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1 Introduction

To some, many cars might seem identical and all brands of cereal might seem as essen-
tially the same. The typical consumers of these products beg to differ and seem to be
willing to pay a premium to get the product they prefer. Indeed, most products are dif-
ferentiated, at least to some degree. Empirical studies of these industries need to take
this into account. However, modeling demand and supply in differentiated products is
challenging. The last 25 years have seen significant modeling advances that have allowed
industrial organization (IO) economists to make great strides in studying differentiated
products industries. In this chapter we review some of the models that have allowed this
progress.

The typical paper in this literature starts by writing down a model of demand. There
are several reasons the literature has focused on demand. First, in order to answer many
questions, for example the change in consumer welfare due to a merger, regulation or
the introduction of new goods and services, we need an understanding of consumers’
willingness-to-pay, and therefore the demand system. Second, and maybe most impor-
tantly, IO economists have used exogenous variation in demand conditions to estimate
costs parameters, and at times, the model of competition. If the demand function is
known then one can back out marginal costs implied by different supply models. In-
deed, one can go further and identify the model of supply. Finally, armed with estimates
of both demand and supply researchers can address not only a wide range of traditional
IO questions, but also questions in other fields such as health, finance, taxation, housing
and school choice, development, environmental policy and political economy and many
others.

The core logic above is similar to methods used in homogeneous goods industries
(Bresnahan, 1982, 1989). Indeed, the literature we review shares many characteristics
with the literature surveyed by Bresnahan (1989). Like the earlier literature, the papers
we survey will tend to focus on single industries and model the idiosyncrasies that make
each industry unique. Variation will usually be across “markets”, which are either de-
fined by a time series (i.e., the same industry over time), a cross section (usually across
different geographies), or panel data that combines both sources. Like the earlier litera-
ture, marginal costs are generally not going to be observed, and when needed they will
be inferred or estimated.

There are however a few differences between the literature we review and the earlier
literature. First, the newer literature will tend to focus on industries with differentiated
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products. Indeed, much of the effort will be focused on modeling the differentiation in
tractable ways. Second, for the most part there will not be an explicit “conduct parame-
ter” to characterize the supply side that will be estimated. Instead, the literature will tend
to focus on a small number of alternative supply models, in some case a single model.

Unlike some strands of the earlier literature, such as the “Structure-Conduct-Performance-
Paradigm” (Bain, 1951) or the ”New Empirical Industrial Organization” (Bresnahan, 1989),
this literature does not have a distinct name. Some might say that it is a direct extension
of the New Empirical IO, and therefore does not need a unique name, while others object
to that characterization. Either way, it seems like the literature has gone nameless because
it is viewed as synonymous with (modern) empirical IO. As such, the material we discuss
below is a basis for much of the research done by the IO profession as well as the chap-
ters that follow in this Handbook. We start our discussion in Section 2 with an example
from Bresnahan (1987) that studies competition in a differentiated-products industry: the
U.S. automobile industry. It might seem odd that we start the discussion of the modern
literature with a paper that is almost 35 years old. We do so for several reasons. This
paper provides a natural link between the recent and older literature. It also motivates
and highlights several modeling challenges the modern literature has needed to address
relative to the constraints imposed by the older literature. Finally, it offers an example of
how modern IO combines demand and supply to answer a central question, some might
say even the key question in IO, namely, the study of market power.

Having motivated why we care about demand estimation, we discuss in Sections 3
and 4 the canonical characteristics-based demand model and its estimation. We focus
mostly on estimation using aggregate, market-level, data, but also discuss micro data
(i.e., data where individual choices are observed) in order to gain intuition for the empir-
ical problem. These sections complement the treatment in Berry and Haile (2021), who
provide more conceptual backdrop to the model and deeper identification foundations
of it. The material also overlaps with Ackerberg et al. (2007) and Reiss and Wolak (2007)
who offer a more econometric treatment of some of the earlier papers, and Dubé (2019)
who offers a more theoretical discussion of demand models.

In Section 5 we turn from demand to supply and introduce the workhorse supply
model of Nash-Bertrand price competition as well as various extensions of it. Our dis-
cussion is a natural segue to some of the other chapters in this Handbook (e.g., Lee et al.
(2021)) that build on the modeling approach we discuss, extend it in various direction
and apply it to various questions economic questions. In Section 6 we introduce several
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extensions of the static differentiated product demand model presented earlier, including
the generalization to dynamic demand.

2 A Motivating Example

In this section we provide a motivating example, based on Bresnahan (1987).1 We have
several goals. First, this example helps motivate why IO economists are interested in
estimating demand. As we will show, knowing the demand function allows us to estimate
markups and test models of competition. Second, we believe that this example provides a
natural linkage to an earlier literature, reviewed in Bresnahan (1989), which studies some
of the same economic questions as we do, but in homogeneous good industries. Finally,
some of the basic ideas that are the foundation of more recent papers were laid out in this
paper. At the same time, the paper highlights, and allows one to appreciate, some of the
modeling contributions made by the more recent literature.

Bresnahan (1987) studies competition in the U.S. automobile industry in the mid 1950s.
He notes that in 1955 more autos were sold, and prices were lower, relative to 1954 and
1956. He asks why this was the case. Specifically, he asks whether the prices observed in
1955 were the result of a “price war”, i.e., a breakdown in collusion in this industry.

To infer the model of competition, he uses variation in demand conditions across dif-
ferent cars. The basic idea can be seen by examining Figure 2.1, which is a modified
rendering of Figure 2 in Bresnahan (1987). Each point in the figure represents a prod-
uct produced and priced by one of two firms, A and B. The vertical axis represents the
price/cost, and the horizontal axis represents the quality of the product. The labels on
the horizontal axis denote both the product number and which firm produces this prod-
uct. The solid line represents the marginal cost. Finally, the two dashed lines depict the
equilibrium prices under collusion and under non-collusive, i.e., competitive, pricing.

We note that marginal cost is increasing in quality and therefore under both pricing
models, price also increases with quality. The products are differentiated, so in both cases
the markups are positive. However, the markups are higher under collusive pricing. As
we will see later, this can be helpful in distinguishing between collusive and competitive
pricing in cases where we have as sense of what the markups are. The main feature of
the graph, and what we will use to distinguish between the pricing models, is in how
the markup differs with the proximity of competition. This is best seen by zooming in

1See also Bresnahan (1981).
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on products 2 and 3. Product 2 is priced by firm A and product 3 by firm B. In the com-
petitive outcome their markups are low, because neither is very differentiated from the
competition. However, in the collusive outcome their markups are closer to markups of
other products because the proximity to a product priced by another firm is not putting
any downward pressure on their own pricing. This suggests an experiment to distin-
guish competition and collusion: taking the location of products in characteristics space
as given, if markups do not vary enough with proximity to competition then we might be
able to reject a model of competition.

Figure 2.1: Intuition for Identification

Notes: This figure is a modified rending of Figure 2 in Bresnahan (1987). Each point is a product. The
vertical axis represents the price/cost, and the horizontal axis represents the quality of the product. The
labels on the horizontal axis denote the product number and the firm that produces this product. The
solid line represents the marginal cost. The dotted lines display the equilibrium prices under collusive and
under competitive pricing.

While the conceptual experiment of distinguishing between competition and collu-
sion in the above picture is clear, the key challenge is that several important constructs in
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the graph are unobserved from data on prices and quantities. In particular, marginal cost,
needed to construct the cost curve is not observed and therefore markups are unobserved.
Note, that observing higher prices is not sufficient to separate competition and collusion,
at least without further assumptions, since higher prices can be driven by higher costs or
higher markups. We also do not know in what order to place the products on the hori-
zontal axis, the distance between them, or for that matter whether a one-dimensional line
adequately describes the spacing of products. This too, is crucial for the above conceptual
experiment since it determines the closeness of competition amongst products.

To implement the conceptual experiment we need to estimate demand. Among other
things, this allows us to measure the proximity of competition, and jointly with a pric-
ing model to infer markups and marginal costs. This is what Bresnahan, and much of
the literature discussed in this chapter, does. For reasons that we will explain in the next
section, the approach that most of the literature has taken is to model a product as a bun-
dle of pre-fixed observed characteristics that determine both demand and marginal cost.
The parameters of the demand and cost functions will be identified from the variation
in the distance between products in characteristics space, which Bresnahan assumes is
exogenous, and how demand and pricing vary with this distance.

2.1 Model

We now discuss the specifics of the Bresnahan model to see how the conceptual ideas that
come out of Figure 2.1 can be implemented and to illustrate some of the modeling issues
and choices that need to be confronted.

2.1.1 Supply

Let f = 1, ..., F denote firms and j = 1, ..., J denote products operating in a single market
t. Assume that each firm maximizes profits over some subset, Jf , of the J products.
Further assume that production costs are given by fixed costs, FCj that vary by product,
and marginal cost, mcj , that vary by product as a function of its quality, but do not vary
with quantity (i.e., there are no economies of scale).

Let pj denote the price of product j, and bold face p denotes the J dimensional (col-
umn) vector of all prices in this market. We will treat prices as endogenous (i.e., deter-
mined inside of the model), but the quality of the product as exogenous (i.e., determined

7



outside of the model). The profits of firm f are given by

πf =
∑
j∈Jf

[(pj −mcj)qj(p)− FCj] ,

where qj(p) is the quantity sold of product j, which is a function of the prices of all the J
products.

Define an “ownership”, or conduct, structure as a J by J matrix, H , with elements
equal to

Hjk =

1, if ∃f : {j, k} ⊂ Jf ;

0, otherwise
j, k = 1, ..., J. (2.1)

The elements of H equal to either 0 or 1. A value of 1 means that the two products,
represented by the row and column indices, are priced as if jointly owned. This allows
us to nest various pricing models. For example, pricing by single-product firms will have
an identity matrix as the ownership matrix. At the other extreme, joint maximization of
profits from all products will have a matrix of 1’s.2 Thus different models of firm behavior,
such as whether firms compete or collude, map to different configurations of zeroes and
ones in the ownership matrix H. Finally, let Ω be a J by J matrix with elements given by
Ωjk = −∂qk/∂pj ·Hjk, where j indexes rows and k columns.

Using this notation we can write the first-order conditions of the firms’ profit maxi-
mization problem as

q(p)− Ω(p−mc) = 0,

where q and mc denote J-dimensional (column) vectors of the quantities and marginal
costs. This in turn, implies a pricing equation

p = mc+ Ω−1q(p). (2.2)

Assuming the existence of a pure-strategy Nash-Bertrand equilibrium in prices and that
the prices that support it are strictly positive, these first-order conditions characterize the
equilibrium. If we know the demand derivatives, which enter Ω, we can use this relation,

2For now we do not consider values between 0 and 1. We return to this later in the chapter.

8



together with observed prices to compute implied cost and markups

mc = p− Ω−1q(p) and p−mc = Ω−1q(p). (2.3)

In other words, for a given ownership structure, or model of competition, and using es-
timates of demand substitution, we are able to measure price-cost margins without ob-
serving cost data. Furthermore, we can compute these margins under different ownership
structures, i.e., different H matrices, which, as we will see below, allows us to test differ-
ent models of competition. This in essence formalizes the the conceptual experiments that
we demonstrated in Figure 2.1.

As we will see in the rest of this chapter, this supply equation can be used in a variety
of different ways.

2.1.2 Demand

The combination of a model of pricing and knowledge of the demand price derivatives al-
lows Bresnahan to recover margins without knowing cost data.3 A key question is how to
estimate the demand derivatives, or elasticities, given aggregate data on prices and quan-
tities across products in a given year. Bresnahan uses a specific discrete-choice model, of
vertical differentiation (Shaked and Sutton, 1983). In the next section we will discuss how
this model can be generalized.

Let i = 1, ..., I denote consumers. A consumer i gets (indirect) utility from product j
given by

νi · qualityj + yi − pj,

where qualityj is the product’s quality, pj is product j’s price, νi denotes the consumer’s
“taste” for quality, which can be viewed a willingness to pay for quality, and yi is the con-
sumer’s income. In this model, all consumers evaluate a product’s quality the same way,
i.e., products are vertically differentiated. However, consumers differ in their willingness
to pay for this quality and therefore consumers differ in the product they choose. As-
sume each consumer chooses exactly one of the J products or the outside option, of not
purchasing a product (a new car in this application). If a consumer chooses the outside

3The idea of recovering unobserved marginal cost from the information in demand elasticities and
the first-order conditions of the firm’s optimal pricing behavior dates back to Rosse (1970) and Bresnahan
(1981).
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option, they get utility that is a function of the quality and price of the outside option,
both captured by parameters that Bresnahan will estimate.

In this model, the only reason different consumers make different choices is because
they have different νi’s. Therefore, to compute aggregate demand one needs to compute
the set of ν’s that will induce a choice of each product and then integrate the mass in this
region to get aggregate demand. In the vertical differentiation model, the sets are defined
by cutoffs in ν. Namely, a consumer with a willingness to pay νi will choose product j if
ν∗j+1 > νi ≥ ν∗j , where products are ranked from the lowest quality (j = 1) to the highest
(j = J+1) and the cutoff ν∗j is defined as the ν of the consumer who is indifferent between
option j and option j − 1.4 This implies that the demand for product j = 1, . . . , J + 1 is
given by

qj = I[F (ν∗j+1)− F (ν∗j )],

where I is the number of consumers, and F (·) is the cumulative distribution function
of ν. Bresnahan assumes a uniform distribution U [0, Vmax] in which case the expression
for the cutoffs, aggregate demand and the own- and cross-price derivatives of demand
have simple closed-form solutions. For example, the cross-price derivatives of demand
are given by

∂qj
∂pr

=

I
[

1
qualityj−qualityr

]
r = j − 1, j + 1

0 otherwise
.

The price derivatives illustrate the restrictiveness of the demand model. Competition
is highly localized. Each product only directly substitutes to at most two products: the
product just above in quality space and the one just below (assuming these exist). This is
a very strong assumption, which is driven by the scalar restriction that products can be
placed along a one-dimensional quality measure.

For estimation, Bresnahan assumes that the quality of product j is a function of K
characteristics, x(k)j , k = 1, . . . , K, observed by the firms, consumers and importantly by

the researcher. He assumes that quality is given by
√
β0 +

∑
k β

(k)x
(k)
j , where (β0, . . . , βK)

are parameters to be estimated.
There are several assumptions baked into this setup. The obvious one is the functional

form of quality. More importantly, there is no heterogeneity in the coefficients, namely in

4For completeness ν∗0 = 0 and ν∗J+1 = Vmax, namely the upper bound of the distribution of ν, or infinity
if the distribution is unbounded.
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how consumers value the characteristics, and all the relevant characteristics are observed
by the researcher. Relaxing these constraints is a central focus of the literature that fol-
lowed.

2.2 Estimation and Results

Bresnahan estimates the model using annual U.S. list prices and quantity produced by
name plate. He abstracts away from manufacturer-dealer relations, negotiations in setting
prices and price dispersion within the year and across geography and consumers, and
further assumes that all cars produced are sold that year in the U.S. market. He also uses
information on the characteristics of cars.

He assumes that marginal cost is a parametric function of observed characteristics.5

Finally, he assumes that the observed prices and quantities, {pj, qj}Jj=1 are given by

pj = p∗j + εpj and qj = q∗j + εqj , (2.4)

where p∗(x;H, θ) and q∗(x;H, θ) are the equilibrium prices and quantities predicted by the
model, x is a (J × K) matrix of the characteristics of all products, θ is a vector denoting
the parameters of the model, εpj and εqj are i.i.d. zero mean normally distributed shocks.
Note that these errors are not part of the model and are best viewed as errors in the mea-
surement of prices and quantities. We will refer to this way of setting up the econometric
error terms, as non-structural, and sometimes refer to the error terms as “add-on” errors.
This is an area where the more recent research took a different approach.

He estimates, separately for each year, four different models using maximum likeli-
hood. The first three models are variants of the model described above where the own-
ership matrix takes on three sets of values: (i) joint ownership (he refers to this model as
collusion); (ii) current ownership (he refers to this as Nash); and (iii) single product own-
ership. He also estimates a model non-nested in the above where p∗j = exp[α0 +

∑
k αkx

(k)
j ]

and q∗j = exp[λ0 + λ1(Pj − P ∗j )].
He selects among the models in two ways. First, he uses a Cox test of non-nested

alternatives.6 The results of this test (presented in Table 3 of the paper) reject all but the
collusive model in 1954 and 1956, but in 1955 only the Nash model is not rejected.

5Specifically, he assumes that that mcj = µequalityj , where µ is a parameter to be estimated. Note, that
he does not allow for any unobserved factors to impact marginal cost.

6The likelihood ratio of the null and the alternative is the central statistic in this test. The mean and
variance are computed under the null and used to compute a test statistic that is distributed as a standard
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Second, he uses an informal test that compares estimates across years under different
models. This informal test confirms the results of the Cox test. If we use the collusive
model in 1954 and 1956 and Nash model in 1955 as the maintained assumption, then the
structural parameters are generally steady and robust (Table 4 in the paper). However, if
we keep the same model throughout the three years then the structural parameters vary
between 1955 and 1954/56 (Table 5 in the paper). In other words, we can explain the
change in 1955 in two ways: either the model of competition changed and the structural
parameters were generally unchanged or there was a break in 1955, relative to 1954 and
1956, in preferences and cost. The latter does not seem very realistic and therefore the
change in the model of competition seems like the reasonable explanation.

2.3 Discussion

Bresnahan (1987) offers a powerful method to infer demand and cost parameters together
with the model of (price) competition. The basic idea utilizes the intuition we saw in
Figure 2.1: taking the location of products in characteristics space as given, we can infer
the model of competition by seeing how markups vary as a function of the distance to
other products. Different models of price competition will predict different markups. We
can distinguish between different models of competition by matching patterns in the data
(as in the informal test), or by asking which model ”better fits” the data.

As we pointed out, the specific demand model used by Bresnahan is quite restrictive.
Competition is localized and is only between the immediate neighbors on the quality line.
There is limited heterogeneity in preference and all product characteristics are assumed
to be observed. Finally, the estimation is based on non-structural error terms, which some
view as the main limitation of this approach. As we will discuss in the rest of this chapter,
more recent work has built on the key insights above and relaxed several restrictions by
considering more flexible functional forms and being explicit about the structural errors
and the challenges they create.

3 Demand

As we saw in the motivating example in the previous section, demand plays a key role
in the study of supply: it can be used (jointly with a pricing equation) to recover unob-

normal. The test requires that either the null or the alternative be true. For alternative tests of non-nested
models see Vuong (1989) and Rivers and Vuong (2002).
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served marginal costs and markups or to test different models of supply. This has led
to a significant IO literature focused on demand estimation. In this section we focus on
static models of demand for differentiated products proposed in the literature. We start
with a discussion of the difficulties in estimating demand for differentiated products. We
next discuss the various solutions offered in the literature, with a focus on discrete choice
models.

3.1 Background

The empirical analysis of consumer demand has a long and rich history in economics and
econometrics.7 Since Stone (1954) researchers estimating demand systems have tried to
balance flexible functional forms and a connection to economic theory. Examples include
the Rotterdam model (Theil, 1965; Barten, 1966), the Translog model (Christensen et al.,
1975), and the Almost Ideal Demand System (Deaton and Muellbauer, 1980). Deaton
(1986) offers a comprehensive review of this literature. These models cannot directly be
applied to estimating demand for differentiated products. To understand why consider
the following.

Suppose we want to estimate demand for J differentiated products in market t. In
principle, the most straight-forward approach is to write down an aggregate demand
system of the form

qjt = Qj(pt,xt, ξt), j = 1, ...J, (3.1)

where qjt is the quantity demanded of product j in market t, Qj(·) is the demand function
for product j, pt is a J × 1 vector of prices, xt is a J × K matrix of (observed) variables
that shift demand, and ξt is a J × 1 vector of unobserved demand shocks. Note, that in
general quantity demanded of each product is a function of prices, observed variables and
demand shocks of all products. This approach, while intuitive, ends up being problematic
when modeling demand for differentiated products.

First, as the number of options, J , becomes large there is a dimensionality problem
due to the large number of parameters to be estimated. For example, consider a simple
linear demand system,

qt = Apt + ε (ξt) (3.2)

7See Schultz (1938) and Stigler (1954) for surveys of the very early work.
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where qt is a J×1 vector of quantities, A is J×J matrix of parameters and ε (ξ) is a vector
of econometric error terms, which are a function of the unobserved demand shocks in
equation (3.1). Note, that this stylized system is restrictive in several ways: prices enter
linearly, we omitted the dependence on the observable variables, xt, and imposed a strong
restriction of how the demand shocks, ξt enter the model (see Berry and Haile (2021) for a
discussion of this point). Even with these restrictions, this system implies J2 parameters
to be estimated. The number of parameters to be estimated can be somewhat reduced
by imposing symmetry of the Slutsky matrix and other constraints implied by economic
theory, but the number of parameters to be estimated is still proportional to J2, and too
large to be manageable for a large number of products. Of course, with a more flexible
functional form, the problem becomes worse.

Second, in some cases the key object of interest is not aggregate demand, but a model
of individual consumer choice: for some applications we would like to explicitly model
and estimate the distribution of heterogeneity. The above approach, generally, does not
let us do this.

Third, this demand system does not easily allow us to predict the demand for new
goods. Once we relate products to their characteristics we would be able, to some degree,
to predict the demand for new goods. How well we can predict the demand depends on
the importance of unobserved demand shocks.

Finally, estimating the above demand system usually faces several empirical prob-
lems. Prices of narrowly defined products typically are highly collinear, making it diffi-
cult to separately identify the price effects of individual products. This problem is aug-
mented once we have many prices on the right hand side, since we typically think that
prices are correlated with the error terms and therefore the numbers of required instru-
mental variables (IVs) increases. Finding a single IV is not easy, making it almost impossi-
ble to find enough IVs that are both exogenous and will not generate moment conditions
that are not nearly collinear.

Several approaches have been proposed to deal with these issues, largely by micro-
founding the preference structure that underlies demand. For example, a popular ap-
proach in the trade literature, which is helpful with the dimensionality problem, is to
impose symmetry across products in a representative agent’s preferences over products.
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A leading example of a model that imposes strong symmetry assumptions is the constant
elasticity of substitution (CES) demand model (Spence, 1976; Dixit and Stiglitiz, 1977).8

Another approach that is somewhat more popular in IO, yet still relies on demand
systems in product space, is the multi-level demand system proposed by Hausman et al.
(1994) and Hausman (1996). The model builds on ideas from the multi-stage budgeting
literature (see Deaton and Muellbauer (1980) for a discussion) to construct a multi-level
demand system for differentiated products. The typical implementation has three levels:
demand for an overall category (say breakfast cereal), demand for segments within the
category, taking category demand as given, and demand for brands within a segment,
taking segment demand as given. Each level allows for a flexible functional form. This
approach can somewhat help with the dimensionality problem but still suffers from the
other issues discussed above.

3.2 Discrete Choice Demand Models

The approach most commonly used in IO for estimating demand for differentiated prod-
ucts, and the focus of this chapter, views a product as a collection of characteristics rather
than qualitatively different products (Gorman, 1956; Lancaster, 1966; Rosen, 1974). The
basic idea is somewhat similar to what we saw in Section 2: substitution between prod-
ucts will be driven by their characteristics. Products that are similar in their characteristics
will be closer substitutes. To see how this helps with the dimensionality problem, we can
reconsider the linear demand system in (3.2). The matrix A will be a function of product
characteristics, and parameters, and therefore the relevant dimension is the number of
the characteristics, and not the number of products. The model also offers a natural way
to include additional (unobserved) characteristics that impact demand as well as demand
shocks more generally.

The specification of the model starts with a random utility, which is a function of
observed and unobserved (by the researcher) product characteristics, including prices.
We focus on a linear utility model and assume that the (conditional indirect) utility of

8This approach is rarely used in IO for the reasons discussed in Nevo (2011). Interestingly, this is despite
the similarities between the CES model and the Logit model (Anderson et al., 1992; Dubé et al., 2021), which
is heavily used and discussed below.
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consumer i, i = 1, . . . , It in market t, t = 1, . . . , T , from product j, j = 1, . . . , J9 is given by

uijt = xjtβit + αitpjt + ξjt + εijt, (3.3)

where xjt ∈ RK is a (row) vector of observed product characteristics, pjt ∈ R is the price
of product j in market t and ξjt ∈ R is a demand shock that is observed by consumers
and firms, but not by the researcher. As before, bold face, xt, pt and ξt will denote the
collection of xjt, pjt and ξjt across j within a market t. Finally, the model includes an
idiosyncratic taste shock, εijt, which captures randomness in choices: a consumer faced
with the same choice set (and prices) might make different choices at different times. ε
is typically assumed to be i.i.d. across (i, j, t) and most often specified as a draw from a
type-1 extreme value distribution (with a scale parameter normalized to 1), yielding the
Mixed Logit model (sometime referred to as ”random coefficients Logit model”).

Note that the utility from a product only depends on its own characteristics (and
prices). If the utility were to depend on the characteristics of all products then we would
be back to the dimensionality problem discussed in the previous subsection. Individual
choices, and therefore aggregate demand, will depend on the relative utility from prod-
ucts, and therefore the characteristics of all products (as in equation (3.1)). However,
restricting the way the characteristics enter utility (in a way that seems quite natural) will
allow us to write a model that is both consistent with equation (3.1) and reasonable to
estimate even with a large number of products.

An important part of this specification, and what distinguishes it from much of the
earlier discrete choice literature, is the unobserved characteristic, ξjt. This characteristic
captures unobserved characteristics of the product, factors that are difficult to quantify,
brand equity, systematic shocks to demand, or unobserved promotional activity. In work-
ing with market-level data this unobserved characteristic is essential to explain cross mar-
ket variation: as Berry et al. (1995) noted, without ξjt, if we compare actual to predicted
demand shares given the large number of consumers in a usual market, we will be left
rejecting the demand specification. The unobserved characteristic ξjt helps rationalize the
wedge between actual and predicted demand.

At this point it might not be clear why we need to separate ξjt from εijt: mathemati-
cally, ξjt is only shifting the mean of εijt, by j and t. However, we will assume that ξt is
observed by firms before setting market-level prices, while the individual realizations of

9To simplify notation, we assume each market has the same number of products J does not depend on
t.

16



εijt do not impact pricing. When estimating the model using market-level data, ξjt will
typically end up being the econometric error term and therefore prices, as well as other
choice variables, could be correlated with it.

From a modeling prospective, it is also important to recognize that ξjt does not vary
within a market. Empirically, one needs to define both the geographical and temporal
boundaries of a ”market.” For example, is a market defined as a city, state, nation, or the
world? Is each day, week, month or year a different market? The answers are application-
specific and need to account for institutional detail as well as data considerations.

The parameters αit and βit capture the relative weight that consumers put on price
and product characteristics. Let β(k)

it denote the weight consumer i puts on characteristic
x
(k)
jt . It is typically modeled as

β
(k)
it = β

(k)
0 +

L∑
l=1

β
(l,k)
d Dilt + β(k)

ν ν
(k)
it . (3.4)

Observe there are 3 elements composing a consumer i’s taste for a characteristic k. The
parameter β(k)

0 is common to all consumers. Heterogeneity in consumers’ taste around the
common taste components is modeled as a function of a set of L ”demographic” variables
(e.g. income, age, or family size), Dit = (Di1t, ..., DiLt)

>, as well as a random variable ν(k)it .
The differences between the demographic and random variables is that the demographic
variables are assumed to either be observed, or that their distribution is known or can be
estimated.

The usefulness of the above formulation is that it allows, in principle, to capture differ-
ent forms of heterogeneity. For example, a younger consumer might like cereal with more
sugar, while an older consumer might either not like sugar or have a weaker preference
for it. The random components, ν(k)it capture variation in preferences above and beyond
what standard demographics can explain.

The price coefficient, αit is modeled in a similar way

αit = α0 +
L∑
l=1

αlDilt + ανν
(0)
it . (3.5)

In some cases researchers might specify the price coefficient using logs to ensure that the
distribution of price coefficients is negative for all consumers.
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The specification of the demand system is completed with the introduction of an out-
side good: consumers may decide not to purchase any of the J inside products. The
indirect utility from this outside option, indexed as j = 0 is

ui0t = εi0t,

where the non-idiosyncratic part of utility from the outside good is normalized to zero.
Note, that the non-idiosyncratic part of utility for the inside goods should be interpreted
as being the incremental utility relative to the outside good.

In principle, the specification of the (conditional indirect) utility in equation (3.3) should
include not just price, pjt, but rather yi−pjt, where yi is income. Because of the (quasi) lin-
ear specification this has no impact: income enters linearly into utilities from all options,
including the outside good, therefore it will not impact choice probabilities since only the
difference in utilities matter for choice probabilities. In order to simplify the exposition
we dropped income out of equation (3.3). However, if yi−pjt enters utility non-linearly, or
interacted with other variables, income will not cancel and should be explicitly included.

For what follows it is useful to define

δjt = xjtβ0 + α0pjt + ξjt (3.6)

as the “mean utility” for product j in market t. Let Γ be a (K+1)×Lmatrix with the coef-
ficients of the demographic variables in equations (3.5) and (3.4), Σ be a (K + 1)× (K + 1)

diagonal matrix with the diagonal equal to (αv, β
(1)
v , ..., β

(K)
v ), and νit = (ν

(0)
it , ..., ν

(K)
it )>.

The consumer-level variation across this mean utility is captured by two terms. The first,
µijt = (xjt, pjt) · (ΓDit + Σνit), captures the interaction of consumer taste preferences and
product characteristics. The second, is the random term, εijt. Before we make any distri-
butional assumptions the two terms are interchangeable.

We assume that consumers choose a single option that gives the highest utility.10 This
allows us to derive purchase probabilities by integrating over the distribution of ε, and
market shares by integrating over the mixing distribution. For example, for Mixed Logit
and the specification in equations (3.4) and (3.5) the market shares are given by

sjt = σj(δt,xt,pt; Γ,Σ) =

∫
exp (δjt + µijt)

1 +
∑J

k=1 exp (δkt + µikt)
dF (Dit, νit). (3.7)

10In section 6 we discuss how we can relax this assumption and deal with situations when consumers
purchase multiple brand or multiple units of the same brand.
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where δt = (δ1t, . . . , δJt).

3.2.1 Price Elasticity and Substitution Patterns

To compute the market shares given by equation (3.7) we need the mixing distribution,
both the distribution function, F , and the parameters (Γ,Σ). The key to recognize is
that different mixing distributions will imply different patterns of substitution among
products.

Possibly the simplest assumptions we can make is to eliminate the interactions be-
tween the consumer attributes and the product characteristics (either by setting Γ = 0

and Σ = 0, or by assuming that the distribution F (Dit, νit) is degenerate). This restriction
yields the Logit model and the market share of brand j in market t, is given by

sjt =
exp(δjt)

1 +
∑J

k=1 exp(δkt)
. (3.8)

The Logit model is very tractable and can be estimated using linear methods. How-
ever, it significantly restricts substitution patterns. At a high level, it is the opposite of
the vertical differentiation model we discussed in Section 2. In the vertical differentia-
tion model competition is localized to just the immediate ”neighbors.” In the Logit model
competition is global and depends only on the market share, and not how close the prod-
ucts are in characteristics space.11 To see this consider the price elasticities implied by the
Logit model

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

{
α0pjt(1− sjt)
−α0pktskt

if j = k

otherwise
.

There are two patterns that emerge from these elasticities. First, consider the own-
price elasticities. Since we have many products, generally, the market share of any given
product is small, and therefore α0(1 − sjt) is nearly constant. Therefore, the own-price
elasticities are proportional to price: the lower the price, the lower the elasticity (in abso-
lute value). When these elasticities are used with the pricing model presented in Section
2.1.1 they predict a higher markup for the lower-priced products. This is a somewhat
surprising pattern, which nevertheless might be correct in some industries. The key is
not whether this pattern is correct or not but that it is driven completely by modeling

11In this sense the Logit model is similar to the demand models that impose symmetry. Indeed, as
Anderson et al. (1992) show, the Logit model can be formally represented with a representative agent utility
that is somewhat similar to the CES.
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assumptions and not informed in any meaningful way by the data. In other words, em-
pirically finding such a pattern using the Logit model is not a “finding” but rather a direct
implication of the modeling assumptions.

Second, consider an increase in the price of product k. We would generally expect that
consumers, who decide to no longer purchase the product because of the price increase,
will substitute to similar products. For example, if the price of a BMW sedan increases we
would expect consumers to substitute more to other luxury sedans than to, say, a Honda
Civic. In the Logit model this is not the case. The modeling assumptions imply that the
substitution to product j when the price of k increases is given by ∂sjt

∂pkt
= α0sktsjt. The

fraction of consumers who leave product k and switch to product j, also known as the
diversion ratio, is given by ∂sjt

∂pkt
/ ∂skt
∂pkt

= sjt/(1 − skt). In other words, the Logit modeling
assumptions imply that substitution, and diversion, is proportional to market share and
not to how close the products are. As before, this might be (approximately) correct in
some industries. The key, however, is that this pattern is totally driven by a modeling
assumption and is not informed by the data.

This property of the Logit model is closely related to the so-called independence of
irrelevant alternative (IIA) property of Logit: the relative probability of choosing product
k or product j does not depend on the existence (or characteristics) of other alternatives.
A similar property holds in the aggregate, namely that the relative market share sjt/skt
does not depend on the characteristics of other products. The behavior of individual
choice probabilities and market share are often confused as being the same, but they are
not. Once we allow for heterogeneity in consumer tastes, the IIA property could hold at
the individual level, but the aggregate property might not. This is the central value of the
mixing distribution F in the model - to allow for more flexible substitution patterns in
aggregate demand.

Why does the Logit model yield these predictions? Basically, it is the fact that the only
heterogeneity in the model are the i.i.d. εijt’s. So when the price of k increases, the con-
sumers who no longer choose k will choose the other options at the same frequency as the
“average” consumer, namely, in proportion to the market share. In reality, we think that
consumers who no longer choose product k are more likely than the average consumer
to choose similar options, as in the BMW example above. Another way of saying this,
in a model with heterogeneity in preferences the consumers who choose a product k are
selected and reveal something about their preferences. The i.i.d. assumption, implicit in
the Logit model, shuts off this selection effect.
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In order to capture richer substitution patterns we need to relax the i.i.d. assumption.
The variation around the mean utility has to be correlated across options: a consumer
who is more likely than average to buy a BMW should also be more likely than average
to buy a similar car. This can be achieved in one of two ways in the model. First, we could
generate the correlation by relaxing the i.i.d. assumption and allowing εijt to be correlated
across j.12 Alternatively, we could generate the correlation by allowing for heterogeneity
in tastes.

The Nested Logit model is an example of the first approach. As in the Logit model, we
continue to assume that µijt = 0, but now we divide the products into mutually exclusive
nests, or segments, g = 1, ..., G. Finally, let εijt = λεig(j)t+ε

1
ijt, where ε1ijt is an i.i.d. extreme

value shock, εig(j)t is a shock common to all options in segment g, and λ is a parameter
that captures the relative importance of the two. Assuming a particular distribution for
εig(j)t we get the Nested Logit model (Cardell, 1997). Note, that if λ = 0 we are back to
the Logit model. The Nested Logit model is a special case of the more general General-
ized Extreme Value model (McFadden, 1978, 1981), which imposes correlation among the
options through correlation in εijt.

A different solution to the problem with the elasticities is offered by the Mixed Logit or
random coefficients Logit, as described by equation (3.3).13 An early version of this model
was introduced by Boyd and Mellman (1980) and Cardell and Dunbar (1980), but popu-
larity today was triggered following Berry et al. (1995) and McFadden and Train (2000).
This model addresses both of the concerns with the elasticities by allowing for hetero-
geneity in preferences, which generates correlation in utility among products through
µijt. Thus, the heterogeneity in tastes for the product characteristics drives correlation in
utility over products.

In this model, assuming the distribution of heterogeneity is given by equations (3.4)
and (3.5), the price elasticities are

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

{
−pjt
sjt

∫
αitsijt(1− sijt)dF (Dit, νit)

pkt
sjt

∫
αitsijtsiktdF (Dit, νit)

if j = k

otherwise
(3.9)

12In principle one could consider estimating an unrestricted variance matrix of the shock, εijt. This,
however, reintroduces the dimensionality problem discussed above, since it involves estimating a number
of parameters proportional to J2.

13Note, an alternative view of the Nested Logit model is to include in xjt a nest dummy variable. By
defining the distribution of νi appropriately (yet leaving εijt i.i.d.) we are back to the Nested Logit, but
now the correlation is motivated through the interaction of a product characteristic, the nest dummy, and
heterogeneity in preference for this characteristic.
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where sijt is the probability that consumer i purchases product j in market t. Now, each
consumer has a different price sensitivity, which will be averaged to a product-specific
mean price sensitivity using the individual probabilities of purchase as weights, and
therefore the price sensitivity will be different for different products. So if, for example,
product j has lower prices and is more likely to be purchased by price sensitive con-
sumers, its average price sensitivity will be higher because the price sensitive consumers
will receive higher weights. Therefore, own price elasticities are not driven solely by
functional form, but by the heterogeneity in the price sensitivity across consumers who
purchase the various products.

The Mixed Logit demand model allows for flexible cross-product substitution pat-
terns, which are not constrained by a priori segmentation of the market (yet at the same
time can take advantage of this segmentation by including a segment dummy variable as
a product characteristic). In particular, as can be seen in (3.9), the correlation between µijt
and µikt will induce correlation between sijt and sikt, and the latter correlation determines
substitution patterns.

The modeling advantages of the full model do not come without a cost. It is signifi-
cantly more complex to estimate. Furthermore the key in achieving all of these benefits is
being able to estimate a meaningful degree of heterogeneity. We discuss these costs and
empirical strategies for approaching them in the estimation section below.

3.2.2 Consumer Welfare

A common application of demand models is to compute welfare gains. This could be
the main focus of the analysis or a side computation. For example, Trajtenberg (1989)
and Petrin (2002) compute the welfare gains from the introduction of new goods. Nevo
(2000a) computes the welfare implications of regulatory intervention, a merger in his case,
and Pakes et al. (1993) compute a price index. The model discussed above can be used to
compute welfare gains in these cases, by relying on the so-called inclusive value.14

McFadden (1978) defines the inclusive value (or social surplus) as the expected utility
prior to observing (εi0t, ...εiJt). The expectation needs to account for a selection problem:
the choice maximizes the utility given in equation (3.3) after observing (εi0t, ...εiJt). There-
fore we need to compute the expected value of utility conditional on selection. When the
idiosyncratic shocks εijt are distributed i.i.d. extreme value, the inclusive value from a

14For non-parametric methods for welfare analysis of economic changes in setting of multinomial choice
see Bhattacharya (2018).
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subset A ⊆ {1, 2, ..., J} of the choice alternatives is defined as

ωiAt = ln

(∑
j∈A

exp {δjt + µijt}

)
. (3.10)

Without heterogeneity the inclusive value captures the average utility in the population,
up to a constant, averaging over the individual draws of ε, hence the term social surplus.
When the utility is linear in price, or more precisely income minus price, the inclusive
value can be converted into a monetary equivalent by dividing by the price coefficient.
See McFadden (1981) and Small and Rosen (1981) for further details.

There are two somewhat distinct cases when we typically want to compute welfare.
In the first case we observe a series of quantities and prices and we want to summarize
them into a welfare measure. Nevo (2003) studies precisely this problem. A key issue that
he points out is that the normalization of the utility from the outside good to zero, which
is innocent for the purpose of estimating choice probabilities, is not purely a normaliza-
tion when we want to compute a price index over time. The issue is not that the utility
from the outside good is set to zero but that it is assumed to be constant over time. For
example, suppose that in the data we see the share of the inside products going up over
time. This could be because the price of the inside products decreased (or their quality
increased) or because the outside option got worse. These have opposing welfare impli-
cations. Assuming that the outside good is normalized to zero rules out the latter.

The second case is one where we use the model to compute a welfare gain from a
counterfactual outcome. Petrin (2002) is an example of such a case. He estimates the
welfare gains from the introduction of minivans. To do so he creates a counterfactual
outcome of what the equilibrium would have looked like without minivans. He then
essentially reverts to the first case and uses the model to summarize the welfare effects
from the (observed and simulated) price and quantities.15

The value of using the more flexible Mixed Logit model for welfare calculations differs
somewhat between these cases. In the first case, both the Logit model and the more flex-
ible Mixed Logit model will fit the market share data, as long as ξjt is allowed to vary by
market (including over time). One can show that the welfare measure will equal ln(1/s0t)

in the Logit model and
∫

ln(1/si0t)dF (Dit, νit) for the Mixed Logit model, where s0t is the
market share of the outside good and si0t is the probability of consumer i choosing the

15In principle, he could have used data from pre-introduction to conduct this analysis. This risks con-
founding the value of the introduction with other trends that are happening at the time.
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outside option. The Logit model will yield a different answer as long as there is hetero-
geneity in the probability of choosing the outside good. In many cases we care about the
change in welfare from period t to period t− 1, which is given by the difference between

ln

(
1

s0t

)
− ln

(
1

s0t−1

)
and

∫
ln

(
1

si0t

)
dF (Dit, νit)−

∫
ln

(
1

si0t−1

)
dF (Dit−1, νit−1).

Since both models perfectly fit the market shares, i.e., s0t =
∫
si0tdF (Dit, νit), the difference

depends on the change in the heterogeneity in the probability of choosing the outside
option, si0t. It is important to note that this difference can be positive or negative.

Things are a bit different in the second case. A common claim is that in this case the
Logit model overestimates consumer gains. For example, in the case of new product in-
troduction, the logic is that every new option introduced in the Logit model will mechan-
ically increase welfare because it gives the consumer another draw from the distribution
of ε. Since the chosen product is the option with the highest utility, the consumer’s utility
should increase with the availability of another option. The claim is that introducing het-
erogeneity decreases the ”reliance” on the Logit error term and therefore diminishes this
effect. Petrin (2002) argues the point empirically: when he introduces heterogeneity the
computed welfare effects from the introduction of the minivans decrease. To understand
what is driving these results we note that the exercise has two steps: generating a coun-
terfactual and then summarizing the counterfactual (and observed) prices and quantities
into a welfare measure. The first step is what largely generates the problem. The Logit
model does a poor job of predicting the counterfactual equilibrium. This should not be
surprising since we know that the Logit model does not do well at predicting marginal
changes (i.e., substitution) and therefore it should not be surprising that it fails to do well
in predicting non-marginal changes.

When we observe shares pre and post introduction (and ξjt can be different pre and
post product introduction), the Logit model can match the data. In this case any ”bias”
introduced by the first step, of generating the counterfactual, is eliminated. The Logit
model might still not give the ”correct” welfare measure, but that is due to problem dis-
cussed in the first case above where heterogeneity in the demand for the outside good is
ignored under the Logit model.16 This is confirmed by Berry and Pakes (2007) who offer
a model where εijt is dropped from equation (3.3), in a model they call the pure char-

16Nevo (2011) demonstrates this with the use of a classic example due to Debreu (1960) often called
the “red-bus blue-bus example”. He shows that the Logit model fails miserably in the first step of the
analysis, in generating counterfactual market shares, in that example. But if we could eliminate the first
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acteristics demand model.17 In principle, one would think that this would eliminate the
concerns raised by Petrin (2002) about εijt driving the welfare results. Instead, in their
Monte Carlo results they find that using the pure characteristics model matters for the
estimated elasticities (and mean utilities) but not the welfare numbers. They conclude
that, consistent with the results in Nevo (2003, 2011), ”the fact that the contraction fits the
shares exactly means that the extra gain from the logit errors is offset by lower δ’s, and
this roughly counteracts the problems generated for welfare measurement by the model
with tastes for products.” Ackerberg and Rysman (2005) propose to use historical data to
estimate how δ should change as a function of the number of products, in order to capture
the change needed to rationalize the post-introduction data (if it were observed).

4 Demand Estimation

We have seen above the important role played by heterogeneity in consumer preferences
for generating realistic patterns of product substitution and price elasticities. This flexibil-
ity comes at a cost: the more general model is more difficult to estimate. In this section we
discuss the empirical problem of identifying and estimating the parameters of the market
demand system with heterogeneous consumer preferences.

4.1 The Estimation Problem

The parameters to be estimated are defined in equation (3.7). They include (α0, β0) which
are the parameters in the mean utility defined by equation (3.6). For reasons that will
become clear below, we will refer to these as the “linear parameters.” Next, are the coeffi-
cients of the demographic variables in equations (3.5) and (3.4) captured by the matrix Γ

of dimension (K + 1)×L. Finally, the matrix Σ, a (K + 1)× (K + 1) diagonal matrix with
the diagonal equal to (αv, β

(1)
v , ..., β

(K)
v ), captures the idiosyncratic “taste for characteris-

tics.” Jointly, Γ and Σ will often be called the ”non-linear parameters.” The full parameter
vector to be estimated is θ = (α0, β0,Γ,Σ).

In estimation it is typical to treat the distribution of the idiosyncratic “taste for charac-
teristics” νit = (ν

(0)
it , . . . , ν

(K)
it ) as independent of the distribution of demographics Dit , In

step, of predicting the counterfactual market by, say, observing the market shares post introduction, the
Logit model can get the correct answer in that example.

17As we explained above, εijt help rationalize observed choices. Indeed, once we drop them the model
can in principle have difficulty rationalizing certain patterns of behavior. See Athey and Imbens (2007) for
a discussion of the potential problems with the pure characteristics model and an alternative model.
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other words,
F (Dit, νit) = FD(Dit)Fν(νit).

A further restriction often used in practice is to treat each ν(k)it as independent across k =

0, . . . , K and distributed standard normal. This is a strong assumption and not necessary
for identification and estimation, but is usually assumed in applied work. At the end of
this section we discuss some papers that relax this assumption.

The data used to estimate θ will generally have three types of variables. First, quan-
tities of the J products purchased in market t, which are an aggregation of choices made
by individual consumers.18 A market t is implicitly defined by a set of consumers facing
the same prices, pt, characteristics, xt and demand shocks ξt. Aggregate quantities can be
converted to market shares by making an assumption about the market size It, namely
the number of consumer who made choices, including the choice of the outside good. We
will then define observed market shares as sjt = qjt/It. In many applications we think
that It is sufficiently large so that we can ignore the sampling errors in these shares.19

Second, we will observe prices, pjt, and (”observed”) product characteristics, xjt, of
the J products in market t.20 We do not observe all the characteristics consumers observe,
but we assume that those that we do observe vary by market and/or product but are
common to all consumers in a market.21

Third, the data may contain information on consumer demographics Dilt. In micro
data, the actual Dilt will be observable. In other data sets the researcher may have access
instead to the distribution of demographics, Ft(D) (or have samples from it). At times
the researcher will have data that is more aggregated than the consumer-level, but also
less aggregated than the market level. For example, the average age of consumers who
purchase product j, or the shares by income.

18In some of the illustrations below we will assume that we observe individual choices, which is often
referred to as ”micro data”. Furthermore, some of the extensions discussed in Section 6 use micro data, but
we do not offer a complete treatment of estimation with micro data.

19At the end of this section, we will revisit the role of sampling error in market shares.
20In some cases the number of products will vary across markets t. For simplicity of notation we focus

on Jt = J .
21In rare cases, one might have characteristics data that varies by consumer. For example, different

consumers in the same market might pay different prices when transaction-level data are available. A big
issue with such data is that the price paid by a consumer for a purchased product might be observed but
data for products not purchased will rarely be observed and need to be imputed.
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4.2 What Variation in the Data Can Identify the Parameters?

In the subsection we provide intuition for what variation in the data allows us to identify
the parameters θ.22 Our goal is to use the logic of identification to motivate different
estimation strategies.

We start by assuming that we have micro data, on individual choices, from a single
market and we shut down part of the model by setting Σ = 0. We show that in this case
there is an intuitive two-step procedure for estimating the remaining parameters. This
procedure cannot be exactly replicated with market-level data but it provides us a road
map for estimation in the more general case. It also provides direction on the type of
variation that can identify Γ.

Next, we reintroduce the the random taste shocks, νit into the model (i.e., we do not
restrict Σ to be zero). We show that in order to identify Σ we need different variation than
what we use to identify Γ. To illustrate this point we assume we have market-level data
from a single market and show the identifying power of moment conditions interacting ξ
with IVs.

These simple cases, with data from a single market, are used for illustrative purposes.
We use the insight from each of the cases to develop a set of practices that allow the full
variation in the data to be leveraged to inform the estimation of θ. In the next section
we will bring together these pieces in a general estimation framework that encompasses
many of the procedures used in the literature.

4.2.1 Intuition from Individual-level Data

To gain intuition for the more general estimation procedure we start with a simple ver-
sion of the model and assume that we have individual-level data from a single model.
We have two goals in this discussion. First, we propose a simple way to estimate the pa-
rameters that will serve as a road map for the more general estimation problem. Second,
the discussion will allow us to examine the sources of variation needed to estimate the
different parameters.

Assume that we have data {yij, Di}i=1,...I , where yij = 1, for j = 0, 1, ....J if consumer
i chooses product j and

∑J
j=0 yij = 1. All the consumers are from a single market, in the

sense that they face the same prices and product characteristics, both observed, x and
unobserved ξ. It might seem impossible to estimate demand in this setting. We only

22For a more formal treatment of identification see Berry and Haile (2021) in this Handbook.
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observe a single snapshot of the market. How could we ever recover how quantities vary
with changes in prices if prices do not vary? The answer relies on exploiting variation
across households and across products to estimate the choice model, and then using the
choice model to compute substitution as we saw in the previous section.

For exposition purposes we shut off certain parts of the model defined by (3.3). Specif-
ically, we will assume that Σ = 0, namely that heterogeneity will only be driven by ob-
served demographics. Also, we will assume, for this subsection, the price pj is one of
the observed characteristics xj simply to ease the exposition. Given these assumptions
the conditional indirect utility from product j (dropping the subscript t since we have a
single market) is given by

uij = xjβ0 + ξj︸ ︷︷ ︸
δj

+
∑
k,l

β
(l,k)
d Dilxjk + εij. (4.1)

Note, that if we did not have ξj then we could estimate the parameters of the model,
(β0,Γ), by maximizing the likelihood of observing the choices in the sample as a function
of x and Di. The presence of ξ means that we need to modify the estimation somewhat.
Specifically, we can estimate the parameters of the model in two steps. In the first step
we include a product-specific intercept, that will capture δ, and absorb both xjβ0 and ξj .
In this step we estimate θ̃ = (δ1, . . . , δJ ,Γ) using maximum likelihood. This allows us to
”control” for the presence of ξ.

In the second step, we estimate β0 by “projecting” the estimated δ̂’s on the x’s. If
we assume that E(ξj|xj) = 0 we can use (weighted) least squares for this second stage.
Alternatively, if we are concerned that a subset of the x’s is correlated with ξ we can base
the second stage on

E(ξj|Zj) = 0, (4.2)

where Z are a vector of exogenous variables, which we will discuss further below.
Let us examine the two-step procedure sketched above in further depth. If we pa-

rameterize the model according to θ̃ = (δ1, . . . , δJ ,Γ), then it is fairy straightforward to
show the first-order conditions implies the maximum likelihood estimates of the product-
specific intercepts δj are found by setting the observed market shares, or average choice
probabilities, equal to the ones predicted by the model. Namely, ŝj = σ̂(δ̂1, . . . , δ̂J) for a
fixed value of Γ. Under quite general conditions (Berry et al., 2013) this relation can be
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inverted to yield
δ̂j = σ̂−1j (ŝ1, . . . , ŝJ) . (4.3)

As I →∞ the limit of this expression will be

δj = σ−1j (s1, . . . , sJ) j = 1, . . . , J,

which will play a key role in the estimation with aggregate data, which we discuss below.
It can be seen as the limit of (4.3), which comes from the first-order conditions of MLE.

Turning to the first-order conditions with respect to Γ, one can show that maximum
likelihood estimates of Γ are the ones that equate the observed and predicted covariance
between the demographic variables of those consumers that chose product j and the char-
acteristics of the product. In the limit, Γ is identified as the solution to the system of the
L(K + 1) equations

EPopulation
[
xkDl

]
= EModel

[
xkDl; Γ

]
. (4.4)

That is, Γ sets the model’s prediction about the covariance between each demographic
variable and the product characteristic of the chosen alternative equal to the population
counterpart. The MLE moment conditions are simply sample analogues to these limiting
moment conditions. As we will discuss below, the intuition gained from (4.4) can be
useful even if the researcher does not have consumer choice data.

Suppose we go back to the more general model and allow for unobserved heterogene-
ity in tastes for characteristics at the individual level. That is, we are back to equation
(3.3) where we have both sets of parameters Γ and Σ, and data from a single market.
To estimate this model we could consider the same two-step approach as above. The
first-order/moment conditions for (δ,Γ) derived above continue to hold. We also have
first-order conditions with respect to Σ, which look almost identical to the conditions
with respect to Γ. The difference is that it is not clear what is the counterpart of the data
covariance that the model is matching, since ν is unobserved. To put it slightly differently,
it is not clear what variation or moments in the data identifies these parameters.23

The answer for how to identify Σ when we observe data from a single market lies in
using the variation in the second stage moments defined in equation (4.2). In the next
subsection, we show how this moment helps identify Σ.

23If we observe multiple markets, we can use variation in the choice sets, if it exists, to identify Σ.
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4.2.2 The Informational Content of E[ξ | Z] = 0

In this subsection we show how the moment condition given in equation (4.2) provides
identifying power for Σ. For exposition purposes, we simplify the model further and
assume here that we do not have any demographic variables, Di, and therefore the choice
data is only used to compute aggregate market shares. We therefore can simply assume
that we observe market-level data. We assume that we have data from one market and
that the indirect utility is given by

uij = δj +
∑
k

β(k)
ν νikxjk + εij (4.5)

The question becomes what variation in the data pins down the parameter vector (δ,Σ),
where as previously defined Σ is a diagonal matrix with a diagonal equal to β(1)

ν , ..., β
(K)
ν

As in the previous subsection, in order to get an expression of the aggregate choice
probability that is a function of data and parameters, we can parameterize the δ’s as
product-specific intercepts and estimate them as parameters. As before, the estimated δ̂’s
will set the predicted shares equal to the observed shares, for any given Σ. In other words,
for every Σ there exists δ(Σ) that perfectly explains the observed market shares ŝ. There
is no information remaining in the (aggregate) choice data alone that would distinguish
one set of implied mean utilities δ(Σ̃) from another assignment δ(Σ̂). The identification
of the true δ requires using more of the structure of the model and adding an additional
assumption. We recall that δj = xjβ0 + ξj .

Berry et al. (1995) propose adding the moment restriction, E[ξj | Z] = 0. Below we
will discuss variables that might satisfy this condition. This will require that estimates of
β0 and Σ not just fit the aggregate market shares as given by the MLE moments, but also
fit the sample analog of this moment condition.

To gain intuition for how this works, let us work with a common exogeneity restriction
that Z = x = (x1, . . . ,xJ), i.e., Z is a stack of all the product characteristics in the mar-
ket.24 Our goal here is not to justify the assumption but rather to understand its empirical
usefulness. We can view x as representing the market structure, namely, a configuration
of the number of products and their product positions. The moment restriction (4.2) thus
states that the unobserved component ξj of mean utility is mean-independent of market

24Observe that this same restriction on product characteristics being determined outside of the model
was used in our discussion of Bresnahan (1987) in Section 2.
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structure. In particular, the empirical bite of the assumption is that the ξj must be uncor-
related with the proximity of competition.

To see this point better, consider a one-dimensional (Hotelling-like) variation of our
demand model. The utility to consumer i for product j in this model is

uij = θ · d (ti, xj) + ξj + εij j = 0, . . . , J

where θ is the travel cost and d is the distance between the location ti ∈ [0, 1] of consumer
i and the location xj ∈ [0, 1] of product j. ξj is the mean quality of product j in the
population of consumers and εij are i.i.d. idiosyncratic taste shocks around this mean
quality drawn from a type-1 extreme value distribution.

If θ > 0, i.e., travel costs are positive, a product j will draw demand in higher pro-
portion from other products k that have characteristic xk close to xj . The larger the travel
cost, the more this “local competition” effect will dominate the substitution patterns from
the simple Logit component ξj+εij of the model. Suppose we observe data {sj, xj}Jj=1 and
we want to infer the magnitude of travel costs θ from the data. To visualize the empir-
ical problem, we plot in Figure 4.1 data generated by drawing 100 products where each
product has a location xj ∈ [0, 1] and quality ξj ∈ R.25

Figure 4.1: Distribution of product locations and market shares

(a) Product locations
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Notes: The data for these simulations was generated by drawing 100 products from the Hotelling-like
model described in the text, where each product was drawn independently from a Beta distribution with
both shape parameters equal to 4. In panel (a) we display the histogram of product locations on the line
and in panel (b) we show the scatter plot of market shares and product locations in the resulting data.

25Each product location was drawn independently from a Beta distribution with both shape parameters
equal to 4.
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In panel (a) we display the histogram of product locations on the line. The histogram
shows that there is relatively more “bunching” of products in this market near the center
of the line, and relative isolation of products near end points. We then compute market
shares for each product j = 1, . . . , 100 based on a true θ0 = 2 where θ0 ∈ Θ denotes the true
value of travel costs. In panel (b) we show the scatter plot of market shares and product
locations in the resulting data. We can see a distinct pattern arise - in the more crowded
part of product space (near the middle of the line in this simulation) market shares tend
to be relatively smaller. How can we explain this pattern? Why do market shares fall
in the middle of the line where products locations are also more tightly concentrated?
Intuitively, there are at least two conflicting hypotheses that can explain the correlation
of markets shares and locations. One hypothesis is that travel costs are relatively large,
and therefore products mostly compete locally. In this case, products that are located in
a more crowded part of the line have lower market shares because these products face
more competition for the same consumers.

An alternative hypothesis is that travel costs are zero (θ = 0), and products j that are
located in a more crowded center part of the line have lower market shares because these
products have systematically lower qualities ξj .

Market share data alone cannot sort out these alternative explanations, because for any
value of θ the implied quality will adjust to match the observed market share. However,
assuming (4.2) will do the job. We visually show this in Figure 4.2. The figure shows a
scatter plot of locations xj and implied quality ξj(θ) under three scenarios for travel costs:
in panel (a) θ = θ0, in panel (b) θ > θ0, and in panel (c) θ < θ0.26

Figure 4.2: Scatter plot of product locations and quality assignment

(a) θ = θ0 (b) θ > θ0 (c) θ < θ0

Notes: The figure shows a scatter plot of locations xj and implied quality ξj(θ) under three scenarios for
travel costs: in panel (a) θ = θ0 = 2, in panel (b) θ = 4, and in panel (c) θ = 0.

26We use θ = 0 (the Logit case) and θ = 4 (a doubling of the true value θ0 = 2) as our two departures
from the true value.
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Panel (a) of Figure 4.2 shows that at the true parameter value there is no correlation
between quality and location. Panels (b) and (c) show that when θ is different from the
truth the data exhibit correlation. In panel (b) the travel cost is overstated and therefore
local competition is overstated. Hence to explain the observed market shares the implied
quality ξj(θ) has to be systematically higher in the crowded part of product space. In
panel (c) the pattern is reversed.

Thus, by using the sample analog of the moment restriction (4.2) in estimation we
are shutting off the opportunity for the model to explain the data through a systematic
correlation between ξj and the local market structure across products j. As we will see
below, local market structure measures serve as IVs to estimate the non-linear parameters
of the model. In addition to helping us pin down Σ and the implied δ(Σ), the moment
conditions implied by (4.2) will help us pin down β0.

The key lesson from the above example is that as long we have an assumption like
(4.2), the parameters of the model are in principle identified from a cross section of prod-
ucts within a market. In reality, we might need variation across markets to have more
power. The key empirical challenge, which we will discuss below is how to choose the
IVs that are informative. We discuss this as well as computation and other empirical
details for the more general case in the next section.

4.3 The General Estimation Procedure

We now generalize the setting described in the previous section to allow for multiple
markets t = 1, . . . , T . We continue to use a conditional moment restriction E [ξjt | Zt] = 0,
where Zt is a vector of exogenous variables, as the basis for estimation of heterogeneous
preferences in the general Mixed Logit demand model. In Section 4.2.2 we saw the iden-
tifying power of this moment condition, when we focused only on within-market vari-
ation across products. We now discuss how to use this moment condition in practice in
the general setting that has both within- and across-market variation. As we discuss be-
low, having multiple markets potentially provides additional variation in choices set and
characteristics of products, and therefore helpful in estimation.

We note that the conditional moment implies a large set of potential IVs zjt = Aj(Zt) ∈
R for which the unconditional moment restriction holds

E[zjtξjt] = 0. (4.6)
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We refer to Aj as the IV function, and zjt as IVs. We provide some guidance on the choice
of IVs below. For a given choice of IVs, estimation proceeds on the basis of empirical
analogues of the population moments (4.6) for each IV n. Let

mn(θ) = Ê[znjtξjt(θ)] (4.7)

be the nth moment (where Ê[·] is the expectation taken with respect to the sample dis-
tribution), and θ are the parameters of the model. Stacking the moments as m(θ) =

(mn(θ))Nn=1), the standard GMM estimator for the problem as formulated by Berry (1994)
and Berry et al. (1995) is

θ̂ = arg min
θ
m(θ)′Wm(θ) (4.8)

for a positive definite N ×N weighting matrix W . Inference can be based on the standard
tools for GMM.27

A key practical difficulty in using this moment condition is computing ξjt, and there-
fore the moment, as a function of data and parameters. This is where the logic discussed
in Section 4.2.1 enters. Specifically we will solve a non-linear system of equations like (4.3)
for each market t in the data - first the mean utility vector δt must be inverted from mar-
ket shares in each market, and the econometric error ξjt(θ) then computed. Berry (1994)
and Berry et al. (1995) propose a contraction mapping algorithm that globally converges
and can be used for computation. In Section 4.3.4 we discuss this and other algorithms in
greater detail.

4.3.1 Instrumental Variables

The above discussion assumed that we have exogenous variables Zt that can be used as
the basis for constructing IVs such that (4.2) holds. We now discuss various variables that
have been used in the literature for these purposes. Before we do so we review the dual
role of IVs. This is best done with a series of examples. We start with the Logit model,
which was described in Section 3.2. For the Logit model σ−1j (st,xt,pt) = ln(sjt/s0t), and
the estimating equation is

ln

(
sjt
s0t

)
= δjt ≡ xjtβ0 + α0pjt + ξjt. (4.9)

27See Freyberger (2015) and Berry et al. (2004) for more detail.
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This equation can be estimated using linear methods. In this case, an IV is needed if one
of the right-hand side variable, say pjt, is correlated with the error term. The intuition for
what constitutes a good IV is just the “standard” logic in linear models. We will provide
examples below.

This particular role of the IV remains even when estimate models that allow for more
heterogeneity in preferences. However, now there is an additional role that links directly
to our discussion in Section 4.2.2. To see this consider the Nested Logit model. As Berry
(1994) shows, the inversion is now given by σ−1j (st,xt,pt) = ln(sjt/s0t) − ρ ln(sjt/sG(j)t),
and the estimating equation is

ln

(
sjt
s0t

)
= xjtβ0 + α0pjt + ξjt + ρ ln

(
sjt
sG(j)t

)
(4.10)

where sG(j)t is the share of nest G, and ρ is the nesting parameter. This model, like the
Logit model, can also be estimated using linear methods. Relative to equation (4.9), which
describes the estimation equation of the Logit model, in the Nested Logit model we have
an additional term: the within nest share. This last term is a function of the share of
product j, sjt, and therefore will be correlated with ξjt. In other words, even if we believe
that E(ξjt|xjt, pjt) = 0 we still cannot consistently estimate this equation using OLS: we
need an IV.28

This formulation also suggests where we could find IVs. We want variables that gen-
erate variation in the nest share but that also satisfy (4.2). Natural candidates are variables
that impact the other products in the nest, and therefore the nest share, but are uncorre-
lated with ξjt. For example, if looking at a given market over time we might want to use
the entry and exit of products into the nest.

As we move to models that allow for even richer patterns of heterogeneity we gen-
erally do not have an analytic expression for the inversion. However, the intuition from
above continues to hold. Gandhi and Houde (2020) and Gandhi et al. (2021) show that
σ−1j (st,xt,pt) = ln(sjt/s0t) − fj(st,xt,pt), where fj(·) is an unknown function that in the
BLP algorithm (discussed in Section 4.3.4) is computed numerically. In Section 4.4.2 we
discuss ways to approximate fj(·).

We now turn to a discussion of what exogeneity restrictions and IVs researchers have
used in practice.

28As we noted on page 21, the Nested Logit model can be viewed as a special case of the Mixed Logit
model. In the above formulation of the model ρ is the equivalent of Σ in our general formulation.
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BLP Instruments By far, the most popular IVs are Zt = xt, namely the characteristics
of all products in the market.29 Typically price, and maybe advertising, will be excluded
from this set. The identifying power of this exogeneity restriction is based on the same
logic that we saw in Sections 2 and 4.2.2. They are informative because they can be used to
measure the proximity of competition, just as we saw in Figure 2.1, and therefore should
be correlated with price and other endogenous variables. They will also be correlated
with terms like the within nest share, in the Nested Logit model, or fj(st,xt,pt) in the
more general model.

The question still remains which of the many possible functions Aj(·) of xt should we
use to construct IVs. Different suggestions have been made in the literature. Berry et al.
(1995) propose to use: (1) own product characteristics, xjt, (2) sum of characteristics of
the other products produced by the same firm (for multi-product firms),

∑
j′ 6=j,j′∈Jf(j) xj′t,

and (3) sum of the characteristics of competitor products
∑

j′ 6∈Jf(j) xj′t. The logic for this
particular set is as follows. The own product characteristics are instruments ”for them-
selves.” The other two sets try to capture the logic that the price of product j (and fj(·))
will depend on characteristics of other products, and that the dependence differs if these
are own products or competitors products.30

Gandhi and Houde (2020) propose to refine how we use the information in (4.6) in
order to improve empirical performance and avoid weak IV challenges that can arise in
practice. Specifically, they use the economic structure of the model to motivate a class
of IVs they term ”differentiation Instruments”, which intuitively capture the relative iso-
lation of each product in characteristics space. Defining djkt = xjt − xkt as the vector
of characteristic differences between product j and product k in market t, they construct
two two distinct sets of differentiation IVs that are useful for applied work.

The first set consists of (1) own product characteristics, xjt , (2) the distance squared
between product j and other products along dimension k,

∑
j′ 6=j

(
dkjj′t

)2
,∀k and (3) the

interaction between the distance in dimensions k and l,
∑

j′ 6=j d
k
jj′t × dljj′t,∀k 6= l. The

sum of square of characteristic differences captures a continuous measure of product iso-
lation proportional to the Euclidean distance of product j along each dimension k. The
interaction terms capture the covariance between two dimensions of differentiation.

29One of the reasons for the popularity of these IVs is that they typically do not require any additional
data: they are part of the data needed to estimate the model to start with.

30There is some disagreement among researchers about whether the term ”BLP Instruments” refers nar-
rowly to the these specific functional forms or more broadly to the idea E[ξjt | xt] = 0.
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A second set consists of: (1) own product characteristics, xjt, (2) the number of prod-
ucts within a certain “band” of j,

∑
j′ 6=j 1

(
|dkjj′t| < κk

)
, ∀k, and (3) the interactions be-

tween the number in dimensions k and l,
∑

j′ 6=j 1
(
|dkjj′t| < κk

)
× 1

(
|dljj′t| < κl

)
,∀k 6= l.

These IVs try to capture the economics behind models of localized competition. The sec-
ond element measures the number of “close-by” products along each dimension of dif-
ferentiation. The interaction of the indicator function with djj′t captures the correlation
in characteristics between firms that are direct competitors. When characteristics are dis-
crete, the indicator variables can be replaced by 1(dkjj′t = 0); which can be thought of as
a product-segment indicator. Moreover, additional neighborhoods can be constructed to
impose additional restrictions on the model (e.g. 0 < |djj′t| ≤ κ1, κ1 < |djj′t| ≤ κ2, etc.)

All these various permutations of IVs are motivated by the search for ”powerful” IVs,
assuming the IVs are valid, namely that E(ξjt|xt) = 0. It is not difficult to come up with
economic models where this validity is violated. For example, if characteristics are chosen
by the firms after they observe (some components of) ξt then this assumption will be
violated. A typical defense of the assumption is that even if the characteristics are chosen,
they are chosen in advance and before ξt is observed. For example, in the case of cars
elements of design are chosen many years in advance.

This is only a partial defense since firms might be forward-looking and could antic-
ipate in part the realization of ξt. This can be dealt with, if we observe panel data, by
relying on the ideas of the dynamic panel literature (Arellano and Bond, 1991; Blundell
and Bond, 1998). For example, Sweeting (2013) assumes that ξjt = ρξjt−1 + ujt where ujt
is unanticipated at time t− 1. He then bases the estimation on the conditional moment

E [ξjt − ρξjt−1 | xt−1] = 0. (4.11)

Hausman Instruments The “textbook” IVs for prices when estimating demand are cost
variables. In most IO applications cost is not observed. Furthermore, even if we observe
(marginal) cost, or some proxies for it, rarely will it vary by product.31 Hausman et al.
(1994) and Hausman (1996) propose using prices in other markets as IVs, often called
”Hausman IVs”. Nevo (2001, 2000a) builds on this idea to estimate a discrete choice
model. To see how these IVs operate, consider estimation of equation (4.9) and assume
that pjt is correlated with ξjt. The idea is to use prices in other markets, namely, pjt′ , t′ 6= t,

31Villas-Boas (2007) uses cost IVs by gathering information on input prices and interacting these prices
with product dummy variables. This is trying to capture the idea different products use a different mix of
inputs and therefore will have a different relationship between prices and input prices.
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as IVs. Depending on the structure of the data we could use all t′ 6= t, or markets in the
same time period, same region, or otherwise matched. These IVs are potentially valid
if, conditional on xt and x′t, pricing is independent across markets and ξjt and ξjt′ are
independent. These IVs are trying to exploit common cost shocks across markets for
identification.

There are two main problems with these IVs. First, it is not difficult to come up with
arguments why they are not valid. For example, if there is an (unobserved) promotional
or advertising campaign across markets then the independence assumption would be vi-
olated. Second, it is less obvious how the prices of the own brand in other markets will
help, for example, in estimation of equation (4.10): it is not clear that the these IVs will be
correlated with the within nest share.32 In principle, one could use pj′t′ , j′ 6= j, and t′ 6= t,
i.e., the price of other products in other markets, to proxy for cost shocks to other prod-
ucts. However, we are unaware of a published paper that uses this approach.

Waldfogel Instruments In some cases researchers have used attributes of other mar-
kets, such as demographics, in a slightly different way than Hausman instruments. For
example, Town and Liu (2003) estimate the welfare associated with the Medicare HMO
program known as Medicare+Choice. To do so they estimate a Nested Logit model at
the county-level and use the fact that each plan is typically offered in several counties.
One of the IVs they use is the mean number of competitors in the other counties where
the plan is offered. Similarly, Fan (2013), when estimating demand for newspapers us-
ing county-level data, exploits the fact that newspapers sell in multiple counties and uses
demographics in other counties as IVs.

Like Hausman IVs, these IVs use information in other markets, but the logic is dif-
ferent: Hausman IVs rely on common cost shocks, while these IVs rely on consumption
or preference externalities. If the product is offered in multiple counties the price and
characteristics of the product will be impacted by the attributes, say demographics, in
the other counties. So, for example, if a product is offered in counties A and B its price
should be a function of demographics in both counties. For this reason these IVs are often
referred to as ”Waldfogel IVs” (Waldfogel, 2003). These IVs are valid if, conditional on
the variables included in the model, ξjt is not correlated across counties, just like the re-
quirement for the Hausman IVs. For the same reason this assumption was suspect there,

32As Berry and Haile (2014) show, separate IVs are needed for prices relative to market shares - the
model has two distinct sets of endogenous variables (as we saw in the Nested Logit example).
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it could be suspect here as well. Furthermore, the set of counties covered by a plan is not
exogenous and could be an indication that the counties are similar in some ways.

4.3.2 Additional Sources of Variation

We now briefly discuss additional sources of variation that can aid in estimation and
identification.

Multiple markets Some of the above IVs discussed above could in principle be con-
structed with data from a single market, e.g., BLP IVs (as we saw in Section 4.2.2. How-
ever data from multiple markets can significantly aid in identification and estimation.

In the case of BLP IVs a main advantage of having multiple markets is the potential
for variation in the number of products and their characteristics. For example, consider
the estimation of equation (4.10) using data across markets. The within nest share might
vary because different products are available in different markets. This has been found
to be a powerful way to estimate this model, especially in cases where entry and exit of
products are arguably exogenous. This idea generalizes. The intuition given in Section
4.2.2 that focused on the informational content of equation (4.2) with data from a single
market, can be extended to multiple markets, especially as competitive conditions vary
across markets.

An additional way data from multiple markets can be used is through demographic
data. As we saw in Section 4.2.1 having consumer level data can aid in identification
and estimation. Data from multiple markets, with variation in demographics can achieve
similar results. For example, suppose that we observe markets with different distribu-
tion of ages. This allows us to correlate the outcomes and demographics. We can do
that by imposing ”micro moments” as we discuss below. Or by using the full distribu-
tion of demographics to compute the shares in equation (3.7). See Nevo (2000b) and the
computational discussion below for details.

Furthermore, having data from multiple markets allows us to control for unobserved
product characteristics that do not vary across markets . Finally, Hausman IVs and Wald-
fogel IVs require multiple markets in order to be computed. In sum, data from several
markets is very helpful in estimation of the model, and in general the more the better.

Micro moments and Second Choice Data As we saw in Section 4.2.1 having informa-
tion on demographics and consumer choices can be very useful in estimation. The in-
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tuition gained from equation (4.4) can be useful even if the researcher does not have
consumer choice data (i.e., data that includes both the choices of individuals and their
demographics). These moments can be computed from other data sources and added
to the estimation. For example, suppose a researcher is estimating demand for cars and
has information on the average family size conditional on owning a minivan. We can
match the model’s prediction of this choice behavior in the population with the sample
analogues. This mimics the logic of the moments in equation (4.4), “as if” we had micro
data.

Petrin (2002) follows this approach and finds that the micro moments impact the esti-
mates of consumer heterogeneity and have important implications for his estimate of the
welfare gains from the introduction of minivans. Follow-up research has found similar
results. It is therefore advisable to add micro moments whenever possible.33

Another source of data that is powerful, albeit much harder to obtain, is second choice
data. Berry et al. (2004) use survey data on second choices, i.e., what the consumer would
choose if the actual chosen alternative were not in the choice set. Such data provide a
direct empirical insight into substitution patterns among products and a useful source of
identification and estimation.

Supply-Side Moments Another way to help identify the parameters is to add supply-
side moments. Assume that the marginal cost is given by

mcjt = wjtγ + ωjt,

where wjt is a vector of observed characteristics of product j, ωjt is an unobserved com-
ponent, and γ is a vector of parameters to be estimated. If we further assume the Nash-
Bertrand pricing model discussed in Section 2.1.1 and combine the cost with the pricing
equation (2.2) we get

pt = wtγ + Ω−1q(pt) + ωt. (4.12)

Using this equation we can form supply-side moments by assumingE(ωjt|Zt) = 0, where
Zt is a vector of IVs that includes products characteristics and cost shifters (zjt = [xt,wjt]

and Zt = [z1t, z2t, ...zJt].) Note, that this equation is informative about both the supply
parameters, γ and the demand parameters, which impact Ω. It also suggests that the cost

33See Grieco et al. (2021) for an efficient estimator when micro data is available.
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shifters could be used as additional demand-side IVs. We can combine the demand and
supply-side moments and estimate the parameters using GMM.

4.3.3 Efficiency

The conditional moment E [ξjt | Zt] = 0 implies a large set of potential unconditional
moments E[zjtξjt] = 0, where zjt = Aj(Zt) are IVs, which are the basis for estimation. The
choice of IVs is closely tied to the efficiency of the GMM estimator. We can use the semi-
parametric efficiency bound (Chamberlain, 1987) to guide strategies for constructing IVs
and efficient estimation. There are two basic approaches.

1. We can allow the dimension of the IVsAj(Zt) to grow with the sample size and cap-
ture the informational content in E[ξjt | Zt] = 0. The asymptotic efficiency bound
is reached by applying the optimal weight matrix W ∗ to the GMM problem with
a suitably rich set of “low-order” basis functions as IVs (see, for example, Donald
et al. (2003)). The Differentiation IVs above can serve as such a basis class.

2. We can compute the “optimal IVs” from Chamberlain (1987). This approach is es-
pecially likely to be productive, if IVs Aj(Zt) do not approximate well the full infor-
mational content in E[ξjt | Zt] = 0. Theoretically, the optimal IVs are given by

z∗njt = E

[
∂ξj(θ

0)

∂θ

∣∣∣Zt

]
n = 1, . . . , dim(θ) (4.13)

where θ0 is the true value of the parameters. This creates a just-identified problem,
e.g., as many IVs as parameters and the weighting matrix is the identity matrix.
These are obviously not feasible but can be heuristically approximated. For exam-
ple, Reynaert and Verboven (2014)) explore the heuristic

E

[
∂ξj(θ

0)

∂θ

∣∣∣Zt

]
≈ ∂ξjt(st, p̂t,xt; θ̂)

∂θ̂

∣∣∣∣
ξjt=0,∀j,t

= Aj(xt). (4.14)

Since the IV vector depends on θ, users must first obtain an estimate of the parame-
ters, denoted by θ̂.

The two approaches are ultimately complementary as discussed in Gandhi and Houde
(2020) and Conlon and Gortmaker (2020). The performance of the optimal IV approxima-
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tion depends critically on good first-stage estimates. In particular if weak IVs are used in
the first stage, the approximation will not work well in practice.

4.3.4 Computational Algorithms

Several computational algorithms have been suggested in the literature to solve the esti-
mation problem we discussed above. We focus on three of them.34

Nested Fixed Point Berry et al. (1995) provide a method to compute the estimator they
propose. We now describe the basic steps, for more details see Nevo (2000b) and for
updated best practices (and code) see Conlon and Gortmaker (2020). The method consists
of the following steps.

In a preliminary step, we draw R random draws from Fν(ν), which is the (standard-
ized) parametric distribution assumed for ν (almost always a standard normal), and
F̂D, which is either an estimated parametric distribution (e.g., log normal for income
estimated outside the model), or an empirical distribution (for example, from Census
data). These draws are held constant throughout the computation. Denote them as

F̂ =
{
ν̂it, D̂it

}R
i=1

. In most data sets, we will observe quantities and not market shares.
Quantities are converted to market shares by making an assumption on the total market
size, namely all the consumers who purchase and those who decided not to purchase. Let
It denote this quantity, then sjt = qjt/It. With these preliminaries in hand the algorithm
proceeds as follows.

1. Step 1: for a given value of the “non-linear” parameters, Γ and Σ, and vector of
mean utilities δt compute market shares predicted by the model. The easiest way to
do this is via simulation using the draws from the preliminary step,35 namely:

σ̃(δt; Γ,Σ,xt,pt, F̂ ) =
1

R

R∑
i=1

exp {δjt + (xjt, pjt) · (ΓDit + Σνit)}
1 +

∑J
k=1 exp {δkt + (xkt, pkt) · (ΓDit + Σνit)}

.

2. Step 2: For for a given value of the “non-linear” parameters, Γ and Σ, compute the
vector of mean utilities that equates the shares predicted in Step 1 to those observed
in the data. This can be computed by starting with a guess for δt (say the values

34See Hong et al. (2021) for an additional method that we do not discuss here.
35See Nevo (2000b) and Conlon and Gortmaker (2020) for alternative, more efficient ways to compute

these shares.
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from the Logit model ln(sjt/s0t)) and computing the contraction mapping proposed
by Berry (1994):

δr+1
t = δrt + ln(st)− ln σ̃(δrt ; ,Γ,Σ,xt,ptF̂ ).

Stop when
∥∥δrt − δr−1t

∥∥ < τ , where τ is a pre set tolerance level (say 10−12).36

3. Step 3: Use the result of step 2, δjt(Γ,Σ), to compute ξjt = δjt(Γ,Σ) − xjttβ0 − α0pjt,
interact it with the IVs to form the GMM objective function and compute (4.8) using
a non-linear search routine.

This algorithm is relatively easy to program, although to improve computational speed
various bells and whistles are needed. See Nevo (2000b) and Conlon and Gortmaker
(2020) for details and code.

Mathematical Programming with Equilibrium Constraints (MPEC): Dubé et al. (2012)
advocate the use of an MPEC algorithm instead of the above Nested fixed point. The basic
idea is to maximize the same GMM objective function as above subject to the constraints
that the predicted shares equal the observed shares. However, demand shocks, ξ are
treated as parameters. Formally,

min
θ,ξ

ξ′zWz′ξ

subject to σ̃(δ(ξ);x,p, F̂ , θ) = s

Note that both θ and ξ in this problem and therefore the search is over a much higher
dimension search than (4.8). ξ is a now a vector of parameters, and unlike before it is
not a function of θ. The advantage of this approach is that it avoids the need to perform
the inversion at each and every iteration of the search. This inversion can be a significant
computational cost, especially when performed for values of the parameters far from
θ0. The resulting programming problem can be quite large, but there are off-the-shelf
programs (e.g., Knitro) that can solve it effectively. Dubé et al. (2012) report significant
speed improvements over the nested fixed point. Note, that this is purely a computational
algorithm: the result should be identical to the result of the BLP algorithm.

This approach is more complicated to program, and to get the computational bene-
fits one needs to analytically provide various derivatives. Once programmed properly

36With a tolerance level that is not strict enough the algorithm can become unstable as shown by Knittel
and Metaxoglou (2014).

43



it seems to perform well, but some have found it slow in very large problems (many
markets and many products) and not worth the extra programming time.

Approximate BLP (ABLP): Lee and Seo (2015) propose an alternative estimator with
significant computational advantages that they call Approximate BLP. The basic idea is
to approximate the share equation σ(·) using a first-order Taylor approximation. This
allows them to substitute an analytic inversion, for the numerical inversion, in Step 2 of
the original BLP algorithm. Like the MPEC algorithm the inversion is exact only at the
solution, but unlike MPEC the optimization is over a lower-dimensional parameter space.

They compute a first-order Taylor approximation to σ̃(ξt;xt,pt, F̂ , θ) ≡ σ̃(δ(ξt);xt,pt, F̂ , θ)

around ξ0t given by

ln σ̃(ξt;xt,pt, F̂ , θ) ≈ lnσ̃A(ξt;xt,p, F̂ , θ) ≡ ln σ̃(ξ0t ;xt,pt, F̂ , θ)+
∂ ln σ̃(ξ0t ;xt,pt, F̂ , θ)

∂ ln ξ′t
(ξt−ξ0t ).

They equate this approximation to the observed shares, and invert this relation to get

ξt = Φt(ξ
0
t , θ) ≡ ξ0t +

[
∂ ln σ̃(ξ0t ;xt,pt, F̂ , θ)

∂ ln ξ′t

]−1
(ln st − ln σ̃(ξ0t ;xt,pt, F̂ , θ)).

This analytic inversion (of the approximation) allows them to skip the numerical inver-
sion in Step 2 of BLP.

With the aid of the approximation they can estimate the parameters θ by

min
θ

Φ(ξ0, θ)′zWz′Φ(ξ0, θ)

They nest this idea into the following procedure. Guess ξ0t and set r = 1

1. Step 1: Compute a GMM estimate

θr = arg min
θ

Φ(ξr−1, θ)′zWz′Φ(ξr−1, θ)

2. Step 2: Update ξ
ξr = Φ(ξr−1t , θr)

and r = r + 1
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3. Repeat Steps 1 and 2 until convergence.

Lee and Seo show this estimator is equivalent to the BLP estimator in large samples. The
advantage of this approach is that like MPEC it avoids inversion at each stage, but has
low-dimensional parameters search.

4.4 Extensions

4.4.1 Error in Market Shares

We typically assume that aggregate quantities are based on a large number of underlying
choices and therefore measured without error. This assumption can be problematic when
products have a small market share: with a large number of products even with samples
generated from thousands of consumers market shares can be measured with error. This
is especially problematic if the data include a large number of products with a market
share of zero. Ad hoc fixes, sometimes used in practice, such as dropping zeros from
the data or replacing them with small positive numbers, are subject to biases which can
be quite large. Mathematically, the root of the problem is that the slope of the inverse
demand function approaches infinity as the share approaches zero.

Solutions to this problem can be split into two groups, depending on how we view the
root for the problem. Which approach is more appropriate for a specific data set depends
on how the zeroes are believed to be generated in that data set. The first group views
the root of the problem as the wedge between choice probabilities, which come from the
theoretical demand model, and market shares, which are the empirical estimates based
on the realized choices of consumers in the data. Although the choice probabilities are
strictly positive in the underlying model, observed shares may be zero due to sampling
error. This is more likely if the underlying choice probability is small.

Gandhi et al. (2021) take this approach. At a high level, they construct lower and
upper bounds for the inverse demand function by adding a bit of noise to the observed
shares. If they observe a set of products whose empirical shares are unlikely to be zero,
then they can point identify the parameters. If there are no such products (for example,
because the number of consumers is small), their bound construction leads to a set of
moment inequalities that partially identify the parameters. They apply this approach to
scanner data and find that the new approach yields demand estimates that can be more
than twice as elastic as standard estimates that select out the zeroes.
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Dubé et al. (2021) tackle the zeroes problem from a different angle. They assume that
sjt = 0 if and only if product j is not in the set of products that the consumers in market t
consider, or in other words, the choice set. They then offer a specific model of the selection
into the choice set in order to estimate the model. Their results rely on carefully placed
separability and exclusion restrictions.

4.4.2 Non-parametric and Flexible Estimation

Up to this point we have assumed a parametric functional form for utility, given in (3.3),
and specific distribution of heterogeneity. The identification results in Berry and Haile
(2014) hold for more general models. Therefore, an obvious question is whether more
flexible models, that imply flexible substitution patterns, can be estimated.

In order to appreciate the problem of flexible estimation, it is useful to recall the in-
tegral (3.7) that defines aggregate demand in the Mixed Logit model. Up until now in
our discussion we have treated the distribution of consumer “types” in the population
F (Dit, νit) as a known distribution: we assume we have data to estimate the distribu-
tion of Di, and we assumed a parametric distribution for νi. A more flexible model is
to keep the type-1 extreme value distribution assumption on εijt, but allow for a flexible
mixing distribution. The joint distribution F (Dit, νit) is an unrestricted distribution that
is estimated from the data. In this case (3.7) can be treated as an integral equation for
identifying F .37 38 A further generalization maintains the linear utility form in equation
(3.3) but treats (αi, βi, εit) as distributed according to a general distribution F (αi, βi, εit).
In this case the integral equation becomes

sjt = sj (xt,pt, ξt) =∫
1 (u(xjt, pjt, ξjt;αi, βi, εijt) > u(xkt, pkt, ξkt;αi, βi, εikt), ∀k 6= j) dF (αi, βi, εit; θ). (4.15)

The question in either (3.7) or (4.15) is whether the distribution F can be estimated in
a flexible way, e.g., either non-parametrically or with a flexible parameterization θ. Un-

37The joint distribution F (Dit, νit) can be constrained so that the marginal FD equals the actual distribu-
tion of demographics in the market, which may be observed/known.

38With micro data the problem is different. For example, Dubois et al. (2020) utilize a long panel of
consumer choices to estimate a Logit model where the coefficients on price and characteristics are estimated
separately for each consumer, which avoids making distributional assumptions on the random coefficients.
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fortunately the presence of ξjt in the integral equation (4.15) complicates the application
of standard estimators for flexible heterogeneity in discrete choice models.39

One approach to the problem is to change the focus away from estimation of prefer-
ences to estimation of demand by estimating the demand function σ (or more precisely,
σ−1(·)) directly in a flexible way. The basic idea is to approach estimation of the inverse
demand function σ−1 (st,pt,xt) directly rather than estimating a model of preferences
first as a means to constructing demand. These approaches all have to address the di-
mensionality problem of σ−1(·) that arises without an explicit preference structure - the
model is now expressed in product space and as we discussed in Section 3.1, the number
of parameters to estimate can be very large.

Compiani (2019) is an example of this approach. He proposes to directly non-parametrically
estimate the inverse demand function σ−1(·) through a sieve approximation. This has the
advantage of requiring fewer assumptions than aggregating demand from a random co-
efficient choice model - in principle it only requires invertibility of demand that is guar-
anteed by the connected substitutes condition in Berry et al. (2013). Thus, the class of
demand models that are consistent with the estimator is broader than Mixed Logit mod-
els, including models with some degree of product complementarity as well as models
that allow for behavioral economic effects at the level of the consumer. The cost is that
there is a curse of dimensionality encountered in a product space model, which was the
motivation for using explicit choice models in the literature as discussed above. Compiani
(2019) shows that Bernstein polynomials can allow for some parsimony to be added to the
problem through linear constraints on the parameters that are motivated by theoretical re-
strictions on demand implied by choice models, such as monotonicity and symmetry. The
specification nevertheless requires significant data for moderately sized markets.

Another example is Salanié and Wolak (2019) who use the idea of “artificial regres-
sions” from Davidson and MacKinnon (1989) that takes a first-order expansion of the
residual function used in non-linear IV estimation, e.g., a first-order expansion of ξjt(θ)
around an initial value for θ = θ′. The approach retains the full parsimony of the underly-
ing Mixed Logit model, and is “fast” in the sense of being a single IV regression, however
it is approximate in that it only iterates the regression a single time (multiple iterations
would equate to a Gauss-Newton optimization of the GMM objective function) and also

39See e.g., Fox and Gandhi (2016), Fox et al. (2011), and Fox et al. (2016) for a discussion of identification
and estimation of discrete choice models with flexible heterogeneity where product-market unobservables
ξjt are not present.
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requires a starting value to run. It is a fast way however to generate starting values that
can be used for non-linear estimation.40

A third example is Fosgerau et al. (2020) who generalize the analytic structure of the
Nested Logit functional form for inverse demand to a broader class of consumer demand
models - what they call “inverse product differentiation logit” model. The approach is
also based on linear IV estimation, and the generalized term they add to the model al-
lows for complementarity among products as well as being consistent with an underlying
representative agent model of consumer demand. However it is a preference model ex-
pressed in “product space” as opposed to a characteristics space model, and requires the
researcher to specify ex-ante dimensions of segmentation in the market where products
can be categorized.

A challenge with the above approaches is that while they estimate the demand func-
tion σ(·) in a flexible way under different conditions, they do not estimate the distribution
F of consumer heterogeneity that is a central to many applications. Gandhi et al. (2021)
take a different approach that allows researchers to flexibly recover both demand σ−1(·)
and the distribution of heterogeneity F . They proceed in two steps. In the first step,
like the above papers, they estimate the inverse demand model. Their main specifica-
tion, does not directly tie the inverse demand to preference model parameters, unlike
Salanié and Wolak (2019) and Fosgerau et al. (2020). However, unlike Compiani (2019)
they use the structure of Mixed Logit demand systems to capture the parsimony attained
in characteristic space models in a product space specification of demand via exchange-
ability properties. Building on the discussion introduced in Section 4.3.1 they estimate a
specification

ln(sjt/s0t) = αpjt + xjtβ + fj(st,xt,pt) + ξjt. (4.16)

It is convenient to rewrite fj(·) as a function of {(skt,djkt)}k 6=j, where djkt = xjt − xkt, is
the vector of distance in characteristics space (and price) to other products, as defined on
page 36. We can think of this as a re-normalization that focuses on firm j and measures
the distance of competitors from it. The key result is that in the Mixed Logit model fj(·) is
symmetric, or exchangeable, in its arguments (i.e., it depends on the states, but not their
order) and does not depend on j.

40Lee and Seo (2015) approximate σ(·) using Newton expansions for the purposes of proposing an alter-
native estimator to nested fixed point as discussed above.
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A consequence of exchangeability, also discussed further in Gandhi and Houde (2020),
is that fj(·) can WLOG be represented as

fj(st,xt,pt) = g(EDF ({(skt,djkt)}k 6=j)),

whereEDF denotes the empirical distribution function taken over the products in market
t (specifically, a distribution over all products k 6= j in market t). Based on this represen-
tation, they propose approximating f by using the first- and second-order set of empirical
moments to approximate the EDF above. In principle, one could use higher moments as
well. These moments are similar in spirit to the “within-group share” term in the Nested
Logit model (4.10). These terms are endogenous, which couples closely with the IVs pro-
posed in Gandhi and Houde (2020) that is based on a similar theoretical structure. They
also use a flexible functional form for g(·), which they take to be a generalized additive
model in each one of the moments used to approximate the EDF . There are other flexible
approximations that may also work in practice. Finally, using the Implicit Function The-
orem they show how these first stage estimates can be used to recover own- and cross-
price elasticities.

To recover the distribution of heterogeneity, they recover ξjt as the residual from the
demand equation (4.16). In the second step of their procedure they plug this residual
into equation (4.15). This controls for the effect of the ξjt in the integral equation and
allows them to estimate the distribution of heterogeneity, F , in a flexible parametric or
non-parametric way using standard mixtures techniques. A key benefit of the approach
even relative to the parametric Mixed Logit estimation of F discussed earlier is that it
avoids the numerical complexity of demand inversion. This confers several benefits for
the speed, reliability, and robustness of the estimator.

5 Supply

Having discussed ways to specify and estimate demand for differentiated products, we
now turn to the supply side. Our focus is on pricing, but in principle the analysis below
can apply to any continuous characteristic that can be flexibly adjusted.41 We have two
goals in this section. First, we aim to show a few applications of the demand models

41For example, Fan (2013) looks at characteristics choice by newspaper, and how they change after a
merger.
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discussed earlier. Second, we present various ways in which the supply side has been
modeled in the literature.

In some of the applications we will combine the demand model with a supply model
to estimate the parameters of both demand and supply and test the supply model, as we
saw in the motivating example discussed in Section 2. There are several ways to combine
demand and supply. First, we could use equation (2.3) to recover marginal costs without
assuming a parametric functional form for costs. Given demand estimates, a model of
pricing and observed prices, we can back out the marginal costs that make the first-order
condition for prices hold exactly for each observation in the data. Note, that the model
will perfectly fit the data and therefore we cannot test it, unless we bring in additional
information, such as information about marginal costs, and therefore markups.

Second, we can parameterize the marginal cost function and estimate its parameters,
potentially jointly with the demand equation using the demand parameters estimated in
a first stage. The advantage of estimating the marginal cost function is that it allows us
to extrapolate to counterfactual situations not observed in the data. It will also allow us
to test among models of competition, as we saw in Section 2, and estimate parameters
associated with the pricing model.

5.1 The Workhorse Model of Horizontal Competition

The workhorse supply model in the study of differentiated-products industries is the
static pricing model, described in Section 2.1.1.42 This model delivers a pricing equation
given in equation (2.2), which can be used in a few different ways that we discuss below.

Berry et al. (1995) is a seminal paper in the development of equilibrium models of de-
mand and supply in differentiated-products industries, and where much of the demand
modeling discussed above was first developed. The authors were interested in under-
standing the impact of a voluntary export restraints placed on exports of automobiles
from Japan to the United States. To study this question they developed and estimated a
model of demand and supply in Berry et al. (1995) and applied it to this question in Berry
et al. (1999).

The indirect utility in BLP is given by

uijt = xjtβi + α ln(yi − pjt) + ξjt + εijt

42We will refer to this model interchangeably as the workhorse model and Nash-Bertrand model.
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where yi is income and all other variables are as previously defined. Note, that income
enters the indirect utility non-linearly and therefore will not cancel, as we discussed on
page 18. For estimation they assume that income is distributed log normal and estimate
the parameters of the distribution directly from income data. Consumer heterogeneity is
described by

β
(k)
i = β

(k)
0 + β(k)

ν ν
(k)
i ν

(k)
i ∼ N(0, 1).

Finally, the utility from the outside option is given by

ui0t = α ln(yi) + εi0t.

They estimate the model using 20 years of annual national data on the sales of auto-
mobiles in the United States. The model is estimated using both demand and supply-side
moments. The demand-side IVs are the ones we described in Section 4.3.1. They also add
supply-side moments as we described in Section 4.3.2.

The paper delivers two sets of important results. First, the paper demonstrates the
importance of controlling for the endogeneity of price in the aggregate demand equation
derived from discrete choice. Nowadays this is taken as obvious – not surprisingly since
the importance of accounting for the endogeneity of price has been confirmed repeatedly
in numerous industries – but at the time it was questioned as empirically relevant. For
example, Table 3 of Berry et al. (1995) shows that a Logit demand model estimated with-
out correcting for endogeneity of price yields a large number of inelastic demand curves
(1494/2217=67.3%), which is inconsistent with static profit maximization. Once they in-
strument for price that number drops below 1%.

Second, the paper demonstrates the ability of the demand model to yield reasonable
substitution patterns. BLP present these in Tables 5-7 . For example, in Table 7 the authors
compare the diversion to the outside good, i.e., the fraction of consumers who substitute
to the outside good in response to a price increase as a fraction of all those who substitute
away from a product, implied by the Logit model and the more flexible random coeffi-
cients model. For the Logit model, as expected, the diversion is roughly 90% for all cars,
which is roughly the share of the outside good. This number is high in absolute value,
but maybe more important is that it is roughly constant: if the price of a BMW 735i in-
creases, consumers are equally likely to divert to the no-purchase option as consumers of
a Mazda 323. This seems unreasonable (and is totally driven by the Logit assumptions.)
The outside option includes all the choices that do not involve purchasing a new car,
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such as buying a used car, not replacing an existing car or delaying purchase. Intuitively,
consumers who purchase a car are more likely to buy another car than switch to the no-
purchase decision in response to a price increase, compared to the average consumer.
Furthermore, consumers who purchased a lower priced car are more likely to switch to
the no-purchase option in response to a price increase. In contrast to the Logit model, the
full model can capture these effects: the overall substitution to the outside good is lower
and the more expensive the car the lower the number. For example, the diversion for
Mazda 323 is roughly 27% while for BMW 735i is 10%.

In large part, the paper is able to deliver statistically significant estimates of the vari-
ation in random coefficients because the authors impose the supply/pricing equation
in estimation. As we noted earlier, the supply equation, jointly with a functional form
for marginal costs that ensures that these costs will be non-negative, puts significant re-
strictions on the demand estimates. For example, demand estimates that imply inelastic
demand also imply negative marginal cost under many models of pricing. A functional
form that imposes (a reasonable assumption) that all marginal cost are positive would
prevent this from happening. If we believe strongly in the supply model it is efficient to
impose it in estimation. However, as we discussed in Section 2, and as we discuss be-
low, a large motivation for estimating demand and supply models is precisely to test the
supply model rather than assume it.

The paper abstracts from some elements of the car industry. For example, cars are a
durable good. Yet the demand system is static: consumers are not forward-looking in
the sense that they anticipate future needs, nor do they take into account whether they
own a car and if so which one, when they make a purchase decision. On the supply side,
the model assumes that manufacturers set a uniform price to consumers: dealers play no
role and there is no price discrimination. In reality, we know that cars are sold through
dealers and this market exhibits significant variation across consumers in the price they
pay. Furthermore, the pricing model is static while in reality prices might reflect inventory
considerations, generating brand loyalty or other dynamic effects. For many questions it
is fine to abstract away from these issues, yet for some questions these issues might be
quite important. Indeed, the paper inspired a large literature that relaxed some of these
modeling assumptions on both the demand and supply side. We discuss some of the
papers in this literature in the rest of this chapter and many others are discussed in other
chapters in this Handbook.
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5.2 Distinguishing Between Models of Competition

In this subsection we look to expand the supply, or pricing, models we consider. We will
have a dual goal of coming up with potentially more general, or more flexible, models
that would allow us to explain different patterns of pricing (and markups), as well as
testing the workhorse, Nash-Bertrand model, and finding ways to distinguish it from
alternative models. For the most part, the alternative models will focus on models that are
more ”collusive” and therefore tend to imply higher markups. We also use the discussion
below as an opportunity to discuss several empirical implementations of the demand
model.

A natural place to start thinking about expanding beyond the workhorse model is to
consider testing of the model. Testing will generally follow the ideas presented in Section
2. As we saw there, one way to test the model is to informally compare predictions of
prices and costs from different models to patterns we see in the data, even if only at an
aggregated level. Nevo (2001) does precisely that. He studies pricing in the ready-to-eat
cereal industry. The industry, at the time he studies it, was characterized by high concen-
tration (the top 3 firms had approximately 75% share, and the top 6 approximately 90%),
”high” price-cost margins (approximated to be around 45%), large advertising to sales
ratios (roughly 13%) and numerous introductions of brands (67 new brands introduced
by top 6 firms in 1980’s). These facts were used to claim that this is a perfect example of
an industry where firms collude on pricing but compete on advertising and brand intro-
ductions.43 The paper asks if prices observed in this industry, and the margins that were
approximated, are consistent with collusive pricing? Specifically, the paper notes that
seemingly high margins can be due to product differentiation and multi-product pricing
(of substitute products) and are not necessarily indicative of collusion.

To separate the effect of collusion Nevo estimates a brand-level demand system, he
then computes price-cost margins implied by different pricing models and chooses the
pricing model that cannot reject the approximated margins of 45%. He finds that the
”high” margins are consistent with Nash-Bertrand pricing by multi-product firms and
therefore one does not need to rely on collusion to explain the ”high” margins. In other
words, the data cannot reject the Nash-Bertrand model.

The demand model he uses follows equation (3.3). He estimates the model using
scanner data for the top 25 brands of cereal. The data are aggregated to the MSA-quarter

43For example, Scherer (1982) argues that ”...the cereal industry’s conduct fits well the model of price
competition-avoiding, non-price competition-prone oligopoly” (p. 189)
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level and he aggregates different SKUs to a brand. This results in 1,124 markets and
27,862 brand-quarter-MSA observations. He defines prices as total revenues divided by
the number of servings, which he defines using the suggested servings size. Character-
istics come from nutritional information (e.g., fat or sugar content), segment information
used by the industry, and subjective information (e.g., he defines a “mushy” dummy
variable). He estimates demand using the BLP algorithm and prices in other cities as IVs.
Unlike BLP he estimates demand without imposing any supply-side moments, which
has the advantage of yielding consistent estimates even if we are unsure about the supply
model. He is able to do so because he has more markets than BLP and more variation in
demographics across markets.

For the supply side he computes three models: single product, multi product and
collusion, following the models discussed in Section 2.1.1. The markups implied by dif-
ferent supply and demand models are presented in Table 8 in the original paper. Using
the random coefficients demand estimates he finds that the current ownership of the top
25 brands predicts an average margin of 42%, while joint ownership of these brands pre-
dicts a margin of 73% (with a confidence interval between 62% and 97%). By comparing
these results to the approximation of the margins, which he estimates at 45%, he rejects
the null of perfect collusion, or joint profit maximization of the top 25 brands, but cannot
reject the null of Nash-Bertrand pricing.

Like BLP, this paper also raises several questions regarding the modeling assumptions.
First, a common concern is whether demand is really discrete. In micro data, we often
observe consumers purchasing more than one box of cereal, at times even different brands
on the same trip. How do we reconcile this pattern with a discrete choice? One option
is to think of the choice as happening at the time of consumption: at that point it seems
more reasonable to assume a discrete choice. Thinking of the model this way ignores
the two-step process, where the consumer first decides what to purchase at the store and
then what to consume from the brands available at home , but with aggregate data it is
unclear we can separate this process. In Section 6.1.1 we will discuss models that tackle
the modeling and estimation of multiple choices.

The paper does not explicitly model retailer behavior despite using retailer prices to
study manufacturer competition. This is consistent with retail margins going into the
cost manufacturers pay to get the product on the shelf. This assumption, however, is
not consistent with a strategic retailer who will change their margin in response to the
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manufacturer pricing. In the next subsection, we will discuss how to add retailers to the
model.

Finally, much of the price variation at the store level is coming from ”sales”, or tempo-
rary price reductions. This creates an incentive for consumers to purchase the products
when the prices are low and consume them later. Follow-up work by Hendel and Nevo
(2006a,b), which we discuss in Section 6.2.1, follows up on this issue.

One of the common uses of the supply model is to simulate the effects of a proposed
merger. The idea was discussed by Berry and Pakes (1993) and Werden and Froeb (1994),
and implemented empirically by Nevo (2000a). The basic idea is as follows. Using pre-
merger data one can estimate demand and recover marginal costs. The marginal cost can
be recovered as in BLP, by parameterizing the cost function and estimating it jointly with
demand. Alternatively, marginal cost can be recovered, without making any parametric
assumptions on the cost function, by ”inverting” the pricing equation (2.2) such that

m̂c = p− Ω̂−1q, (5.1)

where Ω̂−1 is computed using the demand estimates and q are observed quantities. One
then uses these estimates to simulate the effect of the merger by changing the ownership
structure defined in equation (2.1). In general, holding costs constant a merger between
substitutes products will lead to higher prices, and a merger between complements will
lead to lower prices. The real issue is not the direction of the effect, but the magnitude: if
the products are closer substitutes the effect will be larger. The reason to estimate demand
is to be able to quantify the effect. Furthermore, one could also use the model to simulate
the impact of various efficiencies such as reductions in marginal costs, or improvements
in qualities. This approach has found support in the academic literature and in practice.44

Simulating the effects of mergers can be the object of interest, but can also serve as a
way to test the model. An early attempt at this was provided by Peters (2006) who used
comparisons between predicted and actual outcomes of airlines mergers to test the de-
mand model. Miller and Weinberg (2017) study the beer industry and use a joint venture,
which they treat as a merger, to test the Nash-Bertrand model. Their study is motivated
by a desire to understand the price effects after the 2008 Miller-Coors joint venture (JV).
The JV significantly increased concentration in the industry. After it, ABI (the producer

44For a discussion of the use in policy see Griffith and Nevo (2019), and for discussion of the use of
merger simulation in a specific merger see Bayot et al. (2018).
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of Budweiser) had a 37% market share, Miller-Coors had 29%, Modelo (the producer of
Corona) had 9%, and Heineken had 5%.

They document, in Figure 1 (and Tables 2 and 3) of their paper, that post-JV (i) the
price of Miller-Coors products increased; (2) the price of ABI increased almost one-to-one
with the Miller-Coors price; and (3) the prices of Modelo and Heineken did not increase.
The direction of the first fact is not surprising, since, as we discussed above, this is what a
standard Nash-Bertrand model would predict. The magnitude might be higher than ex-
pected, but we cannot measure that without knowing the cross-price elasticities between
the products. The fact that ABI prices increase should also not be surprising since prices
are strategic complements in a pricing game for many (but not all) demand models. In
these cases, the increase in the price of Miller-Coors would lead to an increase in the ABI
price. What is surprising is that the ABI price increase is similar in magnitude to the
Miller-Coors price increase. The paper sets to see if the demand estimates can reconcile
these increases with what a competitive pricing model would predict.

The demand model they estimate is a random coefficients Nested Logit model, where
all the products are in one nest and the outside good is in another. They estimate the
model using monthly (or quarterly) scanner data for 13 brands in 39 different distinct
regions, and the BLP nested fixed point algorithm discussed above. For IVs they use the
distance between the brewery and the region, an indicator variable equal to one for ABI
and Miller-Coors products after the merger, the number of products, mean income (by
region) interacted with product characteristics. Their estimates (Table 4 in the paper) find
statistically significant heterogeneity in preferences, but economically fairly small. The
implied elasticities (presented in Table 5) show a slight variation from the pattern implied
by the model with no heterogeneity: substitution between the inside goods is roughly
proportional to share.

To estimate the supply side they specify marginal cost as a function of distance from
the brewery, an indicator equal to 1 one for Miller-Coors products post-merger, and prod-
uct region and period fixed effects. They use the model of Section 2.1.1 but slightly modify
the definition of the ownership, given in equation (2.1). Specifically, they assume that the
(j, k) element equals κ if products j and k are sold by ABI and Miller-Coors post-merger.
This generates Nash–Bertrand competition in the post-merger periods if κ = 0 and joint
profit maximization for ABI and Miller-Coors if κ = 1. Putting this together with equation
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(4.12) yields the estimating equation

pt = wtγ + Ω−1(κ)q(pt) + ωt,

where variables are defined as in (4.12). They estimate the cost parameters and κ using
GMM and assuming that ωjt is mean independent of wj and an indicator equal to one for
ABI and Miller-Coors products post merger.45

They estimate that κ varies between 0.25 and 0.34, depending on the specification they
use. All the specifications reject the null hypothesis that κ = 0, which is Nash-Bertrand
pricing post merger. Interestingly, the model also rejects joint profit maximizing pricing,
between ABI and Miller-Coors post merger. In other words, pricing is consistent with
some increased coordination post merger but not joint profit maximization.

Ciliberto and Williams (2014) use a similar idea to study multi-market contact in the
U.S. airline industry. They modify equation (2.1) by making the terms Hjr a function
of a variable that measures the degree of multi-market contact between the airlines that
produce products j and r. They conclude that airlines with a higher degree of multi
market contact almost perfectly collude.

It is tempting to try to interpret intermediate values of κ. For example, one interpreta-
tion, which was popular for a while in the analysis of competition in homogeneous goods
industries, views κ as a ”conduct parameter” that captures beliefs about the equilibrium
being played (Bresnahan, 1989). A slightly different interpretation views κ as an ”as if”
parameter. For example, if κ = 0.5 in a homogeneous good industry, the industry would
be seen as being as competitive as an industry with 2 symmetric firms playing Cournot.
Similar ”as if” potential interpretations exist for industries with differentiated products.
For example, building on Nevo (1998), Black et al. (2004) propose an interpretation of κ
as a measure of cross ownership.46

These attempts to interpret intermediate values of κ have fallen mostly out of favor
for several reasons. For example, Corts (1999) notes that if the true model implies varia-
tion in κ over time within each regime, the ”as if” interpretation is problematic. Indeed,
he shows via simulations that the estimated κ need not even be a good indicator of the
relative competitiveness of industries. His main complaint is not about the idea of having

45Note that prices appear on both sides of the estimating equation, and therefore we need an (additional)
IV, in this case an indicator equal to one for ABI and Miller-Coors products post merger.

46Backus et al. (2021) build on these ideas, and use data from the ready-to-eat cereal industry, to test
recent claims that common ownership facilitates collusion.
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a parameter κ but to the a-theoretical restrictions put on it. He calls for a specification
of a (structural) model of collusion in order to justify restrictions on κ. Miller and Wein-
berg (2017) are partly immune to this critique because of their focus on testing whether
κ is statistically different than zero as a test for post-merger Nash–Bertrand competition
(since under the null the model is well specified).

Most of the above discussion of testing and distinguishing between models was some-
what informal. However, the ideas are can be formalized. Bresnahan (1982) and Lau
(1982) discuss the use of rotation of the demand curve as an IV to estimate the model of
competition in homogeneous goods industries. Berry and Haile (2014) show that the basic
idea generalizes to models that study competition in differentiated products industries.
Specifically they show that the model of competition can be identified using the supply-
side conditional moments E(ωjt|Zt) = 0, as defined in (4.12). The intuition behind this is
what we saw in the applications above: different models of competition have implications
for patterns we observe in the data. The patterns can be either average markups (Nevo,
2001), variation in prices after a merger (Miller and Weinberg, 2017), or co-variation in
prices and multi-market contact across markets Ciliberto and Williams (2014). The mo-
ment condition is a way to summarize this variation.

Casting the problem as a moment condition allows Berry and Haile (2014) to formally
discuss identification. It also has the advantage of generalizing the idea of using a specific
event, for example, a merger, to using variation like that discussed in Section 4.2.2, to
distinguish models of competition. This raises the question of what IVs should be used.
Active areas of research are what IVs have power to distinguish models of competition
(Duarte et al., 2021) and somewhat related is what is the efficient ways to use these IVs
(Backus et al., 2021).

5.3 Adding Retailers Into the Mix

One of the common complaints about some of the papers presented in the previous sub-
section is that they are are concerned with competition between manufacturers yet use
retail data without explicitly modeling the retailers. This practice can be justified if we
treat the retailers as passive and therefore part of the manufacturer costs of getting the
products to market. In this subsection we discuss papers that allow retailers to make
strategic decisions in response to price changes by the manufacturers.

Villas-Boas (2007) asks what model best describes the relationship between manufac-
turers and retailers in the yogurt industry. To answer this question she takes the idea of
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using demand estimates jointly with a pricing model to recover cost, and adds to it an ad-
ditional layer: her pricing models account for both retailer and manufacturer/wholesaler
behavior. She computes markups/costs under different models. She then chooses the
model that best describes the data.

To estimate demand she uses weekly scanner data for 43 products, produced by 5
manufacturers and sold by 3 retailers. She observes retail prices, advertising, aggregate
quantity (by product-retailer), and product characteristics, but does not observe whole-
sale prices or contracts. She estimates a random coefficients Logit Model, where the choice
is store-brand. In other words, consumers choose not just the brand but also where to
purchase it.

She considers six supply models. In Model 1, manufacturers first set (linear) wholesale
prices and then retailers, taking these wholesale prices as given, set retail prices. In each
stage there is Nash-Bertrand pricing. This results in double marginalization. Formally,
retailer r in market t maximizes profits given by

πrt =
∑
j∈Jrt

[pjt − pωjt − crjt]qjt(pt).

where pωjt is the wholesale price paid by the retailer, crjt is the retailer’s marginal cost and
Jrt is the set of products sold by the retailer. In her setting each ”product” j is a brand-
retailer combination and therefore this setting allows for different wholesale and retail
prices to be charged for the same physical product. Rearranging the first-order conditions
we can write

pt − pωt − crt = (Ωr)−1q(pt),

where Ωr is a matrix with elements given by Ωr
jk = −∂qk/∂pj ·Hr

jk, where j indexes rows
and k columns and Hr

jk is the retailer ownership structure, namely Hr
jk = 1 if both j and

k are sold by r.
The manufacturers’ problem is to maximize profits given by

πωt =
∑
j∈Jωt

[pωjt − cωjt]qjt(pt)

where cωjt is the manufacturer’s marginal cost and Jωt is the set of products produced by
manufacturer ω. Rearranging yields the following first-order conditions

pωt − cωt = (Ωω)−1q(pt),
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where Ωω is a matrix with elements given by Ωω
jk = −∂qk/∂pωj ·Hω

jk, where j indexes rows
and k columns and Hω

jk is the manufacturer ownership structure. Note, that ∂qk/∂pωj can
be computed using the derivatives of the retail prices with respect to wholesale prices (by
totally differentiating the retailers first-order conditions with respect to wholesale prices)
and the derivatives of quantity with respect to retail prices.

In Model 2 the national brands are as in Model 1. However, the private labels are
treated as a vertically integrated (the “manufacturer” sets the retail price for them).

In Model 3 she explores non-linear pricing. She consider two cases.47 In case 1, manu-
facturers set the wholesale price equal to cost, pωt = cωt and set fees F , aimed at extracting
the retailers’ profits. In this case, the retail price is

pt − cωt − crt = (Ωr)−1q(pt)

In case 2, retailers’ margins are set to zero, pjt = pωjt + crjt and the retailers set a fee F to
recover profits. Prices are set to maximize downstream profits for the manufacturers

pt − cωt − crt = (Ωωr)−1q(pt)

where Ωωr is a matrix with elements given by Ωωr
jk = −∂qk/∂pj · Hω

jk. The difference be-
tween the two cases is in the ”ownership” structure used. In case 1 the pricing internal-
izes cross-price effects across brands within a store, while in case 2 the pricing internalizes
cross-price effects within a brand across stores.

Models 4-6 allow for coordination. Model 4 is like Model 1 but with manufacturer-
level (perfect) collusion. Model 5 is like Model 1 but retail-level (perfect) collusion. Fi-
nally, Model 6 offers a version of a vertically integrated monopolist.

Estimation of demand follows the standard approach, using as IVs cost data multi-
plied by a product fixed effect (i.e., the costs are allowed to impact each product differ-
ently). To choose between the supply models she uses two approaches. In the first she
regresses

pt = wtγ + SIPCMr(Ω)λr + SIPCMω(Ω)λω + ωt,

where w are cost variables, γ is a vector of coefficients, SIPCMr(Ω) and SIPCMω(Ω) re-
tail and manufacturer price-cost margins, respectively, implied by the different scenarios

47See Bonnet and Dubois (2010) for the assumptions required to justify the first-order conditions that
follow as coming from two-part tariff contracts.
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above. She then tests if λ̂r and λ̂ω are statistically different from 1.48 The logic is that in a
well specified model the observed prices should equal marginal cost plus the wholesale
and retail margins, i.e., the coefficients on markups should equal 1.49 Next, she uses a
statistical test of non-nested alternatives, as in Bresnahan (1987) and Gasmi et al. (1992),
using the procedure in Smith (1992).50 Based on these she concludes that models that
assume zero wholesale margins and in which retailers have pricing decisions best fit the
data. She then discusses several contracts that are consistent with these outcomes.51

The paper shows that the logic of backing out markups and costs, presented in Section
2 can be extended to another (vertical) level of decisions. Indeed, the pricing equations
she proposes are direct extensions of the pricing equation we discussed in the previous
two subsections.

5.4 Models of Bargaining

Up to this point the supply models we focused on dealt with situations where one side of
the market makes a take-it-or-leave-it offer. In the basic model, it was the manufacturers
making a take-it-or-leave-it offer to consumers or to retailers. In the previous subsection
we allowed retailers to make the offer to the manufacturers. In many real-world situa-
tions neither of these fits what actually happens because, for example, the parties, say a
manufacturer and a retailer, negotiate the final outcome rather than one side dictating the
terms of trade and the other side simply accepting or rejecting the offer. Even if there is
no explicit negotiation, a bargaining model seems like a good way to model pricing that
is between either extreme of prices set by upstream or downstream firms.

To fix ideas, we focus on a specific example, the study by Crawford and Yurukoglu
(2012) of bargaining in TV markets. Crawford and Yurukoglu study the impact on con-
sumer welfare of (un)bundling of TV channels offered in cable bundles. Generally ca-
ble companies offer consumers a bundle of channels and consumers cannot subscribe

48Note that like our discussion of the supply model in Miller and Weinberg (2017), the parameters en-
tering the pricing equation might require IVs to identify them because of the fact that the markup terms
SIPCMr and SIPCMω might also be functions of prices and shares and therefore correlated with the
econometric error ωt.

49Pakes (2017) conducts a similar exercise. Specifically, he uses demand estimates from Wollmann (2018)
to construct the markup term. He then regresses the estimated markup on IVs and regresses the observed
price on the observed cost determinants and this predicted markup. He finds that the estimated coefficient
is not statistically different than 1.

50See Rivers and Vuong (2002) and Duarte et al. (2021) for additional discussion of non-nested testing.
51See Bonnet and Dubois (2010) for follow up work that examines these issues.
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to channels à la carte. Some have suggested that consumers are hurt by this arrange-
ment because they have to pay for channels that they do not want. Crawford and Yu-
rukoglu (2012) ask: what are the (equilibrium) welfare effects of unbundling? Hold-
ing channel prices constant, consumers will be better off with unbundling because they
could purchase ”skinnier” bundles. However, Crawford and Yurukoglu point out that
this argument ignores equilibrium effects. Therefore, to answer the question of whether
consumers are better or worse off with unbundling, they need to model the effect of
unbundling on input prices, namely the prices paid to the content providers. To do so
they develop an empirical bargaining model based on the theoretical model of Horn and
Wolinsky (1988a,b).

They model the negotiation between each conglomerate of channels (e.g., ABC Disney,
which owns ESPN, ESPN2, Disney channel and other channels) and the operator/distributor
(e.g. Comcast), as a bilateral bargaining problem over linear (input) prices for that pair.
The Nash bargaining solution is the set of input prices that maximize the weighted prod-
uct of the values to both parties from agreement (as a function of that price) relative to
the values without agreement. In general, the Nash bargaining solutions are interdepen-
dent as the value from one agreement depends on what happens in the other agreements.
For example, if negotiations break down with one conglomerate the value of another
conglomerate to the distributor might increase. To make progress (Horn and Wolinsky,
1988a,b), make a Nash equilibrium like assumption: they assume that each negotiating
pair takes the outcome of other negotiations as given.52 This setup is often called ”Nash-
in-Nash” bargaining. As Crawford and Yurukoglu point out, this is a strong assump-
tion, since the members of each pair also participate in other negotiations and realize that
whether an agreement is reached, and what is that agreement, will impact other negotia-
tions. Furthermore, because the negotiating parties participate in other negotiations they
will have asymmetric information. Nevertheless, in order to make progress much of the
empirical work has relied on this assumption.53

Formally, let pωrj be the wholesale price, or input cost, paid by distributor r for chan-
nel j, which is owned by conglomerate f . Note that the distributors in this setting are
equivalent to downstream retailers and the conglomerates are the equivalent of upstream

52In bilateral negotiation, Rubinstein (1982) and Binmore et al. (1986) show that the Nash bargaining
solution corresponds to the unique subgame perfect equilibrium of an alternating offers non-cooperative
game. Collard-Wexler et al. (2019) provide conditions such that the Horn and Wolinsky solution is the same
as the unique perfect Bayesian equilibrium with passive beliefs of a specific simultaneous alternating offers
game with multiple parties.

53See Lee and Fong (2013), Ho and Lee (2019), Ghili (ming) and Liebman (2018) for alternatives.
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manufacturers. Let pω denote the vector of all wholesale prices, and let pωrf be the vec-
tor of wholesale prices paid for the channels of conglomerate f . The conglomerate and
the distributor negotiate over the vector of wholesale prices, pωrf . If negotiations break
down the distributor will not have access to any of the conglomerate channels. The Nash
bargaining solution determines the prices pωrf , taking as given all other prices pω−rf , to
maximize distributor r’s and conglomerate f ’s Nash Product, defined by

NPrf (p
ω
rf ;p

ω
−rf ) = [πr(p

ω
rf ;p

ω
−rf )−πr(∞;pω−rf )]ζrf [πf (p

ω
rf ;p

ω
−rf )−πf (∞;pω−rf )](1−ζrf ), (5.2)

where ζrf is a parameter that measures the (relative) bargaining power of r when bar-
gaining with f , and πr and πf are the profit functions of r and f , respectively, when an
agreement is reached and when it is not (denoted by pωrf = ∞). Note, that the infinite
price in the case of disagreement reflects that the distributor will not have access to any of
the conglomerate channels. These profit functions are determined endogenously by parts
of the model explained below.

Two key determinants of the bargaining outcome are the bargaining power, captured
by ζrf , and the bargaining leverage, which is the loss from disagreeing relative to reaching
an agreement. The bargaining parameter varies between zero, where f has all the bar-
gaining power and the solution is equivalent to Nash-Bertrand pricing by the upstream
providers, and one, where r has all the bargaining power and can impose its will (subject
to a participation constraint by f ). Values between the two extremes allow for different
relative bargaining power.54

The leverage of the parties impacts the solution in a similar way: everything else equal
the bargaining solution is closer to the optimal solution of the party with the greater lever-
age, namely the party with less to lose from a disagreement. For example, if distributor r
is negotiating with two different conglomerates f and f ′ and the only difference is that

πf (p
ω
rf ;p

ω
−rf )− πf (∞;pω−rf ) > πf ′(p

ω
rf ′ ;p

ω
−rf ′)− πf ′(∞;pω−rf ′).

Namely, that relative to f ′, f has more to gain from an agreement, or more to lose from a
disagreement, then f ′ has more leverage and will obtain an outcome that is more favor-
able from its prospective.

54To formally see these claims, note that the maximization problem is equivalent to maximizing the log
of the Nash product. Taking the first-order condition of the log of the Nash product and slightly rearranging
we see that the resulting first-order condition is just a weighted average of the maximization problems of r
and f , with the weights being a product of the relative bargaining leverage and bargaining power.
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To compute the profit functions of both the conglomerate and the distributors Craw-
ford and Yurukoglu estimate a viewership model and bundle (subscription) choice model.
They then back out the implied input cost from the bundle pricing equation and use it to
fit a parametric cost function for the distributors. The details of their modeling (and esti-
mation) are a bit different from, for example, BLP, but the principle is the same: the pricing
equation and demand estimates are used to back out input costs or estimate an input cost
function. These input costs can then be used, the same way prices were used in the basic
supply model, to either recover costs (here these are upstream costs) or parameters of the
supply model (here bargaining parameters).

In their application, Crawford and Yurukoglu assume that upstream marginal costs
are zero and therefore they estimate the bargaining parameters. They do so by choosing
the bargaining parameters, ζrf that minimize the difference between the programming
costs they recovered from the pricing and demand equations and those predicted by the
bargaining model. One way to implement this idea is to write

p̂ωrj = pω∗rj (ζrf(j)) + εrj (5.3)

where p̂ωrj is the wholesale price backed out from the pricing equation, pω∗rj (ζrf(j)) is the
wholesale price that maximizes the Nash product defined in (5.2) and εrj is measurement
error, or an ”add-on” error term. The parameters ζ can be estimated using, for example,
non-linear least squares.

Note, that the bargaining parameters vary by conglomerate and not channel and there-
fore in principle are of lower dimension than the wholesale prices. In practice, Crawford
and Yurukoglu (2012) do not have enough variation to meaningfully estimate channel-
level wholesale prices and instead estimate these at the conglomerate-level. This is of
little economic significance because the way they set up the bargaining model all that
matters is the total payment to each conglomerate. Furthermore, for computation rea-
sons they solve the model for a market with ”typical” distributors. The bottom line is
that they have the same number of parameters as observations in the above equation and
therefore can compute the set of bargaining parameters that set the backed out input cost
exactly equal to those predicted by the bargaining model. This directly parallels the non-
parametric approach to recovering cost discussed in the Introduction to this section. In
this approach some view the bargaining parameters as the ”error terms.”

In other settings (Grennan, 2013; Bagwell et al., 2020), the number of observations in
(5.3) is larger than the number of bargaining parameters and then those are estimated,

64



for example, by non-linear least squares.55 In principle, the bargaining parameters can
be estimated jointly with the pricing and demand parameters, but computationally it is
easier to estimate them separately.

Using the estimated parameters Crawford and Yurukoglu are able to simulate the
model both with bundling, as in the data, and when the consumers are offered channels
à la carte. They find that equilibrium effects are significant: the counterfactuals suggest
that à la carte offering of channels will increase input prices enough to offset consumer
benefits from being able to choose only the channels they value most. Thus, unbundling
will decrease welfare.

It is possible to set up, at least for some bargaining problems, a ”structural” error
term that follows a bit more closely the logic of the model discussed in Sections 5.1-5.3.
This approach especially makes sense when the upstream costs are unknown and need
to be estimated: it seems natural to assume that the error term consists of unobserved
variation in marginal costs. Gowrisankaran et al. (2015) do precisely that.56 They study
the effects of mergers when prices are negotiated using data from negotiations between
hospitals and health insurance companies, or managed care organizations (MCOs), to
demonstrate the effect. Following Town and Vistnes (2001) and Capps et al. (2003) they
set up the bargaining problems as follows. Let r denote the MCO, and f denote a system
of hospitals that includes hospitals j ∈ Jf . The negotiation is over the price that the MCO
will pay the hospital if one of its enrollees receives care in that hospital.

In this setting the MCO is the equivalent of the retailer or distributor, and the hos-
pital system is the equivalent of the manufacturer or conglomerate. The Nash product
for this problem follows equation (5.2), with a small difference that the profit functions,
and therefore the Nash product, are a function of wholesale prices and the ”network”
(i.e., which MCO-hospital system pairs that reach an agreement).57 Specifically, hospital
system, f profit from an agreement relative to disagreement is given by∑

j∈Jf

qrj(N ,pω)[pωrj −mcrj], (5.4)

55For consistency of the estimates, generally, the error term in (5.3) cannot appear inside pω∗(·) and
therefore needs to be an ”add-on” error term that is usually interpreted as ”measurement error”.

56Grennan (2013) also estimates costs parameters, but his econometric error term is in the bargaining
parameter.

57This is not a meaningful distinction because an infinite wholesale price can denote disagreement. The
main reason for the change in notation is to be more explicit about networks, which are of greater impor-
tance in health care where not all MCOs contract with all hospital systems.
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where pωrj is the price r pays f if one of its enrollees is treated in hospital j, pω is the
collection of all prices, N is a description of the network (i.e., which hospitals have con-
tracts), qrj(N ,pω) are the patients that go to hospital j given the network and the vector of
prices, mcrj is the marginal cost of treating those patients (which are assumed (i) constant
in quantity; and (ii) to vary by MCO to allow for different composition of enrollees.) This
formulation assumes that patients do not go out of network and will not switch insurance
providers in the case of disagreement.

On the MCO side, the value of an agreement is given by πr(Nr,pω) − πr(Nr \ Jf ,pω).
πr(·) is the value to the MCO of having a network (with and without system f ). Note, that
as before, a breakdown in negotiation means the whole system leaves the network. The
paper builds πr(·) from micro-foundation based on consumers’ willingness-to-pay for an
insurance product that has a wider network.

They show that one can write the first-order conditions of the bargaining problem as

(1− ζrf )
qrj +

∑
k∈Jf

∂qrk
∂pωrj

[pωrk −mcrk]∑
k∈Jf qrk[p

ω
rk −mcrk]

= − ζrf

A︷ ︸︸ ︷
∂πr(Nr,pω)

∂pωrj
πr(Nr,pω)− πr(Nr \ Jf ,pω)︸ ︷︷ ︸

B

. (5.5)

The assumption of constant marginal costs implies that the first-order conditions in equa-
tion (5.5) are separable across MCOs and therefore one can rearrange the joint system of
#(Jf ) first-order conditions from (5.5) to write

q + Ω(p−mc) = −Λ(p−mc) (5.6)

where Ω and Λ are both #(Jf ) × #(Jf ) size matrices, with elements Ωjk = ∂qrk
∂pωrj

and

Λjk =
ζrf

1−ζrf
A
B
qrk. Solving for the equilibrium prices yields

p = mc− (Ω + Λ)−1q, (5.7)

where p, mc and q denote the price, marginal cost and quantity vectors respectively for
an MCO r across the different hospitals. Equation (5.7), which characterizes the equi-
librium prices, has a form almost identical to standard pricing games, but differs in the
inclusion of Λ. One case where Λ = 0 – and hence there is differentiated-products Nash-
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Bertrand pricing with individual prices for each MCO – is where hospitals have all the
bargaining weight, ζrf = 0,∀f .

Importantly, equation (5.7) shows that, as with static differentiated-products pricing
models, we can back out implied marginal costs for the bargaining model as a closed-
form function of prices, quantities and derivatives, given MCO and patient incentives.
Furthermore, one can combine equation (5.7) with an assumption about cost, as in Section
4.3.2,

mcrj = wrjγ + ωrj

to form a basis for estimation where ωrj is the structural error term and can be used to
form a GMM objective function, as in equation (4.12).

The above discussion makes it clear that bargaining models can be specified in a vari-
ety of ways that impact formulation as well as identification and estimation. Our discus-
sion is just an introduction to the topic, which is further explored by Lee et al. (2021) in
this Handbook.

6 Extensions of the Demand Model

In this section we discuss some of the extensions of the discrete choice demand model
discussed in Section 3. We start by outlining some extensions to the static model and then
discuss models of dynamic demand.

6.1 Extensions to the Static Demand Model

A reasonably large literature has explored several extensions to the basic discrete choice
models discussed in Section 3. The motivation for these extensions varies. Some exten-
sions are motivated by a desire to better marry the model with patterns observed in micro
data, and potentially explore the biases that would arise if we ignore these differences.
Other extensions are needed to address specific questions that the basic model could not
address. In many cases, the extensions are estimated using individual data, and therefore
might not generalize to the various applications previously discussed.

Here we focus on two such extensions: multiple goods and a more general charac-
teristics model. There are other extensions that have been considered in the literature.
For example, Dubin and McFadden (1984) and Hanemann (1984) propose a model where
consumers make a discrete choice, say choose an appliance, followed by a continuous
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choice, for example, how much to use that appliance. The two decisions are obviously
interlinked. These ideas have been used more recently in looking, for example, at store
choice (Smith, 2004; Thomassen et al., 2017) and in choice of internet service plan and
usage (Malone et al., 2020; Nevo et al., 2016).

Other areas that have received considerable attention are models where consumers do
not know the characteristics of the products and have to learn them through search. See
Honka et al. (2019) for a survey of this literature.

6.1.1 Multiple goods

A common complaint about discrete choice models is that actual purchases, when they
are observed, are not of a single product or a single unit. For example, when studying
the purchase of cereal we might observe consumers buying, on a single shopping trip,
several boxes of the same cereal brand or buying several brands. One way to rationalize
the multiple choices is to assume a single purchase instance, which is what we observe, is
an aggregation over several consumption instances, which is what we are modeling. For
example, a consumer shopping in a store might be buying for several household mem-
bers for a week. If we assume that there are 3 household members, each making a daily
consumption choice then we can view the single observed purchase as aggregation over
21 consumption choice instances. This can help rationalize purchase of multiple units,
as well as different brands, and is probably sufficient when working with aggregate data
where the individual choices are not observed anyway and we are already aggregating
across consumers. However, this explanation is somewhat unappealing when working
with individual-level data, in part because it assumes the choices across days are inde-
pendent. Therefore, a somewhat better alternative is to more explicitly build the purchase
model from underlying choices.

One way to model multiple choices is to redefine what we mean by an option. For
example, assume that there are two brands, A and B, and consumers can buy no more
than 2 units of each. This gives 9 options, ranging from not buying either brand to buying
2 of each brand. The utility from each option could in principle, be additive, in the utility
from each brand separately or have interactions. For instance if buying one unit of each
brand there could be an interaction term, which can be positive or negative, so that the
utility is not just the sum of the utilities of buying each brand.

Gentzkow (2007) takes this approach when studying consumers’ choice between print
and online newspapers. He allows for purchase of more than one option and estimates
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an interaction term in the utility function (to understand if print and online newspapers
are complements of substitutes.) In his setting, consumers choose between the printed
version of a newspaper, the online version, both, or neither. Thus, the choice is a discrete
choice between bundles. He further assumes that each bundle receives an i.i.d. shock,
as in the standard discrete choice model, and therefore he can estimate the model using
standard methods. Note, that this assumption requires that any correlation between op-
tions, which include the same products, is captured through the rest of the utility terms.
Furthermore, this approach is feasible when the number of choices is small, since the
number of bundles increases exponentially with the number of products. For example,
with J = 20 different options and even if the consumer can only choose at most one of
each there are 220 = 1, 048, 576 different bundles available.

Another approach, proposed by Hendel (1999), and later also used by Dubé (2004)
builds the demand explicitly from underlying tasks. Specifically, Hendel observes firms
simultaneously buying several brands of computers and several units of each brand. To
model this, he assumes that the firm has several tasks to do. For each task there is an
optimal choice, but the observed purchases are an aggregation over several tasks. He
does not allow for interaction in the utility from the different choices. He explains the
purchase of several units, of the same computer, by a decreasing marginal utility from
quantity, hence there is interaction in this dimension.

Fan (2013) studies mergers in the newspaper industry. She allows consumers to buy
more than a single newspaper (but at most one copy of each) and introduces a parameter
that measures the decrease in utility from a newspaper if it is bought ”second”. Therefore,
like Gentzkow (2007) she allows for an interaction in utility, but at the same time, like
Hendel (1999), does not treat the bundle as an independent option.

Nevo et al. (2005) study the decision of libraries to subscribe a subset of the 150 or so to
Economics and Business journals that they observe. The libraries in their data subscribe
to some subset of these 150 journals, but the subsets are not nested. If they were nested,
we could model the choice of a bundle as a choice of how many journals to purchase.
Instead, they model the choice problem as ranking journals by an index like that standard
index in discrete choice models, for example the one given in equation (3.3). Unlike the
standard discrete choice problem where the decision maker only chooses the top option,
here the decision maker subscribes to journals following this ranking until a (budget or
other) constraint is met. The utility from the journals does not interact (i.e., the utility
does not depend on what other products are in the bundle), but the interaction is through
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a (budget) constraint. They show how one could estimate this model using library-level
subscriptions.

6.1.2 General Characteristics Demand Models

In Section 3.1, when we discussed the various demand models, we separated models in
product space from models in characteristics space. For models in characteristics space
we focused on discrete choice models. The idea of using characteristics to reduce the
dimension of the estimation problem can be useful more generally. This turns out to
be especially helpful when trying to estimate demand for more than a single product
category. As such, this model offers an additional way to deal with multiple purchases.

Dubois et al. (2014) study such a problem.58 They note, looking at household-level
purchase data from France, the United Kingdom and the United States, differences across
countries in the choices households make and in the prices and product offerings they
face. These differences amount to large difference in the nutritional intake. For example,
the average French consumer purchases roughly 200 calories less a day than the average
American consumer. They ask the extent to which cross-country differences in purchases
are attributable to differences in prices and the characteristics of products (the economic
environment). To address this question they develop a model in characteristics space,
based on Gorman (1980) and Lancaster (1966), that does not assume discrete choice. Their
motivation is to use the richness of their data, which include disaggregated purchases,
while still looking at the choice of a food ”bundle” rather than narrowly defined products
(e.g., soft drinks).

Specifically, a consumer i, with demographics Di, chooses from J products, where
product j is characterized by K characteristics {aj1, .., ajK} and K is much smaller than
J . These characteristics will in principle include both observed characteristics, like calo-
ries and protein in their example, and unobserved characteristics, which we previously
denoted by ξ. The utility is given by U(q0,x, q;Di) where q0 is the amount of the nu-
meraire good consumed, x is a K × 1 vector of characteristics of food consumed by the
consumer across all the products and q is a J × 1 vector of the quantities purchased of
all food products. Define the J × K matrix A ≡ {ajk}j=1,..,J,k=1,..,K . This matrix will be

58See also Pinkse et al. (2002) who study competition between gas stations, and Pinkse and Slade (2004)
who study the beer market. In both cases they model demand using a system in products space, and model
the substitution matrix as a function of either physical distance or distance in attribute space. The resulting
system is a statistical mapping between price and quantities, but is not derived from a well defined utility
function nor is it guaranteed to be consistent with utility maximization.
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used to transform the quantities of products purchased, given by q into the characteristics
that they contain.59 The household maximizes utility by choosing q, subject to a budget
constraint:

max
q

U(q0,x, q;Di)

s.t.
∑J

j=0
qjpj ≤ yi ; x = A′q; qj ≥ 0, j = 0, 1..., J

where pj is the price of one unit of product j, and yi is the household’s income.
Following standard arguments (and dropping the i subscripts) this can be written as

max
q

U

(
y − p′q
p0

,A′q, q

)
s.t. qj ≥ 0.

Assuming that quantities {qj}Jj=0 are continuous, the first-order conditions are

∑K

k=1
ajk

∂U

∂xk
− ∂U

∂q0

pj
p0

+
∂U

∂qj
= 0 if qj > 0.

This model nests various standard models. First, suppose the utility function isU(q0,x),
which is the case in discrete choice models or in hedonic models (Court, 1939; Griliches,
1961; Rosen, 1974; Epple, 1987). Because the transformation from products to charac-
teristics is linear and in this case ∂U/∂qj = 0, at most K of the J products would be
purchased. If we restrict qj ∈ {0, 1} and

∑J
j=1 qj ≤ 1, the model collapses to the standard

discrete choice model. In general, the prediction that at most K products are purchased
is a problem since we would like to consider cases where the number of products chosen
is (much) greater than the number of observed characteristics.

Alternatively, if the utility function is U(q0, q) then we can generate standard demand
systems in product space. If we allow for a characteristic that is product-specific then
a model in characteristics space is equivalent to a model in product space, as long as
the characteristics do not vary over time or markets. Note, that we need more than just
different values on a small number of unobserved characteristics, but a totally different
characteristic that can only be obtained from each product. To better understand the role
of the characteristics in this model we rewrite the first-order conditions for j such that

59This linear transformation is quite natural for characteristics like calories, sugar and protein, where it
seems natural to aggregate across products. The linear transformation is less intuitive when it comes to
characteristics like ξ in (3.3) that represent demand shocks more generally.
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qj > 0 as
∂U/∂qj
∂U/∂q0

=
pj
p0
−
∑K

k=1
ajk

∂U/∂xk
∂U/∂q0

.

Consider the case where characteristics do not enter the utility, i.e., ∂U/∂xk = 0. The
first-order conditions, in this case ∂U/∂qj

∂U/∂q0
=

pj
p0

, which implicitly defines the demand corre-
spondence. A similar idea applies in the above model. Demand depends on the hedonic
prices of each good instead of prices. The hedonic prices, pj

p0
−
∑K

k=1 ajk
∂U/∂xk
∂U/∂q0

, depend on
the marginal utility of the consumer from the characteristics. In other words, if two prod-
ucts have the same price but one has more of a characteristic, with a positive marginal
utility, then the effective price to the consumer will be lower for the product with the
higher value of the characteristic.

To estimate the model Dubois et al. (2014) focus on a particular functional form for util-
ity and use rich household level data from France, the United Kingdom and the United
States. They use the estimated parameters to decompose the cross-country differences
into variation coming from differences in preferences and variation coming from the dif-
ferences in the economic environment.60

6.2 Dynamic Demand

Up to this point the models we discussed were static. In this section we explore the im-
plications of dynamic demand. Dynamics in demand can arise for a variety of reasons,
including switching costs, learning, storable and durable products, non-separable (over
time) utility, pricing (e.g., monthly usage caps) that creates dynamic linkage, and other
reasons. Here we will mostly focus on storable and durable products. We will discuss
patterns in the data that suggest that dynamic demand is relevant, and discuss the im-
plications of ignoring dynamics. We will then review some of the main modeling and
estimation challenges and solutions that have been offered in the literature.

6.2.1 Storable Products

Many of the products that have been studied using the methods presented earlier in this
section are storable: in the sense that consumers can buy them in one period and con-
sume in another. Furthermore, a typical pricing pattern in these markets involves short
lived price reductions (”sales”), with a return to the regular price. This pattern of prices

60Allcott et al. (2019) use a similar demand system, estimated somewhat differently, to study food deserts
in the U.S.
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generates an incentive for consumers to purchase the product when the price is low and
store it for future consumption. Boizot et al. (2001) and Pesendorfer (2002) were among
the first to study the effects of temporary price reductions and storability in the economics
literature.

The empirical literature has found evidence consistent with the theoretical idea that
consumers have incentives to purchase not for immediate consumption but for inventory.
For example, Pesendorfer (2002), and Hendel and Nevo (2006b, 2013) find that aggregate
quantity sold depends on duration from previous sale, controlling for the current price.
Hendel and Nevo (2006b) show that a household’s likelihood of purchasing during a
temporary price reduction is correlated with proxies of storage costs. They also show
that when a household purchases during a temporary price reduction the duration to the
next purchase is longer (consistent with the household buying for storage rather than im-
mediate consumption), and households who purchase more often on sale also purchase
less frequently overall (again consistent with the idea that these households store their
purchases).

Stockpiling behavior has several implications for demand estimates and how they
should be used. If consumers purchase for storage, and the evidence suggest that they
do, then there is a difference between the short-run response to a temporary price change,
and the long-run response to either a temporary or permanent price change. For most
economic applications we care about long-run changes. In many data sets temporary
price changes account for most of the observed variation in prices. Short-run responses
to temporary price reductions, interpreted through a static model, overestimate the long-
term own-price effects. Typically, there is a large response to a temporary price reduc-
tion, which in a static model is attributed to an increase in consumption (which in a
static model equals purchase), and not to an increase in storage. Similarly a post price
reduction dip, also often observed in the data, coincides with an increase in price, and
is mis-attributed by a static model as a decline in consumption. At the same time, static
estimation underestimates cross-price effects: the temporary price reduction diverts cur-
rent sales from competing products, but it also diverts future sales (and past sales to the
extent that the reduction was at least partially anticipated). A static model misses these
additional effects and therefore underestimates the impact on other products.

The basic model of consumer stockpiling is an inventory model. Hendel and Nevo
(2006b) propose such a model for a homogeneous good, which abstracts from product
differentiation and assumes that purchases are of continuous quantities.
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The per period utility consumer i obtains from consuming at time t is

ui(ct + νt) + αiq0t, (6.1)

where ct is the quantity consumed in t, νt is a shock to utility that changes the consump-
tion needs of the consumer, and q0t is the numeraire good consumed at time t. Facing
random prices, pt, in each period the consumer has to decide how much to buy, denoted
by qt, and how much to consume, denoted by ct. The consumer’s problem can therefore
be represented as

V (st) = max(ct(·),qt(·))
∑∞

t=1 δ
t−1E [u(ct + νt)− C(it) + αptqt | st]

s.t. 0 ≤ it, 0 ≤ ct 0 ≤ qt it = it−1 + qt − ct,
(6.2)

where α is the marginal utility from income, δ is the discount factor, and C(it) is the
cost of storing inventory. The information set, or state space, at time t, st, consists of the
current inventory, it, current prices, and the current shock to utility from consumption, νt.
Consumers face two sources of uncertainty: utility shocks and future prices. Hendel and
Nevo assume that shocks to utility, νt, are i.i.d. over time. Prices are assumed to evolve
according to a first-order Markov process and take on two states, sale and non-sale.

They show that within this setup the optimal consumer behavior is characterized by a
trigger s, and a target inventory S. The target, S, is a decreasing function of current price.
On the other hand, the trigger, s, which is the sum of the target and current consumption,
depends on prices and the utility shock. They also show that the quantity purchased is a
function of lagged inventory, the current prices and the current utility shock.

A key challenge is how to expand this model to differentiated products. In principle,
this is simple: we can just make all the quantities in (6.1) vectors. This, of course, rein-
troduces the dimensionality problem discussed in Section 3, except now the problem is
even worse and includes the well-known ”curse of dimensionality” in dynamic problems
(Rust, 1994). To deal with these issues, Hendel and Nevo (2006a) propose the following
model.61 Now consumer i can purchase one of J + 1 brands (including a no purchase
decision), which come in different sizes, indexed by q ∈ {1, 2, ..., Q}. Let djqt equal to 1 if
the consumer purchases brand j of size q at time t, and 0 otherwise. Consumers make a

61See Aguirregabiria and Nevo (2013) for a more detailed discussion.
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discrete choice, so in this model stockpiling is achieved by buying larger sizes rather than
by buying a larger quantity as in the homogeneous good case.

The consumer also has to decide how much to consume each period.62 To reduce the
state space Hendel and Nevo assume that the per period utility consumer i obtains from
consuming in t is the same as in equation (6.1). This assumption implies that there is no
differentiation in consumption: consumers care only about the quantity they consume but
not the brand.63 They further assume that inventory cost depends only on total inventory,
hence C(it) for inventory it. They introduce differentiation by assuming an instantaneous
utility associated with preference for the purchased brand. At period t = 1, the purchase
and consumption decisions, {c, j, q}, are made to maximize

∑∞
t=1 δ

t−1E [ui(ct + νt)− Ci(it) + xjqtβi + αipjqt + ξjqt + εijqt | s1]

s.t. 0 ≤ it, 0 ≤ ct
∑

j,q djqt = 1, it+1 = it +
∑

x djqtqt − cjt j = 1, ..., J

(6.3)

where st is the information set at time t, pjqt is the price of purchasing quantity q of brand
j, ξjqt is an unobserved (to the researcher) brand-specific quality, xjqt are observed product
characteristics and εijqt is a random shock. They allow ξjqt to vary by brand in order to
capture differentiation across products, and across sizes.

The expectation E(.) is taken with respect to the uncertainty regarding future shocks in
νt and εt, and future prices (and other time-varying characteristics). They assume that εijqt
is i.i.d. type-1 extreme value, and as before that νt is i.i.d. over time and across consumers.
Prices (and observed characteristics) evolve according to a first-order Markov process.

Let Vi(st) be the value function of consumer i. Given the above assumptions st consists
of inventory, it, a vector of current prices (and observed characteristics), which we will
denote (slightly abusing notation) by xt, the scalar shock νt and the vector of extreme
value shocks εit. As usual in a dynamic programming problem, this value function can

62Alternatively, one can assume that consumption is constant over time, but varying across households,
and not a decision variable. A slightly more general model, than constant consumption, allows for random
shocks, that determine consumption. Both these models are nested within the above model and in principle
can be tested. The results in Hendel and Nevo (2006a) suggest that consumption is mostly constant, but
when inventory runs low consumers reduce consumption. This behavior is required to explain long periods
of no purchase followed by periods of frequent purchases observed in the data. Indeed, it is this variation
in inter-purchase time that identifies the utility from consumption.

63For the product they study, laundry detergents, this assumption makes sense. This of course raises
the question of why products are differentiated. Hendel and Nevo propose an interpretation that allows
differentiation in the linear part of the utility.
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be obtained as the unique solution of a Bellman equation:

Vi(st) = max
{c,j,q}

{ui(ct + νt)− Ci(it) + xjqtβi + αipjqt + ξjqt + εijqt

+ δ

∫
Vi(st+1)dFs(st+1 | st, c, j, q)}, (6.4)

where Fs represents the transition probability of the vector of state variables. Given that
the state variables (νt, εit) are independently distributed over time, it is convenient to re-
duce the dimensionality of this dynamic programming problem by using a value function
that is integrated over these i.i.d. random variables. The integrated value function, some-
times also called the ex-ante value function, is defined asEVi(it,xt) ≡

∫
Vi(st)dFε(εt)dFν(ν),

where Fε and Fν represent the CDFs of εt and νt, respectively. The value function EVi is
the unique solution of the integrated Bellman equation. Given the distributional assump-
tions on the shocks εt and νt, the integrated Bellman equation is:

EVi(it,xt) = max
c,q

∫
ln

∑
j

exp


ui(ct + νt)− Ci(it) + xjqtβi + αipjqt + ξjqt

+δ E [EVi(it+1,xt+1) | it,xt, c, j, q]


 dFν(νt).

(6.5)
Despite the significant reduction in size, the state space is still high dimensional.

Therefore, to reduce the dimension further, they note that the assumptions imply that
the optimal consumption does not depend on which brand is purchased. Formally, let
c∗(st; q, k) be the optimal consumption conditional on state st and on purchase of size q.
Lemma 1 in the appendix of Hendel and Nevo (2006a) shows that c∗(st; q, k) = c∗(st; q, j) =

c∗(st; q). In words, the optimal consumption does not depend on the brand purchased,
only on the size.

This result implies that the (integrated) Bellman equation in (6.5) can be written as

EVi(it,xt) =

max
c,q

∫
ln

(∑
q

exp {ui(ct + vt)− Ci(it) + ωiqt + δ E [EVi(it+1,xt+1) | it,xt, c, q]}

)
dFν(νt),

(6.6)

where ωiqt is the inclusive value from all brands of size q, as defined by equation (3.10),
i.e., ωiqt = ln

(∑
j exp(xjqtβi − αipjqt + ξjqt)

)
. In words, the problem can now be seen as
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a choice between sizes, each with a utility given by the size-specific inclusive value (and
extreme value shock). The dimension of the state space is still large and includes all
characteristics and prices, because we need all the prices to compute the evolution of the
inclusive value.

To further reduce the state space Hendel and Nevo assume

F (ωi,t+1 | st) = F (ωi,t+1 | ωit(xt)), (6.7)

where ωit is a vector of inclusive values for the different sizes. In words, the vector ωit
contains all the relevant information in st to obtain the probability distribution of ωi,t+1

conditional on st. Instead of all the prices (and characteristics) we only need a single in-
dex for each size. Two vectors of prices (and characteristics) that yield the same (vector
of) current inclusive values imply the same distribution of future inclusive values. This
assumption is violated if individual prices have predictive power above and beyond the
predictive power of ωit. Therefore, if the inclusive values can be estimated outside the
dynamic demand model, the assumption can be tested and somewhat relaxed by includ-
ing additional statistics of prices (and characteristics) in the state space. Note, that ωit
is consumer-specific: different consumers value a given set of products differently and
therefore this assumption does not further restrict the distribution of heterogeneity.

Given these assumptions Hendel and Nevo (2006a) show that

EVi(it,pt) = EVi(it,ωit(pt)) (6.8)

In words, the expected future value only depends on a lower dimensional statistic of the
full state vector.

Hendel and Nevo estimate the model using consumer level data and using a three-step
procedure. First they estimate many of the parameters (including various fixed effects)
with a static conditional Logit model where they use the probability of choosing a brand
conditional on the size being purchased (i.e. they consider only options that have the
same size as the size purchased). They show that for this conditional probability they
do not need to solve the dynamic programming problem.64 Next, they use the first-stage

64The intuition for the result is similar to the result in Chamberlain (1980) who proposes to estimate a
fixed effects Logit model by conditioning such that the fixed effects drop out. The same happens here, but
with the expected value function, instead of a fixed effect.
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estimates to compute the transition process of the inclusive values. Finally, they estimate
a nested fixed point as in Rust (1987) to estimate the remaining parameters.65

They find that estimates that do not account for dynamics overestimate own-price
elasticities by roughly 30 percent and underestimate cross-price elasticities by as much as
a factor of 5. They also find that static estimates overstate the substitution to the outside
option by over 200 percent. Together these suggest that static estimates, like the ones
discussed above, might underestimate price–cost margins and be downward biased in
predicting the effects of mergers (i.e., static estimates will predict effects that are lower
compared to the dynamic model). The models has implications for other policy debates
as well. For example, Wang (2015) finds that a static model will overestimate the effect of
a soda tax, by as much as 60%.

6.2.2 Durable Products

Many of the papers we discussed above involve estimation of demand for durable goods
(Bresnahan, 1987; Berry et al., 1995). Static models miss two important dynamic effects.
First, whether a product is owned (and which one) is likely to impact purchases. For
example, a consumer who more recently purchased a cell phone might be less likely to
buy a new phone than a consumer who owns an older model. Second, purchase decisions
will depend on expectations about future prices and quality. Expectation about the future
are especially important when nominal prices are declining and quality increasing, as is
the case in many durable good industries. The decline in quality-adjusted prices creates
a trade off for consumers between purchasing today, and getting the benefits of usage
earlier, or delaying purchase and paying a lower price (or getting higher quality).

Initially, the literature separated the modeling between two cases: with and without
repeat purchase, as far as we can tell mostly because the no repeat purchase was eas-
ier to deal with. More recently the literature has focused on the repeat purchase case,
which seems to better fit reality, and that is the one we mostly focus on here. With repeat
purchases the main issues with the static model are the ones discussed in the previous
paragraph. It is difficult to theoretically sign the direction of the bias in a static model,
but empirically it seems like static estimates are lower in absolute value.66

65They need to modify the Rust estimation algorithm to account for the fact that inventory, a state vari-
able, is unobserved.

66Without repeat purchase the issues with the static model are a bit different. First, after consumers
purchase they leave the market, and if consumers are heterogeneous then the distribution of the remaining
consumers changes over time in a way that is not accounted for by the static model. Second, if consumers
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Gowrisankaran and Rysman (2012) offer a framework that extends the static BLP
model and allows for dynamics. Interestingly, their model in several ways is similar to
the inventory model we presented in the previous section, where the role of inventory
is equivalent to the role of the quality of the product owned, in the model below. In the
durable good model ”stockpiling” means buying a higher quality product, i.e., ”stock-
piling” quality rather than quantity. The real difference between the two models is in
the pricing patterns and therefore the trade-off faced by consumers. In storable goods
markets, consumers face temporary price reductions that create an incentive to purchase
today for future consumption. In durable goods markets the typical pattern is a decreas-
ing quality-adjusted price, which creates an incentive to delay purchase, either by not
buying today or by buying a lower quality product, with the intention of replacing it
soon, or renting/leasing.67

To model these effects, let the (indirect) utility consumer i gets from product j at time
t be given by:

uijt = xjtβi + αipjt + ξjt + εijt, (6.9)

where the notation follows the definitions of the static model in Section 3. For what fol-
lows it is convenient to define the flow utility as γfijt = xjtβi + ξjt. If the consumer does
not purchase she gets the utility ui0t = γfi0t + εi0t where

γfi0t =

{
0

γf
iĵt̂

if no previous purchase
if last purchase was product ĵ at time t̂

. (6.10)

This definition of the utility from the outside option is the main difference between the
static model and the dynamic model. In the static model, the utility from the outside good
is constant (and normalized to zero) across consumers and over time. In the dynamic
model, once consumers purchase, the utility from the outside option changes. Forward-
looking consumers take this into account when making current choices. Assuming that (i)
the consumer holds at most a single product at any time and (ii) there is no resale market,

are forward-looking then they realize there is an option value to not purchasing today. This option value is
reflected in the value of the outside option, which in the static model is assumed constant. Melnikov (2013)
and Conlon (2012) offer models and empirical estimates of the no-repeat purchase model.

67In some cases, dynamics can also arise due to temporary price changes in durable goods markets. For
example, Busse et al. (2010) study the 2005 Employee Discount Pricing, and show that its main effect was
to induce consumers to purchase earlier.
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then the Bellman equation of the consumer problem is given by

Vi(εit, γ
f
i0t,xt) = max

j=0,...J

{
uijt + δ E[EVi(γ

f
ijt+1,xt+1)|xt]

}
, (6.11)

where EVi(γ
f
ijt,xt) =

∫
Vi(εit, γ

f
ijt,xt)dFε(εit), and xt represents the set of prices and other

product characteristics at period t. The expectation is taken with respect to the uncertainty
regarding future products, prices and characteristics.

Note, that there is another similarity with the storable goods model. Here the utility
carried forward is γfijt and not γfijt + εijt. Thus, just like in the inventory model there is a
separation between the utility at the time of purchase and the utility at the time of usage.

As is usually the case, it is convenient to work with the integrated value function. Even
with this, the state space includes the vector of all characteristics and prices, which is still
too large to practically work with. They reduce the state space in a similar way to what we
saw in the storable goods model. The state space also includes the quality of the products
currently held, which is equivalent to the inventory in the storable good problem. Because
they assume that the consumer only holds a single product, this quality is a scalar. In
more general models the consumer might purchase or hold multiple products, or multiple
units of the same product, and the dimension of quality would be higher. To reduce
the dimension of the state space, they rely, similar to the storable goods model, on the
inclusive value. However, it will be defined slightly differently here. Specifically, define
the dynamic inclusive value from the J inside alternatives as:

ωit(xt) = ln

(
J∑
j=1

exp(γfijt + αipjt + δ E[EVi(γ
f
ijt+1,xt+1) | xt])

)
. (6.12)

Note, that this definition is different in an important way from the definition given in
equation (3.10). The above definition provides the expected value, including the future
value, from the J options, while the definition in equation (3.10) provides the expected
flow utility, not accounting for the future value. The difference is not just semantic. The
static definition basically provides a (utility-consistent welfare) statistic that is a summary
of prices and characteristics of available products. The dynamic definition also includes
(endogenous) future behavior of the agent. Once we impose a particular stochastic struc-
ture on the evolution of ωit a natural question is whether the imposed structure is consis-
tent with the consumer optimization problem. Gowrisankaran and Rysman (2012) offer
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some discussion on whether or not this is restrictive, but generally little is known on what
behavioral assumptions are consistent with the imposed structure.

Given this definition, Gowrisankaran and Rysman make a similar assumption to equa-
tion (6.7) made in the storable goods model

F (ωi,t+1 | xt) = F (ωi,t+1 | ωit(xt)). (6.13)

As before, the assumption is that the inclusive value is sufficient to compute the transition
probabilities, but now it is the dynamic inclusive value, ωit. Furthermore, now there is a
single inclusive value rather than a vector of size-specific inclusive values, as was the case
for the stockpiling model.

Using this assumption we can now write

EVi(γ
f
i0t,xt) = EVi(γ

f
i0t, ωit) = ln

(
exp(ωit) + exp

(
γfi0t + δ E[EVi(γ

f
i0t+1, ωit+1|ωit]

))
.

(6.14)
Several studies that have estimated demand for durable products using household

level data.68 However, Gowrisankaran and Rysman (2012) offer a way to estimate the
model using aggregate data, which directly extend the methods of BLP.

If consumer level data are observed then, in principle, identification follows the stan-
dard arguments (Rust, 1994; Magnac and Thesmar, 2002).69 With aggregate data we do
not observe the purchase history of each consumer, which makes identification signifi-
cantly more difficult. Intuitively, the key to identifying the model and to separating the
different alternative models is the ability of the models to explain both the cross-sectional
variation, across markets and products, and the time series variation.

We are unaware of a formal identification proof. Standard identification proofs for
static models require some form of substitution between products (Berry et al., 2013). In
static models the substitution is between products in a given period, but here the require-
ment is for substitution over time and across products. This need not be satisfied. For
example, if the price of a high quality product falls at time t it could actually increase the
demand for a low quality product at t− 1, because some consumers might buy it for one
period.

The estimation, using aggregate data, follows closely the method proposed by Berry
et al. (1995), but nests a solution of the dynamic programming problem inside the inner

68For example, Erdem et al. (2005), or Prince (2008).
69The standard arguments need to be adjusted for the existence of ξjt, but with enough observations

these could be controlled for and then we are back in the standard case.
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loop. The idea is to follow the algorithm detailed in Section 4.3.4, but in Step 1 in order
to compute the market shares we need to solve the dynamic problem for each of the
simulated individuals. This is done by computing the inclusive value (using equation
(6.12) and an initial guess for EVi) for each simulated individual i. This in turn is used to
compute F (ωit+1 | ωit(xt)), which is used to update EVi. The process is continued until
it converges. If we think of the BLP algorithm as a nested fixed point, then here we have
another layer of nesting in order to compute the market shares.

7 Concluding Comments

In this chapter we review the modern IO approach to modeling demand and supply in
differentiated products industries. In many cases, we only scratch the surface of many of
the topics we discussed and there are many topics that are left uncovered. For example,
many of the applications of the models we discussed are covered in other chapters of this
Handbook. The success of the methods we discuss here is reflected in their application to
areas such as health, finance, taxation, housing and school choice, development, environ-
mental policy and political economy, that historically were very different than IO. This
is a positive trend that we hope will continue into the future as IO economists continue
developing more flexible models and improved computational methods.
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