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ABSTRACT

The impacts of environmental change on human outcomes often depend on local exposures and 
behavioral responses that are challenging to observe with traditional administrative or sensor 
data. We show how data from private pollution sensors, cell phones, social media posts, and 
internet search activity yield new insights on exposures and behavioral responses during large 
wildfire smoke events across the US, a rapidly-growing environmental stressor. Health-protective 
behavior, mobility, and sentiment all respond to increasing ambient wildfire smoke 
concentrations, but responses differ by income.  Indoor pollution monitors provide starkly 
different estimates of likely personal exposure during smoke events than would be inferred from 
traditional ambient outdoor sensors, with similar outdoor pollution levels generating >20x 
differences in average indoor PM2.5 concentrations. Our results suggest that the current policy 
reliance on self protection to mitigate health risks in the face of rising smoke exposure will result 
in modest and unequal benefits.
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Introduction

A large body of scientific evidence documents how environmental exposures can substantially
shape human outcomes. For instance, poor air quality is estimated to kill millions of people per
year (1), warming temperatures lead to more crime and less economic output (2), and exposure
to lead reduces educational achievement (3). Effects can vary substantially across subgroups: air
pollution is more harmful to health in poorer US counties (4), warming temperatures have more
negative effects on economic output in already hot locations (5), and lead exposures appear to
have larger effects in already disadvantaged households (6). Standard models of behavior in both
public health and economics suggest the magnitude and variation of these effects in part reflect
choices that individuals make or are unable to make regarding their exposures, and that the choice
sets available to individuals are in turn reflective of individuals’ knowledge, circumstances, and
preferences (7, 8). Unfortunately, these decision-making components, as well as their behavioral
outcomes, are typically hard to observe at scale. This makes it difficult to understand why a given
environmental exposure generates the effect it does, why this effect might differ across groups,
and whether and how policy should respond.

Here we show how combining traditional sensor and survey data with information from non-
traditional distributed sensors – including data from private outdoor and indoor pollution sensors,
cell phones, social media posts, and internet search activity – can generate population-scale in-
sights into people’s knowledge, preferences, and choices regarding a changing environment, and
into how economic circumstances shape their choice set. We focus on understanding responses to
wildfire smoke, a rapidly growing environmental stressor throughout much of the US and inter-
nationally. Annual area burned by wildfires in the US has more than doubled in recent decades,
a result of a century of fire suppression and a warming climate that has left the resulting abun-
dant fuel much more flammable (9). This increase in fire activity has led to substantial increases
in average smoke exposure across the continental US, potentially reversing decades of improve-
ments in air quality (10). Absent substantial intervention, these trends are expected to continue
and perhaps accelerate in a warming climate (11–13).

A growing literature has begun to document myriad health impacts of ambient wildfire smoke ex-
posure (14–18). As with impacts of other environmental stressors, the magnitude of these health
impacts likely depend on behaviors and individual-specific exposures that are often poorly mea-
sured and understood. In particular, recent wildfire case studies suggest that individuals vary in
their knowledge and beliefs about their own exposures and about the risk that these exposures
pose to their health (19, 20). Documented heterogeneity in the impacts of wildfire smoke expo-
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sure or exposure to other particulates (4, 18, 21–23) suggest that both socioeconomic circum-
stances and previous exposures could also constrain behavior in important ways. Understanding
which features matter most is consequential for policy design: impacts driven by a lack of aware-
ness of one’s exposure, for instance, call for different interventions than impacts driven by an in-
ability to protect oneself from a known exposure. Such understanding is particularly important
for wildfire, given that current policy approaches to risk mitigation focus on the private provision
of protection – i.e., asking individuals to stay indoors, limit infiltration, and purchase protective
technologies (24).

To better understand exposures, behavioral responses, and outcomes in the face of rapidly chang-
ing wildfire risk, we first develop measures of daily exposure to ambient PM2.5 from wildfire
smoke, as this exposure itself is not directly measured by existing pollution sensors. To do so
we combine long time series of regulatory ground monitor data on PM2.5 concentrations from
US Environmental Protection Agency (EPA) pollution monitors with satellite-derived estimates
of smoke exposure. To isolate wildfire-smoke-derived PM2.5 from other sources of PM2.5 , we
define smoke PM2.5 as location-, month-, and period-specific anomalous PM2.5 on days in which
satellites indicated that smoke was overhead (Methods). Resulting ambient smoke PM2.5 expo-
sure data cover 970 US counties that contain ∼80% of US population (Fig S2), and display wide
spatial and temporal variability (Fig 1). Satellite-based counts of the annual number of dense
smoke plumes overhead have trended upward in the last decade throughout most of the continen-
tal US, particularly in the West (Fig 1a), which we estimate have helped drive rapid increases in
estimated annual smoke PM2.5 across the country and in days with extreme PM2.5 due to smoke
(Fig 1b-c).

We merge these daily wildfire-smoke-derived data with multiple high-frequency datasets that
are measured at population scale and shed light on individuals’ knowledge, beliefs and behaviors
during wildfires. To study individuals’ awareness of their exposure, we first analyze location-
specific variation in search query behavior related to smoke exposure. We use public data on spe-
cific search queries (e.g. ‘air quality’) from Google Trends, which provides normalized data on
search term popularity at the weekly level across “designated market areas" (roughly, groups of
counties; see Methods). We interpret a purposeful search for information related to smoke expo-
sure as evidence that an individual is aware she is being exposed and that her exposure level is
worth learning about – what we call “salience".

Second, we study individuals’ preferences and sentiments regarding wildfire smoke exposure.
Such preferences underlie standard theoretical models of choice behavior but are hard to observe
directly and at scale. Past work has shown that social media behavior can be a sensitive and ac-
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curate tool for understanding individuals’ preferences and sentiments toward what is happening
around them (25), including a changing environment (26, 27). Following this earlier work, we
analyze ∼1.7 billion georeferenced Twitter updates (“tweets") posted since 2016 using natural
language processing algorithms that extract information on the sentiment revealed in each tweet
(28) (Methods). This approach has been validated at population scale against self-reported mea-
sures of emotional state (25), and complements earlier work that used Twitter to directly measure
wildfire activity (29) and infer smoke concentrations (30).

Third, we again use Google search queries to study whether individuals sought information re-
garding specific health-protective actions, analyzing item-specific search terms like “air filter",
“air purifier", or “smoke mask". While we can only observe whether individuals eventually pur-
chased these items in the case of PurpleAir monitors as described below, such search behavior
can be interpreted, at a minimum, as evidence of an individual’s belief that health-protective op-
tions exist. Evidence from other settings suggests that search activity is predictive of future be-
havior, including consumer purchases (31, 32).

Fourth, we use smartphone-derived location data to study whether individuals altered their phys-
ical movements during periods of smoke exposure. Short-term migration in response to other
environmental stress (e.g. hurricanes) is common, and is a plausible avenue by which individuals
or households could seek to limit exposure to wildfire smoke. We study both the share of people
estimated to be completely at home, and the share estimated to be completely away from their
home, on days or weeks of smoke exposure.

We combine each measure with our smoke PM2.5 data and analyze the effect of smoke on each
outcome using panel fixed effects estimators that exploit local temporal variation in both expo-
sures and outcomes. While long-term exposure to wildfire smoke shows clear spatial patterns
and temporal trends (Fig 1), local-level variation in daily exposure is highly random, and panel
estimators – which are commonly employed in related environmental settings (2) – plausibly iso-
late the impact of variation in smoke exposure from other time-invariant and time-varying factors
that could be correlated with both smoke exposure and outcomes, including potential confound-
ing from COVID-19 (Methods). To ensure that we are measuring the impact of wildfire smoke
and not simply proximity to wildfire itself, we develop measures of distance to the nearest active
wildfire and analyze whether responses differ by fire proximity.

Finally, we analyze how ambient outdoor smoke PM2.5 infiltrates into the indoor home environ-
ment, and whether behaviors and circumstances shape this infiltration. Understanding indoor
concentrations is critical, as individuals in the US spend the vast majority of their time indoors.
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Using data from the American Time Use Survey, we calculate that Americans on average spend
>70% of their time indoors at home, with higher shares for lower-income and elderly individu-
als and overall shares trending up over time (Fig S1). Personal integrated exposure to variation in
ambient exposure is then likely substantially mediated by characteristics of home and work en-
vironments that are hard to observe (33–35), and these differences could in turn affect outcomes
(36–39). If socioeconomic or demographic variables shape indoor environments in ways that af-
fect exposures, as has been hypothesized (37), then exposure levels or policy choices that appear
equitable based on traditional outdoor measures could obscure large disparities in realized expo-
sures.

We assemble and harmonize hourly data from 1,520 indoor PurpleAir air pollution monitors
that individuals have put in their single-family homes across the US and use nearby outdoor
PurpleAir monitors to construct outdoor PM2.5 concentrations at each home (Methods). To es-
timate infiltration, we use distributed lag or lagged-dependent variable panel regression to es-
timate the marginal increase in indoor PM2.5 when outdoor PM2.5 increases by one unit (i.e.,
m�=3>>A%"2.5/m$DC3>>A%"2.5), controlling flexibly for time of day, day of week, and month
of sample (Methods). We estimate models that pool all indoor monitors as well as monitor-specific
models, and study how infiltration differs as a function of household and neighborhood character-
istics. Our approach complements recent work using PurpleAir to study infiltration generally (40)
and during wildfires specifically (33), though our estimation approach offers advantages relative
to the latter such as robustness to indoor pollution sources and to diurnal patterns in infiltration-
relevant behaviors (Methods).

The timeliness and granularity of novel passive distributed sensor data needs to be weighed against
its potential non-representativeness, as the latter can bias population-scale inferences. Our search
data and mobility data are likely our most representative, as the vast majority of Americans use
the internet regularly and most own and use smartphones. Twitter users are less representative on
average, but Twitter-derived sentiment measures have been shown to validate well against pop-
ulation emotional state, and related work shows that the response of sentiment to environmental
stress mirrors that measured in representative survey data. PurpleAir data are least representative
of our datasets, with wealthier and more educated households more likely to own monitors; how-
ever, as discussed below, socioeconomic and demographic information does not appear strongly
predictive of infiltration. See Methods for more detailed discussion of sample representativeness.
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Results

Increases in wildfire-derived ambient PM2.5 exposure lead to an increase in popularity for air
quality-related search terms (Fig 2a), with even small increases above zero exposure appearing
salient (Fig 2a). Results are robust to alternate air-quality-related search terms and to using anal-
ogous search terms in Spanish (Table S3), are not driven by proximity to active wildfires, and
are robust to inclusion of weather controls or alternate fixed effects (Table S4). Our results are
consistent with interview-based evidence that found that individuals who perceived they were be-
ing exposed to smoke often used internet-based sources to confirm their perceptions (19). The
salience of ambient exposure at low levels is also somewhat reassuring given recent evidence of
health impacts for sensitive populations even at very low levels of ambient exposure (18, 41).

We find that exposure to ambient smoke PM2.5 makes people unhappier, as measured in an auto-
mated sentiment analysis of 5 years of tweets across the US. Expressed sentiment in tweets de-
clines roughly linearly above smoke PM2.5 exposures of ∼20`6/<3 (Fig 2b). A very bad smoke
day (average smoke PM2.5 concentration of 100`6/<3) is associated with a roughly 0.2 stan-
dard deviation decline in sentiment relative to the overall sample standard deviation. For context,
the average difference between tweet sentiment on Wednesdays and Saturdays (respectively, the
lowest- and highest-sentiment days of the week in our data) is about 0.007 in our data; one day
of very bad smoke (100`6/<3) is thus about 3 times worse in sentiment terms than replacing an
average Saturday with an average Wednesday.

Negative effects of smoke on sentiment could occur through a variety of channels, including from
fear or anxiety about proximate fires themselves or about what the fires represent (e.g. a changing
climate), from unhappiness due to disruption in normal activities (e.g school closure or inability
to recreate), or from anticipation or experience of negative health impacts. While we cannot dis-
tinguish the latter channels in our data, effects of smoke on sentiment are not driven by proximity
to active wildfire, and are robust to temperature and rainfall controls and to alternate fixed effects
(Table S5).

Exposure to smoke PM2.5 increases search activity related to protective behavior. Searches for
technologies known to help limit exposure, including “air filter", “air purifier", "smoke mask",
and "PurpleAir", all increase on days in which smoke exposure is higher (Fig 2c, Table S6). Some
search queries in Spanish ("purificador de aire") respond similarly, although others ("filtro de
aire") do not (Table S6).

Finally, smoke PM2.5 exposure on average causes more people to not leave their home, with im-
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mediate increases at low levels of exposure that flatten off at high levels (Fig 2d). A day of smoke
exposure above 50`g/m3 leads to a roughly 3 percentage point increase in the proportion of peo-
ple fully at home, which corresponds to about a 10% increase above the mean. Smoke PM2.5 ex-
posure has a limited effect on the proportion of people fully away from their home at low expo-
sure levels, but an increasing effect at higher exposure levels (Fig S4). Both results can be inter-
preted as protective behavior: during heavy smoke days, many individuals shelter in their homes,
and some leave the area when exposure gets severe. Both results are robust to controls and are
not driven by proximity to active fires; the effect on percent of people at home is less robust to the
addition of more stringent time controls (Table S7).

Exposure and response heterogeneity Individuals are likely to respond to environmental ex-
posures in different ways, either because their personal exposure varies or because, for a given
exposure, their knowledge of that exposure or their willingness or ability to respond to it could
differ. We explore heterogeneous exposures and responses to wildfire smoke as a function of so-
cioeconomic status (as measured by locality-specific median household income) and variation
in average previous exposure to wildfire or other PM2.5 . Previous literature suggests both could
moderate behavioral responses to environmental stress through a variety of mechanisms, includ-
ing through differential access to information about exposure risk or differential ability, motiva-
tion, or knowledge of how to take protective action (8, 20, 42).

Consistent with earlier work (10), but in stark contrast to strong socioeconomic and ethnic/racial
gradients in exposure to other key pollutants in the US (43, 44), we find that exposure to both
average and acute smoke PM2.5 is largely uncorrelated with income in the US (Fig S3). We also
find no differences in salience of smoke exposure between lower- and higher-income counties,
with similar responses of search query activity to a day of heavy smoke across income levels (Fig
3a)

Other behavioral measures show strong income gradients. For sentiment, wealthier counties re-
spond much more negatively to a heavy smoke day than less wealthy counties (Fig 3b). This find-
ing is not driven by average differences in sentiment between more and less wealthy counties, by
higher overall variation in sentiment in wealthier versus poorer counties (temporal variation in
sentiment is lower in wealthy counties than in less-wealthy counties in our sample), or by differ-
ences in average exposure to smoke PM2.5 or other sources of PM2.5 (Table S9).

Search activity related to protective behavior is also substantially higher in wealthier counties
(Fig 3c), and not statistically different from zero in roughly the bottom third of the county income
distribution. Finally, populations in wealthier counties are also substantially more likely to remain
fully at home during a day of heavy wildfire smoke exposure than lower-income populations (Fig
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3d). Results are robust to more or less restrictive time controls (Fig S5a). We find no meaning-
ful difference across income groups in the proportion of individuals fully away from their house
during days of heavy smoke exposure (Fig S5b).

Why do wealthier locations respond differentially to smoke exposure? Measured differences do
not appear to reflect differences in exposure information or in overall internet activity, given the
consistent response of air-quality related searches across income groups. Rather, responses are
consistent with lower incomes constraining choice sets and behaviors, including less flexibility
in working from home, fewer resources with which to consider purchasing protective technology,
and – regarding the sentiment results – having other more pressing matters to worry about.

We find that behavioral measures are also affected by previous experience with smoke and with
other PM2.5 sources. An additional smoke day was less salient in locations with higher previ-
ous exposure to smoke PM2.5 , and locations with higher average PM2.5 exposure prior to our
study period showed smaller declines in sentiment during an additional high smoke day and fewer
searches related to health-protective behavior, but were more likely to stay at home when smoke
PM2.5 was high (Tables S8-S9). Results are consistent with individuals adapting their behavior
and beliefs based on repeated exposure, e.g. through investments in health-protective technolo-
gies.

Smoke PM2.5 infiltration into indoor environments We find that Census tracts with Pur-
pleAir monitors tend to be wealthier on average than tracts without monitors (Fig S6), a finding
consistent with other analyses (45) and with the income-differentiated search activity for “Pur-
pleAir" and related health-protective technologies found above. Nevertheless, the average income
of locations owning indoor monitors varies by 10x across locations, enabling an exploration of
the role of income and other demographic factors in shaping exposures among a population with
identical access to information on their exposures.

Using a pooled model we estimate that a 1-`6/<3 increase in outdoor PM2.5 is associated with
an 0.15 (95% CI: 0.135-0.153) `6/<3 increase in indoor PM2.5 over the next six hours. Esti-
mates are robust to alternate regression models and alternate corrections to the monitor data (Fig
S7) and are comparable in magnitude to recently published estimates (40). Estimated infiltration
is substantially lower during periods of very high outdoor PM2.5 (Fig 4a). However, for a given
outdoor PM2.5 level, infiltration is higher when at least some of the PM2.5 is from smoke. Earlier
findings of lower infiltration on smoke days (33) were likely capturing the effect of overall high
PM2.5 rather than the effect of smoke-derived PM2.5 specifically.

Consistent with our other behavioral measures, declining infiltration at high outdoor PM2.5 levels
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suggests that salient ambient exposures induce behavioral responses, which could include closing
windows or doors and/or using mechanical filtration. However, in contrast with our other behav-
ioral measures, we find only a modest relationship between neighborhood average income and
infiltration, with households in much wealthier Census blocks experiencing only slightly lower
average infiltration than households in areas with one quarter the average income regardless of
whether the PM2.5 was smoke-derived (Fig 4b).

To further explore predictors of infiltration, we estimate infiltration separately for each of the
1,520 indoor monitors in our dataset, match each monitor to a wide range of house- and neighborhood-
specific socioeconomic, demographic, environmental, and housing covariates, and fit flexible
machine learning models relating infiltration to these covariates (Methods). Consistent with
other work (40), we find many-fold differences in household-specific infiltration rates (mean =
0.19, sd = 0.16; see Fig 4c), and confirm using a Bayesian hierarchical model that this variation
is largely due to "true" underlying variation between households rather than to sampling noise
in household-level estimates (Fig S8a). Estimates are only modestly correlated with traditional
indoor/outdoor ratio estimates (Fig S9), perhaps due to the difficulty in accounting for indoor
sources of emissions or diurnal behavioral patterns in the traditional I/O approach (Methods).

While racial/ethnic, socioeconomic, environmental, and housing variables are associated with
infiltration on held-out data, their individual explanatory power is very modest, and our rich set
of predictors and flexible models are surprisingly poor predictors of overall variation in infiltra-
tion, explaining only ∼5% of variation across indoor monitors in our data (Fig S8b-c). This lack
of predictive ability of socioeconomic factors is also apparent on individual smoke days, where
even among relatively socioeconomically advantaged households, very similar outdoor PM2.5

concentrations during a given smoke day are associated with widely varying indoor PM2.5 con-
centrations (Fig S10).

To further investigate the differential influence of behavior versus housing characteristics (and
associated socioeconomic factors), we re-estimated infiltration for individual households dur-
ing periods when windows were likely to be closed and indoor filtration not running (Methods).
While average infiltration during these periods was relatively similar to infiltration during all pe-
riods (Fig S8d), infiltration varies much more strongly with both income (Fig S8e) and housing
age (S8f) under these conditions. Taken together, and consistent with previous smaller-scale work
(39), our results indicate that the poor explanatory power of socioeconomic and housing charac-
teristics is not driven by poor measurement of these characteristics but by the dominant effect of
idiosyncratic household-specific behaviors that are not correlated with these characteristics.
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Finally, using indoor monitors across the Bay Area and data prior to Aug 2020, we divide moni-
tors into low (bottom quartile) and high (top quartile) infiltration groups (Fig 4d) and study out-
door and indoor PM2.5 levels across these groups during the extreme wildfire smoke event the
area experienced in Aug-Sep 2020. High and low infiltration households experienced nearly iden-
tical daily outdoor concentrations during the many-week event (Fig 4e), but these ambient lev-
els led to starkly different indoor concentrations. On the worst smoke days, daily average indoor
concentrations across all high infiltration homes exceeded 65`g/m3 and in some houses it ex-
ceeded 100`g/m3, well above the World Health Organization 24-hour PM2.5 exposure guideline
of 15`g/m3. Low infiltration households were on average able to maintain indoor PM2.5 concen-
trations near 5`g/m3. Across the duration of the smoke event, daily mean indoor concentrations
were on average 3.5x higher in the highest quartile versus the lowest quartile of infiltration house-
holds. Differences were even larger when looking across all Bay Area monitors: households with
average outdoor PM2.5 levels within 5`g/m3 of each other experienced >20x differences in aver-
age indoor PM2.5 concentrations during the smoke event (Fig S11).

Discussion

A growing literature documents the large and often disparate impacts of wildfire smoke on a
range of health outcomes (14–18, 21, 22). Our results show how novel sensor data can provide
policy-relevant insight into why the magnitude and incidence of these impacts might vary. Mul-
tiple lines of evidence indicate that awareness of smoke concentrations does not appear to be a
primary constraint on individual behavior in the face of wildfire smoke exposure: even small in-
creases in ambient exposure cause individuals to seek air quality information, become unhappier,
and stay in their homes. But while awareness appears to be broadly shared, it does not lead to ad-
equate health protection. Even among populations that own indoor monitors and who thus have
access to accurate, real-time measures of their indoor concentrations, information is not enough
to limit dangerous indoor exposures to these pollutants. This suggests policies that target infor-
mation provision about smoke are insufficient, and perhaps not central, to enabling protective
behavior.

Socioeconomic status is not correlated with outdoor smoke levels but does appear to mediate be-
havioral responses to such pollution. Wealthier households in our sample can more easily stay
home, are more likely to seek information on protective technology, and are more likely to own
indoor pollution monitors. Such differential behavior is consistent with a broader literature that
shows how socioeconomic status constrains households’ abilities to invest in environmental qual-
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ity and health protection (8, 46). Yet, at least among our sample of monitor-owning households,
income is only weakly correlated with the infiltration of ambient smoke into indoor environ-
ments, and we observe many households in wealthy neighborhoods experiencing exceedingly
high levels of indoor smoke exposure.

Our results suggest this is likely because present infiltration rates are dominated by actions like
opening windows and doors, not housing materials or quality that might be reflected in prices. In-
filtration patterns thus point to the importance of behavior that remains unobserved, a fact which
is both encouraging and troubling. If simple but difficult-to-observe behaviors such as closing
windows and doors explain the vast majority of variation in smoke infiltration, then reducing in-
filtration at population scale could be much easier in theory than if infiltration was largely deter-
mined by income or housing quality, as changing these latter factors requires addressing deeper
societal problems of inequality and structural racism.

On the other hand, current policy approaches to addressing smoke exposure focus on behavioral
recommendations to stay at home and close windows and doors (24), but these policies alone
are difficult to comply with and may still be inadequate: many households’ indoor environments
remain highly exposed, and our mobility results suggest adherence might be difficult for lower-
income households. If such behaviors are indeed hard to adopt, then the policy approach of pro-
moting private provision of protection could be biased against disadvantaged groups. This policy
approach also stands in stark contrast to the approach of public provision of protection used for
other sources of PM2.5 , which has sought to reduce emissions of pollutants at their source and
which has successfully reduced overall ambient exposure inequalities (47). Further understand-
ing the variation and causes of the behaviors that can protect indoor environments will be key to
designing policy that can both lower indoor concentrations and not disadvantage certain groups.
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Figure 1: Trends in smoke exposure across the US. aMeasurements from satellites indicate
rapidly growing exposure to “heavy" smoke plumes across much of the US. Estimates are shown
on a 10km grid and indicate the estimated annual increase between 2011 and 2020 in the number
of smoke plumes that NOAA analysts designate as “heavy", their densest plume classification.
Dots indicate EPA ground-based pollution monitors. b Distribution of estimated annual average
smoke PM2.5 across EPA ground monitors reporting in each year. c Distribution of estimated
daily smoke PM2.5 across the same monitors. Recent increases in extreme annual exposure are
being driven by increases in extreme daily exposure.
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Figure 2: Behavioral responses to wildfire smoke exposure. a Searches for ‘air quality’ on
Google at the US designated marketing area by week level, 2016-2020. Search index is nor-
malized such that zero indicates no searches and 100 indicates the maximum number of weekly
searches over the period. b Average sentiment in Twitter updates (‘tweets‘) at the county-day
level, 2017-2020. c Searches for ‘air filter’ on Google at the US marketing area by week level,
2016-2020. Search index normalized as in (a). d Percent of mobile phones estimated to be com-
pletely at home on a given day at the US county level, 2019-2020. Lines are spline fits condi-
tional on fixed effects, with shaded areas showing bootstrapped 95% confidence intervals. Num-
ber of observations in each regression is shown in upper left corner of each panel. Histograms at
the bottom show the log distribution of smoke PM2.5 exposure in each sample.
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Figure 3: Smoke salience does not differ, but other responses do differ, among more and less
wealthy populations. a The effect of a heavy smoke exposure (50`g smoke PM2.5 on that day)
on searches for ‘air quality’ on Google do not differ by income. b A heavy smoke week has a
stronger negative effect on sentiment among wealthy populations. c Wealthier populations are
substantially more likely to search for ‘air filter’ on Google during a heavy smoke day. d Wealth-
ier populations are more likely to be completely at home during a week of heavy smoke. Lines
show the marginal effect of a 50`g smoke day on the outcome at different income levels, with
shaded areas showing bootstrapped 95% confidence intervals. The slope of each line is shown in
upper left, and the histograms at bottom show the distribution of county incomes in each sample.
Sample in each panel is same as corresponding panels in Fig 2.
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Figure 4: Infiltration rates decline strongly with outdoor PM2.5 concentration during both
fire and non-fire periods, but not with income, and differ greatly across households result-
ing in extreme differences in indoor exposure during wildfires. a Infiltration rates, measured
as the integrated hourly change in indoor PM2.5 per unit increase in outdoor PM2.5, are lower
during periods of high outdoor PM2.5 regardless of whether PM2.5 comes from smoke or other
sources. b Infiltration rates are only weakly correlated with census block median income. c The
distribution of infiltration rates estimated separately for each household in the sample is wide.
d Residents from the highest and lowest infiltration quartiles in the Bay Area are mapped and
colored according to group, showing the groups are geographically intermixed. e Daily outdoor
PM2.5 concentrations during unprecendented Aug/Sep 2020 wildfire smoke event were highly
similar between high and low infiltration households. Transparent lines show concentrations at
each residence and thick lines show the averages within each group. The left panel shows daily
mean concentrations and the right panel shows averages across all days during the event. f Same
as e but for indoor PM2.5 concentrations, showing very large (>100`g) daily differences during
peak outdoor concentrations (left) and 3.5x differences in average indoor exposure between high
and low infiltration groups (right). 15



Methods

Estimating ground PM2.5 concentrations from smoke We develop a generic, tractable method
for estimating ground PM2.5 attributable to smoke at the daily level. The method requires a cred-
ible estimate of whether there is smoke in the air on a given day, and a daily time series of PM2.5

from which location- and period-specific anomalies can be constructed. In principle, any avail-
able (accurate) daily PM2.5 estimates could be used, including promising recent machine-learning-
based efforts at generating high-resolution gridded time series of PM2.5 concentrations (48, 49).
However, existing gridded data are not available for recent years, and so we instead use station-
based daily PM2.5 measures from the network of thousands of EPA stations across the continental
US (Fig 1a).

To construct our daily measures of smoke PM2.5 , we define %"83<H as the PM2.5 concentration
recorded by the EPA monitor at location i on day d, month m, and year y. From this time series
we construct location- and month-specific anomalies %"0=><83<H = %"83<H − ¯%"8<H, where

¯%"8<H is monthly median PM2.5 on non-smoke days at that location, and where median is de-
fined over the three years surrounding the year of interest. So for example, a PM2.5 anomaly for
the Redwood City CA EPA station on Jan 10, 2019 is calculated as the value on Jan 10, 2019 mi-
nus the median PM2.5 value on all January days in 2018, 2019, and 2020 in Redwood City when
smoke was not overhead. Our measure of whether smoke was overhead, ?;D<483<H, is derived
from the National Oceanic and Atmospheric Administration (NOAA) Hazard Mapping Sys-
tem (HMS) satellite estimates of smoke plume boundaries. We define ?;D<483<H = 1 if there
was a smoke plume of any thickness over location 8 during any time on day 3, and zero other-
wise. Finally, from these data we can construct (<>:4%"83<H = %"0=><83<C ∗ ?;D<483<H.
(<>:4%"83<H will thus equal zero when there is no plume overhead, and will equal the anomaly
value when there is smoke overhead. Our approach thus provides a continuous measure of smoke
exposure intensity.

Our approach is similar to recent work (50) using interpolated station data and plumes to estimate
smoke PM2.5 . However, given the high spatial variation in smoke exposure and often large dis-
tance between EPA stations, we chose not to interpolate EPA stations. Given the secular decline
in background PM2.5 across the country, we also define anomalies relative to a moving (3-year)
monthly median rather than a fixed seasonal mean.

Measuring salience and health-protective behavior We measure salience and health-protective
behavior using public search query data from Google Trends. Data are accessed using the R
package gtrendsR, and are provided as location-, term- and period-normalized indices ranging
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from 0 to 100, where 0 is the lowest search volume for that term in that location during the cho-
sen period, and 100 is the highest search volume. Data are available at the "Designated Market
Area" level (referred to as "Metro" areas by Google Trends), which are geographic regions en-
compassing television media markets as defined by Nielsen.

We study searches in both English and Spanish, which together are the primary languages spo-
ken by 92% of US households (51). We use weekly data on designated market areas, the native
spatial resolution of the public Trends data, between Jan 2016 and Dec 2020, and analyze data on
terms related to smoke exposure (including “air quality", "smoke", and "wildfire smoke").

Measuring sentiment We measure online sentiment for a county-day using the text of Twit-
ter posts (“tweets”) created in that county on that day. Specifically, we collect nearly all of the
geolocated tweets for the continental United States between December 2016 and February 2021
through the Twitter Streaming API. To compute sentiment for each tweet, we apply the VADER
sentiment analysis model (28), a natural language processing algorithm tuned specifically for esti-
mating sentiment from online language. We take the average of the “compound” scores (ranging
between -1 and 1) computed by VADER for all tweets in a county-day as our measurement of
sentiment. Our approach builds on the computation of expressed sentiment described in ref (26).
Readers may refer to that article for additional details on the general approach to collecting and
processing tweets for use in empirical analysis. On average, mean sentiment for a county-day is
0.17, computed from 455.4 tweets.

Measuring mobility We assembled a daily dataset of mobility measures at the county-level
collected between Jan 2019-Dec 2020, the period over which mobility data were generously made
available to researchers by Safegraph. These data measure the aggregate activity of anonymized
device signals, or “pings”, at the census block group-level. Signals are collected from smart-
phones, not all cell phones. We focus on two measures constructed from these anonymized sig-
nals: percentage of individuals completely at home on that day, and percentage of individuals
completely away from home on that day. We construct the completely away from home variable
by counting the percentage of devices on a given day that were not observed in their respective
home location. Safegraph assigns a home location to each device based on their mobility pattern
observed over the previous six weeks. We aggregate these data to the county-day level by taking
means weighted by the number of devices in each census block. Data processing details are dis-
cussed further in refs (52–54).

Measuring distance to fire To distinguish the effects of exposure to wildfire smoke from po-
tentially correlated effects of being near an active wildfire, we develop daily measures of proxim-
ity to active wildfires and control for them in the regression analysis. Our measures of active fires
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are derived from NOAA HMS fire points. Because these fire detections often indicate very small
and isolated fires that likely do not represent threatening wildfires, and large active fires typically
have many nearby fire detections, we build on earlier work (10) and denote active fires by con-
structing "fire clusters", or locations with multiple active nearby fire points. To do this, we buffer
each HMS fire point by 3km square, and take the union of existing overlapping squares over a
given day and previous three days. We then define an active fire as a location where this union
is >10km2. This does not mean 10km2 are burning, but within that 10km2 there are multiple
fire points over a three day period, representing an active and potentially growing fire. We then
compute "distance to fire" as the distance from a geography centroid (e.g. county) to the nearest
active fire, setting this distance to 0 if the active fire cluster is inside the county on that day.

Estimating ambient smoke impact We combine the above behavioral measures with our smoke
PM2.5 estimates and analyze their correspondence using panel fixed effects estimators, with the
goal of isolating the impact of variation in smoke exposure from other time-invariant and time-
varying factors that could be correlated with both smoke exposure and outcomes. Specifically, we
estimate econometric models of the form:

H8B3<H = 5 ((<>:4%"8B<H) + /8B<H + U8< + [3 + Y8B3<H (1)

where H8B3<C is outcome of interest in unit 8, state B, day 3, month <, and year H, (<>:4%"8B<H

is our smoke PM2.5 measure on the same day and location, and /8B<H are additional time-varying
controls. Our preferred model includes location-by-month FE to account for local seasonality
in either outcomes or exposures (i.e. one intercept for each of the twelve months in Santa Clara
County, CA), day-of-sample FE (e.g. a dummy for Jan 1, another for Jan 2 2016, etc) to account
for common trends or shocks to outcomes or exposures on a given day. Our date FE implicitly
also account for any average differences in outcomes between weekends and weekdays. We es-
timate 5 () using either linear models or more flexible cubic splines to capture potential non-
linearities. In all analyses using search query data, Twitter data, or mobility data, smoke PM2.5

is measured using EPA station data, as described above.

In these models, the effect of smoke exposure on outcome H is estimated by relating, e.g., out-
comes in Santa Clara County on Aug 30 2020 versus Sep 1 2020 to differences in smoke expo-
sure on those days, after accounting for any common difference across counties in exposure or
outcomes between the two days, and any average differences in smoke exposure or outcomes
in August vs September in Santa Clara County. A confounding variable would have to be a lo-
cal time-trending unobservable correlated with both smoke exposure and the outcome. Possible
candidates include weather variables and the presence of an active wildfire nearby, and we addi-
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tionally control for these variables (/8B<H in Equation 1) in robustness tests, or split the sample
between locations nearby and further from an active wildfire.

Another potential threat to identification is the COVID epidemic, which near the end of our sam-
ple period had demonstrated effects on mobility (55) and sentiment (56), and likely enhanced
awareness about the importance of air filtration (57); 2020 was also a year of severe smoke ex-
posure throughout much of the US West. Because we exploit daily variation in smoke exposure
over time at particular locations, and because such variation depends largely on stochastic fac-
tors such as exactly where fires ignite and which way the wind is blowing, we believe daily vari-
ation in COVID outcomes or behaviors are unlikely correlated with wildfire smoke exposures.
However, to further address this confounding risk, we test robustness to even more stringent time
controls, including county by month of sample FE, and state by day of sample FE; these further
account for any state-specific differences or trends in COVID severity and/or policy intervention
that happened to coincide with wildfire risk. We note that any changes in our observed behavioral
outcomes due to wildfire-specific effects on health outcomes, including wildfire’s potential effects
on COVID itself (17), are not confounding and would constitute part of the overall "effect" that
we wish to understand.

To study whether the effects of smoke on outcomes vary across locations, we interact smoke ex-
posure with time-invariant covariates of interest:

H8B3<H = V1(<>:4%"8B<H + V2(<>:4%"8B<H ∗ -8 + /8B<H + U8< + [3 + Y8B3<H (2)

where -8 in our analysis include median household income, average previous exposure to PM2.5 ,
and average smoke PM2.5 exposure, either included individually or jointly.

Measuring indoor and outdoor household PM2.5 using Purple Air To estimate household
infiltration of outdoor PM2.5 into indoor environments, we utilize data collected by low-cost Pur-
ple Air monitors measuring indoor and outdoor PM2.5 concentrations. Raw 10-minute observa-
tions were downloaded for all available indoor and outdoor Purple Air monitors in the contiguous
United States and then cleaned according to the procedures developed by recent studies (38, 40)
in order to produce hourly indoor and outdoor PM2.5 concentrations. Namely, for each monitor,
we download 10-minute observations from the earliest available date through the end of 2020 or
the last available date, whichever is later.

Following existing literature, we use multiple approaches for estimating PM2.5 concentrations
from Purple Air data. In a “particle count" approach, we derive 10-min PM2.5 concentrations
based on the reported particle counts reported by each sensor (i.e., for dual sensor monitors two
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different PM2.5 concentrations were derived for each 10-min period, one for each sensor). PM2.5

concentrations were derived from particle counts using equations 1 and 2 from Bi et al 2021
(38). For the other approaches that relied directly on Purple Air’s reported concentrations we
record the 10-min average PM2.5 reported in the cf_1 channel. We choose the cf_1 channel rather
than the cf_atm channel because previous work has shown it correlates better with concentrations
measured by EPA monitors (58). Furthermore, because Purple Air previously had the cf_1 and
cf_atm columns incorrectly labeled in their data, we use the updated labels for each channel to
ensure we have correctly identified the cf_1 observation. Then, for all approaches the following
steps were used to go from the 10-minute Purple Air PM2.5 concentrations to the final cleaned
hourly data used in the analysis:

1. For monitors with A and B sensors, we compare the two sensors and set any 10-min ob-
servation to NA if the difference between sensors exceeds a certain threshold. Specifically,
when PM2.5 ≤ 100 `6/<3 we set the observation to NA if the A and B sensors differ by
more than 10 `6/<3 and when PM2.5 > 100 we set the observation to NA if the A and B
channels differ by more than 10%. We then take the average across the two sensors. Obser-
vations where either sensor has a missing value are set to missing.

2. Next, we examine all adjacent three period runs to see if there are ‘spikes’ defined as an
increase and then immediate decrease in the subsequent period or a decrease and then sub-
sequent increase in the next period. If the mirror jumps in subsequent periods from t-1 to t
and from t to t+1 are both over 100 then we set observation in time t to NA.

3. To get hourly observations we take the 60-min mean, setting the hourly average to NA if
any 10-min period was missing.

This process resulted in two separate measures of PM2.5 concentrations for each monitor, one
based on particle counts and one based on Purple Air’s reported PM2.5 concentrations. We then
derived a third measure of PM2.5 concentrations by using the Purple Air reported concentra-
tions (i.e., not those derived from the particle counts) and applying the correction developed in
Barkjohn et al 2021 (58) to improve agreement between Purple Air PM2.5 concentrations and
EPA reference monitor concentrations.

Hourly ambient exposures were estimated at each indoor monitor site by first identifying all out-
door monitors within 5km and then taking the inverse distance weighted average of hourly PM2.5

concentration across the (up to) 10 nearest monitors. Monitors with less than 720 non-missing
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hourly indoor and outdoor PM2.5 measurements (i.e., 30 days of hourly data) were excluded from
the analysis.

Finally, indoor Purple Air monitors are deployed in many different types of buildings. We used
a combination of information from monitor labels and manually checking of geolocations to de-
termine which buildings with indoor Purple Air monitors were single family residences (SFR).
All other types of buildings were removed from the sample. In total, there were 1,520 monitors
reporting in our sample of single family residences.

In order to validate the three versions of Purple Air derived PM2.5 concentrations we identify the
nearest outdoor Purple Air monitor to each available EPA monitor that reports hourly data and we
estimate the following regression:

%"�%�
8ℎ< = V%"%�

9ℎ< + U8 + \ℎ + [< + Y8ℎ< (3)

where %"�%�
8ℎ<

is the EPA reported hourly PM2.5 concentration for monitor 8 in hour-of-day ℎ and
for month-of-sample < and %"%�

9ℎ<
is one of the three versions of hourly PM2.5 concentration

estimated at the nearest Purple Air monitor. Our infiltration measure derived from these data is
a regression based estimate that relates anomalies (i.e. deviations from averages along several
dimensions) in indoor PM2.5 to anomalies in outdoor PM2.5 . Therefore when evaluating per-
formance of the Purple Air PM2.5 measures with respect to EPA monitors, we include monitor,
hour-of-day, and month-of-sample fixed effects in the comparison regression.

Results from estimation of the EPA monitor comparison regressions are shown in Table S1. Anoma-
lies in all three versions of Purple Air PM2.5 measures are strongly correlated with anomalies
in hourly measures from nearby EPA monitors with R2 values in each case >0.65. The uncor-
rected Purple Air cf_1 PM2.5 measures overestimate EPA PM2.5 and explain the smallest share
of the variation in anomalies. Unsurprisingly, given the Barkjohn et al correction was designed
specifically to calibrate Purple Air PM2.5 to EPA PM2.5 levels, it is the best of the three measures
at predicting the level of EPA monitor PM2.5. However, while the particle count derived PM2.5

concentrations underestimate EPA monitor concentrations, they explains the largest share of the
variation (R2=0.72). This is consistent with a recent study on Purple Air monitor PM2.5 calibra-
tion that found PM2.5 concentrations derived from Purple Air particle counts best explained EPA
measured PM2.5 anomalies both overall and specifically during wildfire events (59). In light of
these findings, we follow several recent publications (38, 40, 59) and present our main infiltra-
tion results with PM2.5 concentrations derived from Purple Air particle counts. However, we also
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present infiltration estimates for all three versions of PM2.5 concentrations (in each case using
the same measure for indoor and outdoor concentrations) and find estimates are highly correlated
across choice of measure (Fig S7).

Estimating infiltration rates In order to estimate the average indoor infiltration rate, which
we define as the increase in indoor PM2.5 concentration per unit increase in local outdoor PM2.5

concentration (i.e., m�=3>>A%"2.5/m$DC3>>A%"2.5), we estimate a regression at the monitor-
hour level. Namely, for each residence 8 in hour ℎ on day-of-week 3 and month-of-sample <, we
estimate how indoor PM2.5 varies with contemporaneous and previous hour measurements of
outdoor PM2.5:

%" 8=
8ℎ3< =

6∑
:=0

V:%"
>DC
8;ℎ−:;3< + W8 + Xℎ + [3 + \< + Y8ℎ3< (4)

To isolate the contribution of outdoor PM2.5 to indoor PM2.5 from other time varying PM2.5

sources (most notably, indoor-sourced PM2.5), we use fixed effects to flexibly control for monthly
trends in PM2.5 over the sample (\<) and household-specific average variation in PM2.5 within
the day (Xℎ). Day-of-week fixed effects ([3) control for differences in patterns between weekdays
and weekends.

We include six lags here (outdoor PM2.5 at each of the previous 6 hours) to account for lingering
effects of outdoor concentrations in previous hours on contemporaneous indoor concentrations,
although results are robust to the inclusion of additional lags. From this regression we derive an
estimate for outdoor-indoor infiltration by calculating the cumulative effect of 1 `6/<3 increase
in outdoor concentrations on indoor concentrations:

8= 5 8;CA0C8>= =

6∑
:=0

V: (5)

In order to assess the importance of modeling structure we re-estimated Eq. 4 with four different
lag structures: a distributed lag model with lags for outdoor PM2.5 only (shown above), a lagged
dependent variable model with a lag for indoor PM2.5 only, a model with both indoor and outdoor
PM2.5 lags, and finally a model with no lag terms (Table S2). Infiltration rate estimates derived
from each of the models are highly similar (Fig S7) and models with more than six lags produce
indistinguishable estimates of infiltration rates.
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In order to examine heterogeneity in infiltration rates across hourly outdoor pollution levels and
by smoke presence, we first estimate a non-linear version of Equation 4. Namely, we model in-
door PM2.5 as a 4th degree polynomial of outdoor PM2.5 (and its lags) and interact it with a dummy
variable indicating whether smoke was present. The smoke dummy is defined as 1 when a NOAA
HMS plume reported a heavy plume over the PurpleAir monitor on that day and 0 otherwise:
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To measure the infiltration rate we then calculate the derivative of indoor PM2.5 with respect to
outdoor PM2.5 estimated in Equation 6 and evaluate across the 1st-99th percentile of observed
hourly outdoor PM2.5 concentrations as well as the indicator for whether or not smoke was present.
Responses are plotted in Figure 4a.

We also estimate infiltration rates as a function of median census tract income by estimating
Equation 4 with an additional income interaction term:

%" 8=
8ℎ3< =

[ 6∑
:=0

V:%"
>DC
8;ℎ−:;3<

]
+

[ 6∑
:=0

V:%"
>DC
8;ℎ−:;3<

]
· 8=2><48 + W8 + Xℎ + [3 + \< + Y8ℎ3< (7)

Median income data come from the American Community Survey. Each indoor monitor was
matched to a census tract and median income was pulled for the most recent available year and
updated to 2020 dollars.

Finally, for each indoor monitor we estimated a separate distributed lag model analogous to the

23



pooled model in Equation 4:

%"8ℎ3< =

6∑
:=0

V8:%" 9 ;ℎ−:;< + Xℎ + [< + \3 + Y8ℎ3< (8)

where PM2.5 at indoor monitor 8 in hour ℎ on day-of-week 3 and month-of-sample < is modeled
as a function of outdoor PM2.5 in that location in the contemporaneous period and for each of
the previous 6 hours. Our estimate of the overall infiltration rate for each monitor, which we de-
note V8 is then the sum of coefficients over time from the regression for that monitor (i.e., V8 =∑6
:=0 V8: ).

A large number of previous studies [e.g., (33, 35, 38, 39) among many others] have focused on
average indoor-to-outdoor concentration ratios (I/O) as a metric of infiltration. If measured over
long time periods, this average I/O ratio does represent the net atmospheric barrier provided by a
building, but is inclusive of emissions from indoor sources (which may be either trapped or venti-
lated) (60). Because indoor-sourced emissions can be large, approaches using I/O to understand
infiltration have often focused on periods of the day (typically the middle of the night) when in-
door sources are likely to be minimal. However, if households alter other infiltration-relevant be-
haviors at night (e.g., either keeping windows open, or keeping them closed), then period-specific
I/O estimates will not be representative of infiltration during the rest of the day. These differences
could be correlated with demographics. For instance, households in higher-crime areas might
close their windows at night but open them during the day, and wealthy households with air con-
ditioning in low crime areas could do the reverse; in this case, I/O estimates would understate true
average infiltration for the first set of houses and overstate for the second.

Our regression-based approach to infiltration measurement is less likely to suffer from this prob-
lem. We characterize infiltration as m�/m$, or the change in indoor concentrations when outdoor
concentrations change, and use a regression framework to help isolate the contribution of outdoor
PM2.5 to indoor PM2.5 from time-varying indoor PM2.5 sources. Indoor emissions sources will
not bias m�/m$ estimates so long as variation in these sources (after conditioning out our rich
set of within- and across-day fixed effects) is uncorrelated with outdoor sources, which is plausi-
ble. As a result, our regression based estimates represent average infiltration rates throughout the
whole day, and are less likely to be biased by remaining sources of indoor emissions.

Our analysis suggests this distinction in measurements is especially important over shorter time
scales, and during major perturbations in outdoor pollution, like wildfires (Fig S9). A simple
takeaway of this study is thus that I/O ratios might not adequately capture concentrations when
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populations are trying to stay indoors during a heavy smoke event.

Understanding variation in household infiltration rates Monitor-specific estimates suggest
large variation in infiltration across households (Fig 4c), consistent with earlier work (40). How-
ever, since monitor-specific infiltration values are themselves estimates from data, observed vari-
ation across monitors could reflect either "true" underlying heterogeneity in infiltration, or could
simply reflect sampling variation (or some combination of the two).

To distinguish sampling variation from underlying heterogeneity, we estimate a Bayesian hier-
archical model (61, 62) that models monitor-specific infiltration estimates as being distributed
normally about true monitor-specific infiltration values with estimated monitor-specific sampling
variance V̂8 ∼ # (V8, B̂42

8 ), and true monitor-specific infiltration values as drawn from an underly-
ing normal distribution with unknown mean and variance V8 ∼ # (V, f2).

We obtain posterior monitor-specific infiltration values V8 by assuming uniform prior distribu-
tions for V and f and applying Bayes’ Rule to update our estimates of V, f, and the V8’s. We use
4 chains each with 2,000 total iterations and 1,000 warm-up iterations (resulting in 4,000 post-
warmup draws) to fit the model and characterize the posterior distributions of these variables
using R package rstan (63). For this analysis, we limit our eligible sample to the 1,484 indoor
monitors associated with infiltration estimates between 0 and 1 across all PurpleAir PM2.5 correc-
tions and model lag structures. Posterior estimates of the V8’s are very similar to “raw" regression
based estimates from equation 8, suggesting nearly all the variation is true underlying variation in
infiltration, and not due to sampling variation.

To understand underlying heterogeneity in infiltration, we then match each indoor monitor to a
range of house- and neighborhood-specific covariates measuring demographics, neighborhood
conditions, environmental conditions, and housing characteristics. We download demographic
and neighborhood condition covariates at the Census tract level from the 2019 American Com-
munity Survey 5-year estimates via the R package tidycensus. We match each monitor to its over-
lapping or nearest neighboring Census tract.

Among environmental covariates, mean annual heating degree days and cooling degree days over
2000-2020 are obtained via Google Earth Engine (64) from the PRISM Daily Spatial Climate
Dataset (AN81d) (65) at tract level and matched with monitors by overlap or nearest neighbor.
Each household’s 10-year mean outdoor PM2.5 concentration is calculated from gridded annual
PM2.5 estimates (66).

We interpolate housing covariates from georeferenced CoreLogic data on household character-
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istics spanning the universe of residential homes in the US (67). Because individuals geolocate
their monitors manually on the PurpleAir platform and might not choose to input a location at
their precise residence, we match monitors to CoreLogic single-family homes in four ways, taking
the inverse distance weighted average of housing characteristics within 100, 250, or 500 m, or by
using values at the nearest neighbor within 1 km (i.e. the residence in CoreLogic closest to the
monitor lat/lon). For consistency, the sample utilized in the analysis is limited to the 1,383 indoor
monitors that match with a CoreLogic house within 100 m, regardless of interpolation method.
Because housing characteristics tend to be highly correlated, we construct a housing index by
averaging standardized values of home value, number of stories, number of baths, number of bed-
rooms, height, and area, and use the index as a predictor.

We then train flexible ML-based models to predict monitor-specific infiltration rates from matched
covariates. We divide our sample into a 75% training dataset and a 25% held-out test dataset,
splitting train and test within 13 disjoint geographic regions covering the contiguous US to ensure
a geograhically balanced split. We train random forest and gradient boosted trees models with
manually tuned forest and boosting hyperparameters, respectively, and tree parameters tuned us-
ing random search with 3-fold cross-validation repeated 5 times. We conduct tuning and training
for each method of matching monitors and CoreLogic houses for robustness.

We report performance statistics ('2) on held-out test data, and compute the marginal effect of
each predictor by evaluating the predicted effect in the test data of moving from the 5th percentile
to the 95th percentile of the predictor, with all other variables fixed at their mean value. We re-
peat this evaluation for both random forest and gradient boosted trees models, and for all four
ways of spatially matching to housing characteristics.

Understanding representativeness of study samples Our novel social media, search trends,
and sensor data data are not necessarily derived from representative samples of individuals. Our
inferences about behavioral responses to smoke that we draw from these data will thus also not
be representative of the population at large if the behavior of those represented in the data in re-
sponse to smoke exposure differs from the behavior of those not in the data. While the latter is by
definition hard to observe, some progress can be made by understanding which individuals and
groups are contributing information to these datasets, and by studying other efforts to validate
derived behavioral measures against representative data.

Recent surveys of overall internet use suggest that the vast majority (>90%) of adult Americans
use the internet, with limited differences by race and only moderate differences by income (68).
While we are unaware of comprehensive demographic data on search activity, previous work has
found that search-based measures of issue salience correlate reasonably well with survey-based
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measures (69) and are predictive of a range of economic phenomena (70). In our data, the fact
that we see higher income populations more likely to both search for and purchase (in the case
of PurpleAir) health protective technologies is additional validation that income-differentiated
search behavior predicts real-world behavior.

Regarding our sentiment analysis, roughly a quarter of American adults are estimated to use Twit-
ter, with limited differences in use by race (slightly higher use by non-White populations) but
higher use among younger Americans and higher-income Americans (71). Nevertheless, tem-
poral variation in Twitter-derived sentiment measures appears to validate well against measures
from independent survey data (25) and to correlate well with survey-derived measures of behav-
ior (72). Finally, previous work on climate stress demonstrates that Twitter-derived sentiment
measures responds similarly to such stress as compared with responses measured in representa-
tive vital statistics or survey data (73, 74).

Our mobility data are derived from smartphones. Recent data suggest that ∼85% of adult Ameri-
cans own smartphones (75). As with internet usage, smartphone ownership shows limited differ-
ences by race but some differences by income, with wealthier populations somewhat more likely
to own a smartphone. Thus our mobility measures will be slightly skewed towards wealthier pop-
ulations. As shown in Fig S1, wealthier populations on average report spending less time at home
in representative survey data.

Our PurpleAir sample, among our many datasets, is likely the most non-representative of the
overall American populace, with Census tracts that have PurpleAir monitors in them being wealth-
ier, better educated, and slightly more White than tracts without monitors (45) (Fig S6). This
finding is again consistent with our broader finding of income-differentiated responses to wildfire
smoke. However, it also means that the variation in infiltration we measure might not accurately
describe infiltration rates for lower-income and less educated populations, and better measure-
ment of infiltration among these populations is an urgent research priority.

Data availability Data and code to replicate all results in the paper will be made available on a
Github repo at the time of publication.
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Appendix

Figure S1: Time spent indoors at home in America. Data are from repeated rounds of
the American Time Use Survey. Top panels show data by average income, age, season and
race/ethnicity. Bottom map shows averages by state.
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Figure S2: Counties included in analyses that use EPA pollution monitors. Counties in red
are those with EPA pollution monitors from which we construct smoke PM2.5 measures for the
behavioral analyses.
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Figure S3: Exposure to average and acute smoke PM2.5 at the county level does not differ
systematically by income. Daily smoke PM2.5 exposures by income decile across US counties,
2006-2020. Dots represent daily observations where smoke PM2.5 was non-zero. Plot is trun-
cated at 300ug for clarity; not plotted are 71 days (0.001% of the sample) in which smoke PM2.5
exceeded 300. Statistics at right show the percent of observations across the study period with
daily smoke PM2.5 observations above the listed value.
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Figure S4: Effect of smoke PM2.5 on percent fully home versus percent fully away. Left plot
is as in Fig 2d, right plot is same but for % fully away from home on that day.
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Figure S5: Effect of smoke PM2.5 on mobility as a function of income. Lines show the
marginal effect of a heavy smoke exposure (50ug smoke PM2.5 on that day) on percent of indi-
viduals completely at home on that day (left plot) or completely away from home (right plot), as
a function of median household income in that county. Colors represent models run with either
date fixed effects (blue) or state-by-date fixed effects (orange). Shaded area is bootstrapped 95%
CI.
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Figure S6: Higher income US census tracts are more likely to have PurpleAir monitors.
Grey bars shows the distribution of tract-level median household income across all US census
tracts in the continguous US, red bars the income in tracts with at least one outdoor PurpleAir
sensor, and blue bars the income in tracts with at least one indoor PurpleAir sensor. Vertical lines
give the median of each distribution.
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Figure S7: Infiltration estimates are highly correlated across alternate statistical models and
methods of deriving PM2.5 concentrations from Purple Air data. Correlation between infiltra-
tion estimates from statistical models with different lag structures (see Table S2 for model equa-
tions) and different PM2.5 concentration estimates (see Methods for details). 1a is our preferred
specification presented in the main results.
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Figure S8: Understanding variation in household-specific infiltration estimates. a. Posterior
estimates of monitor-specific infiltration rates from a Bayesian hierarchical model are very similar
to “raw" estimates from our monitor-specific time-series regressions, indicating that true hetero-
geneity rather than sampling noise is what is driving observed differences in estimated infiltra-
tion. b. Ability of random forest (RF) or gradient boosted trees (GBT) model to explain variation
('2) in infiltration across monitors remains low; models use predictors in (c). c. For each pre-
dictor, we calculate the effect on infiltration of moving from the 5th to the 95th percentile of that
predictor in the test dataset, holding the other predictors constant at their average value in the test
dataset; estimates are shown for RF and GBT models and for four alternate spatial buffers used
to construct housing predictors. Housing Index is constructed by averaging standardized values
of home value, number of stories, number of baths, number of bedrooms, height, and area. A/C
measures the inverse distance weighted proportion of matched CoreLogic houses that have air
conditioning. Median Income is the median household income in the Census tract population.
Race variables (i.e. all demographic covariates except Hispanic) are measured among the non-
Hispanic/Latino population. AI/AN stands for American Indian and Alaska Native. NHPI stands
for Native Hawaiian and other Pacific Islander. HDD and CDD stand for heating degree days and
cooling degree days, respectively. d Range of household-level infiltration estimates for the full
sample and for sub-samples when behavior (ie opening/closing of doors, use of air purifier) is
expected to matter less: when it’s raining, nighttime, and periods when it is cold (<10C) and low-
PM2.5 (<30`6/<3). e-f during periods when behavioral factors are more likely minimized, infil-
tration varies more strongly with income and housing age.
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Figure S9: Monitor-specific infiltration estimates using indoor/outdoor ratios versus
regression-based approaches. I/O estimates are only modestly correlated with our preferred
regression-based estimates that measure the marginal effect on indoor PM2.5 concentrations of
a unit increase in outdoor concentrations. For each monitor I/O ratio was calculated across all
observations with hourly indoor PM2.5 ≤ outdoor PM2.5 . m�/m$ was estimated using Eq. 8 as
described in Methods.
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Figure S10: Outdoor and indoor PM2.5 concentrations on a smoke day in CA. Very similar
outdoor PM2.5 concentrations during a smoke event on Aug 20th, 2021 over a high-income area
of the peninsular Bay Area were associated with widely varying contemporaneous indoor PM2.5
concentrations.
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Figure S11: Variation in indoor PM2.5 across monitors with similar outdoor PM2.5 during
the Aug/Sep 2020 smoke event in the Bay Area. Each dot is average outdoor PM2.5 and average
indoor PM2.5 for an individual monitor in the Bay Area over the Aug/Sep 2020 smoke event, with
monitors grouped into 5`g bins based on outdoor exposure. Numbers at top show the number of
monitors in each bin (black), and the ratio of maximum to minimum indoor PM2.5 across moni-
tors within each outdoor PM2.5 bin (red). Monitors with average outdoor PM2.5 exposures within
5`g of each other experienced >20x differences in indoor PM2.5 exposures.
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Table S1: Hourly EPA reference monitor PM2.5 concentrations versus different construc-
tions of Purple Air PM2.5 concentrations. Each column is a separate linear regression with
hourly PM2.5 concentration at an EPA reference monitor as the dependent variable and a differ-
ent version of Purple Air derived PM2.5 concentration as the independent variable. All models
include EPA monitor fixed effects, hour-of-day fixed effects, and month-of-sample fixed effects.

Purple Air PM2.5 Construction: CF_1 Barkjohn et al correction particle count derived
Purple Air PM2.5 0.600*** 1.064*** 2.196***

(0.035) (0.069) (0.109)
R2 0.67 0.68 0.72
Num.Obs. 199,394 199,394 199,394
FE: EPA monitor X X X
FE: hour-of-day X X X
FE: month-of-sample X X X
* p < 0.05, ** p < 0.01, *** p < 0.001
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Table S2: Models of infiltration

Model description Equation

1 Distributed Lag Regression: %" 8=
8ℎ3<

=
∑6
:=0 U:%"

>DC
8,ℎ−:,3< + W8 + Xℎ + [3 + \< + Y8ℎ3<

Infiltration
measure:

∑6
:=0 U:

2 Lagged Dependent Regression: %" 8=
8ℎ3<

= U%">DC
8ℎ3<
+ V%" 8=

8,ℎ−1,3< + W8 + Xℎ + [3 + \< + Y8ℎ3<
Variable

Infiltration
measure: U ·

(∑∞
:=0 V

:
)

3 No Lags Regression: %" 8=
8ℎ3<

= U%">DC
8ℎ3<
+ W8 + Xℎ + [3 + \< + Y8ℎ3<

Infiltration
measure: U

4 All Lags Regression: %" 8=
8ℎ3<

=
∑6
:=0 U:%"

>DC
8,ℎ−:,3< + V%"

8=
8,ℎ−1,3<+
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Infiltration
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(∑6
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)
·
(∑
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:
)
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Table S3: Salience results are robust to alternate search words in English and Spanish. Each
column is a separate linear regression using the phrase in the column header as the search term,
and smoke PM2.5 as the regressor. All models include the same fixed effects but different num-
bers of observations, as Google Trends does not return information for areas where search vol-
ume was low. Observations are marketing area by week. Standard errors are shown in parenthe-
ses, clustered at marketing area month.

Outcome: air quality smoke calidad del aire humo
smoke PM2.5 0.689*** 0.567*** 0.622*** 0.118*

(0.095) (0.052) (0.114) (0.060)
Num.Obs. 50600 51900 5220 22707
FE: date X X X X
FE: DMA x month X X X X
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table S5: Sentiment results are robust to alternate samples, FE, and controls. Each column
is a separate linear regression of sentiment on smoke PM2.5 . Column 1 is baseline specification,
column 2 includes controls for daily temperature and precipitation, columns 3-4 restrict panel
to county-days < or > 50km from an active wildfire fire, columns 5-6 uses more restrictive time
FE; m.o.s = month of sample, m.o.y = month of year. Smoke PM2.5 is measures in ug/m3, with
coefficients multipled by 1000 to make them legible. Dependent variable is average sentiment on
a county-day. Included fixed effects in each regression are shown at bottom. Standard errors are
shown in parenthesis, clustered at the county-month.

Model: baseline +controls distance > 50 distance < 50 alt FE alt FE
smoke PM2.5 -0.087*** -0.088*** -0.085*** -0.081*** -0.075*** -0.082***

(0.011) (0.011) (0.013) (0.017) (0.016) (0.009)
temperature 0.000

(0.000)
precipitation -0.011***

(0.000)
Num.Obs. 1239533 1175623 1009505 211485 1239533 1239533
FE: date X X X X X
FE: date x state X
FE: county x m.o.y. X X X X X
FE: county x m.o.s. X
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table S6: Health protection results are largely robust to alternate search words in English
and Spanish. Each column is a separate regression using the word in the column header as the
search term. All models include the same fixed effects but different numbers of observations, as
Google Trends does not return information for areas where search volume was low. Observations
are marketing area by week. Standard errors are shown in parentheses, clustered at marketing
area month.

Outcome: air filter air purifier purple air smoke mask purificador de aire filtro de aire
smokePM 0.453*** 0.540*** 0.535*** 0.350*** 0.485** 0.020

(0.078) (0.069) (0.103) (0.089) (0.163) (0.102)
Num.Obs. 51644 50343 29493 8091 2088 4959
FE: date X X X X X X
FE: DMA x month X X X X X X
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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