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1 Introduction

In the current century, many advanced economies (including the US) have experienced:

• Real interest rates that have been, and are expected to remain, below growth rates for

many years.

• Debt levels that are large and positive, and seem likely to remain high by historical

standards.

• Primary deficit levels that have been, and are expected to remain, positive for many

years

Like Blanchard (2019)1, I see these data as (at least potentially) representing a public debt

bubble (Brunnermeier, et al. (2020)), in the sense that the large positive value of government

debt seems to exceed the present value of government primary surpluses (which is large and

negative). Apparently, people are willing to hold public debt because they anticipate that

governments will be able to repay it primarily through the issue of new debt.

Motivated by this observation, I study a class of Aiyagari (1994)-Bewley (1977)-Huggett

(1993) (ABH) models. I begin with a baseline model in which agents experience uninsurable

idiosyncratic taste and income shocks that evolve according to stochastically independent

Markov chains. I alter the baseline model by adding tail risk so that, at any date, agents

in the model face an auxiliary state that can occur with probability p and in which the

(constant) marginal utility of consumption is ν/p. This auxiliary state can be interpreted as

being any kind of eventuality in which the agent is desperate for resources, such as a health

shock. I focus on the properties of perturbations in which p is near zero.

I show in this augmented model that (for any sufficiently high value of ν) there is a public

debt bubble: agents are willing to buy and hold one-period government bonds even though

the bonds pay a constant real interest rate r that is perpetually below the growth rate g

1See also Jiang, et. al. (2020).
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(which is set equal to zero). In this situation, the government is able to run a perpetual

positive primary deficit. It uses a fraction α of that deficit to finance lump-sum transfers

and the remainder to finance government purchases. I treat r and α as the government’s

policy variables, and the time path of government debt as the endogenous response to those

variables.

I obtain the following main results when p (the transition probability to the auxiliary

state) is near zero:

• The value of outstanding government debt in any period is an increasing function of

the real interest rate r and of the redistribution parameter α. The value of government

debt in any period grows without bound as α nears 1, and the long run debt level grows

without bound as r rises to zero.

• The size of the primary deficit in any period grows as r rises to zero. The size of the

primary deficit in any period grows without bound as α nears 1.

• For any period t, the expected utility from private consumption is strictly increasing

in the size of α. For any period t that is sufficiently large, the expected utility from

private consumption2 is strictly increasing in the real interest rate r.

• For any period t, government purchases are strictly increasing in the real interest rate

r and are independent of the size of α.

I first prove the results in a simple setup without any private sector borrowing or any physical

capital. I then go on to show that they remain valid when agents can borrow or they can

accumulate capital.

The basic intuition underlying these results is that when the marginal utility ν is large,

agents have a high precautionary demand for savings. Given that large demand, they are

2This conclusion is based on the assumption that all agents begin life with identical wealths. In contempo-
raneous research, Aguiar, Amador, and Arellano (2021) study the possibility of Pareto improvements in ABH
economies when r < g under the assumption that agents’ initial wealths are distributed as in a stationary
equilibrium. Brumm, et al. (2021) provide examples of economies in which r < g, but it is suboptimal to
expand debt.
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willing to give up current consumption to buy risk-free bonds that pay a real return r < 0.

As r nears zero (from below), the debt and primary deficit both increase because agents are

willing to give up more consumption to buy bonds and (more importantly) their cumulated

bondholdings depreciate more slowly. These higher debts/deficits allow for more risk-sharing

and allow the government to undertake more purchases. In a similar vein, as the distribution

parameter α nears 1 from below, the agents have more resources available that they use to

buy government bonds. Those increases in private saving push upward on deficits and debts.

The model’s main policy implication is straightforward. If there is a public debt bubble,

so that r < 0, the level of public debt is necessarily too small (regardless of how big it is). The

government can raise societal welfare by increasing its debt and its deficit through devoting

a larger fraction of public expenditures to redistribution (as opposed to purchases) or (in the

long run) by raising the real interest rate (that is, lowering its bond price).

The theoretical possibility of public debt bubbles has been known since the classic work

of Samuelson (1958) and Diamond (1965). However, such bubbles are often discounted or

even ignored as being the product of unduly stylized models.3 This paper focuses on the

ABH class of models of incomplete insurance that are now foundational for much of modern

macroeconomics. It shows that arbitrarily large public debt bubbles emerge as equilibria in

a wide class of ABH models. In this sense, the possibility of large public debt bubbles can

be seen as a theoretically robust consequence of the need for incomplete insurance against

idiosyncratic tail risks.

2 ABH Models with Tail Risks

In this section, I describe a generic ABH model of incomplete insurance, augmented so that

agents face a low probability of an extreme risk.

3There is, of course, a large literature in macroeconomics on rational bubbles. See Martin and Ventura
(2018) for a recent useful survey and Miao (2014) for an elegant introduction to the underlying economic
theory.
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2.1 Base Model

There is a unit measure of agents. Agents are characterized by states that evolve over time

according to identical and stochastically independent finite-state Markov chains. The state

space for the Markov chain is given by {1, 2, 3, ..., J}. The transition matrix Γ̂ is an aperiodic

and irreducible (J × J) Markov matrix, with unique stationary density µ̂.

An agent in state i is endowed with yi units of consumption (which is nondurable and

nonstorable). At any date, an agent in state i has a momentary utility function ui defined

over current consumption, which satisfies the usual restrictions:

u′i,−u′′i > 0

limc→0u
′
i(c) =∞

limc→∞u
′
i(c) = 0

At each date, agents seek to maximize the expected value of the sum of current and discounted

future momentary utilities, with a common discount factor given by β ∈ (0, 1).

2.2 An Auxiliary State

I now change the above model economy by adding a state labelled 0. In state 0, agents are

endowed with y0 > 0 units of consumption, and have linear utility functions over consump-

tion:

u0(c) = νc/p > 0

where ν > 0 and 0 < p < 1.

As in the original economy, agents’ states evolve over time according to stochastically

independent Markov chains. An agent in state i has probability p of transiting to state 0 and

probability (1− p)Γ̂ij of transiting to any state j > 0. An agent in state 0 has probability ρ

of staying in state 0 and probability (1− ρ)µ̂j of transiting to state j. The stationary density
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(µj(p))
J
j=0 of this augmented transition matrix is given by:

µ0(p) =
p

p+ (1− ρ)

µj(p) = (1− µ0(p))µ̂j, j = 1, .., J

where, as noted earlier, µ̂ is defined to be the stationary density of the original (unperturbed)

transition matrix Γ̂. Suppose that a fraction µj(p) of agents have initial state j, for any

j = 0, 1, 2, ..., J. In this perturbed model, the relative fractions of agents with state j > 0 are

constant and are the same as in the original model.

In what follows, I consider what happens when the parameter p is near zero. Under

this restriction, when the fractions of the agents in the various initial states are governed by

(µj(p))
J
j=0, the stochastic evolution of the individual states in the perturbed model is close to

that in the base model. However, the need for consumption in state 0 becomes increasingly

urgent as p is increasingly near zero (in the sense that the marginal utility ν/p of consumption

in that state converges to infinity).

2.3 Bubble Conditions

I assume that ν is sufficiently large that:

u′j(yj) <
βν

1− β
, j = 1, ..., J (1)

This condition makes possible the existence of bubbles, in the sense that it ensures that any

agent in state j > 0 is willing to hold one-period bonds with a negative real interest rate.

Note that for any specification of the baseline model, there exists an unbounded open interval

of ν that satisfy (1).
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3 Individual Bond Demands

In this section, I characterize individual bond demands. Specifically, I suppose that the

government sets a constant price q > 1 for one-period bonds that pay off one unit of con-

sumption. All agents begin life with B̄1 ≥ 0 one-period bonds. Thereafter, they are able to

buy as many bonds as they wish at this price, but (for now) are assumed to be unable to

borrow. The government makes a non-negative lump-sum transfer τt to all agents in period t.

(Later, I tie this transfer back to aggregate bond issuance, but that connection is irrelevant

for the determination of individual bond demands.)

Consider an agent who is initially in state i. That agent chooses consumption and bond-

holdings at each date so as solve the problem P*:

max(c,b) E{
∞∑
t=1

βt−1ust(ct)|s1 = i}

ct(s
t) + qbt+1(s

t) ≤ yst + bt(s
t−1) + τt for all t ≥ 1, w.p. 1

bt(s
t−1) ≥ 0 for all t ≥ 1, w.p. 1

b1 = B̄1

where st represents the history at date t of current and past states. The expectation operator

is calculated via the Markov chain probabilities defined earlier.

The bubble condition (1) implies that there exists p̄ > 0 and q̄ > 1 such that:

u′j(yj) <
βν

q̄ − β(1− p̄)
, j = 1, ..., J

Consider the open interval:

Λ ≡ (0, p̄)× (1, q̄) (2)

The following proposition shows that, for any (p, q) in the interval Λ, the solution to the

problem P* is quite simple. An agent in state 0 in period t consumes all available wealth
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(from bond payoffs and income). An agent in any state i > 0 in period t consumes c∗i (p, q),

where:

u′i(c
∗
i (p, q)) =

βν

q − β(1− p)
.

Proposition 1. If (p, q) is in Λ, as defined in (2), there is a unique solution to the problem

P*. In that solution (c∗, b∗):

st ∈ {1, ..., J} ⇒


c∗t (s

t) = u
′−1
st ( βν

q−β(1−p))

b∗t+1(s
t) = (yst − c∗st + τt + b∗t (s

t−1))/q

and:

st = 0⇒


c∗t (s

t) = b∗t (s
t−1) + y0 + τt

b∗t+1(s
t) = 0

.

Proof. In Appendix.

4 Results About Aggregates

In this section, I examine the behavior of aggregate debt and deficits when all agents

solve problem P*. In doing so, I assume that the fraction of agents with initial state

i ∈ {0, 1, 2, ..., J} is equal to µi(p) (the stationary density). I assume too that a law of

large numbers holds, so that the fraction of the agents who are in state i at date t who

transit to state j is governed by the transition matrix. It follows immediately that, at any

date, the fraction of agents with state i is given by µi(p). I assume that all agents begin life

with B̄1 ≥ 0 units of maturing bonds.
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4.1 Debt

Let B̄t(p, q, α) represent the cross-sectional average of agents’ bondholdings at the end of

date (t− 1), given that all agents are solving problem P* when the transfer is defined via:

τt(p, q, α) = α(qB̄t+1(p, q, α)− B̄t(p, q, α)), 0 ≤ α < 1.

The government uses the remainder of the revenue to fund purchases. For now, I simply

assert that the transfer is positive. We shall verify the validity of this assertion, for p near

zero, in the next section.

The following proposition provides approximations to B̄t for p near zero.

Proposition 2. Suppose (p, q) is in Λ defined in (2). Define:

∆∗i (p, q) = yi − u′i−1(
βν

q − β(1− p)
), i = 1, ..., J

which (from the definition of Λ) is positive for all i. Then for p near zero:

B̄t+1(p, q, α) ≈ (
∑J

i=1 µ̂i∆
∗
i (0, q))

(1− α)

(1− 1/qt)

q − 1
+ B̄1/q

t

Proof. In Appendix.

The following corollary establishes key properties of the function B̄t(p, q, α) for p near

zero.

Corollary 1. Suppose (p, q) is in Λ (as defined in (2)). The period t debt level is strictly

decreasing in q and is strictly increasing in α. For any t ≥ 2 :

limα→1limp→0B̄t(p, q, α) =∞

For any α ∈ (0, 1), and for p near zero, the long-run debt level is unbounded as a function of
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q :

limq→1limt→∞limp→0B̄t(p, q, α) =∞.

Proof. The sign of the partial derivative with respect to α is straightforward and:

∆∗i (p, q) = yi − u′−1i (
βν

q − β(1− p)
)

is clearly a strictly decreasing function of q. Hence, the sign of the partial derivative with

respect to q is governed by the sign of the derivative of f(q) = (1−1/qt)
(q−1) . This can be assessed

by checking the sign of:

f ′(q) =
tq−t−1(q − 1)− (1− q−t)

(q − 1)2

=
(((t+ 1)q − t)− qt+1)

qt+1(q − 1)2
.

The numerator of this expression equals 0 if q = 1; its derivative is (t+ 1)− (t+ 1)qt < 0 if

q > 1. It follows that f ′(q) < 0 for q > 1 and so the period t debt level is strictly decreasing

in q.

The limits are readily verified.

The unboundedness of debt is, in part, a consequence of the linearity of utility in the

auxiliary state 0. It is this property of the model that leads agents in that state to consume

all of their bondholdings, regardless of how large they are.

4.2 Deficits

In this subsection, I describe the temporal behavior of the primary deficit for different values

of the bond price q and the redistribution parameter α.

10



The primary deficit at any date is:

Dprimary
t (p, q, α) = qB̄t+1(p, q, α)− B̄t(p, q, α)

The following proposition characterizes the primary deficit when p is near zero.

Proposition 3. Suppose (p, q) in Λ (as defined in (2)). If p is near zero, the primary deficit

Dprimary
t (p, q, α) at any date is approximately:

(
∑J

i=1 µ̂i∆
∗
i (0, q))

1− α
.

where:

∆∗i (0, q) = yi − u′−1i (
βν

q − β
).

The approximate deficit is a strictly decreasing function of q. For p near zero, the primary

deficit converges to infinity as α nears 1:

limα→1limp→0D
primary
t (p, q, α) =∞.

Proof. In Appendix.

When p is near zero, the primary deficit is unbounded from above as a function of α.

Intuitively, the private sector’s consumption is independent of α because it uses any transfer

from the government to buy more bonds. So, the primary deficit has to satisfy:

(1− α)Dprimary
t (p, q, α) = (Y − C)

where Y (the aggregate endowment) and C (aggregate private consumption) are independent

of α. The unboundedness result follows immediately.
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4.3 Welfare

In this subsection, I examine how, when p is near zero, social welfare depends on the bond

price q and the distribution parameter α. The social welfare is derived from two sources:

agents’ expected utility from private consumption and the societal benefits of government

purchases.

4.3.1 Expected Utility

I first consider the momentary expected utility from private consumption of an agent who is

“behind the veil of ignorance” and is assigned initial state i with probability µi(p). A subtlety

is that we need to weigh two effects when p is near zero: the consumption being given to

agents in state 0 is nearing zero with p, and the marginal utility from consumption in state

0 converges to infinity as p nears zero. I show that the agent’s momentary expected utility

in period t is strictly decreasing in the bond price q, if t is sufficiently large, and strictly

increasing in the redistribution parameter α in any period t.

Any agent who is in state i > 0 in period t consumes c∗i (p, q). An agent who is in state 0

consumes:

y0 +
p(1− µ0(p))

µ0(p)

B̄t(p, q, α)

(1− µ0(p))
+ α(qB̄t+1(p, q, α)− B̄t(p, q, α))]

Hence, an agent’s (momentary) expected period t utility is:

Wt(p, q, α) =
J∑
i=1

µi(p)ui(c
∗
i (p, q))

+ ν
µ0(p)y0

p

+ νB̄t(p, q, α) +
ανµ0(p)(qB̄t+1(p, q, α)− B̄t(p, q, α))

p

The following proposition establishes that, when p is near zero, the expected utility from

private consumption is strictly increasing in α, and, for sufficiently large t, is strictly decreas-

ing in q.
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Proposition 4. Suppose (p, q) is in Λ (as defined in (2)). Define W 0
t (q, α) = limp→0Wt(p, q, α).

W 0
t is strictly increasing in α for any (q, t). For t ≥ (2−β)

(1−β) , and for any α, W 0
t is strictly

decreasing in q.

Proof. In Appendix.

4.3.2 Government Purchases

Government purchases at any date are given by:

Gt(p, q, α) = (1− α)(qB̄t+1(p, q, α)− B̄t(p, q, α)).

For p near zero, purchases are approximately:

Gt(p, q, α) ≈ (1− α)limp→0D
primary
t (p, q, α) = (1− α)

(
∑J

i=1 µ̂i∆
∗
i (0, q))

1− α

=
J∑
i=1

µ̂i∆
∗
i (0, q)

The approximate level of government purchases is strictly decreasing in q, because agents in

state i > 0 give up more consumption for bonds when their price q is lower. The approximate

level of government purchases is independent of α, because agents in state i > 0 simply use

any increase in their transfers to buy more bonds.

5 Extensions

In this section, I discuss the robustness of the findings to the inclusion of private credit and

capital accumulation. I show in a numerical example that per capita debtholdings can be

large when the real interest rate is negative, even if utility is strictly concave in state 0.
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5.1 Private Credit

In this subsection, I extend the above results to a model in which agents are able to hold

negative amounts of bonds, up to a limit −Bmax, Bmax > 0. The government fixes a bond

price q in (1, q̄) and p lies in (0, p̄) (so that (p, q) ∈ Λ, as defined in (2)).

The relaxation of the credit constraints affects the behavior of the agents in state i = 0,

who now choose consumption and bonds as:

c∗0 = y0 + b+ qBmax

b′ = −Bmax

In contrast, the agents who are in state i > 0 make the same consumption choices c∗i (p, q) =

u′−1i ( βν
q−β(1−p)) as in the absence of borrowing. This consumption choice remains budget-

feasible because:

b′ = (yi − c∗i + b)/q

≥ (yi − c∗i −Bmax/q)

≥ −Bmax/q

> −Bmax.

As before, I am interested in the behavior of aggregates when p is near zero. But we

have just seen that the relaxation of credit constraints only changes the behavior of agents

in state 0, and the fraction of those agents becomes vanishingly small as p converges to zero.

It follows that even when agents can borrow, for p near zero, the evolution of aggregate debt

is approximately:

B̄t(p, q, α) ≈
∑J

i=1 µ̂i∆
∗
i (0, q)

(q − 1)(1− α)
(1− 1/qt) + B̄1/q

t
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where (as before):

∆∗i (0, q) = yi − u′−1i (
βν

q − β
).

This (approximate) aggregate debt level is a strictly decreasing function of q and, in the long

run, is an unbounded function of q. The approximate primary deficit is given by:

∑J
i=1 µ̂i∆

∗
i (0, q)

(1− α)

which is again strictly decreasing in q and strictly increasing in α. It remains true that, for

any given q, the primary deficit when p is near 0 is unbounded from above for α close to 1.

Relaxing the credit constraint does affect how the bond price q impacts the expected

momentary utility from private consumption for p near zero. When Bmax > 0, then the per

capita consumption of agents in state 0 is given by:

y0 + (q − ρ)Bmax

+
p

µ0(p)
(B̄t(p, q, α) + µ0(p)Bmax)

+α(qB̄t+1(p, q, α)− B̄t(p, q, α))]

The second term captures the ability of agents in state 0 to expand their consumptions by

issuing bonds at price q. It represents a new channel whereby agents can be made better off

through higher bond prices (lower interest rates). However, this effect is temporary if the

real interest rate is sufficiently close to zero: as in the proof of Proposition 4, it can be shown

that W 0
t is strictly decreasing in q for q sufficiently near 1 and t sufficiently large.

5.2 Adding Capital

Policymakers are often concerned that increases in government debt may serve to crowd out

other more productive forms of wealth accumulation. In this subsection, I add capital to

the model in Section 3 (without credit constraints), as in Aiyagari (1994). I show that debt
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increases (and commensurate interest rate increases) do in fact reduce steady-state capital.

However, if there is a debt bubble, that reduction is in fact welfare-increasing, because

agents spend fewer resources on making up for losses due to depreciation of the capital stock.

Throughout the subsection, I assume that α = 0 (so that all government revenue is spent on

public consumption).

Suppose that consumption goods at each date are produced by firms using capital and

labor, according to the constant returns to scale production function:

F (K,N)

where FK > 0 and FKK < 0. As in Aiyagari (1994), the various agents supply labor in-

elastically, with their maximal labor in state i equal to N̄i (states evolve according to the

independent Markov chains described in Section 2). The initial cross-sectional distribution

of initial states is governed by the stationary density {µi(p)}Ji=0, so that per-capita labor

remains constant at N̄(p) =
∑J

i=0 µi(p)N̄i.

Suppose the government chooses a bond price q > 1. Define k(q) to be the capital-labor

ratio when capital has the same return as these bonds, so that:

1

q
− 1 = FK(k(q), 1)− δ.

I suppose that q is sufficiently close to one that:

F (k(q), 1)− δk(q) > 0.

This guarantees that there is sufficient output to replace the capital lost to depreciation.

To ensure that there is a debt bubble given q (and given p near zero), we need ν to be

sufficiently large to satisfy the following (J + 1) conditions:
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u′i(FN(k(q), 1)N̄i)) <
βν

q − β
, i = 1, ..., J

J∑
i=1

µ̂iu
′−1
i (

βν

q − β
) < F (k(q), 1)N̄ − δk(q)N̄

where N̄ =
∑J

i=1 µ̂iN̄i is per capita maximal labor for the agents in positive states. The

first J conditions ensure that agents in positive states want to save, either through capital

or bonds, when the real interest rate is negative (but near zero). The final condition ensures

that their per capita consumption is less than output net of investment.

Under these conditions, when p is near zero, there is a steady-state equilibrium in which

agents hold capital (approximately equal to) k(q)N̄ and a positive amount of public debt

B̄(q). In that equilibrium, the government uses its primary deficit to finance a positive level

of government purchases:

(q − 1)B̄(q) = G(q)

= F (k(q)N̄ , N̄)− δk(q)N̄ −
J∑
i=1

µ̂iu
′−1
i (

βν

q − β
).

When p is near zero, lowering the bond price q toward 1 (and raising the real interest rate

toward zero) serves to:

• Lower the capital stock k(q)N̄

• Raise G(q) = F (k(q)N̄ , N̄)− δk(q)N̄ −
∑J

i=1 µ̂iu
′−1
i ( βν

q−β ) (because FK − δ < 0).

• Raise the debt level B̄(q) = G(q)/(q − 1) without bound.

• Raise the expected utility from private consumption (as in Proposition 4) by transfer-

ring resources from agents in positive states to those in state 0.

It is true in this model that larger amounts of government debt crowd out private capital.
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But, with a debt bubble, crowding out private capital raises the amount of resources available

for private and public consumption, because the marginal product of capital is lower than

the depreciation rate.

In the above model, the marginal product of capital net of depreciation (MPK − δ) is

equal to r. In contrast, Reis (2020) studies a class of models in which:

(MPK − δ) > g > r (3)

where g represents the growth rate of the economy (which was always assumed to be zero

in this paper). In Reis’ models, production is undertaken by individual entrepreneurs who

face financial frictions. As in earlier work (including Kocherlakota (2009)), Reis shows that

these frictions can give rise to equilibria which satisfy (3). I abstract from these frictions in

the current paper in order to stay close to the original ABH framework.

Unlike what I find in this paper, Reis shows that there is an upper bound on public

debt. This difference in results is, at least in part, attributable to differing assumptions

about the “spenders” in the models. In my paper, the spenders (agents in the auxiliary

state 0) have linear utility. In Reis’ paper, spenders (entrepreneurs with desirable investment

opportunities) have diminishing marginal utility (specifically log utility).

5.3 Related Model with Curvature in Utility

The bulk of the paper focuses on a class of ABH models in which utility is linear in a low-

probability state. In this subsection, I illustrate in a numerical example how large debt

bubbles can also emerge in an ABH model in which agents’ utility functions are always

strictly concave.

In the example, there is a unit measure of agents. Their individual states evolve according

to a Markov chain with two possible outcomes labelled {0, 1}. In state 1, agents have endow-

ments equal to one unit of consumption and momentary utility functions given by ln(c). In

18



state 0, agents have endowments equal to zero units of consumption and momentary utility

functions given by 10ln(c). The transition matrix is given by:

Γ00 = 0

Γ01 = 1

Γ11 = 0.975

Γ10 = 0.025

so that the stationary probability density is µ1 = 0.976 and µ0 = 0.024. I suppose that the

agents have a common discount factor 0.97. Thus, agents in state 1 face a low probability

risk of having a large income loss and a large need to consume.

The government sells one-period riskless debt in every period at a constant price 1.02

(meaning that, at each date, bond purchasers give up 1.02 units of consumption for 1 unit of

consumption in the following period). As in the original model in Section 2, agents are not

able to borrow. Unlike in the body of the paper, I focus on stationary equilibria, in which the

joint distribution of bondholdings and individual states is time-invariant. The government

uses the constant positive revenue from its bond sales at each date for purchases (that enter

agents’ utility separably, if at all).

In the stationary equilibrium, agents in state 0 buy no government bonds (because they

know that they will be receiving a high endowment in the next period). Agents in state 1

increase their bondholdings over time until they re-enter state 0 (so that the distribution of

bondholdings of state 1 agents is geometric). Despite the curvature in utility in state 0, the

desire to guard against a temporary but highly adverse risk gives rise to to large per capita

bondholdings - specifically, approximately 2.65 times per capita income. The maximal bond-

holdings are approximately 3.14 times per capita income. Both of these numbers would be

even larger if the government used some of its revenue for transfers, as opposed to purchases.
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6 Conclusion

The paper makes two contributions. From a theoretical perspective, it shows that given a

generic ABH model economy, public debt bubbles arise as equilibria in perturbations of that

model. Government policy choices can engender arbitrarily large debt and deficit levels in

these equilibria. From a policy perspective, the paper shows that as long as there is a public

debt bubble (in this class of models), agents are better off in the long run if the government

changes its policy choices so as to increase the debt and deficit.
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Appendix

In this appendix, I collect the proofs of the propositions.

Proof of Proposition 1

We first check the Euler equation if the agent is in state i > 0. The agent’s Euler equation is

satisfied because:

qu′i(c
∗
i )− β(1− p)

J∑
j=1

Γ̂iju
′
j(c
∗
j)− βν

=
qβν

q − β(1− p)
− β2(1− p)ν
q − β(1− p)

− βν

=
qβν − β2(1− p)ν − qβν + β2(1− p)ν

q − β(1− p)

= 0.

In state 0, the agent’s Euler inequality is satisfied because:

qν/p− β(1− ρ)
βν

q − β(1− p)
− βρν/p

> βν/p− β(1− ρ)
βν

β − β(1− p)
− βρν/p (b/c q > β)

= 0

We also need to verify the transversality condition that:

liminft→∞β
t−1u′(c∗t )Bt+1 = 0 w.p. 1

But this is readily confirmed by noting that, for p > 0, state 0 occurs infinitely along almost

every sample path.
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Proof of Proposition 2

Let Bi,t+1(p, q, α) be the average bondholdings at the end of period t of agents in state i > 0.

At any date t, these satisfy the recursion:

qBi,t+1(p, q, α) =

∑J
j=1 µj(p)Γji(p)Bjt(p, q, α)

µi(p)
+ ∆∗i (p, q) + τt(p, q, α), i = 1, ..., J

τt(p, q, α) = α(qB̄t+1(p, q)− B̄t(p, q))

where Bj1 = B̄1, j = 1, ..., J. If we multiply the first expression by µi(p) and sum over i, we

get:

qB̄t+1(p, q, α) = (1− p)B̄t(p, q, α) +
J∑
i=1

µi(p)∆
∗
i (p, q) + (1− µ0(p))τt(p, q, α)

τt(p, q, α) = α(qB̄t+1(p, q, α)− B̄t(p, q, α))

We can rewrite as:

qB̄t+1(p, q, α)(1− (1− µ0(p))α)

= B̄t(p, q, α)((1− p)− α(1− µ0(p))) +
J∑
i=1

µi(p)∆
∗
i (p, q)

This implies in turn that:

B̄t+1(p, q, α) =

∑J
i=1 µi(p)∆

∗
i (p, q)

q(1− (1− µ0(p))α)

(1− λ(p, q, α)t)

(1− λ(p, q, α))
+ B̄1λ(p, q, α)t

=

∑J
i=1 µi(p)∆

∗
i (p, q)

(q − 1)(1− (1− µ0(p))α) + p
(1− λ(p, q, α)t) + B̄1λ(p, q, α)t

where:

λ(p, q, α) =
(1− p− (1− µ0(p))α)

(1− (1− µ0(p))α)q
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Note that 0 < λ(p, q, α) < 1 for (p, q) in Λ.

By substituting p = 0, we can conclude that when p is near zero:

B̄t+1(p, q, α) ≈
∑J

j=1 µ̂i∆
∗
i (0, q)(1− 1/qt)

(q − 1)(1− α)
+ B̄1/q

t

Proof of Proposition 3

The proof of Proposition 2 established that:

B̄t+1(p, q, α) =

∑J
i=1 µi(p)∆

∗
i (p, q)

(q − 1)(1− (1− µ0(p))α) + p
(1− λ(p, q, α)t) + B̄1λ(p, q, α)t.

where:

λ(p, q, α) =
(1− p− (1− µ0(p))α)

(1− (1− µ0(p))α)q

When p is near zero, λ(p, q, α) ≈ 1/q. It follows that:

Dprimary
t (p, q, α) = qB̄t+1(p, q, α)− B̄t(p, q, α)

≈ (
∑J

i=1 µ̂i∆
∗
i (0, q))

1− α
for p near zero.

The infinite limit (with respect to α) follows immediately.

Proof of Proposition 4

Consider W 0
t (q, α) net of the the utility derived from the endowment y0. It is equal to:

limp→0

J∑
i=1

µi(p)ui(yi −∆∗i (p, q)) + νB̄t(p, q, α) + α
νµ0(p)

p
(qB̄t+1(p, q, α)− B̄t(p, q, α))]

=
J∑
i=1

µ̂iu(yi −∆∗i (0, q)) +
ν{

∑J
i=1 µ̂i∆

∗
i (0, q)}(1− 1/qt−1)

(q − 1)(1− α)
+ νB̄1/q

t−1 + ν
α{

∑J
i=1 µ̂i∆

∗
i (0, q)}

(1− α)(1− ρ)

=
J∑
i=1

µ̂iu(yi −∆∗i (0, q)) + ψt−1(α, q)
J∑
i=1

µ̂i∆
∗
i (0, q) + νB̄1/q

t
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where ψt(α, q) = ν
α

1−ρ+
(1−q−t)
q−1

(1−α) . Here, I have exploited the observation that limp→0µ0(p)/p =

1/(1− ρ).

The derivative of W 0
t (α, q) with respect to q is:

−νB̄1(t−1)/qt+(
J∑
i=1

µ̂i∆
∗
i (0, q))

∂ψt−1
∂q

(α, q)+
J∑
i=1

µ̂i[−u′i(yi−∆∗i (0, q))+ψt−1(α, q)]
∂∆∗i
∂q

(0, q)

The first term of this expression is clearly negative for t > 1. In the second term, the sign of

the derivative of ψt with respect to q is the same as the sign of:

tq−t−1(q − 1)− (1− q−t)

= (t+ 1)q−t − tq−t−1 − 1

= q−t((t+ 1)− t/q − qt)

which is negative for t ≥ 1 (because the derivative of the expression in parentheses w.r.t. q

is tq−2(1− qt+1), which is negative for q > 1).

In the third term, it can be shown that:

ψt−1(α, q)− u′i(c∗i (0, q))

= ν

α
1−ρ + (1−q−t+1)

q−1

(1− α)
− βν

q − β

> 0

if t is sufficiently large (t > (2−β)
(1−β)).

4 Recall that:

∆∗i (0, q)) = yi − u′i−1(
βν

q − β
), i = 1, ..., J

Hence, ∆∗i is strictly decreasing in q. It follows that, for t sufficiently large, the third term of

4This lower bound on t ensures that (1−q−t+1)
(q−1) > β

(q−β) for all q > 1.
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the derivative of W 0
t with respect to q is negative, and so the overall derivative is negative.

The sign of the derivative of W 0
t (α, q) with respect to α is the same as the sign of the

derivative of ψt−1 with respect to α, which is positive.
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