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1. Introduction

It is well known that memory plays an important role in belief formation. Tversky and
Kahneman (1973) show that when instances of a probabilistic hypothesis are easier to recall, the
hypothesis is judged to be more likely, a finding they call the availability heuristic. When prompted
to think about an unlikely event, such as dying in a tornado, people overestimate its frequency
(Lichtenstein et al. 1978). They also attach a higher probability to an event if its description is
broken down into constituent parts, which facilitates retrieval of instances (Fischoff et al. 1978).
More broadly, beliefs depend on recalled personal experiences, such as stock market crashes
(Malmendier and Nagel 2011), and not just on statistical information.

It is also well known that beliefs depart from rationality in a variety of ways, which shape
economic behavior. Sometimes unlikely events are overestimated, for instance when consumers
overpay for insurance (Sydnor 2010; Barseghyan et al. 2013) or bet in long-shot lotteries
(Chiappori et al. 2019). Other times, unlikely events are underestimated, as when investors neglect
tail downside risks (Gennaioli et al. 2012). Adding to the clutter, in finance there is extensive
evidence of both over and underreaction to news. Beliefs overestimate the future prospects of
individual firms and the aggregate market after periods of rapid earnings growth (Bordalo et al.
2019, 2020), leading to long-run return reversals, but underestimate the impact of other news, such
as earnings surprises, leading to price drifts and momentum (Chan et al. 1996; Bouchaud et al.
2019; Kwon and Tang 2021). This bewildering diversity of biases has puzzled many economists,
and led sceptics to minimize the direct evidence on beliefs and embrace rationality.

We present a model of memory and belief formation, and show that it helps reconcile
seemingly contradictory biases and generates new predictions. We test these predictions in two

new experiments and find empirical support.



In our theory, a decision maker (DM) assesses two disjoint hypotheses H; and H, by
sampling his memory database E, which contains both personal and second-hand experiences. The
DM assesses the relative frequency of H; by his ability to retrieve experiences consistent with it
from the memory database, compared to the alternative H,. In our stylized setting, the DM relies
only on sampled experiences, and does not use statistical information such as base rates. Crucially,
as the DM retrieves experiences of H;, that hypothesis acts as a memory cue, shaping selective
recall according to two well-established forces in the psychology of memory: similarity and
interference (Kahana 2012). Consider for instance a DM trying to assess the probability of H; =
“cause of death is flood” compared to H, = “other causes of death”. Similarity means that when
thinking about H;, experiences of floods are easier to retrieve than experiences of earthquakes,
because the former are more similar to the hypothesis than the latter. Interference means that,
because recall cannot be fully controlled, hypothesis-inconsistent experiences may be erroneously
retrieved, especially those similar to the hypothesis itself.

Two forms of interference prove important for shaping probability judgments. The first is
interference from the alternative hypothesis. When thinking about H; = “cause of death is flood”,
the DM may erroneously recall a similar cause of death such as “accidental drowning”, an
instances of the alternative hypothesis H, = “other causes of death”. The second force is
interference from what we call “irrelevant data”—that is, from experiences inconsistent with either
of the hypotheses at hand. When thinking about H; = “cause of death is flood”, the DM may
erroneously recall the similar event “survival in a flood,” which belongs to the irrelevant
“experiences other than deaths.” Both types of interference inhibit the successful recall of each
hypothesis. The hypothesis that faces relatively less interference is oversampled and its probability

estimate is inflated. Also, because recall is random, in our model probability estimates are noisy,



even given the same memory database (Kahneman et al. 2021).

This mechanism naturally generates several well-documented biases. Interference from the
alternative hypothesis yields a striking new principle: heterogeneous hypotheses, those that consist
of very dissimilar events such as H, = “other causes of death,” are underestimated. Because such
hypotheses are composed of events that are not similar to each other, they are hard to retrieve,
which lowers their assessment. This principle accounts for biases typically explained with the
availability heuristic (Tversky and Kahneman 1973). First, it explains why we tend to
overestimate unlikely events when they are prompted, and to neglect them when they are not
prompted. Only in the former case does similarity boost recall of these events. Second, it offers
one mechanism for partition dependence in beliefs: the likelihood attributed to H, = “cause of
death is cancer, heart attack, or any other causes of death” is higher than that attributed to H =
“other causes of death” (Tversky and Koehler 1994), because the partition makes each hypothesis-
cue more similar to the respective instances, and hence less subject to interference.

In turn, interference from irrelevant data illuminates biases in conditional probability
assessments, many of which are attributed to the representativeness heuristic (Kahneman and
Tversky 1973). Consider for instance base-rate neglect. Given the data that a person is “shy and
withdrawn,” it may be hard to think about the hypothesis that he is H; = “a farmer” because many
farmers with different personalities are retrieved. These experiences are irrelevant, but interfere
with the recall of shy farmers, reducing the assessment of the hypothesis. We show that this same
mechanism can account for the conjunction fallacy (Tversky and Kahneman 1974, 1983).

Finally, the interaction between the two forms of interference unifies instances of over and
underreaction to data in conditional assessments. When the data cue an unlikely hypothesis, the

model yields overreaction through base-rate neglect. When the hypothesis is fairly likely, the



model delivers overreaction if the data is quite informative and underreaction otherwise. This can
help explain why overreaction in financial markets is observed after informative histories such as
rapid earnings growth but not when signals are weak, such as a positive earnings surprise. If the
hypothesis is highly likely, the model predicts underreaction to data, yielding a form of aversion
to extreme beliefs (Griffin and Tversky 1992).

To test the predictions of our model, we introduce a novel experimental design in which
participants see 40 images that differ in content and in some cases also in color. Subjects then
assess the probability that a randomly selected image possesses a certain property. To do so,
subjects only need to recall what they saw. We manipulate the subjects’ database of experiences
and the cues they face when assessing a hypothesis. We also measure the recall of experiences.
We find support for our predictions that over and under-estimation of unlikely events can be
switched on and off by modulating interference. We also generate over and underreaction to data
by varying the strength of the signal and the likelihood of the hypothesis. Across all treatments,
recall of experiences and probability judgments are strongly correlated.

Recent work in economics explores the role of memory in belief formation (Mullainathan
2002; Bordalo et al 2020; Wachter and Kahana 2020; Enke et al. 2020). We unify the
representativeness and availability heuristics (Tversky and Kahneman 1974) by showing that —
due to similarity and interference — representative experiences are more “available,” or accessible,
for recall. We show that this approach micro-founds and generalize previous formalizations of
representativeness (Gennaioli and Shleifer 2010; Bordalo et al. 2016; Bordalo et al. 2020), as well
as the overreaction mechanism in Diagnostic Expectations (Bordalo et al. 2018).

In psychology, Sanborn and Chater (2016) present a model of beliefs based on Bayesian

memory sampling. Unlike this approach, we start with well-established regularities in recall,



similarity and interference, and show that they deliver systematic biases. The Minerva-DM model
(Dougherty et al. 1999) features similarity-based recall and noisy encoding, but does not allow for
interference. As such, it cannot account for key biases such as representativeness or the conjunction
fallacy without making ad hoc ancillary assumptions.

In Billot et al. (2005), the probability of an elementary event (rather than of broad
hypotheses) is estimated based on its similarity to other events in the database. They do not study
judgment biases and their model generates neither the conjunction fallacy nor the disjunction effect.

A related literature examines the link between memory and beliefs from the perspective of
efficient information processing (Tenenbaum and Griffiths 2001; Dasgupta et al. 2020; Azeredo
da Silveira et al. 2020; Dasgupta and Gershman 2021). We instead start with well-documented
regularities in recall and interference, and show how they unify a range of evidence.

Kahneman and Tversky (1979) propose a probability weighting function in which small
probabilities are overestimated in lottery choice. Our model applies to the construction of
subjective beliefs from memory and explains why in the real world low probability events are often
overestimated when cued and underestimated otherwise.

We describe our model of similarity-based recall and probability judgments in Section 2,
characterize the departures of probability estimates from statistically correct beliefs in Section 3,

and present the experimental results in Sections 4 and 5. Section 6 concludes.

2. The Model
A Decision Maker’s (DM) memory database E consists of N > 1 experiences,
accumulated either through personal events, or via communication or media reports. An

experience e is described by F > 1 features, each of which takes a value in {0,1}.



In our running example, we consider a database of potential causes of death. Here a subset
of features captures different potential causes: f; may identify “car accident”, f, “flood”, f; “heart
attack”, etc. One feature, which we denote by f;, indicates whether the event was lethal or not.
There are superordinate features, such as f;,,; ="“disease”, f;,, ="“natural disaster”, etc, which
take the value of 1 for the relevant subsets of possible death events. Experiences are vectors of
features. For instance, lethal heart attacks have f; = f, =0, f3 = f; = f441 = 1and f3,, = 0.
Non-lethal heart attacks have the same feature values except for f; = 0. Additional features may
include the characteristics of people involved, such as their age or gender, or contextual factors
such as the time and emotion associated with the experience. The set of features is sufficiently
large than no two experiences are exactly identical.

We focus on the case in which the experiences in the database reflect the objective
frequency of events (that of different causes of death in our example). In principle, the database
could be person specific (e.g., people from New York may hear of fewer experiences of death from
tornado than people from Des Moines), and could also be affected by repetition, rehearsal, and
prominence of events (e.g., people may hear of more experiences of airplane crashes than of
diabetes due to greater news coverage of the former). The database could also be influenced by
selective attention. A past smoker concerned with lung cancer could encode many events of this
disease (Schwartzstein 2014). We leave such extensions to future work.

The DM forms beliefs about the relative frequency of two disjoint hypotheses H; and H,,
which are subsets of the database E. For instance, the DM may assess the frequency of death by
H, = “natural disaster” vs. H, = “all other causes”. These hypotheses partition the subset of
causes of death, identified by f; = 1, on the basis of the “natural disaster” feature f;,, = 1 vs.

fa+2 = 0. In the language of probability, the union of the hypotheses H = H; U H, is the sample



space over which the DM forms his subjective beliefs.? Appendix A3 extends the model to more
than two hypotheses. We refer to the sample space as the “relevant data” for the probabilistic
assessment. We refer to H = E\H, the set of experiences inconsistent with either hypothesis, as

the “irrelevant data”. Figure 1 depicts this decomposition of the memory database E'.

E: Memory Database

H,

H = H; U H,: “Relevant Data”

Sample Space H: “Irrelevant Data

H,

Figure 1: Memory Database and Sample Space
As we describe in detail below, the DM makes his assessment by extracting a sample from
his database with replacement.? In a model in which sampling is only based on objective frequency,
the DM draws any given experience in E with probability 1/N. He then estimates the probability
of H; as the relative frequency of this hypothesis among all draws belonging to the relevant data

H. In this model, due to the random nature of recall, the DM’s beliefs would then be noisy but

2 In a slight abuse of notation, we refer to H; both as a given hypothesis, e.g. “cause of death is flood”, and the subset
of experiences in E consistent with hypothesis H;.

3 Sampling with replacement has two interpretations. The first is that the sample size is small relative to N. The second
is that repeated recall of certain events makes them more prominent in mind, affecting beliefs. This is consistent with
the fact that unique experienced events such as a stock market crash appear to persistently affect beliefs (Malmendier
and Nagel 2011). Sanborn and Chater (2016) allow for more structured Bayesian approaches to frequency-based
sampling, such as Markov Chain Monte Carlo. These, however, account neither for the role of similarity nor for
systematic violations of consistency such as disjunction and conjunction fallacies.



average probabilistic assessments would be unbiased. We depart from this benchmark by allowing

sampling to be influenced by similarity.

2.1 Similarity Based Sampling

In line with memory research (Kahana 2012; Bordalo et al. 2020), we allow recall to be
influenced by similarity and interference. Each hypothesis acts as a cue for selective recall. When
thinking about death from H; = “natural disasters”, the DM recalls events similar to it: he samples,
but not based on objective frequency alone.

To formalize this idea, we first define similarity. A symmetric function S(u,v):E X E -
[0, U] measures the similarity between any two experiences u and v in the database. It is maximal,
equal to U, when u = v. Similarity between two experiences increases in their number of shared
features. For instance, a death from a tornado is more similar to a death from flooding than either
is to death from diabetes, as the former are both caused by a natural disaster rather than an illness.
Different features may be differently weighted, based on their functional importance or salience.*
For instance, episodes of heart attack are similar to each other even if they occur in different
contexts. For most of our analysis we rely on general intuitions about similarity, not on a particular
functional form. A rich literature measures subjective similarity between objects and connects it
to observable features (Tversky 1977; Nosofsky 1992; Pantelis et al. 2008).

We define the similarity between two subsets of the database A € E and B C E to be the

average pairwise similarity of their elements,
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4One similarity function, parametrized by § € (0, 1], {Wp}, is S(u,v) = 6» wolfup=fon| | where w,, = 0 for all p.



S(A4, B) is symmetric and increases in feature overlap between members of A and B. The similarity
between two disjoint subsets of E is positive if their elements share some features.

From Equation (1) it is automatic to define S(e, H;), the similarity between a single
experience e and hypothesis H;. This is an important object to formalize cued recall. When cued
by hypothesis H;, the probability of sampling experience e € E increases in the similarity of e to
H;, and decreases with interference from other experiences in E, as we formalize below.
Assumption 1. Cued Recall: The probability r(e, H;) that the DM recalls experience e when

cued with hypothesis H; is proportional to the similarity between e and H;. That is,

S(e,Hl’)

e ) =5 S Y

(2)

If similarity is constant, sampling is frequency-based—i.e., r(e, H;) = 1/N. Compared to
this benchmark, the numerator of (2) captures the fact that it is easier to recall e if it is more similar
to the cue H;. When thinking about deaths from H; = “natural disasters”, it is relatively easy to
recall deaths from floods, due to similarity. The denominator in (2) captures interference: all
experiences u € E compete for retrieval, so they inhibit each other. Retrieval of e is especially
inhibited by experiences that are similar to the cue. One source of interference is from other
hypothesis-consistent experiences: when thinking about H; = “natural disasters”, deaths from
tornadoes interfere with recall of deaths from floods, because the former are also similar to H;.

Crucially, in Equation (2) interference in the denominator also comes from hypothesis-
inconsistent experiences u € H;. There are two manifestations of this. The first is interference from
the alternative hypotheses H;: when thinking about deaths from H; = “natural disaster”, the mind

may retrieve experiences of deaths from other causes such as “terrorist attacks”. The second is

interference from “irrelevant data” H = E\H, which are experiences outside the sample space and



hence inconsistent with either hypothesis. When thinking about deaths from H; = “natural
disasters”, the mind may retrieve instances of survival in natural disasters.

Interference is due to the fact that we cannot fully control what we recall. In our model
interference always comes from recalling a particular experience, but we do not claim that this
process is consciously noticed. Recall failures may either manifest as “mental blanks”, namely
inability to recall anything when thinking about H;, or as “intrusions”, where the DM explicitly
recalls experiences u & H; that are inconsistent with the hypothesis he is thinking about.

Similarity-based interference is well-established in memory research going back to the
early 20th century (Jenkins and Dallenbach 1924; Keppel 1968; McGeoch 1932; Underwood 1957;
Whitely 1927). For example, recall from a target list of words suffers intrusions from other lists
studied at the same time, particularly for words that are semantically related to the target list,
resulting in lower likelihood of retrieval and longer response times (Shiffrin 1970; Lohnas et al.
2015). In the “fan effect”, Anderson (1974) shows that concepts associated with more items are
more difficult to remember in response to any specific cue.’ Our application of interference to
probability estimates is new.

We assume probability judgments are formed according to the following two stage
sampling process:

Assumption 2. Sampling, Interference and Counting
Stage 1: [“Train of thought for H;”’] Each hypothesis H; cues sampling of T > 1 experiences from

E according to (e, H;). Denote by R; the number of successful recalls of all e € H;.

®> Two approaches have been proposed to account for this evidence: associative models (Anderson and Reder 1999)
and inhibition models (Anderson and Spellman 1995). These models do not incorporate interference from irrelevant
data. A robust phenomenon related to intrusions is that of “false memories” (Deese 1959; Roegiger and McDermott
1995). For example, recall from a list of words that are semantically related suffers intrusions from similar words not
on the list, e.g. mis-remembering milk from a list that includes butter, cheese, and white (Brown et al 2000).

10



Stage 2: [Renormalization] The subjective probability of H;, denoted 7t (H;), is the share of

successful counts for H; out of all successful counts for both hypotheses:

Yj<2 R

#(H;) 3)

Intuitively, the DM draws two random samples, one for each hypothesis. He then counts
the number of successes in recalling each H;, discarding intrusions, and finally estimates the
probability of a hypothesis as its relative share of successful recall attempts.

The assumption that each hypothesis is sampled separately (Stage 1 above) is especially
realistic when the DM is asked to assess binary hypotheses, or when the different hypotheses are
prominently presented to him, which is the case in our experiments. It may be violated if the DM’s
task is to represent a distribution with many possible outcomes (e.g., the age distribution of deaths),
because some possible outcomes may fail to come to mind, and so are not sampled.

The assumption that the DM assesses probabilities by counting “successes” in the drawn
samples (Stage 2 above) is realistic in one-shot estimation problems, but may fail in repeated
estimation problems, because the DM may learn about the selected nature of the recalled samples.
Of course, learning is unlikely to be perfect, for it itself is subject to memory limitations. Relatedly,
the sample size T may be optimized based on the DM’s thinking effort.

We view our model as the simplest way to introduce similarity into a sampling model. We
judge its success by its ability to account for well-known biases, including strong violations of
consistency such as partition dependence and the conjunction fallacy, and for recall data. Future
work should seek to endogenize the set of outcomes and hypotheses the DM samples and allow

for learning and effort, which seem important for real world applications.®

® Our model can also be enriched by allowing: a) sampling to be influenced also by the most recently recalled item,
b) the DM to count intrusions from u € H;, and c) retrieval to be driven by factors other than similarity. For instance,
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2.2 Characterizing Beliefs

We examine the two stages of Assumption 2 in turn. We first derive the probability of
recalling any experience e € H; when the DM thinks about H;. This is what psychologists call
retrieval fluency of hypothesis H;. Using Equation (2), we can show that this is given by:

ZeEHl’ S(e, Hl)
ZuEHi S(u, Hl) + ZuEHj S(u, Hl) + Zueﬁ S(u, HL)

rH) = Y r(eHp =

e€EH;

~ n(H;) (4)
B S(Hi, H') S(Hi'ﬁ) T[(E)
n(H;) + S(TJI-IJL) ) T[(Hj) + S(H, H;)) m(H)

In this equation, (H;) is the true relative frequency of H; in the relevant data H, i.e., the correct
probability, w(H) is the true probability of the relevant data compared to the entire database E,
while (H) is the true probability of irrelevant data, namely outside of H.

The term S(H;, H;) is the similarity of H; to itself. We call this the “self-similarity” of H;.
It captures the homogeneity of this hypothesis, namely the extent to which its experiences share
similar features. A tornado in Tulsa is fairly similar to a tornado in Little Rock, but neither is as
similar to an earthquake in California, which reduces the self-similarity of H; = “natural disaster”.
The “cross-similarity” terms S (Hi, Hj) and S (Hi,ﬁ) capture the similarities of H; to the
alternative hypothesis H; and to irrelevant data H, respectively. A death from flood in H; =
“natural disaster” is similar to a death from accidental drowning in H,, which raises S(H,, H;),
and it is also similar to the event of surviving a flood in H, which raises S (Hl, E). In Equation

(4), such cross-similarity terms interfere, reducing retrieval fluency of H;.

an experience may be more memorable if it is extreme or surprising (Kahneman et al. 1993), or if it is similar to
experiences in other contexts, e.g. names of celebrities are more easily remembered (Tversky and Kahneman 1973).
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Define w(H;) as the ratio between retrieval fluency r(H;) and the frequency-based

[H;l
-

probability of drawing a member of the same hypothesis H;, i.e. w(H;) = r(H;)/
Proposition 1 If'S(H;, H;) = S(H;, H;) = S(Hy, H), sampling is frequency based (w(H;) = 1). If
instead S(H;, H;) > max[S(H;, Hj),S(Hi,ﬁ)] there is oversampling of H; given the cue H;
(w(H;) > 1). The extent of oversampling w(H;) falls with:

1. the true frequency mw(H;) of H;.

S(HyH;) and S(HH)

respectively.
S(H,Hy) S(Hy,Hy) P Y

2. the strength of interference from H; and H, measured by

As in Equation (2), if similarity is constant, our model yields frequency-based sampling. If
instead a hypothesis is more similar to itself than to the rest of the database, which is often a valid
condition,’ similarity-based recall entails oversampling. When cued by H; = “natural disasters”,
people scan their memories for earthquakes, floods, etc., and so oversample these events relative
to their true likelihood. If all hypotheses being considered have high self-similarity, they are all
oversampled. ® Henceforth, we assume S(H;, H;) > max{S (Hl-, Hj), S(H;,H )}.

Importantly, Property 1 says that oversampling is especially severe when thinking about
objectively unlikely hypotheses. People rarely experience floods and earthquakes compared to
heart attacks or accidents, so cueing H; = “natural disasters” greatly boosts their retrieval.

Property 2 says that, even though similarity focuses sampling on H;, the retrieval of H; can
be inhibited by interference, to an extent that depends on the content of the database (i.e., on its

similarity structure). Retrieving many instances of H; = “natural disasters” is difficult because

7 This condition can be violated if H, has two opposite clusters and H, is in the middle. Consider a database with
two generic features, and suppose that the DM assesses hypotheses H; = {(1,0),(0,1)} and H, = {(1,1)}. Here
members of H; disagree along all features, while H, agrees with one of them, so S(H,, H;) < S(H,, H,).

8 When taking comparative statics with respect to the similarities S (Hl-, HJ), S(H;, H;), and S(H;, H), we hold the
objective frequencies m(H;) constant.

13



this set contains very different events (e.g. earthquakes, floods), so S(H,, H;) is low. Furthermore,
H; = “natural disasters” has high cross-similarities, which trigger recall of both inconsistent

experiences such as “accidental drowning” and of irrelevant ones such as “survival in natural

S(Hy,Hyp) S(Hy,H)
S(Hq,H1) S(Hy,H)'

disasters”. The strength of these effects is captured by

Having explored the determinants of retrieval fluency, we now turn to the probabilistic
assessment 7(H;) in Equation (3). In light of Assumption 2, the number of successes in recalling
each hypothesis H; follows a binomial distribution: R;~B in(T,r(Hl-)), where r(H;) is given by
Equation (4). This implies that beliefs 77 (H;) are stochastic, characterized as follows.
Proposition 2 As T +— oo the distribution of the estimated odds of H; relative to H; converges in

distribution to a Gaussian with mean and variance:

7(H;) r(H;)
= . 5
lﬁ(Hj) r(H;) ®
lﬁ(]-[l.) 1 lr(Hi) 2 [1 —r(H;) s 1—r(H;) ©)
#(H,) T r(H;) r(H;) r(H) |

In Equation (5), the DM tends to attach a higher probability to hypotheses that have
relatively high retrieval fluency, as in Tversky and Kahneman’s (1973) availability heuristic. In
light of Proposition 1, then, average beliefs can be distorted. In particular, a hypothesis facing
stronger interference from its alternative or from irrelevant data will be underestimated. This
intuition unifies the account of many probability judgments and yields new predictions.

Equation (6) shows that the retrieval fluency of different hypotheses also shapes the
variability of beliefs. We defer the analysis of this aspect to Section 5. Here it suffices to say that,

in general, when two hypotheses are easy to recall—i.e., when both r(H;) and r(H,) are high—

14



the variability of beliefs declines, because the DM benefits from a larger sample size. In Section 5

we test this and other predictions about noise in probabilistic assessments.

3. Judgment Biases

We next examine biases in probabilistic assessments. Section 3.1 deals with interference
from the alternative hypothesis, which yields several biases related to the availability heuristic.
Section 3.2 incorporates interference from irrelevant data, and shows that it accounts for biases
related to the representativeness heuristic. Section 3.3 shows that these two forces can unify over

and underreaction of beliefs to data.

3.1 Biases due to Interference from the Alternative Hypothesis
To focus here on interference from the alternative hypothesis, we restrict our attention to
the case in which the database E coincides with the relevant data for assessing H; and H, (or
equivalently that similarity falls very sharply when moving outside H). In our example, this means
that the DM only samples causes of death and there is no intrusion from unrelated events.
Lichtenstein et al (1978) document the overestimation of cued low probability events, such
as death from botulism or a flood, and underestimation of cued and likely causes such as heart
disease. The average assessed odds in Equation (5) produce this phenomenon.
Proposition 3 The estimate ft(H,) increases in the objective frequency m(H;). Overestimation,

i.e., T(Hy) > mw(H,), occurs if and only if t(H;) < m*, where threshold m* is defined by:

. 1— S(HlJ HZ)

n — S(HliHl) (7)
T—m ~ | _S(HyHy)
S(HZ'HZ)

If both hypotheses are equally self-similar, S(Hy, H;) = S(H,, H,), then m* = 0.5.
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Overestimation of an unlikely hypothesis is due to cued recall of its instances. When
thinking about H,= “floods”, the DM selectively retrieves deaths due to floods. When thinking
about H,= “other causes”, he selectively retrieves other causes of death. Oversampling occurs for
both hypotheses but, as shown in Proposition 1, it favours the less likely one, which would
otherwise be less sampled. This causes insensitivity to true frequencies.

Similarity yields a fundamental new implication: it is the content of events in the database,
and not only their frequency, that shapes the sensitivity to frequency.

Corollary 1. As the events in Hy become more homogeneous, i.e. S(Hy, H;) increases, the
probability assessment i(H,) increases. If S(Hy, H;) > S(H,, Hy), the threshold of Proposition
2 satisfies m* > 0.5, and H can be overestimated even if it is likely.

In our model, as H; becomes more self-similar, it is easier to recall. As a result, it is less likely
that, when thinking about it, recall slips to its alternative hypothesis H,. According to Equation
(5), this increases the estimation of H;, even if its objective probability stays constant.

This result has one important implication: cued unlikely events are prone to overestimation
not only due to their low probability, but also because they are often more self-similar than their
alternative. When cued by H; = “flood”, it is easy to imagine instances of this disaster, because
they are fairly similar to each other. By contrast, the alternative H, = “causes other than flood” is
very heterogeneous, and contains causes of deaths similar to floods, like other natural disasters or
accidental drownings. Thus, when thinking about of H, = “causes other than flood”, recall may
slip back to H; = “flood”, hindering the assessment of the former.

This mechanism has an additional prediction: unless directly cued, unlikely events are
prone to be under-sampled and neglected. Consider the frequency with which a DM thinking about

H, recalls experiences in its subset H,; € H,, for example H, = “causes other than flood” and
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H,; = “tornado”. By Equation (2), the likelihood of sampling experiences of H,; = “tornado”
depends on how similar tornados are to the broader cue, H, = “causes other than floods,” captured
by S(H,1, H,). Denote the other experiences in H, by Hy, = Hy, — Hy;.

Corollary 2 If S(H,1, H,) < S(H,3, Hy), then H,, is undersampled relative to its frequency in H.,.
If the two subsets are equally self-similar, S(H,1, Hy1) = S(Hyy, Hy3), then Hyq is undersampled,
namely S(H,1, Hy) < S(H,,, Hy), if and only if it is less frequent, or |Hyq| < |Hyy|.

A non-cued rare event is neglected when it is dissimilar from the cued hypothesis to which
it belongs. This depends, among other things, on the event’s frequency: the rarer is H,4, the more
atypical it is of the cued hypothesis H, and hence the more dissimilar it is from H,. Thus, when
thinking about H, = “causes other than flood”, we may recall the likely “heart attack”, but not the
unlikely “tornado”. This is in stark contrast to Corollary 1, which predicts that the DM
overestimates rare events when prompted to think about them. Similarly, when thinking about H =
“murders in Michigan”, people tend to neglect the non-cued subset H' = “murders in Detroit”,
because Detroit is dissimilar to the rest of Michigan. In contrast, people tend to overestimate H' =
“murders in Detroit” when explicitly cued (Kahneman and Frederick 2002).

This principle also implies that, for given database E, the description of a hypothesis can
affect assessments. The total likelihood of death is estimated to be lower for “natural causes” than
for “cancer, heart attack or other natural causes” (Tversky and Koehler 1994). Our model accounts
for this phenomenon: partitioning a hypothesis into more specific sub-events increases its overall
self-similarity, reducing interference. To see this, consider again a DM assessing the same

hypothesis H,, but now H, is explicitly partitioned into H,; and H,,. For the purpose of
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Proposition 4, assume the subsets are equally: i) likely, m(H,;) = m(H,,), ii) self-similar,
S(H,y,Hyy) = S(H,y, Hy»), and iii) cross-similar, S(H,,, H;) = S(H,,, H;).” We obtain:
Proposition 4 Partitioning the alternative hypothesis H, into H,; and H,, is equivalent to
changing the self-similarity of H, while leaving its true frequency unchanged. The self-similarity
of H, increases if and only if:

S(Hz1, Hy1) > S(Hzq, Haa). (8)

S(Hp1,Hz1)
S(Hz1,Hz2)'

In this case, partitioning H, reduces the estimate of H,, the more so the higher is

The assessment of H; = “flood” is reduced when its alternative is specified as H,; =
“natural causes” and H,, = “non-natural causes other than flood”, compared to when it is specified
as H, = “causes other than flood”. Cueing H,; and H,, fosters retrieval when thinking about
alternatives to flood, which reduces the assessment of H; = “flood”.

We summarize the above results using Figure 2, which plots the probability estimate 7 (H; )

against the truth (H;) in three conditions, which correspond to Experiment 1 we present later.

® These conditions nest three hypotheses (H;, H,;, H,,) in the binary hypotheses case, connecting to Proposition 2.
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Panel A Panel B Panel C

1.0

08

Subjective Probability

True Probability

Figure 2: Over- and underestimation of hypotheses, and the role of similarity

Notes: This figure shows the estimate 72 (H,) against the truth mw(H;), holding fixed S(H;, H,) and varying
S(H,, H,). m* is the threshold where beliefs switch from under to overestimation. In Panel A, H, and H, are
equally self-similar: S(H,, H,) = S(H,, H,). In Panel B, H, is highly heterogenous: S(H,, H,) < S(H,,H;). In
Panel C, H, is much more self-similar than H,: S(H,, H,) > S(H,, H,).

Panel A shows the case of equally homogeneous hypotheses, S(H,, H;) = S(H,, H,). Here
n* = 0.5 and probabilities of H; and H, are “smeared” toward 50:50. Kahneman and Tversky’s
(1979) probability weighting function features insensitivity to frequency in the domain of objective
probabilities in lottery choice. Recent work provides foundations for this function based on the
salience of lottery payoff (Bordalo et al. 2012), noisy perception of numerical probabilities (Khaw
etal. 2020, Frydman and Jin 2020), and cognitive uncertainty (Enke and Graeber 2020). Our model

applies instead to the construction of subjective probabilities of cued hypotheses from experience,
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when objective probabilities are not given. Selective recall is a central mechanism in our approach,
and a source of perceived uncertainty.!”

Panel B illustrates our key prediction that “content matters”. It plots the assessment 7 (H; )
when the self-similarity of hypothesis H, is reduced relative to that of H;, or S(Hy, H,) <
S(Hy,H;). Compared to Panel A, the subjective probability curve shifts up, boosting the
assessment of H; at any given true frequency m(H; ). This effect can have dramatic consequences.

In a striking experiment, Tversky and Kahneman (1983) asked a group of subjects to assess

b

the share of H; = “words ending with n " in a text. They then asked another group of subjects
to assess the probability of H; = “words ending with _ing” in a text. Remarkably, subjects
attached a lower probability to H, than to H;, despite the lower objective frequency of the latter.
Our model accounts for this phenomenon as a shift from Panel A to Panel B. Intuitively, instances
of H; = “words ending with _ing” share many features, such as being gerunds, denoting similar
activities, etc, which makes it easy to bring many examples to mind. In contrast, H; = “words

2

ending with n_” additionally includes many words which do not share these features (and which
often do not share many features with each other). This reduction in self-similarity makes it harder
to recall words in Hy, even though it is a superset of H, .

Finally, Panel C plots #(H,) for the case in which the alternative hypothesis H, is
partitioned into subsets H,, and H,,, that is, when the self-similarity of hypothesis H, is increased
relative to that of H; (Proposition 4). Compared to Panel A, the estimation curve for H; drops,

potentially turning its overestimation into underestimation. Several famous studies show such

“partition dependence” of beliefs, whereby the probability assigned to an event decreases if its

10 In the appendix, we provide evidence that recall is strongly correlated with a measure of subjective uncertainty.
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alternative is partitioned (Benjamin 2019).!" In Tversky and Koehler’s (1994) “Support Theory”,
this phenomenon arises because people evaluate events using a sub-additive “support function”.
In our model, partition dependence comes from similarity in recall.!?

With similarity-based sampling, the DM evaluates a hypothesis by selectively retrieving
instances of it, but in doing so finds it hard not to think about the alternative hypothesis. Such
interference reconciles well known biases such as smearing of probability judgments toward 50:50,

underestimation of rare events that are not cued, and availability effects in which the normatively

irrelevant content of hypotheses and their description affect judgments.

3.2 Biases due to Interference from Irrelevant Experiences

So far, interference from irrelevant data was ruled out by our assumption that the database
E coincides with the relevant data H = H; U H,. Suppose, however, that the DM must now
condition H; and H, on data D, which identifies a subset D c H. Now irrelevant experiences in
D = H\D can interfere provided that they are similar to those in D. We next show that interference
from irrelevant data is crucial to understanding the effects of data-provision and conditional
expectations. In particular, it produces overreaction effects typically explained using the
representativenesss heuristic.

To gain intuition, consider our running example. The DM assesses the relative probability
of different causes of death H;, but he is now restricted to the set of young people, namely D =

“young.” For concreteness, the DM assesses deaths by H; = “accident” vs. H, = “sickness” among

' For example, Fischhoff et al. (1978) famously show that when assessing the cause of a car’s failure to start,
mechanics judges “ignition” more likely when alternative causes were partitioned into “ignition”, “fuel”, “other”.

12 In contrast to the disjunction fallacy, death by “pneumonia, diabetes, cirrhosis or any other disease” is estimated to
be less likely than death by “any disease” (Sloman et al. 2004). This is consistent with a natural extension of our model
in which atypical cues such as “cirrhosis” focus attention on a narrow subset, which interferes with the retrieval of
more common diseases. A similar pattern occurs in free recall tasks (Slamecka 1968; Sanborn and Chater 2016).
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the D = “young”. To do so, he separately thinks about the events in H; N D = “accidents among
the young” and H, N D = “sickness among the young”. The retrieval fluencies r(H; N D) and
r(H, N D) of these finer hypotheses are still captured by Equation (4), with the only difference
that now the relevant data is D instead of H and the irrelevant data is D instead of H. These recall
fluencies produce, following Assumption 2, a conditional probability estimate T(H;|D) that we
compare to the true conditional probability w(H;|D).

Crucially, as the DM thinks about causes of death among D = “young”, causes of death
for D = “older people” may interfere. To visualize this possibility, Figure 3 depicts the database

E, where the size of each region roughly corresponds to true frequencies.

H nD
Accident, Older

H,NnD
Accident, Young

H,nD
Sickness, Older

H,NnD
Sickness, Young

Figure 3: Visualizing conditional assessments

When thinking about H; N D = “accident among the young”, two forms of interference
are at work. First, in line with our prior analysis, memories of young people dying from sickness
(i.e. from H, N D) intrude, due to similarity among young people. Second, and crucially,

experiences of older people dying from accidents can also intrude from H; N D. This is
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interference from the irrelevant data D = “older”, which occurs due to the similarity along the
H, = “accident” dimension. The same holds when thinking about H, N D = “sickness among the
young”, which faces intrusion from “accidents among the young” and from irrelevant experiences
of “sickness among the older”.

The strength of intrusion from irrelevant data, here deaths among older people, depends on
the similarity between a cause of death and the irrelevant data. A key driver of this similarity is
the joint distribution of features: the greater the share of older people dying from sickness, the
more similar is sickness (relative to accidents) to deaths of older people, and hence the stronger
the interference from the latter. As we show next, this effect can significantly influence beliefs.

Formally, suppose that there are only two features, in our case the cause of death (accident
vs. sickness) and age (young vs older). The DM assesses the distribution of the first feature (cause

of death) conditional on a value of the other (young). Suppose furthermore that similarity takes the
functional form: S(e,e’) = & Zilf i_fill, so it decreases by a factor of § for each differing feature.
Proposition 5. For § < 1, the DM overestimates the probability of H, conditional on D, namely
(H.|D) > m(H{|D), if and only if:

7 (Hy| D) (D) + 8 (H, |D)m(D) < (D) 25”(13). ©9)

Overestimation is more likely when the true conditional probability w(H,|D) is low. This is due
to interference from the alternative hypothesis which, as shown in Proposition 3, favours H; when

it is relatively unlikely. Now, however, the conditional hypothesis is over-estimated also if its
frequency in the irrelevant data, n(H1 |5), is low. In this case, hypothesis H; is less similar to the

irrelevant data D than H,. It thus faces less interference, which promotes its overestimation.
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Consider how this works in Figure 3. Because H;= “accident” is a common cause of death
for the young (m(H;|D) high), interference from the alternative hypothesis promotes its
underestimation. At the same time, however, most older people die from sickness, not from
accidents ((H;|D) low). As a result, when thinking about young people dying from sickness,
many instances of older people dying from sickness intrude. This can cause overestimation of
H; = “accident” for the young, even if it is a likely cause of death for this group.

Intrusion of irrelevant data sheds light on Kahneman and Tversky’s (1973)
representativeness heuristic, including the so-called conjunction fallacy in the Linda problem.
Subjects are told that Linda was an activist in college, i.e. D = “activist”. Some subjects are asked
the probability that she is currently a H; = “bank teller”, others that she is a H; = “feminist bank
teller”. The striking finding is that feminist bank teller is rated likelier than bank teller.

According to Proposition 5, this occurs for two reasons. First and foremost, H; = “bank
teller” is much more similar to the group of D = “non-activists” than H] = “feminist bank teller”,
so it faces much more interference from irrelevant data. The similarity gap is due to the fact that,

among non-activists, there are many more bank tellers than feminist bank tellers, n(H1|5) >

n(H{|5). Second, H; = “bank teller” is likelier than H; = “feminist bank teller”, mw(H,|D) >
n(H;|D), which also promotes underestimation of H, relative to H;. Interference from both the
irrelevant data and the alternative hypothesis contribute to creating this conjunction fallacy.'?
More broadly, Tversky and Kahneman (1983) propose the following definition of
representativeness: “an attribute is representative of a class if it is very diagnostic; that is, the

relative frequency of this attribute is much higher in that class than in a relevant reference class.”

> 113

13 In the previous “availability” experiments on the share of words ending with “ n > vs “_ing”, there is also a
conjunction fallacy, but it is due to interference from the alternative hypothesis.

24



GS (2010) propose that the conditional probability m(H|D) is overestimated if the likelihood ratio

:E::; is high. In this formula, the irrelevant data D captures the “reference class” in Tversky and

Kahneman’s definition, with respect to which the “relative frequency” is computed. This
formalization is at the heart of Bordalo et al. (2018)’s model of diagnostic expectations.

Intrusion from irrelevant data offers a foundation for the reference class D and for the role
of m(H|D) in shaping the assessment of H conditional on D. When n(H |5) is low, the hypothesis
H is dissimilar to the irrelevant data D, which makes it easy to imagine the occurrence of consistent
experiences in H N D. It takes a small step to say that in this case “H is representative of D”. Our
model, through Equation (9), says that in this case m(H|D) is overestimated. This is in line with
the GS (2010) model, which also yields overestimation when n(H |5) is low. 4 Our approach
microfounds representativeness effects from memory, but also reconciles them with Kahneman
and Tversky’s (1973) broad intuition that similarity judgments affect beliefs.

One advantage of our approach is to identify limits to representativeness. When the true
conditional probability m(H|D) is high, intrusion from the alternative hypothesis is strong. Thus,
according to Equation (9), the conditional probability may be underestimated, even if w(H|D) is

low. This mechanism throws new light on the conflicting evidence of over and underreaction.

3.3 Underreaction and overreaction to data
Survey and field evidence documents conflicting distortions in the reaction of beliefs to

data. There is evidence that people over-estimate the probability of events in light of data

14 Bordalo et al. (2016) argue that people overestimate the share of red-haired people in Ireland because “red hair” is
much more common there than in the rest of the world. In the current model, when thinking about the hypothesis H,
= “red hair” vs H, = “dark hair” conditional on the data D = “Irish”, hypothesis H, faces strong interference from
many dark haired people from outside Ireland (belonging to D). H; is then overestimated because it faces much less
interference from D and because it is unlikely (there are few red-haired people even in Ireland).
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informative about them, a finding typically explained by the representativeness heuristic (e.g.,
Kahneman and Tversky 1973). But there is also evidence of under-estimation in similar situations,
which is often explained with inattention (Sims 2003; Coibion and Gorodnichenko 2012; Gabaix
2018). Memory, and in particular the two forms of interference studied above, can help reconcile
this conflicting evidence, yielding conditions as to when either phenomenon should occur.

To connect our model to this evidence, we define over and underreaction in terms of the
level of beliefs. We say that the DM overreacts to data D if: 1) D is objectively informative about
a certain hypothesis H;, i.e. m(H;|D) > m(H;), and 2) the DM overestimates that hypothesis, i.e.
(H;|D) > m(H;|D). The DM underreacts otherwise. This definition captures the intuition of
overreaction in many real-world settings in which the DM’s prior belief and the likelihood function
are unavailable, as in cases of stereotypes (e.g. red haired Irish), or the Linda problem.!?

To see our model’s implications, consider overreaction to data informative about H;. We

start with requirement 2). Using Equation (9), Figure 4 separates the regions of over and

underestimation of w(H;|D) in the space of true conditional probabilities (n(H1 |D), n(Hl |5))

1S When priors are measured and likelihoods are available, under and overreaction is often defined in terms of
sensitivities rather than levels, as is done in Grether (1980), i.e. in terms of the difference between the elicited prior
and posterior beliefs. For time series forecasts, a popular measure is the correlation between future forecast errors and
current forecast revisions (Coibion and Gorodnichenko (2012) and Bordalo et al. (2019)).
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Figure 4: Condition for underestimation and overestimation of conditional beliefs

Notes: The DM overestimates the conditional probability of H; given D, (H,|D) > m(H,|D), in the region
below the solid line. He instead underestimates it in the region above the solid line.

As m(H,|D) increases, we move vertically from over to underestimation of the hypothesis
H, conditional on D. This is due to interference from the alternative hypothesis, which lowers the
assessment of more likely hypotheses. As m(H,|D) increases, we move horizontally from over-to-
underestimation of the conditional hypothesis. This is driven by interference from irrelevant data.

Consider next requirement 2). In Figure 4, the region in which the data is informative about
H, corresponds to the area above the 45° line, where m(H,|D) > n(H1|5). 16 In this region, the
DM “overreacts” to D if he overestimates 7(H,|D), while he ‘“underreacts” to D if he

underestimates 71 (H; |D). Corollary 3 and Figure 4 describe these regions.

16 This is equivalent to m(Hy|D) > m(Hy), as n(Hy) = n(D) - nw(Hy|D) + (1 — (D)) - w(H,|D) is a convex
combination of m(H,|D) and w(H,|D).
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Corollary 3. Suppose that D is informative about Hy. If the true probability w(H,|D) is higher

than threshold T > 0.5, the DM underreacts. If t(H;|D) < &, the DM overreacts if t(H,|D) or

(H,|D) are sufficiently low, and underreacts otherwise.

1.0

B: Underreaction

0.8

A: Overreaction

n(H,|D)

0.4

0.2

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m(Hy|D)

Figure 5. Condition for underreaction and overreaction to data

Notes: This figure depicts the region of (n(H1|D), (H,| 5)) where the agent overreacts or
underreacts to data D, where D is diagnostic of H (m(H;|D) > m(H,|D)). Region A corresponds to
overreaction, region B to underreaction.

Whether over or underreaction prevails depends on the balance between interference from
irrelevant data, which promotes overreaction when m(H,|D) is low, and interference from
alternative hypotheses, which promotes underreaction when m(H; |D) is high.

Consider the different cases, starting with the situation in which overreaction can occur,
namely w(H;|D) < 7. The strongest case of overreaction occurs in the lower left corner of region
A in Figure 5, in which both forms of interference are low for H;, namely m(H,|D) and m(H,|D)

are both low. This case sheds light on base rate neglect. In Tversky and Kahneman (1974), people
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overestimate the chances that Steve, a “shy and withdrawn person with a passion for detail,” is a
librarian rather than a farmer, even though farming is a much more common occupation, especially
among men. Overreaction occurs not only because librarians are relatively rare (t(H;|D) is low),
but also because many librarians are shy and have a passion for detail, while comparatively few
farmers do (m(H,|D) is also low).

Overreaction is not a mere manifestation of base rate neglect, however, as it can arise even
if the hypothesis is quite likely, potentially even if w(H;|D) > 0.5. This occurs in the upper part
of region A. For instance, an investor may overestimate the probability that a firm has H, = “strong
fundamentals” if it has experienced D = “rapid earnings growth” or “rapid growth” for short. This
occurs provided firms with strong fundamentals mostly exhibit rapid growth, namely (H;|D) is
low. In this case, when thinking about firms with strong fundamentals, it is easy to recall examples
that have experienced rapid growth. At the same time, when thinking about firms with H, = “weak

fundamentals,” it is hard to recall examples that have experienced rapid growth, because weak

firms often produce D = “not rapid growth”. The DM overreacts because H;, although likely,
faces much less interference from irrelevant data than H,. As mentioned above, this logic for
overreaction offers a micro-foundation for diagnostic expectations.

Critically, however, the model also highlights two limits to overreaction. The first occurs
when interference from irrelevant data w(H,|D) is sufficiently high, for instance due to a weak
signal. Suppose that the DM judges the fundamentals of a firm and the data is not “rapid growth”
but rather D = “positive earnings surprise”. Clearly, firms with strong fundamentals may well
have negative earnings surprises, so (H;|D) is higher than in the previous example. When
thinking about these firms, many examples of strong-fundamentals firms with negative earnings

surprises come to mind and interfere, potentially causing underestimation of H; and hence
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underreaction.!” Thus, if D points to a fairly likely hypothesis, beliefs underreact to weakly
diagnostic data and overreact to sufficiently diagnostic data.!'®

The second limit to overreaction occurs when the true probability of H; is very high,
n(H.|D) > 7, due to extremely informative data or a concentrated prior. This occurs in the upper
left portion of region B of Figure 5. Here, H; suffers from very strong interference from H,, which
causes underreaction. This effect is consistent with the evidence for general conservatism or
aversion to extreme beliefs (Griffin and Tversky 1992; Benjamin 2019).

To summarize, similarity and interference in human recall naturally account for a range of
well-documented biases due to Kahneman and Tversky’s availability and representativeness

heuristics, and the evidence on under and over-reaction.

4. Experiments

We now assess our key predictions in two “pure recall” experiments in which we modulate
similarity and interference by exogenously varying subjects’ databases and cues. Experiment 1
studies the role of interference from the alternative hypothesis. Experiment 2 studies the additional
role of interference from irrelevant data. Subjects in both experiments first go through a controlled
set of experiences in which they see a series of images, and then make a probabilistic assessment
about them. To do so, they only need to recall the images they saw earlier. Relative to conventional
designs, which provide subjects with statistical information (e.g., Edwards 1968; Enke and

Graeber 2020) or ask hypothetical questions about naturalistic situations (Kahneman and Tversky

17 For a given objective probability w(H;|D), underreaction occurs when the signal is sufficiently weak that in Figure
4 we move horizontally from the upper part of A to the lower part of B.

13 In our model the relative strength of intrusion from irrelevant data is stronger when the data D is rare, namely when
7 (D) is small compared to (D), see Equation (4) and (9). This fits the intuition of stronger overreaction for small
populations, such as those of the Irish or of firms exhibiting strong growth.
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1973), our approach i) allows us to control the memory database, ii) avoids anchoring to given
numerical probabilities, and iii) enables us to measure recall of specific experiences, and thus to
assess whether recall and probability estimates go hand in hand.

Subjects were recruited among Bocconi University undergraduates enrolled in the
experimental economics email list. They could participate in both experiments, which occurred
four months apart from each other (recruiting for each was conducted separately). Participants
completed the experiments remotely due to Covid restrictions. They earned a 4 euro Amazon gift
card, and could earn a 2 euro bonus if their answer to one randomly chosen question was within 5
percentage points of truth. If the randomly chosen question was a free recall task, each
correctly/incorrectly recalled word increased/decreased subjects’ chance of winning the 2 euro
bonus by 10 percentage point, and each incorrect word reduced their chances by 10 percentage
points (of course, their chances could not go below zero or above 1).!” Experiments were pre-
registered, including hypotheses and sample sizes, on the AEA RCT Registry, with ID

AEARCTR-0006676. Appendix B provides more details about both surveys.

4.1 Experiment 1: Testing Interference from the Alternative Hypothesis
Participants see 40 words, some of which are animals and some are not, in a random order.
In three treatments they are then asked the following question:
“Suppose the computer randomly chose a word from the words you just saw. What is the percent
chance that it is....
an animal? %

anything else? %”

1% The bonus provides sharp and easily understood incentives, as compared to other schemes such as binarized
scoring rules, which have been shown to distort truth telling (Danz et al., 2020).
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The two probabilities must add up to 100%. Afterward, participants are asked to list up to 15
animals and then up to 15 other words that they remember seeing. In a fourth treatment, we change
the formulation of the question in a way we describe below. In all treatments, all exhibited words
are relevant to answering the question. Thus, there is no interference from irrelevant data.

We next describe three predictions from the model and four treatments that allow us to test

them. The predictions are:

Prediction 1: Memory creates a tendency to overestimate cued unlikely hypotheses, and
overestimation is stronger for rarer hypotheses. (Proposition 3)

Prediction 2: Holding objective frequencies constant, the assessed probability of a hypothesis
decreases when its alternative is more heterogeneous/less self-similar. (Corollary 1)

Prediction 3: Holding objective frequencies constant, the assessed probability of a hypothesis

increases if its alternative is partitioned into two more self-similar subsets. (Proposition 4)

The treatments to test these predictions are:

T1: 20% of the words are animals. 80% of the words are names (half male and half female).

T2:  40% of the words are animals. 60% of the words are names (half male and half female).

T3:  40% of the words are animals. The remaining words do not belong to any common
category, and hence are very dissimilar to one another.?°

T4: The distribution of words is as in T2, but subjects are asked about the probability of

animals, men’s names, and women’s names. Assessments must add up to 100%.%!

20 These words were chosen using a random word generator, eliminating words that we deemed too similar to each
other (e.g., Mayor, Elected, Town).

2! In the free recall task, participants are also asked to list up to 15 examples each of animals, men’s names, and
women’s names (so, three total recall tasks).
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These experimental treatments are summarized in Table 1 below.?

Comparing T1 and T2 offers a test for Prediction 1: we should expect overestimation
fi(animal) in both treatments but especially in T1, when animals are objectively rarer. By
comparing T2 and T3 we can test Prediction 2: compared to T2, T (animal) should be higher in
T3, because the alternative hypothesis (i.e., non-animals) is very heterogeneous. By comparing T4
and T2 we can test Prediction 3: because the alternative to animals in T4 is split into two more
self-similar sub-hypotheses (men’s names and women’s names), T (animal) should be lower in
T4 than in T2. Lastly, the treatment effects on the recall task should mirror those on 7t (animal).
This is not necessarily due to a causal effect of recalled examples on probability estimates, but

may rather reflect the fact that both outcomes are products of retrieval fluency.

22 In addition to treatments T1-T4, we ran a treatment T5, where we replaced women’s names in T1 with ocean animals
(e.g., “Shark”, “Starfish”, “Dolphin”, etc.). Participants are then asked the probability of “Land Animals” (in T1, all
animals are land animals) and “Anything else.” In the recall task, participants are asked to list examples of “land
animals” and “other words” that they recall seeing. By increasing cross similarity S(H,, H,), this treatment should exert
an ambiguous effect on assessments, but it should reduce the ability to recall examples of H;= “Land Animals”.
Though the recall data appear consistent with this hypothesis, there was an unexpected confusion about what counted
as a land animal: over a quarter of respondents list at least one ocean animal in the free recall task when asked to list
land animals. For comparison, no respondents list names when prompted to recall animals in T1. We are therefore less
confident in the data from T5 and exclude it from the main analysis. The Appendix describes this issue and the results
from this treatment in greater detail. Our main results in Section 4.5 and 5 hold qualitatively if we include T5.
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Table 1: Treatments in Experiment 1

Treatment Sample Size Distribution of Images Examples Elicited Belief

Lion, John, Moose, Rat,
20% Animals, 80% P(Animal) vs
T1 N =244 Margaret, Deer, Edward, Nancy,
Names P(Other)
Wolf...

Paul, John, Moose, Rat,
40% Animals, 60% P(Animal) vs
T2 N=244 Margaret, Deer, Laura, Nancy,
Names P(Other)
Edward...

40% Animals, 60%  Lion, Sled, Moose, Rat, Pure, P(Animal) vs

T3 N=241
Heterogeneous Deer, Half, Good, Wolf... P(Other)
Lion, John, Moose, Rat, P(Animal) vs
40% Animals, 60%
T4 N=234 Margaret, Deer, Edward, Nancy, P(Men) vs

Names
Wolf... P(Women)

4.2 Experiment 1 Results
Figure 6 shows the treatment effects. Panel A reports the over-or-underestimation of #(animal)

compared to the truth. Panel B reports the share of animals among all recalled examples.?

B Throughout the analysis to follow, we look at treatment effects on the number of correctly recalled words. About
18% of the answers to recall questions (which were free text entry) are not in fact words that were shown to
participants, or are words corresponding to other hypotheses. Unless otherwise noted, results look very similar if we
instead use the number of recall entries (regardless of whether they were correct or incorrect) for a category.
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A. Mean Belief of P(Animal) Minus Truth B. Fraction Animals Recalled
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Figure 6: Results from Experiment 1

Notes: This figure shows mean belief of the probability of animals (Panel A) and the mean fraction of recalled
words that were animals (Panel B) in Experiment 1. Bands show 95% confidence intervals. The distribution of
words for each treatment are: 77: 20% Animals, 40% Men’s Names, 40% Women’s Names, 72: 40% Animals,
30% Men’s Names, 30% Women’s Names, 73: 40% Animals, 60% Heterogeneous words, 74: 40% Animals,
30% Men’s Names, 30% Women’s Names.

Consistent with Prediction 1, there is a tendency to overestimate 7 (animal), especially in
T1 where animals are only 20% of words: overestimation of animals (that is, mean belief minus
truth) is 2.5 percentage points (pp) in T1 and 1 pp in T2, and only the former is significantly
different from zero at conventional levels (p < 0.01 and p = 0.10, respectively). Furthermore, the
overestimation in T1 is marginally statistically significantly different from that in T2 (p = 0.09).

The result of T3 is striking: consistent with Prediction 2, when we replace people’s names
with heterogeneous words while keeping the true frequency of “animal” constant at 40%, the
overestimation of 7(animal) increases from 1 pp in T2 to 12.7 pp in T3 (p < 0.01). There are two
key messages here. First, overestimation depends not only on actual frequency but also on how
self-similar the alternative hypothesis is. Second, this effect can dominate attenuation to 50:50: in
T3, i(animal) overshoots 50% (p = 0.01). Interference in recall emerges as a powerful force in

probabilistic assessments.
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Finally, when partitioning “non-animals” into the finer sub-hypotheses “men’s names” and
“women’s names” in T4, the assessment 7 (animal) falls by 2.1 percentage points compared to
T2 (p = 0.013). In T4, 7i(animal) is underestimated relative to the truth (p = 0.060), while it is
overestimated in T2 and T3 (though only statistically significantly so in the latter). Similarity-
based recall implies that the more specific cues in the partition of H, can turn overestimation of
an unlikely hypothesis H; (as in T2) into its underestimation (in T4).

The treatment effects on recall, shown in Panel B of Figure 6, in each case mirror those on
beliefs. In T2, on average 54% of correctly recalled words are animals. Significantly fewer (40%)
of recalled words are animals in T1 (p <0.01), where there are objectively fewer animal words. In
T3, where non-animals are heterogeneous words rather than people’s names, this share is 66%,
significantly higher than in T2 (p < 0.01). Finally, in T4, where men’ and women’s names are

separated out, significantly fewer recalled words are animals (50%) than in T2 (p = 0.02).%*

4.3 Experiment 2: Interference from Irrelevant Data
Participants are shown 40 images, which consist of words and numbers, 20 of which are orange,
and 20 are blue.?® In all the treatments, participants are asked the following question:

“Suppose the computer randomly chose an image from the images you just saw. It is orange.

What is the percent chance that it is a word?”

24While the treatment effects on recall and probability are aligned qualitatively, the exact magnitudes need not align.
Indeed, the magnitude of the effect on recall seems to be greater than the effect on probability estimation. In general,
the explicitly recalled samples and the internal recall fluency used in probability judgments may not be the same.

25 All words in this experiment are related to time (e.g., “Second”, “Week”, “Duration”, etc.), although we do not
ask about word categories so this does not matter for the analysis.
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Participants must thus assess the probability 7(w|o) that an image is a word conditional on the
data that it is orange. Participants answer by clicking on a slider that ranges from 0% to 100%.%¢

In this experiment, a subset of experiences — blue words and blue numbers — are irrelevant
for assessing the hypotheses, which concern the distribution of orange images. Crucially, as
subjects try to recall orange words (numbers), the irrelevant blue words (numbers) may come to
mind and interfere. This is interference from irrelevant data. Of course, interference from the
alternative hypothesis is also at play: when thinking about orange words, orange numbers may also
come to mind, causing smearing toward 50:50.

As in Proposition 5, when assessing 7 (w|o), interference from the irrelevant blue words
increases in the true probability that a blue image is a word, w(w|b), while smearing towards 50:50
increases as the true probability that the orange image is a word, m(w|o), gets further from 0.5.

To identify interference from irrelevant data, in what we call a Neutral treatment, we fix at
50% the share of orange images that are words, m(w|o) = 0.5. We then vary the distribution of
irrelevant blue images across three sub-treatments. In sub-treatment NL, no blue image is a word,
m(w|b) = 0, so all blue images are numbers. Here the hypothesis “word|orange” faces no
interference from irrelevant data, while its alternative “number|orange” faces maximal interference.
In sub-treatment NM, 50% of blue images are words, m(w|b) = 0.5. Here the two hypotheses face
balanced interference from irrelevant data. In sub-treatment NH, all blue images are words,
n(w|b) =1, so “wordjorange” faces maximal interference from irrelevant data while
“number|orange” faces no such interference. Proposition 5 then predicts that 7(w|o) should be

overestimated in NL, correctly estimated in NM, and underestimated in NH.

26 The slider begins with no default, so that participants have to click somewhere on the slider and then move the
drag-able icon (that then appears where they first click) to indicate their answer.
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In the next set of treatments, we increase the correct answer m(w|o) above 50%.
Interference from the alternative hypothesis should then become stronger, promoting
underestimation of 7(w|o) for any given strength of intrusion from irrelevant data.

In the Intermediate treatment, 55% of orange images are words, T(w|o) = 0.55. We then
modulate interference from irrelevant data across two extreme sub-treatments: in sub-treatment IL,
no blue image is a word (m(w|b) =0), so interference from irrelevant data may cause
overestimation of 7(w|o) despite it being the likely hypothesis. In sub-treatment TH, all blue
images are words (m(w|b) = 1), so (w|o) should be underestimated.

Finally, in the Common treatment, 70% of orange images are words, creating even stronger
smearing toward 50:50. We again vary interference from irrelevant data: in CL no blue image is a
word (m(w|b) = 0), in CM, 30% of blue images are words (m(w|b) = 0.3), and in CH, all blue
images are words (m(w|b) = 1).

Table 2 summarizes these treatments.?’

2 We did not include an /M treatment due to sample size limitations.
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Table 2: Treatments in Experiment 2

Distribution of

Treatment Distribution Sample Sizes Elicited Belief
Irrelevant Data
. 0, =
50% Orange Words, NL: 0% Blue Words N=147
Neutral cpo _ P(Word | Orange)
50% Orange Numbers NM: 50% Blue Words N=146
NH: 100% Blue Words N=151
55% Orange Words, IL: 0% Blue Words N=158
Intermediate P(Word | Orange)
45% Orange Numbers IH: 100% Blue Words N=154
CL: 0% Blue Words N=154
0,
Common 70% Orange Words, CM: 30% Blue Words N=149 P(Word | Orange)
0,
30% Orange Numbers 1. 19004, Blue Words N =144

Notes: This table describes the treatments in Experiment 2. For all treatments, the L and H sub-treatments
consist of 0% and 100% blue words respectively. The Neutral and Common treatments also have an M sub-

treatment, which is 50% blue words for Neutral and 30% for Common.

4.4 Experiment 2 Results

Panel A of Figure 7 reports, for each treatment, the difference between the average

assessment 77(w|o) and the true fraction m(w|o) of orange images that are words. Panel B reports

the average number of orange words recalled by subjects in each treatment.

39



A. Mean Belief of P(Word | Orange) Minus Truth
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Figure 7: Testing Prediction 4

Notes: Panel A shows the average belief that the randomly drawn image is a word conditional on it being orange
minus the true conditional probability. Panel B shows the average number of correctly recalled orange words. In the
L treatments, all blue images are words. In the A Treatments, all blue images are numbers. In the M treatment when
70% of orange images are words (CM), 30% of blue images are words. In the M treatment when 50% of orange
images are words (NM), 50% of blue images are also words. Bands show 95% confidence intervals.

Consistent with our model, stronger interference from irrelevant data (higher m(w|b))
reduces the assessment 7(w|o) that an orange image is a word, across all treatments (p < 0.01 in

each case). When normatively irrelevant blue words are more numerous, interference in recall of
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orange words is stronger. Recall data in Panel B supports this mechanism: subjects recall fewer
correct orange words when w(w/|b) is higher.?®

Again in line with our predictions, overestimation of 77 (w|o) arises only if orange words
are sufficiently rare. In the Common treatments, when m(w|o) = 0.7, there is no overestimation
of T(w|o) even in the extreme case of m(w|b) = 0. Only in the Neutral and Common treatments
interference from the alternative hypothesis is sufficiently weak that 7(w|o) is overestimated if it
faces no interference from irrelevant data, 7(w|b) = 0.%°

In sum, Experiment 2 shows that, consistent with Proposition 5, the underestimation of a
likely hypothesis can be turned into overestimation if the recall of the alternative hypothesis faces
strong interference from irrelevant, yet sufficiently similar, experiences in the database. However,
as the hypothesis becomes too likely (see the Common treatments), it is again underestimated
because interference from the alternative hypothesis becomes very strong.

These results also shed light on over/underreaction to data. The data D = “orange” is
weakly informative about H;= “words”, formally, m(w|o) = m(w|b), in treatments NL, NM, IL,
CL and CM. Because in these treatments m(w|o) = 0.5, we are in the upper part of Region A of
Figure 5. Consistent with our model, the experimental results indicate that overreaction prevails
when “word|orange” faces no interference from irrelevant data (in NL, IL, CL), underreaction
prevails when the hypothesis is very likely and the signal is weaker (in CM), while beliefs are

close to Bayesian in NM. In the treatments NH, IH, CH, by contrast, the data D = “orange” is

28 This result, unlike the others in this section, looks different if we focus only on the number of words that participants
list in the recall tasks (as opposed to counting the number of correctly recalled words). Participants actually list more
words as being orange in high interference sub-treatments, though significantly fewer correct orange words. We think
that this occurs because it is much easier to guess words that may have been orange in treatments in which there are
more words overall. This issue does not arise in Experiment 1 (which occurred chronologically after Experiment 2)
because here we focus on categories for which it is difficult to incorrectly list a word as being in the wrong category.
2 These results cannot be explained by the fact that subjects misinterpret our request for P(Word | Orange) as asking
for either P(Orange) or P(Orange Word). If so, their answers should not depend on the distribution of blue words. If

they interpreted the question as asking for P(Word), the effect should be opposite to what we observe.
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informative of H, = “number”. Because in our treatments w(n|o) < 0.5, here we are in the lower
part of Region A, in which the data point to an unlikely hypothesis. Consistent with the model, in
these treatments we see overreaction for the rare H,= “number”, namely 7 (n|o) is overestimated
or equivalently 7 (w|o) is underestimated.

Overall, and consistent with Corollary 3, Experiment 2 shows that the varying strengths of
interference from the alternative hypothesis and from irrelevant data cause a switch from over to
underreaction to informative data, and these effects show up in actual recall patterns. Regularities

in selective memory unify different biases in probability judgments.

5. Noise

The model also yields novel predictions about “noise”, that is, variability in beliefs given
the same experiences and the same question (Kahneman et al. 2021). As shown in Proposition 2,
noise naturally arises from sampling variation in recall. We now study noise in the experimental
data and compare it with our model’s predictions. The results are for the most part correlational
but provide further, if suggestive, evidence that memory underlies the causal effects of Section 4.

Figure 8 pools the T2 and T3 treatments of Experiment 1, where the true distribution of
words includes 40% animals and 60% non-animals.>® There is substantial heterogeneity in beliefs
(Panel A) and in the fraction of recalled words that are animals (Panel B). Crucially, beliefs and
recall are highly correlated: respondents who recall relatively more animals estimate the
probability of drawing an animal to be higher, adding credence to our interpretation that beliefs

and free recall are both dependent on retrieval fluency (Panel C).3! Our recall measurement makes

30 Results look similar if we include the other treatments. We exclude the other treatments here because either the true
frequency or the question asked differs from the T2 treatment.

31 The simplest interpretation of Figure 8 is that the experiences randomly recalled when making probability judgments
later cue recall of the same experiences when asked to list exemplars. If so, probability assessments and free recall
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it unlikely that this correlation is mechanical: subjects are (separately) incentivized to correctly
recall up to 15 exemplars of each hypothesis, and anchoring to previously stated probability

estimates would require subjects to jointly adjust their specific recollections of every hypothesis.

A. Variation in Beliefs B. Variation in Animals Recalled / C. Linking Recall and Beliefs
of P(Animal) Total Words Recalled
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Figure 8: The relationship between recall of examples and beliefs

Notes: Panel A shows the distribution of beliefs about the probability of animals in Experiment 1. Panel B shows
the distribution of the number of animals recalled divided by the total number of words recalled. Panel C bins
the data by deciles of animals recalled divided by total number of recalled words (x-axis) and shows mean
beliefs of the probability of animals (y-axis) The dashed line shows the OLS line of best fit. Bands show 95%
confidence intervals. All panels restrict the data to T2 and T3.

Figure 8 is consistent with the connection between variability in recall and noise in

judgments. Our model makes further and finer predictions about this relationship.

Proposition 6:

1. The variance of i(H;) decreases in T, the total recall attempts for each hypothesis.

2. Ifi(H;) € [\/g —-2,3 - \/ﬂ the variance of i(H;) decreases in S(H;, H;) and S(Hj, Hj).

are correlated because the distribution of recalled experiences are similar in the two cases. Alternatively, there may
be individual-level differences in the subjective similarity of objects to a given cue, making it easier for some subjects
to recall certain exemplars for a given category than for others, which will also be reflected in probability assessments.
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First, the level of noise is negatively correlated with recall: as the number of recall attempts
T gets larger, the share of successes for each hypothesis converges to its expected value, resulting
in less heterogeneity. Second, if beliefs are not too far from 50:50, making hypotheses more self-
similar should reduce noise in assessment. This is intuitive: when hypotheses are more self-similar,
their recall is more successful, which increases sample size, in turn reducing the variability of
beliefs.3? Conversely, noise increases if hypotheses are less self-similar.

To assess the first prediction, Figure 9 shows the cross-sectional relationship between the
total number of words recalled and the conditional variance of the fraction of recalled words that
are animals (Panel A) and of beliefs (Panel B), pooling the four treatments of Experiment 1. We
view the total number of words recalled by a subject as a proxy for T (so subjects are allowed to
have different sample lengths). Consistent with Proposition 6, we see a negative and statistically
significant relationship in both cases (p < 0.01 for both). More sampling yields less variability in
relative recall of hypotheses and, correspondingly, in beliefs.?*** In Appendix B, we show that
another proxy for T—the time subjects spend answering the beliefs question—is also negatively

correlated with the variance both of the fraction of recalled animals and of beliefs.

32 The fact that average odds need to be sufficiently close to 50:50 highlights an important non-monotonicity in the
relationship between heterogeneity and noise: if the heterogeneity of a particular hypothesis is sufficiently high, its
likelihood will converge to zero, eventually reducing the level of noise. This is however not the case in our experiment,
in which probability judgments are far from corners.

33 To test the statistical significance for both dependent variables in Figure 9, we estimate by maximum likelihood a
model in which the mean changes linearly and the conditional variance changes multiplicatively in total number of
recalled words. The dashed curves in Figure 9 show predicted conditional variances from these estimates.

34 The negative relationship shown in Panel A of Figure 9 could in principle be partly mechanical—if a subject
correctly recalls all 30 words, it must be the case that 40% of them were animals. Note, however, that the recall task
occurs after the beliefs question, so subjects cannot consult their list of recalled words when forming their probabilistic
judgments. The negative relationship in Panel B is therefore not mechanical, and in any case we see a negative
relationship in Panel A even for participants who recall only a small fraction of the words.
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Figure 9: The Relationship between Recall and Noise

Notes: Panel A shows the sample variance of the fraction of recalled words that are animals (y-axis), conditional
on decile of total number of recalled words (x-axis). Panel B shows the sample variance of beliefs about the
probability animals, also conditional on decile of total number of recalled words (x-axis). The dotted lines show
predicted values from maximum likelihood estimates of a model where the mean of the dependent variable
varies linearly and the conditional variance multiplicatively in the total number of recalled words. Both panels
restrict the data to 77 and 73, where the true frequency of animals is 40%.

We can also exploit cross-treatment differences in similarity to test the second prediction
in Proposition 6. Recall that the hypothesis alternative to animals is much less self-similar in T3
than in T2 (where non-animals are all people’s names). Proposition 6 holds that decreasing
retrieval fluency for non-animals should increase variance in the relative recall of animals (i.e.,
recall of animals divided by recall of all words) and, therefore, raise the variance in beliefs. Figure
10 shows that, indeed, there is greater variance in the fraction of recalled words that are animals

in T3 than in T2 (p < 0.01) and correspondingly, greater variance in beliefs (p < 0.01).
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Figure 10: Treatment effects on Noise

Notes: Panel A shows the distribution of the fraction of recalled words that are animals in T2 (leftmost graph)

and in T3 (second graph to the left). Panel B shows the distribution of beliefs about the probability of animals
in the same treatments.

In sum, selective recall seems to be a promising avenue to think about systematic biases in

probability judgments and belief heterogeneity.

6. Conclusion

We have presented a model of memory-based probability judgments, whose two principal
ingredients are i) databases of experiences, and ii) cues that trigger selective recall of these
experiences. Recall is driven by similarity of the experiences to the cues, which include both
hypotheses and data. Similarity helps retrieve relevant experiences, but also invites interference
by allowing for experiences that are inconsistent with the hypothesis at hand (but sufficiently
similar to it) to come to mind. The central new insight is that a hypothesis is underestimated when,
compared to its alternative, it is more vulnerable to interference —because it is either more
heterogeneous, more likely, or more similar to irrelevant data.

This notion that probability estimates are shaped by content (as captured by feature

similarity) and not just by objective frequency accounts for and reconciles a wide range of
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seemingly inconsistent experimental and field evidence, including availability and
representativeness heuristics proposed by Kahneman and Tversky (1974), overestimation of the
probabilities of unlikely hypotheses, conjunction and disjunction fallacies in experimental data, as
well as under- and over-reaction to information. We tested several novel predictions of the model
using an experimental design in which we control both the memory database and the cues subjects
receive, and found strong supportive evidence.

The analysis in this paper opens the gates for many research directions, and in conclusion
we list three we find particularly promising. First, probability judgments can pertain to events not
yet experienced by the decision maker, such as forecasts of the future, or to events that are
described in terms of statistics or data generating processes (Benjamin 2019). Memory plausibly
plays a central role in these settings as well. With respect to forecasts, a significant literature in
psychology shows that the mental simulation of future events is intimately linked to memory
processes (Dougherty et al. 1997; Brown et al. 2000). People combine past experiences with
simulated ones (Kahneman and Miller 1986; Schachter 2009), with the ease of simulation also
driven by perceived similarity (Woltz and Gardner 2015). In this way, memory shapes forecasts.
In addition, individuals often have both statistical and experiential information, such as in the
literature on the description-experience gap in risky choice (Erev and Hertwig 2009). This research
suggests an interaction between the two sources of information in generating beliefs, where
statistical information may also act as a cue for retrieving semantic content from memory.

Expanding the model may also lead to new predictions. One important direction is to better
understand the drivers of retrieval, here summarized by a similarity function. Different people may
interpret the same cue differently, depending in part on differences in their experiences, on their

perceptions of similarity or attention to features of the stimulus, or on chance. The attention
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channel can be important. In an experiment with U.S. federal judges by Clancy et al. (1981),
judges adjudicated a set of hypothetical criminal cases with multiple attributes. The authors found
that different judges attended to different attributes of the case and proposed radically different
sentences. Such heterogeneous responses may naturally occur if a decision maker’s perceived
similarity depends on the range of experiences encountered in the past, or if these experiences
influence the mental model that the decision maker uses (Schwartzstein 2014).

Another theoretical extension concerns learning and its distortions. For example, in our
approach signals about an event prime recall of previous experiences of the event itself, which
may create a form of confirmation bias (Nickerson 1998).

Finally, our analysis focuses on the role of memory in probability estimates, but the
applications of cued recall based on similarity to belief formation are much broader. The principles
we described in this paper can be applied to many problems, including consumer choice,

advertising, persuasion, political positioning, product branding, and many others.
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Proofs

SUHHY:-1Hil — be the recall fluency for hypothesis

Proposition 1 Let r(H;) = S T 5o T, 7S (HD) o]

i = 1,2. Then:

N
w(H;) =r(H;) - 1=
gy + “;EZIZH’% m(H;) (D)+§((§“,§)) (D)

where m(H;) =1 — ﬂ(Hj) is the true probability of hypothesis i in D, (D) is the relevant share

1

of the database and n(ﬁ) = 1 — (D) the irrelevant one. Property 1 immediately follows from
the fact that S (Hi, Hj) < S(H;, H;). Property 2 immediately follows by inspection.

Proposition 2 Let r(H;) be the recall fluency of hypothesis i = 1,2. The sampling process implies
that, with samples of size T, the number of successes N; in recalling hypothesis i = 1,2 follows a
binomial B in(T r(H; )) Then, by the central limit theorem, one can take the following asymptotic

T;(H‘) =z;~N (O,r(Hl-)(l — r(Hi))). Then, noting that the odds in favour
of H; are equal to N; /N, we see that these follow:

approximations

A
N, T sy e |1 N LU <1)
— ~ ~ =zt ——< |z2z =

Ny r(H,) + % r(H) r(H)? (T? r(Hy) (T T

If T is large enough, given the distribution of z;, the following normal approximation holds:

Ny r(Hy) 1 [r(Hy)?
N_z - N (T(HZ) 7 (r(H2)4 . r(HZ)(l r(Hz)) + (H E r(Hl)(l - T(Hl))>>

which can be written in the form of Proposition 2.

ft(Hy)
ft(Hz)

m(Hy) _
Tt(H2)

Proposition 3 First, we prove that is monotonically increasing in w(H,): note that

n(H,) “(HZ)J“:E:;':;% M) ) . f(Hy) .
iy TS with m(H,) = 1 — m(H,). Taking the derivative of ——== with respect to

SR 2 (Hz)
1(H,) simply yields:
d T[(Hl)

m(H,) « S(Hy, Hyp) m(H)? + S(H,, ) (1 (Hl)) . (( SCH,, Hy) ) -m(Hy) + 1)

drn(Hy) — S(Hp, Hp) S(Hp S(H2: 2)
The first term is clearly positive. As 0 < w(H;) < 1, it suffices to show:

S(Hll 2) >
2 - -m(H)+1=>0
( S(Hy, Hp) '
e S(HuHz) o 0. (5 . SHiHz) _ .Y _
This is trivially true as S, Ay 2 > 0: (2 S, By 1) nm(H)+1=>-n(H;))+1=0. s
Hq
Second, the above expression shows that for 0 < w(H;) <1 and S(H,, H,) > 0, d:é:ﬂ) >
1

t(Hq) — m(Hy)
t(H2) m(Hy)

0, and thus we have strict monotonicity. Furthermore, for outof m(H;) # 0,1,

then we must have:
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( 1’ 2) ( 1, 2)
m(H) + o~ S(H,, Hy) n(H;) = m(Hy) +S(H2, H,) m(H,)

S(H1'H2)> ( S(Hy, H2)>
o|l-———<|n(H) =1 -~ |n(H),
( S(Hz, Hz) ( 1) S(Hl, Hl) ( 2)
Which implicitly defines *.

Finally, note:
S(Hq,Hp)

T(Ha)+g, 5y TCHL S(Hy,Hz) S(Hy,Ha)
fi(H,) > n(H;) © 22 >1<—>(1——1’2)1TH <( 12) H
( 1) ( 1) “(H1)+§E:1V:3 T(Hy) S(Hy,Hy) ( 1) S(H1,H1) m( 2)

Assuming that S(H,, H,) < S(H,, H,), the above is satisfied iff t(H;) < m*, as desired.

Corollary 1 The proof follows from the inspection of the expression:
S(Hll 2)
a(Hy) () ")+ gy T

R(H,)  m(H,) '1T(H1) + S;S((I:Il'—l_lilz)) m(H,)

Corollary 2 Let r(A4; H,) denote the probability of sampling event A when thinking about H,.
Then, the share of successful recall events for H, that fall in subset H,; € H, are:
r( Hyy; Hy) _ S(Hay, Hy)mw( Hay)
r(H,) S(Hy, Hy)m(Hy)
H; is undersampled relative to its true frequency if and only if S(Hy, H,) < S(H,, H;).

GiVen that. S(Hz,Hz) = S( H21,H2) 'T[( H21|H2) +S(H2\H21,H2)T[' (Hz\ H21|H2), thlS
condition can be written as S( H,q, H,) < S(H,\ H,1, H>).

In turn, note:
S( Hy,, Hz) = 5( Hyy, Hé)ﬂ( H21|H2) + S( Hyq, Hy\ H21)7T(H2\ H21|H2)
S(Hy\ Hy1, Hy) = S(Hyy, Hy\Hy)m( Hyy |Hy) + S(H\ Hyq, Hy\ Hyy)w(Hy\ Hyy |Hy)

Thus, noting that S(4, B) = S(B, A), we have that S( H,,, H,) < S(H,\ H,4, H,) if and only if:

[S(Ha1, Hy1) — S(Hypy, Hy\ Hyy)] - m( Hyq |Hy)
< [S(H,\ Hapq, Hy\ Hpp) — S(Hyy, Hy\ Hyy)] - m(Hy\ Hpq|Hp)

If the events are equally self-similar, S( Hy1, Hy;) = S(H,\ Hy1, H,\ Hy1), given that self
similarity is larger than cross similarity, the condition holds if and only if mw( Hy;|H,) <
T(H\ Ha1 |Hy).

Proposition 4 Given two subsets H,; and H,,, with three hypotheses (H;, H,1, H,,) the recall
fluency of Hy, r(H,), is the same as when there are only hypotheses H; and H,. We then have:

by - S(Hy;, Hy)m(Hy;)
T( Zi) - S(Hzi;HZi)T[(HZi) + S(Hzi, sz)T[(sz) + S(Hzi,Hl)ﬂ(Hl).
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Denote S(H,;, Hy;) = S* and S(Hy;, H;) = S, which are by assumption independent from i = 1,2.
We can then write:
S*m(H,)

S* + S(Hyy, Hyj)]
2

1
r(HZi) = E [

n(Hy) + S,m(H,)
Given the symmetry of similarity, r(H,;) = r(H,;). As a result, the probability of successes in
sampling H,, namely the sum of successes in sampling H,; and H,, follows a binomial
distribution Bin(ZT, r(HZl)). As a result, when the hypotheses is split into the two subsets, the
average number of successes in recalling H, per attempt T is:
! S*T[(HZ)
r'(Hy) = "
[S* + S(Hyy, Hyj)]
2

n(Hy) + S,m(H,)
When the hypothesis is not split, we have:
S(Hy, Hy)m(H,)

S(H,, Hy)m(Hy) + S(Hy, Hy)m (Hy)'
which, given the assumption, S(H,, H;) = S(H,,, H;) = S, is equal to:

r(H,) = S(Hy, Hy)m(H,) .

S(Hy, Hy)m(H,) + S,m(Hy)

Because the two subsets are equally likely, it is immediate to find that w = S(H,, H,).
It then immediately follows that r'(H,) > r(H,) if and only if S* > S(H,, H,), which is
equivalent to S(Hy;, Hy;) > S(HZi, sz).

r(Hy) =

Proposition 5 See Appendix A2 for a proof of a more general result.

Proposition 6 We can work out the distribution of 7 (H;) starting from the characterization of the
odds in Proposition 2. Using the same logic of the proof of Proposition 2, for large enough T the
odds of H; relative to H; are distributed as:

2
N; r(H;) 1 [r(H)) 1
s JJ . jJ) . N1 — ' ' ' B '
N; r(H)'T \ r(H)* r(Hl)(l r(H‘)) + r(H,)? T‘(H]) (1 r(H]))
By applying the delta-rule on f(€) = 1+i+6 = ﬁ - (1+1x)2 € + 0(e?), where x = rr((zj)) is the

mean above and € is the Gaussian discrepancy from it, we find that 7 (H;) follows the asymptotic
distribution:

f(H) = ————~ N( r(H;) l T(Hi)zr(Hj)z ll -r(H) 1- T‘(Hj) )
i 1+ % T(Hi) + T(Hj)’T [T(Hl) + T(Hj)]4 T'(Hi) T'(Hj) .

4

The model thus predicts noise in ; = 7(H;) to be equal to be a function of recall fluencies:
2

1 rA?F (1—-1r, 1-71
ek (1o 3o
(ri4m) \ T i
where r; = r(H;). This can be written as:
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i'j

v(#) == j
oT (i +7)"
Clearly the expression fulfils v(7;) = v(ﬁj) =v(1-—1;).

ov(@;)

o < 0. For the second property, after some

To prove the first property, it is evident that
algebra one can find that:

ov(Tt;)
Til o6 7}2(1 - 4ri)+1‘l-1'j(47‘i - 3) - 4T'i2,
Define R = r; + ;. After some algebra one can find:
ov (T,
(@) x 1 —4f; — ft? — 47;(1 — 7;)?R.
ar;

A sufficient condition for the above derivative to be negative is obtained by imposing R + 0,
which yields:
dv (i)

or <0 if #;>V5-2,

which also yields:
dv (i)

o

<0 if #;<3—15.
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Appendix A2: Generalization of the conditional assessments result

In this section, we prove the result of the under-and-overestimation of conditional beliefs for
general similarity specification. In other words, the individual is assessing w(H, |D). For notational
simplicity, we shall denote the four sub-populations as follows: H;D,H,D,H;D,H,D, and we
shall use as a loose-hand S(4, B), where A, B € {H,D,H,D,H,D, H,D}, the similarity between
any two given sub-populations.

We assume for simplicity that the self-similarity of all subgroups is equal to 1, and (D) =
(D) Furthermore, we assume the following inequalities regarding the similarity between
subgroups:

S(H;D, H;D) > S(H;D,H_;D),

Where i = 1,2 and —i = 2, 1. To give an intuition behind this assumption, let us use the example
in the paper H; = “accident” and H, = “sickness” for D = “young” and D = “older”. The above
assumption is saying that the events that belong to the same cause of death among different
populations are more similar to each other than events that do not share the same cause of death
nor the population (e.g. a young death by accident is more similar to an older death by accident
than an older death by sickness). This assumption is not only satisfied in the set-up of Proposition

5, but also for general similarity functions that increase in the number of overlapping features.

Applying Proposition 2 yields the following:

i(H,|D)
t(H,|D)

_ n(H,D) [n(HyD) + S(H, D, Hy,D)m(H, D) + S(H,D, H,D)m(H,D) + S(H,D, H,D)n(H,D)
~ n(H,D) | (H.D) + S(H,D, H,D)(H,D) + S(H,D, H,D)m(H,D) + S(H,D, H,D)m(H,D)
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#(H4|D) /n(HlD)

Setting ¢ = #(H,|D) ! =(H,D)

as the distortion in the likelihood ratio, note that individuals
overestimate (H, |D) if and only if ¢ > 1. This occurs if and only if:
(S(H,D, H,D) + S(H,;D, H,D) — S(H,D, H;D) — S(H,;D, H,D))r(H,|D)
+ (1 + S(H,D, H,D) — (S(H,D,H,D) + S(H,D, Hlﬁ)))

> 2-(1—S(H,D, H,D))n(Hy|D)

Now, by our assumption on similarity, note that both coefficients on w(H,|D) and m(H,|D),
(S(H,D, H,D) + S(H,D, H,D) — S(H,D, H,D) — S(H,D, H,D)) , and (1—S(H,D, H,D)),

are positive. Consequently, this implies the following:

Proposition 5(General). For general similarity structure, one has overestimation of w(H;|D)
ceteris paribus if:
a) m(H,|D) decreases below a certain threshold

b) m(H,|D) decreases below a certain threshold
For the similarity function S(ey, e, ) =98 Zilfrii Iéil, the above inequality further simplifies to:

26 - (1 —nm(H,|D)) + (1 — &) > 2m(H,|D).

Rearranging gives the formula in Proposition 5.
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Appendix A3: Generalization to multiple hypotheses

In this section, we sketch out the extension of our model to the agent assessing multiple hypotheses.
In this case, we assume H;_; _; partition D, with E = D U D. We assume now that the agent goes
through the train of thought for each of the /] > 2 hypotheses. Then, the ease of retrieval for
hypothesis j is given by:

7T(Hi)
S(H, H, S(H;, D) =(D)
w(H;) + Z{jsti}gET,Hg m(H;) + S((Hi,Hi)) ZED%

r(H) =

Then, as before, the agent’s assessment of hypothesis is given by

Finally, regarding the generalization of Proposition 2 for | > 2 hypotheses, the result regarding the
mean follows from an argument regarding law of large numbers. Again, a small detail is to assume
that T — oo such that the probability of )., R;, = 0 becomes vanishingly small, holding J fixed.

Then, note that we have:

a(H) = R . r(Hj) +z;/NT
g Rj+ YkxjRe P T(Hj) + ks T(Hi) + Z—j/‘/T'

Where z; ~ N0, r(H;) (1 =7(H,)), z-; ~ N(0, Zws r(Hi)(1 = 7(Hy))).

The rest of the derivation proceeds similarly.
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Appendix B: Details of Experimental Design
In this section, we describe the design of the two experiments in greater detail. Both experiments
were pre-registered on the AEA RCT Registry, with ID AEARCTR-0006676.

Design of Experiment 1

Experiment 1 was conducted in March of 2021 among Bocconi undergraduates. We recruited
participants via email from the experimental economics listserv. Participants completed the
experiment online from home (due to Covid restrictions). They earned a 4 euro Amazon gift card
as an incentive to take the survey, and had the chance to earn an addition 2 euro bonus for correct
responses. The median respondent took less than 10 minutes to complete the survey. In total, 1,200
respondents participated in the survey (this sample size was preregistered), roughly 240 for each

of the five treatments.

Participants could choose to take the survey in either Italian or English, of which 19% chose the
latter. Both the text of the questions and the words in the memory task were translated according

to participants’ choice.

After a consent form, participants were told that the survey would include several questions for
which they could earn a 2 euro bonus for answering correctly. At the end of the experiment, the
computer would randomly choose one of these questions as the “Bonus Question” to base their

bonus on.
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Participants were then told they would be shown a series words, one by one in a random order,
which would take about a minute. They were told that the Bonus Question would be about these
images, and were therefore encouraged to pay attention. They then answered three simple

comprehension questions, with corrections for errors.

After the words, participants had to wait 10 seconds before proceeding to the questions. They were

encouraged to “Take a moment to reflect on the words you saw.”

They were then asked the probabilistic question about the percent chance that it fell into various
categories, as described in the main text. They were told that, if this question was chosen as the
Bonus Question, they would earn the 2 euro bonus if their answer was within 5 percentage points

of the right answer.

Participants then saw the confidence question asking they how certain they were that their previous

answers were within 5 percentage points of the right answer.

Participants then answered the free recall questions, which asked them to “please list up to 15
[category] that you remember seeing in the list of words we showed you. You do not have to fill
in all 15 lines.” If a recall question was chosen as the Bonus question, participants’ were told that
their “chance of earning the 2 euro bonus will increase by 10 percentage points for every correct
answer, and it will decrease by 10 percentage point for every incorrect answer you’re your chance

cannot go below zero or above 100%). Don’t worry about typos or misspellings.”

63



Participants were then asked a series of follow-up questions. The first asked about whether they
felt they paid more attention to the early, middle, or late part of the sequence of words (the large
majority say the early part). The next asked about whether they noticed that the words fell into any

categories and prompted them to write what categories they remembered seeing.

Next, they were asked if, when watching the words, they wrote any of them down or took a video
to refer to later. 13% report doing so, though excluding them from the analysis does not change
any qualitative results (though their overall performance on the recall task is, unsurprisingly, better

than average).

Finally the survey asked about native language, age, gender, and whether they found the survey
questions difficult or easy to answer and whether they found the instructions confusing or clear.
The majority found it difficult (by far the most common reason given in a free response is that it

was difficult to remember all the words) and 99% found the instructions very or moderately clear.

T5 treatment in Experiment 1

In addition to the treatments described in the main text, in Experiment 1 we also ran a treatment
called T5. T5 was identical to the T1 except we replaced women’s names in T1 with “ocean
animals” (e.g., “Shark”, “Whale”, etc.). Note that, in T1, all the animals were “land animals” (e.g.,
“Lion”, “Dog”, etc). In addition, instead of asking about the probability of the randomly chosen
word being an “animal” as in T1, in T5 the question asked for the probability that it was a “land

animal.” The free recall task in TS5 correspondingly asked respondents to recall up to 15 “land
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animals.” The purpose of this treatment was to increase the cross-similarity between the
hypotheses under consideration. In TS5, “Land Animals” and “Other” are arguably more similar
than “Animals” and “Other” in T1. According to our theory, this should reduce the ease of recall
of land animals in T5 compared to T1. Panel B of Figure B1 shows that, indeed, respondents

correctly recall fewer land animals in T5 than in T1.%

Panel A: Beliefs Panel B: Recall
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Figure B1: Beliefs and Recall in T1 vs T5

Notes: Panel A shows the average belief of the probability of (land) animals minus the true proportion in T1
and T5. Panel B shows the number of land animals and non-land-animals recalled in the free recall task in
these treatments. Bands show 95% confidence intervals.

However, there appears to have been significant confusion about what qualified as an “ocean

animal.” 27% of respondents list an ocean animal when asked to recall a land animal (in contrast,

35 Whether there should be greater ease of recall for the other category in T1 than in T5 depends on whether
men’s names and women’s names are more self-similar than men’s names and ocean animals. In fact we find
somewhat higher recall of non-land-animals in T5 than in T1 (p = 0.07), suggesting that if anything the opposite is
true. An alternative explanation, outside the model, is that ocean animals are simply more memorable or salient
than women’s names. Consistent with the effects on recall, beliefs about the probability of land animals are
slightly higher in T5 than in T1, though the difference is not statistically significant (point estimate = 1.8pp, p =
0.20).
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in T1, no respondents list a name when asked to recall animals), suggesting that this distinction

was less natural than we anticipated.

Additional Analyses of Experiment 1

Time as a Proxy for T

Figure B2 plots the relationship between the time subjects spent on the beliefs question (winsorized

at 100 seconds) and the sample variance of the fraction of recalled words that were animals (Panel

A) and of beliefs about P(Animal) (Panel B). We see a statistically significant (p < 0.01) negative

relationship in both cases.
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Figure B2: The Relationship between Recall Time and Noise

Notes: Panel A shows the sample variance of the fraction of recalled words that are animals (y-axis), conditional
on decile of time spent on the beliefs question (x-axis). Panel B shows the sample variance of beliefs about the
probability animals, also conditional on decile of time spent on the beliefs question (x-axis). The dotted lines
show predicted values from maximum likelihood estimates of a model where the mean of the dependent variable
varies linearly and the conditional variance multiplicatively in time spent on the beliefs question. Both panels
restrict the data to 7'/ and 73, where the true frequency of animals is 40%.

Recency Effects
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Figure B3 plots the probability of recalling an exemplar as a function of its chronological position

in the sequence.
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Figure B3: Primacy effect in Recall

Notes: Figure shows the proportion of respondents who listed a word in one of the free recall tasks (y-axis)
depending on the chronological order in which the word appeared to them (x-axis). The order of words was
randomized. Bands show 95% confidence intervals.

Consistent with existing work on memory (Kahana, 2012), there is a strong primacy effect
in recall, in which early experiences are likelier to be recalled than late ones. If retrieval from
memory reflects probability beliefs, then subjects who see many Animals early should have higher
subjective probability of Animals, and vice versa. Contrary to the literature’s finding, however,
we do not find a strong recency effect, or the tendency to recall the latest entries. Indeed, regressing
beliefs on the number of animals shown in the first 5 words shows that indeed those who happened
to be shown more animals first, controlling for treatment, report a higher probability for animals:

Pbelief (Animal) = Constant + .90 (.28) - # Animals in First 5 Words
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We take this to be further evidence of the role of recall in shaping beliefs.?¢

Relationship to cognitive uncertainty and beliefs

By linking probability beliefs to measurable recall, our model also speaks to research
connecting cognitive imprecision and uncertainty to probability judgments. Enke and Graeber
(2019) find greater attenuation to 50-50 for agents who report a higher level of subjective, or
cognitive uncertainty. The authors show that their results can arise from a Bayesian processing of
noisy cognitive signals — the greater the noise, the greater the subjective uncertainty and shrinkage
towards the prior mean. However, beyond its indirect impact on subjective uncertainty and
probability judgments, measuring cognitive noise remains an important challenge.

Our measurement of free recall in conjunction with probability elicitation provides a
complementary insight into the underlying determinants of cognitive uncertainty. If people’s
probabilistic beliefs are informed by sampling from memory, an important source of noise and
uncertainty can come from the inability to recall relevant data. To evaluate this approach, after
participants give their probabilistic beliefs (but before the recall tasks), we ask them how confident
they are that their answers are within five percentage points of the true answer (the threshold for
earning a bonus for accuracy). They respond by dragging a slider that ranged from “Very Uncertain”

to “Very Certain,” which we convert to a 0-100 scale.

36 We take these results to be somewhat suggestive. For example, we do not find the analogous impact on recall:
people who see a lot of animals at the beginning do not disproportionately remember animals. Second, our effect is
concentrated in participants who get 4 or 5 animals in the first 5 words.
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Figure B4: Confidence and Recall

Notes: This figure shows the average confidence in respondents’ belief of the probability of animals,
conditional on the total number of recalled words in the free recall tasks (binned by decile). Bands show 95%
confidence intervals. The dashed line shows the OLS line of best fit.

Figure B4 shows a strong positive relationship between the total number of recalled entries
and this measure of participants’ confidence. The red line shows the OLS estimate, which is highly
significantly positive (p < 0.001). To summarize, our exploratory analysis suggests a strong link
between recall and subjective uncertainty. Our suggestive findings are consistent with the insight
that failure to retrieve relevant information leads to higher subjective uncertainty: the limitation of

memory is an important driver of subjective uncertainty.

Design of Experiment 2

Experiment 2 was conducted in November 2020, also online with Bocconi undergraduates
recruited in the same was as Experiment 1. Participants earned a 4 euro Amazon gift card for

completing the survey, plus a possible 2 euro bonus for accuracy. As The median respond took
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about 9 minutes to take the survey. In total 1,203 respondents participated in the experiment,
approximately 150 per treatment. The pre-registered sample size was 1,200, though three

additional respondents completed the survey before we closed it.

The survey had the same design as Experiment 1, with a few exceptions. First, there were no
comprehension questions following the instructions. Second, respondents were told that there
would be 40 images, each of which would be either a word or a number and would be blue or
orange. After participants saw the words, there was not an enforced 10 second delay as in
Experiment 1 (in practice the median respondent spent 4 seconds on the transition page after the

images ended and before the questions about them).

After this, respondents were asked “Suppose the computer randomly chose an image from the
images you just saw. It is orange. What is the percent chance it is a word? Please indicate your
answer by clicking on the scale below and then dragging the slider.” A slider below this text went
from 0 to 100 (with no default starting value). The confidence question after this was the same as

in Experiment 1.

After this question (which is the primary question we focus on), respondents were also asked an
analogous question but assuming the randomly chosen image was blue. Finally they were asked
the same question but supposing they did not know the color. Both of these questions also included
a confidence question asking how confident they were that their answer was within 5 percentage

points of the right answer.
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Before the free recall question, respondents answered 4 questions of the following type: “Was X
[this word appeared in either blue or orange] (in blue or orange) among the images you saw?” We
chose 4 random words from the same list of time-related words but that were not among the images
the respondent had seen. Two of these words appeared in blue and two appeared in orange, in a
random order. If any of these questions was chosen to be paid on, the respondents earned the 2

euro bonus if they answered “no” (since this was always the correct answer).

The free recall question asked respondents to list up to 10 orange words that they remembered
seeing. They were told that, if this question was chosen for payment, their chance of receiving the
2 euro bonus would increase by 10 percentage points for every correct answer and decrease by 10

percentage points for every incorrect answer (though it could not, of course, go below zero).

Finally the survey ended with some questions including age, native language, how difficult they
thought answering question in the survey was, whether they found the instructions confusing, and
whether they experienced any technical issues. The survey also presented a multiple choice
questions asking respondents what, when they were viewing the images, they expected us to ask
of them. 58% responded that they expected to be asked to list specific words, 39% expected to be
asked to say how many images of different types (words, etc.) they saw, and only 17% expected

to be asked about the colors of words. 38% said they “did not have anything in particular in mind”.

Additional Analyses of Experiment 2
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In Experiment 2, all respondents are first asked the probability that a randomly drawn image was
a word conditional on it being orange. This question is the primary object of interest for our
analysis. However, after this question, we also ask the probability that a randomly drawn blue
image is a word and then the probability that a randomly drawn word unconditional on color is a
word. For completeness, we report the average beliefs for these questions here. We did not ask

corresponding recall questions for either blue words or for words unconditional on color.

Figure B5 shows the mean beliefs about the probability of words both conditional on blue (Panel
A) and unconditional on color (Panel B). Panel A shows that while mean beliefs about the
probability of words conditional on blue change dramatically between the H and L treatments, they
do not go all the way to 100% and 0%, respectively. This may be because respondents inferred
that we would not ask the question if the answer were trivial. When orange images are 50% words
in the NM treatment (meaning that blue images are also 50% words), the average belief of P(Word
| Blue) is 46.3 percent, lower than the truth (p = 0.01). For all other questions, the average belief
is attenuated toward 50%, consistent with our theory’s prediction that rare hypotheses should be

exaggerated.
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Figure B5: Other Beliefs in Experiment 2

Notes: Panel A shows the average belief of the probability of the randomly drawn image being a word
conditional on it being blue. Panel B shows the average belief of the probability of the randomly drawn image
being a word unconditional on its color. In the L treatments, all blue images were words. In the H Treatments,
all blue images were numbers. In the M treatment when 70% of orange images are words (CM), 30% of blue
images are words. In the M treatment when 50% of orange images are words (NM), 50% of blue images are
also words. Bands show 95% confidence intervals. Dashed lines show the correct answer for each treatment.
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In addition to the recall task described in the main text, in which respondents were asked to list
orange words that they recalled seeing, the survey also included a “misrecognition” task. In
particular, respondents were asked four questions, each asking them whether a specific word in a
specific color was among the images they saw. Two of the named words were blue, and two were
orange, and they appeared in a random order. In each case, the named word was not among the

images they were previously shown.

Figure B6 below shows the average number of blue and orange words that respondents erroneously
reported recognizing from the images they were shown. Overall, we do not see large or systematic
differences in the number of orange words mis-recognized across treatments. We do see large
differences across treatment in the number of blue words mis-recognized. This is perhaps less
surprising, as the frequency of blue words changed much more dramatically across treatments than

the frequency of orange words.
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Figure B6: Mis-Recognition in Experiment 2

Notes: Panels A and B respectively show the average number of blue and orange words that respondents
erroneously reported recognizing from the images they were shown. Bands show 95% confidence intervals.
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