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1 Introduction

Economists have long been interested in understanding the implications of economic activities
on the natural environment.® One well-known concept is externality, the market failure
associated with the unpriced damage caused by byproducts of economic activities, such as
air and water pollution. Empirical research has centered on how these externalities affect
various aspects of human well-being — such as the causal effect of industrial pollution on
human health — which has been instrumental in shaping economic activities and regulatory

policies over recent decades (e.g., Landrigan et al., 2018).

Humans are only one of the many species that may be affected by environmental ex-
ternalities. Pollution and habitat destruction can disrupt a wide range of wildlife (Foster
and Rosenzweig, 2003; Polasky et al., 2005; Frank and Schlenker, 2016; Jayachandran et al.,
2017), diminishing their ability to provide ecosystem services (Tilman et al., 1996; Cotting-
ham et al., 2001; Cardinale et al., 2012). These services not only have ecological value — such
as increasing the resilience of ecosystems to shocks — but many also ultimately contribute
to human prosperity. For example, ecosystem diversity improves agricultural production
(Worm et al., 2006; Dainese et al., 2019), mitigates income shocks from natural disasters
(Noack et al., 2019), supports drug discovery (Simpson et al., 1996; Rausser and Small,
2000; Costello and Ward, 2006), and provides non-market and non-use values (Loomis and
White, 1996; Kolstoe and Cameron, 2017). This coupling between the economy and ecosys-
tems is becoming increasingly evident, and how to systematically monitor and analyze this
interrelationship — as well as incorporate it into sustainable development and macroeconomic
decision making — is a crucial current policy discussion (Frank and Sudarshan (2024), Frank
(2024)).2

This paper aims to study the external effects of economic activity on the ecosystem.
A major obstacle hindering empirical progress by economists has been the lack of large-
scale data on species observations (Geijzendorffer et al., 2016; Konig et al., 2019). Existing
datasets commonly provide only cross-sectional information on the geographic extent of
species, such as the Red List of Threatened Species (IUCN, 2021), or panel data for only
a single taxonomic class, such as the North American Breeding Bird Survey (USGS, 2014).

IEconomists have had early and sustained interest in understanding the value of ecosystems and their
interaction with economic prosperity (e.g., Weitzman, 1992, 1998; Arrow et al., 1995; Brown Jr and Shogren,
1998; Fullerton and Stavins, 1998; Heal, 2000; Brock and Xepapadeas, 2003). This early body of work was
followed by a considerable amount of applied research in the field of environmental and resource economics
(Brock and Taylor, 2005; Ando and Langpap, 2018; Dasgupta, 2021).

2For a recent discussion, see Federal Register 2023-01608 “National Strategy to Develop Statistics for
Environmental-Economic Decisions.” https://www.whitehouse.gov/wp-content/uploads/2023/01/Natu
ral-Capital-Accounting-Strategy-final.pdf


https://www.whitehouse.gov/wp-content/uploads/2023/01/Natural-Capital-Accounting-Strategy-final.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/01/Natural-Capital-Accounting-Strategy-final.pdf

These limitations make it difficult to study the link between the economy and the ecosystem
at a broad scale. We make progress by introducing a novel database to economic research that
compiles hundreds of individual ecological studies that maintain longitudinal information on
the counts or biomass of relevant species (BioTIME: Dornelas et al., 2018; Blowes et al.,
2019), which lets us construct widely-used metrics for capturing changes in the ecosystem.
These studies — many spanning several decades — are consistent in their sampling protocols
within each sampling location over time (what ecologists call “assemblage time series”),
making the year-over-year variation in sampling outcomes likely to reflect genuine changes
in underlying ecosystem conditions. In total, the database contains millions of records of
species counts at over 15,000 different sampling locations, providing significant coverage of
various taxonomic classes. This includes 80 percent of the known bird species, 40 percent of

mammals, 30 percent of amphibians, and 25 percent of freshwater fish, among others.
Our analysis consists of five main elements.

Measurement. We use the BioTIME database to generate three sets of measures that
enable us to quantify changes in ecosystem conditions over time across various locations
spanning the past 50 years: (1) abundance, which captures the total quantity of individuals
observed at a given location in a given year; (2) richness, which captures the total number
of distinct species observed; and (3) similarity, which measures the proportion of shared
species between two consecutive years of a study and reflects the stability of the species
composition. We refer to these measures collectively as biodiversity. We also construct other
standard biodiversity metrics widely used in ecology literature, such as Gini, Shannon, and

Sorensen indices.

Correlation. Next, we examine the correlation between these measures and economic
activity. We use a standard panel fixed effects model with one of the biodiversity metrics
as the outcome variable, state GDP per capita as the regressor, and a set of location-taxon
fixed effects and year fixed effects.> This panel data exercise documents a strong, negative
association between economic activity and biodiversity outcomes: a one percent increase
in economic activity is associated with a 3.6 percent decrease in species abundance and
1.6 percent decrease in richness in a given sampling location. We also find that economic
activity is associated with reduced stability — a one percent increase in economic activity in
a year decreases the share of species common in two consecutive years by 10% — although

this association is imprecisely estimated.

3We use state per capita GDP to capture the intensity of economic output in the broad geographic area.
In the Appendix, we report robustness results using alternative definitions of economic activity, such as state
total GDP (without the normalization by population), or county total or per capital income measured at
the county level instead of the state level. We also report a robustness check using county GDP though the
measurement is only available after 2001 which covers 30% of our study sample.



Our exercise also reveals a set of descriptive features of the correlation: First, the nega-
tive association between economic activity and biodiversity appears to be widespread across
various taxa, including mammals, birds, amphibians, fish, and freshwater plants and in-
vertebrates. Second, there is substantial distributional heterogeneity, where the negative
association at the lowest decile of biodiversity is almost twice as large as the average. This
finding suggests that economic activity may lead to biodiversity losses to a greater extent in
regions with lower biodiversity, consistent with the idea that biodiversity enhances ecosys-
tem resilience against adverse shocks (Hautier et al., 2015). Third, both the current shock
in economic activities and longer-term activities trajectory, such as the growth rate over the

past few years, matter for biodiversity outcomes.

Causality. Does economic activity cause changes in biodiversity? The associational
evidence may be confounded by omitted factors correlated with both ecosystem outcomes
and local economic output. The direction of causation may also go in the reverse direction, for
example, if better ecosystem conditions lead to increased economic output through improved

natural resources for production or tourism.

To establish causality, we isolate changes in local economic activities coming from plausi-
bly exogenous government actions. We exploit variation in local economic activities driven by
U.S. military buildups, which are heavily influenced by geopolitical factors and unexpected
military events. This research strategy has been widely used in the empirical macroeco-
nomics literature to estimate the causal effect of government spending on total economic
output, i.e., the fiscal multiplier (Hall, 2009; Barro and Redlick, 2011; Ramey, 2011; Naka-
mura and Steinsson, 2018). Following Nakamura and Steinsson (2014), we exploit systematic
heterogeneity in a state’s receipt of federal military spending (and therefore in the state’s
output) in response to the national military shock. We find that increased production result-
ing from military spending has a significant, negative effect on biodiversity outcomes. The
magnitude of the biodiversity-GDP link estimated using the quasi-experimental variation is
greater, but of the same order of magnitude as the panel correlational estimates. We will

provide additional discussion on effect sizes below.

Channels. Why does economic activity worsen biodiversity? Our estimates encompass
various mechanisms — such as air and water pollution, land use changes, among other factors —
through which economic activities can affect biodiversity. Disentangling all these mechanisms
empirically is challenging; we focus on assessing the importance of one particular channel:

air pollution externalities associated with economic activities.

Numerous studies have established the negative impact of air pollution on human health
(e.g., Chen et al., 2013; Dominici et al., 2014; Schlenker and Walker, 2016; Deryugina et al.,



2019), but pollution’s detrimental effects may extend beyond the human population. For
example, pollution can harm avian species (Brown et al., 1997; Liang et al., 2020), cause the
acidification of lakes through emissions of sulfates and nitrates, which impacts freshwater
communities (Bronmark and Hansson, 2002), and alter habitat conditions, food supplies, or

species interactions (Agathokleous et al., 2020).%

We measure the importance of the air pollution channel in two steps. First, we produce
causal estimates of the elasticities between biodiversity outcomes and air pollution. We use a
research design that isolates variation in local pollution driven by transported pollution from
distant, upwind cities (e.g., Deryugina et al., 2019; Anderson, 2020). We show that “upwind
pollution” coming from areas over 300 km away generates substantial variation in local air
quality, and these imported pollution shocks cause reductions in local biodiversity outcomes.
Second, we estimate the impact of the military spending shocks on air pollution, and multiply
these estimates by the biodiversity-pollution elasticities we obtain from step one. Together,
these exercises give us the expected impact of the military shocks on biodiversity through
air pollution. We find that pollution accounts for 20-60 percent of the reduced form effect
of military shocks, suggesting air pollution is a first-order pathway underlying the GDP-
biodiversity link.

Besides pollution, another crucial channel that has received considerable attention in
the literature is land use (e.g., Noack et al., 2021; Madhok, 2023). We briefly explore this
channel, leveraging remote-sensing measurements of urbanization which are available for the
later half of our study sample. We present descriptive evidence indicating that escalated

urbanization correlates with a significant decrease in biodiversity outcomes.

Regulations. Since air pollution is a key channel through which military buildups affect

ecosystems, the final part of the paper considers the role of environmental regulations.

We investigate whether the environmental regulations implemented by the United States
to safeguard human health have also resulted in co-benefits for the protection of ecosystems.
We study the impact of the landmark Clean Air Act (CAA) implemented by the U.S. Envi-
ronmental Protection Agency, which set forth a set of nationwide standards for outdoor air
quality. Each year, counties across the U.S. are assessed against these standards, and those

“nonattainment” ).

that fail to comply are labeled as violating the standards (referred to as
Regulators impose extensive emission reduction mandates on jurisdictions that fail to meet
specified outdoor air quality benchmarks, resulting in significant decreases in local economic

activities and improvements in air quality (e.g., Becker and Henderson, 2000; Greenstone,

4The present knowledge on the effects of air pollution on biodiversity is largely confined to studies con-
ducted in laboratories or focused on individual cases related to the toxicity of pollution exposure (Newman,
1979; Llacuna et al., 1993; Gilmour et al., 2001; Salmén et al., 2018).



2002; Greenstone et al., 2012; Walker, 2013). We present novel findings that the CAA regu-
lations had a notable, positive impact on biodiversity outcomes: nonattainment designations

led to significant improvements in species abundance, richness, and stability.

Building upon our earlier findings on the role of land use changes, we further exam-
ine protected areas policy — a widely adopted approach to land protection, which includes
the designation and management of national parks, wilderness areas, and nature reserves,
among others, to promote conservation (IUCN, 2021). Our analysis indicates that protected
areas policy may help to alleviate the negative effects of economic activity shocks on the

environment.

Massive wildlife losses in recent decades indicate a new age of human-caused mass ex-
tinction (e.g., Pimm et al., 2014; Ceballos et al., 2015), and highlight the pressing need to
consider the trade-offs between economic growth and conservation (Foster and Rosenzweig,
2003; Polasky et al., 2005; Frank and Schlenker, 2016; Jayachandran et al., 2017; Watson
et al., 2019). An emerging economics literature examines the coupling between the economy
and ecosystems. Some of this literature focuses on the value of ecosystems to society, such
as the value of vultures in mitigating human mortality and wolves in reducing car accidents
(Raynor et al., 2021; Frank and Sudarshan, 2024). On the other hand, a large share of
the literature studies how economic activity affects ecosystems. Earlier work in this area
performed correlational studies at state or national levels on economic activity and broad
measures of biodiversity (Dietz and Adger, 2003; Czech et al., 2012). More recent work has
been increasingly focused on smaller spatial scales, a limited number of species, and narrower
economic activities of interest in order to leverage newly available granular data and quasi-
experimental variation in economic drivers (Asher et al., 2020; Li et al., 2020; Liang et al.,
2020; Cole et al., 2021; Garg and Shenoy, 2021; Noack et al., 2021; Strobl, 2021; Madhok,
2023).°

We advance this literature in several ways. First, we study the effects of economic
activity on biodiversity across a wide range of taxa such as birds, mammals, and plants
using actual measurements from the ecology literature. Second, we provide some of the first
causal estimates of the effects of economic activity by using quasi-random variation in local
GDP induced by changes in national military spending. Third, we provide new evidence that
particulate matter is a key mechanism behind the economic activity-biodiversity relationship

and that there appears to be heterogeneous effects on bird vs non-bird taxa.

SFor example, Asher et al. (2020), Garg and Shenoy (2021), and Madhok (2023) all study economic
development (e.g. roads) and forest cover in India, while Li et al. (2020), Liang et al. (2020), Noack et al.
(2021), Strobl (2021), and Cole et al. (2021) study how pesticides, pollution, and agricultural land use affects
birds.



While our estimates speak to causal effects for the species and ecosystems covered within
the BioTIME sample, broader quantitative applicability requires further comparative anal-
yses with studies of similar approach and scope. The issue of non-representativeness is a
ubiquitous problem with current observational ecosystem data, which includes BioTIME
despite it being a significant attempt to enhance coverage and internal consistency.® With
that said, we provide a back-of-envelope calculation that lends credibility to our estimates:
multiplying our estimated effect of economic activity on bird abundance by the economic
growth during 1990-2015 yields a similar estimated bird population decline as a recent pub-
lished estimate that North American bird populations fell by 13% during this time period
(Rosenberg et al., 2019).

Another clarification pertains to our interpretation of the causal effect of economic ac-
tivity and the underlying exclusion restriction. Economic activities are not increased in a
vacuum, but through technological change or changes in clean and dirty inputs. We take
our estimates as encompassing all underlying channels that accompany the shift in economic
activities, such as changes in pollution and land use. Although we cannot isolate all possi-
ble channels individually, we prioritize one specific channel (air pollution) and establish its

causal significance.

The rest of the paper is organized as follows. Section 2 describes data and measurement.
Section 3 reports the correlational analysis. Section 4 presents causal analysis. Section 5

discusses regulations. Section 6 concludes the paper.

2 Data and Measurement

2.1 The BioTIME Database

To help readers conceptualize the structure of the BioTIME database, we begin with a brief
description of two example studies included in BioTIME. We also use these examples at other
points in the paper to provide references when helpful. In the Data Appendix, we present
a comparison of BioTIME with popular alternative open-source datasets, highlighting some

of its advantages.

Example Study 1: North American Breeding Bird Survey The North American

Breeding Bird Survey (BBS) is a long-term and large-scale monitoring program that tracks

6In economic analysis, reweighting by known population moments is a typical approach to address non-
representativeness. However, in our study context, this is not a viable solution since the lack of information
on population moments is precisely the issue.



the status and trends of North American bird populations (USGS, 2014). This study ac-
counts for 17.6% of observations (location-taxa-year level) in the analysis data. The BBS
follows a regular and consistent sampling (observing) protocol. Skilled bird observers collect
observation data at the same stops along the roadside survey routes during the avian breed-
ing season every year (June for the most part of the United States). Each survey route is
approximately 24.5 miles long, with stops situated about a half mile apart. At each stop, a
three-minute point count is conducted. During the count, observers record every bird heard
or seen within a 0.25-mile radius. Surveys start one and a half hours before local sunrise
and take about five hours to complete. Over 4,100 survey routes are located across the
continental United States and Canada (Figure A.1). Hence for BBS, each survey route is
a sampling location in BioTIME. BBS is perhaps the most widely used data source in the

study of birds; as of this writing, it has been used in over 450 scientific publications.

Example Study 2: Sevilleta Long-Term Ecological Research Several studies in-
cluded in BioTIME are conducted under the Sevilleta Long-Term Ecological Research (SLTER)
Program at the Sevilleta National Wildlife Refuge in central New Mexico (Figure A.2). The
habitats, about 100,000 hectares in size, represent five regional biomes that extend through
much of the central and western United States and northern Mexico. One example study
in the program is its small mammals census, conducted from 1989 to 2008 (Friggens, 2008).
This study accounts for 0.13% of observations (location-taxa-year level) in the analysis data.
In this study, permanent trapping stations were used to collect observational data about
small mammals which were collected two to three times yearly across different seasons in
multiple habitats within the refuge. During the sampling period, trapping webs, each con-
sisting of 120 permanently marked trapping stations, were deployed for three consecutive
nights. Sherman live traps (boxes that capture the animal without harming it) were placed
at each station, with four traps placed at the center of the web. Upon capture, each individ-
ual is marked either permanently with tags or temporarily with Sharpies. There are 16,657
records for 27 distinct species covered in the study. The most commonly observed species is

Dipodomys merriami (Merriam’s kangaroo rat).

Advantages of BioTIME in this study BioTIME has a number of features making it useful
for our analysis. First, existing alternative datasets’ provide only cross-sectional or limited
taxonomic data, hindering broad-scale economy-ecosystem studies. BioTIME aggregates
longitudinal data from hundreds of ecological studies on species counts or biomass, enabling

the construction of metrics for ecosystem changes. Second, the studies included in the

7A detailed comparison of BioTIME and alternative biodiversity datasets is in the Data Appendix.



BioTIME dataset all maintained consistent sampling protocols over time, ensuring that
within-study variation in outcomes does not stem from changes in how species are detected
by the researchers (e.g., sighting versus trapping). Third, each study included in the panel
dataset has at least two years of sampling, and some studies span multiple decades. This
allows us to exploit within-study variation, and to control for any differences across studies
in sampling protocols with location fixed effects. Fourth, the dataset contains information on
about 40,000 unique species or genus at over 15,000 sampling locations, spanning a wide range
of biomes and ecosystems. While such coverage is by no means comprehensive compared to
the overall ecosystem, we believe the data let us gain by far the best understanding of which

kinds of organisms and biomes are affected by economic activities.

Steps on Data Processing We make several sample restrictions. First, we focus on
years after 1966 to line up with our economic data. Second, we exclude marine ecosystem
studies, which often take place tens or hundreds of miles offshore and, thus, are difficult
to link to measures of economic activities. Third, we aggregate the raw species sampling
observations to the taxon-location-year level. The included taxa are birds, fish, mammals,
terrestrial invertebrates, freshwater invertebrates, terrestrial plants, and freshwater plants.®
Fourth, we exclude studies that report only total species biomass or only species presence
indicators, to ensure a unified measure of abundance. These studies account for less than
1 percent of the abundance data. We obtain virtually identical results if including these
samples in richness and similarity analyses. Last, we focus on studies in the United States.
The United States accounts for about three-quarters of the total observations in the dataset;
the next largest contributor, New Zealand, accounts for about 10 percent. Focusing on the
United States also allows us to implement several well-understood quasi-experiments in the
causal analysis. These sample restrictions give us a maximum of 66,418 taxon-location-year

observations.

2.2 Measures of Biodiversity

Biodiversity is a multi-faceted concept. In this paper, we focus on three metrics: abundance,
species richness, and the Jaccard similarity index. In Section 3, we report sensitivity checks

using other common measures of biodiversity.

Abundance is the total number of individuals observed in a given taxon, at a given

location, in a given year. This idea originated not within ecology but from population

80ur raw sample also includes 30 reptile observations at one location, and one observation at a second
location. Given how little data we have on reptiles we drop them from the sample.



dynamics studies, including Malthus’s work on population growth (1798) and Charles Elton’s
foundational contributions to animal ecology (1927). Abundance simply measures the pure
quantity of individuals observed and is agnostic about the types of species in the sample. It
is worth noting that virtually all studies examine closely related species that fall in the same

taxon group. Therefore, abundance is never measured by combining distant species, such as
birds and fish.

Richness is the total number of unique species present of a particular taxon (e.g., birds)
that characterize a particular biological community, habitat, or ecosystem type (Colwell
et al., 2009). This metric is agnostic about the composition of species or how the com-
position of species has changed. For example, if there is an equal loss of native species
and introduction of invasive species, species richness will not change despite changes in the

composition of the ecosystem.

The first two measures, abundance and species richness, are known as « diversity (Fisher
et al. (1943)), and they form the foundation for many other biodiversity indices, such as the
Shannon Index. The practice of quantifying species richness traces back to early naturalists
such as Charles Darwin and Alfred Russel Wallace, who emphasized the importance of
understanding the diversity of life across regions. By the 20th century, as ecology matured
into a formal discipline, species richness had become a central concept, frequently used to

compare ecosystems and assess the impact of environmental changes.

Jaccard similarity is an inverse measure of the amount of year-to-year species turnover in
a given taxon, at a given location, in a given year; thus, it provides a measure of compositional
changes. Similarity indices, such as the Jaccard and Sorensen indices, are developed to
estimate (3 diversity that measures the variation in species diversity between habitats or
spatial scales.” Let S.;; be the set of species at some time ¢ in taxon j and location ¢, and

let n(-) denote the cardinality of a set. The Jaccard similarity index is given by:

n(Sejis1 N Sejt)

‘]c‘ - )
7 n(Scjt-H U Scjt)

the number of species in taxon j present at location ¢ in both times ¢ and ¢ + 1 relative to
the number of species present in either of the two times. The index is bounded between zero
and one with lower values indicating some combination of loss of species, or the introduction
of new species between times ¢ and ¢ + 1. In the limiting case where J.;; = 0, there are no

common species in times t and ¢+ 1 (but there still may be observed species at the location);

9The Jaccard Similarity Index was introduced to ecology by Paul Jaccard in the early 20th century,
although Grove Karl Gilbert had independently developed a similar index earlier in a different context
(Jaccard, 1912).



on the other hand, a similarity index value of J;;; = 1 indicates that the exact same set of

species is present in times ¢ and ¢t 4+ 1 and there is no species turnover.

Different scenarios may yield varying effects on these three biodiversity measures. Con-
sider two examples. In the first case, if fewer migratory birds arrive at a breeding habitat
this year compared to the previous year, we would expect a decrease in abundance. Species
richness might also decline if fewer species arrive, though it could remain stable or even
increase if invasive species are introduced. The change in similarity would likely be negative,
reflecting greater differences in species composition across the two years, although it could
remain unchanged if the same species are present. In the second case, consider the introduc-
tion of an invasive species, such as brown trout outcompeting native humpback chub in the
Glen Canyon National Recreation Area.!® This introduction could increase species richness
but decrease similarity, and its impact on abundance would depend on whether the invasive

species thrives or native species decline more sharply.

We highlight three points before proceeding. First, we use log abundance and log species
richness as outcomes in econometric analysis. This allows us to interpret our coefficients as
elasticities. We do not take a logarithm of the Jaccard similarity index since it is already a
ratio. Second, for the sake of brevity, we will henceforth refer to all three metrics together as
biodiversity, even though they are distinct concepts. When referring to them individually,
we make clear whether we are referring specifically to abundance, richness, or similarity.
Third, we interpret declines in the three measures as indicative of deteriorating biodiversity
outcomes. Our reasoning is that declines in these measures indicate reductions in populations

and diversity, and increases in the instability of species composition.

Summary Statistics Table 1 reports summary statistics calculated based on taxon-
location-year observations. Column 1 reports number of observations, which shows that
roughly 80 percent of our observations are birds. To make sure that our results are not
driven by a single taxon, we report two sets of results for our analyses: one uses the full
estimation sample including all species, and the other uses a subsample that excludes birds.

Our findings tend to be more pronounced for the sample that excludes birds.

Column 2 shows the mean and the standard deviation of abundance by taxa. The large
differences in abundance across taxa partly reflect differences in study scope as well as
sampling methods. For example, consider the North Temperate Lakes Long-Term Ecological

Research Program, a study that falls in the taxon category of “freshwater invertebrates.”

10See https://home.nps.gov/glca/planyourvisit/brown-trout-harvest.htm for more information
and a National Park Service program to manage the non-native brown trout.
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The study samples zooplankton at the deepest location of lakes in Madison, Wisconsin, by
pulling a conical net vertically through the water column, generating large abundance counts.
By contrast, most studies on mammals use Sherman traps, which capture individual animals
one at a time. For example, the small mammals study included in the SLTER in central
New Mexico (Section 2.1) reports only 27 unique species despite its 20-year time span. As
previously noted, in all regression specifications we include taxon-by-location fixed effects to
ensure the identifying variation comes from year-to-year changes in biodiversity outcomes

and economic conditions, holding study protocols and taxon constant.

Columns 3 and 4 show the statistics for species richness and Jaccard similarity. Fresh-
water plants have the highest species richness, and mammals have the lowest richness. The
average Jaccard similarity index is 0.425 among all species, indicating that around half of
the species at a sampling location are observed in the next year of the study. The highest
species turnover (or the lowest similarity) takes place among mammals; the lowest species

turnover occurs among amphibians.

Figures 1 and 2 further break down these summary statistics. Figure 1 shows, by taxa, the
spatial distribution of sampling locations (upper panel), total number of sampling locations
(lower-left panel), and number of taxon-location-year observations (lower-right panel). In
practice, depending on the geographic scope of the study, many sampling locations may be
close to each other but they may follow different sampling protocols; an example is given
in the SLTER mammal study of Appendix Figure A.2. This explains why there appear to
be many sampling locations but limited overall geographic coverage, especially for non-bird
species. Because distinct sampling locations in the BioTIME data represent different study

protocols, in our primary analysis we treat them as separate cross-sectional units.

Figure 2 summarizes annual changes in abundance, species richness, and Jaccard simi-
larity. The scatterplot on the left shows that changes in abundance and species richness are
positively correlated; by contrast, their correlations with the change in the composition of
species represented by the Jaccard similarity index can be of either sign. The right panel
of Figure 2 shows the distributions of annual changes in the three biodiversity metrics. The

vast majority of the observations fall within plus or minus one log unit range.

The upper panel of Figure 3 presents trends in three biodiversity metrics, following the
framework developed by the BioTIME team (Dornelas et al., 2014). We restrict the sample to
U.S.-based, non-marine studies from 1960 onward. All three metrics exhibit negative overall
trends (black lines). The lower panel of Figure 3 shows the annual average percentage change
in abundance by state, revealing widespread declines, with only a few states showing slight

increases. Comparing these results with the study distribution in the upper panel of Figure 1
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indicates that states with increasing trends tend to have sparse data, while the more robustly

sampled states predominantly show declines.

2.3 Potential Sources of Bias

Some discussions on the features and limitations of the data are in order. In an “ideal”
scenario, we would randomly select a set of locations across the country and continuously
monitor the categories and quantities of all observed animal and plant species over time.
The monitoring technology adopted at each location would remain constant to ensure that
variations in species observations reflect genuine changes in the underlying biodiversity con-
ditions rather than changes in the monitoring procedure. The BioTIME dataset departs
from this ideal as it comprises observations for specific locations, years, and species that
were the focus of ecological studies; though by construction, BioTIME only includes studies
that adopted fixed sampling protocols, many of these studies extend over several decades,
and as such, sampling technologies may have undergone changes over time.'! We next discuss

the implications of these departures.

Location Studies choose sites based on different objectives and criteria, and some studies
— especially those that study birds — tend to have larger geographic coverage than others
(Figure 1). Nonrandom geographic coverage is an intrinsic limitation of virtually all biodi-
versity data (Hortal et al., 2007; Geijzendorffer et al., 2016), and its impact on the external
validity of this study is uncertain. We note, however, that nonrandom location does not nec-
essarily pose a threat to internal validity: our research design links changes in biodiversity
outcomes to year-over-year variation in economic activities within the same sampling site,
and therefore our conclusions are not biased by factors that are correlated with permanent
differences in economic activities in the cross section (e.g., heavily forested areas tend to

have lower GDP but better biodiversity outcomes compared to urban areas).

Time Ecological studies cover different time periods, and we only observe biodiversity
measurements in years when the underlying study reports sampling results. Non-continuous
sampling may affect the internal validity of our estimates if there is endogenous sampling.
One potential concern is that economic conditions may affect whether a study starts, stops, or

is paused at a particular location. This may happen if, for example, strong economic growth

HUnobservable differences in survey effort is a canonical challenge for reliability of biodiversity datasets.
For example, see Newbold (2010) and Ruete (2015) for discussions on survey effort biases in museum and
citizen science data.
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causes better scientific funding availability, or if studies are interrupted during recessions.
The impact of this type of selection on our estimates is ambiguous and depends on the
non-linearity of the impact of GDP.!? Alternatively, one might worry that a large economic
boost in an area may distress the local environment so much so that the scientists abandon
the sampling location; in this case, the sampling selection would cause us to understate the
negative impact of GDP as the worst consequences are not observed. Endogenous sampling
can be tested empirically in the same way one tests for nonrandom missingness and attrition,

and we discuss relevant exercises in Section 3.3.

Species Focus The data provide information only on species that are the subjects of
the underlying studies. For example, in the North American Breeding Bird Survey study,
observers record birds seen or heard, but do not record any information on other animals
or plants seen; in the Sevilleta Long-Term Ecological Research, the subjects of the study
are small mammals that are captured in Sherman box traps. An advantage of this feature
of the data is that it makes it straightforward to compute biodiversity indexes such as
abundance, richness, and similarities at the sampling site level for a specific taxon, as most
ecological studies examine closely related species that fall in the same taxon group.'® As
long as a study’s overall species focus remains fixed across years, our analysis will give rise to
internally valid estimates of how economic activity affects biodiversity for the set of species

being studied.

There are two caveats when extrapolating our results to the population scope. First,
weights of sampled species in the data may not be proportional to their overall presence in
the nature (Gonzalez et al., 2016; Cardinale et al., 2018). Unfortunately, in the context of
biodiversity, there is a lack of population-based surveys of species representativeness to allow
for a census-based re-weighting exercise that is often feasible in economic research. Second,
the data cannot capture impacts on species not covered by the underlying ecological studies.
A deeper concern regards species spillovers, for example, if declines in observed predator
species open up niches in the ecosystem for new prey species to flourish (positive spillover),
or if the decline of keystone species adversely affects other species (negative spillover). These

changes will be captured to some degree through the Jaccard similarity index that measures

12In principle, oversampling periods of high GDP, or undersampling periods of low GDP, would only bias
the average estimate when the “dosage” effect of GDP is nonlinear, i.e., the marginal effects of GDP differ
at high vs. low levels. Figure 4, Panel A shows some evidence that the effect of GDP is roughly linear for
all three biodiversity outcomes.

13In fact, as we will further explain in Section 3.1, the unit of analysis of our study is a study location x
taxa. That is, for the small number of studies that cover multiple taxa, we treat the same study location as
separate, taxa-specific observations, so that we would never measure biodiversity using distant species (e.g.,
adding together birds and fish).
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species turnover. We also note that these will be less of a concern for studies on birds and
some other freshwater plants and invertebrates that tend to employ broad sampling strategies

that cover large numbers if not all species in the respective taxon.

Sampling Technology By construction, BioTIME only includes studies that adopted
fixed sampling protocols, and therefore the sampling accuracy at a given sampling site is
expected to remain fixed. However, sampling bias may come from measurement errors in
the biodiversity variables, especially if the errors change over time in ways that are related
to trends in economic output. This may happen, for example, if sampling practices and
technologies changed over time due to technological improvement (e.g. better traps). This
would raise concerns about our findings if, conditional on our included fixed effects, the
spatial distribution of the adoption of improved practices and technologies happened to
correlate with the spatial distribution of trends in economic output. In Section 3.3, we
describe tests that check stability of our estimates over time and across studies with different
time span. More broadly, we also look for the presence of extreme samples and test sensitivity

of our results to these outliers.

We recognize the study’s limitations in addressing observability issues associated with
BioTIME’s sampling methods. Different methods are affected to varying extents. For in-
stance, the North American Breeding Bird Survey (BBS) uses point counts, which can be
influenced by environmental changes like land use alterations. Without data on these con-
ditions during sampling, we cannot control for these factors. This limitation means that
if higher GDP leads to land use changes that enhance bird visibility in the BBS, we may
underestimate GDP’s negative effect on biodiversity. Similar methods prone to observability
issues include acoustic monitoring (bats). In contrast, the Sevilleta Long-Term Ecological
Research (LTER) study uses trap webs at fixed stations to capture small mammals, mak-
ing it less susceptible to observability issues related to road or open-space visibility. Other
methods less affected by observability issues include infrared cameras (mammals), sweep nets
(insect pollinators), quadrats (plants), and conical nets (zooplankton). In most of our esti-
mation results, we present both full sample analyses and subsamples excluding birds, with
similar patterns observed across both. Thus, while acknowledging that sampling methods
could result in biased counts, most studies included in BioTIME do not suffer significantly

from observability issues.
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2.4 Other Economic and Environmental Data

We briefly describe the data sources from which we build the economic and environmental

variables. All sources we use are standard in the literature and are publicly available.

Economic Output We measure local changes in economic activities using annual state
level per capita GDP from the Bureau of Economic Analysis (BEA) from 1966 to 2015. We
use state-level output measures throughout the paper to capture overall economic changes
in the area, so that our estimates do not reflect small-scale spatial spillovers, for example,
when individual animals move to a nearby location in response to a rapid deterioration of the
local environment. The state level measure also allows us to match geographic resolution of
some key variables in the causal inference, such as the instrumental variable on state military

contracting spending.

In the Appendix we report robustness results for both of our correlational and causational
analyses using alternative definitions of economic activity, such as state total GDP (without
the normalization by population), or county total or per capital income measured at the
county level instead of the state level. We use county income instead of county GDP because
the latter is only available after 2001 which covers 30% of our sample. We do report a

robustness check within this subsample for the sake of transparency.

Military Spending State level annual military spending and federal prime contracting
data are from Nakamura and Steinsson (2014). The military spending data, sourced from the
U.S. Department of Defense from 1966 to 2006, contain all types of military purchases such
as purchase of aircraft and repairs of military facilities. These data are based on Department
of Defense DD-350 military procurement forms that document all types of military purchases
greater than a certain amount. In total, the data cover 90 percent of all military purchases in
the United States. The federal prime contracting data identify locations where the majority
of work was performed, so that one can attribute the economic activity associated with the
procurement to the states. The national average military spending accounts for around 3
percent of GDP; this share varies widely across states, from 10 percent in Virginia to 1

percent in Oregon.

Pollution Pollution data come from the Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2) reanalysis dataset maintained by the U.S. National
Aeronautics and Space Administration (NASA), where satellite and ground-based measure-

ments of aerosol optical depth (AOD) — a measure of the amount of particles in a column
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of air between the top-of-atmosphere and the ground — are assimilated into Earth system
modeling (product ID: M2I3NXGAS Version 5.12.4). MERRA-2 provides daily measures of
AOD on a 30km-by-30km grid, approximately the same area as the average county.

Clean Air Act Nonattainment Designation Annual designation of attainment and
nonattainment areas are sourced from the U.S. Environmental Protection Agency (EPA)
Greenbook for years 1992 to 2015. The data contain designation information for six criteria
pollutants: PMs 5, PM;g, O3, SOs, CO, and Pb. For a given pollutant, there may be multiple
versions of standards that differ, for example, by the target metric (average or maximum
concentration) or the year of initial promulgation (most pollution standards tighten over
time). There are in total 12 standards during our study period. A jurisdiction (mostly
county) can be in nonattainment with multiple standards in a given year. Figure 8 Panel B

plots the location of nonattainment areas as of year 2019.1

Land Cover We measure urbanization between 2001 and 2015 using satellite data on
land cover type from the Moderate Resolution Imaging Spectroradiometer (MODIS) plat-
form maintained by NASA. The MODIS land-cover-type product is based on an ensemble-
supervised classification algorithm (Friedl et al., 2010). The key inputs to the algorithm
include satellite-based measurements of surface reflectance and surface temperature. The
training data contain over 1,800 manually labeled sites (mostly obtained from Landsat satel-
lite imagery) around the world. We use the yearly Land Cover Type product (product ID:
MCD12C1), which classifies land cover into 17 types, such as urban and rainforest, at a
spatial resolution of 0.05 degrees (about 5,600 meters). We create an annual, longitudinal
measure of the share of urban land within a 50-km or 100-km radius, or the county of the
BioTIME sampling site.

Conservation Protected Areas Spatial data on protected area are obtained from the
World Database on Protected Areas (WDPA). The data is in the form of a shapefile that
outlines the location of over 250,000 marine and terrestrial protected areas and the year
that protective measures were put in place for each area. To capture conservation efforts

in the vicinity of the sampling sites, we compute the share of land within a 50-km radius

1Each year, a jurisdiction’s past three-year air quality metrics are calculated using data from in situ
outdoor air pollution monitors within its administrative border. The calculated metrics, known as the “design
values”, are then compared with the national air quality standards. Nonattainment status is triggered when
a design value exceeds the corresponding standard. Most designations occur at the county level, although
nonattainment status can occasionally be assigned at a sub-county level or at a broader metropolitan-area
level.
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of the sampling site that is under protection in each year. We also calculate the number of
discontiguous protected areas within this radius to measure fragmentation of the conservation
effort.

3 The Biodiversity-Economic Activity Association

3.1 Estimation Framework and Baseline Findings

We begin with a panel fixed effects regression model to estimate the within-location as-
sociation between biodiversity outcomes and economic activity. The workhorse regression
equation is

Yeje = B-10g GD Pyt + nej + 1 + €cjt (1)

Y.;: is one of the three biodiversity metrics at sampling location ¢ for taxon j in year ¢. For
example, this may be the logged total number of birds observed at a particular sampling
location in a given year. The regressor of interest is log G D P,;, which is the logged per capita
real GDP for the state-year. 7,.; are location-by-taxa fixed effects; these are the key panel
fixed effects that ensure the identification is based on year-over-year changes in biodiversity
and economic development for the same sampling location and within species in the same
taxa (i.e., we are not comparing trees to birds or ants to mice). 7, denotes year fixed effects
to capture common shocks such as national recessions. e.;; is the error term. We cluster
standard errors at the state level. The key parameter of interest is #, which measures the

elasticity between GDP and our biodiversity metric of interest.

It is worth clarifying the unit of observation used in our panel estimation. The key
geographic unit is a sampling location ¢. A given ecological study may have multiple sampling
locations. The North American Breeding Bird Survey (Section 2.1, example study 1), for
example, covers over 4,100 bird-observing “routes” that the researchers revisit every year.
In BioTIME, each route is a sampling location identified uniquely by the route’s centroid
latitude and longitude. Some studies sample across multiple taxa at the same location,
such as the Sevilleta Long-Term Ecological Research Program (Section 2.1, example study
2), thus the c¢j subscripts. As we mentioned, a key advantage of BioTIME data is that
the study inclusion criteria ensure there are consistent study protocols used within each
study conducted at the same sampling location. This means the year-over-year variation
in biodiversity outcomes within the same location-taxon likely reflects genuine changes in
underlying biodiversity measures, rather than changes in sampling methods. This feature

of the data is important for our empirical estimation because, conditional on location fixed
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effects, it frees us from controlling for any changes in sampling practices that might be
influenced by economic conditions across time. Finally, the length of a time series of location-
taxon data in our dataset depends on changes in sampling protocols and the overall study
duration. If the sampling methodology changed during the course of the study, a new 1D
is assigned so it is treated as a new observational unit. Our final estimation data are thus
an unbalanced, annual panel of sampling locations by taxon. The average sampling location

has data for 13 years (standard deviation = 10 years).

Baseline Findings Figure 4, Panel A reports the estimation results from equation (1).
The three columns correspond to species abundance, species richness, and Jaccard similarity.
We residualize the biodiversity metrics and log GDP with the fixed effects, and then plot one
against the other using a decile bin scatterplot. The slope of the fitted line thus represents
the OLS estimate B of equation (1). Our results indicate negative, statistically significant,
and roughly linear effects of GDP on both abundance (estimated elasticity = -3.580, SE
= 1.353) and richness (estimated elasticity = -1.631, SE = 0.685). The effect of GDP on
similarity is negative but imprecisely estimated (estimated elasticity =-0.104, SE = 0.157).1
A reduction in similarity implies that there are fewer species of the same type in a sampling
location compared to the previous year, due to either a loss of species or newly introduced

species.

It is inherently difficult for us to directly compare our effect size with the prior literature
due to the lack of similar studies. Here we provide one benchmark exercise where we calculate
the change in bird abundance implied by our estimates, and compare that with established
estimates of bird population decline. Recent work by Rosenberg et al. (2019) using the
North American Breeding Bird Survey — one ecological study included in BioTIME which
we described in Section 2.1 — estimated that bird population numbered around 8 billion in
1990, but had declined by about 1 billion by the end of 2015. To evaluate what fraction
of such decline might be attributable to economic activities growth during the time period,
we estimate equation (1) focusing on bird-related observations. This estimation yields an
estimated coefficient of -0.475 log units (representing a decline in the bird population) per
1% increase in GDP per capita. Multiplying this coefficient by the average change in logged
real GDP per capita between 1990-2015 suggests a decline of 0.80 billion birds, which is 80%
of the estimate in Rosenberg et al. (2019).

15The Jaccard similarity index captures the turnover rate of species in a location between two consecutive
years. It is constructed to range between 0 and 1, whereas the abundance and richness outcomes are measured
on a log scale. Our IV estimates suggest that a log increase in GDP reduces the Jaccard similarity index by
0.54 percentage points out of a mean index value of 0.43. This is, in fact, of the same order of magnitude
relative to the effect sizes observed for abundance and richness.
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3.2 Features of the Biodiversity-Economic Activity Association

Effects by Taxa Panel B of Figure 4 shows elasticity estimates separately by taxon, where
from left to right we report effects for amphibians, birds, fish, freshwater invertebrates, fresh-
water plants, mammals, terrestrial invertebrates, and terrestrial plants. We find that the
negative associations with GDP emerge not only for birds (which comprise of 80 percent of
our estimation sample), but for most of the taxon groups. Among amphibians and mammals,
significantly negative effects of GDP are detected for all three biodiversity metrics. In fol-
lowing analyses, we report both full-sample results, and a sub-sample version that excludes
birds.

Environmental Kuznets Relationship Panel C of Figure 4 shows elasticity estimates
by quintiles of the sampling area’s average (1966-2015) GDP per capita. We find that the
GDP-biodiversity elasticities do not vary substantially across overall levels of GDP. Thus,
there is thus limited evidence within our study scope that the GDP-biodiversity elasticity
follows an environmental Kuznets relationship (Grossman and Krueger, 1995; Andreoni and
Levinson, 2001; Harbaugh et al., 2002); rather, the negative effects of GDP persist across

different levels of economic development.

Distributional Heterogeneity Panel D of Figure 4 investigates distributional hetero-
geneity, showing results from quantile regressions. We consider a fixed-effects-residualized
version of equation (1), estimating regression quantiles using a residualized biodiversity met-
ric as the outcome, and the residualized log GDP per capita as the explanatory variable.
For each outcome, the horizontal line represents the average effect (i.e., the slope of the
fitted line in Panel A of Figure 4). For all three biodiversity outcomes, we find evidence that
effects are negative or zero at all quantiles, and we find heterogeneity in the size of the effect;
the negative effects of GDP are the largest at the lowest quantiles of the distributions of the
biodiversity metrics. This pattern suggests that economic development exacerbates biodiver-
sity losses in areas where biodiversity is already low. The heterogeneous effects also suggest

higher levels of biodiversity may increase resilience to adverse shocks to the ecosystem.

Sector-Specific Output In Table 2, we report specifications where we replace the aggre-
gate GDP measure in equation (1) with sector-specific income. We focus on six sectors. Two
are well known to cause significant amounts of pollution: manufacturing (air pollution) and
mining (water pollution); two that physically alter the landscape: agriculture and logging;

and two that are related to economic activity within urban areas: construction and services.
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Our results show large and consistent negative associations between manufacturing income
— indicative of greater manufacturing activities — and biodiversity. We also find a negative
correlation between logging-related income and biodiversity metrics for non-bird species, and
a positive association for agriculture.'® This evidence suggests that industrial emission as
a byproduct of economic activities may be an important driver of biodiversity trends. We

take a more detailed look at the role of pollution in Section 4.2.

Dynamics Our baseline analysis focuses on estimating the contemporaneous impact of
GDP on biodiversity. Here we consider several alternative specifications that explore poten-
tial dynamic effects. We begin with distributed lag specifications, augmenting equation (1)
with various lags of annual GDP. Appendix Figure A.4 reports dynamic specifications that
include up to five lags of GDP. We find that the static and dynamic specifications produce
similar estimates of the contemporaneous impact of GDP, whereas we do not find strong ev-
idence of lagged impacts. In Appendix Table A.2, we further consider a specification where
we include a lead term of GDP in addition to current year’s GDP. We find the “placebo”,
lead coefficient to be statistically insignificant and in general an order of magnitude smaller

than the main GDP effect size; once again, evidence on a lagged effect of GDP is inconclusive.

Another way to approach dynamics (and causality) is with a vector autoregression (VAR)
that treats both biodiversity and GDP as endogenous variables that are interdependent on
each other’s lags. We implement a VAR analysis adapted to our panel data setting using
the method developed in Love and Zicchino (2006). We estimate bi-variate, first-order panel
VARs with each of the three biodiversity outcomes and GDP as endogenous variables, and

with panel- and time-specific fixed effects.!”

16In Appendix Table A.1 and Figure A.3, we further examine the source of the positive correlation be-
tween agricultural income and biodiversity. A plausible explanation is that increased agricultural output
may be associated with afforestation, agroforestry, or shifts toward biodiversity-friendly farming practices
that enhance plant diversity. Agricultural landscapes may also support a variety of plant species through
mechanisms such as habitat heterogeneity, fallow land rotation, and crop diversification. Empirically, we
show that: (1) the positive ag-biodiversity correlation is mainly driven by increases in income in the crop and
animal farming subsectors, and terrestrial plants drive the positive effect, while other taxa exhibit negative
responses to agricultural income, and (2) using USDA data, that a state’s receipt of federal government direct
payments for conservation programs — including the Conservation Reserve Program, Agricultural Conser-
vation Easement Program, Environmental Quality Incentives Program, Conservation Stewardship Program,
Regional Conservation Partnership Program, and Conservation Technical Assistance — has a strong posi-
tive correlation with biodiversity outcomes. We find no positive agriculture-biodiversity correlation once
conditioning on the conservation spending.

17Specifically, the estimation equation is as follows:

Yt = Yeji—1A +ue +u; +egjy

Notice the correspondence with our simple panel estimation equation (1): instead of modeling the biodiver-
sity outcome as a function of contemporaneous GDP, the panel VAR formulation assumes the biodiversity
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Appendix Figure A.5 summarizes the estimation results. The impulse response functions
(IRF's) suggest that GDP has a significant, negative impacts on biodiversity outcomes; similar
to our reduced-form findings, the IRF's suggest that the effects concentrate on the first period,
while quickly converge to zero in about four periods. The IRFs suggest that the reverse
causation, i.e., the impacts of biodiversity outcomes on GDP, are positive, transient, but
insignificant, with effect sizes an order of magnitude smaller than the estimated effects of
GDP on biodiversity.

The dynamic models described above focus on the lagged effects of GDP shocks in the
near past. In Appendix Table A.3, we further explore the role of longer-run economic
trajectories, estimating alternative specifications where we replace the logged GDP variable
with various forms of GDP growth, including current growth rate, five-year moving average
rate, and/or five-year moving maximum rate. Even conditional on the effect of current
growth, we find large, negative effects of sustained trend of growth in the past years on
biodiversity (columns 2, 5, and 8), which is partially explained by years with a burst of
growth (columns 3, 6, 9). While we view these specifications as less well-identified than the
simple OLS regressions of equation (1), the evidence appears to suggest that biodiversity is

influenced by the trajectory of economic growth in addition to year-over-year shocks.

We additionally explore alternative specifications for longer-term dynamics, including a
long-difference model and data aggregation into 5- or 10-year periods. Given the variation in
study durations and coverage years, we compare long-difference results across two samples
in Table A.4. Panel A focuses on studies over ten years, calculating the average biodiversity
change from start to end. The estimated coefficients of GDP-biodiversity are consistent
with our baseline specification, except for the similarity index. The Jaccard similarity index
quantifies the turnover rate of species between two consecutive years, hence it might not
adequately capture biodiversity changes over extended periods. Panel B includes all studies,
the estimated coefficients also align with the baseline specification. In Panel C and D, we
aggregate the data into 5- or 10-year periods. Our findings indicate that while aggregating
the data diminishes the precision of the estimated effects, the magnitudes remain comparable

to those in the baseline.

outcome is a function of lagged GDP, and vice versa. The vector notation therefore represents a stacked
system of equations where Y,;; denotes a (1 x 2) vector of dependent variables (e.g., log abundance and log
GDP per capita), u.; and u; are (1 x 2) dependent-variable-specific location-by-taxa and year fixed effects,
and A is a (2 x 2) matrix of parameters to be estimated which is assumed to be homogeneous across all
cross-sectional units. We implement the computation using the GMM algorithm provided by Abrigo and
Love (2016).
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3.3 Sensitivity Checks

We describe robustness checks that correspond to concerns we laid out in Section 2.3.

Endogenous Sampling to Economic Conditions Appendix Table A.5 presents various
“zero-stage” regressions where we test if economic conditions influence sampling in any
significant ways. First, in the cross section of study locations, we test if the average GDP
growth rate at the location can predict the study span. Columns 1 shows the correlation
is small: the point estimate suggests that each percentage point increase in the average
GDP growth (or about a 50 percent increase relative to the mean rate) at the study location
is associated with a 1.3 percent increase in the study duration; the coefficient estimate is
statistically insignificant. Second, using the panel fixed effects regression framework outlined
in equation (1), we test if year-over-year changes in GDP (as well as lagged GDP) can predict
when a study starts sampling (columns 2 and 3), ends sampling (columns 4 and 5), and misses
samplings (columns 6 and 7). We find no statistical evidence across the board that economic
conditions can predict sampling activities. Simply put, we find that economic conditions are
not correlated with the length of the study span, when studies began, when they ended, or

when they missed sampling.

Outliers and Large Deviations Biological specimen in certain studies may sometimes
contain large counts, although in Figure 2 we have shown that most year-over-year changes
in the biodiversity metrics fall within reasonable ranges. Appendix Table A.6 examines the
impact of outlier observations. We find that winsorizing extreme samples, defined as those
with the smallest and largest 1%, 5%, or 10% biodiversity outcomes, has little impacts on
our estimates. We also obtain similar estimates excluding samples that exhibit abnormally
large deviations in biodiversity outcomes, defined as those with over plus or minus 2, 3, or

4 standard deviations (SD) from the average year-over-year changes.

Measurement Quality Figure 1 shows that our data spans almost six decades. Ecolog-
ical sampling practices and technologies have likely changed over such a long time horizon
even if protocols have been reported to be held fixed. Without direct information on the
quality of biodiversity measurements, there is not much we can do to assess the implica-
tions of measurement errors that may exist in older studies. Appendix Table A.7 touches
on measurement quality differences by splitting our estimation data into studies that were
done in earlier vs. later periods. We first repeat our main estimation of the biodiversity-

GDP relationship separately for samples taken before versus after 1997, the median year of
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sampling; in another test, we group studies by the first year of sampling, and then estimate
the biodiversity-GDP relationship separately for those started before versus after 1993, the
median of studies’ start years. We find that our main findings are statistically indistinguish-
able among these subsamples. We further stratify studies by their duration into those that
lasted less than 5 years, between 5 and 20 years, and over 20 years (roughly correspond-
ing to studies that fall below 25th, between 25th and 75th, and over 75th percentile of the
study duration distribution). We find some suggestive evidence that the biodiversity-GDP
link is more precisely estimated among longer-term studies — presumably those that are
on average larger in scale, more fully funded, and potentially adopting more sophisticated
measurements — although the gradient with respect to duration is not statistically signifi-

t.18 Taken together, while these tests cannot directly quantify the influence of sampling

can
quality on our estimates, they do suggest that differences in measurement quality are not a

first-order determinant of what we find in this study.

Alternative Biodiversity Measurements In our main analysis, we measure abundance
by summing up numbers of individuals observed in each taxa-location-year cell, and we
measure richness by counting the number of distinct species observed, regardless of the
distribution of individual counts across different species. For example, consider the North
American Breeding Bird Survey that we described in Section 2.1. Suppose a bird observer
sees 50 American Robins and 6 Northern cardinals on a survey route, then the abundance
metric of that sample is 56 and the richness metric is 2. These ways of measuring biodiversity
have shortcomings. For example, in computing species richness, it might seem natural to
up-weight cases where abundance is more evenly distributed across the species versus cases
where we observe the same number of species, but the abundance across species is much more

concentrated. The former may be a better representation of the true diversity of species.

We consider two alternative measures of species richness — the Gini index and Shannon
index — that take into account relative abundance information (Colwell et al., 2009).'? Recall
from Section 2.2 that S, is the set of species at location ¢ and time t. Let ng, be the
abundance of species s € S.;. We define relative abundance to be r,; = ZA’ the share

JE€Scy Mct
of a particular species out of the total number of individuals. The Gini diversity index is

18This finding could provide insights into the significance of conducting long-term ecosystem monitoring to
enhance the dependability of monitoring outcomes. We are grateful to an anonymous reviewer who pointed
us to this important dimension of the ongoing discussion on the national accounting and measurement of
biological resources.

9The Shannon Index and the Simpson Index (1 minus Gini) were originally developed in the fields of
communication theory (Shannon (1948)) and cryptanalysis (Good (1982)). Their significance for ecological
research was recognized later, with key contributions from MacArthur (1955) and Simpson (1949), respec-
tively.

23



given by
1

2
ZSGSct rsct

Gini Index. =

and the Shannon diversity index is given by

Shannon Index, = exp (— Z rset X loOg Tsct) .

SESct

Notice that the Gini diversity index is effectively an inverse Herfindahl-Hirschman index,
whereas the Shannon diversity index is analogous to entropy. Unlike species richness, which
considers only the total number of unique species presence, both Gini and Shannon diversity
measures adjust for the relative abundance of species. If relative abundance is identical
across all species in S, then species richness, Gini diversity, and Shannon diversity all yield
the same value. For example, if there is an equal share of 2 species in S, then all three
indices will be 2. If there is heterogeneity in relative abundance across locations, then the

Gini diversity and Shannon diversity measures give a lower value than species richness.

Appendix Table A.8 shows that our species richness findings are similar using Gini Index
and Shannon Index. We also report results using the Sorensen index, which is a commonly

used measure of species similarity, as an alternative to the Jaccard similarity index.?

Geographic Unit of Analysis We use state level GDP to capture local economic output.
State is a focal level at which many economic outcomes and policy variables are measured.
States are large geographic areas, and this bears both pros and cons for our analysis. On
the positive side, using aggregate measurements of GDP ensures that our estimates do not
reflect small-scale spatial displacement, for example, if individual animals move to a nearby
location in response to opening of a new factory. This could be particularly relevant for
more mobile species such as birds. There are two potential downsides of using a state level
output measure. First, using state level GDP foregoes more localized economic variation
that could matter for biodiversity outcomes. Impacts of economic activities may also exhibit
spatial heterogeneity: for example, it is possible that the ecological damage of production

differs across different ecosystems within the same state. Second, suppose species in a local

20The Sorensen Index was created later by botanists Thorvald Sorensen and Lee Raymond Dice in the
mid-1900s (Sorensen (1948), Dice (1945)). The Sorensen similarity index is defined by

2 X ’I’L(Sct+1 N Sct)
n(Set+1 U Set) + n(Seie1 NSer)

Sorensen Index.; =

where S.; denotes the set of species at some time ¢ in taxon j and location ¢, and n(-) denotes the cardinality
of a set.
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ecosystem (smaller than the size of a state) were already in a form of “equilibrium,” all the
available spaces (or “niches”) are filled up with different species, and they spread out until
they cannot anymore because of lack of resources or because other species are competing
with them for the same space. In this equilibrium, a disturbance in a given niche will not,

in the short run, lead to strong spatial displacement where species fill up that vacuum.

Appendix Table A.9 compares baseline results (panel I) with those if we instead use
county level income(panel II). Comparing results in panels T and II, we get smaller OLS
estimates, especially with bird species; our 2SLS results using the military buildups shock
quasi-experiment renders similar results whether we use state or county measures. We view
these patterns as broadly consistent with errors in local-scale output measurement for mobile
species (e.g., attenuation bias when associating the exposure of bird species to economic

activities in the very county where they are observed).

Appendix Table A.10 and Table A.11 illustrates how effect sizes vary with levels of output
measurements and data aggregation. First, in Table A.10, instead of measuring output at the
state or county level, we use the concept of eco-region developed by the U.S. Environmental
Protection Agency, which divides the contiguous U.S. into 85 mutually exclusive areas where
ecosystems are similar. Appendix Figure A.6 provides a map of EPA level-III eco-regions
as of 2013. We define economic conditions by summing up income from counties that fall

within the boundary of each eco-region, which is used as the independent variable in lieu of
state GDP.

Second, we report a series of robustness checks where we adopt a spatial-binning ap-
proach that aggregates biodiversity outcomes into 3-km, 10-km, and 16-km hexagon bins in
Appendix Table A.11. Unlike the previous table, in this table, both biodiversity outcomes
and economic activities are aggregated into spatial hexagon bins. Figure 1 shows that, de-
pending on the geographic scope of the study, many sampling locations may be close to each
other. Because distinct sampling locations in the BioTIME data represent different study
protocols, in our primary analysis we treat them as independent cross-sectional units even if
they are very close to each other. A potential concern is that we may overstate the effective
amount of data due to spatial correlation. Hence, the spatial binning approach aggregates
out some spatial correlation, though it introduces measurement error as samples collected
using different protocols are simply “added up.” We find that the estimation results using
spatially binned data are attenuated with coarser aggregation, though the qualitative con-
clusions hold up. For these non-standard geographic delineations that do not obey state
borders, only OLS results are reported as the military shocks used for the 2SLS analysis are

measured at the state level.
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4 Causality and Mechanisms

The negative association between biodiversity and economic activity may be subject to
endogeneity concerns. One might worry that unobserved factors, such as local extreme
weather, may correlate with both GDP and biodiversity (omitted variable bias); that errors
in economic measures and/or biodiversity outcomes may attenuate the elasticity estimates
(measurement error); and that biodiversity may itself cause changes in economic output
(reverse causality). In this section, we examine how biodiversity outcomes react to U.S.
national military expansions that are known to produce plausibly exogenous shocks to the
local production economy. We then present a framework to identify the pollution channel
using variation in local pollution driven by transported pollution from distant, upwind cities,

which cause reductions in local biodiversity outcomes.

4.1 National Military Buildups Shocks

We exploit shocks to state GDP from changes in national military buildups. This strategy has
been widely used in the empirical macroeconomics literature to estimate the fiscal multiplier,
i.e., the causal effect of government spending on economic output (e.g., Hall, 2009; Barro
and Redlick, 2011; Ramey, 2011; Nakamura and Steinsson, 2014, 2018). Several features
of military buildups in the United States make it an attractive policy experiment in our
study setting. First, national military buildups are well-known to be driven by geopolitical
events such as the Vietnam War and the Soviet invasion of Afghanistan. The timing and
magnitude of these events are plausibly exogenous to biodiversity changes in the United
States. Second, because industries that produce military equipment are unevenly distributed
across the country, national changes in military buildups leads to greater military spending
in some states than in others. Figure 5 Panel A, adapted from Nakamura and Steinsson
(2014), plots each state’s military contract spending as a share of its GDP. We assign darker
lines to states with a higher share of state military spending during a base period (1966-1971
average). Note that there is substantial variation and persistent differences in the degree to
which national shocks (the blue line in the middle of the chart) translate to state-specific
shocks. We use this variation to tease out regional changes in economic output that are
attributable to national military spending shocks. Finally, military spending, such as repair
and maintenance of military facilities, strongly influences construction and manufacturing
output; these sectors are associated with substantial environmental externalities, and may

influence biodiversity outcomes.

We use the following equation to estimate the effect of military spending shocks on
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biodiversity outcomes:

MS
Y;:tzﬁ(—) XMSt+nc'+77t+5c’t> (2)
’ GDP state,1966—1971 ! ’

This equation mirrors the main estimation equation (1). On the right hand side, we

ALY sute 10661071 X M Sy, which is the initial (1966-

1971 average) military contract spending (M.S) a state receives as a share of its GDP,

define the military spending shock as (

interacted with annual, national per capita military spending (M S;). As shown in Figure
5 Panel A, although the share of military spending to GDP changed over the years, the
initial share over the 1966-1971 period still captures systematically different sensitivities of
GDP to military spending shocks across states. The military spending shock variable thus
captures state heterogeneity in sensitivity to the national military buildups. The fixed effects

variables 7.; and n, are defined as in equation (1).

For this policy shock to be exogenous, we assume that the shock component — states’
relative differences in response to aggregate military buildups (which are themselves largely
driven by geopolitical factors) — are unlikely to be correlated with unobservable determinants
of local biodiversity. That is, we assume the United States will not increase national military
spending because states that receive larger military procurement contracts have worse biodi-
versity. In assessing the validity of the instrumental variable analysis, we conducted several
tests to evaluate the plausibility of the identifying assumptions following Goldsmith-Pinkham
et al. (2020) in the Appendix.

Figure 5 Panel B presents the estimation results for the key coefficient of interest [,
the impact of the policy shocks on biodiversity outcomes. We use the same decile bin
scatterplots as Figure 4, except here the x-axis variable is fixed effects-residualized military
spending shocks. We display full-sample results for all species as well as subsample results
with non-bird species. For all three biodiversity outcomes, we find that military spending
shocks have a statistically significant negative effect on biodiversity. The chart also shows
that the negative effects of military spending shocks are larger for non-bird species for all

three biodiversity outcomes.

Table 3 summarizes these findings in more details. Column 1 repeats Nakamura and
Steinsson (2014) in our study sample and confirms the positive impact of the military spend-
ing shocks on state GDP. Columns 2 through 4 report changes in log abundance, log richness,

and similarity index from a one unit increase in the military spending shock variable.

To facilitate comparison of effect sizes with the OLS estimates in Section 3, in columns 5

through 7, we divide the estimates in columns 2 through 4 by that in column 1, converting
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these estimates to the biodiversity-GDP scale using two-stage least squares (2SLS).?! In the
full sample (Panel A), we find that the implied GDP elasticities are -4.49 for the abundance
measure (SE=1.59), -2.75 for richness (SE=1.23), and -0.54 for similarity (SE=0.18). By way
of comparison, our OLS estimates of the GDP elasticities are -3.58 for abundance (SE=1.35),
-1.63 for richness (SE=0.69), and -0.10 for similarity (SE=0.16). Similarly, in the non-bird
subsample (Panel B), we find slightly larger biodiversity-GDP elasticity estimates than their

OLS counterparts.??

Appendix Table A.12 reports a series of robustness checks where we (a) alter the con-
struction of the military spending shock variable by changing the baseline period of the
treatment variable construction from an initial-period average (1966-1971) to a long-term
average (1966-2006); (b) follow the original empirical specification in Nakamura and Steins-
son (2014) and construct military spending shocks as the fitted value of state spending on
national spending, allowing different sensitivity for each state; (c) use the limited information
maximum likelihood (LIML) estimator which is median-unbiased with weak instruments in
lieu of 2SLS; (d) add Census Division-specific decadal time trends to control for regional-
specific trends in addition to the fixed effects controls; and (e) replace state per capita GDP
with state total GDP, county total income, or county per capita income as the right hand
side measure of economic activities. For succinctness, we only report biodiversity-GDP elas-
ticity estimates for these robustness checks. We tend to obtain smaller, though more precise
coefficient estimates when using total rather than per capita measures of economic activities.

Overall, the results are robust to these specification changes.

A Note on Causal Interpretations We highlight three takeaway messages from this
analysis. First, biodiversity outcomes respond to shocks that are well-known to cause changes
in local economic activities. Because military shocks generate plausibly exogenous variation

in economic activities, the findings improve upon the correlational evidence in Section 3.

2IThe first stage estimation has a Kleibergen-Paap F-statistics of about 7 in the full sample, and about
35 in the non-bird subsample. This difference is due to the fact that the non-bird sampling locations are
in states with higher military spending, and are more responsive to changes in national military buildups.
In addition, as shown in Figure 1, non-bird observations are more evenly distributed across the entire study
period, allowing the estimation to better exploit temporal variation in economic changes. To address the
possibility of weak instruments in the full sample, we use limited information maximum likelihood (LIML)
estimator which is median-unbiased with weak instruments in lieu of 2SLS. Results shown in Appendix Table
A.12 demonstrates that the LIML results are comparable to those from 2SLS.

22The one-step 2SLS method employs cluster-robust standard errors at the state level, which aligns with
the variation of the instrument. We also implement a two-step approach to explicitly separate the first and
second stages and use cluster bootstrapping to compute standard errors. The two-step approach produces
very similar estimates (Appendix Table A.13) with the standard one-step 2SLS method. The one-step
method additionally allows for taxa fixed effects, which is important given potential differences across taxa,
even within the same location or state.
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Second, the implied biodiversity-GDP elasticities from the quasi-experiment are larger
than their OLS counterparts. By leveraging shocks in a 2SLS setting, the quasi-experiment-

based elasticity estimates alleviate classic measurement error and endogeneity problems.

Third, we do not interpret the biodiversity-GDP elasticities as the causal effect of a
ceteris paribus increase in economic activities. GDP is an accounting concept and only
varies because of changes in real economic activities. Therefore, one cannot randomly assign
GDP while holding everything else constant. Instead, our estimates encompass the total
effect of various determinants of biodiversity — such as environmental pollution or habitat
loss from changing land use — that vary with economic activities. Our analysis so far remains
agnostic about what are the underlying mechanisms that explain the observed biodiversity-
GDP relationship. We tackle that next in Section 4.2. In particular, we focus on the causal
effect from air pollution, which we show can be isolated out from other contributors to

biodiversity changes.

Heterogeneous Effects We find that the negative impact of military spending shocks
on biodiversity is most pronounced in locations with military bases. Military expenditures
may be subject to exemptions from environmental laws, with broader exceptions expected at
military bases. For instance, the 107th Congress granted an exemption from the Migratory
Bird Treaty Act, and the 108th Congress exempted certain provisions of the Marine Mammal
Protection Act and parts of the Endangered Species Act (Bearden (2007)). Additionally,
specific engines and equipment related to national defense may be exempt from requirements
under the Clean Air Act and Clean Water Act (CRS-Report (2002)). These exemptions from

environmental regulations potentially exacerbate biodiversity loss.

We examine the heterogeneous effects of military spending shocks on biodiversity across
sampling sites, distinguishing between locations in counties with at least one military base
(30% of the sample) and those without any military bases. The Military Bases dataset
is sourced from the Office of the Assistant Secretary of Defense (OASD) and is part of
the US Department of Transportation (USDOT)/Bureau of Transportation Statistics (BT'S)
National Transportation Atlas Database (NTAD). The dataset contains the locations of

Department of Defense (DoD) sites, including installations and training areas.

Figure A.7 below indicates a more pronounced negative impact on biodiversity in prox-
imity to military bases, consistent with exemptions from environmental regulations obtained
by various activities on these bases. Nonetheless, we also detect a smaller but significant
effect in areas without military bases. To further probe this heterogeneity, we interact GDP

with (i) an indicator for base presence and (ii) the share of county land occupied by military
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bases. Results in Table A.14 show that base presence slightly amplifies the biodiversity loss
from GDP (Column 2), while greater land coverage by military bases intensifies the effect
(Column 3).

4.2 The Pollution Channel

Our analysis proceeds as follows. We first present new evidence that air pollution — an
important byproduct of economic activities that has well-understood impacts on human
health — is also a broad driver of biodiversity losses. Next, we use the estimated relationship
between biodiversity and pollution to estimate the share of the effect from military shocks

in Section 4.1 that is due to pollution externalities.

Causal Effect of Air Pollution We begin by estimating the relationship between air
pollution and biodiversity. The most accurate measurement of air pollution comes from in
situ pollution monitors, but these ground measurements are taken only at a sparse set of
locations in the U.S., and the majority of those locations are at urbanized population centers.
To improve data coverage, we instead use remote sensing-based reanalysis measurements
of particulate matter pollution (Aerosol Optical Depth, or AOD) from the Modern-Era
Retrospective analysis for Research and Applications Version 2 (MERRA-2) provided by
NASA. The estimating equation once again mirrors our main equation (1), but with county’s
pollution as the explanatory variable of interest. The first row of Table 4 shows the results.
Across all biodiversity measures and both samples of all species and non-bird species, we find
strong and negative pollution-biodiversity associations, with larger elasticities for non-bird
species. When examining the association across different taxa, Figure A.8 indicates that
mammals, terrestrial invertebrates, and terrestrial plants are most affected by air pollution,
while birds and freshwater plants are also significantly affected, though to a lesser extent.

Amphibians, fish, and freshwater invertebrates exhibit relatively smaller impacts.

The challenge with attributing changes in biodiversity to pollution is that pollution may
be endogenous. There may be omitted factors driving variation in both pollution and bio-
diversity such as temperature and sunlight. There may also be reverse causality where
biodiversity, say of plant species, impacts local air quality through emission of volatile or-
ganic compounds. To get at causal effects of air pollution, we follow the recent literature and
use an instrumental variable (IV) strategy that teases out plausibly exogenous variation in
a county’s local air pollution attributable to transported pollution from upwind areas (e.g.,
Deryugina et al., 2019; Anderson, 2020). We then estimate 2SLS regressions of biodiver-

sity outcomes on local air pollution, instrumenting for local air pollution with this “upwind
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pollution” variable.?

To illustrate the procedure, we use Susquehanna, PA as an example of how we construct
the IV. The same procedure is applied to all counties in our dataset. First, we begin with
a daily panel dataset of air pollution in a set of counties whose pollution levels may affect
air quality in Susquehanna. Let C' denote the set of contributing counties and |C'| denote its
cardinality (i.e., the total number of counties in this set). For each county ¢ and day t, we
calculate the angle ¢.; between county ¢’s local wind direction and the vector pointing from
city ¢ to Susquehanna (e.g., ¢, = 0 means county c is exactly upwind from Susquehanna
on day t). The IV for Susquehanna is a time-series variable constructed using the following

formula:

1 1/dist c
1V, = — Zmax{o, cos(¢et)} - Pollution - /distance

|C v 1/ > .cc(1/distance,)

(3)

where the max{0, cos(¢q)} - Pollutiony term is the vector component of air pollution in
city c on day t that is expected to move toward Susquehanna due to wind transport — we call
this “upwind pollution”.?* We assume that upwind pollution is zero if ¢ is greater than 90
degrees, i.e., wind in city c on day t blows away from the direction toward Susquehanna. The
last term is an inverse distance weight. The formula says that, on any date ¢, the IV is the
average of individual cities’ upwind pollution terms, inversely weighted by city ¢’s distance

to Susquehanna (distance,).

The choice of contributing counties C' bears a bias-variance tradeoff. If we were to only
use counties that are very far away from Susquehanna, it would help with the ezclusion
restriction assumption of the IV. That is, there is little reason for pollution variation in very
faraway counties to affect local biodiversity outcomes in Susquehanna, except for the fact
that transported pollution from these upwind counties contributes to changes in local air
quality. However, focusing on counties too far away hurts the first stage relevance of the
instrument because their impacts on local pollution is likely weak. We take the following steps
to address this bias-variance tradeoff. First, we restrict contributing counties to those that
are at least 300 km away from Susquehanna. Second, we employ a data-driven method that
selects the most predictive upwind counties in a “zero-stage” LASSO regression. Specifically,

before constructing the IV variable, we estimate the following equation and perform variable

23In the Appendix, we compare the performance of our IV with that of Deryugina et al. (2019). Replicating
the approach used in Deryugina et al. (2019), we find that our main findings remain consistent, but the
reduced precision reinforces our preference for the LASSO instrument as the primary identification strategy.

24The cosine places more weight on pollution from upwind counties as their wind direction points more
toward Susquehanna.
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selection using LASSO:

Pollutionsysquehannat = Mo + Z Ae - maxz{0, cos(¢e)} - Pollutiony + €
ce{1,...,2996}

where the counties ¢ that are selected by the LASSO procedure have a non-zero coefficient \.
and are included in our set of contributing counties C' for Susquehanna, PA. For Susquehanna,
LASSO selects a subset of 54 upwind counties from a total of 2,996 counties that are at least
300 km away. We then conduct the IV construction outlined in the previous equation using

these 54 selected counties. We then apply this procedure to all counties in our data.

Figure 6 Panel A is an illustration of Susquehanna where we map out the location of the
selected counties and use a bubble graph to represent the \. coefficients from a post-LASSO
regression. Figure 6 Panel B is the union of selected upwind counties for all BioTIME
counties in Pennsylvania. Many predictive counties are just outside of the 300km buffer as
we might expect, but there are also ones from the Midwest or West, presumably due to wind
transport.?> Figure 6 Panel C shows decile bin scatterplots of the first stage and reduced
form regression results. There is a strong positive relationship between upwind pollution
and local pollution for the full sample and the non-bird sample. Upwind pollution shocks
are negatively associated with all three biodiversity metrics and the relationship is stronger

for non-birds.

The second row of Table 4 shows our main IV results. All elasticities are negative, and
the IV and OLS estimates are generally quite similar in size, suggesting that endogeneity in
our setting is not severe.? Comparing these estimates to the associational GDP elasticities

in Figure 4, the pollution elasticities are about half the size.?”

Our estimates of the pollution channel likely capture both short-term shocks and longer-

term transmission effects. Conceptually, biodiversity is affected by acute pollution events—via

25To assess the robustness of our LASSO-based selection of upwind counties, we compare the characteristics
of the destination county with those of both LASSO-selected upwind counties and unselected counties. This
analysis demonstrates that our algorithm does not systematically select counties with similar attributes (e.g.,
industry sectoral income, land use patterns, pollution-generating activities, or population levels). Details
are included in the Appendix.

26This is in contrast to papers in the pollution-health literature that often find causal estimates to be an
order of magnitude larger than OLS counterparts (e.g., Deschénes et al., 2017; Deryugina et al., 2019). One
explanation is that there are much more common determinants for pollution and human health than for
pollution and animal/plant species health. For example, employment conditions may directly affect both
pollution and health dynamics, but employment is much less likely to directly affect biodiversity except
through its impact on production and pollution. Therefore, pollution may be much less endogenous to
changes in biodiversity outcomes than to changes in human health.

2"In Appendix Table A.15, we add weather controls, including county annual average maximum and
minimum temperature, and precipitation into the 2SLS regressions under our original setting. The estimates
changed little with the augmented specification.
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toxicity, habitat degradation, or behavioral responses—as well as by cumulative exposure
over time. Given the annual frequency of our data, we cannot separate these timescales
empirically, and we are not aware of studies that do so. Nonetheless, physiological evidence
suggests multiple channels. For example, birds inhale more airborne particles than humans
at equivalent concentrations due to higher respiratory rates and constant exposure. Fine
particulates can penetrate deep into their lungs, affecting cardiovascular and respiratory
function. Medium-term exposure to traffic-related pollutants such as PAHs has been linked
to reduced reproduction and impaired development (Albers, 2006). Long-term exposure has
been associated with heritable DNA mutations in birds, with potential cancer risks (King
et al., 2014). Indirect effects also arise through food chain disruptions, such as eutrophication

from NO,, which depletes aquatic prey populations.

Overall vs. Pollution Effects With the causal biodiversity-pollution elasticity estimates
from Table 4, we now revisit our military spending quasi-experiment and calculate how
much of the effect was due to induced changes in pollution, using a framework similar to
Heckman et al. (2013). We decompose the total marginal effect of military spending policy
on biodiversity into different components and compute the one component that reflect the

partial effect of the policy through pollution:
E(Abiodiversity) = A7 4 o - E(Apollution),

where E(Apollution) = 8% Amilitary spending is the change in air pollution caused by mili-
tary spending shocks. Here, o+ E(Apollution) is the effect of miliary spending shocks on bio-
diversity through the air pollution channel, k. The term AT = " e itk ~7-Amilitary spending
include all unmeasured effects of military spending on biodiversity due to other channels —

indexed by j — such as habitat change, water pollution, etc. Therefore, we have

E(Abiodiversity) = Z 79 . Amilitary spending + o - 8% - Amilitary spending.
JjeJj#k
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The reduced form effect of military shock on biodiversity can thus be written as:

Obiodiversity ~ Obiodiversity Jdpollution

Omilitary spending  dpollution ' Omilitary spending

Obiodiversity OJhabitat
dhabitat Omilitary spending

Obiodiversity OJwater
dwater  Omilitary spending

=a* . pF + Z o
FISONE

We recover the effect of military spending on biodiversity through the air pollution channel —
a¥-B¥ — in two steps. First, our reduced form estimates of the effect of the military spending

in Section 4.1 provide the total marginal effect of the policy on biodiversity: % =

ak - gk 4 Zjel#k 77, Second, we compare the total effect to the partial effect of the policy

Obiodiversity Opollution
Opollution Omilitary spending

the biodiversity-pollution elasticity (a*) estimated in Table 4. The second term — the effect

= oF . BF. The first term in the expression is

through pollution:

of the military spending shocks on air pollution (3*%) — is straightforward to estimate from
the data, which we report in Appendix Figure A.9. As expected, military spending increases

pollution.

Figure 7 presents the decomposition. The gray bars show the total, reduced-form effect
of military shocks on biodiversity, and the blue bars show the effect through changes in
air pollution. Depending on whether we look at the full sample or non-birds, the effect of
pollution accounts for about one-fifth to up to two-thirds of the estimated total effect of the
policy.

The evidence thus suggests air pollution is a first-order pathway for how military spending
affects biodiversity but is not the only pathway. Military buildups are a general boost to
local economic activities and may affect biodiversity through other channels such as land use
change. However, there are potential reasons for why we may be underestimating the role
of air pollution. First, we are measuring air pollution using satellites in order to have full
spatial coverage. If the satellite-derived estimates of particular matter suffer from classical
measurement error, then our pollution estimates will be attenuated. Second, by using a
remote-sensing measure of pollution that is based on particulate pollution detection, we are
only estimating the impacts of particulate matter pollution. Although particulate matter is

often used as a proxy for overall air quality, it is not a perfect proxy for all air pollutants.
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4.3 Land Use

Our current investigation primarily centers on the impact of air pollution, while other con-
tributing mechanisms are harder to establish causally. Here we examine an additional channel
that is frequently studied in the literature — land use changes — and present correlational

evidence to support our findings.

Habitat losses are widely accepted as major determinants of biodiversity decline (IUCN,
2021), and increased economic development and urbanization may result in destruction of
habitat. Here we briefly examine this relationship in our study context to briefly explore
alternative mechanisms, and to perform a validity test for whether our setting produces

results widely found in other parts of the literature.

We explore increasing urbanization of land as a potential driver of biodiversity losses.
This exercise leverages the fact that high-resolution satellite observations of urbanization
became available during the second half of our study period (post-2001). We use NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data (Section 2.4)
which allows us to directly measure the degree of urbanization near the sampling sites in
the BioTIME dataset, unlike GDP which is reported at a larger spatial scale. Our primary
measure of urbanization is the log amount of land within 50 kilometers of a sampling site
that falls under the MODIS urban classification. We also test the robustness of our results
using urbanization measured within 100 km of the site or within the county of the site.?®
We then estimate the effect of urbanization on biodiversity outcomes using the identical
approach outlined in equation (1) where the variable of interest is the log land area that is

classified as urban in MODIS.

Appendix Table A.16 shows our results. The first row shows the urbanization elasticity of
biodiversity when focusing within a 50 kilometer radius, the second row is for a 100 kilometer
radius, and the third row is within the entire county. All elasticities are negative and large
for the measures of urbanization within 50 or 100 kilometers of the sampling site. The
magnitudes of the estimates shrink slightly going from the 50 kilometer measure to the most
aggregate 100 kilometer measure, consistent with urbanization near the sampling site being a
more important determinant of biodiversity. The estimates at the county-level are smallest,
potentially because of measurement error: sampling sites may be near county boundaries
and not the county centroid, and counties do not necessarily have regular shapes. Overall,
the evidence suggests that increased urbanization is negatively associated with our three
measures of biodiversity, consistent with an extensive literature showing land use change

and habitat destruction is a major driver of biodiversity trends.

28The average county has an area equivalent to a circle with a radius of about 30 kilometers.
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5 Environmental Regulations

The evidence on the role of air pollution and land use in the biodiversity-economic activity
link raises the possibility that environmental regulations may provide policy maker another
lever for ecosystem conservation. In this section, we empirically test the impact of several

landmark air pollution and land-use regulations in the BioTIME dataset.

5.1 Pollution Regulations

The Clean Air Act (CAA) is one of the first and most influential pieces of environmental
legislation in the United States, regulating air quality at the state, local, and plant levels
through a large number of individual programs. Our research design focuses on a major
amendment of the CAA that was adopted in 1990, when the National Ambient Air Quality
Standards established national criteria for outdoor air quality, targeting six widespread air

pollutants that harm public health.

A key component of the CAA program is its annual designation of compliance and non-
compliance status. Jurisdictions (mostly counties) in compliance with the air quality stan-
dards are designated “attainment” areas, whereas those in violation with the standards are
designated “nonattainment” areas. A nonattainment determination can be made for failing
to achieve one or more of the pollutant standards — PMs 5, PMyq, ozone (Oj), sulfur dioxide
(SO,), carbon monoxide (CO), and lead (Pb) — and/or for failing to meet one or more of
the versions of the standards for a given pollutant.?? A nonattainment designation triggers
substantially elevated regulatory scrutiny; the state government is required to implement
stringent regulations on the polluting industries. Such measures may include the installment
of expensive pollution abatement technologies, and the use of emission permitting programs
until air quality in the nonattainment area meets the standards. Figure 8 Panel A shows the
fraction of sampling locations in the BioTIME data that were in nonattainment areas with
respect to each of the standards.?® Figure 8 Panel B plots the location of nonattainment

counties and the number of standards being violated in each county as of year 2019.

We base our research design on two rich lines of environmental economics literature

that document the economic costs and the environmental benefits of the nonattainment

29Versions of standards reflect different target metrics or changes in regulatory stringency over time. For
example, the 1997 PM, 5 standard specifies an annual safety level of 15 ug/rr137 whereas the 2006 PM, 5
standard specifies a 24-hour safety level of 35 ug/m3; the 2008 O3 standard (a daily maximum 8-hour
concentration of 0.075 ppm) is a more stringent version of the 1997 O3 standard (0.08 ppm).

30There are usually years of lag between the times when a pollutant standard was promulgated and when
the nonattainment designation actually occurred. For example, as shown in Figure 8 Panel B, the designation
of nonattainment status with respect to the 1997 PM, 5 standard did not occur until the year 2005.
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regulations. A nonattainment designation has been shown to reduce productivity and output,
and impose considerable compliance and fiscal costs on the local economy (e.g., Greenstone,
2002; Greenstone et al., 2012; Walker, 2013; Blundell et al., 2020; Shapiro and Walker, 2020;
Hollingsworth et al., 2022) while effectively reducing air pollution (e.g. Chay and Greenstone,
2005; Sanders et al., 2020; Hollingsworth et al., 2022).

We repeat the same analysis as we did for military spending in Section 4.1, but instead
with the number of nonattainment designations as our policy variable. Figure 8 Panel C
plots the results once again in the decile bin scatterplot form. All estimates indicate that
greater numbers of nonattainment designations, proxying for increased levels of regulatory

stringency and reduced local economic activities, increase biodiversity.

Appendix Table A.17 provides additional details analogous to Table 3 for military spend-
ing. Column 1 shows that more stringent environmental regulations decrease GDP. We find
that one additional nonattainment designation reduces local GDP by about 3.8 percent in the
full sample and 5.3 percent in the non-bird subsample. The magnitude of this estimate is con-
sistent with prior evidence: for example, Greenstone et al. (2012) analyzes production data
from 1972-1993 Annual Survey of Manufacturers and finds that the NAAQS designations
have reduced total factor productivity by 4.8 percent for manufacturing plants. Columns 2
through 4 show the effects of the regulation shocks on biodiversity outcomes which corre-
spond to the bin scatterplots from Figure 8 Panel C. As before, we find that the effects are

larger for abundance and richness than and for similarity.

The implied GDP-biodiversity elasticities from the CAA shocks are in line with those
estimated in Section 4.1. Columns 5-7 report that the implied biodiversity-GDP elasticity
estimates are -5.93 for abundance (SE=0.62), -3.19 for richness (SE=0.27), and -0.52 for
similarity (SE=0.53). In Panel B, we repeat the same estimation using the non-bird sub-
sample. Similar to earlier findings, we find somewhat larger GDP elasticities for non-bird
species. Appendix Figure A.11 further shows that the pollution decomposition exercise also
gives similar results: about 20-60% of the reduced form effects of the CAA shocks came
through the causal effect of air pollution. The similarity in effect size estimates between the

two sets of quasi-experiments adds confidence to our research design.

5.2 Land Use Policies

Given our earlier findings on the negative association of urbanization and biodiversity out-
comes, it is natural to ask whether land protection policies can help mitigate the adverse

effects of production shocks. Since early 1990s, adoption of conservation protected area poli-
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cies has grown rapidly (Frank and Schlenker, 2016).3! Destruction of habitat is one of the
primary drivers of species decline (IUCN, 2021), but the literature has generally found that
protected areas — which cover nearly 15% of the Earth’s land and 10% of its water — have
had mixed results due to management issues, funding, resource exploitation, and ecological
connections to areas outside of the protected area that may be degrading (Leverington et al.,
2010; Laurance et al., 2012; Watson et al., 2014; Di Marco et al., 2019; Geldmann et al.,
2019).

To study the effects of protected areas, we use the standard data source from the World
Database on Protected Areas (WDPA). The WDPA is a geospatial database on over 250,000
marine and terrestrial protected areas. The database is in the form of a shapefile that outlines
the location of each protected area and the year the protected area was implemented. Figure
A.12 plots the location of these protected areas in the US. In each location-year, we compute
the total share of land and water within 50 km of the BioTIME sampling location that is
within at least one currently implemented protected area. We also compute the number
of spatially discontiguous protected areas within 50 km. After conditioning on the share
of protected land or water, this later variable helps us tease out the effect of protected
areas fragmentation holding the quantity of protected area fixed. We include this variable
following the recent conservation literature which has suggested that habitat fragmentation
has significant negative effects on biodiversity and the local ecology (Haddad et al., 2015;
Crooks et al., 2017; Newmark et al., 2017), implying that more fragmented configurations

of protected areas may be less effective than contiguous networks.

Lacking a quasi-experimental design, we report a correlational exercise in Table A.18,
which reports how protected areas modulate the panel correlation between GDP and biodi-
versity outcomes. Columns 1 and 2 show that the abundance-GDP relationship is attenuated
by an increase in the amount of nearby land that is protected.3? If the share of protected
land and water within 50 km goes from zero (no conservation areas) to 100 percent, the
marginal effect of GDP halves. We estimate larger effects on non-bird species, where halv-
ing the marginal effect of GDP only requires having 15 percent to 50 percent of area in
protection. Consistent with prior evidence on fragmentation, column 2 shows that having a
more fragmented set of protected areas has the opposite effect. Columns 3 and 4 show that
protected areas have a noisy relationship with species richness, although the signs of the

effects are generally the same as for abundance. The results are overall similar for species

31 According to IUCN, protected areas include national parks, wilderness areas, community conserved
areas, nature reserves and so on. The areas are managed through legal or other effective means by both the
federal and local authorities.

32Regressions also include the main effect terms for the share of protected area (columns 1, 3, 5) and,
additionally, the number of discontinuous areas (columns 2, 4, 6).
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turnover (columns 5 and 6). In general, there is suggestive evidence that larger coverage of
contiguous protected areas reduces the negative impact of economic activity on biodiversity.
A caveat is that these findings are correlational in nature: protected areas are not adopted
randomly but may in fact be targeted at areas with high levels of biodiversity to begin with,

or areas that are seeing increasing developmental pressures.

6 Conclusion

This paper analyzes a compilation of studies that maintain longitudinal ecological observa-
tions spanning the last five decades and provides new insights on the environmental effects
of economic activity. First, the impacts of externalities extend well beyond affecting just
human health. Greater economic activity is broadly associated with reduced ecosystem di-
versity, including metrics that capture the number of individuals (abundance), the diversity
of species (richness), and the intertemporal stability of the composition of species (simi-
larity). This association is widespread across terrestrial, avian, and aquatic groups, and is
particularly strong when biodiversity conditions are already poor. Second, economic activity
causes biodiversity changes. We directly identify this causal impact by examining changes in
local economic activity resulting from national military buildups, which are largely driven by
plausibly exogeneous geo-political events. Third, air pollution externalities are a first-order
channel. Using an instrumental variables strategy that isolates exogenous local changes in
pollution caused by pollution transported from elsewhere, we find that air pollution nega-
tively impacts biodiversity and serves as a key channel through which military buildups affect
ecosystems. Regulations that protect the environment — even though typically designed to
safeguard human health — provided substantial co-benefits to ecosystem conservation. This
finding is highly relevant for policymaking, as species extinctions and ecological degradation

are accelerating to a degree unprecedented in human history.

By explicitly examining the link between GDP and measures of ecosystem diversity de-
rived from past ecological observations, this research helps shed light on the importance of
broadly-scaled and long-term monitoring of the ecosystem, and how monitoring results can

be utilized to quantify the interconnection between the environment and the economy.

Our findings suggest several future promising lines of research. First, we find that air
pollution is one mechanism linking economic activity to biodiversity. However, there are
other consequences of economic activity — such as noise and water pollution — that may have
adverse effects on biodiversity but for which there are little or no causal studies. Second,

our paper does not quantify the economic value of the estimated changes in biodiversity.
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For example, biodiversity has non-market value (e.g. Loomis and White, 1996; Kolstoe and
Cameron, 2017), and the existence of keystone species has been shown to be important for
human health (Frank and Sudarshan, 2024). Future work estimating the costs of biodiversity
loss will be valuable, especially understanding the costs of declines in particular species that
are critical for healthy ecosystem function. For example, non-market valuation methods can
help us understand the benefits park-goers receive from seeing rare or famous species, and
quasi-experimental variation in biodiversity may help us understand its value as a productive

input into agricultural production.
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7 Figures and Tables

Figure 1: Sampling Locations and Observations

Notes: The upper panel plots sampling locations that are included in our main estimation sample. Loca-
tion points are distinguished by taxa and are aggregated to a 95-by-95 km hexagon resolution to increase
readability. The lower left panel reports number of sampling locations. The lower right panel reports total
number of location-taxon observations in each year.
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Figure 2: Year-Over-Year Variation in Species Abundance, Richness, and Similarity

Notes: All panels plot the coefficient estimates of our biodiversity metrics on a linear year time trend. The
black point in the left panel is the location mean change in species richness and abundance. The right panels
plot the marginal distributions of the time trend estimates for all three biodiversity metrics.
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Figure 3: Temporal Changes in Biodiversity

Notes: The three figure in the upper panel show temporal changes in abundance, richness and Jaccard similarity. Data points
for all studies are represented by gray circles, and models fitted by solid lines that suggest the trend in time series separately
for each study. The thick black line in each figure shows the overall trend in the corresponding biodiversity metrics estimated
using all studies combined. The color of the fitted trend lines shows the taxa of the study. Color coding is the same as Figure
1. The map in the bottom panel shows the average annual percentage change in abundance across states during the sampling
years. Specifically, we use the following equation: Y.j; = Z§0=1 Bs - 1[Statec = s] - Ty + 1ncj + €cjt, where Ycj; represents the
log of abundance. 1[State. = s] denotes indicator variables for sampling locations c in state s. T} indicates a linear trend for
the sample years from 1961 to 2015. Location-by-taxa fixed effects 7.; are included to account for differences across sampling
locations and taxa. Thus, 85 represents the annual average change in abundance for each state s. The state-specific coefficients,
displayed in the map below using 10 quantiles, indicate that most states experienced a decline in biodiversity over the years
(shaded in red), while only a few states show slight increases (shaded in blue).
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Figure 4: The Biodiversity - GDP Association

(a) Average association
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Figure 5: Military Buildups and Biodiversity Outcomes

(a) Military contract spending as a share of state GDP
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Notes: Panel (a) is adapted from Nakamura and Steinsson (2014). The graph shows state’s annual prime
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shows decile bin scatterplots of biodiversity and the military spending shock variable, both residualized
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dashed gray line displays subsample results with non-bird species. Specifically, the regression is Y. =
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Figure 6: Instrumental Variables Estimation of the Effect of Air Pollution on Biodiversity

(a) Upwind pollution counties for Susquehanna, PA (b) Upwind pollution counties for all counties in PA

(c) Upwind pollution shocks, local pollution, and biodiversity outcomes
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Figure 7: Military Buildups and Biodiversity Outcomes: Overall vs. Pollution Effects
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(a) Share of sampling sites in nonattainment jurisdictions

Figure 8: Clean Air Act Regulations and Biodiversity Outcomes
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Table 1: Summary Statistics

(1) (2) (3) (4)
Observations Abundance Richness Similarity

All species 66,418 39,132 15.44 0.425
[1,203,156] [19.62] [0.269]

Amphibians 45 2,563 7.267 0.943
[2,557] [2.526] [0.099]

Birds 51,695 216.8 18.43 0.419
[1,967] [20.5] [0.252]

Fish 804 1,405 16.07 0.702
[6,330] [8.501] [0.128]

Freshwater invertebrates 445 5,566,008 24.32 0.715
[13,599,038]  [15.43] [0.144]

Freshwater plants 39 2,747,857 83.87 0.470
[1,193,869] [11.56] [0.045]

Mammals 5,658 21.18 1.91 0.316
[174.2] [1.958] [0.339]

Terrestrial invertebrates 6,071 53.32 3.912 0.446
[520.2] [11.12] [0.239]

Terrestrial plants 1,661 1,281 6.515 0.651
[8,296] [11.81] [0.317]

Notes: Column 1 reports total number of site-by-year observations in the estimation data that correspond
to different taxa groups. For biodiversity outcomes (columns 2-4), numbers show the means, and standard
deviations are in brackets.
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Table 2: Sector-Specific Income and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species
Manufacturing -0.504**  -0.366%** -0.021 -1.505%**  -0.677***  -0.009
(0.198) (0.091) (0.023) (0.343) (0.154) (0.068)
Mining -0.063 -0.008 -0.012 -0.274 0.090 -0.138%#*
(0.045) (0.025) (0.011) (0.188) (0.071) (0.045)
Timber and Logging -0.021 -0.014 0.002 -0.287*%*  -0.138**  -0.007
(0.035) (0.021) (0.002) (0.114) (0.051) (0.008)
Agriculture -0.002 -0.012 0.009 0.638%*F*  0.126** 0.073%%*
(0.063) (0.023) (0.008) (0.158) (0.057) (0.017)
Construction 0.172 0.134 0.025 0.754 0.139 -0.075
(0.356) (0.090) (0.059) (0.628) (0.206) (0.132)
Services -0.187 -0.289 -0.031 0.278 0.099 -0.087
(0.558) (0.205) (0.060) (1.462) (0.372) (0.298)
Observations 59,651 59,651 46,746 13,809 13,809 12,613

Notes: Each column corresponds to a regression. Categorizations are based on 2-digit SIC and NAICS
codes. Sector income data are from U.S. Bureau of Economic Analysis 1969 to 2016. Agriculture includes
farming, fishing, and hunting. Services includes wholesale, retail, transportation, communications, electric,

gas, and sanitary services, finance, and all other service.

Columns 1-3 reports full sample estimation.

Columns 4-6 excludes observations that correspond to bird species. Specifically, the regression is Y.j; =
>~ Bi -log Industry; st + e + 1t + €cj¢, where Industry; o refers to sector income from industry ¢. Standard
errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 3: Military Spending Shocks and Biodiversity Outcomes

(1) (2) (3) (4) () (6) (7)
Policy Effect Implied GDP Elasticity

GDP Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species

Military spending 0.299***  _1.341°** -0.823*%*  -0.164%** - - -
(0.110)  (0.567)  (0.354)  (0.060) - - -
GDP - - - - S4.485FFE 275K _(.535%HK
- ; . . (1.594) (1.226)  (0.183)
Kleibergen-Paap F-stat. - - - - 7.430 7.430 7.071
Observations 57,714 57,714 97,714 44.479 97,714 97,714 44,479

Panel B. Non-bird species

Military spending 0.528***  _3.286***  -1.685***  -0.360*** - - -
(0.087) (1.075) (0.624)  (0.057) ; ; ;
GDP - ; ; - J6.225%F% 3. 193%Kk () 3-H*

_ _ _ - (1.167) (0.732)  (0.149)

Kleibergen-Paap F-stat. - - - - 37.05 37.05 34.46
Observations 11,861 11,861 11,861 10,335 11,861 11,861 10,335

Notes: Each panel-column is a separate regression. Outcome variables are in logs except for similarity which is a ratio (columns 4 and 7). Military
spending shocks are national per capita procurement interacted with state’s 1966-1971 average military-GDP ratio. Columns 5 through 7 report
elasticity estimates of biodiversity outcomes with respect to GDP where the latter is instrumented for using military spending shocks in a 2SLS

regression. The first stage regression is logGDPs; = [ - (C%S},)State 19661971 X M St + ncj + m + £cjt. Column 2 through 4 reports reduced form

estimates following Y,;: = 3 - (%ﬁ))state 10661971 X MS¢ + nej + 1 + €5t Panel A reports full sample estimation. Panel B excludes observations

that correspond to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *:
p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 4: Air Pollution and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6)

Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species

Pollution (OLS) -0.703%*%  -(0.322%F  -0.074%** -2.072%F% - _1.020%%F  -0.070**
(0.215) (0.127) (0.027) (0.403) (0.253) (0.025)
Pollution (IV) LIIS®F L0.565FFF  -0.084%* “3.282FFF  _1.395%%F  _0.136
(0.430) (0.201) (0.037) (0.507) (0.230) (0.098)
Kleibergen-Paap F-stat. 271.0 271.0 224.0 208.2 208.2 319.4
Observations 53,496 53,496 41,058 12,726 12,726 11,599

Notes: Each cell corresponds to a regression. Outcome variables are in logs except for similarity which is a ratio (columns 3 and 6). Independent
variables are county’s annual logged Aerosol Optical Depth pollution level. The first row reports OLS regression results estimated following Y¢;; =
B -log Pollutioncounty,t + Nej + Nt + €cj¢- The second row reports IV regression estimates, using county’s upwind pollution shock as the instrumental
variable for logged local pollution. Upwind pollution shocks are constructed following equation (3). The Kleibergen-Paap F-statistics of the first
stages are reported at the bottom of the table. Columns 1-3 reports full sample estimation. Columns 4-6 excludes observations that correspond to
bird species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05;
Rk p < 0.01.
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Appendix Figures and Tables

Figure A.1: North American Breeding Bird Survey routes across the U.S. and Canada

Note: This figure is from Ziolkowski Jr et al. (2010). It shows the sample collecting routes in the North
American Breeding Bird Survey (BBS), which is one of the studies in the BioTIME database. The BBS is a
long-term and large-scale avian monitoring program that tracks the status and trends of North American bird
populations. Professional bird observers collect bird population data at the same stops along the roadside
survey routes during the avian breeding season every year. Over 4,100 survey routes are located across the
continental U.S. and Canada.
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Figure A.2: Sevilleta Long Term Ecological Research (SLTER) Program Map

Note: This figure is from the project overview for the Sevilleta Long Term Ecological Research (LTER)
Program at http://sevlter.unm.edu/. As shown in this figure, several studies included in BioTIME are
conducted under the Sevilleta Long Term Ecological Research (SLTER) Program at the 100,000 hectare
Sevilleta National Wildlife Refuge in central New Mexico. One study is the small mammals census from
1989 to 2008 (Friggens, 2008). There are 16,657 records for 27 distinct species covered in the study. Another

study focuses on terrestrial plants in this wildlife refuge Muldavin (2001) collects 5,288 records for 123
distinct species.
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Figure A.3: Biodiversity - Agricultural Income, by Taxa
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Note: This figure reports the heterogenous effect of agricultural income on biodiversity outcomes by taxa.
The regressions use the same specification as our baseline estimation in equation (1), but replacing GDP
with agricultural income. The taxa abbreviations are for amphibians (A), birds (B), fish (F), freshwater
invertebrates (FI), freshwater plants (FP), mammal (M), terrestrial invertebrates (T1), and terrestrial plants
(TP).
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Figure A.4: Dynamic Effects: Distributed Lag Models of the Biodiversity - GDP Relationship
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Notes: This figure plots coefficients when regressing biodiversity outcomes on the current and yearly lags
of GDP. Each line represents a separate regression with different numbers of lags. For each outcome, the
range bar shows point estimate and 95% confidence interval of the baseline, static specification with no lags
of GDP. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the
state level. Specifically, the regression is Y. ;; = Zi:o Brlog GDPs i+ + 1cj + ¢ + €cjt-

65



Figure A.5: Dynamic Effects: Panel Vector Autoregression (VAR) Impulse Response Func-
tions

(a) Responses of biodiversity outcomes to GDP
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Notes: This figure plots orthogonalized impulse response functions from first-order panel vector autoregres-
sion (VAR). Three separate models are estimated for log GDP and log abundance (left column), log GDP and
log richness (middle column), and log GDP and Jaccard index (right column). VAR models are estimated
using GMM, with location-taxa fixed effects and time fixed effects removed prior to estimation, and with
standard errors clustered at the state level. The underlying panel Granger causality Wald test statistics are
13.6 (p <0.001), 22.2 (p <0.001), and 3.66 (p=0.056) for the three variables in panel (a); and 1.07 (p=0.301),
0.41 (p=0.522), and 15.4 (p <0.001) for the three variables in panel (b). Dashed lines show 95% confidence
intervals constructed from 200 Monte Carlo simulations.

66



Figure A.6: Eco-regions of the Continental United States

Note: This map shows 85 Level III eco-regions — areas where ecosystems are generally similar — across the
continental U.S. as of April 2013. Source: U.S. Environmental Protection Agency.
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Figure A.7: Heterogeneous Effect of Military Spending Shocks on Biodiversity: Military
Bases
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Notes: This set of figures shows the heterogeneous effects of military spending shocks on biodiversity across
sampling sites, distinguishing between locations in counties with at least one military base (30% of the
sample) and those without any military bases. The figures indicate a more pronounced negative impact
on biodiversity in proximity to military bases, consistent with exemptions from environmental regulations
obtained by various activities on these bases. But even locations without military bases experience a lesser,
though still discernible, effect.
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Figure A.8: Effect of Air Pollution on Biodiversity by Taxa
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Notes: This figure reports heterogeneous effects of air pollution on biodiversity by taxa. The regressions
follow equation (1) by changing the independent variable GDP to a county’s annual logged Aerosol Optical
Depth pollution level. All regression include location-by-taxa and year fixed effects. Standard errors are
clustered at the state level. Abbreviations are for amphibians (A), birds (B), fish (F), freshwater invertebrates
(FI), freshwater plants (FP), mammal (M), terrestrial invertebrates (TI), and terrestrial plants (TP).
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Figure A.9: Air Quality Effects of Military Spending and Environmental Regulation Shocks
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Notes: These figures show decile bin scatterplots of local pollution against the military buildup shocks (left
panel) and the Clean Air Act regulation shocks (right panel). The underlying estimation follows equation
(1), regressing pollution on military spending shocks and on Clean Air regulation shocks in two separate
regressions. All variables are residualized with location-by-taxa and year fixed effects. Standard errors are
clustered at the state level. Specifically, the regressions are log Pollutioncounty, = 8- (%)stute,1966—1971 X
MSy + n¢j + 1t + €cje, and log Pollutioncounty,: = B - Nonattainment county,t + Nej + Ne + €cje. We test that
the pattern in the right panel is not driven by the two outliers in Figure A.10.
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Figure A.10: Air Quality Effects of Environmental Regulation Shocks
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Notes: This figure compliments the right panel of Figure A.9 to show that the pattern in the right panel is
not driven by the two outliers. The pattern in the right panel of Figure A.9 is partly driven by the nature
of county-year CAA nonattainment status, which is a categorical variable with many zeroes and transitions
into and out of nonattainment. When such variables are residualized by fixed effects, they often exhibit a
cluster near zero and several distinct clusters further from zero. To test explicitly, we residualize both the
log of pollution and CAA shocks, controlling for location-by-taxa and year fixed effects. We then categorize
the distribution of the residualized CAA shocks into five bins with equal observations. The horizontal axis of
the figure represents the mean of the residualized CAA shock in each bin. The regression shown in the figure
is log(pollution)cjt = Nonattainmentcounty,t X IcAa_sgp + Nej + Nt + €cjt, Where Ioaa sgp is the residualized
CAA shock quintile group. If the downward-sloping fitted line were driven by outliers at low and high values
of the CAA shock, we would expect to see negative coefficients only in the 1% and 5" groups, while the
middle three groups would produce insignificant or non-negative coefficients. However, all five groups show
negative elasticity estimates, indicating that there is a consistent negative relationship between CAA shocks
and pollution, confirming that our results are not driven by outliers. The reason why the binscatter plot in
Figure A.9 appears to have two outliers is due to the narrow distribution of residualized CAA shocks, which
concentrate around zero. This concentration is evident from the means of the five equal-observation bins
shown on the horizontal axis.
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Figure A.11: Clean Air Act Regulations and Biodiversity Outcomes: Overall vs. Pollution Effects
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Notes: Bars and standard error range plots show the impacts of Clean Air Act regulation shocks on biodiversity outcomes. Blue bars (“pollution
effects”) indicate the predicted portion of the impacts that are explained by air pollution; these estimates are obtained by multiplying (i) the impacts
of the Clean Air Act regulation shocks on pollution with (ii) the IV estimates of the effect of pollution on biodiversity outcomes.
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Figure A.12: Location of Protected Areas

Notes: Green represents areas that were protected any time in the World Database on Protected Areas
(WDPA) sample.
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Table A.1: Agriculture Income and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species
I. Subsectors of agriculture
Agricultural income: crop & animal farming 0.049 -0.014 0.010 0.758%* 0.136 0.109**
(0.077) (0.027) (0.008) (0.304) (0.102) (0.044)
Agricultural income: fishing & hunting 0.011 0.003 -0.002 0.011 0.003 -0.015%*
(0.008) (0.004) (0.003) (0.042) (0.019) (0.007)
Agricultural income: ag support -0.048 -0.012 0.007 -0.495 -0.197* 0.012
(0.120) (0.036) (0.015) (0.290) (0.101) (0.027)

II. Federal government conservation program spending

Agricultural income -0.019 -0.025 0.010 -0.214 -0.155 0.019
(0.075)  (0.030)  (0.010) (0.286)  (0.100)  (0.020)
Gov conservation spending 0.056 0.024* 0.003 0.382%* 0.222%** 0.034
(0.035)  (0.014)  (0.005) (0.190)  (0.070)  (0.030)

Notes: All income and spending variables are in log. In panel I, agricultural income is broken down to crop & animal farming (NAICS = 111-
112), fishing & hunting (NAICS = 114), and ag support (NAICS = 115). Specifically, the regression is Y., = 1 - logcrops, + B2 - log fishg +
B3 - log supports; + ne; + n¢ + €5t In panel II, “Gov conservation spending” is federal government payments to the state-year under conservation
programs including the Conservation Reserve Program, Agricultural Conservation Easement Program, Environmental Quality Incentives Program,
Conservation Stewardship Program, Regional Conservation Partnership Program, and Conservation Technical Assistance. Data are sourced from
USDA. Specifically, the regression is Y.y = p1 - log Age + B2 - log Conservations, + 1e; + 1¢ + €cje. Columns 1-3 reports full sample estimation.
Columns 4-6 excludes observations that correspond to bird species. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***:
p < 0.01.
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Table A.2: The Biodiversity - GDP Relationship: Dynamic Specification

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity
Panel A. All species
GDPyyy - 0.655 - 0.269 - -0.106
- (0.848) - (0.607) - (0.120)
GDP; -3.580**  -3.705%** -1.631%%  -2.246%** -0.104 0.271
(1.353) (1.199) (0.685) (0.671) (0.157)  (0.271)
GDPy 4 - -1.006 - 0.417 - -0.377
- (0.760) - (0.661) - (0.445)
Observations 54,887 54,176 54,887 54,176 42,406 41,729
Panel B. Non-bird species
GDP¢yy - -0.229 - -0.776 - 0.091
- (3.322) - (1.551) - (0.164)
GDP; -5.903*** -5.754 -3.302%** -4.043 -0.368  0.392*
(0.990) (4.809) (0.271) (2.448) (0.262)  (0.206)
GDPy 4 - -0.420 - 1.752 - -1.129%*
- (1.364) - (1.191) - (0.415)
Observations 13,331 13,011 13,331 13,011 12,161 11,875

Notes: Outcome variables are in logs except for similarity which is a ratio (columns 5 and 6). GDP;_; is
the log of lagged one year GDP. GDP;,; is the log of GDP one year in the future. Panel A reports full
sample estimation. Panel B excludes observations that correspond to bird species. All regressions include
location-by-taxa fixed effects, and year fixed effects. Standard errors are clustered at the state level. *: p <
0.10; **: p < 0.05; ***: p < 0.01.
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Table A.3: The Biodiversity - GDP Growth Relationship

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Abundance Richness Similarity
Panel A. All species
GDP growth -3.00 -2.89* -2.48* -2.01 -1.98 -1.64 0.16 0.17 0.15
(2.30) (1.65) (1.35) (1.52) (1.36) (1.12) (0.31) (0.38) (0.38)
Avg. GDP growth -11.39* -3.60 -2.93 3.53 -1.09 -1.56
(last 5-y) (6.23) (6.35) (2.83) (3.83) (0.79) (1.15)
Max. GDP growth -7.68%** -6.36%* 0.44
(last 5-y) (2.16) (2.46) (0.43)
Observations 37,644 37,644 37,644 37,644 37,644 37,644 33,789 33,789 33,789

Panel B. Non-bird species

GDP growth S6.24%F  3.92%FF 240k 5 @RRx 3 OgRK 3 3kkk (0 32kkx 0 67FF (.37
(2.40)  (1.26) (0.90) (1.39) (0.92) (0.79) (0.07)  (0.25)  (0.21)
Avg. GDP growth -26.10%%%  -10.26%* 12.14%0F 4 8T D T v et
(last 5-y) (4.57) (3.75) (1.53) (1.74) (0.98)  (1.38)
Max. GDP growth -9.83%¥x -4 51HE 2.28% ¥
(last 5-y) (2.59) (1.30) (0.52)
Observations 11,236 11,236 11,236 11,236 11,236 11,236 10,443 10,443 10,443

Notes: Outcome variables are in logs except for similarity which is a ratio (columns 7-9). “GDP growth” is annual GDP per capita growth rate. “Avg.
GDP growth ” is the average GDP per capita growth rate for the past 5 years, from t-5 to t-1. “Max. GDP growth” is the maximum annual GDP
per capita growth rate in the past 5 years. Panel A reports full sample estimation. Panel B excludes observations that correspond to bird species.
All regressions include location-by-taxa fixed effects and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05;
R p < 0.01.
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Table A.4: The Biodiversity - GDP Relationship: Alternative Data Aggregation Methods

(1) (2) (3)

Abundance Richness Similarity

Panel A. [Long-Difference] Select durations >= 10 years

GDP -3.596*** -1.475%** 0.674***
(0.321) (0.252) (0.167)
Observations 2968 2968 2744

Panel B. [Long-Difference| All studies, 10-year difference

GDP =277 2% -1.810*** 0.040
(0.090) (0.052) (0.029)
Observations 9682 9682 7022

Panel C. [Fixed Effects| Aggregate to 5 years

GDP -5.408*** -1.259 -0.237
(1.721) (0.840) (0.192)
Observations 15486 15486 12580

Panel D. [Fixed Effects] Aggregate to 10 years

GDP -3.027 -0.560 0.114
(2.265) (1.195) (0.143)
Observations 10768 10768 10292

Notes: Outcome variables are differences in log of abundance, log of richness, and level of the Jaccard
index. Independent variable is the difference in logs of state per capita GDP. In Panel A, only studies
lasting more than 10 years are included. Differences are taken between the first and last years of each
study. Each observation represents an ecological study at the location-by-taxa level. In Panel B, all studies
are included. Differences are taken between the current year’s value and its lagged 10-year value of each
study. Observations are at the location-by-taxa-by-year panel. In Panel C & D, we only include studies
that last at least 5 years, then aggregate the data into 5- or 10-year periods. All regressions include
location-by-taxa and year group (each 5 or 10 years) fixed effects. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.5: Economic Conditions and Biodiversity Sampling Activities

(1) (2) (3) (4) (5) (6) (7)
Log(study duration) 1(start year) 1(end year) 1 (missed year)
GDP growth (%) 0.013 ; ; - . . .
(0.054) ; ; _ ] ] ]
GDP; - 0.031 0.391 -0.213 -0.371 0.133 0.171
- (0.057)  (0.433) (0.128)  (0.355) (0.118)  (0.367)
GDPy, - - -0.408 - 0.169 - -0.036
. . (0.482) : (0.351) ; (0.321)
Data structure cross-section panel panel panel panel panel panel
Observations 15,735 409,838 394,075 409,838 394,075 409,838 394,075

Notes: Estimation data underlying column 1 is a cross section of study locations. Columns 2 through 7 are based on balanced location-by-year panel
data. Outcome variables are log number of years of a study location (column 1), an indicator for the study location’s first sampling year (columns 2
and 3), an indicator for the study location’s last sampling year (columns 4 and 5), and an indicator for nonsampling in the corresponding location-year
(columns 6 and 7). GDP;_1 is the log of lagged one year GDP. All regressions include location-by-taxa fixed effects, and year fixed effects. Standard
errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.6: The Biodiversity - GDP Relationship: Robustness to Outliers

(1) (2) (3) (4) () (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species

Winsorize samples with extreme levels

Within 1t-99*" percentiles -3.580%%  -1.631%*  -0.104 -5.906%%*  _3.304*** _0.371
(1.353) (0.685) (0.157) (0.989) (0.271) (0.262)
Within 5-95t" percentiles -3.444%*  -1.580%*  -0.107 S5T13%RR 3.232% %k _(.372
(1.315) (0.673) (0.154) (0.986) (0.267) (0.254)
Within 10*"-90*" percentiles -3.145%%  -1.453%F  -0.111 -5.210%F%  _3.018%F*  _0.371
(1.219) (0.646) (0.148) (0.909) (0.255) (0.237)

Drop samples with extreme deviations

Within +/- 4 S.D. A A46FFF 2.398%%F 0146 “6.453%F%  _3.820%%% 0 37T7*
(1.113) (0.586)  (0.112) (0.389) (0.136)  (0.202)
within +/- 3 S.D. 4.206%FF 2,379 (142 “6.203%F%  _3.798%%% () 373*
(1.078) (0.588)  (0.108) (0.357) (0.159)  (0.196)
Within +/- 2 S.D. 4.027FFF2.302%%% (. 192% 6.B1FFF 4051 0437
(0.997) (0.616)  (0.111) (0.323) (0.168)  (0.204)

Notes: Each cell corresponds to a separate regression, which follows equation 1. We report coefficients on
log per capita GDP. Outcome variables are in logs except for similarity which is a ratio (columns 3 and
6). Columns 1-3 report full sample estimation. Columns 4-6 exclude observations that correspond to bird
species. The top section winsorizes the respective biodiversity outcomes at each sampling location at 1st and
99th percentile, 5th and 95th percentiles, and 10th to 90th percentiles in the three rows. The bottom panel
truncates significant changes (greater than four/three/two standard deviations from the average change in
magnitude) in the biodiversity outcome at the year-to-year basis at a given sampling location. All regressions
include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10;

**: p < 0.05; ¥**: p < 0.01.
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Table A.7: The Biodiversity - GDP Relationship: Study Vintage and Duration

(1) (2) (3)

Abundance Richness Similarity

Panel A. By year of sampling

From 1961 to 1997 -3.311%%  -1.100 -0.227
(1.316) (0.918)  (0.303)
From 1998 to 2015 S3.0420FF  _1421%FF 0,163

(0.901) (0.509)  (0.174)

Observations (1961-1997) 22,603 22,603 12,683
Observations (1998-2015) 31,360 31,360 28,256

Panel B. By year when study began

From 1961 to 1993 S3BITERE 1.043%FF 0,014
(1.027) (0.531)  (0.111)
From 1994 to 2013 -3.358 -1.054 -0.074

(2.015) (1.079)  (0.140)

Observations (1961-1993) 14,535 14,535 14,208
Observations (1994-2013) 40,352 40,352 28,198

Panel C. By study length

Duration > 20y -4.325%*% 23714 0.073
(0.947) (0.436)  (0.085)
Duration 5y to < 20y -4.165* -1.763* 0.072
(2.112)  (0.959)  (0.148)
Duration < 5y 0.943 1.460 -0.235

(1.665) (1.498)  (0.272)

Observations (> 20y) 12,658 12,658 12,643
Observations (5y to 20y) 26,799 26,799 23,210
Observations (< by) 15,450 15,450 6,572

Notes: Each cell represents a separate regression per equation (1). Each column corresponds to a different
biodiversity metric. Panel A reports separate regressions by before and after median year of sampling. Panel
B reports separate regressions by before and after median year of a study’s first year of sampling. Panel C
reports separate regressions corresponding to studies that fall below 25th, between 25th and 75th, and over
75th percentile of the study duration distribution. All regressions include location-by-taxa and year fixed
effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

80



Table A.8: The Biodiversity - GDP Relationship: Other Measures of Biodiversity

(1) (2) (3) (4) (5) (6)

Gini  Shannon Sorensen Gini  Shannon Sorensen
Panel A. All species Panel B. Non-bird species
GDP -1.845%  -2.176*%*  -0.213 -3.881*** _4.305*** -0.660**

(0.946)  (1.021)  (0.197) (0.630)  (0.666)  (0.269)

Observations 57,714 57,714 44,479 11,861 11,861 10,335

Notes: Each cell represents a separate regression. Each column corresponds to a different biodiversity metric:
the Gini index (columns 1 and 4), the Shannon index (columns 2 and 5), and the Sorensen similarity index
(columns 3 and 6). Panel A reports full sample estimation. Panel B excludes observations that correspond
to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered
at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.9: The Biodiversity - GDP relationship: State versus County Output Measurement

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species

I. State Level GDP (coverage: 1969-2015)

OLS -3.580%F  -1.631%%  -0.104 “5.903%FF  3.302%%%  _0.368
(1.353) (0.685)  (0.157) (0.990) (0.271)  (0.262)

2SLS AARFHRE D TE3RE (535K “6.225%FF  _3.193%kK 0 638%**
(1.594) (1.226)  (0.183) (1.167) (0.732)  (0.149)

Observations 57,714 57,714 44,479 11,861 11,861 10,335

II. County Level Income (coverage: 1969-2015)

OLS 0.697%  -0.459%*  -0.026 _3.858%FF  2.920%F%  _(.226
(0.381) (0.225)  (0.033) (0.873) (0.255)  (0.140)

2SLS “5.189FKE  3102FFF  0.587HFHH “5.983FFK 2 99K () 64THH
(0.724) (0.505)  (0.216) (0.511) (0.130)  (0.284)

Observations 57,362 57,362 44,310 11,629 11,629 10,280

Notes: Each cell corresponds to a regression. Outcome variables are in logs except for similarity which is a
ratio (columns 3 and 6). Independent variables are different levels of measurement for economic activities. In
panel I, the independent variable is the state annual level GDP per capita from 1969 to 2015 obtained from
the BEA, which is our baseline specification. In panel 11, the independent variable is the BEA county level
income per capita from 1969 to 2015. For both panels, the first row reports OLS regression estimates, and
the second row reports IV regression estimates, using national military spending shocks as the instrument.
Columns 1-3 report full sample estimation, while columns 4-6 exclude observations corresponding to bird
species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the
state level for panel I and at the county level for panels II. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.10: The Biodiversity - GDP Relationship: Level of Output Measurement

(1) (2) 3) (4)

#0bs. Abundance Richness Similarity

Panel A. All species

State Level GDP 54,887  -3.580** -1.631%* -0.104
(1.353) (0.685) (0.157)
Income at County 60,406 -0.697* -0.459** -0.026
(0.381) (0.225) (0.033)
Income at Level III Eco-region 60,343 -1.014 -0.714 0.077

(1.114) (0.531)  (0.161)

Panel B. Non-bird species

State Level GDP 13,331 -5.903*%**  _3.302%** -0.368
(0.990)  (0.271)  (0.262)
Income at county 14,306  -3.858*** 2 220%*** -0.226

(0.873) (0.255)  (0.140)

Tncome at Level IIT Eco-region 14,213 -3.369%*  -2.375%%%  _0.158
(1.524) (0.327)  (0.306)

Notes: This table reports the panel OLS estimation results using equation (1) when economic activities is
measured at alternative geographic levels. First, we repeat the baseline state-level results, and county-level
income OLS results from Appendix Table A.9 for reference. Then, we use the concept of eco-region developed
by the U.S. Environmental Protection Agency, which divides the contiguous U.S. into 85 mutually exclusive
areas where ecosystems are similar. We define economic conditions by summing up income from counties
that fall within the boundary of each eco-region, which is used as the independent variable in lieu of state
GDP. Panel A reports full sample estimation. Panel B excludes observations that correspond to bird species.
All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state
(first row or each panel), county (second row), and eco-region (third row). *: p < 0.10; **: p < 0.05; ***:
p < 0.01.
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Table A.11: The Biodiversity - GDP Relationship: Level of Data Aggregation

(1) (2) (3) (4)
#0bs. Abundance Richness Similarity
Panel A. All species
Aggregation: 3-km hex. bin 11,915  -1.209*%**  -(0.454%** -0.066
(0.325) (0.136) (0.062)
Aggregation: 10-km hex. bin 9,881 -0.887** -0.288* -0.061
(0.377) (0.154)  (0.059)
Aggregation: 16-km hex. bin 8,896 -0.840** -0.206 -0.076
(0.379) (0.187) (0.055)
Panel B. Non-bird species
Aggregation: 3-km hex. bin 1,401 -1.699** -0.631°%* -0.261
(0.672) 0.271)  (0.159)
Aggregation: 10-km hex. bin 923 -1.719** -0.586 -0.145
(0.798) (0.354) (0.145)
Aggregation: 16-km hex. bin 694 -1.417* -0.443 -0.132
(0.756)  (0.518)  (0.139)

Notes: This table reports the panel OLS estimation results using equation (1) when the panel data are
aggregated up to hexagon bins of various resolution. Both biodiversity outcomes and economic activities are
aggregated to the same resolution. Panel A reports full sample estimation. Panel B excludes observations
that correspond to bird species. All regressions include hexagon-by-taxa and year fixed effects. Standard

errors are clustered at the hexagon grid level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.12: The Biodiversity - GDP Relationship (2SLS): Robustness Specifications

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species
IV base period 1966-2006 -5.086** -3.127* -0.529*** -6.881F** -3.610*%**  -0.600***
(2.175) (1.649)  (0.190) (0.652) (0.454)  (0.098)
[6.035] 6.035]  [6.186] [47.40] [47.40]  [55.32]
Shocks x state FEs as IVs -4.575%* -1.932* -0.218 S7.T20%FF _4.339%FF  _0.406F*F*
(1.950) (1.031)  (0.145) (0.555) (0.362)  (0.085)
[1.794] [1.794] [2.168] [84.36] [84.36] [106.6]
Multiple IVs LIML -4.485%** -2.753** -0.535%** -6.225%F* -3.193%*F*%  _(.638%**
(1.594) (1.226)  (0.183) (1.167) (0.732)  (0.149)
[7.430] 7.430]  [7.071] [37.05] 37.05]  [34.46]
Census Division trends -5.844*** -3.049%  -0.750%** -4.755%FF  _2.079%*¥*F  _(0.910***
(2.050) (1.554)  (0.226) (0.764) (0.498)  (0.236)
[6.500] [6.500] [7.034] 16.92] 16.92] 16.07]
Total state GDP -2.419%** -1.485%* -0.301%** -4.370%** -2.241%%*%  _(0.469%**
(0.852) (0.612)  (0.105) (0.773) (0.499)  (0.119)
16.79] 16.79] [15.10] 37.10] 37.10] [32.94]
Total county income -2.328%F*  _1.392%** (). 288** -3.968%*F*  _1.984***  _().452%*
(0.590) (0.370)  (0.109) (0.368) (0.149)  (0.210)
[14.83] [14.83] [13.65] [10.84] [10.84] [10.59]
Per capita county income -5 189FF*  _3.102%**  (0.587** -5.983%**  _2.992%*K  _().647F*
(1.174) (0.755)  (0.241) (0.568) (0.160)  (0.302)
[4.634] [4.634] [4.953] 0.213] 0.213] [9.967]

Notes: Each cell is a separate regression. Row names specify the robustness checks described in Section 4.1
and 5.1. This table reports the implied biodiversity-GDP elasticity estimates using military spending shocks
as the underlying source of policy variation. Numbers in brackets are Kleibergen-Paap F-statistics of the
first stage estimation. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p <

0.01.
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Table A.13: Military Spending Shocks and Biodiversity Outcomes: 2-Step with Bootstrap SEs

(1) (2) (3) (4) (5) (6) (7)
Policy Effect Implied GDP Elasticity

GDP  Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species

Military spending =~ 0.181**  -1.341%*  -0.823**  -0.164*** - ; ;
(0.067)  (0.567) (0.354)  (0.060) - - -

GDP _ ; - - T391FF 4B3TRE 0.905%
- . - . (3.443)  (1.887)  (0.370)

Observations 1,367 07,714 07,714 44,479 07,714 07,714 44,479

Panel B. Non-bird species

Military spending ~ 0.105 ~ -3.286™**  -1.685*** -0.360*** - - -
(0.09)  (1.075) (0.624)  (0.057) - - -

GDP - - - - S31.261%F  -16.033%  -3.424%F*
- - - - (15.330)  (8.885)  (1.042)

Observations 397 11,861 11,861 10,335 11,861 11,861 10,335

Notes: Each panel-column is a separate regression. Outcome variables are in logs except for similarity which is a ratio (columns 4 and 7). Military
spending shocks are national per capita procurement interacted with state’s 1966-1971 average military-GDP ratio. Columns 5 through 7 report
elasticity estimates of biodiversity outcomes with respect to GDP where the latter is instrumented for using military spending shocks. The first stage

regression is at the state-level: log GD Py = 3- (GMTﬁD) state 19661971 X M St +ns+n:+es¢. Column 2 through 4 reports reduced form estimates following
Yoo = B (25

W)smta 19661971 % M S 4ncj 4+ +€cje. Column 5 through 7 reports second stage estimates following Y., = 6~1og/GBPSt +1ej + N FEcjt-
Panel A reports full sample estimation. Panel B excludes observations that correspond to bird species. All regressions include location-by-taxa and
year fixed effects. Standard errors are bootstrapped clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.14: The Biodiversity - GDP Relationship: Heterogeneous Effect of Military Bases

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Abundance Richness Similarity
Panel A. All species
GDP -3.580%F  _3.567FF  -3.162%FF  _1.631*%*  -1.621*%*  -1.305%* -0.104  -0.094 -0.014
(1.353) (1.366) (1.161) (0.685) (0.691) (0.548) (0.157) (0.140) (0.132)
GDP x I(base) -0.253 -0.187 -0.095
(0.485) (0.394) (0.080)
GDP x Base area share -1.341%%* -1.043%+* -0.217**
(0.153) (0.142) (0.089)
Observations 54,887 54,887 54,887 54,887 54,887 54,887 42,406 42,406 42,406
Panel B. Non-bird species
GDP -5.903%F*  _4,794%HKk 2 T39%* -3.302%#*F  _3.376%**  _2.3]18%H* -0.368  0.022  0.030
(0.990) (1.017) (1.074) (0.271) (0.388) (0.628) (0.262) (0.176) (0.426)
GDP x I(base) -1.451%* 0.097 -0.495%+*
(0.604) (0.234) (0.130)
GDP x Base area share -2.383 %K -0.741%* -0.313
(0.775) (0.346) (0.202)
Observations 13,331 13,331 13,331 13,331 13,331 13,331 12,161 12,161 12,161

Notes: Military spending shock is constructed as in equation (2). Column 1 reproduces the baseline estimations. Column 2 add the interaction term
of a dummy variable indicating whether a sampling site is located in counties with at least one military base (30% of the sample). In Column 3, we
interact the military spending shock with a continuous variable measuring the proportion of county land occupied by military bases. The dummy
variable (Column 2) and the share (Column 3) has no variation across years, so the effects are absorbed in location fixed effects. Standard errors are
clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.15: Air Pollution and Biodiversity Outcomes: Add Weather Controls

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species

Pollution (IV) -1.240%* -0.627**  -0.084** -3.183***  _1.392%**  _0.096*
(0.479) (0.251) (0.034) (0.508) (0.257) (0.048)

TMAX -0.004 -0.001  -0.002%** 0.013 0.009*%*  -0.006***
(0.004) (0.004) (0.000) (0.008) (0.003) (0.001)

TMIN 0.009* 0.004 0.002%** 0.014** 0.002 0.006%**
(0.005) (0.003) (0.000) (0.006) (0.003) (0.001)

PRCP -0.007** -0.003 -0.002%* -0.007 0.002 -0.005**
(0.003) (0.002) (0.001) (0.006) (0.002) (0.002)
Kleibergen-Paap F-stat. 250.8 250.8 212.5 243.4 243.4 380.7
Observations 52,860 52,860 40,422 12,726 12,726 11,599

Notes: Outcome variables are in logs except for similarity which is a ratio (columns 3 and 6). Independent variables are county’s annual logged
Aerosol Optical Depth pollution level. The IV regression estimates use the county’s upwind pollution shock as the instrumental variable for logged
local pollution. Weather controls, including a county’s annual maximum and minimum temperature, and precipitation, are added to the baseline
estimations. The Kleibergen-Paap F-statistics of the first stages are reported at the bottom of the table. Columns 1-3 reports full sample estimation.
Columns 4-6 excludes observations that correspond to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors
are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.16: Urbanization and Biodiversity Outcomes

(1) (2) (3) (4)

(5) (6)

Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species

Urbanization (50-km radius) -11.91%F%  -6.39%* -2.26 -16.67FF  -10.53%F  _5.24%**
(4.01) (2.38) (1.54) (6.94) (3.71) (1.69)

Urbanization (100-km radius)  -11.59%%*% -5 15%%* 3 ggtek* S13.79%HK T AR g gk
(2.29) (1.53) (1.40) (2.87) (2.23) (0.99)
Urbanization (county) -1.73 -0.69 -0.29 -16.14%HF%  _8.59%** -4.04
(1.36) (0.66) (0.38) (4.18) (1.56) (2.35)
Observations 19,611 19,611 17,188 6,830 6,830 6,752

Notes: Each cell corresponds to a regression. Outcome variables are in logs except for Similarity which is a ratio (columns 3 and 6). Independent
variables are logged urban areas within 50-km radius of the sampling location (first row), logged urban areas within 100-km radius of the sampling
Columns 1-3 reports full sample estimation.
observations that correspond to bird species. All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state

location (second row), and logged urban areas of the county (third row).

level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.17: Environmental Regulation Shocks and Biodiversity Outcomes

(1) (2) (3) (4) (5) (6) (7)
Policy Effect Implied GDP Elasticity

GDP Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species

Clean Air Act Nonattainment -0.038%** 0.226*** 0.121%** -0.020 - - -
(0.014) (0.080) (0.046) (0.018) - - -

GDP - - - - 5.032%FF  _3.194%%% (519
] ] - - (0.624) (0.268)  (0.532)

Kleibergen-Paap F-stat. - - - - 7.841 7.841 8.874
Observations 54,887 54,887 54,887 42,406 54,887 54,887 42,406

Panel B. Non-bird species

Clean Air Act Nonattainment -0.053***  (.373*** 0.193*%**  (.371*** - - -
(0.007) (0.038)  (0.025)  (0.007) : : ;

GDP - - - - ST.005%FF 3,631k (). 704%K*
; ; - - (0.755) (0.250)  (0.097)

Kleibergen-Paap F-stat. - - - - 50.57 50.57 49.56
Observations 13,331 13,331 13,331 12,161 13,331 13,331 12,161

Notes: Each panel-column is a separate regression. Outcome variables are in logs except for similarity which is a ratio (columns 4 and 7). Clean
Air Act Nonattainment is the county’s number of nonattainment designations in the county-year. Columns 5 through 7 report elasticity estimates
of biodiversity outcomes with respect to GDP where the latter is instrumented for using nonattainment in a 2SLS regression. The first stage
regression is log GDPy; = B - Nonattainmentcounty,t + Nej + Mt + €cje- Column 2 through 4 reports reduced form estimates following Y.;; =
B - Nonattainment county.t + Nej + 1t +€cje. Panel A reports full sample estimation. Panel B excludes observations that correspond to bird species. All
regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.18: Conservation Policy and the Biodiversity - GDP Relationship: Protected Areas

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity
Panel A. All species
GDP S3.798FFE _3.410%** S1L721%F 0 11.490%F* -0.219 -0.255%*
(1.341)  (1.142) (0.684)  (0.611) (0.147)  (0.140)
GDP x %Areas protected 1.765% 2.028%* 0.732 0.892 0.890***  (.864***
(1.023)  (1.158) (0.500)  (0.555) (0.252)  (0.237)
GDP x #Fragmented areas - -0.206* - -0.144 - 0.023
; (0.108) ; (0.088) - (0.015)
Observations 54,907 54,907 54,907 54,907 42,426 42,426
Panel B. Non-bird species
GDP -6.510%**  _4.229%** S3.2TT7FFE 12 339%F* -0.652%F*  _(.754%**
(0.787) (0.813) (0.261) (0.436) (0.158) (0.087)
GDP x %Areas protected 7.484 13.976%* -0.263 1.805 3.217%* 3.520%*
(4.812)  (6.080) (0.938)  (1.269) (1.237)  (1.286)
GDP x #Fragmented areas - -0.731%* - -0.147 - -0.115
: (0.418) - (0.139) - (0.088)
Observations 13,351 13,351 13,351 13,351 12,181 12,181

Notes: Outcome variables are in logs except for Similarity which is a ratio (columns 5 and 6). “%Areas protected” is the fraction of protected areas
within a 50km radius of the sampling location. “#Fragmented areas” is the number (in 1,000s) of discontiguous protected areas within 50km radius
of the sampling location. Smaller numbers of discontiguous areas indicate that each protected area is larger on average. Panel A reports full sample
estimation. Panel B excludes observations that correspond to bird species. All regressions include main effect terms, location-by-taxa fixed effects,
and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Data Appendix

BioTIME is an open-source database of biodiversity time series, collecting raw data on
species identities and abundances in ecological assemblages over time. BioTIME does not cre-
ate original data but serves as a meta-database containing hundreds of ecological datasets
from well-known sources. The data were acquired from the largest databases, including
Global Biodiversity Information Facility (GBIF), Ocean Biogeographic Inforamtion System
(OBIS), and Ecological Data Wiki. The original data paper by Dornelas et al. (2018) pro-
vides a detailed description of how datasets from various studies are collected and processed

to be compiled as time series.

Alternative datasets of biodiversity = An inventory of global biodiversity datasets can
be found in IUCN SSC Species Monitoring Specialist Group (2023) IUCN (2023), where over
50 datasets useful for studying biodiversity status are summarized. BioTIME is included
in this summary along with several other biodiversity datasets. Here, we present a brief
comparison of BioTIME with popular alternative open-source datasets, highlighting some of

its advantages.

Category Example Description of exam- | Advantages of BioTIME
datasets ple data

Already Ocean Bio- | OBIS: Huge global | These are the most compre-

Included in | geographic database on  ma- | hensive datasets on biodi-

BioTIME | Inforamtion rine species linked | versity. They are already

System (OBIS), | to GBIF. Over 164 | included in BioTIME, elim-
Global Biodiver- | million records of | inating the need to process
sity Information | over 137,000 species | these datasets individually.
Facility (GBIF), | from  more  than
North America | 3,300 datasets (as of
Breeding  Bird | October 2020).

Survey (BBS)
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GBIF: Houses

1.6 billion species oc-

over

currence records from
over 54,600 data sets
(as of October 2020).
BBS: A long-term and
large-scale monitoring
program that tracks
the status and trends
of bird population an-

nually.

BBS: A long-term and
large-scale monitoring
program that tracks
the status and trends
of bird population an-

nually.

Endangered

species

IUCN Red List
of  Threatened

Species

Extinction risk  of
species with data on
range, population
trends, habitat use,
life history traits, use
threats,

actions

and trade,
conservation
currently in place and
conservation actions

needed.

The TUCN Red List is
cross-sectional, focusing on
current extinction risks for
specific species, whereas
BioTIME
capturing biodiversity data
BioTIME en-

compasses a broader range

is longitudinal,

over time.

of species without exclusive
focus on extinction risks, of-
fering a comprehensive per-
spective on global biodiver-

sity status.
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Population | Living  Planet | Trends in over 27,000 | The LPI primarily focuses
level data | Index populations of more | on population-level trends
than 4,700 vertebrate | of individual vertebrate
species. species, whereas BioTIME
facilitates the study of as-
semblage (community-level)
dynamics and temporal
changes  across  diverse
environments.
Taxon- FishBase, In- | FishBase: A global | BioTIME enables compar-
specific ternational biodiversity informa- | ison of biodiversity trends
or Biome- | Waterbird Cen- | tion system on fishes: | across taxa by collecting
specific sus Database taxonomy, biology, | more than 50,000 species in
trophic ecology, life | 30 biomes.
history & uses, and
historical data go-

ing back 250 years.
Links to several other

marine data sources.

International Water-
bird Census Database:
Current and historic
estimates, trends and
1% thresholds for over
800 waterbird species

and 2,300 biogeo-
graphic  populations
worldwide.
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Cross- PREDICTS Focuses on the impact | PREDICTS primarily relies
sectional of human activities on | on space-for-time substitu-
data biodiversity, particu- | tions to provide data for
larly land use and cli- | assessing biodiversity pat-
mate change. terns across different habi-
tats and regions. In con-
trast, BioTIME comple-
ments PREDICTS by fo-
cusing on temporal changes
within ecological communi-

ties across various biomes.

Citizen eBird Citizen science bird | Citizen science data, despite
Science observations collected | providing large quantities of
data by bird lovers. information, often faces se-

lection issues that compli-
cate its usability compared
to data collected through
scientific research, such as
in BioTIME.

Advantages of BioTIME in this study Existing biodiversity datasets commonly pro-
vide only cross-sectional information on the geographic distribution of species, such as the
IUCN Red List of Threatened Species (IUCN, 2021), or panel data limited to a single tax-
onomic class, such as the North American Breeding Bird Survey (USGS, 2014). These con-
straints hinder broad-scale studies investigating the link between the economy and ecosys-
tems. We overcome these constraints by utilizing a novel database, BioTIME, which ag-
gregates data from hundreds of ecological studies maintaining longitudinal information on
species counts or biomass (Dornelas et al., 2018; Blowes et al., 2019). BioTIME allows us
to construct widely-used metrics for capturing ecosystem changes. The included studies,
many spanning decades, adhere to consistent sampling protocols within each location over
time, known as ‘assemblage time series’. This consistency makes year-over-year variations

in sampling outcomes likely to reflect genuine changes in underlying ecosystem conditions.

BioTIME offers several features that enhance its utility for our analysis. First, all studies

included in the dataset maintain consistent sampling protocols over time, ensuring that
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variation in outcomes within each study is not influenced by changes in species detection
methods (e.g., sighting versus trapping). Second, each panel dataset study includes at least
two years of sampling, with some extending over multiple decades. This allows us to leverage
within-study variation and control for any differences in sampling protocols across studies
using location fixed effects. Third, the dataset encompasses information on approximately
40,000 unique species or genera across more than 15,000 sampling locations, spanning diverse
biomes and ecosystems. While this coverage is not exhaustive of the entire ecosystem, we
believe the data provide a robust understanding of how different organisms and biomes are

influenced by economic activities.

Data Processing Steps We apply several sample restrictions when processing the dataset
for analysis. First, we focus on years after 1966 to align with our economic data. Second, we
exclude marine ecosystem studies, which often occur far offshore and are challenging to link
with measures of economic activity. Third, we aggregate raw species sampling observations
to the taxon-location-year level. The taxa included are birds, fish, mammals, terrestrial
invertebrates, freshwater invertebrates, terrestrial plants, and freshwater plants. Fourth, we
exclude studies that report only total species biomass or only species presence indicators, to
ensure a unified measure of abundance. These studies account for less than 1 percent of the
abundance data. Including these samples in richness and similarity analyses yields virtually
identical results. Lastly, we focus on studies conducted in the United States. This country
contributes approximately three-quarters of the total observations in the dataset, with New
Zealand being the next largest contributor at about 10%. Focusing on the United States
also allows us to implement several well-understood quasi-experiments in our causal analysis.

These sample restrictions result in a maximum of 66,418 taxon-location-year observations.
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Robustness Tests on the Validity of the Mili-
tary Spending 1V

In assessing the validity of the instrumental variable (IV) analysis, we conducted several
tests to evaluate the plausibility of the identifying assumptions following Goldsmith-Pinkham
et al. (2020).

First, correlates of the share variable. Before presenting the tests, we would like to add
a note about the causal interpretation of the biodiversity-GDP relationship, which partly
reiterates a discussion included in Section 4.1 of the paper. The correlates tests proposed by
Goldsmith-Pinkham et al. (2020) are designed to diagnose whether the instruments predict
the outcome through alternative channels beyond those posited by the researcher. Apply-
ing this argument to our study context is somewhat challenging: we do not interpret the
biodiversity-GDP elasticities as the causal effect of a ceteris paribus increase in GDP. That
is, we do not believe that GDP itself directly influences biodiversity. GDP is an accounting
concept that varies only because of changes in real economic activity. In other words, one
cannot randomly assign GDP while holding everything else constant. Instead, our estimates
capture the total effect of various determinants of biodiversity—such as environmental pol-
lution or habitat loss due to changing land use—that underlie GDP changes. This makes it
somewhat unclear which characteristics should be included in the correlates test. For exam-
ple, we could include industry composition or land use, but these factors may themselves be

channels driving the biodiversity-GDP relationship.
That said, we run the diagnostic tests in the style of Goldsmith-Pinkham et al. (2020).

We examine the correlation between the military spending-to-GDP share during the base
period (1966-1971) and various characteristics from the same time frame: state-level popu-
lation; sector-specific income from manufacturing, mining, timber and logging, agriculture,
construction, and services; total public road mileage (to capture industry composition and
stages of urban development, as you alluded to in your comment); and Conservation Reserve
Program (CRP) enrollment status and total protected area sizes (to capture habitat-related
factors). The regression results are presented in Table A.20 below. We generally do not
find a significant relationship between military spending share and any of these individual
characteristics, with the only exception being the presence of protected areas which shows

marginal significance and small effect size.

Second, parallel trends. Note that in our setting there is no pre-period and so it is not

possible to test for parallel pretrends.

Third, alternative estimators and overidentification tests. Appendix Table A.12 reports

97



a series of alternative estimators where we (a) alter the construction of the military spending
shock variable by changing the baseline period of the treatment variable construction from an
initial-period average (1966-1971) to a long-term average (1966-2006); (b) follow the original
empirical specification in Nakamura and Steinsson (2014) and construct military spending
shocks as the fitted value of state spending on national spending, allowing different sensitivity
for each state; (c) use the limited information maximum likelihood (LIML) estimator which
is median-unbiased with weak instruments in lieu of 2SLS; (d) add Census Division-specific
decadal time trends to control for regional-specific trends in addition to the fixed effects
controls. For succinctness, we only report biodiversity-GDP elasticity estimates for these

robustness checks. Overall, the results are robust to these specification changes.

We also use both the main IV specification and an alternative IV approach as described
in (b) above to conduct overidentification tests. To address potential weak instrument con-
cerns, we use both 2SLS and LIML estimators. The results in Table A.21 show that all

overidentification tests fail to reject the null hypothesis.
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Table A.20: Relationship Between Military Spending Shares and Site Characteristics

(1)

Military Spending Share (in percentage)

Population (in 1000k) -0.055
(0.177)
Manufacturing -1.128
(0.845)
Mining -0.427
(0.359)
Timber and Logging -0.030
(0.344)
Agriculture -0.316
(0.544)
Construction 1.972
(2.866)
Service 0.389
(2.759)
Road Miles 0.520
(0.609)
Protected Area -0.001*
(0.001)
Observations 1,804
R? 0.1132

Notes: The table corresponds to a regression that looks at the relationship between the military spending
share and sampling site characteristics in base year (1966-1971) as in the military spending IV. Standard
errors are clustered at the state level. We use state population of the sampling site, logarithm of
sector-specific income from manufacturing, mining, timber and logging, agriculture, construction, and
services. Sector income data are from U.S. Bureau of Economic Analysis, categorized based on 2-digit SIC
and NAICS codes. Agriculture includes farming, fishing, and hunting. Services includes wholesale, retail,
transportation, communications, electric, gas, and sanitary services, finance, and all other service. We use
state total public road miles (in logs) and total protected area sizes to capture changes in habitat of the
sampling sites.
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Table A.21: Overidentification Tests

(1) (2) (3) (4) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species
TSLS -4.509%%* 2 531*F  _(.434%H* -6.724%** 3 57HMRE (. 551k
(1.388) (0.983) (0.155) (0.836) (0.506) (0.082)
[Overid P-value] 0.967 0.569 0.278 0.250 0.153 0.191
LIML -4.509%F*  _2.536**  -0.435%** S6.TTI**E _3.629%FF  _(.552%F*
(1.388) (0.986) (0.155) (0.823) (0.494) (0.082)
[Overid P-value] 0.967 0.569 0.278 0.252 0.157 0.191

Notes: This table reports the implied second-stage biodiversity-GDP elasticity estimates using military
spending shocks as the underlying source of policy variation. Overidentification test results are shown for
both TSLS and LIML using p-values of Sargan chi-squared test. Standard errors are clustered at the state
level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Robustness Tests of the Air Pollution IV

LASSO model selection This analysis demonstrates that our algorithm does not sys-
tematically select counties with similar attributes (e.g., industry sectoral income, land use

patterns, pollution-generating activities, or population levels).

We assess whether the attributes of LASSO-selected upwind counties are more similar to
those of the destination county than those of unselected counties. Specifically, we examine:
(1) The shares of sector-specific income relative to total income for industries categorized
under 2-digit SIC and NAICS codes (e.g., manufacturing, mining, logging, agriculture, con-
struction, and services). (2) Land use patterns: the percentage of urban land in a county
based on MODIS land cover types. (3) Population levels sourced from the Census. (4) Total

toxic releases from the Toxic Release Inventory (TRI).

Specifically, we estimate the following cross-sectional regressions:
dest, = (3 - src. x I(selected). + v - src. + « - I(selected). + Naest_sre + €c-

where dest,. refers to one particular characteristic of destination county c. src. refers to
the corresponding characteristic for potential source counties (all counties). The indicator
I(selected). equals to 1 if county c is selected by the LASSO algorithm and 0 otherwise.
Destination-source state pair fixed effects (9gesi_sre) are included. Standard errors are clus-

tered at the source county level.

The coefficient of interest, 5, measures whether the LASSO-selected counties are more
strongly correlated with the destination county than unselected counties. Results, presented
in Table A.22 below, indicate no significant difference in these correlations across any of the

examined attributes between the LASSO-selected and unselected counties.

Alternative Wind Instrument We attempt to implement the approach used in Deryug-
ina et al. (2019), which follows a more general design that predicts variation in local pollution
as a function of changes in wind direction. We show that our main findings are robust to

this alternative wind instrument.

We estimate the following first-stage model following Deryugina et al. (2019):

7
Pollution =Y B, x WINDDIRE® + X},0 + 1j¢j + 10 + €cje,
b=0

where Pollution. represents the annual logged pollution level in county ¢, as defined in the
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baseline specification. Each variable in WINDDIRY? is equal to the number of days that
the wind direction in county ¢ falls within the 45-degree interval [45b, 45b+45) in year ¢. with

the interval [0,45) serving as the omitted category. Weather controls, X/,, such as county

ct?
annual average maximum and minimum temperatures, and precipitation, are included. The

other variables are defined as in the baseline regression.

To illustrate the first stage results, we replicate Figure 2 in Deryugina et al. (2019),
which visualizes the relationship between daily average wind direction and pollution for
counties near the Bay Area. Since few studies in our dataset are conducted near the Bay
Area, we extend the analysis to all studies in California, yielding 700 observations (location-
by-taxa-by-year). Panel (a) in Figure A.13 exhibits a pattern similar to Panel (b), which
reproduces Figure 2 from Deryugina et al. (2019). This comparison suggests that while the
annual wind direction bin IV behaves similarly to the daily wind direction IV, it has lower
precision. The key difference in our context is the coarser temporal variation: Deryugina
et al. (2019) leverage changes in daily wind direction at a given location, which introduces
significant idiosyncratic variation. However, wind patterns become much less idiosyncratic
when analyzed at the annual frequency, which likely reduces the effectiveness of this approach

in our setting.

Table A.23 below presents the second-stage estimation results. We find that pollution
reduces biodiversity, with estimated effects comparable to those obtained using our preferred
LASSO instrument specification. However, the wind direction bin IV is a weaker instrument,
as indicated by a Kleibergen-Paap F-statistic of approximately 20 (or 4 for the non-bird sam-
ple), compared to values exceeding 200 for the LASSO instrument. These results highlight
the loss of first-stage strength when using annual wind direction bins. Although our main
findings remain consistent, the reduced precision reinforces our preference for the LASSO

instrument as the primary identification strategy.

This is in fact a good opportunity to think through how our approach relates to, yet
differs from, the strategy used by Deryugina et al. (2019) and why our approach yields more
predictive power. First, both strategies inherently exploit pollution transport. The Deryug-
ina et al. (2019) approach is entirely agnostic about the origin of pollution transport—it
simply documents that different wind directions are associated with varying pollution levels.
In contrast, our approach explicitly models source-to-destination dynamics, using national
wind data to identify upwind counties and employing LASSO to pinpoint which of those

upwind counties contribute most to local pollution.
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Table A.22: Comparison of County Characteristics

(1) (2)

Panel A. Industry Sectoral Income

(3)

(4)

() (6)

Destination share of sectoral income:

sector = Manufacturing Mining Logging Agriculture  Construction Service
source_s_share x I(selected) -1.94e-04 1.16e-04 -7.64e-06 9.44e-06 -1.15e-03 -1.12e-03
(2.52e-04) (4.74e-04) ( 6.98¢-06) (6.51e-06) (1.62e-03) (2.37e-03)
source_s_share -2.31e-08 -2.52e-05 5.91e-08 1.34e-06 1.20e-05 1.40e-05
(1.25e-05) (3.28¢-05)  (2.80e-07) ( 5.81e-07) (5.33e-05) (6.11e-05)
I(selected) 5.70e-05* 3.50e-05%4*%  1.43e-08*** 7.51e-08 1.20e-04 1.04e-03
(2.95e-05) (1.20e-04) ( 4.25e-09) (9.41e-08) (7.94e-05) (1.04e-03)
Panel B. Land Use Patterns, Population, Pollution Activities
Destination county:
2= % of Urban land Population Toxic releases
source_z x I(selected) -.005 -0.006 0.009
(.018) (0.006) (0.008)
source_x 3.51e-05 6.13e-05 -0.0001
(1.8e-04) (7.95e-05) (0.0001)
I(selected) -8.49e-04 0.04 -0.13
(7.05e-04) (0.06) (0.10)
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Notes: Each column presents a result from a separate regression incorporating different county characteristics.
sector-specific income relative to total income between destination and source counties. The industry sector varies across columns according to s. For
instance, Column 1 regresses the share of manufacturing income relative to total income in destination counties on the corresponding share in source
counties. Industry classifications follow the 2-digit SIC and NAICS codes. Sector income data are sourced from the U.S. Bureau of Economic Analysis
(1969-2016). Panel B examines differences in three county characteristics: the percentage of urban area (calculated using MODIS land cover type
data), the log of county population from the Census, and the log of total toxic releases reported under the TRI Program. Specifically, the regression is
dest. = B-src. x I(selected). + - src. +a- I(selected) e + Ngest—sre + €c, Where dest,. represents a given characteristic of the destination county c¢. srec,.
refers to the corresponding characteristics of all source counties, as all counties are considered potential source counties. The indicator I(selected).
equals to 1 if county c is selected by the LASSO algorithm and 0 otherwise. Destination-source state pair fixed effects are included. Standard errors
are clustered at the source county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

Panel A compares the share of



Figure A.13: Wind Direction and Pollution

(a) Wind Direction IV (b) Figure 2 from Deryugina et al. (2019)

.01 7\Dirty air from the SE
N\
/

.005+

-.005+

-.01-

Notes: This figure presents a comparative analysis of the relationship between wind direction and air pol-
lution, aligning our study of annual wind direction with the daily wind direction analysis conducted in
Deryugina et al. (2019). The left panel focuses on data from our study, covering the entire state of Cal-
ifornia. It displays regression estimates from the first-stage equation, where the dependent variable is the
county’s annual log-transformed Aerosol Optical Depth (AOD) pollution level, and the key independent vari-
ables represent the number of days per year that a county’s wind direction falls within a specific 45-degree
bin. The model includes controls for location-by-taxa interactions, year fixed effects, and annual average
maximum and minimum temperatures and precipitation. The dashed lines indicate 95% confidence intervals,
calculated using robust standard errors. The right panel reproduces Figure 2 from Deryugina et al. (2019),
which examines the relationship between daily average wind direction and PM 2.5 concentrations in counties
within and around the San Francisco Bay Area, California.
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Table A.23: Replication of Biodiversity-Pollution 2SLS Estimates using Deryugina et al. (2019)

1) 2) (3) (1) (5) (6)
Abundance Richness Similarity Abundance Richness Similarity
Panel A. All species Panel B. Non-bird species

Pollution (IV) 12.620%%%  ]437FFF 0177 5202 2304 _(.676*H
(0.950) (0.267) (0.080) (1.159) (0.715) (0.194)

TMAX -0.019 -0.001 -0.016%** 0.081 0.075 -0.072%**
(0.034) (0.032) (0.003) (0.105) (0.045) (0.009)

TMIN 0.104* 0.044* 0.021%** 0.213*** 0.048**  0.076***
(0.052) (0.024) (0.005) (0.043) (0.021) (0.014)

PRCP -0.061°* -0.023 -0.023** -0.065 0.023 -0.052%**
(0.034) (0.016) (0.011) (0.046) (0.026) (0.013)
Kleibergen-Paap F-stat. 20.1 20.1 11.5 3.9 3.9 2.952
Observations 52,860 52,860 40,422 12,726 12,726 11,599

Notes: This table reports 2SLS estimates replicating Deryugina et al (2019). Outcome variables are in logs except for similarity which is a ratio
(columns 3 and 6). Independent variables are county’s annual logged Aerosol Optical Depth pollution level. The instrumental variables are the
number of days that the wind direction in a county falls in each of the 45-degree bin in a year. The Kleibergen-Paap F-statistics of the first stages are
reported at the bottom of the table. Columns 1-3 report full sample estimation. Columns 4-6 excludes observations that correspond to bird species.
All regressions include location-by-taxa and year fixed effects. Standard errors are clustered at the state level. *: p < 0.10; **: p < 0.05; ***: p <
0.01.
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