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1 Introduction

Golosov and Lucas (2007) demonstrate that an equilibrium version of the menu cost model of

Barro (1972) implies approximate monetary neutrality when confronted with microdata on price

changes (Bils and Klenow, 2004). The framework has since been adapted to generate a smaller

elasticity of inflation to real marginal cost, yet responses remain much larger than employed in

quantitative New Keynesian models that do not match microdata on price adjustment (Christiano,

Eichenbaum, and Trabandt, 2016; Violante, Kaplan, and Moll, 2018). Realistic and complementary

mechanisms are required in order to generate realistic monetary non-neutrality.1

This paper presents a mechanism based on an ignored feature of microdata: goods markets

are concentrated. I accommodate this fact through an oligopolistic market structure as in Atkeson

and Burstein (2008) but in which—due to pricing frictions—firms compete dynamically. At the

macro level, monetary business cycles are two and a half times larger than under monopolistic

competition, flattening the implied Phillips curve by a factor of four. Table A1 puts this in the

context of the literature. At the micro level, productivity shocks cause idiosyncratic price changes

that are large and almost identically distributed for both market structures and under similar

parameters. The framework therefore avoids a well known road block to incorporating pricing

complementarities in menu cost models: the inability to generate large price changes (Klenow and

Willis, 2016; Burstein and Hellwig, 2007).2 Moreover, strategic complementarities in prices mean

the model is outside the “broad class of models” for which results in Alvarez and Lippi (2014)

apply: kurtosis, frequency, and size of price adjustment are identical across market structures, but

aggregate dynamics vary.

Studying the quantitative macroeconomic implications of dynamic oligopolistic firms is new.

Many markets are concentrated, but most existing macroeconomic models aggregate behavior of

non-strategic agents. Figure 1 documents market concentration for a range of narrowly defined

goods markets: a product category (e.g., ketchup) within a state.3 The median market has many

1Table A1 contributes a meta-study of existing results. The implied slope of the Phillips curve λ in extensions of
the menu cost model are significantly smaller than the baseline Golosov and Lucas (2007) model, but still significantly
larger than required to generate monetary business cycles of the magnitude of estimated New Keynesian models.

2The issues raised in these papers are discussed extensively by Nakamura and Steinsson (2010), Gopinath and
Itskhoki (2011) and Midrigan (2011a).

3IRI data are used to construct measures of wholesale-firm-level revenue, which are then used to construct mea-
sures of concentration. The IRI data are weekly good-level data for the universe of goods in a panel of over 5,000
supermarkets in the US from 2001 to 2011. Wholesale firms, such as Kraft in the market for ketchup, are identified from
the first six digits of a barcode. For a detailed description of how these measures are constructed, see Appendix B.

1



0.00

0.05

0.10

0.15

0.20
F

ra
c
ti

o
n

 o
f 

m
a
rk

e
ts

0 20 40 60 80 100

Median = 40.7

A. Number of firms

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10

Median = 3.73

B. Effective number of firms

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0

Median = 0.66

C. Two firm revenue share

Figure 1: Market concentration in the IRI data
Notes: (i) A market is defined as an IRI product category p within state s in quarter t giving 191, 833 observations. (ii) A firm i is
defined within a pst market by the first 6 digits of a product’s barcode, which identifies the wholesale firm. (iii) Revenue ripst is the
sum over the revenue from all products of firm i in market pst. See Appendix B for more details on the data. (iv) Medians reported
in the figure are revenue weighted. Unweighted medians are A. 21, B. 3.88, C. 0.64. (v) Each histogram has 20 bins. Panel A: Number
of firms is the total number of firms with positive sales in market pst. Panel B: Effective number of firms is given by the inverse
Herfindahl index h−1

pst, where the Herfindahl index is the revenue-share-weighted average revenue share of all firms in the market,
hpst = ∑i∈{pst}(ripst/rpst)2. Panel C: Two-firm revenue share is the share of total revenue in market pst accruing to the two firms with
the highest revenue.

firms, but sales accrue to a few. The revenue share of the top two firms is two thirds.4 If firms with

market power set prices strategically, what are the implications for macroeconomic dynamics?

To answer this question I develop a new quantitative framework: a general equilibrium menu

cost model of price adjustment featuring a duopoly within each of a continuum of sectors. Firms’

goods are imperfectly substitutable such that prices are complements, face large and persistent

idiosyncratic shocks, persistent aggregate shocks to money growth, choose when to pay a cost to

change their price, and compete strategically under a Markov perfect equilibrium (MPE) concept.

In consequent work, Werning and Wang (2020) derive highly informative analytical results for a

continuous time dynamic oligopoly without idiosyncratic shocks, where changes in the money

stock are permanent and unanticipated, and firms are chosen at random to change their price (i.e.

Calvo). The main exercise compares the dynamic oligopoly economy to an economy with the

standard market structure used throughout monetary economics: a (monopolistically) competi-

tive market with a continuum of non-strategic firms. The oligopoly model introduces no free pa-

rameters, so both models can be transparently calibrated to the same microdata on price changes

and markups. In these two economies with different market structures but identical measures of

idiosyncratic price flexibility, the aggregate price level is less flexible under oligopoly. As a con-

sequence, output fluctuations in response to monetary shocks are around two and half times as

4Recent studies have documented similar concentration in labor markets (Azar, Marinescu, Steinbaum, and Taska,
2020; Benmelech, Bergman, and Kim, 2020; Rinz, 2020; Berger, Mongey, and Herkenhoff, 2019). Like the new facts
documented in Figure 1 the average effective number of firms in a market (commuting-zone, NAICS3 combination) is
around 5, much less than the average number of firms around 40 (Berger, Mongey, and Herkenhoff, 2019, Table 1).
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Figure 2: Static complementarity
Notes: The x-axis plots the price of Firm A, the y-axis plots the static best response of Firm B: p∗B(pA). This is the price that maximizes
πB given pA. The black solid line is the 45-degree line. The price p∗ is the frictionless Nash equilibrium price satisfying p∗(p∗) = p∗.

large.5

The model delivers additional macroeconomic results regarding output losses due to nominal

rigidity, aggregate dynamics under alternative price-setting technologies (i.e. Calvo), and quanti-

fies a novel feature of the model, that firms have a preference for nominal rigidity. First, I briefly

describe the mechanism underlying this main result.

Mechanism. The mechanism has two ingredients, (i) dynamic complementarity in prices which

is new to the menu cost literature, (ii) the interaction of (i) with a monetary shock.

A natural property of oligopoly with imperfectly substitutable goods is that firms’ prices are

complements: off-equilibrium, my best response is increasing in my competitor’s price. The theo-

retical literature discussed below refers to this as static complementarity in prices. In a single period

model with frictionless adjustment, each firm reasons through these off equilibrium best responses

in which each firm undercuts its competitor. Iterating on best responses yields a frictionless Nash

equilibrium p∗.6 Figure 2 plots such a best response function and static equilibrium between two

symmetric firms.

Including menu costs and dynamics shifts the equilibrium set of prices and policies. Menu

costs make future price cuts expensive. So when menu costs are positive, a higher price at one

firm yields a response of a higher price from its competitor in equilibrium rather than just off-

5The real effects of monetary shocks are measured as the time series standard deviation of output in an economy
with only monetary shocks. To match evidence on the distribution of price changes, I assume that menu costs are
random in both models. I show that output fluctuations in the duopoly model with random menu costs are five times
larger than the monopolistically competitive model with fixed menu costs.

6In the Online Appendix (at the end of this document) I derive these properties of the best response function under
a profit function πi(p1, p2) with general complementarity (π12 > 0). I also derive a number of useful results for a static
game which provides intuition for the mechanism discussed.
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equilibrium. This dynamic complementarity has been studied in the theoretical literature (Maskin

and Tirole, 1988b; Lapham and Ware, 1994; Jun and Vives, 2004).

I show that dynamic complementarity curtails the well documented selection effect that drives

monetary non-neutrality in a monopolistically competitive menu-cost economy.7 When changing

prices is costly, an increase in the money supply causes firms with the most out-dated prices—

firms with low markups—to change their prices first. The aggregate price index, therefore, quickly

incorporates the deviation of these firms’ prices from their optimal price. Matching microdata on

price adjustment demands that these deviations and therefore price increase are large, such that a

monetary shock causes a spike in inflation with little output response.

In the dynamic oligopoly model the selection effect is dampened. In sectors where past idiosyn-

cratic shocks have forced the firms’ markups apart, the falling markup of the high markup firm

puts a brake on the response of the low markup firm. As prices are dynamic complements, the

falling markup at the high markup firm reduces the low markup firm’s (i) optimal reset price, and

(ii) value of a price increase as its residual demand declines. Low markup firms adjust less, and by

smaller amounts, dampening the selection effect. I extend existing decompositions of aggregate

inflation (Caballero and Engel, 2007) to characterize how this mechanism dampens inflation.

I show that holding the amount of static complementarity fixed (i.e. preferences and technol-

ogy), the amount of dynamic complementarity behind this result is endogenous. To make this point,

I compare the oligopoly model under menu cost and Calvo pricing. Under Calvo, future price

changes occur at random, so adjusting firms care less about the falling markup of their competi-

tor. In the monopolistically competitive model Calvo frictions shut down the selection effect and

generate 3 times larger output fluctuations. In the oligopoly model, Calvo frictions weaken the

dynamic complementarity in prices and generate only 1.3 times larger output fluctuations. In ex-

isting models complementarity is controlled by a free parameter, while here it responds to changes

in technology and policy.

Other results. Introducing dynamic strategic interaction into a menu cost model leads to other

implications for key areas of monetary economics.

First, small menu costs cause large first order output distortions. In a monopolistically com-

petitive market, the average markup is similar with or without menu costs. In an oligopolistic

market, menu costs support higher equilibrium markups by making price cuts costly. I find that

7For an excellent discussion of the selection effect see Midrigan (2011b).
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menu costs cause first order output losses due to higher markups that are three times larger than

the second order losses due to price dispersion.8

Second, the model rationalizes positive menu costs. On the one hand, larger menu costs allow

for larger deviations from the frictionless Nash equilibrium price. On the other hand, larger menu

costs make it costly to adjust to large idiosyncratic shocks. From the firms’ perspective, these

trade-offs yield a positive value-maximizing menu cost.

Third, strategic behavior generates some endogenous price stickiness. The oligopoly model

matches the same moments as the monopolistically competitive model under smaller menu costs

as a fraction of revenue, and slightly smaller idiosyncratic shocks. If evaluated under the same

parameters, the oligopoly model would generate half as much idiosyncratic price flexibility and

five times larger output fluctuations.

Literature. Complementarity in firm-level pricing is well understood to be an important source

of monetary non-neutrality (Woodford, 2003, chap. 3), but has hit road blocks in state-dependent

pricing models that match facts on price adjustment (Bils and Klenow, 2004).9 Existing comple-

mentarities make deviations of firm prices from the aggregate price costly, so if the aggregate

price does not fully adjust to a monetary shock, firms will stagger their price increases. Klenow

and Willis (2016) introduce complementarity through Kimball (1995) preferences. Burstein and

Hellwig (2007) introduce complementarity through a decreasing returns to scale production tech-

nology. Both yield negative results. More complementarity dampens price adjustment following

aggregate shocks but causes firms to adjust aggressively to idiosyncratic shocks that would force

them away from the aggregate price. Large price changes become impossible to rationalize with-

out implausibly large menu costs and idiosyncratic shocks.10

The failure of these approaches is an unresolved “serious challenge to monetary economics” (Naka-

8Optimal policy in the monopolistically competitive New Keynesian model that resolves the effect of sticky prices
on markup dispersion (Gali, 2008, chap. 4), would therefore neglect the markup level, which is the largest source of output
losses due to sticky prices in the oligopoly economy.

9Woodford (2003, chap. 3) compares the effect of many such sources of complementarity in the New Keynesian
literature (time-dependent adjustment and no idiosyncratic shocks). These include micro-complementarities such
as non-CES preferences in Kimball (1995) and firm-level decreasing returns to scale in Sbordone (2002), and macro-
complementarities such as roundabout production in Basu (1995).

10Beck and Lein (2020) provide an exhaustive study that extends Klenow and Willis (2016). Even under the small
departures from CES that they estimate in micro-data, monthly productivity shocks of around 22 percent are needed to
generate the size of price changes in microdata. Burstein and Hellwig (2007) require menu costs equivalent to three
percent of output to reduce price adjustment to its empirical frequency. Like Burstein and Hellwig (2007), the model
of Gertler and Leahy (2008) also features complementarity via increasing marginal costs, but modeled through an
increasing sectoral labor supply curve. In my model monthly shocks are around 4 percent, and menu costs are around
0.07 percent of output.
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mura and Steinsson, 2010) that is simply addressed in the oligopoly model.11 Complementarity

here is between a firm’s price and its competitor’s price, with no complementarity with aggre-

gates. Since both firms’ prices respond to large idiosyncratic shocks there is nothing preventing

large price changes in the model. With almost identical parameters, the model generates larger

output responses than the monopolistically competitive model but matches the same data on price

adjustment.

These types of complementarity that modify the microeconomic structure of the model and

stagger firm adjustment have been categorized as micro-complementarities. An alternative type,

macro-complementarities, aim to stagger the adjustment of aggregate nominal marginal cost. In

Nakamura and Steinsson (2010) this is achieved via a roundabout production structure as in Basu

(1995). In Burstein and Hellwig (2007) and Klenow and Willis (2016) this is achieved via nominal

wage rigidity. None of these approaches quantitatively yield the empirical response of output

to a monetary shock, but nonetheless substantially flatten the Phillips curve (see Table A1), so

it is important that the mechanism studied here is complementary. I therefore hold the macroe-

conomic structure of the economy and its parameters constant when comparing microeconomic

market structures. An alternative macroeconomic structure—e.g. wage rigidity—would alter the

process for aggregate nominal marginal cost, and still lead to less inflation when pushed through

an oligopolistic rather than monopolistic market structure. To the best of my knowledge, this is

the first paper that studies a micro-complementarity that generates amplification without curtailing

idiosyncratic adjustment.

An alternative to complementarity in generating less inflation and large output responses to a

monetary shock is presented by Midrigan (2011b), Bhattarai and Schoenle (2014), and Alvarez and

Lippi (2014). These papers incorporate small price changes which weaken the selection effect.12

My results do not operate through this channel. I show that the distribution of price changes

under both market structures are nearly identical in terms of standard deviation, skewness and

kurtosis.13 Moreover, I use random menu-costs in both models, which yields a smooth bimodal

11See also the extensive discussion in Gopinath and Itskhoki (2011) and Midrigan (2011a).
12Small price changes are due to multi-product firms with economies of scope in price changes. Midrigan (2011b)

shows that the mechanism used to account for small price changes is inconsequential: a single-product model with
random menu costs also generates small price changes and generates larger output fluctuations. To this multi-product
firm framework Karadi and Reiff (2019) add stochastic volatility to idiosyncratic marginal cost, which further reduces
monetary non-neutrality.

13Both market structures therefore share the same sufficient statistics for the output response to a monetary shock
derived by Alvarez, Le Bihan, and Lippi (2016). That the alternative market structures generate different output re-
sponses emphasises a subtlety in their paper: models with complementarity in price setting do not fall into the class of
models for which their results apply.
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distribution of price changes that matches recent data from Cavallo (2018).

At the microeconomic level, the most closely related papers are Nakamura and Zerom (2010)

and Neiman (2011). Both study single sector, partial equilibrium, oligopolistic models of price

setting under menu costs. The former studies three firms subject to a sectoral shock to the cost

of inputs, but no idiosyncratic shocks. I show that large idiosyncratic shocks are important for

creating the within sector price dispersion that is key for dampening inflation. The latter studies

two firms subject to idiosyncratic shocks, but focuses on how one firm responds to a shock to its

competitor. I study the important question for macroeconomics: how do both firms respond to a

common shock?

More generally, this paper demonstrates that the strategic interaction of firms, more commonly

studied in the industrial organization literature, can be quantitatively important for the cyclicality

and level of output when firms face standard adjustment frictions. The model even shows that the

adjustment frictions commonly used in macroeconomic models may be desirable to firms when

they interact dynamically and strategically. These points should be of broad interest given recently

documented concentration in many sectors of the US economy, which empirical work has asso-

ciated with numerous trends.14 This paper contributes a dynamic stochastic general equilibrium

framework with heterogeneous agents that may be applied to such issues.

Outline. Section 2 presents the model. Section 3 describes the main mechanism. Section 4

presents the calibration. Section 5 presents the main results on the dynamics of output and quan-

tifies the mechanism. Section 6 discusses robustness and relation to the literature. Section 7 de-

scribes how nominal rigidities distort the level of output and how positive rigidities are valued by

firms.15

2 Model

Time is discrete. There are two types of agents: households and firms. A unit measure of identical

households consume goods, supply labor, buy state-contingent nominal bonds, and own equal

14Autor, Dorn, Katz, Patterson, and Van Reenen (2017) show that across sectors, declines in the labor share are
correlated with increases in concentration. Gutierrez and Philippon (2017) show that the decline in the predictive
power of Tobin’s Q for aggregate investment is due to sectors that have experienced large increases in concentration.
de Loecker, Eeckhout, and Unger (2020) provide evidence for increasing average markups.

15An appendix contains additional figures and tables, computational and data details and further discussion of
model assumptions. An Online Appendix (at the end of this document) provides theoretical results for one- and two-
period duopoly price-setting games under menu costs that the reader may find useful throughout.
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shares in all firms. Firms are organized in a continuum of sectors indexed j ∈ [0, 1]. Each sector

contains two firms indexed i ∈ {1, 2}. Goods are differentiated first across then within sectors.

Good ij is produced by a single firm operating a technology with constant returns to scale in

labor. Aggregate uncertainty arises from shocks to the growth rate gt of the money supply Mt,

and idiosyncratic uncertainty arises from shocks to preferences for each good zijt. Each period

every firm draws a menu cost ξijt ∼ H (ξ) and may change their price pijt by paying ξijt.

I write agents’ problems recursively, such that the time subscript t is redundant. The aggregate

state is denoted S ∈ S . The sectoral state is denoted s ∈ S. The measure of sectors with state s is

given by λ(s, S). When integrating over sectors, I integrate s over λ(s, S) rather than j over U[0, 1].

2.1 Household

Given prices for all goods in all sectors pi(s, S), wage W(S), prices of state-contingent nominal

bonds Q(S, S′), aggregate dividends Π(S), the distribution of sectors λ(s, S), and law of motion

for the aggregate state S′ ∼ Γ(S′|S), households’ policies for consumption demand for each good

in each sector ci(s, S), labor supply N (S), and demand for bonds B′ (S) solve

W
(
S, B

)
= max

ci(s),N,B′(S′)
log C− N + βE

[
W
(
S′, B(S′)

)]
,

where C =

[ˆ
S

c(s)
θ−1

θ dλ(s, S)
] θ

θ−1
,

c(s) =

[(
z1(s)c1(s)

) η−1
η

+
(

z2(s)c2(s)
) η−1

η

] η
η−1

,

subject to the nominal budget constraintˆ
S

[
p1(s, S)c1(s) + p2(s, S)c2(s)

]
dλ(s, S) +

ˆ
S

Q(S, S′)B′(S′)dS′ ≤ W(S)N + B(S) + Π(S)

Households discount the future at rate β, have time-separable utility, and derive period utility

from consumption adjusted for the disutility of work, which is linear in labor.16 Utility from

consumption is logarithmic in a CES aggregator of consumption utility from the continuum of

sectors. The cross-sector elasticity of demand is denoted θ > 1. As in Atkeson and Burstein

(2008), utility from sector j goods is given by a CES utility function over the two firms’ goods.

The within-sector elasticity of demand is denoted η > 1. These elasticities are ranked η > θ. The

household is more willing to substitute goods within a sector (Pepsi vs. Coke) than across sectors

(soda vs. laundry detergent). Finally, household preference for each good is subject to a shifter

zi(s) that evolves according to a random walk,

16A parameter controlling the utility cost of labor can be normalized to one, so is not included.
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log z′i(s
′) = log zi(s) + σzε′i, εi ∼ N (0, 1). (1)

The shock ε′i is independent over firms, sectors, and time.

The solution to the household problem consists of demand functions for each firm’s output

ci(s, S), a labor supply function N(S), and an equilibrium share price Ω(S), which will be used to

price nominal firm payoffs. Demand functions are given by

ci(s, S) = zi(s)η−1
(

pi(s, S)
p(s, S)

)−η(p(s, S)
P(S)

)−θ

C(S), (2)

where p(s, S) =

[(
p1(s, S)

z1(s)

)1−η

+

(
p2(s, S)

z2(s)

)1−η
] 1

1−η

,

P(S) =

[ˆ
S

p(s, S)1−θdλ(s, S)
] 1

1−θ

.

Aggregate real consumption is C(S). The allocation of C(S) to sector s depends on the level of the

sectoral price p(s, S) relative to the aggregate price P(S). The allocation of expenditure to firm i

is then determined by zi(s) and the level of firm i’s price relative to p(s, S), which is the sectoral

price index satisfying p(s, S)c(s) = ∑2
i=1 pi(s, S)c1(s, S), and is increasing in firm prices.

The aggregate price index satisfies P(S)C(S) =
´

S [p1(s, S)c1(s, S) + p2(s, S)c2(s, S)] dλ(s, S),

such that P(S)C(S) is equal to aggregate nominal consumption. I assume that aggregate nom-

inal consumption must be paid for using money M(S). Money demand is therefore Md(S) =

P(S)C(S).17 Money supply is exogenous. Its growth rate g′ = M′/M evolves as follows:

log g′(S′) = (1− ρg) log g + ρg log g(S) + σgε′g, ε′g ∼ N (0, 1) . (3)

Hence, the nominal economy is trend stationary around g. An intratemporal condition deter-

mines labor supply and Euler equation prices nominal bonds with discount factor Q(S, S′):

W(S) = P(S)C(S), Q(S, S′) = β
P(S)C(S)

P(S′)C(S′)
. (4)

Pricing all nominal payoffs, Q(S, S′) also discounts nominal firm profits. In equilibrium, (4)

implies that Q(S, S′) = βW(S)/W(S′).

17An alternative assumption is that money enters the utility function as in Golosov and Lucas (2007). As noted in
that paper, if utility is separable, the disutility of labor is linear, and the utility of money is logarithmic, one obtains the
same equilibrium conditions studied here.
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2.2 Firms

I consider the problem for firm i, denoting its direct competitor −i. The sectoral state vector s

consists of previous prices pi, p−i and current preferences zi, z−i.

Within a period, information and timing are as follows. After these states are revealed, both

firms independently draw a menu cost for the period ξij from the known distribution H(ξ). I

make the additional assumption, discussed below, that these draws are private information. At

the same time as its competitor, firm i then chooses whether to adjust its price, φi ∈ {0, 1}, and if

changing its price, changes it to p∗i . Prices are then revealed, firms produce the quantity demanded

by households, and preference shocks evolve (zi, z−i) to (z′i, z′−i). Within a period, all moves are

simultaneous, such that firms do not respond to each other’s new price: p′i = φi p∗i + (1− φi)pi.

When determining its actions, firm i takes as given the policies of its direct competitor. These

consist of its decision to change price φ−i (s, S, ξ−i) and its optimal price p∗−i(s, S). Since menu

costs are sunk, p∗−i(s, S) is independent of ξ−i.

My description of the environment has explicitly restricted firm policies to depend only on

payoff relevant information (s, S), that is, they are Markov strategies. A richer dependency of poli-

cies on the history of firm behavior is beyond the scope of this paper.18

Let Vi (s, S, ξi) denote the present discounted expected value of nominal profits of firm i after

the realization of the sectoral and aggregate states (s, S) and its menu cost ξi. Then Vi (s, S, ξi)

satisfies the following recursion, which I unpack below:

Vi (s, S, ξi) = max
φi∈{0,1}

φi

[
Vadj

i (s, S)−W(S)ξi

]
+ (1− φi)V

stay
i (s, S) , (5)

Vadj
i (s, S) = max

p∗i

ˆ [
φ−i(s, S, ξ−i)

{
πi

(
p∗i , p∗−i(s, S), s, S

)
+ E

[
Q(S, S′)Vi

(
s′adj, S′, ξ ′i

) ]}
+
(

1− φ−i(s, S, ξ−i)
){

πi

(
p∗i , p−i(s), s, S

)
+ E

[
Q(S, S′)Vi

(
s′adj, S′, ξ ′i

) ]} ]
dH (ξ−i) ,

πi

(
pi, p−i, s, S

)
= di

(
pi, p−i, s, S

)(
pi − zi(s)W(S)

)
,

s′adj = φ−i (s, S, ξ−i)×
(

p∗i , p∗−i(s, S), z′i, z′−i

)
+
(

1− φ−i (s, S, ξ−i)
)
×
(

p∗i , p−i, z′i, z′−i

)
S′ ∼ Γ

(
S′|S

)
.

18Quoting the progenitors of the term Maskin and Tirole (1988a), “Markov strategies...depend on as little as possible,
while still being consistent with rationality.” Rotemberg and Woodford (1992) study an oligopoly with arbitrary history
dependence of policies but no nominal rigidity or idiosyncratic shocks. The implicit collusion accommodated by trigger
strategies leads to countercyclical markups: the value of deviating from collusion increases when demand is high,
reducing the level of the markup that can be sustained.
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The first line states the extensive margin problem, where adjustment requires a payment of menu

cost ξi in units of labor. The value of adjustment is independent of the menu cost and requires

choosing a new price p∗i . The firm integrates out the unobserved state of its competitor—the menu

cost ξ−i—and takes as given the effect of its competitor’s pricing decisions
(
φ−i, p∗−i

)
on (i) current

payoffs πi, and (ii) future states s′adj. The term in braces in the second (third) line gives the flow

nominal profits plus continuation value of the firm if its competitor does (does not) adjust its price.

The value of non-adjustment Vstay
i (s, S) is equal to the value of adjustment under p∗i (s, S) = pi(s).

The above flow payoff introduces a role for zi(s) in costs. As in Midrigan (2011b) and Alvarez

and Lippi (2014), I assume that zi(s)—which increases demand for the good with an elasticity

of (η − 1)—also increases total costs with a unit elasticity. This assumption, discussed below,

allows me to reduce the state space of the firm’s problem, a crucial step to maintain computational

tractability of the dynamic oligopoly model.19

The household’s nominal discount factor Q(S, S′) is used to discount future nominal profits,

and expectations are taken with respect to both the equilibrium transition density Γ(S′|S) and

firm-level shocks (z′i, z′−i). Through the household’s demand functions di(pi, p−i, s, S), nominal

profit depends on aggregate consumption C(S) and the aggregate price index P(S), which the

firm takes as given since it is atomistic with respect to the aggregate economy.

That menu costs are sunk and iid allows for two simplifications. First, as the menu cost is

sunk, p∗−i is independent of ξ−i, hence it is sufficient for firm i to know only the probability that

its competitor changes its price: γ−i(s, S) =
´

φ−i(s, S, ξ−i)dH(ξ−i). Second, being an iid draw, ξi

can be integrated out of firm i’s Bellman equation. These observations imply that ξi is not a state:

Vi (s, S) =

ˆ
max

{
Vadj

i (s, S)−W(S)ξi , Vstay
i (s, S)

}
dH(ξi), (6)

Vadj
i (s, S) = max

p∗i
γ−i(s, S)

{
πi

(
p∗i , p∗−i(s, S), s, S

)
+ E

[
Q(S, S′)Vi

(
s′adj, S′

) ] }
+
(

1− γ−i(s, S)
){

πi

(
p∗i , p−i(s), s, S

)
+ E

[
Q(S, S′)Vi

(
s′adj, S′

) ] }
.

Given aggregates Q(S, S′), P(S), and C(S), this suggests the following fixed point to ob-

tain a Markov Perfect Equilibrium. Given p∗−i(s, S) and γ−i(s, S), one may solve (6) to obtain

firm i’s optimal price p∗i (s, S) and probability of price adjustment γi(s, S) = H[(Vi
adj(s, S) −

Vi
stay(s, S))/W(S)]. Using (p∗i , γi) we can similarly obtain (p∗−i, γ−i) and so on.

19This assumption does not change the underlying economics of the problem. In reality, idiosyncratic demand or
productivity shocks may lead firms to change prices. Under constant returns to scale and homothetic preferences, the
two enter symmetrically. Hence this assumption preserves the fundamental idea that a firm increases (decreases) its
price when its price is too low (high) relative to some benchmark holds under either demand or productivity shocks.
Importantly, the aggregate shock is only to nominal demand.
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2.3 Equilibrium

Given the above, the aggregate state vector S must contain the level of nominal demand M, its

growth rate g, and distribution of sectors over sectoral state variables λ. A recursive equilibrium is

(i) Household demand functions di(pi, p−i, s, S)

(ii) Functions of the aggregate state: W(S), N(S), P(S), C(S), Q(S, S′)

(iii) Law of motion Γ(S, S′) for the aggregate state S = (g, M, λ)

(iv) Firm value functions Vi(s, S) and policies p∗i (s, S), γi(s, S)

such that

(a) Demand functions in (i) are consistent with household optimality conditions (2).

(b) The functions in (ii) are consistent with household optimality conditions (4).

(c) Given functions (i), (ii), (iv), and competitor policies, p∗i , γi, and Vi are consistent with firm i

optimization and Bellman equation (5).

(d) Aggregate price P(S) equals the household price index under λ(s, S), p∗i (s, S), and γi(s, S).

(e) Nominal aggregate demand satisfies P(S)C(S) = M(S).

(f) The price of state contingent nominal bonds is given by (4).

(g) The law of motion for g and the path for M are determined by (3).

(h) The law of motion for λ is consistent with firm policies and (1). Let X = P1 × P2 × Z× Z ∈

R4
+ and the corresponding set of Borel sigma algebras on X be given by X = P1×P2×Z1×

Z2. Then λ : X → [0, 1] and obeys the following law of motion for all subsets of X :20

λ′ (X ) =

ˆ
X

Eγ1(s,S),γ2(s,S)1 {(p∗1(s, S), p∗2(s, S)) ∈ P1 ×P2}P
[
z′1 ∈ Z1|z1

]
P
[
z′2 ∈ Z2|z2

]
dλ(s, S).

This is a new type of recursive competitive equilibrium for an economy with heterogeneous agents

and may be extended to many settings: behaviour between agents is competitive when agents are

in different sectors of the economy, and strategic when agents inhabit the same sector. Condition

(c) requires that this strategic behavior constitutes an MPE.

2.4 Monopolistic competition

The monopolistically competitive economy is identical to the above, but where firm i belongs to

a continuum of firms i ∈ [0, 1] in sector j. The demand system is identical to (2), but where

pj(S) = [
´
(p(s, S)/z(s))1−ηdλj(s, S)]1/(1−η). Crucially, since firms are competitive, they take

20In this definition, Eγ1(s,S),γ2(s,S) [ f (s, S)] is the expectation of f under the sector s probabilities of price adjustment.
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pj(S) as given. The idiosyncratic state of the firm is therefore its own zi and past price pi. Since

sectors are homogeneous in parameters, and the law of large numbers applies for each sector, then

the distribution of firms λj is the same in all sectors. Therefore pj(S) = pk(S) for all sectors j and

k, which implies that P(S) = pj(S). The cross-sector elasticity of demand θ is therefore entirely

absent from the firm problem and all equilibrium conditions, which feature only η.

2.5 Markups

A sectoral MPE, nested in a macroeconomic equilibrium, is computationally infeasible with four

continuous state variables at the sector level. Under the standard assumptions regarding id-

iosyncratic shocks that I also employ here, it may be restated in terms of markups: the ratio

of nominal price to nominal marginal cost µij := pij/(zijW). Similarly, I define the sectoral

markup µj := pj/W and aggregate markup µ := P/W. Applying these definitions to (2) gives

µj = [µ
1−η
1j + µ

1−η
2j ]1/(1−η), and µ = [

´ 1
0 µ1−θ

j dj]1/(1−θ). Derivations are contained in Appendix C.

Expressed in markups and normalized by the wage, the profit of the firm is

πi

(
µi, µ−i, S

)
W(S)

= π̃i

(
µi, µ−i

)
µ(S)θ−1 , π̃i

(
µi, µ−i

)
= µ

−η
i µj (µi, µ−i)

η−θ (µi − 1) . (7)

This implies that within a sector markups are strategic complements in the static sense. A higher

µ−i increases µj, which increases the static profit maximizing µi.21 Meanwhile, the level of ag-

gregate µ(S) has no impact on the profit-maximizing µi. Firm and aggregate markups are not

strategic complements as was the case in prior models of strategic complementarity in monopo-

listically competitive environments (Burstein and Hellwig, 2007; Klenow and Willis, 2016).

Value functions can also be normalized. Let vi(s, S) = Vi(s, S)/W(S), then

vi (µi, µ−i, S) =

ˆ
max

{
vadj

i (µi, µ−i, S)− ξi, vstay
i (s, S)

}
dH(ξi), (8)

vadj
i (µi, µ−i, S) = max

µ∗i
γ−i(µi, µ−i, S)

{
π̃i

(
µ∗i , µ∗−i(µi, µ−i, S)

)
µ (S)θ−1 + βE

[
vi

(
µ∗i

g′eε′i
,

µ∗−i(µi, µ−i, S)

g′eε′−i
, S′
)]}

+
(

1− γ−i(µi, µ−i, S)
){

π̃i

(
µ∗i , µ−i

)
µ (S)θ−1 + βE

[
vi

(
µ∗i

g′eε′i
,

µ−i

g′eε′−i
, S′
)]}

.

Despite random walk shocks, this normalization renders the firm problem stationary in markups

21Since η > θ, then π̃i is increasing in µj. By definition, complementarity requires that µj(µi, µ−i) has a positive cross-
partial derivative. This is the case here. Observe that under CES demand ∂µj/∂µi = (µj/µi)

η , which is increasing in µj,
which itself is increasing in µ−i. Figure A5 plots the level of the profit function as well as first, second, and cross-partial
derivatives for various values of θ and η. Figure A4 plots the elasticity and super-elasticity (elasticity of the elasticity)
of demand faced by firm 1 as µ1 and µ2 vary.
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and clarifies the mechanics of the shocks as follows. First, a random walk idiosyncratic shock ε′i is

a permanent iid shock to the markup of firm i should the firm not adjust its price. Second, paying

the real menu cost ξi allows the firm to ‘reset’ its markup µi to a value µ∗i that depends on µ−i

by changing its price pi. Third, a single positive innovation to money growth causes equilibrium

nominal marginal cost to increase, reducing both firms’ markups. As money growth returns to g

at rate ρg, firms’ markups continue to decline at a decreasing rate.

In this way, all equilibrium conditions can be stated in markups. Note that aggregate consump-

tion is C(S) = M(S)/P(S) = 1/µ(S). An increase in the money supply causes an equilibrium

increase in nominal wages, reducing all firms’ markups. If prices do not increase one for one with

wages, then real wages increases, labor supply increases, and output increases.

2.6 Approximation

A solution for the equilibrium involves the function µ(S), requiring the infinite dimensional dis-

tribution λ (µi, µ−i) as a state variable. To make the problem tractable, I follow the lead of Krusell

and Smith (1998). Since I must specify a price function for µ, a convenient choice of moment to

characterize λ is last period’s aggregate markup, µ−1. The following then serves as (i) the pricing

function and (ii) the law of motion for the approximate aggregate state:

µ (µ−1, g) = exp
(

µ + β1(log µ−1 − log µ) + β2(log g− log g)
)

. (9)

The supposition S′ = (µ, g′) in (8) followed by applying (9), verifies that S = (µ−1, g). Appendix

C provides more details on the solution of the firm problem and equilibrium.

2.7 Assumptions

Appendix D discusses a number of modeling assumptions: (i) CES preferences, (ii) structure of

idiosyncratic shocks, (iii) random menu costs and (iv) their information structure. Following the

insight of Doraszelski and Satterthwaite (2010), this last assumption is made to accommodate

a solution in pure strategies. A model with fixed costs would yield mixed strategy equilibria,

becoming computationally infeasible. In the Online Appendix (at the end of this document), I

prove a number of results for a one-period game of price adjustment with a fixed menu cost, some

initial prices chosen by nature, and a general profit function with complementarity. I establish that

for any positive menu cost there exists a non-degenerate set of initial prices for which multiple

equilibria exist (see Figure OA.1).
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3 Illustrating the mechanism

To understand the dynamics of markups in the two models of market structure, I consider an

exercise that corresponds to the central experiment in GL. Idiosyncratic shocks are present, but

inflation and aggregate shocks are zero. I then study the response to a one-time unforeseen in-

crease in money in period τ (gτ > 0, ρg = 0). Both models are solved under full idiosyncratic risk

and then simulated under particular paths of productivity shocks and menu cost realizations that

I assign for illustrative purposes. Parameters of each model are those estimated next (Section 4),

and what follows is verified in simulations of the model and decompositions of inflation across

the distribution of firms (Section 5).

3.1 Monopolistic competition

Figure 3 describes the behavior of firms in the monopolistically competitive model. Green (red)

lines describe a firm that, from period 5 onward, is assigned a string of positive (negative) pro-

ductivity shocks that steadily increase (decrease) its markup. For t < 5, I assign menu costs of

zero, and for t ≥ 5, I assign firms large menu cost draws such that their prices do not adjust.22

Thin solid lines in panel A plot the evolution of each firm’s markup absent the increase in money

supply. Dashed lines in panel A describe the optimal reset markup of each firm µ∗it. Since µit is

payoff irrelevant once firm i decides to change its price, the reset markup is constant and the same

for both firms. Thin lines in panel B plot the firm’s probability of adjustment γit = γ(µit).

The thick lines in Figure 3 describe the response to a permanent increase in the money supply

(∆M > 0) in period 40 which, absent adjustment, reduces both firms’ markups. The low-markup

firm’s probability of adjustment increases as its markup moves away from its reset value. The

size of its optimal adjustment increases by ∆M, accommodating the entire increase in aggregate

nominal cost. The high-markup firm moves closer to its reset value, its probability of adjustment

falls, and its size of adjustment decreases by ∆M. The firms’ optimal markups are unaffected by

the shock.

This behavior sharply curtails the real effects of the monetary expansion. The distribution of

22 Specifically, I set µi0 = µ−i0 to some arbitrary initial markup. For t ≤ 5, I set ξit = ξ−it = 0 and εit = ε−it = 0 and
use the firms’ policies to evolve (µit, µ−it); this means firms quickly adjust to the markup µ that satisfies µ = µ∗i (µ, µ)
where µ∗i is the dynamic best response from the model solved with full idiosyncratic risk. For t ≥ 6 I set realizations
of the menu cost ξit = ξ−it = ξ such that prices do not adjust. I set realizations of the idiosyncratic shocks εit = ε
and ε−it = −ε, such that one firm’s markup steadily increases, and the other decreases. I then plot µ∗i (µit, µ−it) and
γi(µit, µ−it). This should make clear that the firms’ policies are solved under full idiosyncratic uncertainty, and—for
illustrative purposes—I am only choosing the realized path for the simulation.

15



20 40 60 80

Period t

-0.15

-0.10

-0.05

0

0.05

0.10

0.15

lo
g
µ
i
t
−

lo
g
µ
i
0

A. Markups

Frictionless markupFrictionless markup

Markup µit

Optimal markup µ
∗

it

20 40 60 80

Period t

0

0.2

0.4

0.6

0.8
B. Probability of adjustment

Figure 3: Example of a positive monetary shock in a monopolistically competitive market

Notes: Thin solid lines give exogenous evolution of markups for two firms within the same sector absent a monetary shock. Thin dashed
lines give corresponding optimal markups conditional on adjustment, where µ∗1 = µ∗2 . Thick solid lines include a monetary shock in
period 40 which decreases both firms’ markups. Thick dashed lines—which lie on top of the thin dashed lines before period 40—give
the corresponding optimal markups. The model is solved in steady state with respect to aggregate shocks only, and the monetary
shock is a one-time unforeseen level increase in money. The parameters of the model are as in Table 1. The y-axis in panel A describes
the log deviation of markups from the value chosen when realizations of shocks and menu costs are zero (see footnote 22).

adjusting firms shifts toward those with already low prices. These are firms that are increasing

their prices and now by larger amounts. Monetary neutrality owes to the behavior of these firms

with low markups and a high probability of adjustment that are marginal with respect to the shock.

3.2 Duopoly

I now repeat this exercise in the duopoly model for two firms in the same sector. The firms differ

both in (i) their policies absent the shock and (ii) their response to the shock. These differences are

due to the interaction of menu costs and pricing complementarity that arise in the duopoly model.

Static complementarity. Prices are static complements when the cross-partial derivative of a firm’s

profit function (π̃12 > 0) is positive. Economically, this is the case for two reasons: (i) firms are

strategic, so they understand how their price affects the sectoral price, and (ii) the household has a

lower ability to substitute across sectors than within sectors (η > θ). A higher µ2 therefore means

firm 1 sells to the more of the market, lowering firm 1’s demand elasticity, which it internalizes,

increasing the static optimal markup of firm 1. However, if both firms had identical high markups

and no cost of downward adjustment, both would undercut each other and the only equilibrium

would be the frictionless Nash equilibrium µ1 = µ2 = µ∗.23

23In the Online Appendix, I show that the best-response function in a static, frictionless model under CES preferences
with η > θ is upward sloping with a slope less than one. This implies that if µ−i is greater than the frictionless Nash
equilibrium markup µ∗, then the static best-response of firm i is to undercut: µ∗i (µ−i) ∈ (µ∗, µj). Figure A5 provides
comparative statics of the best response function with respect to η and other features of the profit function at the
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Figure 4: Example of a positive monetary shock in an oligopolistic market

Notes: Thin solid lines give exogenous evolution of markups for two firms within the same sector absent a monetary shock. Thin dashed
lines give corresponding optimal markups conditional on adjustment µ∗1 (µ1, µ2) and µ∗2 (µ1, µ2). Thick solid lines include a monetary
shock in period 40 which decreases both firms’ markups. Thick dashed lines—which lie on top of the thin dashed lines before period
40—give the corresponding optimal markups. The model is solved in steady state with respect to aggregate shocks only, and the
monetary shock is a one-time unforeseen level increase in money. The parameters of the model are as in Table 1. The y-axis in panel A
describes the log deviation of markups from the value chosen when realizations of shocks and menu costs are zero (see footnote 22).

Dynamic complementarity. In an MPE with zero menu costs, the presence of static complemen-

tarity has no effect on the response to a monetary shock. The best-response function may describe

off-equilibrium behavior that is upward sloping but in equilibrium µ∗1(µ1, µ2) = µ∗ is indepen-

dent of µ1 and µ2. An increase in the money supply reduces markups at the start of the period but

is completely offset as both firms jump back to µ∗.

In the presence of menu costs this is no longer true. In particular, µ∗1 is not independent of

(µ1, µ2). As I will show in Figure 4, a higher µ2 at the start of the period—due to a combination

of past actions and shocks—elicits a higher equilibrium response of firm 1 within the period. Just

like the static best response, a low-priced firm adjusts to a price that is below but close to its high-

priced competitor, but this is no longer an off-equilibrium consideration, as the cost of adjustment

dissuades price decreases at its competitor. Prices are dynamic complements in that, in equilibrium,

increases in the pre-determined state variable of one firm elicit an increasing response from its

competitor.24

The Online Appendix contributes a complete characterization of behavior in a one-period

game with a fixed menu cost in which (µ1, µ2) are given. For any menu cost and general profit

function with π12 > 0, I show that (i) there exists a set of initial symmetric markups µ1 = µ2 > µ∗,

such that the Nash equilibrium involves no adjustment, and (ii) for initial markups that are very

calibrated values of θ and η.
24I take this language from Jun and Vives (2004), who differentiate between static and dynamic complementarity in

the MPE of dynamic oligopoly models of Cournot and Bertrand competition with convex costs of adjustment.
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high, the only equilibrium involves both firms paying the menu cost and choosing µ∗. Positive

menu costs therefore only sustain limited deviations from the equilibrium under no menu costs.

This will also be a feature of the dynamic model.

Steady-state policies. Returning to the simulation exercise, Figure 4 confirms that unlike the

monopolistically competitive model, the reset markups µ∗i (µi, µj) are not equal. The low-markup

(red) firm sets µ∗it to below, but near, that of its competitor’s markup. As markups diverge, the

value of a price cut at the high markup firm increases. The low-markup firm’s policies—a high

reset markup and high probability of adjustment—discourages undercutting. This maintains the

green firm’s market share in the short run while supporting a high sectoral price in the medium

run. The menu costs faced by the green firm rationalize its low probability of a price cut as a best

response to the red firm’s policy.

In this way, the firms’ policies in the non-cooperative MPE sustain markups substantially

above the frictionless Bertrand-Nash equilibrium, even in the presence of large idiosyncratic

shocks. Note, however, that the magnitude of this wedge is limited. In terms of flow profits,

higher initial markups increasingly invite undercutting. In Figure 4A, this is reflected in the flat-

tening out of the low markup firms’ reset markup. If it adjusted to an even higher markup, then

both firms would begin the next period with high markups and the small menu cost would be

insufficient to dissuade price cuts. Section 7 quantifies this wedge in terms of first order output

losses due to nominal rigidity.

Key to these policies is that firms know the distribution of adjustment costs faced by their

competitor. In a Calvo model, firms adjust at random. As I show below, the MPE of a Calvo model

with the same profit functions, and so the same static complementarity, features far less dynamic

complementarity. When future price adjustments of the green firm are at random, the red firm’s

optimal markup is less swayed by the green firm’s current markup. I show that this weakening

of complementarity when firms do not choose their price changes undoes nearly all the usual

reduction in monetary neutrality that one observes when replacing menu-cost with Calvo pricing

frictions.

Response to monetary shock. Dynamic complementarity leads the duopoly model to respond

differently to the monopolistically competitive model following a monetary shock. The desired

price increase at the low-markup firm still jumps to cover the increase in aggregate nominal cost,

but this is tempered by the decline in its competitor’s markup. With a lower markup at its com-
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petitor, the increase in the value of adjustment is also dampened since the firms’ residual demand

curve has shifted in and become more elastic.25,26 In Figure 4, the probability and size of price

adjustment at the marginal firm increase by half as much as in Figure 3.

Monetary non-neutrality occurs because price adjustment at marginal firms is weakened by

the falling relative price at inframarginal firms. Figure 4 provides a stark example, describing a

sector with initially dispersed markups when the monetary shock hits. The decomposition ex-

ercise in Section 5 reveals these to be exactly the sectors that drive the slow response of infla-

tion. Figure A3 repeats the above experiment for sectors with two low markups. Duopolists now

over-respond relative to two monopolistically competitive firms with low prices. With both firms’

probability of adjustment increasing, prices increases by more than ∆M. This reduces short term

profits, but encourages larger price increases from their competitor in the future.

A complete accounting of the real effects of monetary shocks in a model with oligopolistic sec-

tors therefore requires two key features present here: (i) many sectors in order to aggregate these

sectoral differences, and (ii) idiosyncratic shocks which generate within-sector markup dispersion.

4 Calibration

External. Both models are calibrated at a monthly frequency with β = 0.951/12. I follow the same

procedure as Midrigan (2011b) for calibrating the persistence and size of shocks to the growth rate

of money: ρg = 0.61, σg = 0.0019.27 I set log g = 0.0021 to replicate 2.5 percent average inflation in

the US from 1985 to 2016. The final parameter set externally is the cross-sector elasticity θ, which

I set to 1.5. This is consistent with Nechio and Hobijn (2019), one of the few studies to provide

empirical estimates of upper-level demand elasticities.28

25Figure A4 panel A plots the elasticity of demand faced by firm one as a function of (µ1, µ2), and describes how a
decrease in µ2 increases this elasticity. The super-elasticity of demand is plotted in panel B, and gives the elasticity of
the elasticity of demand with respect to µ2.

26For completeness, consider the symmetric case of a negative money supply shock. The nominal wage falls and—
conditional on non-adjustment—markups increase. The marginal firm now has the high markup and considers decreas-
ing its markup, while the shock has increased the markup of its competitor. The increasing markup at its competitor
shifts the marginal firm’s demand curve out and lowers its elasticity, reducing the value and optimal size of a price
decrease.

27Specifically, I take monthly time series for M1 and regress ∆ log M1t on current and 24 lagged values of the mon-
etary shock series constructed by Romer and Romer (2004). I then estimate an AR(1) process on the predicted values.
The coefficient on lagged money growth is ρg = 0.608, with standard error 0.045. The standard deviation of residuals
gives σg.

28 Edmond, Midrigan, and Xu (2015) estimate θ = 1.24 and η = 10.5 in a static oligopoly model with trade. In
their quantitative application, Atkeson and Burstein (2008) choose θ “close to one” and η = 10. When estimating
within-sector elasticities of substitution, it is common practice in industrial organization to assume that θ = 1 such that
preferences are Cobb-Douglas across sectors (for an example, see Hottman, Redding, and Weinstein (2014)). Mean-
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Internal. The models have been constructed deliberately such that both have the same remaining

set of parameters: (i) within-sector elasticity of substitution η, (ii) size of idiosyncratic shocks σz,

and (iii) distribution of menu costs. I assume menu costs are uniformly distributed ξijt ∼ U
[
0, ξ
]

and refer to ξ as the menu cost. These parameters are chosen to match the average absolute size

and frequency of price change in the IRI data, as well as a measure of the average markup.29

Price flexibility. The contribution of GL was to show that matching these first two moments

severely constrains the ability of the monopolistically competitive menu cost model to generate

sizeable output fluctuations. If the average size of price change is large, then the additional low-

markup firms adjusting after a monetary shock will have large, positive price changes. If prices

change frequently, then the increase in nominal cost is quickly incorporated into the aggregate

price index. The average absolute log size of price change (conditional on price change) is 0.10,

and the average frequency of price change is 0.13.30

Average markup. The third moment, the average markup, is motivated in two ways. First, note

that the duopolist faces an overall elasticity of demand ε i between θ and η since it does not take

the sectoral markup as given. Therefore, if θ and η were the same in both, the lower demand

elasticity facing the duopolist would lead to less frequent adjustment, which would be remedied

by a significantly lower menu cost. Calibrating to the same average markup means the elasticity

of demand faced by firms in both models is approximately the same.

In Figure 7, I show that profits as a function of the firm’s price, holding all other prices fixed,

have essentially the same profile in both models. The figure contrasts this to the Kimball demand

specification in Klenow and Willis (2016) where profits are steeply concave in the firm’s price.

Second, if the average markup is the same in both models, then average profits are also the

same in both models. A ranking of calibrated menu costs is therefore preserved when trans-

formed into the ratio of menu costs to profits.31 I therefore interpret a model as endogenously

while, Cobb-Douglas preferences across sectors (θ = 1) are commonly used in trade models, for example, Gaubert and
Itskhoki (2021) and references therein.

29The parameter η has an overwhelming effect on the average markup. Given a value of η, one can match the size
and frequency of price change by changing ξ and σz. Conditional on η, the argument for identification of σz and ξ is
the same as Vavra (2014), Berger and Vavra (2019), and others. Let xit =

∣∣log
(
µ∗it/µit

)∣∣. Increasing ξ lowers adjustment
probabilities for any xit, decreasing the frequency of price changes. The average size of price change increases, since xit
will on average be larger by the time the firm adjusts. Increasing σz increases the frequency of price change, since any
large value of xit now occurs more often. The average size of price change increases, since more frequent adjustment
is costly, leading the firm to wait until xit is larger before adjusting. As shown by Barro (1972), this argument leads to
exact identification in a continuous time, fixed menu cost model.

30Appendix B details the construction of these measures from IRI data, noting here that I exclude sales and small
price changes that may be deemed measurement error.

31Since markup dispersion will turn out to be very similar in both models, then the same statement will be true with
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generating more price stickiness if t model requires a smaller menu cost in order match the data

on price adjustment. However, since both models match the same data on price adjustment, there

is no role for any such endogenous price stickiness to affect aggregate dynamics. The spirit of the

experiment is to control for price flexibility with respect to idiosyncratic shocks, then examine the

differential response to aggregate shocks, assessing endogenous price stickiness on the side.

I target an average markup of E[µit] = 1.30, which forms the consensus of a range of studies

using various techniques. In their estimation of markups across 50 sectors, Christopoulou and

Vermeulen (2012) find an average markup in the US of 1.32. For the US auto industry, Berry,

Levinsohn, and Pakes (1995) estimate an average markup of 1.31. For retail goods, Hottman (2016)

estimates an average markup between 1.29 and 1.33.

Discussion. The choices of θ and E[µit] are designed to be conservative with respect to the de-

gree of complementarity in the model. Macroeconomic models with monopolistic competition

are commonly calibrated to a lower average markup around 1.20. Fixing θ, this would require

a higher η, implying stronger complementarities and larger output fluctuations.32 Increasing θ

would have the opposite effect, but in multisector models θ ≈ 1, which is already less than what

is used here.

Results. The first two columns of Table 1 provide baseline calibrations DuoI and MCI . The

calibration exercise successfully delivers two models that have the same good-level price dynam-

ics. The remaining columns provide alternative calibrations of the monopolistically competitive

model, discussed below. In Table 4, discussed below, I show that second, third, and fourth mo-

ments of the distributions of price changes in both models are very similar.

Menu costs. Menu costs are lower in the duopoly model. The upper bound ξ is lower, and given

that average markups are the same and H(ξi) is uniform, the average menu cost is also lower as a

fraction of profits, which is the economically meaningful measure when considering firm pricing

decisions. As a further benchmark, total menu costs paid are 0.105 (0.076) percent of total revenue

in MCI (DuoI), which are a little more than the 0.04 percent average Physical cost as a fraction of

revenue reported in Zbaracki et. al. (2004).33

respect to menu costs as a fraction of output.
32See references in footnote 28.
33See their Table 5. When including Managerial costs and Physical costs, total costs amount to 1.22 percent of revenue.

This latter statistic is widely used to benchmark menu cost models. Total menu costs paid are 0.522 (0.455) percent of
total profits in MCI (DuoI), which are a little less than the Physical cost as a percentage of Net margin in Zbaracki et. al.
(2004) Table 5.
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Baseline Alternative MC models

DuoI MCI MCI I MCI I I MCIV

A. Parameters

Within-sector elasticity of substitution η 10.5 4.5 10.5 6 10.5
Upper bound of menu cost distribution ξ ∼ U[0, ξ̄] 0.17 0.21 0.17 0.29 0.42
Size of shocks (percent) σz 3.8 4.0 3.8 4.1 4.3

B. Moments

Markup E [µit] 1.30 1.30 1.12 1.22 1.13
Frequency of price change E [1{pit 6= pit−1}] 0.13 0.13 0.19 0.13 0.13
Log absolute price change E [| log(pit/pit−1)|] 0.10 0.10 0.05 0.10 0.10

C. Results

Std. deviation consumption (percent) σ (log Ct) 0.31 0.13 0.06 0.13 0.13
Average minus frictionless markup E [µit]− µ∗ 0.10 0.02 0.01 0.02 0.02

Table 1: Parameters in the duopoly (Duo) and monopolistically competitive (MC) models

Notes: (i) The table presents three alternative calibrations of the monopolistically competitive model. MCI I has the same parameters
as the baseline duopoly calibration. MCI I I has a value of η chosen such that it delivers the same frictionless markup as the duopoly
model. MCIV has a value of η equal to the duopoly model. Under MCI I I and MCIV , the values of ξ and σz are chosen to match
the frequency and size of adjustment. (ii) Given that log zij follows a random walk, σz measures percentage innovations to zij. (iii)
Average log absolute price change is computed conditional on a non-zero price change.

Benchmarking. To demonstrate the importance of benchmarking both models against the same

data on good level price dynamics before comparing their implications for aggregate dynamics I

consider the following simple experiment. The model MCI I describes the monopolistically com-

petitive model at the calibrated values of parameters from DuoI . MCI I has a higher η, lower ξ, and

lower σz, so features more frequent and smaller price adjustments than MCI . With more flexible

prices, output fluctuations—as measured by the standard deviation of log aggregate consumption

σ(log Ct)—are half as large (0.06 vs. 0.13).34 My quantitative strategy therefore works toward

comparatively less, rather than more, amplification in the duopoly model.

5 Aggregate dynamics

Table 1 delivers the main result of the paper. The second last row shows that fluctuations in

output are around 2.38 times larger in the duopoly model (0.31 vs. 0.13).35 Figure 5A plots the

impulse response of aggregate consumption to a one standard deviation shock to money growth,

34The standard deviation of log consumption is a common summary statistic for the output effects of monetary
shocks in the menu cost models cited in Section 1. Specifically, σ(log Ct) is equal to the standard deviation of HP-
filtered deviations of log of consumption from its value in an economy in which gt = g.

35The monopolistically competitive model under random menu costs generates larger output fluctuations than un-
der a fixed menu cost. Calibrated to the same data, a fixed menu cost model delivers σ(log Ct) = 0.06. This difference is
for reasons discussed extensively in Midrigan (2011b): random menu costs generate some small price changes, damp-
ening the extensive margin response of inflation—or the ‘selection effect’—following a monetary shock.
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Figure 5: Market structure and monetary non-neutrality
Notes: Parameters for both models are as in Table 1 (DuoI , MCI ). Impulse response functions are computed by local projection (see
footnote 36). The response function plotted IRFτ for ∆ log Ct is multiplied by the standard deviation of innovations to money growth
σg = 0.0019. This is then multiplied by 100, such that units are log points. The peak response elasticity is therefore (0.0014/0.0019) =
0.74.

computed via local projection.36 Panel B shows that the cumulative response is also more than

twice as large in the duopoly model (0.83 vs. 0.36).

This result can be compared with other papers that study the neutrality of money in exten-

sions of the GL model. Output fluctuations are slightly larger than in the multiproduct model of

Midrigan (2011b) (σ(log Ct) = 0.29). The ratio of σ(log Ct) under duopoly to monopolistic com-

petition is also larger than found by Nakamura and Steinsson (2010) when comparing single and

multisector menu cost models (a ratio of 1.82 compared to 2.38 here).37

I therefore have (i) added a new and realistic feature to the class of models with menu costs

and idiosyncratic shocks—markets are concentrated—and (ii) moved the model toward the large

real effects of monetary shocks found in the data, (iii) without deviating away from estimates of

the empirical size of menu costs or idiosyncratic shocks. I return to (iii) in detail in the next section.

36Impulse response functions in this section are computed as follows, an approach that is econometrically equivalent
to the approach used by Jorda (2005). The economy is simulated for 5,000 periods with aggregate and idiosyncratic
shocks. Given the known time series of aggregate shocks to money growth ε

g
t , the horizon τ IRF is IRFτ = ∑τ

s=0 β̂τ ,
where β̂τ is estimated from OLS on ∆ log Ct = α + βτε

g
t−τ + ηt. To analyse the effect of a one standard deviation shock

to ε
g
t , plotted responses give σg × IRFτ . The benefits of computing the IRF in this manner are (i) it is exactly what one

would compute in the data if the realized path of monetary shocks was known, which is consistent with the approach
that uses identified monetary shocks from either a narrative or high-frequency approach (Gertler and Karadi, 2015); (ii)
it avoids the time-consuming approach of simulating the model many times, as is usually done in heterogeneous agents
models with aggregate shocks; and (iii) it averages out any state dependence that might bias the results if computing
an IRF from a specific state, as well as any non-linearity in the size of the response following positive/negative and
small/large shocks; (iv) Berger, Caballero, and Engel (2021) extensively assess the benefits of this approach in accurately
capturing the persistence of aggregate dynamics in lumpy adjustment models. To the best of my knowledge, this is the
first paper to consider this as the baseline computational approach for the impulse response.

37See their Table VI (first row, first two columns). Across different specifications, this ranges from a ratio of 1.63
to 2.00. In general, the Calvo+ framework increases output responses but does not further amplify the effect of the
macro-complementarity.
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Importantly, the duopoly mechanism does not exclude existing approaches such as those cited

above. So while no existing approach alone generates the real effects of monetary shocks ob-

served in the data, various approaches may be combined in ways that could. For example,

the macro-complementarity studied in Nakamura and Steinsson (2010)—which slows the pass-

through of monetary shocks to aggregate marginal cost—would operate independently of the

micro-complementarity studied here. To reiterate, the macroeconomic structure of both economies

is identical. See Table A1 for further comparisons to the literature and the model’s implied slope

of the Phillips curve.

5.1 Verifying the mechanism I: Price adjustment at low and high markup firms

To check whether the intuition from Section 3 holds in the full model, I study the response of the

average absolute size and frequency of price change for low- and high-markup firms following a

positive monetary shock. Figure 6 shows that the broad dynamics of both models are the same,

consistent with the standard selection effect. Low-markup firms—in red here and in Figures 3

and 4—adjust more (panel A), and the size of their price change increases (panel B). High-markup

firms adjust less, and the size of their price change falls. However, both the frequency and size

of price change of low-markup firms respond by less in the duopoly model. For low markup

firms, concurrent idiosyncratic shocks may increase or decrease their competitor’s markup, but

the aggregate shock implies that on average their competitor’s markup falls, which due to the

dynamic strategic complementarity in prices on average reduces the value of a price increase and

the optimal price conditional on adjustment.38

5.2 Verifying the mechanism II: Decomposing inflation

The response of inflation can be more formally decomposed into an extensive and intensive mar-

gin response, and these margins compared across sectors of the economy. I follow the spirit of the

theoretical decomposition in Caballero and Engel (2007), which can be applied to a wide class of

lumpy adjustment models.39

38The average size of price changes at high-markup firms falls by less in the duopoly model. The increase in prob-
ability of upward adjustment at their low-markup competitor reduces the incentive for high-markup firms to decrease
their price. This would be a force toward a larger inflation response in the duopoly model. However, the falling proba-
bility of adjustment for high-markup firms implies that the reduction in the size of optimal downward adjustment is
rarely incorporated into the aggregate price index.

39See Figure A1 for a diagrammatic representation of this decomposition in a monopolistically competitive model
with fixed menu costs.
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Figure 6: Impulse responses of frequency and size of adjustment to a positive monetary shock

Notes: Impulse response functions are computed by local projection (see footnote 36). For panel A, the dependent variable is the
change in the fraction of firms adjusting price. For panel B, the dependent variable is the change in the average absolute size of log
price changes. To isolate the effect of a positive monetary shock, only positive innovations to money growth ε

g
t > 0 are included in the

regressions. Black (grey) lines correspond to low (high) markup firms. In the duopoly model, firms are assigned to the low-markup
group if, within their sector, they have the lowest markup. In the monopolistically competitive model, pairs of firms are drawn at
random and assigned to the low-markup group if their markup is the lowest in the pair.

Consider two simulations of the model, where the model has been solved in the presence of

aggregate shocks. In one simulation, aggregate shocks are set to zero, leaving only trend inflation.

A second simulation features identical draws of idiosyncratic shocks but includes a single shock to

the money growth rate at date t. Denote by ∆pt the log change in the aggregate price index in the

first simulation and by ∆ p̂t the same statistic in the simulation with the shock. Inflation due to the

shock is πt = ∆ p̂t − ∆pt. Let xit = log p∗it − log pit−1 denote the optimal log price change of firm

i if it were to adjust its price and γit the probability of price change. Then ∆pt ≈ N−1 ∑N
i=1 γitxit.

This implies the following decomposition of inflation:

πt ≈ N−1
N

∑
i=1

γit (x̂it − xit)︸ ︷︷ ︸
1. Intensive

+ xit (γ̂it − γit)︸ ︷︷ ︸
2. Extensive

+ (γ̂it − γit) (x̂it − xit)︸ ︷︷ ︸
3. Covariance

. (10)

Panel A of Table 2 provides this decomposition for each of the two models. The first two rows

show that in both models, inflation is generated roughly equally by adjustment on the intensive

and extensive margins. The main result from the previous section was that inflation responds

by more in the monopolistically competitive model, producing smaller output effects. Panel B

shows that the difference in inflation is roughly equally accounted for by decreases in all margins

of adjustment. This is consistent with Figure 4: low markup firms optimal size of adjustment

declines and their probability of adjustment declines.

Panel C accounts for these differences across the distribution of sectors. For example, the bot-
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1. Intensive 2. Extensive 3. Covariance

A. Fraction of inflation accounted for by each margin

Monopolistic competition πmc
t 0.40 0.55 0.05

Duopoly πd
t 0.41 0.58 0.01

B. Fraction of the difference in inflation accounted for by each margin

Monopolistic competition minus duopoly
(
πmc

t − πd
t
)

0.36 0.45 0.19

C. Fraction of the difference in each margin accounted for by regions of the distribution of markups

One below, one above the median
(

µL
i , µH

j

)
1.81 1.65 1.05

Both markups below the median
(

µL
i , µL

j

)
-0.90 -0.73 -0.50

Both markups above the median
(

µH
i , µH

j

)
0.09 0.08 0.45

Table 2: Market structure and the composition of monetary non-neutrality

tom left entry states that 9 percent of the difference in the intensive margin of adjustment can be

accounted for by sectors in which both firms have markups above the median markup.40 Panel

C quantifies the earlier claim that sectors with dispersed markups due to accumulated large id-

iosyncratic shocks account for the difference between the two models. This result motivated the

simulations studied in Section 3, Figure 4. By extension, this implies that the presence of indepen-

dent idiosyncratic shocks—a key feature of the menu cost literature in monetary economics—is

important.

Panel C also shows that sectors with low markups contribute substantially toward greater ag-

gregate price flexibility (recall the discussion of Figure A3). In the oligopoly model with menu

costs, the presence of static complementarity does not uniformly imply more aggregate price

stickiness across all sectors. In these sectors, the probability of adjustment on the extensive mar-

gin increases for both firms, and so the firms adjust more on the intensive margin. Quantitatively,

however, dispersed markup sectors determine aggregate inflation for two reasons. First, there are

simply twice as many sectors with low and high markups than with two low markups. Second,

sectors with two high markups are inframarginal and respond similarly in both models.

40In these experiments, the realizations of random numbers used to generate the simulations are the same across
models. Two firms in one sector in the duopoly model therefore have two corresponding, but unrelated, firms in
the monopolistically competitive model. The different parameters of each model map random numbers into different
idiosyncratic shocks and menu costs, but the underlying random numbers are the same for each of these pairs. In each
model, these pairs of firms are then assigned to quadrants of the distribution of markups according to their markups
relative to the median markup.
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Price setting→ A. Fixed menu cost B. Random menu cost C. Calvo

Market structure→ MC Duo. MC Duo MC

Output response, σ(log(Ct))× 100 0.08 0.31 0.13 0.41 0.38

Multiplier: Mon.Comp vs. Duo | Price setting 2.38 - 1.07 -
Multiplier: Menu cost vs. Calvo |Market structure - - 1.32 2.92

Table 3: Market structure, monetary non-neutrality, and price-setting technologies
Notes: (i) Panel B Menu cost model results are from Table 1: DuoI and MCI . (ii) Panel C Calvo model frequency of price change
α = 0.13 and size of shocks σz = 0.05 are chosen to match the same frequency and average size of absolute price change as the menu
cost model. (iii) Note, the same σz is able to be used in both the duopoly and monopolistically competitive Calvo models due to the
lack of pricing complementarity under Calvo. (iv) The last two lines compute the relative σ(log(Ct)) for the relevant comparison.

6 Discussion of main results

This section presents additional experiments and robustness. First, relative to menu costs, Calvo

pricing does not have the same dampening effect on inflation that one might be used to observing

under monopolistic competition. Second, delivering more market power to firms in the monop-

olistically competitive model by lowering η does not deliver larger output responses. Third, I

distinguish the model from the previous literature and explain how strategic complementarity is

not a barrier to large firm level price adjustment. Finally, higher order moments of the distribution

of price changes are the same across market structures MCI and DuoI .

6.1 Calvo price setting weakens the duopoly mechanism

GL show that a monopolistically competitive menu cost model with idiosyncratic shocks exhibits

far greater neutrality under menu costs than Calvo. The same is true under random menu costs.

Table 3 shows that a monopolistically competitive model under a Calvo price-setting technology—

where the frequency of price change α and size of shocks σz are recalibrated to match the empirical

size and frequency of adjustment—generates 300 hundred percent larger output fluctuations (0.38

vs. 0.13).

The key result of this section is that this amplification is severely dampened under duopoly.

Under duopoly, output fluctuations are only 30 percent larger under Calvo (0.41 vs. 0.31).41 What

drives this result? Monetary non-neutrality in the duopoly model is due to the amount of dy-

namic complementarity that the pricing friction generates. When a firm knows prices will change

at random—as under Calvo—the incentive of a low-priced firm to reprice close to its competi-

41A feature of the literature has been to ask whether state-dependent models can deliver output fluctuations as large
as time-dependent models. For example, in Midrigan (2011b), a GL model delivers σ(Ct) = 0.07, a Calvo model σ(Ct) =
0.35, and the author’s benchmark multiproduct model σ(Ct) = 0.29. The headline statistic is that the multiproduct
model generates real effects of monetary shocks that are 78 percent (= 0.29/0.35) as large as a Calvo model. Here, that
statistic is 82 percent (= 0.31/0.38).
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tor is weakened. Hence the declining markup of inframarginal firms have less of an impact on

marginal firms’ adjustment (recall Figure 4). The large attenuation of the intensive margin re-

sponse observed in Table 2B is therefore weaker under Calvo.

This has three significant implications. First, adding Calvo-like elements may not reduce mon-

etary non-neutrality when firms behave strategically.42 Second, changing market structures within

the Calvo model will have negligible effects (0.41 vs. 0.38), which may be important for under-

standing Werning and Wang (2020) which is a Calvo model without idiosyncratic shocks, despite

large effects in a menu cost model with idiosyncratic shocks. Third, the amount of complementar-

ity in equilibrium is not invariant to changes in policy or technologies. This is potentially of inter-

est given recent evidence that the responsiveness of firms to shocks is (i) countercyclical (Berger

and Vavra, 2019) (ii) declining over time (Decker, Haltiwanger, Jarmin, and Miranda, 2020).

6.2 Giving monopolistically competitive firms more market power

An alternative strategy for calibrating η might ensure that markups in frictionless versions of the

two economies coincide.43 The Online Appendix derives the closed form expressions for markups

in each model under frictionless price setting:

µ∗Duo =
1
2 (ηDuo + θ)

1
2 (ηDuo + θ)− 1

, µ∗MC =
ηMC

ηMC − 1
.

The baseline calibration of (θ, ηDuoI ) = (1.5, 10.5) implies µ∗DuoI
= 1.20. To obtain µ∗MC = µ∗DuoI

requires ηMC = 6. Calibration MCI I I in Table 1 uses ηMCI I I = 6 and a higher value of the menu

cost in order to match the same moments. The key result is that the real effects of monetary shocks

are unchanged. Calibration MCIV takes the extreme case of ηMCIV = ηDuoI = 10.5. Again, after

matching the microdata, σ(log Ct) is unaffected.

Figure A2 shows this result holds for ηMC ∈ [2, 10] (µ∗MC ∈ [1.11, 2.00]). Solid lines describe

the monopolistically competitive model under different values of ηMC, each time recalibrating the

menu cost (panel A) to best match the data (panel B).44 Dashed lines describe the same economies

42E.g. A common resolution of monetary neutrality in menu cost models has been to allow a small, random fraction
of firms to adjust for free each period. Nakamura and Steinsson (2010) show that this Calvo-plus model replicates well
the distribution of price changes, however when firms behave strategically it will also weaken the dynamic comple-
mentarity in prices.

43Such an approach is appealing. Benchmarking models in the absence of nominal rigidity is better situated to
answer the question, “How do the effects of nominal rigidity depend on market structure?” This is the spirit of Maskin and
Tirole (1988b), Lapham and Ware (1994), and Jun and Vives (2004), who ask how introducing price stickiness may affect
the pricing of oligopolists.

44This is imperfect since for simplicity Figure A2 leaves σz fixed at its value under MCI .
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but with the menu cost fixed at ξMCI I I
= 0.29. In all cases, σ(log Ct) ≈ 0.13. Larger output

fluctuations cannot be obtained by giving more market power to monopolistically competitive firms.45

6.3 Alternative sources of non-neutrality in quantitative menu cost models

Previous extensions of GL reduce monetary neutrality by (A) changing the macroeconomic envi-

ronment to introduce complementarities between aggregate nominal cost and the aggregate price

level, (B) changing the microeconomic environment to introduce complementarities between the

firm’s price and the aggregate price level, a category this paper fits into, and (C) increasing the

kurtosis in the distribution of desired price changes. First, I discuss why (A) is a complement to,

not substitute for, the duopoly mechanism. Second, I summarize why (B) has have been unsuc-

cessful and so now abandoned, but not an issue here. Finally, I verify that the model does not

simply increase kurtosis of price changes and so is not (C) in disguise.

6.3.A Models of macro-complementarity

The macroeconomic environment of the duopoly and monopolistically competitive model are

identical: pass-through of Mt to aggregate nominal cost Wt is immediate in both cases. Since

this is the case, I do not compare the model to those that reduce aggregate price flexibility by alter-

ing the macroeconomics of the model in order to slow the pass-through of Mt to nominal marginal

cost. Nominal wage rigidity (Burstein and Hellwig, 2007; Klenow and Willis, 2016) or sticky prices

of intermediate goods (Nakamura and Steinsson, 2010) could be added and lead to larger output

responses in both the monopolistically competitive and duopoly models. Quantitatively, such

macroeconomic complementarities by themselves have been shown to significantly reduce monetary

neutrality, but for reasonable calibrations still imply a steep Phillips curve.46

The finding of significant monetary non-neutrality from the duopoly model therefore serves

as a complement to, rather than a substitute for, these approaches. At the same time, the results

overturn the decade long position that macro-complementarities are the only type of complementar-

45Alvarez, Le Bihan, and Lippi (2016) prove that to a second order approximation, the real effects of small monetary
shocks in monopolistically competitive menu cost models will be equal, provided they match the same frequency,
average absolute size, and kurtosis of price changes. Changing the elasticity of demand while recalibrating the model
ensures that these statistics are the same. Figure A2 demonstrates that their theorems hold in a model without any such
approximations and under the empirical size of monetary shocks.

46For example, Nakamura and Steinsson (2010) find that the integration of the Basu (1995) roundabout production
model into a GL framework yields a σ(log Ct) that is 1.8 times larger than a model without intermediate inputs. Burstein
and Hellwig (2007) find that reduced-form wage rigidity in the form Wt = Yγ

t Mt, with γ = 0.8, can double the
size of the output response to a monetary shock. These and others, including Gertler and Leahy (2008) who study
complementarity in a model without idiosyncratic shocks, are included in the meta-study presented in Table A1.

29



ity able to both (i) slow macro responses of the price level to monetary shocks, and (ii) generate

large micro responses of prices to idiosyncratic shocks.

6.3.B Models of micro-complementarity

As noted by Nakamura and Steinsson (2010), “Monetary economists have long relied heavily on com-

plementarity in price setting to amplify monetary non-neutrality generated by nominal rigidities.” This is

the same conclusion of the comprehensive Chapter 3 of Woodford (2003). In a monopolistically

competitive menu cost model, however, the only place to put such complementarity is between

the firm’s price and the aggregate price. The standard approaches that achieve this have turned up

negative results, “render[ing] the [menu cost] model unable to match the average size of micro-level price

changes for plausible parameter values”, which “cast[s] doubt on [micro-]complementarity as a source of

amplification.”47

The duopoly model introduces complementarity to the GL model, significantly reduces the

response of inflation, but also matches the micro-data under similar parameters. To understand

the simple way that the model avoids these issues, I first summarize existing approaches, how

they slow inflation, why they require “implausibly” large menu costs and shocks, then the simple

way my model differs.

Features. Microcomplementarities have been introduced by modifications to preferences and

technology. First, Kimball (1995) preferences introduced by Klenow and Willis (2016) and Beck

and Lein (2020), generate variable marginal revenue. When quantity sold decreases, the elasticity

of demand increases, as captured by the following reduced form for demand:

yi =

(
µi
µ

)−εi

Y, εi = η exp
(
−χ

yi
Y

)
, χ > 0 (11)

Second, a decreasing returns to scale technology (DRS) introduced by Burstein and Hellwig

(2007), generates variable marginal cost. When quantity sold decreases, marginal cost decreases, as

captured by the following reduced form for supply:48

mci ∝
yχ

i
ziW

, χ ≥ 0. (12)

47For a similar discussion and summary see Gopinath and Itskhoki (2011) p.270, who refer to these complemen-
tarities as real rigidities: “[These studies] conclude that the levels of real rigidity sufficient to generate significant monetary
non-neutrality have implausible implications for the required size of menu costs and idiosyncratic productivity shocks.” To this
we may add the findings of Beck and Lein (2020) and Dossche, Heylen, and den Poel (2010) that—as I paraphrase from
Klenow and Willis (2016)—estimates from retail data imply that the elasticity of demand is decreasing in a firm’s rela-
tive quantity (χ ≈ 1), but not as much as assumed by the macro literature (cf: Smets and Wouters (2007), Eichenbaum
and Fisher (2007) (χ ≈ 10)).

48If yi = zα
i nα

i , then χ = (1− α)/α.
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In both cases, a parameter χ determines the degree of complementarity. Crucially, lower output

(yi/Y) decreases the firm’s desired price via a more elastic demand or lower marginal cost.

Amplification. Consider a firm with a relatively low markup of µi and desired markup µ∗i >

µi. Since prices are sticky, an increase in the money supply leads to a decline in the aggregate

markup: µ falls to µ′ < µ. Is µ∗i still the firm’s optimal markup? With (µ∗i /µ′) > (µ∗i /µ), the

relative quantity sold at µ∗i falls. Under Kimball (DRS) ε i increases (mci decreases) at µ∗i , implying

a lower optimal markup µ∗′i < µ∗i . As we ramp up χ, low-priced firms reduce their desired

markup following a monetary shock, slowing inflation.

Issue. A by-product of increasing χ is that firms become overly responsive to idiosyncratic

shocks. Consider the same firm’s response to a decrease in productivity to z′i < zi. If the firm

leaves its price fixed then its markup falls as marginal cost increases (µ′i/µ) < (µi/µ), so the

quantity sold at µ′i would increase. The complementarity now works in reverse. Under Kimball

(DRS) ε i decreases (mci increases) at µ′i if the firm does not adjust, increasing the value of a price

change. As we ramp up χ, low-priced firms become more responsive to negative idiosyncratic

shocks, which are exactly the shocks that lead them to change their price.

Increasing the sensitivity of prices to large idiosyncratic shocks therefore poses a quantitative

issue. The key insight of GL is that the Bils and Klenow (2004) facts suggest most price changes are

due to idiosyncratic shocks, which are large, not aggregate shocks, which are small. Klenow and

Willis (2016) and Burstein and Hellwig (2007) find that values of χ that reduce monetary neutrality

cause such excess responsiveness to idiosyncratic shocks that “implausibly” large menu costs and

idiosyncratic shocks are required to get the model to generate the large price changes observed in

the data.49 Hence the quote from Nakamura and Steinsson (2010).

Solution. In the duopoly model amplification occurs due to complementarity at similar ξ and

σz as the monopolistically competitive model. How are the above issues avoided? First, in my

model the relevant relative price that determines profits is not (µi/µ), but (µi/µ−i). Second, as

opposed to the small shocks to µ, shocks to µ−i are of the same magnitude as those to µi. A large

negative shock to µi now no longer necessarily causes (µi/µ−i) to fall.

In this simple way, the model avoids the key issues that hamper the ability of other models

of micro-complementarity to accommodate large idiosyncratic price adjustments. As opposed to

49Klenow and Willis (2016) find that the standard deviation of shocks at a monthly frequency would need to be 28
percent to accommodate χ = 10, which delivers amplification similar to my main result. In an exhaustive study of the
menu cost model under Kimball preferences, Beck and Lein (2020) reach the same conclusion for even smaller values
of χ. Burstein and Hellwig (2007) conclude that with DRS, matching the observed magnitude of price changes “requires
menu costs that are much higher than existing estimates”, in their case around three percent of revenue.
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Figure 7: Market structure and the profit function of a firm

a complementarity tieing the firm to an average of infinitely many prices that moves very little,

the complementarity here ties the firm to an idiosyncratic price that moves a lot. Despite large

idiosyncratic movements, on average markups at high-markup firms decrease slightly following

an increase in the money supply which will on average lead to lower adjustment from their low

markup competitors.

Figure 7 emphasizes this point. The profit function with Kimball demand and χ = 10

as in Klenow and Willis (2016) is sharply concave—which causes the firm to quickly correct

mispricing—and changes little as aggregate µ fluctuates by plus and minus one standard devi-

ation.50 For a fixed µ−i the duopoly profit function is only slightly more concave than under

monopolistic competition—which accommodates large degrees of mispricing—while is curvature

and level change substantially as µ−i changes by large amounts.51

6.3.C Models that affect the distribution of price changes

Holding the average size of price changes fixed, the size of the extensive margin response in the

GL model is determined by the new mass of firms increasing their prices following a positive

monetary shock (see Figure A1). This is determined by the gradient of the distribution of desired

price changes at the adjustment thresholds. More kurtosis reduces the gradient, leading to larger

output responses, and more kurtosis in the distribution of realized price changes.

In Midrigan (2011b) and Alvarez and Lippi (2014), kurtosis arises from multiproduct firms

50The lines marked with crosses (circles) plot profit functions following one standard positive (negative) deviation
shocks to aggregate markup.

51Figure A4 panel B, shows that the implied super-elasticity of demand in the duopoly model is also much lower
than in Klenow and Willis (2016), around 3.5. In a menu-cost model with Kimball demand, Berger and Vavra (2019)
match the observed pass-through of exchange rate shocks to import prices with an elasticity (ε) and super-elasticity
of demand (χ) consistent with a desired markup elasticity of Γ = χ/(ε− 1) equal to 0.60. Panel C shows that in the
region of the average markup in the duopoly model, this is around 0.70.
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Figure 8: Distributions of markup gaps and price changes
Notes: The markup gap log

(
µ∗it/µit

)
is defined with respect to the markup that would occur if the firm does not change its price,

and the optimal markup µ∗it. The distribution of desired price changes is equal to the distribution of markup gaps log
(

p∗it/pit−1
)
=

log
(
µ∗it/µit

)
. For a derivation see Appendix C.1. Firms are binned in 0.025 intervals of the values on the x-axis. Raw data used to

construct the empirical distribution in Panel B are from Cavallo (2018). The data provides prices pit and pit−1 conditional on price
change, from which I compute log (pit/pit−1). Thin line gives the raw histogram of price changes binned in 0.025 intervals. Thick
dashed line with circle markers gives kernel density plot with bandwidth of 0.025.

Market structure Std. Skew. Kurt. p10 p25 p75 p90 Increases

Monopolistic competition MCI 0.11 -0.26 1.88 -0.14 -0.10 0.09 0.12 0.58
Duopoly DuoI 0.11 -0.06 1.79 -0.15 -0.10 0.10 0.14 0.54

Table 4: Moments of the distribution of price changes: xit = log (pit/pit−1)

Notes: (i) All moments are from the distribution of price changes. (ii) pX gives the Xth percentile of the price change distribution. (ii)
Increases gives the fraction of prices changes that are positive.

with economy of scope in price changes. In Gertler and Leahy (2008), infrequent large shocks

throw the firm’s markup conditional on non-adjustment far beyond the adjustment threshold so

that the firm adjusts while close to its reset value. Alvarez, Le Bihan, and Lippi (2016) (hereafter,

ABL) show that—within this class of models—the frequency and kurtosis of realized price changes

are sufficient statistics for the real effects of small monetary shocks.

Figure 8A shows that the distribution of desired markup changes is almost identical in both mod-

els.52 Figure 8B and Table 4 show that the distribution of realized price changes is also almost iden-

tical in both models. Under MC, a larger fraction of price increases and additional right skewness

arises due to the asymmetry of the CES profit function, as observed in Figure 7.53

The duopoly model has the same frequency, standard deviation, and kurtosis of price changes

as the monopolistically competitive model, and no thicker tails to the price change distribution.

That larger output effects occur under duopoly only confirms that—owing to the presence of com-

52Appendix C shows that this distribution is equivalent to the distribution of desired price changes.
53These third order properties imply a relatively sharper decline in profits at low prices, leading to a slightly higher

frequency of price increases.
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plementarity in prices—it does not belong to the class of models for which the sufficient statistics

of ABL apply.54

Finally, the uniform random menu cost model produces a price change distribution that is an

impressive fit relative to recent evidence. A smooth bimodal distribution is found in recent data

compiled by Cavallo (2018), which I reproduce in Figure 8B.55 Cavallo and Rigobon (2012) test for

bimodality in the distribution of price changes at 30 retailers across 15 countries. They reject the

null hypothesis of a unimodal distribution in over 80 percent of retailers (see their Table 2).

7 Welfare implications of nominal rigidity

7.1 Nominal rigidities cause first order welfare losses under oligopoly

The oligopoly model has novel implications for the welfare costs of frictions, here nominal rigid-

ity. Studying these implications is important, especially when we recall that optimal policy in the

benchmark New-Keynesian model produces the same macroeconomic dynamics as an economy

without nominal rigidity. As summarized in Gali (2008, chap. 4), the distortions in the New-

Keynesian model separate neatly into those due to (a) the presence of market power in goods

markets, which affect the average markup, and (b) the presence of sticky prices, which affect the

dispersion of markups. The distortion due to market power under monopolistic competition is un-

related to the presence of sticky prices. Oligopoly breaks this neat separation. The market power

distortion is amplified by the presence of nominal rigidity.

Table 1 showed that in the presence of menu costs, strategic firms are able to sustain markups

that are higher than the frictionless markup: E[µit] = 1.30 > 1.20 = µ∗DuoI
. Similar to the stylized

model of Maskin and Tirole (1988b) or models with convex adjustment costs such as Jun and Vives

(2004), price frictions bestow dynamic commitment to high prices, which may be leveraged when

prices are static complements.

My contribution is to quantify this wedge and its output consequences in a model that matches

54The derivations of ABL require that—to a first order—a firm’s profit function is independent of all other prices.
This rules out complementarity. In the duopoly model (Kimball, DRS), a competitor’s price enters the first-order con-
ditions of the firm, breaking the application of these sufficient statistics. In the monopolistically competitive model
with Kimball or DRS, the aggregate price enters the first-order conditions of the firm, breaking the application of these
sufficient statistics.

55The empirical distribution of price changes in Figure 8 is computed using data available from the companion
website for Cavallo (2018): http://www.mit.edu/ afc/data/data-page-scraped.html. The exact data used in Figure 8B
exclude price changes due to sales and are from an unspecified US retailer. Cavallo (2018) studies five retailers, I use
data from USA5.
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Mon. Comp. Duopoly
MCI DuoI

(1) Output under flexible prices (µit = µ∗) Y∗ 0.78 0.83
(2) Output under no dispersion (µit = E[µi]) Y 0.77 0.77
(3) Output in full model Y 0.76 0.75

(1)-(3) Total output loss due to nominal rigidity (Y∗ −Y)/Y∗ 2.6% 9.6%
(1)-(2) Fraction due to level of markups (percent) (Y∗ −Y)/(Y∗ −Y) 49.8% 77.3%
(2)-(3) Fraction due to dispersion in markups (percent) (Y−Y)/(Y∗ −Y) 51.2% 22.7%

Table 5: Market structure and output losses due to nominal rigidity
Notes: (i) Calibration of both models is as in Table 1, MCI and DuoI . Recall that these calibrations are such that E[µit] is the same
in both models, hence Y = 1/E[µit] is the same in both models. (ii) When the markups of all firms are equal µt = µit, so under
PtYt = Mt, then Yt = Mt/Pt = 1/µt. This is used to simply compute output under the counterfactuals in rows (1) and (2). Row (3)
takes average output from simulations of the model with aggregate shocks.

the salient features of good-level data: large, frequent adjustment. Under flexible prices µit = µ∗,

which depends only on η and θ, and output is Y∗ = 1/µ∗. Let Y be output if all markups µit are

equal to the average markup E[µit]. Finally, let Y be the actual measure of output in the economy.

The gap between Y > Y reflects markup dispersion, and the gap between Y > Y∗ reflects the

distortion in the level of markups due to sticky prices.

Table 5 shows that output losses due to nominal rigidity are 9.6 percent in the duopoly model

but only 2.6 percent under monopolistic competition. Given that markup dispersion is almost

identical in both models (Figure 8), the output loss between lines 2 and 3 due to markup dispersion

are close, and small. The large difference is due to the 77.3 percent of the output loss due to the

level of the markup. Sticky prices interact with market power to exacerbate the market power

distortion and lower output. Note, however, that if firms could perfectly coordinate, markups

would depend on θ with µ∗θ = θ/(θ − 1) = 3, and output would be Yθ = 1/µθ = 0.33, which

is significantly lower. Menu costs are small, idiosyncratic shocks are big and η is large, which all

constrain the ability of firms to leverage pricing frictions to maintain higher prices.56

7.2 From the firm’s perspective the optimal degree of frictions is positive

Figure 9 quantifies a related result: in a duopoly, firms value pricing frictions. The value of the firm

is hump-shaped in the size of the friction. On the one hand, greater frictions accommodate higher

markups which increase firm value. On the other hand, greater frictions reduce price flexibility,

reducing firm value. The resulting non-monotonic relationship is clear in both the menu cost

56As an analogy, consider two firms writing their prices on billboards. Firms would tear down their billboards and
erect new ones if (i) having a slightly lower price than its competitor delivers a firm a lot of the market (high η), (ii) the
cost of tearing down a billboard is very low (low ξ), (iii) firms idiosyncratic costs change by a lot (high σ).
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Figure 9: Comparative statics: Markups and firm value

Notes: (i) Figures plot comparative statics of the average firm value—in real terms—given by Bellman equation (8), with respect to
changes in the size of nominal rigidity in the menu cost model (panel A) and Calvo model (panel B). (ii) The models are calibrated
according to Table 1, DuoI and MCI I I ; they therefore have the same markup and same real average value under no pricing frictions
(see notes for Table 1), the circle mark gives the calibrated value, (iii) The cross mark gives the size of the friction that maximizes firm
value in the duopoly model. (iv) Note that the scale of the y-axis differs. This is because the menu cost and Calvo models are not
comparable in terms of firm value in the presence of pricing frictions. For a given frequency of price change, firm value is larger in the
menu cost model due to the ability to time price changes.

and Calvo models. While monopolistically competitive firms always prefer smaller frictions and

more adjustment, for duopolists, their value is maximized under ξ
∗
> 0. At ξ

∗
DuoI

= 0.29, prices

change 25 percent less frequently than in the baseline, but the real value of the firm is 9 percent

larger. However, in the Calvo model, where complementarities are weaker, smaller frictions are

preferred.

Four further observations may be made. First, the model rationalizes why firms appear to

engage in investments that increase the cost of price changes.57 Second, a high inflation policy that

forces more frequent adjustment may have first-order output effects.58 Third, markup estimates

from models of static oligopoly are systematically biased downward. For any unbiased estimates

of preference parameters a static model predicts µ∗Duo which is less than E [µit]. Finally, these

results flip the standard intuition for the macroeconomic implications of adjustment frictions .

The standard intuition holds in the monopolistically competitive model: firms and households

both dislike frictions. In an oligopoly, frictions may be redistributive, causing profits to increase

and real wages to fall.

57For example, firms print brochures with prices fixed for some period of time.
58This is certainly true in the limit. High trend inflation would cause firms to reset their prices every period, yielding

the frictionless Nash equilibrium. This would eliminate the first-order welfare losses of nominal rigidity but also
eliminate any stimulative role for monetary policy, presenting a trade-off for policy.
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8 Conclusion

This paper establishes that the competitive structure of markets can be quantitatively important

for the transmission of macroeconomic shocks. In particular, in a menu cost model of firm-level

price setting—which aggregates to a monetary business cycle model—a monopolistically com-

petitive market structure and a duopoly market structure generate different levels of monetary

non-neutrality. Even when calibrated to match the same salient features of price flexibility in the

data, the duopoly model generates larger output responses. Following a monetary expansion, the

incentive for low-priced firms to respond to the shock increases less sharply as a lower sectoral

price reduces the incentive to adjust. Idiosyncratic shocks—which create within-sector markup

dispersion—and state-dependent frictions—which make repricing predictable—are shown to be

key for this mechanism.

The duopoly model does not exclude other mechanisms that have been found to be successful

in generating monetary non-neutrality in a menu cost model while also being consistent with

the microdata. Trying to understand how combining these may generate empirically plausible

monetary business cycles is a practical topic for future research.

More broadly, this paper contributes a framework that expands the set of quantitative het-

erogeneous agent general equilibrium macroeconomic models that may be used to interpret mi-

crodata. A pervasive feature of microdata on firm assets, employment, sales, bank-deposits and

so on, are fat-tailed size distributions, even within narrow industries or geographies. A perva-

sive feature of heterogeneous agent macroeconomic models used to rationalize data on inaction

and slow adjustment are frictions. Having quantitative models that might accommodate strategic

interaction between large agents that face frictions is therefore important for future research.
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APPENDIX - NOT FOR PUBLICATION

This Appendix is organized as follows. Section A provides additional tables and figures referenced in the

main text. I also derive properties of the firm’s frictionless best response function and profit functions

under general complementarity in pricing and for CES preferences, and study a monetary shock in this

environment. Section B describes the IRI data and their treatment in the paper. Section C describes the

computational methods used to solve the model in Section 2. Section D discusses model assumptions. An

Online Appendix (at the end of this document) proves the results for a static game with menu costs and

exogenously specified initial markups.

A Additional tables and figures

Table A1: A guide to monetary non-neutrality in a selection of existing studies

Paper Model Ref. Peak IRF P.C. slope Freq. Dur.

εY,M =
∆log Ŷt

∆log M̂t
λ = ∂πt

∂m̂ct
α 1/α

(1) (2) (3) (4) (5) (6) (7)

Panel A. - Menu cost models

Golosov-Lucas Menu cost Fig. 4a 0.42 1.36 0.67 1.49
Nakamura-Steinsson 14-sector Fig. VIII 0.50 1.00 0.62 1.62

+ Round-a-bout∗ Fig. IX 0.80 0.25 0.39 2.56
Gertler-Leahy Baseline Fig. 2 0.45 1.22 0.65 1.53

+ sectoral labor∗∗ Fig. 3 0.75 0.33 0.43 2.30
Burstein-Hellwig Baseline Fig. 5 0.34 1.94 0.73 1.37

+ DRS∗∗ Fig. 5 0.56 0.79 0.58 1.73
+ Wage rigidity∗ Fig. 5 0.70 0.43 0.47 2.11

Klenow-Willis Baseline Fig. 4 - 0.51 0.50 1.99
+ Kimball∗∗ Fig. 4 - 0.40 0.46 2.16

This paper Monopolistic comp. Fig. 5 0.42 1.38 0.67 1.49
Duopoly∗∗ Fig. 5 0.74 0.36 0.45 2.25

Forms of pricing complementarity: ∗ = ‘macro’-complementarity, ∗∗ = ‘micro’-complementarity

Panel B. - Data and New-Keynesian models

Calvo model Bils-Klenow Tab. 1 0.967 0.167 0.22 4.55
6 month price duration 0.967 0.033 0.17 6
9 month price duration 0.986 0.014 0.11 9
12 month price duration 0.992 0.008 0.08 12

Notes: (A) Column (4) provides my calculation of the ratio of (i) the peak deviation of output from steady-state ∆log Ŷt to (ii) the size

of the monetary shock: ∆log M̂t. Column (1) is the relevant paper, column (2) the model, and column (3) the figure. E.g. Fig. VIII

of Nakamura and Steinsson (2010) shows a peak response of ∆log Yt = 0.005, in response to ∆log Mt = 0.010. (B) The remaining

columns are constructed as follows for Panel A. Now consider a New Keynesian model with constant returns to scale in production,

no idiosyncratic shocks, and Calvo price adjustment as in the benchmark model of Gali (2008). Output is proportional to real marginal

cost, so the response of inflation to changes in real marginal cost is given by λ = (1 − εY,M)/εY,M in column (4). In this model,
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λ = (1− βθ)(1− θ)/θ is the slope of the Phillips curve where β ≈ 1 and θ = 1− α is the frequency of non-adjustment. Column

(6) provides the required α to generate λ by this relationship. Column (7) provides the average duration of prices in months implied

by α. This is “the average duration of prices in a baseline New-Keynesian model that would deliver the same relationship between real marginal

cost and inflation following monetary shocks, as that implied by the model in column (2).” (C) For Panel B I proceed backward, starting

with an average duration of price change in column (7). Bils and Klenow (2004) compute a median duration of 4.55 months from

CPI data. Smets and Wouters (2007) estimate 6 months in a model with significant complementarity and sticky wages. Christiano,

Eichenbaum, and Trabandt (2015) estimates imply 12 months. (D) The models referred to are as follows. Nakamura and Steinsson

(2010): roundabout production technology with an intermediate share of 0.70. Gertler and Leahy (2008): sectoral labor supply with

a unit Frisch elasticity of labor supply. Burstein and Hellwig (2007): “+DRS” a decreasing returns production technology (labor

share equal to 0.55), “+ Wage rigidity” aggregate nominal wage rigidity: Wt = Y−0.8
t Mt. Klenow and Willis (2016): Kimball (1995)

preferences and super-elasticity of demand χ = 10.

Figure A1: Decomposing markup adjustment in a monopolistically competitive model

Notes: Vertical solid lines give the thresholds for adjustment µ < µ. Following an increase in the money supply, all markups decrease
by the same amount, as given by the leftward shift in the distribution. For a permanent one-time increase in the money supply, the
optimal markup µit and thresholds for adjustment are not affected by the shock.
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Figure A2: Elasticity of substitution comparative statics and monopolistic competition
Notes: Solid lines denote values for the monopolistically competitive model under σz = 0.041 and the recalibrated values of ξ given
by the solid line in panel A. These values of ξ are chosen to best match data on both the frequency and size of price change (panel B).
Dashed lines denote values for the monopolistically competitive model under σz = 0.041, with ξ fixed at its value from calibration
MCI I I of Table 1. The vertical black lines mark the value of ηmc = 6 under this calibration.

Figure A3: Positive monetary shock with oligopoly: Low-markup firms

Notes: Thin solid lines give exogenous evolution of markups for two firms within the same sector absent a monetary shock. Thin dashed
lines give corresponding optimal markups conditional on adjustment µ′1 (µ1, µ2) and µ′2 (µ1, µ2). Thick solid lines include a monetary
shock in period 40, which decreases both firms’ markups. Thick dashed lines (which lie on top of the thin dashed lines) give the
corresponding optimal markups. The model is solved in the absence of aggregate shocks only and the monetary shock is a one-time
unforeseen level increase in money. The y-axis in panel A describes the log deviation of markups from the value chosen when shocks
and menu costs are zero, µ = 1.30, which equals the average markup.
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Figure A4: Demand elasticities, the super elasticity of demand and responsiveness
Notes: Panel A plots firm one’s elasticity of demand as a function of its markup, under alternative values for µ2. The values are given
by µ2 = E[µit] = 1.30 and when the markup of firm two is one standard deviation above (circles) and below (crosses) the average
markup. (Note that the elasticity of demand is independent of the aggregate markup). The dashed line plots the elasticity faced by
firms when µ1 = µ2, in which case revenue shares are both 0.50, and ε = (1/2)(θ + η). Panel B plots the super-elasticity of demand
χ1(µ1, µ2) := d log ε1(µ1, µ2)/d log µ1. Panel C plots the measure of responsiveness used in Gopinath and Itskhoki (2011) and Berger
and Vavra (2019).
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Figure A5: Properties of firm profit functions

Notes: Panels A, C, and D display features of the duopoly profit functions under θ = 1.5, η = 10.5 as in Table 1 (DuoI). Given these
parameters, the frictionless Nash-Bertrand markup is 1.20 due to an effective elasticity of demand of ε = (1/2)(θ + η) and a symmetric
equilibrium. Panel B plots the static best response function µ∗i (µj) under θ = 1.5 and different values of η. Higher values of η reduce
the Nash equilibrium markup—given by the intersection of the best response with the 45-degree line—and increase the slope of the
best-response function.
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B Data

The data used throughout this paper come from the IRI Symphony data. Details can be found in the sum-

mary paper by Bronnenberg, Kruger, and Mela (2008).59 The data are at a weekly frequency from 2001

to 2011 and contain revenue and quantity data at the good level, where a good is defined by a unique

overline code number (Universal Product Code—UPC). Data are collected in over 5,000 stores covering 50

metropolitan areas.60 For each store, data are recorded for all UPCs within each of 31 different product

categories. Product categories—for example, toothpaste—are determined by IRI and were designed such

that the vendor could sell data, by product category, to interested firms.61 This provides an economically

meaningful way to separate goods categories, since firms presumedly would be interested in purchasing

data relevant to their product market. The measures that I construct from these data and use in the paper

relate to (i) market concentration, and (ii) price changes. In both cases I define a market by product category

p, state s and month t.

Constructing measures of market concentration requires market-level sales for each firm. To identify

a firm, I use the first six digits of a good’s UPC. This uniquely identifies a company. For example, the

five digits 00012 in the overline code 00012100064595 identify Kraft within a market for mayonnaise; 48001

would identify Hellman’s. As my measures are constructed within a market pst, I consider Kraft within the

mayonnaise market in Ohio as a different firm from Kraft within the margarine market in Ohio. Revenue

r f pst for each firm f in market pst is the sum of weekly revenue from all UPCs at all stores within pst. The

preferred concentration measure in the paper is the effective number of firms, as measured by the inverse

Herfindahl index, which is hpst = ∑ f∈pst(r f pst/rpst)2.

Computing measures of price changes first requires a measure of price. To obtain weekly prices for each

good, I simply divide revenue by quantity. I compute price change statistics monthly and measure prices in

the third week of each month. I focus only on regular price changes and deem a price to have been changed

between month t− 1 and t if it (i) changes by more than 0.1 percent, considering price changes smaller than

this to be due to rounding error from the construction of the price, and (ii) was on promotion neither in

month t− 1, nor in month t. The IRI data include indicators for whether a good is on promotion, and so I

use this information directly rather than using a sales filter. This second requirement means that I exclude

both goods that go on promotion and come off promotion. The frequency of price change in market pst is

the fraction of goods that change price in market pst between t− 1 and t. The size of price change in market

59Other recent papers to use these data include Stroebel and Vavra (2019) and Coibion, Gorodnichenko, and Hong
(2015). See http://www.iriworldwide.com/en-US/solutions/Academic-Data-Set.

60Details on the identification of stores are removed from the data and replaced with a unique identifying number.
Walmart is not included in the data.

61For completeness, the categories are: beer, razor blades, carbonated beverages, cigarettes, coffee, cold foods, de-
odorant, diapers, facial tissues, frozen dinner entrees, frozen pizza, household cleaning goods, hot dogs, laundry de-
tergent, margarine and butter, mayonnaise, milk, mustard and ketchup, paper towels, peanut butter, photo products,
razors, salted snacks, shampoo, soup, pasta sauces, sugar and substitutes, toilet tissue, toothbrushes, toothpaste, and
yogurt.
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pst is the average absolute log change in prices for all price changes in market pst between t− 1 and t.

When computing moments for use in the calibration of the model, I first take a simple average over s

and t for each product p. I then take a revenue-weighted average across products, where revenue weights

are computed using average national revenue for product p: rp = T−1 ∑T
t=1

(
∑S

s=1 rpst

)
.

C Computation

First I show that Bellman equation (5) in prices corresponds to the Bellman equation in markups under

the equilibrium conditions of the model (8), as the latter is used in computation. Second, I describe the

numerical methods used in computing the equilibrium of the model.

Price indices. Denote the first firm’s markup µij = pij/zijW. Using this, the sectoral price index pj can

be written as

pj =

[(
p1j

z1j

)1−η

+

(
p2j

z2j

)1−η] 1
1−η

= W

[
µ1j

1−η + µ2j
1−η

] 1
1−η

Define the sectoral markup µj = pj/W, which implies that µj =
[
µ

1−η
1j + µ

1−η
2j

]1/(1−η)
. Using the sectoral

markup, the aggregate price index P can be written

P =

[ˆ 1

0
p1−θ

j dj

] 1
1−θ

=

[ˆ 1

0
µ1−θ

j dj

] 1
1−θ

W.

Define the aggregate markup µ = P/W, which implies that µ =
[´ 1

0 µ1−θ
j dj

]1/(1−θ)
.

Profits. The expressions for markups can be used to rewrite the firm’s profit function. Start with the

baseline case

πij = zη−1
ij

(
pij

pj

)−η(
pj

P

)−θ(
pij − zijW

)
C.

The equilibrium household labor supply condition requires PC = W. The definition of the aggregate

markup therefore implies that C = 1/µ. This, along with pij = µijzijW, pj = µjW, and P = µW, gives

πij =

(
µij

µj

)−η(
µj

µ

)−θ(
µij − 1

)W
µ

= π̃
(

µij, µ−ij

)
µθ−1W.

The function π̃ depends on the aggregate state only indirectly through the policies of each firm within

the sector. This makes clear the use of the technical assumption that the demand shifter zij also increases

average cost, allowing profits to be expressed only in markups.
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Markup dynamics. Suppose that a firm sells at a markup of µij this month. The relevant state next

month is the markup that it will sell at if it does not change its price µ′ij = pij/z′ijW
′. Replacing pij with

µij, we can write µ′ij in terms of this month’s markup, the equilibrium growth of the nominal wage, and the

growth rate of idiosyncratic demand:

µ′ij = µij
zij

z′ij

W
W ′

= µij
1

g′eε′ij
.

The random walk assumption for zij implies that z′ij/zij = exp(ε′ij). The equilibrium condition on nominal

expenditure PC = M, combined with the equilibrium household labor supply condition PC = W, implies

that in equilibrium W = M. The stochastic process for money growth then implies that W ′/W = g′.

Bellman equation. Using these results in the firm’s Bellman equation reduces the value of adjustment

from (5) to the following (here for clarity I assume that the competitor’s markup µ−i is fixed):

Vadj
i

(
µi, µ−i, S

)
= max

µ∗i
π̃
(

µ∗i , µ−i

)
µ(S)θ−1W(S) + E

[
Q(S, S′)Vi

(
µ∗i

g′eε′i
,

µ−i

g′eε′−i
, S′
)]

.

The equilibrium discount factor is Q(S, S′) = βW(S)/W(S′). This implies that all values can be normalized

by the wage, where vi(µi, µ−i, S) = Vi(µi, µ−i, S)/W(S):

vadj
i

(
µi, µ−i, S

)
= max

µ∗i
π̃
(

µ∗i , µ−i

)
µ(S)θ−1 + βE

[
vi

(
µ∗i

g′eε′i
,

µ−i

g′eε′−i
, S′
)]

.

Replacing the aggregate state S = (g, λ) with that used in the approximation S = (g, µ−1), we have the

following:

vadj
i

(
µi, µ−i, g, µ−1

)
= max

µ∗i
π̃
(

µ∗i , µ−i

)
µ̂
(

g, µ−1

)θ−1
+ βE

[
vi

(
µ∗i

g′eε′i
,

µ−i

g′eε′−i
, g′, µ̂

(
g, µ−1

))]
,

where µ̂ is given by the assumed log-linear function: log µ̂ = α0 + α1g + α2 log µ−1.

The equilibrium condition requiring that the price index be consistent with firm prices has also been

restated in terms of markups, which implies the entire equilibrium is now restated in terms of markups.

To simulate changes in prices, it is sufficient to know a path for markups µijt, innovations εijt, and money

growth gt. To determine quantities, I need to also simulate paths for Mt and zijt.

C.1 Price changes.

In the notes for Figure 8 I state that markup gaps are equal to price changes for firms changing their prices. The

markup gap is the gap between the firm’s markup that would occur should the firm not change its price

(µijt)—which is its state variable and depends on pijt−1—and its desired markup (µ∗ijt), which depends on
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p∗ijt:

µijt =
pijt−1

zijtWt
, µ∗ijt =

p∗ijt
zijtWt

.

Therefore the firm’s desired price change and its markup gap are equivalent:

log
p∗ijt

pijt−1
= log

µ∗ijt
µijt

.

C.2 Solving the MPE.

First, for simplicity, suppose that θ = 1 such that µ(S) does not enter the firm’s problem, and so no direct

function of the aggregate state enters the firm’s problem. Suppose also that shocks to the growth rate of

money supply are entirely transitory (ρg = 0, equivalently the money supply Mt follows a random walk).

In this case, the state variables of the firm’s problem are only µi and µ−i. Since the parameters associated

with each firm in each sector are symmetric, I only consider solutions in symmetric policies µ(µi, µ−i) and

γ(µi, µ−i). Suppose that these functions are known; then solving the firm’s problem amounts to solving

a simple Bellman equation. Define the firm’s expected value function ve
i (µ
′
i, µ′j) = E

[
vi

(
µ′i

g′eε′i
,

µ′−i

g′eε′−i

)]
. I

can approximate ve
i with a cubic spline and, given a starting guess, use standard collocation tools to solve

the firm’s Bellman equation. This requires specifying a grid of collocation nodes for µi and µ−i, and then

solving for splines with as many coefficients as collocation nodes. Given an approximation of ve
i and the

policies of a firm’s competitor, the choices of a firm on these nodes can be solved for, and the values on

these nodes used to update the approximation using Newton’s method (see Miranda and Fackler (2002)).

An alternative approach is to iterate on the Bellman equation.

When solving the MPE, the competitor policies are not initially known. In solving the model, I take

a number of approaches, each of which yields the same equilibrium policies. In all cases, I approximate

the optimal markup and probability of adjustment policies using cubic splines. The first approach is to

consider some large T and assume that from this period onward, prices are perfectly flexible such that the

unique frictionless Nash equilibrium is obtained. This determines a starting guess for the policies and value

function. Random menu costs imply that each stage game has a unique equilibrium for each point in the

state space, which implies that this long subgame perfect Nash equilibrium is unique. One can then iterate

backward to t = 0, or truncate iterations once the policy functions and values of the firm converge. The

second approach is to fix a competitor’s policies, solve a firm’s Bellman equation, use this to compute new

policies, and then continue to iterate in this manner until all objects converge. In practice, both approaches

were found to lead to the same policy and value functions. The second approach is faster, since collocation

methods can be used to quickly solve the Bellman equation, keeping the competitor policies fixed.

Under θ > 1 and persistent shocks to money growth, then the approximate aggregate state (g, µ−1) also

enters the firm’s state vector. The solution algorithms for the MPE, however, do not change. I approximate
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the firm’s policies using linear splines in each of these additional dimensions. Policy and value functions

are approximated using 25 evenly spaced nodes, and the aggregate states are approximated using 7 evenly

spaced nodes.62 Approximating the expected value function implies that expectations are only taken once

in each iterative step while solving the value function, rather than on every step of the solver for the optimal

µ∗i . This, along with the use of a continuous approximation to the value function, allows for a high degree

of precision in updating the expected value function. Given an expected value function, an optimal policy

can be computed, delivering a new value function, which is then integrated over 100 points in both ε′i and

ε′−i in order to compute a new expected value function.63

Issues for high and low menu costs. For a fixed set of collocation nodes, issues arise when trying to

solve the model for very low or very high menu costs. For very low menu costs, the adjustment proba-

bilities of the firm take on a steep V-shape, and small deviations in markups lead to a sharp increase in

the probability of adjustment. Approximating such functions is difficult with a conservative number of

nodes for the approximant of γ(µi, µ−i). When menu costs are very large, the adjustment probabilities take

on a very shallow U-shape, and markups deviate more widely. This also is hard to approximate with a

conservative number of nodes for the approximants.

Figure 9 is symptomatic of this issue. Note that in the Calvo model of adjustment these issues do not

arise, since I no longer have to approximate the probability of adjustment function. Therefore the Calvo

model can be solved at a very high frequency of adjustment. Figure 9 verifies that as α tends towards one,

the value of the firm in the duopoly model smoothly approaches the value of the firm in the monopolisti-

cally competitive model, since both models are calibrated to the same frictionless markup.

Krusell-Smith algorithm. I first solve the economy under µt = µ∗, where µ∗ is the frictionless Nash

equilibrium markup. I then proceed with the Krusell-Smith algorithm, refining the firm’s forecast. Solving

the model under the initial forecasting rule, I can then simulate the economy. Since firm-level shocks are

large, then even for large numbers of simulated sectors, there will be small fluctuations in aggregates.

In implementing the Krusell-Smith algorithm I therefore proceed as follows. Let {Et}T
t=0 be a sequence

of matrices of idiosyncratic shocks—to both productivity and menu costs—to all firms in all sectors, and

consider some simulated path of money growth {εg
t }T

t=0. I simulate two economies, both under {Et}T
t=0

and with the same initial distribution of markups, but one under {εg
t }T

t=0 and the other under gt = g for

all t. From the second simulation, I then compute the sequence of aggregate markups and call this µt, with

corresponding µt from the first simulation. I then run the following regression on simulated data from T to

62Note that when solving the problem for a firm, the problem is only solved on the collocation nodes, which means
that a competitor’s policy is never evaluated off the collocation nodes. The only computations that involve the splines
are evaluating the expected value function for proposed µ∗i values in the maximization step, and the simulation of
sectors.

63“Quadrature” methods, by contrast, use only a small handful of points in the approximation of the integral. Work-
ing with continuous splines and iterating on the expected value function allow a much more precise computation of
the integral.
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T:

(log µt − log µt) = α1 (log gt − log g) + α2
(
log µt−1 − log µt−1

)
+ ηt.

I also compute the average aggregate markup µ = 1/(T− T)∑T
t=T µt. When solving the model on the next

iteration, I renormalize the aggregate state space to S = (log g− log g, log µ−1 − log µ) and provide firms

with the forecasting rule

log µ(S) = log µ + α̂1S1 + α̂2S2.

In practice, I simulate 10, 000 sectors, set T = 2, 000, and T = 500, and iterate to convergence on {µ, α1, α2}.

In the monopolistically competitive model, I simulate a single sector with 20,000 firms (recall that all mo-

nopolistically competitive sectors are the same, so simulating one sector is sufficient). This approach con-

trols for simulation error, and allows me to keep the nodes of the state space for S2 the same across solutions

of the model, while incorporating changes in the forecast of the average markup.

The algorithm converges quickly and the rule provides a high R2 in simulation. This works especially

well in the context of this model for a number of reasons, which all relate to the role of µt in the firm’s

problem. First, µt simply shifts the level of the firm’s profit function, which implies that in a static model, it

only affects the value of a price change, not the firm’s optimal markup. Second, if θ is close to one, then this

movement in the profit function is small for any given fluctuations in µt. Third, these fluctuations in µt are

in fact small, given the empirical magnitude of money growth shocks. From a robustness perspective, this

is reassuring: if the rule used by firms was incorrect, then this misspecification would have little impact on

the policies of the firm. In practice, this means that the coefficients for {µ, α1, α2} from the first solution of

the model under the rule µt = µ∗, are very close to the final coefficients.

Computing aggregate fluctuations. I carefully correct the computation of other moments for simula-

tion error, which might otherwise bias one toward finding larger time-series fluctuations. For example, the

key statistic of σ(log Ct) is computed using std
[
log Ct − log Ct

]
, where Ct is aggregate consumption com-

puted under the simulation with aggregate money growth equal to g in all periods. In this “steady-state”

economy, there are still fluctuations in aggregate consumption, but these are due only to large shocks to

firms not washing out in a simulation of finitely many firms. The same approach is taken when computing

impulse response functions for moments such as the frequency of price adjustment of low-markup firms in

Figure 6.

D Discussion of model assumptions

1. CES demand structure An alternative formulation of the demand system could have been chosen.

A pertinent example is a nested logit system commonly used in structural estimation of demand systems.

However, as shown by Anderson, De Palma, and Thisse (1992), the representative agent nested CES struc-
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ture delivers a demand system that is isomorphic to that which stems from a population of consumers

k ∈ [0, 1] with nested logit preferences, income yk ∼ F(yk), that purchase ck
ij = yk/pij units of their chosen

good-ij. That is, consumers may have identical preferences for Kraft and Hellmann’s mayonnaise, up to an

iid taste shock that shifts each consumer’s tastes toward one or the other each period.64

2. Random menu costs Random menu costs serve two purposes in the model. First, they generate

some small price changes. Some firms, having recently changed their price and accumulating little change

in sectoral productivity, draw a small menu cost and again adjust their price. Figure 8 shows that a monop-

olistically competitive model with random menu costs gives a distribution of price changes that appear as

smoothed versions of the bimodal spikes of GL. Midrigan (2011b) explicitly models multiproduct firms and

shows that the implications for aggregate price and quantity dynamics are—when calibrated to the same

price-change data—the same as in a model with random menu costs. What is important for these dynamics

is that the model generates small price changes—which dampen the extensive margin effect—leading to

the statement that the conclusions drawn are not sensitive to the exact mechanism used to generate small

price changes. In this sense, one can think of the random menu costs in my model as standing in for an

unmodeled multiproduct pricing problem.

Second, and most important, random menu costs that are private information allow me to avoid solving

for mixed-strategy equilibria. This technique I borrow from Doraszelski and Satterthwaite (2010), who

deploy it to address the computational infeasibility of solving the model of Ericson and Pakes (1995), which

has potential equilibria in mixed strategies as well as issues with existence of equilibrium.65 To see how

these arise, consider solving the model under mixed strategies with fixed menu costs. Given the values of

adjustment and non-adjustment and a fixed menu cost ξ, the firm may choose its probability of adjustment

γi(s, S) = arg max
γi∈[0,1]

γi

[
vadj

i (s, S)− ξ
]
+ (1− γi) vstay

i (s, S).

If firm−i follows a mixed strategy such that vadj
i (s, S)− ξ = vstay

i (s, S), then a mixed strategy γi ∈ (0, 1) is a

best response of firm i. If one believes that menu costs are fixed, then this provides an alternative rationale

for small price changes. Some firms may not wish to adjust prices this period, yet their mixed strategy over

adjustment leads them to change prices nonetheless. However, the solution of this model would be vastly

more complicated and at this stage infeasible. The Online Appendix proves that even in a simple static

game of price adjustment with menu costs, such multiple equilibria may arise.

3. Information I assume that the evolution of product demand within the sector (z1j, z2j) is known by

both firms at the beginning of the period and only menu costs are private information. An alternative case

64For estimation of alternative static demand systems using scanner data similar to that used in this paper, see Beck
and Lein (2020) (nested logit), Dossche, Heylen, and den Poel (2010) (AIDS), and Hottman, Redding, and Weinstein
(2014) (nested CES). Only the latter studies an equilibrium, imperfectly competitive model.

65This technique is also used by Nakamura and Zerom (2010) and Neiman (2011) in menu cost models.
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is that menu costs are fixed, but firms know only their own productivity and the past prices of both firms.

This would add significant complexity to the problem. First, if productivity is persistent, then firms would

face a filtering problem and a state vector that includes a prior over their competitor’s productivity. Second,

computation is still complicated even if productivity is iid. From firm 1’s perspective, z2j would be given

by a known distribution, which firm 1 must integrate over when computing expected payoffs. Integrating

over firm 2’s policy functions—which depend on z2j—would be computationally costly. Since the menu

cost is sunk, such issues are avoided.

4. Idiosyncratic shocks Three key assumptions are made regarding idiosyncratic shocks: they (i) follow

a random walk, (ii) move both marginal revenue and marginal productivity schedules of the firm, and (iii)

are idiosyncratic rather than sectoral. These are made for tractability but are not unrealistic.

The first is plausible given that the model is solved monthly. It achieves tractability in that future states

depend on growth rates of zij, which are iid. An alternative assumption deployed in similar studies is a

random walk in money growth and AR(1) in firm-level shocks, which reduces the aggregate state variables

of a monopolistically competitive model in the same way, removing gt from the state.66 In the duopoly

model, this would leave the overall state vector with five elements

(sijt, St) =
(

pijt−1, p−ijt−1, zijt, z−ijt, µt
)

.

This leaves four state variables in the sectoral problem which is infeasible. The random walk assumptions

on zijt and AR(1) in money growth implies (sijt, St) =
(
µijt, µ−ijt, gt, µt

)
, with two state variables in the

sectoral problem which is feasible. Additionally, since at a monthly frequency the estimated persistence of

money growth is significantly less than one (ρg = 0.61, see Section 4), this is preferred.

The second seems acceptable if one does not hold a strong view on whether demand or productivity

shocks drive firm price changes, a reasonable stance given that only revenue productivity is observed in

the data for all but a small number of sectors. Midrigan (2011b) interprets εij’s as shocks to “quality”: the

good has higher demand but is more costly to produce. This assumption is necessary—along with random

walk shocks—to express the sectoral state vector in two rather than four states.

The third assumption is not for tractability of the duopoly model but the monopolistically competitive

model. The latter with sectoral shocks would introduce two additional state variables to the firm’s problem:

the sectoral markup and sectoral shock. Firms would require forecasting rules for both of these on top of

forecasting rules for the aggregate markup. This would render the problem infeasible. In addition, the

existing literature does not take this approach, and assumes symmetric sectors.

66Specifically, such an assumption would allow the aggregate state—following the Krusell-Smith approximation—to
be captured by only the aggregate markup.
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APPENDIX II - FOR ONLINE PUBLICATION

Market Structure and Monetary Non-neutrality

Simon Mongey

OA.1 Introduction

In this appendix, I study a two-player price-setting game in which the profit function of the firm features

complementarities in prices, firms face a fixed cost of changing prices, and initial prices are above the

frictionless Nash equilibrium price. I establish that (i) the frictionless best response function of the firm

has a positive gradient bounded between zero and one, (ii) menu costs can sustain higher prices than

obtain in a frictionless setting, (iii) the only pure strategy equilibria that exist are ones in which both firms

change their price or both keep them fixed, and (iv) for any given menu cost, there is always a range of

initial prices for which both equilibria exist, (v) show how a monetary shock can reduce low priced firms

incentive to increase prices when initial prices are dispersed. (vi) the profit functions—derived from nested

CES preferences—in the body of the paper satisfy the sufficient assumptions for these results.

OA.2 Static model

Environment. Consider two firms with symmetric profit functions π1(p1, p2) = π2(p2, p1). In what

follows, I drop the superscripts on the profit function and prices, with the second argument always referring

to the competitor’s price. Assume that π is twice continuously differentiable and that the derivatives of π

have the following properties for all positive prices: π11 < 0, π12 > 0, and |π11| > |π12|. The second

assumption is the definition of complementarity in prices. Below I comment on the third assumption: that

own price effects dominate.

There is one period. I start by assuming both firms begin the period with initial price p, which is greater

than the frictionless Nash equilibrium price p∗ that solves π1(p∗, p∗) = 0. To deviate from this price, a firm

must pay a cost ξ. The objective function of firm i is therefore v(pi, pj) = π(pi, pj)− 1 [pi 6= p] ξ.

Static best-response. The frictionless best response function p∗(p) is the best response of a firm to its com-

petitor’s price p when ξ = 0. A key property discussed in the text is that this function has a positive

gradient between zero and one: a firm follows and undercuts its competitor. To prove this, take the firm’s

first-order condition: π1(p∗(p), p) = 0. By the implicit function theorem, the derivative of p∗(p) can be

obtained by rearranging the total derivative of the first-order condition:
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∂p∗(p)
∂p

= −π12(p∗(p), p)
π11(p∗(p), p)

.

The frictionless Nash equilibrium price p∗ = p∗(p∗) solves both firms’ first-order conditions simultane-

ously. The second-order conditions must hold at (p∗, p∗), requiring:

π11(p∗, p∗) < 0, and π12(p∗, p∗)2 < π11(p∗, p∗)2.

The first condition holds by assumption. A sufficient condition for the second order conditions to hold is

that |π12| < |π11|. The third assumption is therefore equivalent to assuming that the conditions for a local

maximum at (p∗, p∗) also hold globally.

The second order condition jointly with the assumption that π11 < 0 and π12 > 0, gives the result that

at any Nash equilibrium
∂p∗(p)

∂p

∣∣∣
p=p∗

= −π12(p∗, p∗)
π11(p∗, p∗)

∈ (0, 1).

Multiple equilibria would therefore require p∗′(p∗) to have a slope greater than one at some other equilibria,

so clearly the equilibrium is also unique. The additional assumption that |π12| < |π11| globally, implies that

p∗(p) ∈ (p∗, p) for p > p∗, that is, the frictionless best response function exhibits “undercutting.”

Equilibria of the menu cost game. I categorize possible pure strategy equilibria into three types : (I)

neither firm changes its price, (II) both firms change their price, (III) one firm changes its price.

A necessary and sufficient condition for a Type-I equilibrium is

π(p, p) ≥ max
p

π(p, p)− ξ, (OA.1)

or equivalently

ξ ≥ ∆I(p) := π (p∗(p), p)− π (p, p) . (OA.2)

This condition for a Type-I equilibrium holds when (i) ξ is very large or (ii) p is sufficiently close to p∗. To

show that ∆I(p) is increasing in p, it is useful to represent ∆I(p) as an integral. Some calculus then delivers

the following convenient expression for the derivative of the value of the optimal downward deviation:

∂∆I(p)
∂p

=
∂

∂p

[ˆ p∗(p)

p
π1(u, p) du

]
=

ˆ p

p∗(p)
π11(u, p)︸ ︷︷ ︸

(−)

[
∂p∗(p)

∂p

∣∣∣
p=u
− 1
]

︸ ︷︷ ︸
(−)

du > 0 (OA.3)

The final expression is a positive integrand integrated over an increasing support since p∗(p) < p, and so

positive. The change in value that accompanies the optimal deviation from p∗(p) increases in p. Sustaining

initial deviations from the frictionless Nash equilibrium requires the initial deviation to be not too large or

menu costs to be not too small.

In a Type-II equilibrium, in which both firms change their price, it must be that the prices chosen are
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(p∗, p∗). Given that both firms are changing their prices, then the price chosen by each firm must be a best

response to its competitor. We then need to check that it is not optimal for a firm to leave its price at p,

which requires
ξ ≤ ∆I I(p) := π (p∗, p∗)− π (p, p∗) . (OA.4)

This condition for a Type-II equilibrium holds when (i) ξ is small or (ii) p is large. To see that ∆I I(p) is

increasing in p, note that π(p, p∗) is decreasing in p for all p > p∗. The frictionless equilibrium will still

obtain when p is large relative to the menu cost. The menu cost limits the size of permissible deviations

from p.

Type-III equilibria do not exist. Observe that in a Type-III equilibrium the firm that changes its price

chooses p∗(p). There are therefore two conditions for a Type-III equilibrium. First, firm 2 must find it

profitable to change its price given that firm 1’s price remains at p:

π (p∗(p), p)− ξ ≥ π (p, p) . (OA.5)

This holds when (i) ξ is small or (ii) p is large. Second, the frictionless best response of firm 1 to firm 2’s

price must not be a best response under a positive menu cost. Letting p∗∗(p) denote the frictionless best

response to p∗(p), we then require

π (p∗∗(p), p∗(p))− ξ ≤ π (p, p∗(p)) . (OA.6)

This holds when (i) ξ is large or (ii) p is small. Intuitively, it seems that these conditions should not simul-

taneously hold. If one firm finds it valuable to undercut its competitor, then its competitor should find it

valuable to respond. This can be proven, with the proof found at the end of this appendix.

Multiple equilibria. Having asserted that the only pure strategy equilbria are of Type-I and Type-II,

we can also show that for any value of ξ, there exist an interval of p for which both Type-I equilibria and

Type-II equilibria may exist. First note that ∆I(p∗) = ∆I I(p∗) = 0. That is, both equilibria trivially exist

for zero menu costs at p = p∗. Both equilibria exist if ξ ∈ [∆I(p), ∆I I(p)] We can show that for all p > p∗,

∆I I(p) > ∆I(p):
π(p∗, p∗)− π(p, p∗) > π(p∗(p), p)− π(p, p). (OA.7)

Since p∗ is the best response to p∗ then π(p∗, p∗) > π(p∗(p), p∗), so showing the following is sufficient:

π(p∗(p), p∗)− π(p, p∗) > π(p∗(p), p)− π(p, p). (OA.8)

If π displays complementarity, then this holds.67

67To see this, express both sides as integrals:

ˆ p∗(p)

p
π1(u, p∗)du >

ˆ p∗(p)

p
π1(u, p)du

ˆ p

p∗(p)
π1(u, p∗)du <

ˆ p

p∗(p)
π1(u, p)du

Due to complementarity, p∗ < p implies π1(u, p∗) < π1(u, p). Since both integrals are of positive integrands over the
same increasing support, then the inequality must always hold.
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Figure OA.1: Regions of equilibria in a static price-setting game

Notes: Figure summarizes regions of equilibria in the static price setting game with initial prices p1 = p2 = p and menu cost ξ
solved in this appendix. Type I equilibria involve both prices remaining fixed at p. Type II equilibria involve both firms paying ξ
and changing their price to the frictionless Nash equilibrium price p∗ = 1.20. In the intermediate region either equilibrium may be
obtained.

Characterization. These results characterize equilibria in (p, ξ)-space. Consider fixing p and start at a

high value of ξ. In this region, only the Type-I equilibrium exists. Menu costs are sufficiently high that the

best response of each firm to the initially high price of its competitor is to keep a high price. As ξ decreases,

we reach a point at which Type-II equilibria are also feasible. In this region, if firm 2 changes its price, then

the best response of firm 1 is to also change its price (Type-II), but if firm 2 leaves its price fixed, then the best

response of firm 1 is to also leave its price fixed (Type-I). As ξ decreases further, the Type-I equilibrium can

no longer be sustained as the menu cost is insufficient to commit firms not to respond to a price decrease at

their competitor. Alternatively, fixing ξ and increasing p, first only the Type-I equilibrium exists, then both,

then as the value of a price decrease becomes large, only the Type-II equilibrium exists. Figure OA.1 plots

these regions for a profit function discussed below.

Ranking. In the case of the existence of multiple equilibria, the equilibria are ranked as we would

expect: firms prefer the fixed price Type-I equilibrium. This requires that π(p, p) > π(p∗, p∗)− ξ. Since the

Type-I equilibrium exists, then ξ ≥ π(p∗(p), p)− π(p, p), and therefore this ranking holds if π(p∗(p), p) >

π(p∗, p∗). Since prices are complements, this is true: the best response to a high price yields a larger profit

than the best response to a low price.

From this static game we learn that for a given menu cost ξ, high prices p can be sustained so long

as they are not too far from the frictionless Nash equilibrium. If the initial price is too high, one firm has

a profitable deviation even it pays the menu cost. If the value of one firm’s deviation exceeds the menu

cost, then the value of an iterative undercutting strategy from its competitor must also exceed the menu

cost. Both firms change their prices, and only the frictionless Nash equilibrium price is attainable. If initial

prices are not too high, then the menu cost is enough to negate the small value of the optimal frictionless

downward deviation in price, making the high-priced strategy credible. We also learn that the equilibrium
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is not unique for certain combinations of ξ and p, while these equilibria are clearly Pareto ranked: if firms

could coordinate on an equilibrium, they would choose not to change their prices.

Two periods with simultaneous moves from p∗. Consider the game when the firms’ prices are ini-

tially at p∗. Regardless of the size of ξ, the only equilibrium is (p∗, p∗). One firm increasing its price is not

an equilibrium, since p∗ is already the best response to p∗. Both firms raising their prices to the same price

p is not an equilibrium since conditional on changing price the best response is p∗(p) ∈ (p∗, p).

Two periods with sequential moves from p∗. Now assume instead a Stackleberg game starting from

(p∗, p∗). Firm 1 moves first, firm 2 follows and then the simultaneous one period game is played. The

following is an equilibrium for an appropriate ξ. The first firm chooses p to maximize π(p, p∗(p)) and

the second firm chooses p∗(p). If p is chosen such that prices (p, p∗(p) yields a Type-I equilibrium and

π(p, p∗(p))− π(p∗, p∗) > ξ, then the equilibrium consists of the first firm paying the menu cost to raise

its price, and the second firm paying the menu cost to then undercut the first firm.68 Firm 2 earns greater

profits than firm 1, but profits—including the menu cost—are higher that an (p∗, p∗) for both firms.

The dynamic duopoly model with random menu costs is similar. From initially low prices if firm 2

draws a low menu cost it can “take the high road” by posting a high price today, which is credible under

its competitor’s policy to increase prices in the future. Once both prices are increased, menu costs wipe out

the value of price cuts.

CES demand. In the main text, the profit function of the firm is

π1(p1, p2) =

(
p1

p(p1, p2)

)−η ( p(p1, p2)

P

)−θ

(p1 − 1)C,

p(p1, p2) =
[

p1−η
1 + p1−η

2

]1/1−η
.

To be consistent with notation in this appendix, I have replaced markups with prices and a unit marginal

cost. From this profit function we can solve in closed form for the Nash equilibrium price as follows.

The first-order condition of the firm’s problem is[
p−η

1 − ηp−η−1
1 (p1 − 1)

]
pη−θ + (η − θ)p−η

1 pη−θ−1(p1 − 1)
∂p
∂p1

= 0,

where the term in square brackets gives the first order condition of a monopolistically competitive firm

facing elasticity of demand η. The second term gives the marginal profit due to the firm increasing the

sectoral price. Since η > θ, this second term is positive, implying that the term in brackets is negative, and

so the equilibrium price must be larger than the monopolistically competitive price under η.

68Since π(p, p∗(p)) − π(p∗, p∗) > ξ, then firm 2’s net pay off is also positive since π(p∗(p), p) > π(p, p∗(p)).
Therefore firm 2’s policy is a best response and the game is subgame perfect.
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Two additional results for a CES demand system allow us to solve the first-order condition in closed

form. First,
∂p
∂p1

=
[

p1−η
1 + p1−η

2

] 1
1−η−1

p−η
1 =

(
p1

p

)−η

.

Second, the revenue of the firm is r1 = p1(p1/p)−η(p/P)−θC, which gives the following revenue share:

s1 =
r1

r1 + r2
=

p1−η
1

p1−η
1 + p1−η

2

=

(
p1

p

)−η p1

p
=

∂p
∂p1

p1

p
.

Using these results in the first order condition, we obtain

p1 − η(p1 − 1) + (η − θ)(p1 − 1)s1 = 0.

Since firms are symmetric, the equilibrium will yield equal revenue shares s1 = 0.5, and p∗ = ε/(ε− 1),

where ε is an average of the within- and across-sector demand elasticities ε = 0.5 × (η + θ). The form

of the solution implies that markups are consistent with those chosen by a monopolistically competitive

firm facing an elasticity of demand equal to ε. Note that since P and C are first order terms in the firm’s

profit function, they do not affect the Nash equilibrium markup: there is no complementarity between firm and

aggregate prices and quantities.

Numerical example. The calibration of the dynamic duopoly model yielded θ = 1.5 and η = 10.5 (see

Table 1). For these values, ε = 6 and p∗ = 1.2.69 I apply these values to the equilibrium profit function

from the text (7), in which Pθ−1 would multiply the profit function instead of PC−θ . Setting P to the

average markup 1.30, Figure OA.1 shows how (ξ, p)-space separates across different equilibria for this

profit function. It is entirely consistent with the theoretical results. Recall that the model was calibrated

to the average size and frequency of price change, so the menu cost was not chosen with a particular

equilibrium in mind. The average markup in the model is p = 1.3, and the upper bound on the menu cost

is ξ = 0.17 (marked with an x in the figure). Zbaracki, Ritson, Levy, Dutta, and Bergen (2004) find that total

price adjustment costs make up 1.2 percent of firm revenue. As a benchmark, ∆I I(p)/rev(p, p) = 0.012 at

p = 1.27, so a menu cost around empirical estimates as a share of revenue would, in this static game under

the calibrated parameters of the model, guarantee a Type-I equilibrium. Figure A5 plots various features of

this profit function for firm 1, varying p2.

Summary. From only this exercise, the following is a heuristic understanding of the dynamic model.

Nominal rigidity allows firm markups to fluctuate around an average markup that is larger than the fric-

tionless Nash equilibrium. However, this is constrained by the size of the menu cost, which is pinned down

69Recall that the MCI I I calibration of the monopolistically competitive model set η = 6 to deliver this as a frictionless
markup.
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by the average frequency of price change. Given a menu cost ξ, firms choose reset prices around a real price

p that supports a Type-I equilibrium, but not so high as to risk a Type-II equilibrium. Idiosyncratic shocks

force firms’ real prices apart, but firms keep on adjusting their prices so as to not let them get too far away

from p. Prices that are too high invite undercutting, and prices that are too low reduce profitability. Menu

costs in the range of empirical estimates can sustain markups in the range of empirical estimates. Finally,

getting to these high prices requires firms to reduce profit in the short run in order to lay the incentives for

their competitor to choose a price that maintains higher profits in the long run.

Calvo model. Finally, consider a Calvo version of the static model, where each firm changes its price

with probability α. Let p̃ be the optimal reset price of the firm. A Nash equilibrium requires that each firm’s

first order condition be satisfied at p̃:

απ1( p̃, p̃) + (1− α)π1( p̃, p) = 0.

It is straightforward to show that p∗ < p̃ < p∗(p) for α < 1. A sufficient condition is that π1( p̃, p) < 0,

since π1(p∗(p), p) = 0. The first order condition implies that this is true if π1( p̃, p) > π1( p̃, p̃), which is

true due to complementarity and p > p̃. Note that as α→ 1, then p̃→ p∗.

Proof. For the Type-III equilibrium to exist, conditions (OA.5) and (OA.6) must hold simultaneously.

The following condition is therefore necessary:

π(p∗∗(p), p∗(p))− π(p, p∗(p)) ≤ π(p∗(p), p)− π(p, p).

I prove that this inequality always holds but with a positive inequality, concluding that Type-III equilibria

do not exist.

Note that the expression on the left-hand side can be decomposed as follows:

π(p∗∗(p), p∗(p))− π(p, p∗(p)) = [π(p∗∗(p), p∗(p))− π(p∗(p), p∗(p))]

+ [π(p∗(p), p∗(p))− π(p, p∗(p))] .

The first term is positive by the definition of p∗∗(p) being the best response to p∗(p). The second term is

positive since π(p, p∗(p)) is decreasing in p for p > p∗∗(p) and p∗p < p.

Since both terms are positive, then a sufficient condition for the non-existence of a Type-III equilibrium

is

π(p∗(p), p∗(p))− π(p, p∗(p)) ≥ π(p∗(p), p)− π(p, p).
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Expressing both sides as integrals and then multiplying through by minus one:

ˆ p

p∗p
π1(u, p∗(p)) du ≤

ˆ p

p∗p
π1(u, p) du.

Since p∗p < p and π12 > 0, then the integrand on the left is always less than that on the right. Both integrals

are evaluated on the same, increasing, supports, so the inequality always holds.

OA.3 A monetary shock in a static model

One can use the above framework to reason through how the value of price changes at low and high

priced firms respond following a monetary shock. Consider real prices of firms. Let P1 < P2, and suppose

that firms’ profits depend on nominal prices relative to the nominal money supply M: pi = Pi/M. The

frictionless Nash equilibrium moves one for one with M such that p∗ = P∗/M is a constant. The initial

states are (p1, p2) and following the monetary increase are (p′1, p′2) with p′i < pi. For convenience denote

p = p2 and express p1 < p2 as a ratio of p2: p1 = ∆p, with ∆ ∈ (0, 1). A smaller ∆ is a wider gap between

prices. With this notation the initial state can be expressed as (p, ∆), and after the shock as (p′, ∆), with

p′ < p. A monetary shock reduces both firms’ real prices (absent adjustment), but keeps their ratio constant.

Consider the following two functions:

f (p, ∆) = π(p∗(∆p), ∆p)− π(p, ∆p) =
ˆ p∗(∆p)

p
π1(u, ∆p) du

g(p, ∆) = π(p∗(p), p)− π(∆p, p) =

ˆ p∗(p)

∆p
π1(u, p) du

The first function gives the value of the optimal, static, downward best response from the high priced firm:

p∗(∆p) ∈ (p∗, ∆p). The optimal best response is to undercut its competitor. The second function gives the

value of the optimal, static, best response from the low priced firm: p∗(p) < p. Note that depending on ∆,

this best response may be a price increase or decrease depending on whether ∆p ≷ p∗(p).

Differentiating both expressions with respect to p and ∆ we obtain:

fp(p, ∆) =

ˆ p

p∗(∆p)
π11 (u, ∆p)︸ ︷︷ ︸

(−)

[
∆︸︷︷︸
(−)

{
−π12 (u, ∆p)

π11 (u, ∆p)

}
︸ ︷︷ ︸

∈(0,1)

−1

]
du , f∆(p, ∆) = −

ˆ p

p∗(∆p)
pπ12(u, ∆p) du

gp(p, ∆) =

ˆ p∗(p)

∆p
π11 (u, ∆p)

[
∆−

{
−π12 (u, ∆p)

π11 (u, ∆p)

}]
du , g∆(p, ∆) = −pπ1(∆p, p)

The derivatives of f are unambiguously signed: fp > 0 and f∆ < 0. The value of a price decrease to the

high priced firm is increasing in its initial price and increasing in the gap between prices. The derivatives

of g depend on the initial gap between prices: ∆. In the relevant case where ∆ is small—such that the prices
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are initially very dispersed—then gp > 0. When ∆ is such that ∆p < p∗(p), then g∆ > 0 too.

Idiosyncratic shock. An idiosyncratic shock that reduces ∆, widening the gap between prices has two

effects on the static best-responses of the low priced firm. A direct effect through g(p, ∆), by which ∆p

moves further away from p∗(p) and so the value of a price increase increases. This is similar to a monop-

olistically competitive firm facing a price lower than their optimal price and receiving a positive shock to

their costs (µ falls relative to µ∗). An indirect effect through f (p, ∆), by which the fall in the low priced

firm’s price relative to its competitor increases the value of a price cut to their competitor. In equilibrium

this will increase the propensity of the low priced firm to increase their price to stave off a price-cut from

their competitor.

Aggregate shock. An aggregate shock reduces p, and has two effects that can be similarly discussed. A

direct effect through g(p, ∆) by which even when taking into account the decline in p∗(p), the value of a

price increase at the low priced firm falls. An indirect effect through f (p, ∆): the value of the optimal price

cut at their competitor falls, which in equilibrium reduces the need for the low priced firm to increase their

price. At the same time, the optimal price adjustment p∗(p) falls, which implies that if p decreases by one,

then the price adjustment p∗(p)− ∆p increases by less than one. These are consistent with behavior of the

low-priced firm (in red) in Figure 4.

The direct effect is similar to what exists in a monopolistically competitive model. As M increases,

p1/M and p2/M fall. At the low priced firm, the value—and so probability—of price increase increases.

Here, despite the low priced and high priced firms’ prices falling by the same amount, as they move toward

p∗, the value of a downward adjustment at the high priced firm falls. If f (p, ∆) is initially larger than ξ,

then the initial equilibrium consists of a price increase from the low priced firm, and no change from the

high-priced firm. As p decreases to p′ due to the monetary shock and this leads to f (p′, ∆) < ξ then the

price increase from the low priced firm is no longer required (indirect effect), which steeply reduces the

steady-state adjustment hazard of the low priced firm. A monetary shock reduced the value of downward

price adjustment at high priced, inframarginal firms, which reduces the value of upward adjustment from

low priced, marginal firms.

Consider the following example. Let (p, ∆) be such that f (p, ∆) < ξ and g(p, ∆) < ξ. In this case an

equilibrium exists in which the initial prices persist. Now consider a negative shock to the price of the low

priced firm such that ∆′ < ∆ and f (p, ∆′) > ξ. Now the high priced firm has a credible threat of decreasing

their price, yielding the equilibrium best response of a price increase from the low priced firm to increase

∆′ back to ∆. Additionally g(p, ∆′) > g(p, ∆), so both the indirect and direct effects are toward a price

increase. Low priced firms have a high probability of a price increase following a negative idiosyncratic

shock, since they both move the firm away from its optimal price and increase the value of a price cut at

their competitor.
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Following an increase in the money supply, however, this price increase may no longer be necessary.

Since f is increasing in p, there exists an increase in the money supply such that f (p′, ∆′) = f (p, ∆). Simi-

larly, as g is increasing in p, there exists an increase in the money supply such that g(p′, ∆′) = g(p, ∆).

So although ∆′ < ∆, the simultaneous decline in p reduces the value of a price cut at the high priced

firm. In equilibrium the low priced firm absorbs the decrease in ∆ but no longer increases their price.

In the presence of menu costs, firms with initially low prices before a monetary shock hits have a high

value of increasing their price, precisely because their competitors have a high value of cutting theirs. A

price increase staves off low sectoral prices. An increase in the money supply lowers both prices and, due

to complementarity in prices, reduces the value of a price cut at the high priced firm. As this value falls

below the menu cost, a low priced firm no longer needs to increase its price, and the aggregate price level

increases by less.
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