IR,k − (β IR,k + 1.96× SEIR,k)

SEv,k

)2

QLB =
5

∑
k=2

(
IRFModel

IR,k − (β IR,k − 1.96× SEIR,k)

SEv,k

)2

,

where “IR” denotes the inverse slope ratio. For both re-estimations we hold the persis-

tence of the shock constant at our prior estimate, while the shock size is irrelevant for the

computation of this inverse ratio.

The resulting estimates are displayed as the shaded area in Figure 6 Panel (c). The

upper bound, targeting the tops of the confidence intervals, yields an estimate of σω,L =

0.810, while the lower bound, targeting the bottoms of the confidence intervals, is most

closely matched using the Full Segmentation case σ → ∞. The figure shows that our

Benchmark calibration provides a close fit of the inverse ratio as well.29

To interpret the magnitudes implied by our credible set, Panel (d) displays the credible

set and Benchmark responses for the inverse ratio alongside the responses from our No

Segmentation and Full Segmentation economies. While the Full Segmentation economy

forms the lower bound of our credible set by construction, the No Segmentation economy

falls far outside of the credible set, with inverse ratios between 6 and 13 times those of our

credible set upper bound, and between 4 and 32 times the upper bounds of our empirical

confidence intervals, depending on the horizon.

29In principle, matching the separate price-rent ratio and homeownership rate IRFs in Figure 3 Panels (a)
and (b) and matching the ratio responses in Panel (d) are both theoretically valid approaches. In practice,
directly fitting the ratio responses delivers a slope so steep it is effectively identical to full segmentation. By
matching the IRFs separately we are therefore opting for the more conservative set of estimates in terms of
the influence of credit on house prices.
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7 Model Results

Now that we have calibrated the model to match our empirical results, we run a series

of experiments to quantitatively assess the role that credit played in the 2000s housing

boom. We describe our experiments and results in detail below, and provide a summary

table across all of our boom bust experiments in Table 2, as well as robustness of our main

experiments to alternative values of σω,L in Appendix Table A.1.

To begin, we simulate a realistic relaxation of credit standards and evaluate the model’s

implications for the evolution of debt and house prices. Our baseline experiment follows

KMV in relaxing LTV limits from 85% to 99% and PTI limits from 36% to 65% unexpect-

edly and permanently in 1998 Q1. The new standards are left in place until 2007 Q1, at

which time they unexpectedly and permanently revert to their original values. The model

responses are computed as nonlinear perfect foresight paths.

The results of this experiment are shown visually in Figure 7. To highlight the role

of landlord heterogeneity, we again plot the responses in our Benchmark model against

the polar No Segmentation (perfectly elastic supply) and Full Segmentation (perfectly

inelastic supply) alternatives. As in Figure 6, the shaded bands account for the credible

set for σω,L. Our Benchmark model displays a large price response to the credit standard

shifts, accounting for 34% of the peak rise in price-rent ratios observed in the boom, while

a model setting σω,L to the lower bound of the credible set would explain 26%. This

stands in sharp contrast to the No Segmentation model, where the same credit relaxation

explains -1% of the peak growth in price-rent ratios, as landlords are able to completely

satisfy the increase in demand, preventing a rise in prices. Instead, house price dynamics

in the Benchmark model are much closer to the Full Segmentation model, where this

credit relaxation would account for 38% of the observed rise in price-rent ratios.

This finding for house prices also has important implications for credit growth. While

credit standards are loosened equally for all three cases depicted in Figure 7, credit growth

over the boom is much larger in the Benchmark economy relative to the No Segmenta-
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Table 2: Results, Boom Experiments

Experiment Price-Rent Homeown. Loan-Inc.

Peak Data Increase 48.3% 3.3pp 72.2%

Credit Relaxation (Share of Peak Data Increase)

Full Segmentation 38% 0% 53%
Benchmark 34% 27% 51%
Est. Lower Bound 26% 71% 46%
No Segmentation -1% 201% 31%

Credit Relaxation + Decline in Rates (Share of Peak Data Increase)

Full Segmentation 82% 0% 86%
Benchmark 72% 53% 80%
Est. Lower Bound 56% 135% 70%
No Segmentation 4% 353% 38%

Removing Credit Relaxation from Full Boom (Share of Peak Data Increase)

Full Boom (Benchmark) 100% 100% 98%
No Credit Relaxation (Benchmark) 45% 59% 26%
Full Boom (No Segmentation) 100% 100% 103%
No Credit Relaxation (No Segmentation) 95% -230% 50%

Credit Relaxation + Decline in Rates: Extensions (Share of Peak Data Increase)

Landlord Credit, Not Recalibrated 81% 8% 80%
Landlord Credit, Recalibrated 80% 21% 80%
Saver Demand, Not Recalibrated 52% 63% 98%
Saver Demand, Recalibrated 54% 30% 102%

Notes: This table summarizes the results from the various nonlinear transition experiments in Sections 7
and 8. “Price-Rent” is the price-rent ratio, “Homeown.” is the homeownership rate, and “Loan-Inc.” is the
aggregate loan to income ratio. The top row displays the actual changes in these variables, in levels from
1998:Q1 to the peak of each series during the boom period (2006 - 2008). The remaining numbers below
display the shares of these peak increases explained by each model-experiment combination, calculated
from 1998:Q1 to the peak of each model boom in 2007:Q1. The loan-to-income ratio is the ratio of household
debt (FRED code: HMLBSHNO) to household gross income (FRED code: PI) in the Flow of Funds. For other
data definitions see the notes for Figure 1.

tion economy, explaining 51% and 31% of the observed rise, respectively. This additional

credit growth is a direct consequence of the larger house price appreciation in the Bench-

mark economy, which increases the value of housing collateral and allows larger loans

for a given maximum LTV ratio. Consequently, the same credit loosening leads to much
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Figure 7: Credit Relaxation Experiment

2000 2005 2010 2015
Date

0

20

40

Pr
ice

-R
en

t

2000 2005 2010 2015
Date

2.5

0.0

2.5

5.0

Ho
m

eo
wn

. R
at

e
2000 2005 2010 2015

Date

0

20

40

60

Lo
an

-to
-In

co
m

e

Benchmark
No Segmentation
Full Seg.
Data

(a) Credit Standards Only
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(b) Credit Standards + Falling Rates

Notes: Each panel displays perfect foresight paths for the price-rent ratio, homeownership rate, and loan-
to-income ratio, respectively to relaxing LTV and PTI constraints. The “Benchmark” model sets a value
of σω,L calibrated to match our empirical IRFs as in Section 6, while the “No Segmentation” model sets
σω,L = 0 and the “Full Segmentation” model sets σω,L → ∞. Shaded bands indicate the range of outcomes
from the lower bound estimate of σω,L = 0.810, obtained from a least squares fit of the top of the 95%
empirical confidence intervals in Panel (c), to the upper bound estimate of σω,L = ∞, equivalent to the Full
Segmentation case. Results are summarized numerically in Table 2. The loan-to-income ratio is the ratio
of household debt (FRED code: HMLBSHNO) to household gross income (FRED code: PI) in the Flow of
Funds. For other data definitions see the notes for Figure 1.

more levered households in the Benchmark economy when credit conditions return to

baseline. As before, the Full Segmentation response falls very close to the Benchmark

path.

For a more comprehensive view of the role of credit, we next incorporate an additional

2ppt fall in mortgage spreads, assumed to be permanent, which reflects secular declines
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in interest rates over the boom period. This causes an outward shift of housing demand,

which, given our estimated rental frictions generates a large additional increase in house

prices. Combining the relaxation in LTV and PTI limits and the fall in rates can explain

72% of the observed rise in price-rent ratios and 80% of the rise in loan-to-income ratios,

shown in Figure 7 Panel (b). These results again stand in contrast to the 4% and 38%

shares explained in the No Segmentation model, in which neither the price nor quantity

of credit is an important determinant of the price-rent ratio.

Beyond changes in credit prices and standards, non-credit factors such as overopti-

mistic house price expectations are also widely believed to have played a major role in

driving the boom (see e.g., Kaplan et al. (2020)). Since strong interactions can be present

between credit conditions and these non-credit factors (Greenwald (2018)), we now in-

corporate these residual non-credit factors on top of the relaxation in LTV and PTI con-

straints and 2% decline in mortgage rates to create a “Full Boom” experiment. We follow

the intuition in Section 2 that for any credit shock and supply curve slope we can use

additional shifts to the demand and tenure supply curves to exactly match the total in-

crease in both the price-rent ratio and in the homeownership rate over the complete boom

period. We implement these shocks as level shifts in the ownership utility distributions

through changes in µω,B and µω,L, respectively, that are assumed permanent during the

boom, then revert to their original values in the bust. To complete this “Full Boom” ex-

periment, we incorporate additional features relevant to the bust: a further 3ppt fall in

both mortgage rates and the landlord discount rate, consistent with a broad decline in

long-term interest rates, and a 10% tightening of both LTV and PTI limits, consistent with

a further tightening of credit standards.30

The resulting transition paths are plotted in Figure 8, Panel (a). Overall, these assump-

tions generate a reasonably good fit of the dynamics of the boom and bust, with two main

exceptions: (i) house prices jump in the model rather than adjust sluggishly in the data,

30This is best interpreted as increasing standards for credit scores preventing a fraction of the population
from obtaining credit at the extensive margin, rather than a decline in maximum LTV and PTI ratios at the
intensive margin.
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Figure 8: Full Boom Experiment
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(a) Benchmark Economy
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(b) No Segmentation Economy

Notes: Plots display perfect foresight paths. The “Benchmark” model sets a value of σω,L calibrated to
match our empirical IRFs as in Section 6, while the “No Segmentation” model sets σω,L = 0. For each set
of plots, the colored plots display an experiment imposing a credit relaxation, decline in the interest rate,
and level shifts to the demand and supply curves (µω,B and µω,L), with these level shifts chosen to exactly
match the peak growth of price-rent ratios and the homeownership rate over the housing boom. In each
panel, the “No Credit Relaxation” responses display an alternative experiment showing the same decline
in the mortgage rate, and level shifts to our demand and supply curves while removing the relaxation of
credit standards. Results are summarized numerically in Table 2. The loan-to-income ratio is the ratio of
household debt (FRED code: HMLBSHNO) to household gross income (FRED code: PI) in the Flow of
Funds. For other data definitions see the notes for Figure 1.

as is typically found in models lacking frictions; and (ii) our model “bust” is much more

gradual in the model relative to the data, as we lack the foreclosures and financial market

features that transformed the housing crash into a global financial crisis.

To measure the total contribution of credit conditions in this simulated boom-bust,
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we then remove the simulated credit expansion, while leaving all the other factors in

place, to generate the series labeled “No Credit Relaxation.” We find that removing the

credit expansion from our Full Boom experiment would have reduced the overall rise in

price-rent ratios by 55% and in loan-to-income ratios by 74% in our Benchmark economy.

These shares, which provide the upper bound for our estimated role of credit during the

boom-bust, are larger than the shares explained by relaxing credit in isolation (34% and

51%, respectively), because loose credit amplifies the role of non-credit demand factors.

The simple intuition, discussed at length in Greenwald (2018), is that even if borrower

households perceive large gains to ownership, they lack the financial resources to pay for

large fractions of their housing purchases in cash. When expectations rise without the

relaxation in credit standards, binding PTI limits constrain households’ ability to finance

these properties, dampening the response of price and credit growth relative to the case

where e.g., expectations rise and PTI limits are relaxed.

This final set of results indicates that macroprudential policy that restricts credit through

LTV and PTI limits is effective at restraining a housing boom. This finding depends heav-

ily on our key parameter σω,L and the slope of the supply curve. To show this, Figure

8 Panel (b) replicates the exact same experiment using the frictionless No Segmentation

model. As before, we add a set of demand and supply shocks to our relaxation of credit

and fall in rates to exactly recreate the entire boom in price-rent ratios and homeowner-

ship, and then solve a second transition that removes the relaxation of credit standards.

In the absence of rental market frictions, however, removing credit standard relaxation

reduces the increase in price-rent ratios by only 5%. Because it fails to stem the rise in col-

lateral values, this tight credit counterfactual is also much less effective at reducing credit

growth, with the rise in loan-to-income ratios reduced by only 50%. The fact that alternate

calibrations can fully explain the rise in price-rent ratios and homeownership rates while

having strikingly different implications for the effectiveness of macroprudential policy

illustrates the importance of the tenure supply curve slope to discipline models.

To summarize our results, our calibrated model implies an important role for credit
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conditions in explaining the housing and credit cycles observed in the 2000s boom-bust.

A relaxation of credit standards can explain roughly between one third and one half of

the rise in price-rent ratios, depending on the order it is added relative to other shocks —

results that are closer to the extreme of full segmentation than to a frictionless model with

no landlord heterogeneity.

8 Model Extensions

In the model as presented so far, the only credit insensitive agents who could enter the

owner-occupied market are deep-pocketed landlords who face heterogenous costs in con-

verting properties between owner-occupied and renter-occupied. While this assumption

makes the economics of the model transparent, it is clearly an abstraction, as many land-

lords also face financial constraints in reality. As discussed earlier, we have also abstracted

from trade in housing between borrowers and savers. In this section, we extend the model

to relax each of these assumptions in turn.

8.1 Landlord Credit

In practice, landlords are not deep-pocketed, and the vast majority of investor-owned

properties are purchased with mortgages. To capture this, we now allow landlords to

purchase properties with mortgage credit that is affected by changes in credit supply.

We begin by reassessing the intuition developed in the supply and demand frame-

work in Section 2. Recall that a credit relaxation shifts the demand curve but not the

tenure supply curve, causing movement in the price-rent ratio, the homeownership rate,

or both, as the equilibrium travels up the supply curve in Figure 2 Panel (c). Introducing

credit for landlords implies that a relaxation in credit not only shifts the demand curve

upward but also shifts the tenure supply curve upward, as in Figure 2 Panel (d). The

degree of the supply curve shift is endogenous and depends on the model’s parameters.

Adding landlord credit to the baseline model while holding the parameters fixed will
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lead to a smaller (or potentially even negative) change in the homeownership rate and a

larger change in the price-rent ratio. This is represented by a shift from the solid supply

curve to the dashed supply curve in Figure 2 Panel (d).

To illustrate this intuition quantitatively, we implement a version of the model with

landlord credit, with a full description in Appendix A.2. We assume that landlords use a

parallel borrowing technology to borrowers, with an LTV limit of 65% (a standard con-

straint for multi-family construction loans) and no PTI limit.31 We first solve this exten-

sion using our Benchmark value of σω,L, then recalibrate σω,L under the new model fol-

lowing the procedure in Section 6. This recalibration requires an adjustment as roughly

half of rental units are located in multifamily buildings too large to be affected by the

changes in the CLL on which the LS instrument is based (see Appendix A.2 for details).

Figure 9 displays the results from an experiment analogous to that of Figure 7 Panel

(b), which both relaxes credit conditions and allows interest rates to fall, with summary

statistics again displayed in Table 2. To provide a quantitative example of a loosening

of landlord credit, we assume that landlord mortgages face an equal decline in rates and

that landlord credit also expands to a new LTV limit of 85% during the boom.

The resulting responses show that, holding parameters fixed (the path denoted “Land-

lord Credit (No Recal)”), adding landlord credit increases the response of the price-rent

ratio, explaining 81% of the rise observed in the data, compared to 72% for the Bench-

mark model. At the same time, the landlord credit model features a smaller rise in the

homeownership rate, explaining only 8% of the rise in the data, compared to 53% for the

Benchmark model. These results are consistent with the intuition in Figure 2 Panel (d).

The results holding parameters fixed would, however, make the model inconsistent

with our key empirical moment, which now reflects a locus of equilibria rather than the

slope of the demand curve. To address this, we repeat our exercise in Section 6 to re-

calibrate σω,L for the landlord credit model. The resulting responses, denoted “Landlord

Credit (Recalibrated),” follow a very similar pattern, explaining 80% of the observed rise

31These assumptions correspond to the parameter values θLTV
L = 0.65 and θPTI

L = ∞, and imply FLTV
L,t = 1.
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Figure 9: Credit Standards + Falling Rates Experiment, Landlord Credit Extension

Notes: Plots display perfect foresight paths following a relaxation of credit standards and a decline in
interest rates. The “Benchmark” model sets a value of σω,L calibrated to match our empirical IRFs as in
Section 6. The “Landlord Credit (No Recal)” model applies the landlord credit extension holding σω,L

fixed as in our Benchmark calibration, while the “Landlord Credit (Recalibrated)” model applies the same
extension while recalibrating σω,L under the new model. Results are summarized numerically in Table
2. The loan-to-income ratio is the ratio of household debt (FRED code: HMLBSHNO) to household gross
income (FRED code: PI) in the Flow of Funds. For other data definitions see the notes for Figure 1.

in the price-rent ratio, and 21% of the rise in the homeownership rate.

Overall, these results indicate that incorporating landlord credit and its relaxation dur-

ing the housing boom period would strengthen the role of credit in driving house prices.

As a result, we believe that our Benchmark calibration is, if anything, conservative, and

should provide a lower bound on the true contribution of credit over this period.

8.2 Saver Housing Demand

Our baseline model also assumes that housing demand by unconstrained households

(“savers”) is fixed. Because these savers have a relatively constant marginal utility and

are not credit constrained at the margin, if their housing is not segmented from that of

the borrowers then they will make the supply curve more elastic. Intuitively, they absorb

or supply housing to the constrained borrower households as credit supply fluctuates.

Examples of models with this feature include Justiniano et al. (2015), Kaplan et al. (2020),

and Kiyotaki et al. (2011).
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To embed this mechanism in our model, we relax our assumption of fixed saver de-

mand Hs,t = H̄s and allow savers to freely trade housing. This implies the additional

optimality condition from the saver first order condition:

pSaver
t = Et

{
ΛS

t+1

[
(1 + ω̄S) uS

h,t/uS
c,t︸ ︷︷ ︸

housing services

+
(

1− δ
)

pt+1︸ ︷︷ ︸
continuation value

]}
. (9)

This expression is nearly identical to the borrower’s condition (6) with two exceptions.

First, the collateral value term C is equal to zero, as the saver does not use credit. Second,

for this extension we assume no saver heterogeneity, so that ω̄S is a fixed parameter.

Since heterogeneity would steepen the slope of the saver demand curve, diminishing

their ability to absorb changes in borrower demand, these results should be considered

an upper bound on the role of savers. Under this assumption, reaching an equilibrium

where pSaver = pDemand = pSupply occurs entirely through changes in saver housing HS,

which adjusts the marginal utility term uS
h,t/uS

c,t.

Figure 10 compares the response to our experiment in which credit standards are loos-

ened and interest rates fall between our Benchmark calibration and this saver demand

extension. As before, we plot one version holding σω,L fixed (“Not Recalibrated”) and a

second version (“Recalibrated”) after repeating the σω,L calibration procedure in Section

6. Beginning with the non-recalibrated response, we observe that the rise in price-rent ra-

tios is diminished as savers react to the rise in prices by selling portions of their housing

stock to borrowers, absorbing demand. Since these savers are still homeowners, just with

smaller houses, there is no major change in the response of the homeownership rate.

However, introducing savers while holding σω,L fixed severely worsens the model’s

fit of our empirical IRFs in Section 3.2. Specifically, the price-rent ratio increases by too

little relative to the homeownership rate. Recalibrating σω,L to restore this fit yields the

“Recalibrated” response. This recalibration yields a slightly larger rise in price-rent ratios

to the non-recalibrated saver model, and a much smaller change in the homeownership
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Figure 10: Credit Standards + Falling Rates Experiment, Saver Demand Extension

Notes: Plots display perfect foresight paths following a relaxation of credit standards and a decline in
interest rates. The “Benchmark” model sets a value of σω,L calibrated to match our empirical IRFs as in
Section 6. The “Saver (Not Recalibrated)” model applies the flexible saver demand extension holding σω,L

fixed as in our Benchmark calibration, while the “Saver (Recalibrated)” model applies the same extension
while recalibrating σω,L under the new model. Results are summarized numerically in Table 2. The loan-to-
income ratio is the ratio of household debt (FRED code: HMLBSHNO) to household gross income (FRED
code: PI) in the Flow of Funds. For other data definitions see the notes for Figure 1.

rate, effectively restoring the correct ratio.32 Even with a perfectly frictionless saver mar-

gin, the recalibrated saver model still explains 54% of the observed rise in the price-rent

ratio from changes in the price and quantity of credit alone. While this response is about

25% smaller than the 72% observed in the Benchmark model, it still implies that more

than half of the boom in price-rent ratios is explained by credit factors and thus does not

overturn our core results.

We think of our saver extension as an extreme lower bound on the strength of credit

on house prices. While savers in our model are able to frictionlessly adjust the size of their

home at the intensive margin in response to the housing cycle, in practice saver housing

markets are highly segmented in part because homes are indivisible and in part because

of the geographic and quality segmentation of these groups’ home purchases. In reality,

it is not a viable option for most sellers to sell portions of their primary residences or

32The reason the recalibration ends up mostly adjusting along the homeownership margin rather than
the price-rent margin is that the price-rent ratio response in the Benchmark model is already very close to
the Full Segmentation model, leaving little room for further increases as σω,L rises. As a result, most of the
remaining adjustment occurs through the homeownership margin.
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vacation homes to borrowers when credit relaxes and rebuy these portions when credit

tightens, but this is a primary margin of adjustment in the frictionless model. That being

said, there is not complete segmentation in practice, as changes in demand do ripple up

or down the housing quality ladder. The best existing evidence on the degree of segmen-

tation is Landvoigt et al. (2015), who show that this effect is significantly muted relative

to a frictionless benchmark. We consequently suspect that the real world is closer to our

benchmark model than our saver model but leave the quantification of where reality lies

between these two extremes to future research.

9 Conclusion

More than a decade after the Great Recession there is still a lack of consensus about the

role of credit supply in explaining house prices dynamics over the boom and bust. We

argue this is because most of the literature has focused on two polar cases with regards to

the segmentation in housing markets between credit-insensitive agents such as landlords

or unconstrained savers and credit-sensitive borrowers.

In this paper, we generalize these polar cases to allow for arbitrary intermediate levels

of rental frictions. Building on supply-demand intuition, we show that the key sufficient

statistic for determining where reality falls on this spectrum is the causal effect of credit

on the price-rent ratio relative to the effect of the same shock on the homeownership

rate. We show in a new data set using instrumental variables methods that credit supply

shocks cause a significant increase in price-rent ratios and a more muted and statistically

insignificant homeownership response. Calibrating a model to match these estimates, we

find that credit supply can explain between 35% and 54% of the rise in price-rent ratios

over the 2000s housing boom. Relative to our polar cases, the calibrated model displays

house price dynamics that are close to those under perfect segmentation, implying large

frictions in rental markets.

Our work highlights the importance of assumptions about rental markets and the elas-

52



ticity of saver demand for macro models of the housing market. These model features are

often overlooked but are critical for many important results. We hope that our findings

motivate future work to use and develop intermediate models in place of either polar

assumption. We also highlight the use of identified credit supply shocks and a novel em-

pirical moment for calibrating macroeconomic models of the housing market. We hope

that subsequent work will improve on our estimates of the relative causal effect of credit

supply on price-rent ratios and homeownership rates and use these identified moments

to further improve the calibration of macro-housing models.
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