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Introduction

Robert Shiller [1981a,b] and Stephen LeRoy and Richard Porter
[1981] were the first to note that expectational models have simple testable
implications derived from general properties of expectations. A large
literature has developed from this idea (see the survey by Gilles and
LeRoy [1988] for many references). Shiller and LeRoy-Porter’s idea was
that the expectation or prediction of a random variable must necessarily
have a lower variance that its realization. Shiller’s basic test compared
the variance of the two and rejected the simple expectational model if the
variance of the prediction exceeded the variance of the realization. In the
stock market, the comparison is between the realized present discounted
value of dividends and the current market price of the stock. Shiller
concluded that the stock market has a good deal of noise or mocdel error
from his finding that stock prices are much more variable than are realized
discounted dividends.

Shiller looked at only two moments of the data—the variance of
the realization, P*, and the variance of the actual price, P. Subsequent
researchers, notably Louis Scott [1985], Kenneth West [1987], and John
Campbell and Robert Shiller [1987] have proposed tests of the hypothesis
of no noise that rely on covariances as well as variances. Qur purpose in
this paper is to carry out a systematic investigation of the sharpening of
results that is available through the use of covariances. We depart from
the almost exclusive focus of the earlier research on testing the null

hypothesis of the absence of noise or model error. Qur objective is to



obtain lower bounds on the amount of noise. A lower bound above zero
refutes the null hypothesis of no noise.

Before Shiller and LeRoy-Porter, research on noise in expectation
models tended to look at one-period-ahead relations. In the stock market,
for example, numerous investigators looked for evidence of excess returns
over brief holding periods. The finding of a relationship between an
observed variable and excess returns supported a conclusion of market
inefficiency or other types of noise compared to the predictions of the
model. One of the contributions of this paper is to compare the one-
period-ahead or flow approach to the Shiller or stock approach. The stock
approach appears far superior as a method for detecting and measuring
slow-moving noise. In particular, noise components that grow at a rate
near the rate of interest escape detection in the flow approach. This point
has been emphasized by authors whose concern was the detection of
speculative bubbles. Our work here is not directed toward bubbles in
particular, but rather to slower-moving noise components in general. In
applications of our ideas to investment and consumption, there is no
reason to look for speculative bubbles.

Our results can be explained intuitively in a regression framework.
The difference between the realization and the actual price is the sum of
an expectation error and noise. The actual price contains the noise plus
the true expectation of the realization. The regression of the difference on
the price would have zero explanatory power if there were no noise, under
rational expectations. On the other hand, if there were no variation in the
true expectation, but some noise, then the fitted value of the regression

would measure the noise exactly. In the general case, with some noise and



some variability of the unobserved true expectation, the variance of the
fitted value of the regression is a lower bound on the variance of the noise.

Section 1 considers only the covariance of a variable and its
perfect-foresight counterpart. ~ Variance of noise is inferred' from the
variance of the fitted value of the regression of the discrepancy between
the two variables on the original variable. Section 2 extends the analysis
to a regression with additional regressors. It shows that such a regression
provides the strongest possible bound that could be calculated from the
data. Section 3 shows that the general method should be applied in the
case of constant discounting; there is no better special method for this
important special case. Section 4 looks at another important special case
where the perfect-foresight variable is constructed from a finite number of
future values of another variable. This case applies to bonds, for example.
Section 5 relates the methods of this paper to the West-Casella specifi-

cation tests.

1. Information contained in the covariance of the actual and perfect-foresight

variables

Let P! be the observed realization of a random variable. In the
application to the stock market, for example, P; is the actual discounted
value of dividends. Let P? be the mathematical expectation of P}

conditional on the unobserved vector of information, ®,,

P = E(P}|9,) (1.1)



Under rational expectations, the two P’s should differ by an unpredictable
random variable, v,, which measures the impact on P} of information not

available at the time that the expectation, Pj, is formed:

The unobserved random variable P§ is the value assigned by a particular
model of the determination of an observed random variable, P, (the actual
stock price, in the stock market application). The model presumably
omits some features of the actual process by which P, is determined (in
the stock market, the model might assume a constant discount rate, when
the actual discount rate varies randomly over time, for example). Hence
the value mandated by the model, Pj, differs from the actual value, P;, by

a specification error or noise variable, S,:

S, = P, — F¢ (1.3)

In this unobserved components model, we seek to make inferences
concerning Pi, v,, and S, given data on P, and P;. Our particular
interest is in finding the smallest admissable value of o2, the variance of
S,. The null hypothesis of no specification error is P, = P§ or c?=0.

Louis Scott [1985] developed a test of the null hypothesis of no
noise based on the regression of P; on P,. If there is no noise, P, should
be an efficient prediction of P; and thus receive a coefficient of one in the

regression. He found coefficients much less than one and consequently



rejected the null hypothesis.

Our approach pursues a similar strategy, but our interest is in
inferring the magnitude of the specification error or noise, rather than
simply demonstrating its existence. We consider the regression of the
discrepancy, P,— P}, on the price, P,. The coefficient in this regression is
one minus Scott’s coefficient; the coefficient is zero absent noise. Our
basic result is that the variance of the fitted value for this regression is the
sharpest available lower bound on the variance of the noise.

The left-hand variable in the regression is
P,— P} = S,—v, (1.4)
and the right-hand variab}e is
P, = P{ 4+ 5 (1.5)

The regression coefficient is

Cov(S,—v4, Pi+5,)
V(lT‘(P:‘*‘St)

(1.6)

and the variance of the fitted value is

[Cov(S, —y,,Pf-}-S,)]z
V(lT‘(P:‘*‘St)

(1.7)



Let U?g be the variance of the unobserved noise, U;e be the variance of the

unobserved expectation, and ¢ be their covariance. By hypothesis, the

SP¢
covariances of the expectation error, v,, with S, and P§ are both zero.

Hence the variance of the fitted value is

2 2
(7% + 7pc) | (1.8)
0'% + 205P8+ U;e

Before showing that this expression is never greater than the noise
variance 0_29, we consider some special cases. First, suppose that the model
noise is uncorrelated with the expectation, P;: Tgpe = 0. Then the

variance of the fitted value is

o _ % (1.9)
5 Ug + 0';5 '

which is plainly less than Ué. If the variability of the expectation is a
fairly small part of the total variability of the observed variable, then the
variance of the fitted value is a good indicator of the variance of noise.
Otherwise, the variance of noise is quite a bit greater than the variance of
the fitted value.

As a second case, suppose that noise is a multiple of the

unobserved expectation, P§:
S, = AP . (1.10)

A stock market that reacted in the right direction, but systematically



more than justified by fundamentals, would fit this case. For any value of
A other than —1, it is easy to show that the variance of the fitted value is
exactly the variance of S;. The bound works extremely well whenever the
nature of the specification error is for the model to under- or over-predict
movements, provided that it does not under-predict by just the right
amount to cancel all movements in P,.

As a third example, suppose that

Se = — 3P+, (1.11)
with 62 = 7110;6. Substitution shows that the variance of the fitted value

is then exactly zero: The positive covariance between S,—v, and P;+S5,
caused by the presence of S, in both is exactly offset by the negative
covariance of S, and Pj. ‘In this case, the bound is uninformative even
though noise could be very large. In general, there is a one-dimensional

space of cases described by

S, = —60P + u, , (1.12)
and

oi = (1 - §)o%, (1.13)

for 0 < 8§ < 1 in which the bound is completely uninformative even
though noise is present. We conclude that the bound is more useful when
noise is positively correlated with the model’s fitted value than when it is
negatively correlated.

The proof of the bound is straightforward. From the Cauchy-



Schwartz inequality,
(Uspe)2 < 0250%6 . (1.14)
Adding ag + 20_29025}35 to both sides, we have
(0?9 —+ USP,?)2 < ag(ag + 20 4pe + a;e) . (1.15)

The expression in parentheses on the right-hand side is the variance of the
observed variable, P;. Except in the borderline case where the variance is
zero, we can divide both sides of (1.15) by the variance to get the desired
result,

(025 + 0o

,
spe) 2

< oo . (1.16)
2 =g
og + 205P6+ a%e

The borderline case of zero variance in the observed right-hand variable
corresponds to the situation in the second example with A = —1. If we
adopt the convention that the coefficient resulting from regressing a
variable on another variable with zero variance is any arbitrary finite
value, then the left-hand side of (1.16) will have the value zero and the
bound will be correct but vacuous.

Recall that the left-hand variable in the regression is P,—P; and
the right-hand variable is P,. Let a% and opp, be their observed

moments. Stating the result in terms of the observed variables, we have



Theorem 1.1. The bound on the variance of the noise is

232
ok > ("_H’*_Q_ﬂ’)_ (1.17)
ap

This bound is attainable and is therefore the tightest possible bound.O

The second example shows that the bound is attained by mnoise
that is proportional to the expectation. Absent additional information
that rules this form of noise out, the bound cannot be improved.

The contribution of Theorem 1.1 is to show that the simple
regression procedure gives the tightest possible bound on the variance of
the noise if only the contemporaneous moments are available. ~ Our
framework shows how Scott’s [1985] simple regression approach is optimal
conditional on a particular information set. We also note that the idea
that noise can be detected by regressing the difference between the perfect-
foresight variable and the actual variable on variables known at the time
the actual variable is formed is implicit in the work of other authors such
as West [1987] and Campbell-Shiller [1987] and is the basis for the more

general results in the next section of this paper.



Inference without the covariance

If the covariance ¢ pp, is unobservable, then the best available bound
on O'fé. can be found by finding the least restrictive bound over all choices
for this covariance that satisfy the Cauchy-Schwartz inequality, (o PP*)E
< 0'%0'?3*. The Cauchy-Schwartz constraint means that if 0'?3 < 0'33*,
then opp, = 0'?3 is admissable, and the data are consistent with the
hypothesis that the model specification error S is zero. Alternatively, if
afg > 0'%* then 0'25 must be positive. The bound in Theorem 1.1 is

minimized subject to the Cauchy-Schwartz inequality when opp, =

0 p0 py- This establishes

Theorem 1.2. Absent information on the covariance, opp,, if a?, < O'?J*,
there is no informative bound on the noise variance, aé. If afp > 0'%*,
then

2 2 1.18
]

This bound is by necessity less informative than the bound in Theorem
1.1. This derivation formally justifies the excess volatility test derived by
Shiller [1981a], in the sense that his test is optimal when the variances are
the only observable moments. This derivation also illustrates how the
Shiller test has zero power against alternative hypotheses which represent
large deviations from the null. His test is incapable of detecting noise that

makes the variance of P less than the variance of P*. Only the covariance

10



can tell whether this situation arises because of expectation errors or

because of noise.

2. Bounds on the noise variance based on observed predictors—the general

case

The results of Section 1 illustrate the powerful information restric-
tions implicit in both regression and excess volatility tests of model noise.
We generalize our results in this section to the restrictions on model noise
which are generated by data on some of the information available to the
market. In this section, we maintain the assumption that Pf has a
general form and consequently v, has arbitrary time-series properties. In
the next two sections, we consider the case where PF is a geometric
weighted average of a future variable. In that case, v, follows a prescribed
AR(1) process.

Throughout our discussion, we shall assume that there exists a
vector time series z, observable to the econometrician which is a strict
subset of the information set ®, employed by market participants to
construct forecasts. Let Ly(f) be the linear space of time series running up
to time {t, each of which is a linear combination of z,, 7,4, z, ,... with
square-summable weights. We let M;(¢) denote the projection operator
for Lz(t). We assume that the vector z, has a subvector D, (dividends in
the stock market example) and that there is a known function Pf(D) of
the entire set of past and future values, D, of D,. As in the previous

section, the difference between noise and the expectation error is observed

11



after the fact:
P, — P{(D) = S — vy (2.1)

Because v, is orthogonal to any element in Lg({), the projection of the
observed P,—P; onto [L;(f) is the same as the projection of the
unobserved S, onto Lg(f). We define Stlt as the fitted values Mz(?)S;.
Then we have

S, = S, +[1 — Mo(2)]S, (2.2)

t|t
Because the residual term [1—Mg(?)]S; is orthogonal to the projection,
S

oo the variance of the projection is less than the variance of S;. Hence

a’%tlt is a lower bound for the noise variance, ag. Further, because the
model does not rule out the possibility that the unobserved noise is a
linear combination of the observed zs (i.e., Sy € Lg(?)), the bound
cannot be improved with the available information; it is attained in that

case.

In summary, we have
Theorem 2.1 The variance of the model error satisfies

aé > a?gtlt (2.3)

and this bound is attained when S; € Lg(?), a possibility not ruled out by

our assumptions.O



The approach of Theorem 2.1 is optimal in an extremely general
way. We will show that there is no other way to process the underlying
data that will give more information about the variance of the noise term.
First, we show that whenever there is a variable, P{, with the property
that the discrepancy, Pf—P’{(D), satisfles an orthogonality condition,
[P{ — P;(D))M;(t)=0, then there is an information set ®, such that

P¢ = HPD)%] . (2.4)

The information set is simply L;(?) itself and the result follows from the
observation that P{ is an element of L(%) so it can be brought outside the
projection. Thus the orthogonality restriction is a complete statement of
all the restrictions put on Fhe data by the model.

Now we can show why there is no way to get additional restric-
tions on the noise variance. We will show that there is a case satisfying
all of our assumptions in which the noise vector, element by element, is
exactly the fitted value of Theorem 2.1, Stlt' Now the P{ for that case is
P,— Stlt' which satisfies the orthogonality restriction by construction.
Because the P¢ has all the properties required by the model, no
manipulation of the data can show that it is inconsistent with the model.
Manipulations involving looking partway into the future, or taking second
moments of the data, or anything else, cannot rule this case out. Hence
there is no prospect of getting a tighter bound on the noise, without
making additional assumptions or using additional z-variables. We

summarize in
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Theorem 2.2 The bound of Theorem 2.1 cannot be improved by any
other processing of the data; there is a model with noise equal to Stlt
capable of generating all of the observed data and satisfying all the model

restrictions.[

The idea of exploiting the unpredictability of a random variable
which is a forecast error under some null hypothesis as a specification test
appears in a large number of studies in many different areas of research.
For example, numerous authors have explored the hypothesis that forward
exchange rates are forecasts of future spot exchange rates. Fama [1984], in
particular, constructs a regression in an attempt to estimate a time
varying risk premium (corresponding to model noise in our framework)
which is equivalent to the projection of P,—P; onto P,—P;_,. Tests of
foreign exchange market efficiency such as Hansen and Hodrick [1980],
Bilson [1981], and Hodrick and Srivastava [1984], to name a few, can be
interpreted in our framework as Weli. QOur results demonstrate how the
orthogonality of forecast errors represents the total set of testable
restrictions in these models. The power properties of all such proposed
tests may therefore in principle be ranked on the basis of which
information restrictions are imposed.

Theorem 2.1 underscores the results of Frankel and Stock [1987]
comparing regression and excess volatility tests. Frankel and Stock
demonstrated that regression tests of model misspecification were optimal
relative to any excess volatility test which could be constructed with a

given information set. Our results extend this optimality by deriving the
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circumstances under which the regression formulation exhausts all testable

implications of the model.

3. Inference with geometric discounting

When P;(D) has the particular form of the discounted value of a
future stream, with a constant discount rate, further comments on noise
variance bounds are in order. Models with this expectational structure
include the stock price-dividend relation in Shiller’s original work, as well
as models of hyperinflations (Cagan [1956], Sargent and Wallace [1973],
Sargent [1977]), exchange rates (Meese [1986]), consumption (Flavin
[1981]), and output and investment (Hall [1988]). The methods developed
in this section could apply to any of these models.

The constant discount model hypothesizes that P; reflects the

discounted value of a future flow, D, ;, with a constant discount factor j3:

P = Z ﬂiE(Dt+i|@t) : (3.1)
i=0

The perfect-foresight variable, P;, has the same form without the
expectations. As before, we assume that the observed price, P,, is the
sum, P{+S,;, of a term mandated by the model and a noise variable or
specification error.

Our primary conclusion about the constant discount model is that
the general method of the previous section remains the optimal approach

to placing a bound on the amount of specification error or noise.
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Although the special form of the model seems to invite exploitation by
quasi-differencing, we show that there is nothing to gain by applying any
special technique. We also show that the appropriate choice of z-variables
means that there is nothing to gain from using lagged residuals in a
second-stage regression; the first stage will achieve the theoretical serial

correlation of 3.
The flow approach

Our work in this paper uses the stock approach—we look for
evidence on the level of the discrepancy between the level of the observed
variable and the level mandated by the model. Until Shiller, most
research took the flow approach—it looked for -a discrepancy between the
actual expected one-period return and the expected return mandated by
the model, namely zero. The earlier empirical work on the constant

discount rate model studied the excess return,
r, = D, — P, + BPiyq
= (1 - BO(P—FY)
=7, + Sy — BSi41 - (3.2)
Here F is the forward shift operator and

B = o6 D) —EDuded], (33)

16



the innovation in the valuation. (D, is assumed to be observable at t+1.)
The intertemporal arbitrage condition is an implication of the present
value model stating that the expectation of the excess holding return

conditional on information available in the market is zero. Let

N, = Mz, = Mz(t)(S; — BSis1) - (3.4)

N, is a measure of the extent of the failure of the arbitrage condition.
Finding a non-zero N, shows the existence of noise.

Within the framework of this paper, N, is a measure of the
backward quasi-difference, S,—f35,,; of the noise, S;. As such, it does not
directly serve our purpose of measuring the level of noise. In one
important case, the noise vanishes from the arbitrage condition: This
happens when S, grows or is expected to grow in proportion to g7t a
speculative bubble. Even when the noise does not take the exact form of a
bubble, any slow-moving component will be essentially erased by the
backward quasi-difference operation. The problem is particularly acute if
the time interval is short, say weekly or monthly. Specification tests will
have low power against slow-moving noise if the tests use quasi-differenced
data.

The case of a rational bubble is described by,

S; = B8 1+ b (3.5)

where ¢, is an unpredictable random variable with zero mean. The reason

17



that the flow method breaks down completely in this case is that S,
cannot be recovered from the future values of ¢ there is a term
T—h>7go ﬁTST in the expression for S, that does not vanish. In other
words, S, is not an element of L,(c0)—L,(t—1). Note that the bubble is
unbounded in variance whereas the linear space of values of 5,
reconstructed after filtering contains only bounded elements. A procedure
that used projections of future r, to construct estimates of model noise
cannot improve the bound (according to Theorem 2.2), and if
nonequivalence of the type just described occurs, such a procedure would
weaken the bound.

An example of an inferior approach is the following: Given a time

series for N,, calculate a corresponding estimated noise series, S, from the

recursion,
S¢ = BSq + N, . (3.6)

Although S ; is potentially useful as an indication of the amount of noise
in the level of P,, its variance is not necessarily less than the variance of
the actual noise, S;. Because of its dependence on future N’s, it does not
satisfy the basic orthogonality condition needed to prove that its variance
places a lower bound on the noise variance. One could compute the
projection of S’, on variables known at time {, resulting in a measure Stlt
= Mz(t).é't that has a variance less than the noise variance. However, this
measure is inferior to the direct projection developed in the previous
section.

West [1988] proposed a test of the specification of the constant

18



geometric stock price model which essentially consists in comparing the

variance of 7, defined in (3.2) to the variance of

e = (1— BRHE(P—PID)] . (3.7)

The information set, L, can in principle be any subset of agents’
information which includes current and lagged dividends. In the absence
of noise, the variance of 7}, must at least as great as the variance of 7,
because the two random variables are white noise transformations of
forecast errors based upon nested information sets. The failure of this
inequality supports a conclusion of specification error or noise in the flow
sense. Our analysis shows that this test only captures a subset of the
many implications for innovations of the constant geometric discount
model. The complete set of implications can be expressed as the
orthogonality of P,— P; to all of the variables known to agents at the time
P, is determined. Durlauf and Hall [1988a] further demonstrate that in
practice, the dividend innovations test is an inefficient way of recovering

model noise.

Choice of regressors for the noise bound with geometric discounting

Recall that our basic approach to finding lower bounds on the
noise variance is to find variables in the information set of market
participants that have predictive power for P,—P;. The explanatory
power of these regressors raises and thus sharpens the bound on the

variance of the noise. Our discussion in Section 1 stressed the importance
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of including P,. We will now show the value of including P and D lagged
1, 2, ... periods as additional regressors for the constant-discount case. For
the rest of this section, we assume that these lagged variables are included
in the z-variables. The explanatory power arises from the presence of
lagged noise, S, ;, in the lagged variables, which helps predict the noise,
S, in P,—P;. Theorem 2.2 then establishes that the regression on this set

of variables gives the best possible bound.

Information contained in regression residuals

It might appear that a second way to add explanatory variables to
the regression to measure noise could be based on the observation that,
absent noise, the disturbance in the regression is AR(1) with parameter f.
To the extent that the actual serial correlation of the residual is different,
added predictive power would be available. However, it turns out that
adding lagged P and lagged D, or, equivalently, the lagged excess returns,
as regressors already exploits all of that source of predictive power.

To demonstrate this proposition, we will show that the residuals
are already serially correlated with parameter £ once lagged P and lagged

D are included in the regressors. The residuals are

v = [ — Me())(Py—PFY) . (3.8)

Let z, be the backward autoregressive transformation of the residuals:

zz = (1-BF)v, = P, — P,y — Dy — (1=BF)Mz(#)(P;— P;)3.9)

20



We seek to show that 2, is serially uncorrelated. If lagged values of z are
in the space of the regressors, Lp(?), then the residual, v,, will be
orthogonal to the lagged zs. Moreover, v, will also be orthogonal.
Hence 2z, will be orthogonal to its own lagged values and thus will be
serially uncorrelated. Our assumption that lagged Ps and Ds are among
the regressors guarantees that the first half of z, in (3.9) is in Lz(?). The
second half involves a projection onto Lz(f) and so must lie in Lgz(1).

Thus we have

Theorem 3.1 With geometric discounting, if the set of regressors for the
noise-detecting regression includes the lagged values of P and D, then the
residuals from the regression are AR(1) with parameter §; there is no

remaining predictive power from lagged transformed residuals.0]

Note that the particular way that the lagged P and D enter the
lagged transformed residuals is through the excess return, r,. Another way
to express the requirement that there be no remaining predictive power in
the lagged residuals is that the lagged excess returns be included in the
regressors. As a practical matter, our procedure boils down to running a

regression of the form,

P—P; = w(L)z + y(L)reg + v - (3.10)

Then the fitted value w(L)z, + y(L)r,.; is the most informative measure

of the noise in the model and its variance is a good lower bound on the
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true noise variance.

Theorem 3.1 provides two ways in which to think about the
efficiency of specification tests. First, a noise estimate is informationally
efficient if all variables observable to the econometrician are employed in
forming the noise bound. Second, conditional on a given P,—P; and
L,(1), a noise estimate is an optimal smoothing estimator if the history of
excess returns is contained in Lg(?). The latter notion of efficiency is
consistent with the interpretation of our results in a Kalman smoothing
framework, an idea which is explored in Durlauf and Hall [1988b]. We
emphasize that the serial correlation of the residuals from the regressions
recommended in this paper is not a nuisance issue but is intrinsic to
specification testing. The noise-detecting regression is not complete if it
does not satisfy the theoretical serial correlation requirement, both in the
case of geometric discounting and in other cases. In Section 4 we consider

one other case.

Related work

Campbell and Shiller [1987] studied the behavior of excess holding
returns in the dividend stock price model. These authors treated the
present discounted value of expected excess holding returns as one measure
of violations of the model. Absent bubbles, it is apparent from equation
(3.2) that this present discounted value is just our noise variable S;. Our
analysis provides a precise metric which justifies the use of the measure in
assessing model deviations and also demonstrates how the measure may

serve as a comprehensive model specification test.
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Fama and French [1988] and Lo and MacKinlay [1987] have
argued in a related context that the stock approach also possesses superior
power properties in finite samples in uncovering model noise to the flow
approach. Specifically, they demonstrate that for a time series exhibiting
long run mean reversion, the first differences of the series might appear to
be uncorrelated at short lags. These authors conclude that the behavior of
long changes in the series is a superior way of uncovering noise, as opposed
to analyzing first differences in isolation. The first differences correspond
to our measure of excess holding returns. Of course, our results deal
exclusively with asymptotic noise measurement, and therefore say nothing
about finite sample properties. For actual empirical work, the critique
based on finite sample considerations may very well be more important in

justifying the use of the stock approach.

The case of an unidentified discount rate

The previous discussion has assumed that the discount rate, g, is
known. In effect, we are assuming that it is econometrically identified —all
of our previous results would apply if 8 were not known from prior
considerations but could be estimated by the use of an instrumental
variable known to be orthogonal to the noise in the equation at hand. If
the noise is known to have zero mean, then the constant can serve as an
instrument; in that case, the instrumental variable estimator of B is just
the value that sets the sample mean of P,—D;—fP,,; to zero. Absent

the assumption that noise has zero mean, a truly exogenous instrument is
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needed. An example of such a variable in a macroeconomic setting might
be military spending, which is unlikely to be a response to noise.

A more challenging task is putting bounds on noise when the dis-
count rate is not identified. When noise is present, the standard approach
to estimation of £ will fail. That approach is to use the set of variables
known in the market at time ¢ as instruments in the excess return

equation,
Pt_Dt = IBPt+1+ nt + St —_ ﬁSt-{-l . (3.11)

The approach will work only if S;—f5,,, is zero or uncorrelated with the
instruments.

Although the value of S cannot be known if the identifying con-
dition fails, it is still possible to put a bound on the noise variance. The
idea we use is that the residuals from applying two-stage least squares to
(3.11) provide information about S, even though TSLS does not provide
any information about f. We can exploit the exclusion restrictions in
(3.11) even though B is not identified. The idea of TSLS is to form an
instrument, z,, by projecting the right-hand endogenous variable, Piin

onto the z-variables:
z, = Mz(t)PH_l . (3.12)

It can be shown that the projection of the TSLS residuals on the 2-

variables iIs

24



Ny, = [Mz(t)—M(D)](S; — BSi41) - (3.13)

Comparing this to the similar expression for the flow noise estimate when
B is known, equation (3.4), we see that they differ by the term M,(¢)(5,
— fBS,,1) representing the projection of the flow noise on the instrument.
Because of this term, the variance of N, is necessarily no more than the
variance of N, and the flow noise bound is established.

As we noted earlier, there is no close connection between
information about the flow or quasi-difference of noise and the level of
noise. Again, the noise estimate N, can be cumulated to get a level
estimate, but that cumulation does not give rise to a bound on the
variance of the noise. Projecting the cumulation on the z-variables gives a

bound, but we have not been able to show that the bound is tight.

4. Inference with overlapping forecast errors ‘

In numerous expectations based models, the data on forecasts and
realizations are both available and observable, but the horizons for
forecasts overlap. For example, every month there may be a kmonth
ahead forward exchange rate observation. As emphasized by Hansen and
Hodrick [1980], this implies that the forecast errors v, will be MA(k). We
will show that the application of our general method of projecting P,— P;
onto appropriate z-variables is optimal. As in the case of constant
discounting of the infinite future, the variables should include lagged P, D,

and z. With these variables, the residuals from the projection will satisfy
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the MA(k) constraint. Recall that the residual is

v, = [ — Mz(9)]S:- vy - (4.1)

We seek to show that the residuals satisfy the MA(k) restriction,

Cov(vyyv,-;) = 0, VY j>k. (4.2)

or

Cov{[l — Mg(D)]S, - vyyve ;) = 0. (4.3)

With respect to the first part of the covariance, we note that v,_;€Ls
because vt_j:Pt_J-——P;’_j—Mz(t—j)(Pt_j—P;‘_j) and these are included in
the z-variables by assumption, since all of the ingredients in P ; are
observed after k periods. With respect to the second part, Cov(vy,v, ;) =0

by rational expectations.

5. Relation to the West-Casella specification test

The bounds we have developed bear a close relation to the test
developed by West [1987] and Casella [1988], which was originally applied
to stock prices and hyperinflations and has been subsequently used to
analyze exchange rates (Meese [1986]). The idea is to test the model by

comparing the reduced form coefficients in the regression
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P, = 7(L)D; + (5.1)

to with the coefficients predicted by the model

P = i B E(D,,.|®,) (5.2)
D, = 7(L)5t (5.3)

where P{ denotes the fundamental stock price (which equals P, absent
noise) and &, denotes the Wold innovation in D,. West and Casella test
the model specification by comparing the projections of P, and P; onto
LD(t). That is, if the projection of P,— P; onto LD(t) differs from zero,
the model is mis-specified. Now the projections of P;—P; and P,— P;
onto L (1) are identical, because the two time series can differ only by the
expectation error which is necessarily orthogonal to the current and lagged
dividend series. We conclude that the West-Casella analysis is equivalent
to a procedure which constructs a lower model noise bound based upon the
information set L p(1).

The West-Casella test therefore exploits only a subset of the
testable implications of the stock price model. The omission of the current
market price, P,, means that the West-Casella test is probably weaker
than a one-variable regression test based only on P, for uncovering model
noise. Expansion of the information set to include current and lagged
prices as well as dividends is essential for a powerful noise test. The

omission of prices is a particularly serious mistake if the specification error
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contains a rational bubble, as a projection of stock prices onto the
dividend information set will generate sample error variances which
diverge to infinity, regardless of whether dividends are an integrated
process. Durlauf [1988] elaborates this point.

These theoretical observations are supported by the data. In
Durlauf and Hall [1988a}, we demonstrate that the entire history of
dividends provides relatively little information on the nature of stock price
noise, even when compared to the contemporaneous price in isolation. In
fact, excess volatility tests generate greater estimates of noise variance
than dividend based tests. Our empirical research has found the history of
prices alone to be extremely effective in capturing nearly all potential

model noise.

6. Summary and conclusions

This paper has explored a number of issues in assessing the degree
of misspecification or model noise in expectations based models. We have
derived a lower bound on the variance of misspecification or noise in
expectational models, as opposed to merely detecting its presence. Our
approach has treated the model noise and market expectations as the
objects of interest in an unobserved components problem. By varying the
information set available to the econometrician, we have been able to
characterize different conditionally optimal lower bounds on model noise.
These characterizations have shown how various specification tests have

simple regression interpretations.
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We have shown how for constant geometric discount models,
widely used in research on asset prices, the autocovariance structure of
regression residuals provides a guide to the measurement of noise or
specification error. Our optimal bound results further permitted a
characterization of all testable implications of the model.

Finally, we have compared a number of different asset price tests
in the literature in terms of power. We have found that the original
Shiller excess volatility test has good power against many alternative
hypotheses, when compared to dividend-based specification tests because it
makes partial use of the current market price. The reason is simple. If a
stock price contains slowly moving noise, the history of prices is an
effective way of detecting the noise. Dividends may not be correlated with
the noise at all.

Areas for future research, which we hope to pursue, fall into two
categories. First, under additional assumptions about the noise variable,
instrumental variables procedures may be available to improve the noise
bounds. Second, the noise bounds may be generalized to multivariate
systems. The relationship between noise in different markets could then
be explored. An important undertaking would attempt to relate the
model noise estimates for aggregate stock prices to the model noise
estimates in other asset markets as well as commodity and labor markets
(as found by Hall [1988]) in order to begin to develop a more complete

characterization of the limitations of current expectations based theories.
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