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1 Introduction

This chapter focuses on Bayesian learning. Learning is the process by which agents form beliefs.

While many of the previous chapters consider how to measure beliefs, this chapter uses Bayesian

tools to consider how agents form beliefs and the types of consequences these beliefs have on

economic outcomes. In one class of models, agents know the true model of the economy and are

uncertain only about which realization of the state will be drawn by nature. They use additional

pieces of information (e.g., noisy signals) to form expectations about the state. In another class of

models, agents are uncertain about the distribution of the state and also use Bayes’ law to infer

its moments or its shape, using a sample of observations.

Among models with Bayesian learning, there are models of passive learning and models of

active learning. In passive learning models, agents are endowed with signals and/or learn as an

unintended consequence of observing prices and quantities. One set of examples is models where

information is exogenous. Information may be an endowment or it may arrive stochastically.

Endogenous information can also be learned passively. For example, information could be conveyed

by market prices. This is still passive learning because agents are not exercising any control over

the information they observe.

Active learning is intentional. Information is chosen or is the direct result of a choice. This

choice might involve purchasing information, choosing how to allocate limited attention or choosing

an action, taking into account the information it will generate. Such models go beyond explaining

the consequences of having information; they also predict what information agents will choose

to have. Models of active learning predict what information agents choose to observe. Because

an active-learning model can predict information sets on the basis of observable features of the

economic environment, pairing it with a passive-learning model where information predicts observ-

able outcomes results in a model where observables predict observables. Such a model is typically

empirically testable.

Economists often use the term learning to refer to a literature in which agents do not use

Bayes’ Law to form their expectations. One example is adaptive least-squares learning, where

agents behave as econometricians, trying to discover the optimal linear forecasting rule for next

period’s state. Evans and Honkapohja (2001) offer an exhaustive treatment of this literature.

That is not our focus.

The chapter is organized as follows. Section 2 introduces a small set of mathematical tools

needed to understand the material. Section 3 studies the implications of learning for economic

activity given a set of beliefs. We discuss passive learning in signal extraction problems and coor-

dination games with strategic motives in actions and in the use of information. Section 4 discusses

several motives for active information acquisition and the most commonly used learning tech-

nologies. Finally, Section 5 surveys the growing literature on the data economy, where economic

activity generates data and the information in the data feeds back to affect economic activity.
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2 Mathematical preliminaries

A few basic concepts and mathematical tools are needed to understand this chapter. Bayes’ Law

for univariate Normal continuous variables appears many times over. In dynamic settings, this

becomes the Kalman filter. For formal derivations and generalizations of Bayes’ Law and the

Kalman filter, see Liptser and Shiryaev (2001) and Bernardo and Smith (2009).

2.1 Bayesian updating

Bayes’ Law. The probability of event A occurring, given that event B occurred is

(1) P (A|B) =
P (B|A)P (A)

P (B)
, with P (B) 6= 0.

This law comes from the definition of a conditional probability: P (A|B) = P (A ∩B)/P (B).

For continuous random variables with smooth distributions, the probability of any discrete

realization is zero. However, Bayes’ law can be applied to probability densities as well. Let f be

a continuous random variable with a smooth distribution. Then the probability density of event

A, given that event B occurred is

(2) f(A|B) =
f(B|A)f(A)

f(B)
, where f(B) =

∫ ∞
−∞

f(B|A)f(A) dA.

Bayes’ Law for Normal random variables. Suppose there is an unknown random variable

θ and according to agent’s prior beliefs θ ∼ N (µθ, τ
−1
θ ). In other words, before observing any

additional information, θ was believed to be µθ on average, with a precision of τθ. Note that the

precision is the inverse of the variance (not the standard deviation). We will work with precisions

because doing so generally makes the solutions simpler. Additionally, the agent sees a signal

(3) s = θ + η, η ∼ N (0, τ−1
s ).

The signal is an unbiased piece of data about θ with precision τs and is conditionally independent

of µθ − θ. That means that signals and priors are related only because they are both informative

about θ, but their errors are independent. Independence implies that E[(µθ−θ)(s−θ)] = 0. Given

the prior information and the signal, the agent forms a posterior belief, also called a conditional

belief, about the value of θ using Bayes’ law:

(4) θ̂ ≡ E[θ|s] =
τθµθ + τss

τθ + τs
.

With normal random variables, the posterior belief is simply a weighted average of the prior belief

and the signal. Each is weighted by its relative precision. If a signal contains no information about
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θ, it would have zero precision. In this case, the posterior belief would be the same as the prior

belief. The posterior (or conditional) variance also has a simple form

(5) Σ̂ ≡ Var[θ|s] =
1

τθ + τs
.

The posterior precision (the inverse of the variance Σ̂−1) equals the prior precision τθ plus the signal

precision τs. Every additional piece of independent information adds precision to the estimation.1

2.2 The Kalman filter

When applied in dynamic models, the formula for Bayesian updating with Normal variables be-

comes the Kalman filter. This learning applies when agents know the distribution but care about

forecasting the actual realization of the variable. We specialize the state θt to follow a first order

Markov process and let st be an unbiased signal about θt. The system consists of two equations,

one for the hidden state and one for its noisy observation:

θt+1 = ρθt + εt+1, εt+1 ∼ N (0, τ−1
θ ),(6)

st = θt + ηt, ηt+1 ∼ N (0, τ−1
s ).(7)

The two shocks ε and η are mutually independent and i.i.d. over time. The parameters ρ ≤ 1 and

(τθ, τs) are known and prior beliefs are θ0 ∼ N (θ̂0,Σ0). For all t > 0, let θ̂t denote the expectation

of θt conditional on all the signals s observed up to, but excluding time t: θ̂t ≡ E[θt|s0, . . . , st−1].

Also let Σ̂t ≡ Var[θt|s0, . . . , st−1] = E[(θt−θ̂t)2] denote the conditional variance of θt. The following

three recursive formulas describe how to update the mean and variance of beliefs:

θ̂t+1 = ρθ̂t +Kt(st − θ̂t)(8)

Kt = ρ
τs

Σ̂−1
t + τs

(9)

Σ̂t+1 = ρ2 1

Σ̂−1
t + τs

+
1

τθ
.(10)

The term Kt is called the Kalman gain. It represents how much weight is put on the new informa-

tion (st− θ̂t), relative to the old information in the prior belief θ̂t when forming the posterior belief

θ̂t+1. The higher the signal precision τs, the higher is the weight placed on news. The Kalman

gain is the analog of the term τs/(τθ + τs) in (4). The conditional variance Σ̂t+1 can be similarly

interpreted as the recursive analog of the Bayesian updating formula for posterior variance in (5).

It is the inverse of the posterior precision, which equals the sum of the prior and signal precisions.

1This observation is not always true. For instance, when agents learn about binomial random variables (e.g.,
learning a proportion), additional observations may actually reduce precision.

4



2.3 Learning the distribution of the state

In many setups, agents know the true distribution, but learn about the current state. For some

applications, it is important that the distribution of random variables is not known. Pastor and

Veronesi (2009) review finance models with parameter learning in more detail. Here, we provide

the basics to aid in understanding the papers that follow. We start with a simple case, where

an agent knows the distribution is normal, but learns the mean and/or variance by observing a

sample of i.i.d. realizations of the state.

2.3.1 Learning the mean

Assume that the true distribution of the state is θ ∼ N (µθ, τ
−1
θ ). Suppose an agent knows the

precision τθ but ignores the mean µθ. She holds prior beliefs about the mean that are Normal:

µθ ∼ N
(
µ0, τ

−1
0

)
. After observing an iid sample of t realizations of θ, which are included into her

date-t information set It = {θr|r ≤ t}, the posterior belief is also Normal:2 µθ|It ∼ N
(
µt, τ

−1
t

)
.

The parameters evolve as:3

µt =
τ0µ0 + tτθθ

τt
, τt = τ0 + tτθ, θ =

1

t

t∑
r=1

θr.(11)

The posterior belief µt = E[µθ|It] is a weighted average of the prior mean µ0 and the sample mean

θ. The posterior precision τt = Var[µθ|It]−1 is the sum of the prior precision τ0 and the sample

precision tτθ, which grows linearly with the number of observations. As the number of observations

increases (t→∞), the posterior belief converges to the sample mean µt → θ and precision goes to

infinity (uncertainty disappears), and since the sample mean converges to the true mean θ → µθ,

the truth is eventually revealed. In Section 3.1.2, we discuss extensively the literature that applies

this type of learning structure to learn about a fixed characteristic (e.g., a worker’s ability).

2.3.2 Learning the precision

Next, we consider a setting where the precision is not known. With an i.i.d. data sample It =

{θr|r ≤ t}, an agent now simultaneously learns about the mean and the precision of θt. The

standard way to formalize this problem is to use a joint Normal-Gamma distribution. The precision

is assumed to follow a Gamma distribution τθ ∼ Γ(α, β), with density f(x|α, β) ∝ (βx)α−1e−βx,

2When prior and posterior distributions are in the same probability distribution family, like this example, we
say that they are conjugate distributions. Working with conjugate distributions is very tractable. Both Normal
and Normal-Gamma (used in the next section) are self-conjugate families.

3The Kalman filter formulas can be used to learn the mean by setting ρ = 1 and τ−1θ = 0.
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mean α/β and precision β2/α. Conditional on the precision, the mean is Normal. This formulation

is convenient because when a Normal mean and Gamma precision are updated with data drawn

from that same type of distribution, the posterior beliefs will also involve a Normally-distributed

mean and a Gamma-distributed precision. Given prior beliefs, µθ|τθ ∼ N (µ0, (κ0τθ)
−1) and τθ ∼

Γ(α0, β0), the posterior belief about the mean is µθ|(It, τθ) ∼ N (µt, (κtτθ)
−1), with

(12) µt =
κ0µ0 + tθ

κt
, κt = κ0 + t, θ =

1

t

t∑
r=1

θr.

In turn, the parameters governing the precision’s posterior distribution τθ|It ∼ Γ(αt, βt) evolve as

(13) αt = α0 +
t

2
, βt = β0 +

1

2

[
t∑

r=1

(
θr − θ

)2
+
tκ0(θ − µ0)2

κt

]
,

where E[τθ|It] = αt/βt and Var[τθ|It]−1 = β2
t /αt. As the sample size increases (t → ∞), the

posterior belief about the mean µt in (12) converges to the true value µθ and belief uncertainty

goes to zero κ−1
t = 0. Regarding the beliefs about the precision, both αt and βt in (13) go to

infinity but their ratio αt/βt converges to the true precision τθ and belief uncertainty goes to zero.

The Normal-Gamma approach is implemented in Cogley and Sargent (2005) to estimate the

parameters of a central bank policy rules, and by Weitzman (2007), Bakshi and Skoulakis (2010),

and Collin Dufresne, Johannes and Lochstoer (2016) to study asset pricing puzzles. Ghofrani

(2021) shows that this framework generates persistent impacts of tail event shocks.

2.3.3 Non-parametric learning

Finally, we consider a case where the functional form of the probability density is not known.

Agents use an i.i.d. data sample It = {θr|r ≤ t} to construct a frequentist (not Bayesian) estimate

f̂t of the true density f . A simple approach is to use a Normal kernel density estimator:

(14) f̂t(θ) =
1

tbt

t−1∑
s=0

φ

(
θ − θt−s

bt

)
.

Here φ(·) is the standard normal density function and bt is the bandwidth parameter. As new data

arrives, agents add the new observation to their data set and update their estimates, generating

a sequence of beliefs {f̂t}. Belief changes tend to be very persistent, even if the θt shocks that

caused the beliefs to change are transitory. This persistence arises from the martingale property of

beliefs: on average, expected future beliefs are the same as current beliefs. As a result, any changes

in beliefs induced by new information are approximately permanent. Kozlowski, Veldkamp and

Venkateswaran (2020a,b) use this mechanism to generate belief scarring that explains the persistent

effects of the Great Recession and the COVID pandemic.
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3 Using signals to understand economic activity

This section examines mechanisms though which agents’ information affects economic activity. In

this section, we take the agents’ information sets as given. In other words, learning here is passive.

First, we describe signal extraction problems, in which agents try to disentangle permanent from

transitory shocks or aggregate from idiosyncratic shocks. Then, we explore coordination games,

where strategic motives in actions make the use of information strategic as well.

3.1 Signal-extraction problems

In this environment, an agent’s payoff depends on the distance from her action to an unknown

stochastic target. This type of quadratic tracking problem is common because it is tractable. Also,

one can map many models into this framework, by approximating objectives quadratically.

3.1.1 A tracking problem

The economy is populated by a continuum of agents indexed by i ∈ [0, 1]. Every agent chooses a

continuous action ait ∈ R to minimize the expected distance between her action and an unknown

exogenous target a∗it drawn by nature. Each agent solves the following problem:

L = min
{ait}∞t=0

E

[
∞∑
t=0

βt(ait − a∗it)2
∣∣∣Ii0] ,(15)

where β < 1 is the discount factor and Iit denotes agent i’s information set at date t. Adding and

subtracting the posterior belief â∗it ≡ E[â∗t |Iit] inside the payoff, distributing the expectation, and

using the law of iterated expectations, we rewrite the problem in terms of posterior beliefs:

L = min
{ait}∞t=0

∞∑
t=0

βtE
[
(ait − â∗it)2|Iit

]
+

∞∑
t=0

βtΣ̂it,(16)

where we use the orthogonality of expectional errors E[(ait − â∗it)(a∗it − â∗it)|Iit] = 0 and define the

posterior variance Σ̂it ≡ E[(â∗it − a∗it)2|Iit]. The problem is equivalent to minimizing the distance

between actions and beliefs; the additional term involving the series of conditional variances {Σ̂it}
is a sunk cost that decreases utility but cannot be controlled by the agent because learning is

passive. The first order condition implies that the optimal action is the expected value of the

target action:

(17) ait = â∗it.

The next two variants of this problem have different stochastic processes for the target action a∗it.
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3.1.2 Permanent vs. transitory shocks

In this class of models, the target action is idiosyncratic; it is specific to an individual. But

a∗it experiences permanent shocks and transitory shocks. Agents cannot distinguish between these

permanent and transitory shocks. Their confusion is what generates interesting learning dynamics.

Suppose the target is an unknown, idiosyncratic, and fixed trait4

(18) a∗it = θi.

The problem is analogous to learning a parameter (as in Section 2.3.1). Agents receive unbiased

signals sit = θi+ηit with noise η ∼iid N (0, τ−1
s ). The transitory term prevents agents from backing

out the permanent trait. Posterior beliefs are formed using the Kalman formulas in (8), (9), and

(10) with ρ = 1 and τ−1
θ = 0. Given initial values (âi0, Σ̂i0), the target forecast and its uncertainty

evolve according to

θ̂it+1 = θ̂it +
τs

Σ̂−1
it + τs

(sit − θ̂it); Σ̂−1
it+1 = Σ̂−1

it + τs.(19)

Early applications of this setup were examined in labor markets. In Jovanovic (1979, 1984),

worker-firm match quality—a fixed trait—is an experience good that is gradually revealed by noisy

output performance. Learning generates a selection effect: Only the relationships with high match

quality survive and job tenure becomes a sufficient statistic for match quality and uncertainty. Be-

sides learning about a match-specific productivity term (Pries and Rogerson, 2005; Nagypál, 2007;

Menzio and Shi, 2011), learning can be about innate worker skills in different occupations (Miller,

1984; Neal, 1999; Moscarini, 2001; Groes, Kircher and Manovskii, 2014; Papageorgiou, 2014; Wee,

2016; Baley, Figueiredo and Ulbricht, 2021) or firm characteristics (Borovicková, 2016). In Gon-

zalez and Shi (2010) and Doppelt (2016), informational dynamics are driven by unemployment,

as the posterior probability of being high skilled worsens with the length of unemployment spells.

Learning about fixed characteristics through noisy signals has also been used to examine tech-

nology choice (Jovanovic and Nyarko, 1996); entrepreneurship (Minniti and Bygrave, 2001); firm

profitability (Pástor, Taylor and Veronesi, 2009); durable consumption (Luo, Nie and Young,

2015); firms’ life-cycle (Arkolakis, Papageorgiou and Timoshenko, 2018; Chen, Senga, Sun and

Zhang, 2020); and the impact of government policy (Pastor and Veronesi, 2012). Policymakers

may also behave as Bayesian agents when learning about climate change parameters (Kelly and

Kolstad, 1999) or the trade-off between inflation and unemployment (Cogley and Sargent, 2005;

Sargent, Williams and Zha, 2006; Primiceri, 2006).

On the empirical front, Lee and Moretti (2009) use high-frequency data from political pre-

diction markets to show that investors process information contained in polls in a Bayesian way.

4More generally, the target may follow a persistent process as in Section 2.2.
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Others test learning by exploiting tenure—the duration of a relationship—as a proxy for uncer-

tainty. Farber and Gibbons (1996) show that wages of long-tenured workers correlate more with

unobserved skills (measured via test scores); Kellogg (2011) show that the productivity of an oil

company and its drilling contractor increases with their joint experience; and Botsch and Vanasco

(2019) show that loan terms become more correlated with unobserved firm characteristics as the

duration of the lender-creditor relationship increases. Lastly, another set of papers exploits dy-

namic cross-sectional moments in the microdata, such as hazard rates, to discipline the speed of

learning and recover the dynamics of information sets. Álvarez, Lippi and Paciello (2011), Baley

and Blanco (2019) and Argente and Yeh (2021) use price-adjustment hazards while Borovicková

(2016) and Baley, Figueiredo and Ulbricht (2021) use job separation hazards.

Keeping uncertainty alive. According to (10), belief uncertainty (forecast error variance) Σ̂it

continuously decreases until it reaches a minimum value in the long run. In particular, when

agents learn about a fixed characteristic as in (19), uncertainty eventually disappears: Σ̂∞ ≡
limt→∞ Σ̂it = 0. In the cross-section, differences in uncertainty also disappear. In some setups,

this is not a desirable feature. Especially when models aim to explain the cross-sectional differences

in uncertainty observed in the data.

The literature proposes various mechanisms to keep uncertainty dynamics active and to gener-

ate cross-sectional dispersion in uncertainty. Baley and Blanco (2019) develop a menu cost price-

setting model where firm productivity θi is subject to occasional shocks (fat-tail risk). Learning

about fat-tailed shocks generates uncertainty cycles that translate into cross-sectional dispersion

in the frequency of price adjustment and amplify the real effects of monetary policy. Senga (2018)

explores the role of uncertainty cycles in a model with heterogenous firms in explaining the level

and cyclicality of the cross-sectional dispersion of sales growth. In Baley, Figueiredo and Ulbricht

(2021), uncertainty about workers’ abilities jumps up when they endogenously switch their oc-

cupation and start learning about a new set of occupation-specific abilities. Uncertainty cycles

about worker abilities explain features of labor market dynamics at the micro and macro levels.

3.1.3 Aggregate vs. idiosyncratic shocks

Agents can also be confused between aggregate and idiosyncratic factors. Suppose that the target

action a∗it is now a linear combination of an aggregate factor common across agents θt and an

individual factor vit specific to agent i:

(20) a∗it = (1− r)θt + r(vit − θt), with r ∈ [0, 1].

For simplicity, the aggregate shock follows a random walk θt = θt−1 + εt with εt ∼ N (0, τ−1
θ )

and the idiosyncratic shock is i.i.d across time and agents vit ∼ N (0, τ−1
v ). One noisy signal
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provides information about the sum of the two components sit = θt + vit + ηit, with a common

noise distribution ηit ∼ N (0, τ−1
s ). With one signal and two shocks, agents cannot disentangle the

components and mistakenly attribute part of an aggregate shock εt to an idiosyncratic shock vit.

The confusion between aggregate and idiosyncratic shocks is at the core of the Phelps (1970)

and Lucas (1972) island’s model. In each island i, a representative agent chooses how much to work

ait depending on the demand for her own good vit relative to the aggregate demand θt. Setting

r = 1, agents would like to work more only if they believe their relative price vit− θt is high. Thus

the nature of the shock matters. Agents see their own price sit, but cannot tell whether their price

is high because nominal demand θt is high or because island-specific real demand vit is high. This

mechanism gives rise to monetary non-neutrality. When money is abundant, aggregate demand

increases, and most agents observe a high price for their good. Since they cannot disentangle the

source of higher demand, they work harder, and produce more. Money has real effects.

Hellwig and Venkateswaran (2009) also investigate the implications of signals which combine

aggregate and idiosyncratic shocks but in a nominal price-setting context where firms choose

their price ait to be close to the target. Setting r ∈ [0, 1/2] in (20), the optimal price depends

positively on aggregate and idiosyncratic factors. In this case, the exact nature of the shock

matters little for optimal pricing. When an aggregate shock occurs, firms mistakenly attribute

it to a firm-specific shock, but adjust prices nevertheless. This increases the responsiveness to

aggregate nominal shocks and reduces monetary non-neutrality. In the same spirit, Venkateswaran

(2014) introduces confusion between idiosyncratic and aggregate productivity into a frictional

labor market and argues that the increased responsiveness to aggregate shocks explains the large

volatility in empirically observed labor market outcomes.

3.2 Using signals in strategic settings

We now consider coordination games. In Section 3.1, agents minimized the distance of actions from

an unknown, exogenous state. In contrast, agents now also consider the distance between their

action and the average action in the economy—which is an endogenous outcome. We introduce

coordination motives through the target action a∗it. It is a linear combination of an exogenous

stochastic state θt and the average action in the economy at:

(21) a∗it = (1− r)θt + rat, where at ≡
∫ 1

0

ait di, and r ∈ [−1, 1].

The parameter r governs the type of strategic interaction. If r = 0 the optimal action is indepen-

dent of the actions of others, as in the models from Section 3.1.2. When r 6= 0, actions become

strategic. If r > 0 there is strategic complementarity, as the optimal action is increasing in the

actions of others. If r < 0 there is strategic substitutability, as the optimal action is decreasing in

the actions of others.
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Next, we examine how coordination motives in actions generate coordination motives in the use

of information. We make this point in a passive learning model where information is exogenous.

Section 4.6 revisits these models in the context of active learning models.

3.2.1 A beauty-contest with exogenous signals

We simplify the tracking problem in (15) to a static model. Each agent chooses their action ai to

minimize the expected distance to the common target a∗ = (1− r)θ+ ra, where a ≡
∫ 1

0
ai di is the

average action and θ is an unknown, exogenous state. Each agent solves the following problem:

(22) L = min
ai

E
[
(ai − (1− r)θ − ra)2

∣∣∣Ii]
The order of events is as follows. Nature draws the state θ from a normal distribution N (µθ, τ

−1
θ )

with mean µθ and precision τθ. These parameters are common knowledge and summarize all prior

public information. Second, each agent receives a public signal z and private signal s that reveal

additional information about the state: z = θ + ηz with ηz ∼ N (0, τ−1
z ) and si = θ + ηs,i with

ηs,i ∼iid N (0, τ−1
s ), independent of sj and z. Signals’ precisions τz and τs are equal across agents.

Finally, given their information set Ii = {z, si}, each agent forms beliefs about θ and a, chooses an

action ai, and payoffs are realized. We look for a symmetric Nash equilibrium to solve the game.

Beliefs and equilibrium. According to the first order condition, the optimal action is a convex

combination of the belief about the state and the belief about the average action

(23) ai = (1− r)E[θ|Ii] + rE[a|Ii].

Averaging across agents, we get the average action as a function of the average beliefs

(24) a = (1− r)E[θ] + rE[a], where E[·] =

∫
i

E[·|Ii] di.

The aggregate action a can be described as an infinite sum of higher-order expectations. To see

this, recursively substitute for a on the right side of (24) to get a =
∑∞

k=1(1− r)r(k−1)Ek[θ], where

the superscript k represents the kth-order average expectation. For example, E1
[θ] = E[θ] is the

average belief about θ, while E2
[θ] = E[E1

[θ]] is the average belief about the average belief of θ,

and so forth. Working with this infinite sum is complex. To avoid this, we follow Morris and Shin

(2002) by conjecturing and then verifying a symmetric strategy.

Before we continue, we solve the full information problem where the realization of θ is known.

The optimal action is ai = (1 − r)θ + ra. Integrating across agents yields a = (1 − r)θ + ra, or

simply a = θ, which implies that ai = θ for all i. This is the unique Nash equilibrium.
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Heterogenous incomplete information. To compute the optimal action in (23) requires form-

ing beliefs about the state θ and the average action a. To form beliefs about θ we use Bayes’ law:

(25) E[θ|Ii] =
τθµθ + τzz + τssi
τθ + τz + τs

, Var[θ|Ii]−1 = τθ + τz + τs.

The best estimate is a convex combination of the prior mean µθ, the public signal z, and the

individual signal si, with weights equal to their relative precisions. The posterior precision equals

the sum of the precisions. Since precision is equal across agents, we denote it by Σ−1 ≡ Var[θ|Ii]−1.

Defining relative precisions as αθ = Στθ, αs = Στs, αz = Στz, where αθ +αz +αs = 1, we write the

expected state as: E[θ|Ii] = αθµθ+αzz+αssi. To form beliefs about the average action E[a|Ii], we

guess and verify that the individual action is linear in the signals ai = µθ+γz(z−µθ)+γs(si−µθ),
where the coefficients γz and γs are to be determined. Integrating the guess across agents, using

the fact that the mean of the private signals si equals the true state θ, and taking expectations:

(26) E[a|Ii] = µθ + γz(z − µθ) + γs(E[θ|Ii]− µθ)

Substituting the beliefs about the state (25) and the average action (26) into the first order

condition (23), rearranging terms, and matching coefficients, we obtain the optimal weights on

the public and the private signals

(27) γz =
αz

1− αsr
, γs =

αs(1− r)
1− αsr

.

We verify the conjecture that the action is linear in signals by checking that the weights on the

prior µθ is γθ = 1− γz − γs = αθ
1−αsr . Finally, substituting the optimal action and the equilibrium

average action into the loss function (22), we obtain

(28) L = (1− r)2

(
γ2
θ

τθ
+
γ2
z

τz

)
+ r2γ

2
s

τs
.

The expected loss decreases in the precision of both signals. Without additional externalities in

payoffs, more information is always welfare improving.5

Optimal use of information. There are two key features of the solution. First, due to Bayesian

updating, optimal actions ai weight signals {z, s} according to their precision. If signals are too

noisy relative to the prior, the weight on the prior γθ dominates. If the public signal is very noisy

relatively to the private signal αz < αs, then the weight on the public signal is smaller γz < γs

and actions will not move much with z. As private heterogeneous signals become more important,

5With information externalities, more information can be welfare reducing (Morris and Shin, 2002; Angeletos
and Pavan, 2007).
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dispersion in actions increases.6 The opposite happens if the public signal is relatively more precise

than the private signal. Second, the weight agents put on the public signal when forming their

action γz is increasing in the value of coordination r. Agents who want to do what others do

make their actions more sensitive to information that others know. Whenever there is strategic

complementarity in actions (r > 0), we have γz > αz, meaning that agents’ actions react more to

changes in public information than their beliefs do. Conversely, when there is substitutability in

actions (r < 0), agents weight private signals more in their actions than in their beliefs.

Responsiveness to shocks. To describe the effects of information and coordination motives

on aggregate outcomes, we define the responsiveness to shocks as the covariance of the average

action with the state, normalized by fundamental volatility:

(29)
Cov[a, θ]

Var[θ]
= γz + γs =

αz + αs(1− r)
(1− αsr)

.

It is equal to the sum of the weights on signals and thus depends on relative precisions. Addition-

ally, this covariance is a measure of informativeness of actions and could in principle be used to

measure how much information the average agent has.

In the extreme case with perfect information, all agents set their action equal to the known

state a = θ (there is no cross-sectional dispersion); responsiveness is highest at a value of 1 and

expected welfare losses are zero L = 0. In the other extreme with complete ignorance (both private

and public signals have zero precision), actions equal the prior a = µθ and do not correlate with

the state (but are equal to each other). Responsiveness is lowest at a value of 0. Even if everyone

takes the same action, utility losses arise because actions are far away from the state.

Between these two informational extremes, the strength of strategic motives r matters for the

optimal use of information and the implied responsiveness to shocks. In particular, the respon-

siveness measure in (29) decreases with r. We use this fact in the discussion that follows.

3.2.2 Strategic complementarity and aggregate inertia

With strategic complementarity (r > 0), agents want to do what others do, so they make their

actions more sensitive to the information that others know. To achieve this goal, agents actions

strongly comove with public information. For r > 0, the optimal weighting in (27) sets γz > αz so

that actions react more to public signals z than beliefs. Moreover, γz increases with the value of

coordination r. With extreme complementarity (r = 1), all agents take the same action as welfare

only depends on the closeness to others; agents completely ignore their private information (γs = 0)

as it would only bring their choices apart. The dependence on public information generates

6Drenik and Perez (2020) exploit a historical episode—the manipulation of inflation statistics in Argentina—to
show that a reduction in public signal precision τz increased the weight γs on private signals when forecasting
inflation and generated larger cross-sectional price dispersion.
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aggregate inertia or delays in the adjustment of aggregate variables to shocks. Even if agents’

private information tells them to adjust to changing economic conditions, they wait for others to

do so. Thus responsiveness to shocks is low.

Strategic complementarity arises naturally in Bertrand (price) competition, as firms have in-

centives to coordinate price-setting. They set a higher price if the competitor’s price is higher

and vice versa. Woodford (2003) introduces price complementary in the Lucas (1972) islands’

model discussed in the previous section. Optimal prices not only depend upon the state of nom-

inal demand θt but also on the average level of prices charged by others at. Other settings that

feature strategic complementarity include increasing returns to aggregate investment, technology

spillovers, or speculative attacks.

3.2.3 Strategic substitutability and aggregate volatility

With strategic substitutability (r < 0), agents want to do the opposite of what others do. They

weight private signals more in their actions than in their beliefs γs > αs and their actions strongly

move with private information. Information substitutability generates overreaction in the adjust-

ment of aggregate variables to shocks, or aggregate volatility. That is, responsiveness is high.

In which environments is it natural to observe strategic substitutability? Market clearing is one

mechanism that generates strategic substitutability through the equilibrium movement of prices.

For instance, when firms compete by choosing quantities through Cournot competition, if a firm

increases its production, its good becomes more abundant and its price goes down. Therefore,

others wants to produce less when one firm produces more. Similarly, consumers want to buy goods

that others do not want to buy because the goods others demand will be more expensive. The same

logic applies to financial investment, as investors want to buy assets with low demand, low price

and high return. Hiring decisions in frictional labor markets also feature strategic substitutability.

The greater the aggregate number of vacancies posted in the economy, the lower is the incentive

of an individual firm to post vacancies. This mechanism is examined in Venkateswaran (2014) to

explain labor market volatility. Lastly, models with returns to specialization are also situations

where agents want to behave differently from other agents.

The role of preferences. The simple games in this section considered either complementarity

or substitutability motives. When both motives are present, the relationship between information

and actions is more nuanced. Baley, Veldkamp and Waugh (2020) make this point in a general

equilibrium international trade model where domestic firms choose how much to export based

on their beliefs about foreign exports. Market clearing through the terms of trade introduces

substitutability. Preference for a balanced consumption bundle introduces complementarity. The

effect of information in export decisions depends on the relative strength of these two forces, which

are encoded in agents’ preferences.
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4 Information choice and learning technologies

Active learning means that agents make choices to influence their future information sets. While

in the passive learning models in Section 3, signals were taken as given, now signals depend

on choices. We present the two most commonly used learning technologies: sticky information,

where there is infrequent acquisition of perfect information, and rational inattention, where there

is frequent acquisition of noisy information. Finally, we discuss returns to scale in information

acquisition and learning specialization.

4.1 Sticky information

Sticky information, also known as inattentiveness, is a learning technology in which most of the

time, agents get no information flow; but occasionally, they observe the entire history of events.

It is a lumpy informational flow, with periods of inaction followed by bursts of information pro-

cessing. In settings where an agent has to exert some effort to observe information, but that

information is not difficult to process, this technology makes sense. Examples include checking

one’s bank balance, looking up a sports score, or checking the current temperature. Dynamic

models with information choice are notoriously hard to solve. Inattentiveness simplifies these

problems by making the history of learning choices irrelevant, each time an agent decides to learn.

4.1.1 A beauty contest with infrequent information updating

The following model introduces infrequent information updating to the tracking problem in (15).

There is a continuum of agents i ∈ [0, 1]. Each agent chooses her action ait to minimize its distance

from an unknown stochastic target a∗t that an agent with full information would set:

(30) L = min
{ait, Uit}

E0

[
∞∑
t=0

βt
(
(ait − a∗t )

2 + Uitκit
) ∣∣∣Iit] ,

where Uit ∈ {0, 1} is its decision to update the information set Iit at a cost κit > 0. The target is

a convex combination of an exogenous unobserved state θt and the average action at:

(31) a∗t = (1− r)θt + rat, with at =

∫
i

ait di.

The state follows a random walk θt = θt−1 + εt with iid innovations εt ∼ N (0, σ2). The following

information cost, observed at the beginning of period t, nests two specifications in the literature:

(32) κit =

{
κ with prob. 1− λ
0 with prob. λ

with λ ∈ [0, 1].
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Setting κ = ∞ and λ > 0, this cost structure generates the (passive learning) sticky information

model in Mankiw and Reis (2002), where information arrives freely at an exogenous constant rate.

Setting κ > 0 and λ = 0, this cost structure embodies active learning. It generates the costly

information updating in Reis (2006a,b), where agents face a fixed observation cost.

Information dynamics. An agent who last updated in period τ̂ enters period t with an infor-

mation set that contains state realizations from every period up to and including τ̂ : Ii(t−1) = Iτ̂ =

{θτ}τ̂τ=0. If an agent chooses to update in the current period (Uit = 1), her new information set

will contain all state realizations up to and including the current state: Iit = It = {θτ}tτ=0. If the

agent does not update in the current period (Uit = 0), she will not observe any new information,

not even endogenous information like the average action ( Iit = Ii(t−1)) . Individual information

sets Iit evolve according to:

(33) Iit =

{
Iτ̂ = {θτ}τ̂τ=0 if Uit = 0

It = {θτ}tτ=0 if Uit = 1.

Equilibrium and optimal choices. An equilibrium is a sequence of information choices by

every agent {Uit}, and actions {ait}, that are Iit–measurable and maximize (30), taking as given

the choices of all other agents. The first-order condition dictates that agent i who last updated at

date τ̂ , sets her action equal to its expected target at time t:

(34) ait = E [a∗t |Iτ̂ ] = (1− r)E [θt|Iτ̂ ] + rE [at|Iτ̂ ] .

Since the state is a random walk, E [θt|Iτ̂ ] = θτ̂ . We guess and verify that the average action is

also a random walk, E [at|Iτ̂ ] = aτ̂ . Let λt,τ̂ denote the measure of agents who last updated in

period τ̂ ≤ t. Then the average action at is a weighted sum of the expected target of all agents:

at =
∑t

τ=0 λt,τE [a∗t |Iτ ] =
∑t

τ=0 λt,τ ((1− r)θτ + raτ ) . Recursively substituting in for aτ reveals

that the average action is a weighted sum of all past innovations:

(35) at =
t∑

τ=0

Λt,τ (1− r)
1− rΛt,τ

ετ ,

where Λt,τ̂ ≡
∑t

τ=τ̂ λt,τ denotes the measure of agents who have last updated between dates τ̂

and t. Substituting (35) into (31) tells us that the target action is a∗t =
∑t

τ=0
1−r

1−rΛt,τ ετ . Agents

who last updated at date τ̂ set their action to ait = E [a∗t |Iτ̂ ] =
∑τ̂

τ=0
1−r

1−rΛt,τ ετ . Their expected

one-period loss (which agents compare to the information processing cost) depends on all the

innovations since the last update:

(36) Lt,τ̂ ≡ E
[
(E [a∗t |Iτ̂ ]− a∗t |Iτ̂ )2

]
=

t∑
τ = τ̂+1

(
1− r

1− rΛt,τ

)2

σ2.
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The longer it has been since an agent updated her information, the higher are the incentives to

update in the current period. If information arrives exogenously, firms have no choice but to

update at rate λ. In contrast, when information is actively chosen by paying the fixed cost κ,

the updating policy consists of threshold dates such that agents who last updated at date τ̂ < τ ∗t

update at date t, while those who last updated at τ̂ > τ ∗t find not updating strictly optimal. One

equilibrium consists of staggered updating, meaning that all firms update after a fixed number of

periods T and each period a fraction 1/T of the firms updates (Reis, 2006b).

Expression (36) highlights the updating complementarity. For any τ = τ̂ + 1, ..., t, the one-

period loss increases with the strategic motive parameter, that is, ∂Lt,τ̂/∂Λt,t−τ > 0, if and only

if r > 0. When actions are complements (r > 0), there is complementarity in information ac-

quisition: the more agents are aware of a shock that has occurred since the agent last updated,

the higher the per-period loss of not being aware of this shock. The complementarity in updat-

ing information delays adjusting to changing economic conditions, or inertia. When actions are

strategic substitutes (r < 0), the converse is true. This general principle discussed in the static

games of Section 3.2 re-appears in dynamic settings.

4.1.2 Applications of sticky information

Sticky information has been extensively used to explain the observed inflation inertia, as price-

setting firms slowly update their information about money supply and demand. In Mankiw and

Reis (2002) and Ball, Mankiw and Reis (2005) firms passively update information at random dates.

In Reis (2006b) the adjustment dates are actively chosen by paying an observation cost. Álvarez,

Lippi and Paciello (2016) generalize this setup allowing for heterogeneity in observation costs.

From the household side, sticky information has been put forward as an explanation for the

equity premium puzzle (Gabaix and Laibson, 2001) and the excess sensitivity and excess smooth-

ness puzzles of aggregate consumption (Reis, 2006a; Carroll et al., 2020). Auclert, Rognlie and

Straub (2020) show that embedding sticky expectations in a heterogeneous agent new Keynesian

model reconciles the micro and macro responses to monetary policy shocks.

Inattentiveness is often mixed with adjustment costs in actions, combining information up-

dating with tools from the s-S literature. Bonomo and Carvalho (2004) and Álvarez, Lippi and

Paciello (2011, 2017) study price-setting problems where firms pay an observation cost to discover

their target price and pay a menu cost to change their price. Similarly, Álvarez, Guiso and Lippi

(2012) and Abel, Eberly and Panageas (2013) study portfolio choice where investors pay an obser-

vation cost to reveal the value of a risky asset and pay a transaction cost to adjust their portfolio.

In these papers, small information and adjustment costs generate infrequent adjustment, yielding

long periods of inertia.

On the empirical side, Klenow and Willis (2007) test inattentiveness models of price-setting

by asking whether information revealed in past periods acts as a shock to prices in the current
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period. In a similar exercise with asset prices, Hong, Torous and Valkanov (2007) and Cohen and

Frazzini (2008) find that industry information affects the market index value with a lag. Andrade

and Le Bihan (2013) document that professional forecasters fail to systematically update their

forecasts and disagree when updating, all of which suggests inattention.

4.2 Rational inattention

The idea that economic agents have limited ability to process information, or to pay attention,

is often referred to as rational inattention. Following Sims (2003), rational inattention has taken

on a more specific meaning. Models that use rational inattention either bound the amount of

information or charge agents a utility cost for information, where the amount of information is

measured according to how much it reduces entropy.

A large subset of the literature simplifies the problem by allowing agents to directly choose

the precision with which they observe an exogenously specified set of Normal signals. It turns out

that with a quadratic payoffs and Normal priors, Normal signals are optimal. We lay out such a

quadratic-normal model, in order to convey the main ideas from this literature.

4.2.1 Measuring information: entropy and mutual information

The standard measure of the quantity of information in information theory is Shannon entropy

(Cover and Thomas, 1991). Entropy measures the amount of uncertainty in a random variable.

For a random variable θ with density function f , entropy is defined as:7

(37) E(θ) ≡ −E[ln(f(θ))].

Sims (2003) proposed modelling the informational content of a signal s about θ as the reduction

in entropy achieved by conditioning on the additional information provided by the signal. This

measure of uncertainty reduction is known as mutual information. It is defined as:

(38) I (θ, s) ≡ E(θ)− E(θ|s),

where the second term is conditional entropy: E(θ|s) = E(θ, s)− E(s). The expectation in E(θ, s)

is taken over the realizations of (θ, s). With a Normal state θ ∼ N (µθ, τ
−1
θ ) and a Normal signal

s ∼ N (0, τ−1
s ), mutual information takes a simple form:

(39) I (θ, s) =
1

2
ln

(
1 +

τs
τθ

)
.

7By using the natural logarithm, we express information units in nats, as opposed to bits, in which case, the
logarithm has base 2.
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Mutual information reflects the ratio of the posterior precision to the prior precision (τθ + τs)/τθ.

Mutual information increases with signal precision, as it generates a larger reduction in uncertainty.

4.2.2 A tracking problem with noisy information acquisition

Consider a repeated tracking problem. The agent chooses the action a that minimizes the expected

distance to an i.i.d. state θ ∼ N (0, τ−1
θ ). She receives a noisy signal s = θ + η, with precision

τs. There are two constraints governing how the agent can choose signal precision. First is the

capacity constraint. It takes the form of an upper bound κ > 0 on the mutual information of priors

and prior plus signals. Second is a “no forgetting” constraint that requires mutual information to

be non-negative. The agent can increase capacity κ by paying a proportional utility cost cκ. The

agent solves the following problem:

L = min
{a, κ}

1

2
E
[
(a− θ)2 |s

]
+ cκ(40)

s.t. 0 ≤ I(θ, s) ≤ κ,

where I(θ, s) is the mutual information for Normal state and signals in (39). The solution to

the problem takes place in two stages. In the first stage, the agent chooses how much attention

to allocate to θ by choosing the total processing capacity κ. This choice determines the optimal

signal precision τs. In the second stage, the agent receives a noisy signal s with the precision

proportional to the attention allocated in the first stage and chooses the action.

To solve the model, we work backwards. Suppose the agent receives signal s with precision

τs. Conditional on this signal, the agent chooses the optimal action a∗ = E [θ|s] = τs
τθ+τs

s. The

expected loss implied by the optimal action is E
[
(a∗ − θ)2] = (τθ + τs)

−1. Since the expected loss

decreases with signal precision, the capacity constraint will always bind and we set τθ+τ ∗s = τθe
2κ.

Plugging the optimal action and binding capacity constraint into (40), and taking the first order

condition with respect to κ, we find the optimal attention capacity and the implied optimal signal

precision. And conditional on these choices, we find the optimal action:

κ∗ =
1

2
ln

(
1

τθc

)
; (τ ∗s + τθ)

−1 = c; a∗ = max {(1− τθc) s, 0} .(41)

This example illustrates key tradeoffs of rational inattention models. The agent chooses signal

precision by trading the costs of acquiring information with the benefits from better information.

The agent increases attention κ∗ if the state’s volatility τ−1
θ is high and if the marginal cost of

acquiring information c is low. If the marginal cost is too large, the agent acquires no information

and sets the action equal to the prior mean (zero in this example).
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Tracking multiple states. Assume the agent tracks two i.i.d. states (θ1, θ2) ∼ N (0,Σ), where

Σ denotes the prior variance-covariance matrix. The agent chooses an action a to minimize the

distance to both states subject to a bound on mutual information:

L = min
{a,κ}

1

2
E
[
(a− θ1 − θ2)2] + cκ(42)

s.t. 0 ≤ 1

2
ln

(
det Σ

det Σ̂

)
≤ κ,(43)

where Σ̂ denotes the posterior covariance matrix. Mutual information with multivariate normal

variables reflects the ratio of the determinants of the prior and the posterior variances.

The problem of tracking two states has a simple solution when the agent is allowed to choose

the variance-covariance structure of the signals. To see this, define the target θ∗ = θ1 + θ2, and

assume the agent receives a single noisy signal of this target. The problem can be restated as a

single-state problem, with the optimal allocation of attention taking the same form as (41). This

one signal allows the agent to achieve the same expected loss as two independent signals, while

requiring lower mutual information.

Rationally inattentive agents generally prefer signals about a linear combination of the payoff-

relevant states. However, restricting the set of signals to be independent and associated to a

specific state is a plausible economic constraint, in many settings. Following Mackowiak and

Wiederholt (2009), suppose the states are independent from each other and the agent receives two

independent signals, s1 = θ1 + η1, and s2 = θ2 + η2, with respective precisions τs1, τs2. The prior

Σ and posterior Σ̂ variances are diagonal matrices and the entropy constraint simplifies to:

(44)
Σ̂−1

11 Σ̂−1
22

τθ1τθ2
≤ e2κ, where Σ̂−1

ii = τθi + τsi for i = 1, 2.

Expected loss associated with the action are E
[
(a∗ − θ)2] = Σ̂11 + Σ̂22. If c 6= 0, total capacity κ

can be chosen and the problem reduces to two independent single-state problems like (40). The

optimal allocation of attention for each state is given by (41), replacing by the corresponding

precision of each state. In the dual problem where total capacity is fixed, the capacity constraint

always binds. In this case, more attention to one state reduces the attention allocated to the other

state. The ratios of posterior to prior precisions are increasing in the other state’s precision:

τ ∗s1 + τθ1
τθ1

= eκ
√
τθ2
τθ1

;
τ ∗s2 + τθ2
τθ2

= eκ
√
τθ1
τθ2
.(45)

These expressions highlight a key lesson from multivariate rational inattention models: Agents

optimally pay more attention to the more volatile state, as it generates larger welfare losses.
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4.2.3 Applications of rational inattention

Following Sims (2003), the literature on rational inattention has rapidly expanded. One of the

earliest applications is the price-setting model by Mackowiak and Wiederholt (2009). Its core

resembles the two-shock model in (42), where θ1 represents monetary shocks and θ2 idiosyncratic

productivity shocks. Rational inattentive firms optimally pay more attention to idiosyncratic

shocks as these are relatively more volatile than aggregate shocks, and thus under-react to mone-

tary policy shocks. In this setting, Paciello and Wiederholt (2014) study optimal monetary policy

and Mackowiak and Wiederholt (2015) introduce rationally inattentive households. As with inat-

tentiveness (Section 4.1), rational inattention gives rise to nominal rigidities and price inertia.

Unlike the simple static problems we presented, many applications feature dynamic settings

where states evolve persistently over time. This is technically challenging. Mackowiak, Matějka

and Wiederholt (2018), Miao, Wu and Young (2019), and Afrouzi and Yang (2021a) study dynamic

inattention problems and propose algorithms to solve them. Another strand of the literature

provides axiomatic foundations (Caplin and Dean, 2015; de Oliveira, Denti, Mihm and Ozbek,

2017; Ellis, 2018; Hébert and Woodford, 2019) and generalizations of entropy costs (Caplin, Dean

and Leahy, 2017; Hébert and Woodford, Forthcoming).

Applications of rational inattention include portfolio allocation (Mondria, 2010); mutual fund

management (Kacperczyk, Van Nieuwerburgh and Veldkamp, 2016); discrimination of minorities

(Barto, Bauer, Chytilov and Matějka, 2016); electoral competition (Matějka and Tabellini, 2016);

international trade (Dasgupta and Mondria, 2018); insurance choice (Brown and Jeon, 2020); mar-

riage markets (Cheremukhin, Restrepo-Echavarria and Tutino, 2020); hiring decisions (Acharya

and Wee, 2020); migration (Porcher, 2020; Bertoli, Moraga and Guichard, 2020); consumption

(Luo, 2008; Kszegi and Matějka, 2020); expectation formation (Fuster, Perez-Truglia, Wiederholt

and Zafar, 2020; Gutiérrez-Daza, 2021); and price-setting (Woodford, 2009; Stevens, 2020; Turén,

2020; Yang, 2020; Afrouzi and Yang, 2021b). Mackowiak, Matějka and Wiederholt (2020) provide

a comprehensive review of this literature.

4.2.4 Linear cost of signal precision

Mutual information in (38) is one of several informational costs I(θ, s) employed in the active

learning literature. A popular alternative is to specify costs that are linear in signal precision. In

the case of two states and two signals, this constraint takes the form

(46) Σ̂−1
1 + Σ̂−1

2 ≤ κ.

Comparing (46) with (44), we see that entropy constrains the product of precisions, while the

linear constraint bounds the sum of precisions.

While the entropy technology represents a process of increasingly refined search, the linear
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technology models search as a sequence of independent explorations. Van Nieuwerburgh and

Veldkamp (2010) and Myatt and Wallace (2012) use linear constraints to jointly study information

acquisition and investment decisions in financial markets. Hébert and Woodford (Forthcoming)

show that the linear constraint (46) can be obtained by assuming neighborhood-based information

costs that capture notions of perceptual distance. Departures of mutual information on this

direction have important welfare implications in general equilibrium, as examined by Angeletos

and Sastry (2019) and Hébert and La’O (2020).

4.3 Other learning technologies

Agents’ learning technology could involve a combination of both sticky information (inattentive-

ness) and noisy information acquisition (rational inattention). Agents may pay a fixed cost at

discrete dates to observe perfect information about the current and past states of the economy.

But in between these updates, they may observe a flow of noisy information about the state. For

example, Bonomo, Carvalho, Garcia, Malta and Rigato (2021) develop a hybrid price-setting model

with features from both learning technologies, and Coibion and Gorodnichenko (2012) consider

both learning technologies and show that survey data favor models of noisy information.

A different learning technology developed in Woodford (2009), Stevens (2020) and Khaw,

Stevens and Woodford (2017) is a two-stage form of rational inattention: a decision whether

to adjust and then how much to adjust. Although their two-stage adjustment is infrequent like

sticky information, the decision to adjust is nonetheless based on a continuous flow of information.

The experimental data in Khaw, Stevens and Woodford (2017) supports this two-stage technology.

4.4 Information choice as a source of inequality

Information choice may exacerbate initial differences across agents when there are increasing re-

turns in information. Increasing returns to information refers to the idea that an entity with

more data values additional data more. Often, the reason is that when a firm or an economy gets

more information, it grows, invests more or takes on more risky actions. But agents with larger

investment or risky positions value information more. Thus more information raises the value of

acquiring more information. In data economics, this same force is called the “data feedback loop.”

Increasing returns in information appear naturally in production settings (Wilson, 1975). The

more a firm learns to improve its technology, the more it wants to produce and the more it produces,

the more valuable information becomes. Firms that initially operate on a large scale are more

likely to acquire information, produce with better technology, and grow faster than small firms.

In the previous case, there was increasing returns to data acquisition. Increasing returns can also

arise in data production. In Begenau, Farboodi and Veldkamp (2018), big data disproportionately
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benefits large firms. Because they have more economic activity, large firms produce more data.

Abundant data improves investors’ forecasts, which reduces investors’ uncertainty and lowers the

large firm’s cost of capital. Lower investment costs enable large firms to grow even larger.

Information has increasing returns in portfolio problems because it can be used to evaluate

one share of an asset or many shares of an asset. When a decision maker has lots of an asset,

information about the asset’s payoff is more valuable. Investors that are initially wealthier acquire

more information because they have more asset value to apply that information to and they will

also earn higher returns on their investments. Poor individuals may stay poor while the rich get

richer. This mechanism has been shown to account for inequality in portfolio holdings of risky

assets (Peress, 2004) and the increase in capital income inequality due to investor sophistication

(Kacperczyk, Nosal and Stevens, 2019) and financial innovation (Mihet, 2021).

4.5 Learning what others know

Agents can acquire information by observing the behavior of others. Agents with information can

share that information with others through their actions. Social learning may generate behavior

that resembles irrationality, such as herds, bubbles, booms and crashes, but that is completely ra-

tional. For a comprehensive discussion of social learning and its consequences we refer to Chamley

(2004) and Goyal (2011). Here we describe two recent evolutions of social learning.

Local learning. In certain settings, it is natural to observe the behavior of other agents that

are geographically, culturally, socially, or economically “close”. Moreover, agents may actively

choose who forms part of the network of connections from which they obtain their information

from (Herskovic and Ramos, 2020). The local learning that emerges generates similar beliefs and

actions within members of the same group but different beliefs and actions across different groups.

In the aggregate, local learning may slow down the transmission of information.

The following papers examine local learning mechanisms. In Conley and Udry (2010) farmers

learn a new agricultural technology from other farmers in their village; in Fogli and Veldkamp

(2011) women learn the effects of maternal employment on children by observing nearby employed

women; in Buera, Monge-Naranjo and Primiceri (2011) countries learn the impact of market-

oriented policies from the experience of similar countries; in Galenianos (2013) firms learn an ap-

plicants suitability for a job (match quality) when the applicant is referred to the firm; in Fernandes

and Tang (2014) exporters learn the returns to exporting in foreign markets from neighbouring

firms’ export performance; in Figueiredo (2018) high-school students learn the college premium

from the wages of college-educated workers in their neighborhood; in Boerma and Karabarbou-

nis (2021) households learn the returns to entrepreneurship from their dynasty’s entrepreneurial

experience.
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News media. Agents also learn what others know through news media. News media is a

technology for aggregating and sharing information. One service that the news media provides is

to select what events to report, playing a big role as a source of selected information. In particular,

media may strategically choose to report unusual or extreme events to increase the number of its

users (Nimark and Pitschner, 2019). By focusing on certain observations, media generates bias

even among rational readers. In turn, this bias may increase volatility and can lead to aggregate

fluctuations (Nimark, 2014; Chahrour, Nimark and Pitschner, 2019).

4.6 Information choice in strategic settings

In settings with strategic behavior in actions, as in the coordination games of Section 3.2, an

agent’s choice to acquire information depends on others’ information acquisition. Hellwig and

Veldkamp (2009) and Hellwig, Kohls and Veldkamp (2012) introduce information choice in the

beauty contest game in (22). Agents choose their actions ai to match an unknown target that

depends on the exogenous state θ and the average action in the economy a =
∫
i
ai di. But before

playing the action game, agents choose how much to pay to acquire a common signal z ∼ N (θ, τ−1
z )

and/or a private signal s ∼ N (θ, τ−1
s ). The cost of information acquisition κ(τz, τs) is increasing,

convex, and twice differentiable in signal precisions. Each agent solves:

L = min
ai,τz ,τs

E
[
(1− r)(ai − θ)2 + r(ai − a)2

∣∣∣z, si] + κ(τz, τs),(47)

The model is solved by backward induction. Taking agents’ information as given, one solves the

action game and computes expected utility, as a function of information precision. That expected

utility is the objective in the first stage information choice game. With this objective, one can

solve for optimal information choices.

The key result is that strategic motives in actions generate strategic motives in information

choice. Information changes the economy’s responsiveness to shocks, defined in (29) as the covari-

ance of the average action with the state, normalized by fundamental volatility: Cov[a, θ]/Var[θ].
That is what makes information more or less valuable.

When actions exhibit complementarity (r > 0) and other agents have precise information (high

τz+τs), responsiveness is high. When the average action and the state covary, the agent faces more

payoff uncertainty because if he chooses an action that turns out to be far away from θ, it will

also be far away from a and he will be penalized twice. This added utility risk raises the value of

accurate information. Information acquisition is complementary. Correlation in information choice

induces further correlation in actions, such as financial investment (Veldkamp, 2006), production

(Veldkamp and Wolfers, 2007), and price-setting (Gorodnichenko, 2008).

Conversely, when actions are substitutes (r < 0) and other agents have precise information

(high τz + τs), responsiveness is again high, meaning that if the agent chooses an action that turns
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out to be far away from θ, it will also be far away from a. But in this case, that covariance

reduces payoff uncertainty: Taking an action that is far away from a confers a utility benefit,

while being far away from the state θ incurs a utility cost. The cost and benefit partially cancel

each other. The risk of being far from the state θ hedges the risk of taking an action that is close

to a. This hedging makes the variability of overall utility less. When others know more, the state

and average action are more aligned and offset each other more effectively. The offset dampens

utility fluctuations more. Less utility risk lowers the value of information. Thus information is a

strategic substitute because its value is less when others acquire more of it. Exploring strategic

substitutability in information has a long tradition in the portfolio choice literature, starting with

Grossman and Stiglitz (1980).

5 Theories of the data economy

Models of the data economy are learning models, like the ones we have examined so far. The key

difference with this class of models is the two-way feedback between information and economic

activity. Economic activity generates data and the information in the data feeds back to affect

economic activity. In one class of models, data is modeled as ideas or knowledge. In another

class, data is information that reduces uncertainty and guides decision-making. Both can speak

to long-run growth and business cycle fluctuations.

5.1 Experimentation

Data economy models are examples of a broader class of models with active experimentation.

Active experimentation means that an agent chooses an action that may generate information.

The value of the information is explicitly incorporated into the agent’s choice problem. Such

problems often produce feedback between economic activity and information. Agents control the

information flow (e.g., signal quality) through their actions. These actions, in turn, depend on the

information agents learn.

In a class of models called bandit problems, all actions generate equally precise signals, but

the decision is whether to act or not. In another class of models with experimentation, the signal

precision depends on the agent’s action. As a simple example, consider the quadratic tracking

problem (16) in which the optimal action is set equal to a belief and thus depends on signal

precision. In some cases, precision τs increases in the distance from the myopic target action a∗it:

(48) τs = φ(ait − a∗it)2, φ > 0.

Experimentation is costly as agents deviate from their target to obtain information. At the same

time, experimentation brings benefits in the shape of more precise future information. A feedback
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loop between actions and information often arises. The optimal experimentation strategy solves

a fixed point problem that balances the current costs from deviating from the target against the

benefits of better decision-making in the future.

Active learning through experimentation in optimal control problems in macroeconomics arises

in Prescott (1972). Since Rothschild (1974), experimentation has been widely applied to price-

setting models in which a monopolist learns about uncertain demand. Firms use their prices

to learn about demand’s slope or intercept (Balvers and Cosimano, 1990; Mirman, Samuelson

and Urbano, 1993; Keller and Rady, 1999; Willems, 2017). In these models, firms are willing to

produce at negative revenue, in order to obtain better information. Bachmann and Moscarini

(2011) and Argente and Yeh (2021) build general equilibrium versions of this framework. Other

applications of experimentation include investment and growth (Bertocchi and Spagat, 1998),

optimal monetary policy (Wieland, 2000; Svensson and Williams, 2007), job mobility (Pastorino,

2009), and occupational choice (Antonovics and Golan, 2012).

5.2 Data and growth

We begin by exploring the connection between data and long-run growth. Consider an economy

with a continuum of firms i ∈ [0, 1]. Each firm i produces output yit using labor lit and idiosyncratic

productivity Ait:

(49) yit = Aitl
α
it, α ≤ 1.

Data Dit is generated as a by-product of economic activity. Data is generated through own output,

with a “data-savviness” parameter zi, or is produced by other firms Bit:

(50) Dit = ziyit + Bit.

A data-savvy firm harvests lots of data per unit of output. Bi,t captures the fact that data is a non-

rival good: the information produced by the activity of one firm can be used by others. Two main

approaches have been explored to study the impact of data on productivity Ait: data as knowledge

and data as information. These approaches differ starkly in their implications for long-run growth.

5.2.1 Data as knowledge

The first approach considers data as knowledge. We present a simplified version of the model

by Jones and Tonetti (2020). Data Dit improves the quality of ideas, directly increasing firm

productivity Ait. Data relevance for productivity is mediated by the parameter η.

(51) Ait = Dη
it.
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Data from other firms Bit, produced with their output, may increase firm i’s data at the non-rivalry

rate z̃i.

(52) Bit =

∫
z̃iyit di.

If z̃i = 0, then data is rival and data from other firms cannot be used by firm i. Higher values

of z̃i indicate that firm i obtains more data generated by the production of the rest of the firms.

Substituting Bit into (50), assuming symmetry (zi = z̃i = z and yit = yt) and using the fact that

firm i has measure zero yields Dit = zyt. Then substituting Ait and Dit into (49) and rearranging

we obtain:

(53) yt = z
η

1−η l
α

1−η
t .

For η > 1−α, data production leads to increasing returns and long-run growth. This approach of

equating data with knowledge also appears in Cong, Xie and Zhang (2020), where data is used for

R&D in an endogenous growth model, and by Abis and Veldkamp (2021), who study the impact

of artificial intelligence (AI) in the investment management industry.

5.2.2 Data as information

The second approach considers data as information that reduces uncertainty and guides decision-

making. Farboodi and Veldkamp (2021) consider data as information that is used in forecasting

an optimal production technique. Firms face a signal extraction problem as in section (3.1). They

choose a production technique ait to match the optimal technique a∗t = θt + εt that consists of

persistent θt and transitory εt components. Better forecasts of the optimal technique increase

productivity Ait:

(54) Ait = Ā − (ait − θt − εt)2.

Firms receive a noisy signal sit about θt. Its precision increases with data Dit, capturing data-

driven improvements in forecasting:

(55) sit = θt + ηit; ηit ∼ N (0, (τsDit)
−1).

As in (50), data Dit comes from own production and data shared by others. This structure

generates a data-feedback loop. Large firms produce more data, which allows them to improve

the estimates of the optimal technique, increasing output and future data. Nevertheless, since

reducing a forecast error has a bounded value, data producing cannot lead to long-run growth

(the highest productivity, obtained with zero uncertainty, is Ā).
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Farboodi, Mihet, Philippon and Veldkamp (2019) apply a similar information structure to

show that data production induces larger firms in steady state. Besides data arising from own

production, data can be purchased in the market Bit. Differences in data savviness zi can induce

some firms to specialize in data production and grow faster than the rest.

5.3 Data and economic fluctuations

When analyzing business cycles, data informs about the current state of the economy, which is

usually aggregate productivity. The feedback loop between data and economic activity amplifies or

helps propagate the business cycle. Booms are times of high activity and information production.

To examine how data propagates business cycles, we make two assumptions. First, to produce,

firms must pay a random idiosyncratic cost vit which is i.i.d. across firms and time. Second, θt

is an aggregate productivity shock identical across firms. It follows a two-state Markov process

between a good state θg and a bad state θb, with θg > θb.

(56) yit = θtl
α
it − vit; vit ∼iid N (0, σ2

v); θt ∈ {θg, θb}.

Firms observe vit but ignore θt. They receive a public signal st with a precision that increases

with the number of active firms nt in the economy:

(57) st = θt + εt; εt ∼ N (0, (ntτs)
−1).

A firm chooses to produce if its belief about productivity is high relative to the fixed production

cost. When lots of firms believe productivity is at the good state θg, there is high economic

activity (large nt) and information production (high signal precision). The opposite happens if

firms believe productivity is low.

This structure generates an asymmetric flow of information over the cycle. When the economy

is at the good state, signal precision is very high. According to Bayesian updating, firms put a high

weight to unexpected news when updating their beliefs. Therefore, at the peak of the business

cycle, an exogenous change from good times θg to bad times θb triggers a rapid adjustment in

firms’ beliefs and leads to an abrupt downward adjustment in production. In contrast, when times

are bad, scarce information and high uncertainty slow down belief updating. If the economy goes

back to the good state, output will transition slowly.

This mechanism was proposed by Veldkamp (2005) to explain why many asset markets exhibit

slow booms and sudden crashes and by Van Nieuwerburgh and Veldkamp (2006) to understand

business cycles asymmetries, with slow expansions and sudden recessions. This mechanism is

tested empirically by Ordonez (2013). Quantitative versions are developed by Saijo (2017) and

Fajgelbaum, Schaal and Taschereau-Dumouchel (2017) where the level of aggregate investment
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determines the amount of information available to firms. In Straub and Ulbricht (2018), the abil-

ity of investors to learn about firm-level fundamentals declines during financial crises, generating

negative spillovers from financial distress onto the real economy. In all of these papers, there is a

two-way interaction between the level of economic activity and aggregate uncertainty.

6 Conclusion

As the economy transforms itself from a physical production economy to a knowledge economy,

understanding learning becomes more central to economics. Learning is the process whereby

information is transformed into knowledge. While we have described models in terms that suggest

human beings are doing the learning, it may also be that, in the future, machines do some of this

learning for us. That does not make these problems less relevant. Machines will also work to

solve signal extraction problems and algorithms will need to choose what data to process. The

magnitude of the constraints may be quite different. But as data grows in abundance and value,

understanding what signal extraction can reveal, the costs and benefits of this knowledge and how

it affects aggregate economic activity has never been a more urgent endeavor.
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Nagypál, É. (2007). Learning by doing vs. learning about match quality: Can we tell them
apart? The Review of Economic Studies, 74 (2), 537–566.

Neal, D. (1999). The complexity of job mobility among young men. Journal of labor Economics,
17 (2), 237–261.

Nimark, K. P. (2014). Man-bites-dog business cycles. American Economic Review, 104 (8),
2320–67.

— and Pitschner, S. (2019). News media and delegated information choice. Journal of Economic
Theory, 181, 160–196.

Ordonez, G. (2013). The asymmetric effects of financial frictions. Journal of Political Economy,
121 (5), 844–895.

Paciello, L. and Wiederholt, M. (2014). Exogenous Information, Endogenous Information,
and Optimal Monetary Policy. Review of Economic Studies, 81 (1), 356–388.

Papageorgiou, T. (2014). Learning your comparative advantages. The Review of Economic
Studies, 81 (3), 1263–1295.
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