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capacity by 2024, similar to the level required under California’s storage mandate.
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1 Introduction

Growth in renewable electricity generation has been dramatic over the past 10 years,
in the U.S. and worldwide. By displacing generation from fossil fuels, renewables re-
duce greenhouse gas emissions. However, almost all recent growth in renewables
comes from intermi�ent sources such as solar photovoltaics (PV): a solar farm cannot
generate electricity a�er the sun sets, or when a cloud passes overhead. Absent the
ability to store electricity, integrating these intermi�ent sources into the electricity
grid requires the capability both to produce electricity at times with low expected re-
newable production and to adjust production suddenly when renewable production
is unavailable. Intermi�ency reduces the bene�ts of renewables through the costs of
building, maintaining, and operating additional fossil fuel generators (Bushnell and
Novan, 2021; Gowrisankaran et al., 2016; Joskow, 2011). �us, ba�ery storage is a po-
tentially important complement to intermi�ent renewable energy: it can lower the
social costs of integrating renewables by storing energy when renewable production
peaks and releasing it when it plummets.

In tandem with recent growth in renewable energy investment, the capital costs of
lithium-ion ba�ery cells fell by 85% from 2010 to 2018 with projections of 50% further
cost drops over the next decade (Cole and Frazier, 2019; Goldie-Scot, 2019).1 Despite
these dramatic cost decreases, capital costs are still a central impediment to utility-
scale ba�ery storage. In addition, the equilibrium value of large-scale storage invest-
ment is limited because each additional storage unit acts as an arbitrageur, smoothing
price di�erentials across time and lowering the value of existing units. Finally, even
a�er capital costs reach a break-even point, companies may defer ba�ery investments
to exploit the option value of waiting for additional capital cost declines.

�is paper has three main goals related to understanding the economics of ba�ery
storage. First, we develop a framework to estimate the equilibrium e�ects of large-
scale ba�ery storage and the complementarities between ba�eries and renewable en-
ergy penetration, in a model that incorporates dispatchable generator market power
and the ramping costs that these generators bear when they raise or lower output.
Second, we use our methods to calculate which parties would gain and which would

1Other storage technologies are also expected to have up to 90% lower capital costs within the next
decade (U.S. Department of Energy, 2021).
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lose from large-scale ba�ery adoption. �ird, we evaluate the extent of expected equi-
librium ba�ery adoption and how this responds to di�erent policies.

Understanding the complementarities between ba�ery storage and renewable en-
ergy is particularly important because many policy proposals have paired renewable
energy standards with ba�ery mandates. For example, in conjunction with its ag-
gressive renewable energy standards, California’s 2010 AB 2514 requires utilities to
procure 1,300 MW of storage power capacity, operational by 2024.2 �e state justi�ed
the storage mandate on the basis that storage resources can help optimally integrate
renewable energy resources and improve grid reliability (California Secretary of State,
2010). Additionally, implementing a concurrent ba�ery mandate and renewable port-
folio standard could be a cost-e�ective way to achieve renewable energy goals if there
is the potential for coordination failures at the investment stage due to these com-
plementarities (Zhou and Li, 2018). More recently, the 2022 U.S. In�ation Reduction
Act (IRA) directly subsidized storage investments by providing federal investment tax
credits (House of Representatives, 2022).

We illustrate the complementarities between renewable energy and storage with
California data. Figure 1a displays median electricity demand and Figure 1b displays
median solar generation, over the hours of the day and separately for 2015 and 2019.
Solar generation in California increased dramatically over this period, but this gener-
ation typically occurs in the middle of the day and not in the evening, when demand
is highest. Figure 1c displays median net load, which is the di�erence between total
demand and intermi�ent renewable generation, and hence the electricity that is sup-
plied by dispatchable generators.3 Net load in 2019 plummets in the middle of the day
but rises again in the early evening to a similar level as in 2015, resulting in a curve
with two humps. �is change in the shape of the net load curve has at least two im-
plications for costs. First, it implies that solar PVs are not producing in the evening
when net load, and hence marginal costs, are highest. Second, it implies an increase
in dispatchable generators’ ramping costs, as these units now need to change produc-
tion levels more throughout the day (Cullen, 2010; Jha and Leslie, 2021; Mansur, 2008;

2�is size is similar to a large natural gas power station and could serve about 6% of the typical
California Independent System Operator (CAISO) load. For the most common 4-hour duration ba�eries,
this corresponds to 5,200 MWh of stored energy capacity.

3Unlike intermi�ent generators like wind and solar PV power plants, dispatchable generators,
which include natural gas and hydroelectric plants, can be started on demand.
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Figure 1: Electricity Demand, Solar Generation, and Prices by Year in California

(a) Electricity Demand (Load) (b) Solar Generation

(c) Net Load (d) Wholesale Price

Notes: Each panel shows the hourly median, 25th percentile, and 75th percentile of electricity demand
(load), solar generation, net load, and real-time wholesale market price, respectively. Figures calcu-
lated by authors from California Independent System Operator data. All prices are for the California
South Hub Trading Zone (SP15).

Reguant, 2014). Finally, Figure 1d displays median wholesale electricity prices. De-
spite the similarity in evening load between 2015 and 2019, median wholesale prices
are substantially higher in 2019, suggesting the importance of increased ramping costs
and the potential of storage to mitigate these costs.

We address our main goals by developing a new theoretical and estimation frame-
work to understand equilibrium ba�ery operations. A ba�ery operator, acting as a
price arbitrageur, must decide at each short time interval whether to pay to add to
its energy inventory (i.e., charge) or use some of its inventory to generate revenues
(i.e., discharge). �is decision is inherently dynamic and stochastic: at each decision
point, a ba�ery operator maximizes the expected revenues from selling electricity in
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the future net of the costs of purchasing that electricity.
Our model incorporates what we believe are key features of the electricity mar-

ket: equilibrium e�ects of utility-scale ba�ery �eets reducing the peaks and valleys
of prices, ramping costs—where past generation by dispatchable generators reduces
current marginal costs, and dispatchable generator market power. Beyond this, we
incorporate predictable within-day �uctuations in net load; a non-linear dispatchable
generator supply relationship for the wholesale electricity market that evolves over
time; serial correlation of the shocks to net load and the supply relationship; a restric-
tion that charge/discharge policies be based on data that would have been available
in real-time to a market participant; a loss in energy from charging and discharging
the ba�ery; and degradation of ba�eries from operations, particularly with deep cy-
cles. We estimate electricity demand and supply relationships using data from the
California Independent System Operator (CAISO) from 2015-19.

�e ba�ery operations model allows us to address our �rst two main goals. To
address the third goal, we link this model with a dynamic competitive equilibrium
ba�ery adoption model by leveraging additional assumptions. Our ba�ery adoption
model solves for an equilibrium of investment decisions of potential ba�ery operators.
Each year, potential ba�ery operators make an optimal stopping decision, choosing
whether to install capacity or wait, given ba�ery installation costs, current and future
renewable energy standards, and the mass of existing ba�ery capacity. We use the
solutions to the operations model—evaluated at counterfactual ba�ery storage levels—
to calculate pro�ts for potential ba�ery operators deciding whether to adopt a new
system. To compute the adoption model, we estimate expected future ba�ery capital
costs using data compiled by the National Renewable Energy Laboratory.

Our results depend crucially on three main identifying assumptions. First, we as-
sume that the net loads and supply relationships that we identify from the market data
are structural and hence, would continue to hold given counterfactual large-scale bat-
tery operations. Our rich speci�cation of the supply relationship—with market power,
ramping costs, and serial correlation of the residuals—adds to the credibility of this
assumption.4 Second, we assume that di�erences between wholesale day-ahead mar-
ket and real-time market electricity prices re�ect changes in dispatchable generation

4However, this assumption rules out the possibility that large-scale ba�ery storage would cause
fossil fuel generators to retire or price di�erently conditional on lagged and current generation levels.
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capacity unavailability—which storage can help mitigate—instead of common gener-
ator cost shocks.5 �ird, our adoption model—needed only for our third main result—
uses weeks in our sample with high renewable generation as a proxy for a future
with higher renewable penetration, a�er controlling for observable a�ributes of those
weeks.

Relation to literature: Our study builds on three main literatures. First, it relates
to an engineering and economics literature that investigates the value of storage in
wholesale electricity markets. Early engineering papers in this literature modeled the
storage decision using a �nite-horizon framework and assumed that the storage device
operator had perfect foresight about future prices or relied on historical prices when
making discharge and charge decisions (e.g. Sioshansi et al., 2009). Other engineering
studies relax the perfect foresight assumption and model storage decisions given un-
certainty about future prices (e.g. Mokrian and Stephen, 2006). Our operations model
extends this framework by considering the equilibrium e�ects of large-scale storage
in competitive storage markets. It also relates to several recent economics papers.
Kirkpatrick (2018) estimates the e�ect of recent utility-scale ba�ery installations on
electricity market prices and transmission line congestion in California. Lamp and
Samano (2022) �nd that ba�ery operators respond to price incentives at certain hours
of the day, which has led to less wholesale electricity price variation. Holland et al.
(2022) and Karaduman (2021) also consider the economics of grid-scale energy stor-
age, employing di�erent modeling approaches and data from ours.6 Andrés-Cerezo
and Fabra (2023) examine theoretically how market structure a�ects ba�ery invest-
ment and usage and through this, consumer surplus.

Second, we contribute to an economics literature that explores the market impacts
of new energy technologies. Wolak (2018) and Bahn et al. (2021) measure the environ-
mental and market e�ects of increases in renewable energy generation. Feger et al.
(2022), Langer and Lemoine (2022), and De Groote and Verboven (2019) evaluate the
impact of solar subsidies on adoption, while Gonzales et al. (2023) show how invest-
ments in transmission infrastructure increase the value of solar energy. Our results on

5Online Appendix D provides evidence supporting this point using auxiliary data on fuel prices,
which a�ect costs similarly across many generators.

6Our results that there are large equilibrium e�ects of storage entry, that storage entry was not
pro�table during our sample period but would nonetheless raise consumer surplus, and that storage
entry lowers solar and wind revenue are all consistent with Karaduman (2021).
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the distributional impacts of renewable and ba�ery adoption and market power add
to a literature that includes Bushnell and Novan (2021), Jha and Leslie (2021), and Liski
and Vehviläinen (2020), with our dynamic equilibrium framework.

�ird, our work also relates to the literature on electricity forecasting (Kanamura
and Ōhashi, 2007; Kni�el and Roberts, 2005; Weron, 2014) and commodity storage
(Deaton and Laroque, 1992; Pirrong, 2012). Based on this literature, we develop and
estimate a model of electricity demand and supply that allows for seasonal pa�erns,
dynamics from ramping costs, and high-frequency cost volatility arising from unan-
ticipated shocks to available generation.

Summary of Results: We �nd that a very small ba�ery �eet would break even
on the wholesale electricity market—i.e., earn enough revenues in the energy market
to cover costs—if capital costs were to fall to $264/kWh and renewable energy share
were to increase from 40% (the share in 2019) to 50%, which are both expected to
occur by 2024. �is break-even �gure incorporates both capacity degradation and
uncertainty, which signi�cantly limit the expected future pro�ts that ba�eries can
earn as arbitrageurs.

As the ba�ery �eet expands in size, ba�ery operations signi�cantly lower the vari-
ation in mean equilibrium prices across hours of the day, in particular lowering prices
in the evening peak. However, the marginal e�ects diminish as the ba�ery �eet in-
creases in size. For instance, the �rst 5,000 MWh of storage capacity would reduce
prices by 5.6% but an increase from 25,000 to 50,000 MWh would only reduce prices
by 2.6%. Large ba�ery �eets also allow dispatchable generators to ramp more slowly,
and thereby shi� the peak production hour from 7 PM to 8 PM. �e lower equilibrium
prices imply that ba�ery �eets of 10,000 MWh or higher would not be pro�table as
arbitrageurs by 2024 without subsidies or unless capital costs were to fall far below
current expectations. Turning to the distributional consequences of ba�eries, 1,000
MWh of ba�ery storage would decrease total revenues of dispatchable generators by
$126 million per year. More surprisingly, they would also decrease solar and wind
generator revenues by $14 million annually, as they reduce prices from 3 PM to 5 PM
when many solar generators in California are still producing.

Finally, our adoption model—which incorporates the option value of waiting for
future cost declines—shows that an ambitious renewable energy standard is not su�-
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cient to encourage large-scale ba�ery adoption on its own. Speci�cally, ba�ery invest-
ment would be negligible until 2030 without storage subsidies or mandates. However,
a 30% capital cost subsidy—as speci�ed by the 2022 IRA—yields approximately 5,000
MWh of ba�ery capacity by 2024. �is �gure is very similar to the capacity required
under California’s storage mandate.

2 Data and Institutional Setting

2.1 Storage Resources in the Electricity Market

Recognizing the complementarities with renewable energy, regulators nationally and
in California have enacted new policies to increase electricity storage investment.
In early 2018, the Federal Energy Regulatory Commission (FERC) issued Order 841,
which requires independent system operators (ISO) to remove any existing barriers
that would inhibit the participation of storage resources in wholesale markets.

In 2010, the California legislature authorized the California Public Utility Com-
mission (CPUC) to evaluate and determine energy storage targets for the state. Ac-
cordingly, the CPUC required the state’s investor-owned utilities to procure 1.3 GW
of storage power capacity by 2020,7 with installations required to be operational no
later than the end of 2024. Since this time, California’s utilities have been adding stor-
age capacity and, by 2019, utilities had at least 126 MW of operational ba�ery power
capacity.8

�ough energy storage technologies such as pumped hydroelectric storage have
been established for decades, the majority of recent utility storage installations use bat-
tery technologies. Our study focuses on one technology: lithium-ion ba�eries, which
account for over 90% of U.S. ba�ery storage capacity (EIA, 2020). A number of other
emerging technologies allow electricity to be stored, including thermal energy stor-
age, mechanical energy storage, and other forms of chemical energy storage, including
hydrogen storage. Today, both the high capital cost and low round-trip e�ciency of
hydrogen storage make this route much less a�ractive than ba�eries, except for very

7Power capacity is the amount of power that the ba�ery can supply to the grid at any point in time
while energy capacity is the maximum amount of energy that the ba�ery can store.

8Authors’ calculations based on maximum aggregate output reported by the California Independent
System Operators between May 2018 and December 2019.
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long duration storage (Schmidt et al., 2019), though this may change in the future. Im-
portantly, our modeling framework could be used to assess the impact of alternative
storage technologies with di�erent physical parameters and cost projections.

Although the stock of utility-scale ba�eries is growing at a rapid rate, the overall
ba�ery �eet remains small. In 2018, there were only 900 MW of aggregate ba�ery
power capacity in the U.S., similar to that of two to three combined-cycle natural gas
generators (EIA, 2020).

2.2 Battery Storage Costs, Technology, and Market Structure

Our adoption model relies on data on the capital costs of energy storage. Given the
large expected declines in utility-scale ba�ery capital costs, we use forward-looking
projections from the National Renewable Energy Laboratory (Cole and Frazier, 2019)
to model the evolution of future lithium-ion ba�ery costs. �ese data compile utility-
scale lithium-ion ba�ery cost projections from over 25 publications published between
2016 and 2018.

Figure 2a summarizes the cost projections for ba�ery storage over time in $/kWh.
Each point in the �gure represents a normalized cost projection from a single pub-
lication for one year (with gray solid lines connecting multi-year projections within
a publication), and the dashed line plots the mean projection by year. While most
projections anticipate continued declines in capital costs, there remains considerable
variation in just how large those declines are anticipated to be.

Ba�eries vary in their round-trip e�ciency and duration. A ba�ery’s round-trip
e�ciency measures the percentage of stored energy that is available for later usage. A
ba�ery’s duration indicates the amount of time the ba�ery is able to discharge at its
rated power capacity. For example, a 2-hour duration ba�ery could discharge at full
power capacity for 2 hours. Our study follows Cole and Frazier (2019) and focuses on
4-hour ba�eries with 85% round-trip e�ciency. Four hours is the average duration of
ba�eries operating in California in 2019, though shorter ba�eries are prominent within
other ISO territories (EIA, 2021). Our round-trip e�ciency �gure implies that a ba�ery
that draws 1 MW of power from the grid can return 0.85 MW of power. Importantly,
lithium-ion ba�eries degrade from repeated use and particularly from deep cycles, a
factor that we incorporate in our model.
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Figure 2: Ba�ery Capital Cost Projections and Renewable Energy Trends

(a) Projected Ba�ery Capital Costs (b) Solar + Wind Market Share

Notes: �e authors constructed Figure 2a using data from Cole and Frazier (2019). Each gray transpar-
ent line represents a future cost projection from a single publication. �e blue dashed line plots the
mean cost projection. �e �gure re�ects all cost projections related to grid ba�ery applications (not
electric cars). �e authors constructed Figure 2b from CAISO data. It shows the share of electricity
generation coming from solar and wind generators for each week between 2015 to 2019.

In general, ba�ery storage is a nascent industry both nationally and in California.
In this early stage, the ba�ery market in California has been relatively unconcentrated,
with a 2018 Her�ndahl-Hirschman Index (HHI) of 1,347.9

We model ba�eries operating as arbitrageurs in wholesale energy markets. How-
ever, many of the earliest ba�ery operators earned pro�ts by supplying reserve capac-
ity in ancillary services markets, most commonly regulation up and down. Despite
this, three pieces of evidence suggest that future ba�eries will largely earn revenues
from energy arbitrage. First, Figure A.1 in Online Appendix A shows that CAISO pro-
cured an average of less than 1,000 MW of hourly regulation reserves in all but three
months of our �ve-year sample, and that the quantity was reasonably �at over time
despite the increase in renewable energy over this period (e.g., see Figure 2b). Second,
industry experts state that ISOs typically require only limited ancillary services capac-
ity, on the order of 100-400 MW (Sackler, 2019). �ird, more than 80% of the ba�ery
capacity added in 2021 in CAISO was used for energy arbitrage (EIA, 2022a). We view
our analysis as pertaining to additional ba�eries that will earn pro�ts as arbitrageurs
rather than existing ba�eries that operate in ancillary services markets.

9Online Appendix B provides more details on ba�ery market structure.
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2.3 Operations Model Data

We estimate the main parameters of our operations model with data from CAISO over
2016-19.10 California restructured its electricity sector in 1998, and consequently desig-
nated CAISO the state’s new independent system operator. CAISO dispatches over 200
million megawa�-hours of electricity to 30 million consumers each year, accounting
for about 80% of electricity demand in California. CAISO runs two distinct wholesale
energy markets: a day-ahead market (DAM) and a real-time market (RTM).

On the day before power is delivered, CAISO conducts 24 DAM energy auctions,
one for each hour of the day, making available projections of net load prior to the
auction. Market participants then submit bids to either buy or sell energy and CAISO
computes market-clearing quantities and prices that meet the projected load at the
lowest cost.11 On the day of energy delivery, CAISO uses an RTM auction 75 minutes
before each delivery hour to adjust generator production in response to unplanned
outages or deviations. During the delivery hour, the system operator dispatches the
lowest-cost generators every �ve minutes. �e system operator uses reserve opera-
tions to meet any unanticipated imbalance within the �ve-minute interval.

Following FERC Order 841, CAISO has made e�orts to integrate new storage tech-
nologies into its wholesale markets. CAISO allows ba�eries to submit either demand
bids or supply bids in both day-ahead and real-time energy auctions. We focus on
storage operators’ �nal bids in the RTM, where the greatest arbitrage value lies, and
which operators make having observed DAM prices. A ba�ery can submit a set of
prices and associated quantities at which it is willing to discharge energy, with nega-
tive quantities when it would like to charge. We use wholesale electricity prices from
CAISO’s South-Zone hub (SP-15), because this zone covers the largest share of the Cal-
ifornia population and currently hosts the most ba�ery storage capacity. We augment
the electricity price data with other market data: total load from the CAISO territory,
generation by resource type, natural gas prices, and hydroelectric availability.

Notably, California’s grid is currently undertaking a dramatic transition away from
fossil fuel generation and towards renewable resources that will impact storage invest-

10We obtained data from the CAISO Open Access Same-time Information System (OASIS) portal.
OASIS provides data related to the ISO transmission system and its markets. In some instances, we use
CAISO data from 2015 as a training sample.

11CAISO also uses the day-ahead market to secure energy reserves.
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ment and operations. As of 2015, California already hosted the largest capacity of solar
PV panels in the United States. Figure 2b shows that during the sample period of our
study—January 2015 to December 2019—utility-scale solar and wind resources’ market
share doubled from 10% to 20%, and exceeded 30% during some weeks. Going forward,
state lawmakers have voted to boost renewable energy further under Senate Bill 100,
signed in September 2018, which establishes the state’s updated renewable portfolio
standard (RPS) (California Secretary of State, 2018). Figure A.2 in Online Appendix A
provides details on California’s RPS schedule. �e law speci�es the share of generation
that must come from renewable sources: 44% by 2024, 52% by 2027, 60% by 2030, and
100% by 2045. �e �gure also projects the share of energy that will come from solar
and wind together for each future year that we model—as required by our adoption
model—by linearly interpolating the RPS to intermediate years.

Figure A.3 in Online Appendix A provides more details on market trends in CAISO
over our sample period. From Figure A.3a, average demand (load) for electricity has re-
mained relatively stable, falling by 7.5%. Figures A.3b, A.3c, and A.3d show the solar,
wind, and combined solar plus wind market shares over our sample period, respec-
tively. Average wind power production increased slightly from 5% to 7% of genera-
tion, while solar PV’s generation share rose from 6% to 14%. Figure A.3e shows that
prices for natural gas, the predominant fossil fuel generation source in CAISO, hov-
ered around $3/MMBtu for much of the sample period. Figure A.3f shows that mean
prices in the real-time market have also trended upwards by nearly 20%. Finally, Fig-
ure A.4 in Online Appendix A replicates Figure 1d but with data at the �ve-minute,
rather than hourly, level. It shows that real-time prices have become more volatile
within each hour of the day as intermi�ent renewable generation has expanded.

3 Battery Operations Framework

3.1 Model

In our se�ing, a �eet of ba�ery operators with total energy capacity K faces a set
of dispatchable (typically, fossil fuel) generators. We model and estimate a wholesale
electricity pricing function for dispatchable generators where price is a function of
both current and lagged production, consistent with existing generator market power
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and ramping costs.
Ba�ery operators (or just operators) buy and sell energy in the real-time electricity

market in each �ve-minute time interval, t, with the goal of maximizing their expected
discounted pro�ts from arbitrage. Our base model assumes that operators are compet-
itive and take wholesale electricity prices as given, but operators’ decisions together
a�ect equilibrium prices.12

Ba�eries are characterized by three technological a�ributes. First, a ba�ery’s power
capacity, F , determines what fraction of the ba�ery can be charged or discharged in
each �ve-minute interval, and therefore, how quickly the ba�ery can transition from
full to empty and vice versa. Second, the round-trip e�ciency of the ba�ery, υ2, is the
percentage of energy that is preserved during a full charge/discharge cycle. Finally, a
ba�ery’s energy capacity degrades at a rate δ that depends on how and how much it
is used. We model the capacity degradation rate δ using the Xu et al. (2016) algorithm,
which provides an engineering-based formula of the percent of a lithium-ion ba�ery
energy capacity that “fades” (or degrades) over any time period as a function of the
ba�ery’s sequence of charges and discharges.

At every �ve-minute time interval t, each operator makes a charge/discharge de-
cision in order to maximize the sum of its expected discounted pro�ts over an in�nite
horizon, using an annual discount factor β. Its decisions are a function of its charge
level and the time-varying market state, which characterizes the current and expected
future electricity market prices.

We focus on a symmetric equilibrium, where all ba�ery operators start each time
interval with the same energy held—which we denote f ∈ [0, 1]—and then choose the
same charge/discharge fraction each time interval—which we denote q.13 Each day
consists of S = 288 �ve-minute time intervals. Let D denote the number of days
within a year, d denote any day in our (multi-year) sample, and s ∈ 1, . . . , S denote
a particular time interval of a day.14 �e �ve-minute interval discount factor is then

12Section 6 examines the impact of ba�ery market power on outcomes.
13Because the choice variable is the charge/discharge fraction as a share of capacity and each ba�ery

takes the electricity market price as given, the equilibrium can still be symmetric even if ba�eries have
di�erent capacity levels.

14We use four di�erent indices of time: t denotes a �ve-minute interval, s ∈ {1, . . . , 288} denotes a
�ve-minute interval within a day, d denotes a sample day (of which we have four years’ worth), and, in
Section 5, y denotes a calendar year. We need both s and d because our model includes interval-of-day
�xed e�ects and separate parameter estimates by sample day.
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β
1

SD .
Let Q(q,K) be the net quantity of electricity supplied to the grid by ba�ery oper-

ators at a time interval where this (common) discharge fraction is given by q:

Q(q,K) = K ×
(
1{q > 0}qυ + 1{q < 0}q/υ

)
.

Because Q(q,K) is the net quantity supplied, it will be closer to 0 the lower the e�-
ciency parameter υ2, for a given charge fraction q and ba�ery capacity K .

We de�ne electricity net load to be the electricity load (or demand) by �nal users
net of the amount produced by intermi�ent renewable sources (i.e., wind and solar).
We assume that net load at time interval t is perfectly inelastic, varies across time,
and is partly forecastable. Speci�cally, we let net load equal X = Xd

s + εL, where Xd
s

is the interval-of-day forecastable mean net load and εLt is unobservable until t. Our
inclusion of Xd

s implies that the forecastable portion of net load varies across days in
our sample and time intervals within a day.

LetZ be the amount of electricity supplied by dispatchable generators and Z̃ be the
amount supplied in the previous time interval. In the absence of storage, Z = X , since
net load is the amount of electricity that needs to be supplied by dispatchable genera-
tors.15 With ba�ery storage, Z = X −Q(q,K). Next, we de�ne a supply relationship
for dispatchable generators (Bresnahan, 1982; Wolfram, 1999), P d(s, Z, Z̃, εL, εP ). �e
supply relationship de�nes the equilibrium price as a function of the time interval of
day, Z , Z̃ , and two unobservable terms: the demand unobservable, εL, and a supply
unobservable, εP . As with net load, the d superscript indicates that the supply rela-
tionship varies by day, which captures factors such as generator outages, transmission
congestion, and changes in fuel prices. We include Z̃ in the supply relationship to al-
low for ramping costs. All else equal, we would expect prices to be lower with a higher
Z̃ because more generators will be available to produce. For simplicity, we assume that
operators believe that the forecastable demand and supply conditions of the current
day repeat forever.16

We assume that the residuals εL and εP have a joint conditional distribution

15We assume that wind and solar are exogenous and exhausted before dispatchable generation.
16We focus on ba�eries that can completely �ll or empty within a few hours, so expectations about

changes in future days’ demand and supply conditions will have relatively li�le in�uence on charging
decisions.

13



dGε′(εL
′
, εP

′ |εL, εP ) that governs how they transition from one interval to the next.
At the start of time interval t, operators know εLt and εPt and their joint conditional
distribution. �is joint distribution allows for serial correlation. �is is important be-
cause if, for instance, a generator is unavailable during one time interval, it is likely
to be unavailable in the subsequent time interval, and this knowledge will then a�ect
the storage operator’s charge/discharge decisions and pro�ts.

Given our assumptions,17

Vd(f, s, Z̃, εL, εP ) =

max
q

{
P d(s, Z, Z̃, εL, εP )× (1{q > 0}qυ + 1{q < 0}q/υ)

+β
1

SD

∫
Vd(f − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′|εL, εP )
}
, (1)

s.t. − Fυ ≤ q ≤ F/υ, 0 ≤ f − q ≤ 1, and

Z = XL
s −Q(q∗(f, s, Z̃, εL, εP ), K) + εL,

where ε′ denotes the value of ε at the next time interval, and q∗(f, s, Z̃, εL, εP ) is
the equilibrium quantity discharged at that state and is equal to the value of q that
maximizes (1) at every state. Lines 2 and 3 of equation (1) specify the tradeo�s involved
in optimization. Each operator faces a cost of P d/υ for energy it charges from the
grid. But, charging q increases its energy held at the next time interval from f to
f + q. If future prices are su�ciently higher than the current price, the operator can
earn revenues from charging now and discharging in the future. Lines 4 and 5 detail
the constraints that the operator faces: it is limited in the speed of its charge and
discharge, its inventory cannot fall below 0 or rise above its capacity, and dispatchable
generation,Z , must match net load minus net quantity supplied by operators,Q, given
their actions.

To ease computation, we use the fact that ba�ery operators are price takers to re-
cast the competitive ba�ery operations problem as a single-agent decision problem,
where the incentives of the single agent correspond to the equilibrium incentives of
a competitive ba�ery operator. To understand the appropriate single-agent problem,

17In the Xu et al. (2016) capacity fading model, ba�ery degradation depends on ba�ery usage, but in
a complex and non-linear way and over a long time horizon. For simplicity, we do not model cumulative
ba�ery usage that would lead to degradation as a state variable, but rather let ba�ery operators account
for degradation in their charging decisions with a heuristic approach; see Section 3.3 for details.
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consider a competitive ba�ery market and a state where ba�ery operators are charg-
ing, but less than their power or energy capacity. �e competitive market will charge
energy to the point where the market price equals the expected discounted future rev-
enues from discharging the energy.18 Now consider a single agent that maximizes a
dynamic problem, whose current period criterion function is the negative of the inte-
gral of the pricing function—from 0 to the chosen charge/discharge level. �e deriva-
tive of the integrated pricing function equals price, and therefore, the single agent’s
�rst-order condition and corresponding charge/discharge decisions are equivalent to
that of a competitive ba�ery operator. We solve:

Wd(f, s, Z̃, εL, εP ) = max
q

{
−
∫ Z

0

P d(s, ζ, Z̃, εL, εP )dζ

+β
1

SD

∫
Wd(f − q, s+ 1− 1{s = S}S,Z, εL′ , εP ′)dGε′(εL

′
, εP

′ |εL, εP )
}
, (2)

s.t. Z = XL
s −Q(q,K) + εL,−Fυ ≤ q ≤ F/υ, and 0 ≤ f − q ≤ 1.

Equation (2) depends on the pricing function evaluated at di�erent values of Z
and Z̃ . Since Z and Z̃ are, respectively, the current and lagged electricity supplied
by dispatchable generators, they will adjust based on the charge/discharge decisions
of utility-scale ba�eries. In the special case where the generator market is perfectly
competitive, Equation (2) is equivalent to a social planner minimizing expected dis-
counted total costs. For a similar model to ours, Cullen and Reynolds (2023) prove
that competitive equilibria and a solution to the planner’s problem exist, and that the
planner’s solution is equivalent to all competitive equilibria.

Our modeling approach leverages restrictions on dispatchable generators’ supply
relationship. We impose:

Assumption 1. �e equilibrium supply relationship for dispatchable generators is a

function of only the variables (d, s, Z, Z̃, εL, εP ). In particular, the supply relationship is

invariant to installed ba�ery capacity.

Assumption 1 is an exclusion restriction that allows us to identify the supply re-
lationship and the equilibrium price e�ects of ba�eries: it speci�es that while ba�ery
capacity can a�ect generators’ market-clearing bids, this occurs only through changes

18Analogous arguments hold for the other cases where ba�ery operators are charging at capacity,
not charging or discharging, discharging less than capacity, or discharging at capacity.
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in (d, s, Z, Z̃, εL, εP ). It is restrictive for two reasons. First, and most importantly, it
imposes that the set of bidding generators be held �xed. If large-scale ba�eries cause
dispatchable generators to exit, this would shi� the supply relationship to the le� and
violate Assumption 1. In addition, it implies that dispatchable generators’ dynamic
equilibrium bids are only a function of (d, s, Z, Z̃, εL, εP ). �is rules out the possi-
bility of changes in Z due to large-scale ba�eries causing generators to change their
equilibrium bids by changing expectations about future values of Z .

While Assumption 1 is restrictive, it does allow generators’ bids to respond to bat-
tery operations. Speci�cally, bids are a function of load supplied by dispatchable gen-
erators and its lag. For example, when a large-scale ba�ery �eet charges, generators
will be called on to supply more electricity in the current period. �is in turn will also
lower their bidding function in the subsequent �ve-minute interval as their current
higher quantity supplied means that fewer generators will need to ramp up to meet
any level of quantity Z next period.

In sum, our generator pricing function is fully consistent with generator optimiza-
tion only in the absence of ba�ery capacity or if generators act myopically in their
bids. Given this, we believe our counterfactual predictions of equilibrium prices are
most credible for modest departures from the bidding environments that generate our
market-level price and quantity data (i.e., environments with relatively li�le ba�ery
capacity present).

We solve the operations model by discretizing the state elements Z̃ , εL, εP , and f
into 10 dimensions each and solving the single agent problem in (2).19 We solve the
optimization separately for each day in our 4-year main estimation sample and across
9 candidate values of K , resulting in about 13,000 dynamic problems with 2,880,000
states each.20 �e in�nite horizon solution is very computationally challenging to
solve. Instead, we solve for a �nite approximation of the in�nite horizon model. For

19We discretize the transitions of εL, εP by assuming that the innovation to these shocks is inde-
pendent and normally distributed. We use the Tauchen (1986) procedure to discretize εP and use the
Rouwenhurst method to discretize εL, which avoids the sensitivity of the Tauchen (1986) procedure to
very persistent processes (Kopecky and Suen, 2010). We discretize f into 10 equally spaced grid points
between zero and one. Similarly, we discretize Z̃ into ten equally spaced grid points, spanning from
the minimum to the maximum feasible level of Z̃ . �e feasible span of Z̃ at any time is determined
jointly by the observed level of net load in the CAISO data and the speci�ed ba�ery capacity, which
determines how far net load can deviate from its observed level due to storage operations.

20We also solve the operations model under an (infeasible) assumption of perfect foresight. For this
model, we assume that the current and future values of εL, εP are known to the operator before it
makes its charge/discharge decision. �e state space for this model is thus much smaller.
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each sample day d, we set up a �nite horizon model with the base 288 intervals for the
day plus 288×3 additional intervals, which repeat the same set of net load and supply
parameters. We veri�ed that the policies computed from the �nite approximation are
virtually identical to the policies from the in�nite horizon solution. For robustness
to distributional assumptions about (εL, εP ), a�er solving for the optimal policies, we
compute counterfactual market outcomes by applying the policies to the realized time
series of (εL, εP ).

3.2 Estimation of Supply Relationship and Net Load

Having described our operations model, we now turn to the estimation of our key
structural parameters. We estimate the supply relationship and net load structural pa-
rameters with data from the wholesale electricity market and without imposing our
structural model of ba�ery optimizing behavior. Our central goal is to develop credi-
ble estimates of these parameters using information that operators could themselves
observe in real time. �is informational component is important because we do not
want to inadvertently overstate the value of ba�ery storage as arbitrageurs by provid-
ing operators in our model with more information than operators participating in this
market would have when forming their operations decisions.

Starting with our supply relationship, P d(s, Z, Z̃, εL, εP ), we �rst de�ne dispatch-
able generation capacity, K, which indicates the maximum quantity that can be sup-
plied by dispatchable generators at any given time interval, and which is a function
of Z̃ and εP .21 �is transforms the supply relationship to be a function of capacity
utilization, Z/K ∈ [0, 1), andK. We let P̃ d(Z/K,K) denote the transformed function.

For our supply relationship to make economic sense, our estimation imposes two
monotonicity properties. First, K should be strictly increasing in Z̃ , because a higher
level of generation in the previous time interval will result in more generators available
to produce electricity without bearing ramping costs. Second, P̃ d should be strictly
increasing in Z/K, as greater capacity utilization implies that higher marginal cost
generators—such as peakers—must be used, which will tend to drive up market prices.

We choose a simple Cobb-Douglas functional form for dispatchable generation

21We use K for dispatchable generation capacity to distinguish it from ba�ery capacity K .
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capacity:
K = καZ̃1−α exp(εP ), (3)

where κ > 0 and α ∈ (0, 1) are parameters that we estimate.
Our base model imposes a functional form for P̃ d taken from the commodity stor-

age literature (Pirrong, 2012):

P̃ d(Z/K,K) = θ1 + θ2[K(1− Z/K)]−θ3 , (4)

where θ1, θ2, and θ3 are parameters to estimate. Equation (4) satis�es our monotonicity
conditions: for θ2, θ3 > 0, prices are increasing in capacity utilization and decreasing
in capacity. In addition, because this functional form lets price asymptote to in�nity
as capacity utilization approaches one, it can capture the spikes that occur frequently
in wholesale electricity prices (e.g. Borenstein et al., 2002; Kni�el and Roberts, 2005).22

Collecting terms, the structural parameters that we estimate for P̃ d are (αd, κd,

θ1d, θ2d, θ3d).23 We estimate these parameters using DAM prices. At the DAM stage,
we assume that εP = 0. �e idea is that when dispatchable generators bid in the
DAM market, they do not yet know last-minute changes in capacity, which enter into
εP . �ere may still be variation in the observed prices relative to predicted prices,
corresponding to measurement or optimization errors. We impose that the deviations
are orthogonal to the observable regressors and estimate the parameters using non-
linear least squares, choosing:

(α̂d, κ̂d, θ̂1d, θ̂2d, θ̂3d) =

arg min
αd,κd,θ1d,θ2d,θ3d

∑
t

[
PDAM,d
t − P̃ d(Zd

t /Kdt ,Kdt )
]2
, (5)

whereKdt = κd
αd

Z̃d
t

1−αd

; PDAM,d
t ,Zd

t , and Z̃d
t are data; and t indicates a sample hour.24

We estimate a separate speci�cation for (5) for each day d of our sample, using

22Online Appendix C provides results from an alternative �exible functional form from the industrial
organization literature (Fowlie et al., 2016; Ryan, 2012) that imposes similar monotonicity conditions.
It would also be possible, though computationally challenging, to estimate non-parametric polynomial
speci�cations for P̃ d that directly impose these monotonicity properties (Compiani, 2022).

23We include ‘d’ superscripts since we allow these parameters to vary by day of the sample.
24DAM prices and quantities vary at the hourly, not �ve-minute, level.
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data for one week, with all hours in the current and the previous 6 days.25 Because
very few ba�eries (as measured by capacity) engaged in arbitrage during our sample
period, we directly substitute net load, X , for the electricity supplied by dispatchable
generators, Z (and analogously for its lag, Z̃). In this step of the estimation, we use
the predicted net load—which is load minus solar and wind generation–all as reported
by CAISO in its DAM forecasts.

Turning to our estimation of the net load process, given our assumption that net
load is perfectly inelastic, we use the predicted net load reported by CAISO in its DAM
forecasts as our estimate of the mean net load,XL,d

s(t). Since the DAM forecasts are only
reported at the hourly frequency, we temporally disaggregate the net load forecasts to
the �ve-minute level using a Kalman �lter/smoother approach; see Online Appendix
E for details.26

Turning now to the unobservables εP and εL, we estimate these values from the
RTM. Ba�eries can bid in the RTM, having observed the sequence of DAM prices and
supply relationships, but not future RTM prices. Our idea is that RTM price �uctua-
tions relative to the DAM arise due to unanticipated changes in net load relative to the
DAM forecast and unanticipated shocks to availability of generation capacity. Hence,
for each time interval, t, we recover the value of εP that makes the wholesale elec-
tricity price equal to the observed electricity price in the RTM conditional on supply
relationship parameters and the realizations of net load.27 �us, εPt is de�ned implicitly
by:

PRTM,d
t = P̃ d

(
Zt

κdα
d

Z̃1−αd

t exp(εPt )
, κd

αd

Z̃1−αd

t exp(εPt )

)
. (6)

It is easy to verify that (6) does in fact de�ne a unique εPt for the Pirrong (2012) func-
tional form because prices are monotonically decreasing in K for a given net load Z ,
and a higher εPt implies a higher K and no change in Z .

�e assumption that RTM supply relationship �uctuations are due to generator

25Before estimation, we scale both prices and quantities, since they vary considerably both sea-
sonally and across years. Online Appendix D provides further details on our estimation of the supply
relationship.

26CAISO market reports indicate that the CAISO day-ahead load forecasts are shaded up to ensure
su�cient supply is available. We scale the net load forecasts by 0.95 to re�ect this practice. �is choice
is supported by the empirical relationship between the day-ahead market forecasts and the realized
values, see Table A.3, panel (a) in Online Appendix A.

27RTM prices are available at the �ve-minute level and hence t now indicates a �ve-minute time
interval.
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unavailability is important for our analysis. It implies that ba�eries can mitigate peak
prices by supplying energy at times when dispatchable generation capacity is scarce,
which will tend to imply important equilibrium e�ects. Alternatively, if price varia-
tions within a day were due to a shock common to all generators (e.g., a common fuel
price shock where all generators had the same heat rate), then the di�erence between
RTM and DAM prices would not vary based on the amount of available energy that
ba�eries supplied. In this case, equilibrium e�ects may be smaller since ba�ery oper-
ators supplying energy when prices spike would not a�ect this fuel premium. Online
Appendix D provides evidence of the plausibility of this modeling assumption.

We model the transition of εP as an AR(1) process given by:

εPt = ρP εPt−1 + σPs(t)η
P
t

(7)

σPs(t) =

 σP,Peak if s(t) ∈ 5–10 PM
σP,O�-peak if s(t) /∈ 5–10 PM

,

where ηP is a mean zero serially uncorrelated shock with unit variance, ρP governs
the persistence of changes to available capacity, and σs(t) accommodates any het-
eroskedasticity that exists across peak (i.e., 5 PM to 10 PM) and o�-peak hours of the
day.

Finally, we recover the net load unobservable εL as the di�erence between the
realized net load, XRTM

t and our forecast of net load from the DAM. We model the
transition of εL as an AR(1) process given by:

εLt = ρLεLt−1 + ηLt , ηLt ∼ N(0, σL), (8)

where ρL and σL are parameters to estimate. We estimate each of the AR(1) models
using ordinary least squares (OLS) on a training sample in 2015,28 and hold these pa-
rameters �xed over the evaluation sample, 2016–19.29 �is ensures that the policies
would be feasible to estimate and implement given the information set of a market

28Day ahead forecasts for solar and wind are publicly available starting in Nov. 2015. �us, our
training sample includes only data from Nov. and Dec. 2015.

29For our estimates of σP (Peak), σP (O�-Peak), we use a robust (and consistent) estimator of the
scale for the normal distribution: 1.4826×mediant{|xt −medianjxj |} (Rousseeuw and Croux, 1993).
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participant.

3.3 Calibration of Battery Technology Parameters

Our ba�ery operations model depends on the ba�ery’s storage technology. In many
cases, industrial organization economists have structurally estimated technology pa-
rameters by imposing the assumption of optimizing behavior (Rust, 1987). However,
our sample period includes very li�le observed ba�ery behavior in the wholesale elec-
tricity market. For this reason, we estimate the ba�ery’s technology parameters using
engineering estimates, rather than from revealed preferences and structural estima-
tion. Following Section 2.2, we model ba�eries with a duration of four hours, and thus
set F = 1

4×12 . In addition, we model the round-trip e�ciency as υ2 = 0.85.
�e �nal technology parameter is capacity degradation. Ba�ery capacity degrades

over time, a process that is accelerated by use, particularly deep cycles (Xu et al., 2016).
Our primary goal here is to specify a model of optimizing behavior by operators in re-
sponse to degradation. Because degradation is exacerbated by use, operators should
defer some marginal arbitrage opportunities to reduce ba�ery degradation. However,
modeling optimization accounting for degradation is di�cult because degradation is a
non-linear function of cycling across multiple subsequent �ve-minute time intervals.
Instead, we endogenize degradation in a heuristic way: we assume that operators ac-
count for greater charging intensity leading to more degradation by choosing their
charge decisions using a lower perceived e�ciency than the true value, υ.

Speci�cally, we solve our model using the 2015 pre-analysis training sample and
determine the optimal “perceived” roundtrip e�ciency parameter, which we denote
υ∗.30 �is involves �nding the value of υ∗ that would maximize the lifetime value of a
ba�ery considering the degradation e�ects speci�ed by the engineering literature (Xu
et al., 2016). For each �eet size K , we solve for a heuristically optimal υ∗(K) and then
solve the ba�ery operations decision in (2) using υ∗(K). An υ∗ < υ leads generators to
decline marginal arbitrage opportunities, which a�ects operations decisions and also
equilibrium adoption decisions modeled in Section 5.

Online Appendix F provides implementation details for our capacity degradation

30For computational ease, we use a grid of di�erent candidate perceived round-trip e�ciency levels,
υp ∈ [.6υ, .65υ, . . . , υ] and solve the perfect foresight version of our model.
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model. Figure A.5 provides a schema of the di�erent parts of our operations framework
for a single day.

4 Main Results

4.1 Supply Relationship and Net Load Parameter Estimation

Table A.1 in Online Appendix A reports sample statistics on the supply relationship
parameters. For each supply relationship parameter, we report the mean, standard
deviation, and 25th and 75th percentiles of the distribution of all the daily estimates
by year. We �nd a considerable amount of variation in the parameters, even within a
year. Some parameters appear to have longer-run trends. E.g., the intercept and slope
terms—θ1 and θ2 respectively—both trend downward, consistent with the declining
natural gas prices. �e exceptions to these pa�erns are the parameters governing the
weight on the current dispatchable generation capacity in the Cobb-Douglas capacity
function, α, and the parameters governing the curvature of the supply relationship,
θ3. In the case of α, the estimates center around 0.85 and are fairly stable, indicating
the presence of positive and similar ramping costs throughout our sample. In the case
of θ3, the mean estimates across the year range from 1.07 to 2.07, with a fairly skewed
distribution towards 1. Finally, estimates for κ indicate that the scheduled available
capacity (relative to the day-ahead forecasted maximum net load) is relatively stable
over our analysis sample.

Table A.2 in Online Appendix A reports our parameter estimates for the εP AR(1)
process. Our estimate of ρP used in our simulations—based on the training sample of
2015—is 0.947. We also report (but do not otherwise use) the AR(1) parameters for our
evaluation sample. We �nd that ρP falls a li�le over time–lying within a range of 0.832
to 0.897. Our training sample on- and o�-peak estimates of the standard deviations
are 0.012 and 0.10, respectively. �ese estimates are stable over time, with virtually
identical overall averages for each evaluation sample year. Across both the training
and evaluation samples, comparing estimated σP,Peak and σP,O�-peak values, on-peak
hours have about 25 percent more volatile changes in εP than do o�-peak hours.

Table A.3 panel (b) in Online Appendix A summarizes estimation results for the
net load model. Our estimate of ρL is very close to one—indicating a very high level
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of persistence in the day-ahead forecast errors. �e parameters governing the AR(1)
process (ρL, σL) are fairly stable across both our training and evaluation samples, with
only σL exhibiting a modest increase over the evaluation sample.

4.2 Pro�tability of Small Battery Fleet

We �rst use our model to estimate the value of a small ba�ery �eet that can charge and
discharge energy as arbitrageurs without a�ecting equilibrium electricity prices. �is
allows us to evaluate the conditions under which initial ba�ery investments would
reach a break-even point and also provides an informative benchmark about ba�ery
pro�tability in the absence of equilibrium e�ects.

We proceed by evaluating the pro�ts of the small ba�ery �eet for each sample
week over the 2016–19 period. In particular, we approximate the pro�ts of a small
ba�ery by solving for optimal charge/discharge policies with an aggregate ba�ery
capacity ofK = 10 MWh from (2), and then simulating the weekly returns with these
policies.31 We then convert each of these weekly observations into a heuristic lifetime
value of storage capacity, using a weekly discount factor of β = 0.957/365, and a weekly
degradation rate from these policies, calculated as in Online Appendix F.

Figure 3 uses these calculations to illustrate these lifetime values relative to cap-
ital costs, with and without accounting for degradation. �e dashed-red line plots a
simple linear �t of the relationship between ba�ery pro�ts and the share of electricity
generated by renewable sources, before adjusting for capacity degradation.32 We �nd
a strong positive association between renewable generation and the value of storage.33

�e dashed-grey line shows the expected capital cost per kWh of storage capacity in
2019. Together, these lines show that, absent capacity degradation, lifetime ba�ery
pro�ts would exceed the 2019 expected capital cost of storage if the renewable energy

31�e single-agent Bellman equation policies and returns from (2) for K = 10 relative to K = 0
(divided by 10) will approximate the small �eet, since price is roughly equal to marginal revenue for a
small �eet.

32We calculate the renewable energy share as the percentage share of solar plus wind generators
during the sample week plus 19%. 19% is the mean generation share from non-intermi�ent renewables,
including hydro, geothermal, and biomass generators across the sample period.

33Our measure of generation from renewables is net of any curtailments, which we do not model
explicitly. In the California market over our sample period, curtailment of solar and wind generation
was relatively small. However, to the extent that ba�eries eliminate the need for renewable sources to
curtail (by storing their energy when they would have curtailed) that is a channel that may add to the
value of a ba�ery �eet with a large presence of renewables, beyond what we �nd.
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Figure 3: Renewable Energy, Degradation, and the Value of Ba�eries

(a) Ba�ery Degradation and Ba�ery Value (b) Price Uncertainty and Perfect Foresight

Notes: Each point in the sca�er plot represents the lifetime pro�ts for a unit of storage capacity based
on market conditions during a single week of the sample (assuming conditions during that week
repeated in perpetuity). �e solid line plots the linear trend for each group. �e pro�ts are estimated
assuming there are 10 MWh of aggregate operational storage capacity in the market. We rescale the
estimated weekly storage value into a perpetuity using a 5% annual discount rate and adjusting for
the rate of capacity degradation.

share was above 45%.
�e solid blue line in Figure 3a highlights how capacity degradation (as discussed

in Section 3.3) in�uences the estimated storage values. Degradation from cycling re-
duces the estimated value of storage investment by 27% on average. Moreover, the
impact of degradation is higher with more renewable energy, which is due to ba�er-
ies cycling more in this case. A�er accounting for degradation, the �rst ba�ery unit
would earn net pro�ts in the energy market when renewable energy share is above
50.2% and capital costs are below $264/kWh, as is expected to occur by 2024.34 Al-
ternatively, capital costs would have needed to be 40% lower for the �rst ba�ery unit
to be pro�table in 2019. �ese �ndings emphasize the signi�cance of accounting for
degradation when measuring the value of storage.

Figure 3b compares our baseline storage value estimates—that assume ba�ery op-
erators face uncertainty about future wholesale prices—to the value estimates if bat-
tery operators have perfect foresight about future net load and electricity supply curve
realizations.35 Our model with uncertainty, which can be feasibly implemented by bat-
tery operators, achieves 70% of the theoretical maximum value under perfect foresight.
Although our baseline results under uncertainty a�ain the majority of the perfect-

34Renewable share from California’s RPS (Figure A.2) and capital costs from Cole and Frazier (2019).
35In both cases, we adjust the values to account for degradation.
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Figure 4: Mean Ba�ery Output and Equilibrium Prices E�ects

(a) Mean Hourly Ba�ery Output (b) Mean Hourly Equilibrium Prices

Notes: Each line plots the mean counterfactual outcome across all days during 2016–19.

foresight value, they should be interpreted as a lower bound for storage value that
could be further improved through be�er forecasting and modeling.

4.3 Equilibrium E�ects of Battery Storage

We use our model to estimate the impact of ba�ery operations on equilibrium prices.
Figure 4a illustrates the mean simulated ba�ery discharge quantity for each hour of
the day for our evaluation sample, 2016–19. Each line in the �gure shows ba�ery
output for a speci�c aggregate ba�ery �eet capacity, K .

Across levels of K , ba�eries discharge the most during the hours where net load
is the highest—the evening peak hours of 5–10 PM, but also discharge on average
between 5–7 AM. As aggregate ba�ery capacity grows, total discharges increase in
the evening and total charges increase during the day.

Figure 4b shows that, as the �eet expands, ba�ery operations exert a strong e�ect
on lowering the variation in hourly mean equilibrium prices. Ba�ery operations have
the biggest impact on evening peak prices. Ba�eries have a relatively small e�ect on
prices during the middle of the day, because the supply relationship is relatively �at
during these hours.36 Additionally, Figure 4b shows that the �rst few units of ba�ery
investment would have the largest impact on equilibrium prices, whereas incremental
storage investment has a smaller impact on prices. �e �rst ba�eries will reduce the

36Figure A.6a in Online Appendix A focuses on the evening hours, showing that from 6-7 PM—the
hours with the highest average net load—a modest 5000 MWh ba�ery �eet would reduce average prices
by over $10 per MWh.
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occurrence of extreme pricing events by discharging during periods when net load
approaches the available generation capacity. By doing so, the ba�eries will reduce
prices and also move the equilibrium to �a�er regions of the supply relationship, thus
reducing the marginal impact of subsequent ba�ery entry on prices.

Table A.4 in Online Appendix A emphasizes this result. It shows that the �rst
5,000 MWh of storage capacity would reduce evening prices by 10.3% ($54.25/MWh to
$48.67/MWh) and overall average price by over 5.6% ($35.92 per MWh to $33.90 per
MWh). In contrast, an increase in capacity from 25,000 to 50,000 would only reduce
evening prices by 7.3% ($39.76/MWh to $36.84/MWh) and overall mean prices by an
additional 2.6% ($31.02/MWh to $30.20/MWh).

Figure A.6b in Online Appendix A demonstrates how ba�ery operations would
a�ect the mean generation from dispatchable power generators (e.g., natural gas gen-
erators) throughout the day. Unsurprisingly, large-scale storage increases dispatchable
generator output during the middle of the day and reduces it in the evening peak hours.
Notably though, ba�eries would also change the times of day with dispatchable gen-
eration troughs and peaks. With no ba�ery capacity, the lowest production hour is 11
AM, whereas with a large ba�ery �eet the lowest production period moves an hour
later to noon. Similarly, the peak for dispatchable production without ba�ery storage
is 7 PM, relative to a�er 8 PM with a large storage �eet. �ese pa�erns demonstrate
the importance of ramping costs in modeling storage operations. A competitive bat-
tery �eet reduces the rate at which dispatchable production increases, spreading the
morning ramp down and evening ramp up over more hours.

To further understand how large ba�ery �eets would optimally operate, Figure
A.7 in Online Appendix A graphs real-time prices and ba�ery operations for two arbi-
trarily selected days—June 23rd, 2016 and December 29, 2018—both for a 25,000 MWh
capacity. Ba�ery operations change discretely and abruptly during the day. On the
le� graph, ba�eries charge substantially in the morning before 9 AM, remain idle
throughout the middle of the day, and then discharge at di�erent points in time in
the evening. On the right graph, prices are higher in the morning, causing ba�eries to
discharge then. On both days, ba�eries reach approximately a full state of charge by
mid-a�ernoon, wait several hours, and then discharge in the evening when real-time
market prices spike. However, the two days di�er in the times at which ba�eries start
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charging and discharging. More generally, and consistent with Figure A.7, we �nd
that (1) ba�ery output at any time period varies considerably across days, but (2), on
most days, ba�eries will fully charge prior to the evening ramp-up period and then
wait to discharge until a price spike occurs.

As a result of highly volatile real-time prices, ba�ery operations revenues are
highly skewed across �ve-minute time intervals. From Table A.5 in Online Appendix A,
ba�eries earn the majority of their revenues during the most pro�table 1% of time in-
tervals. For a 1000 MWh ba�ery �eet, each 1 MWh of ba�ery capacity would earn
$38,400 during the most pro�table 1% of intervals and only $17,293 across the other
99% of intervals over our sample period. Moreover, ba�ery revenues are very sensitive
to equilibrium e�ects. For instance, ba�ery revenues during the most pro�table inter-
vals decline dramatically as aggregate ba�ery capacity rises. For example, an increase
in the ba�ery �eet from 100 MWh to 10,000 MWh reduces per-unit revenues by nearly
28% during these intervals.

Figure 5: Ba�ery Value by Aggregate Ba�ery Capacity and Renewable Energy Share

Notes: �e sloped lines plot the relationship between the expected lifetime value per kWh of ba�ery
investment and the share of renewable energy for selected aggregate ba�ery capacity levels. �ey
represent the best linear �t based o� value and renewable energy across each week in our data. �e
gray horizontal line shows the expected capital cost of ba�ery storage in 2024 (Cole and Frazier,
2019). �e vertical line shows the total share of renewable energy (including hydro) based on data,
the California RPS, and the authors’ calculations.

�ese �ndings highlight the considerable decreasing returns to scale in ba�ery
storage capacity, which has important implications for the time path of ba�ery invest-
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ment. Figure 5 plots linear �t lines of the relationship between a heuristic of the value
per unit capacity of a competitive ba�ery market and the share of renewable energy
during each week across three aggregate capacity levels—10 MWh, 10,000 MWh, and
50,000 MWh.37

As in Figure 3, the per-unit value of a small ba�ery �eet increases rapidly over
time as more renewables enter the market, resulting in a 10 MWh �eet being prof-
itable by 2024. Nevertheless, as more ba�eries enter the market, each ba�ery’s value
shi�s downward due to the market equilibrium e�ects of operations of the preceding
ba�ery stock. For example, with a 50% renewable energy share, average ba�ery value
falls from $280/kWh to $230/kWh when aggregate capacity increases from 10 MWh
to 10,000 MWh. �ese values fall further to $140/kWh when there is 50,000 MWh of
ba�ery storage in the market. Because of equilibrium e�ects, storage �eets of even
10,000 MWh would not be pro�table as arbitrageurs by 2024 without subsidies or un-
less capital costs were to fall far below current expectations.

4.4 Distributional E�ects of Utility-Scale Batteries

Table 1 considers the impact of ba�ery capacity additions on di�erent market partic-
ipants. Column 1 shows that with 1,000 MWh (1 GWh) of aggregate storage capacity
in the market, ba�eries would have earned an average of $14 million per year from
operations during our sample period. As aggregate capacity increases to 50,000 MWh,
the ba�ery �eet �a�ens the price peaks, resulting in the average operating pro�ts per
unit capacity falling to $4.48 million per GWh-year.

Column 3 indicates that ba�eries would signi�cantly reduce the total expendi-
tures (price×load) that load-serving entities need to pay—to generators and storage
operators—to meet demand. In particular, a 1,000 MWh ba�ery �eet would reduce
mean hourly expenditures for utilities by $124 million per year.

Column 4 shows the change in dispatchable generators’ revenues with large-scale
ba�eries. �ese track the expenditures to load-serving entities very closely. For in-
stance, ba�eries would reduce total revenues of dispatchable generators substantially
by $126 million per year. �ese results suggest that large-scale ba�ery adoption may

37As in Figure 3, we use the weekly value simulated from the single-agent Bellman equation (2)
(which mimics the incentives of the competitive ba�ery market) scaled for degradation and discounting.
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accelerate the retirement of dispatchable generators, a feature that we do not model.
Column 5 shows the change in solar and wind revenues with 1,000 MWh of ba�er-

ies. Surprisingly, the presence of ba�eries reduces solar and wind generators’ revenues
by $13 million annually. Although ba�eries increase prices between 9 AM and 1 PM
when solar plants are coming online, they also reduce prices in the mid-a�ernoon (3
PM-5 PM) when many solar generators are still producing. Summing these impacts,
ba�ery operations make intermi�ent renewable generators slightly worse o�.38 �ese
impacts are likely to occur in markets similar to CAISO, though they may not hold uni-
versally. �e impact of ba�eries on renewables’ pro�ts will depend on the correlation
between load and renewable generation across the day, among other factors.

Finally, column 6 investigates the impact of ba�eries on social surplus (gross of
ba�ery capital costs) in the electricity market. �is exercise requires that we calcu-
late costs, for which we leverage two additional assumptions: �rst, that our estimated
supply relationships represent marginal costs (i.e., the dispatchable generation is com-
petitively supplied), and second, that the �xed costs of producing 0 in any period are
0. Under these assumptions, a 1,000 MWh storage �eet would have increased gross
social surplus by about $14 million annually during our sample period.39 A larger �eet
with 50,000 MWh would have further reduced costs by $351 million per year.

5 Evaluating Equilibrium Battery Adoption

Our results in Section 4.2 highlighted that a small ba�ery �eet earning pro�ts from
electricity arbitrage was not far from breaking even by the end of our sample, while
those from Section 4.3 showed that equilibrium e�ects will dampen the value of large-
scale ba�ery �eets. Nonetheless, even the Section 4.3 results do not speak to the equi-
librium level of ba�ery adoption, because the break-even constraint does not incorpo-
rate the opportunity cost of investment. Speci�cally, with declining capital costs, by
waiting to adopt until a�er the break-even point, a potential operator will lower its
expected adoption cost and potentially increase its value. �e option value of waiting

38Notably, these results contrast Gonzales et al. (2023), who �nd that transmission infrastructure
investment led to more solar investment in Chile. Transmission investments help integrate renewables
by allowing for additional spatial arbitrage whereas storage allows for arbitrage across time.

39Since we assume that demand is perfectly inelastic, a change in gross social surplus is equal to the
change in the total cost of electricity generation.
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Table 1: Revenue and Costs Across Aggregate Ba�ery Capacity Levels (MWh)

Ba�ery
Pro�t

per GWh
Capacity

Total
Ba�ery

Operation
Pro�ts

∆ Load
Serving Entities’

Expenditures

∆ Dispatchable
Generator
Revenue

∆ Solar
and Wind
Revenue

∆ Gross
Social

Surplus∗∗∗
10 15.79 0.16 -1.76 -1.74 -0.18 0.15
1000 14.46 14.46 -123.98 -125.55 -12.88 13.96
5000 12.37 61.83 -436.48 -456.38 -41.87 65.52
25000 7.04 175.96 -1,062.34 -1,158.03 -80.13 242.57
50000 4.48 223.99 -1,239.99 -1,379.44 -84.39 351.09
Notes: All variables are annual means in millions of dollars per year over our sample period. Columns

1 and 2 show ba�ery operations pro�ts per unit (GWh) and in aggregate as a function of the total
installed ba�ery capacity. “∆ Load Serving Entities’ Expenditures” is the change in the total price
paid by load-serving entities for energy (change in equilibrium price times total load) relative to the
K = 0 case. “∆ Dispatchable Generator Revenues”, and“∆ Solar and Wind Revenue”, are the mean
change in annual gross revenues for dispatchable generators and renewable generators respectively.
*** “∆ Gross Social Surplus” is the estimated change in mean total costs of generation relative to the
K = 0 case under the assumptions that the supply relationship represents marginal cost and that the
�xed costs with no net load served are 0, and not accounting for ba�ery capital costs.

will then delay equilibrium ba�ery adoption.
�is section develops an equilibrium adoption model that evaluates expected bat-

tery adoption rates under di�erent policies, accounting for the opportunity cost of
investment. As we detail below, our results here leverage assumptions beyond our
operations model. �is occurs because potential ba�ery operators need to forecast
their option value from waiting instead of adopting, which requires understanding
future adoption capital costs and revenues. Additionally, our modeling framework is
limited in that it does not consider dispatchable generator retirement, learning-by-
doing causing ba�ery capital cost reductions, or energy storage technologies other
than lithium-ion ba�eries. We proceed by developing the modeling framework we
use to understand adoption, explaining the calibration and estimation of the underly-
ing parameters, and then presenting our results.

5.1 Model

Our capacity adoption model complements our operations model in Section 3.1 by
considering potential ba�ery operators at the annual level. We assume that there is
an in�nite mass of ex-ante identical potential ba�ery operators, each of which has
the ability to install a �xed-capacity storage system in one year. �is capacity, which
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we normalize to k = 1, is su�ciently small that the potential operator takes future
electricity market prices as given in its adoption decision.

Potential operators are forward-looking and solve an optimal stopping problem of
when to invest. At each year y, potential operators that have not previously adopted
make a binary decision of whether or not to invest in storage capacity. To adopt,
they must pay a �xed capital cost, cy. At year y, agents observe cy but do not know
future adoption costs. We assume that these costs evolve stochastically as a Markov
process based on current costs, declining over time in expectation due to technological
advances. Agents have rational expectations over future adoption costs and, hence,
form accurate distributions over cost trajectories.

Besides costs, a potential operator must also forecast the expected current and
future revenues from its system for every future year. We model two important and
counterbalancing factors regarding the future path of revenues. First, following our
results in Section 4.2, the extra renewable energy capacity in future years will increase
revenues. However, from Section 4.3, revenues will decline with greater equilibrium
ba�ery capacity, because large-scale storage will �a�en equilibrium price peaks.

�us, the annual per-unit revenues depend on both the year, y, which a�ects re-
newable energy generation share, and K , the aggregate capacity of storage present
in the market. To simplify the analysis, we assume that potential operators perceive
that, apart from these changes, the structural parameters of the operations model—i.e.,
the distributions of (gross) load by hour and the supply relationship from dispatchable
generators—will remain constant in the future and hence are not state variables.

Combining these factors, the potential operator’s state is (k, c, y,K), where k = 0

for a potential operator that has not yet adopted and k > 0 for existing operators. We
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write its Bellman equation as:

V(k, c, y,K) = 1{k = 0}[
max

{ Value from adopting︷ ︸︸ ︷
π(y,K∗)− c+ β

∫
V
(
δ (y,K∗) , c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y),

Value from waiting︷ ︸︸ ︷
β

∫
V
(

0, c′, y + 1, δ (y,K∗)K∗
)
dGc′(c′|c, y)

}]
(9)

+1{k > 0}

[
π(y,K∗)k + β

∫
V
(
δ (y,K∗) k, c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)︸ ︷︷ ︸

Value if adoption before y

]
,

where π(y,K∗) are annual operating pro�ts. �e second and third lines in (9) indicate
the value to a potential operator that has not previously adopted, and re�ect its optimal
stopping problem. �e last line, which is proportional to k, is the value to a potential
operator that haspreviously adopted. A�er adoption, the operator makes no further
adoption decisions, but the future distribution of ba�ery installation costs will a�ect
future adoption and, hence, future operating pro�ts.

We microfound π(y,K∗) using the computed values from the operations model.
Speci�cally, we let:

π(y,K∗) =
∑
t

E [pt(1{q∗t > 0}q∗t υ + 1{q∗t < 0}q∗t /υ)] , (10)

where the generator uses state-contingent optimal charge decisions, q∗t . �ese are cal-
culated using (1) at the expected equilibrium capacity K∗ and state-contingent equi-
librium prices, p∗t .

We calculate capacity degradation, δ(y,K∗), from the Xu et al. (2016) engineering
model as detailed in Online Appendix F. Degradation is a function of the state, since
the state a�ects ba�ery usage and this usage a�ects degradation. Because we assume
exponential capacity degradation, all ba�eries at a given state will have the same in-
centives proportional to their capacity. �us, we do not need to keep track of ba�ery
age as a state variable.

Similar to the operations model, we ease computation by recasting the ba�ery op-
erations problem in (9) as a single-agent decision problem where the incentives of the
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single agent correspond to the incentives of the price-taking �eet of ba�ery operators.
In an equilibrium with price-taking potential ba�ery operators, the marginal operator
sets per-unit adoption cost equal to the marginal operating revenue net of the opportu-
nity cost of adopting. Marginal operating revenue is composed of the weighted sum of
prices over the year. �e weights are determined by the charge quantity, q∗, which can
be positive or negative. �us, the corresponding single-agent maximization problem
is as follows:

W(c, y,K) = max
K∗≥K

{
− E

[∑
t

∫ Zt

0

P d(t)(ζ, Z̃t, ε
P
t )ζ

]

−c (K∗ −K) + β

∫
W
(
c′, y + 1, δ (y,K∗)K∗

)
dGc′(c′|c, y)

}
(11)

s.t. Zt = XRTM
t +Q(q∗t , K

∗).

In (11), the expectation is taken over the sequences of (εPt , ε
L
t ) over the time in-

tervals t during the year y and where d(t) indicates the day corresponding to each
time interval t, since the supply relationship parameters vary by d. Since the integral
is taken up to XRTM

t − Q(q∗t , K
∗)—which is the electricity supplied by dispatchable

generators—the �rst order condition with respect to K∗ will weight P d(t) negatively
in intervals where there are charges and positively in intervals where there are dis-
charges.

We compute the solution to the adoption model by solving the single-agent adop-
tion Bellman, equation (11). As with the operations model, in the case where the
dispatchable generation market prices at marginal cost, the single agent problem is
equivalent to the social planner problem, where the social planner minimizes the ex-
pected discounted costs of dispatchable generation plus storage capital costs.

5.2 Calibration and Estimation of Parameters

�e main computational di�culty in solving the single-agent adoption Bellman equa-
tion is to evaluate the integral of expected operations revenues from across aggregate
ba�ery capacity states in (11), which we call ba�eries’ �ow return. �e �ow return
is a function of the optimal charging behavior q∗, which varies based on aggregate
ba�ery capacity, K∗. In principle, for each state K∗ that we reach in computing the
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adoption Bellman equation solution, we could solve for optimizing behavior in the
operations model at each time interval, and then plug in the resulting �ow return into
the adoption Bellman equation. However, this process would be very computation-
ally intensive, especially because we allow the supply relationship parameters to vary
across sample days.

In addition, the �ow return is also a function of the year y. �e calendar year af-
fects the �ow return because it a�ects renewable energy penetration which, per the
Section 4.2 results, is complementary to the values ba�eries can earn.40 Unlike with
K∗, we do not develop a structural model of how increases in renewable energy pene-
tration would a�ect the wholesale electricity price and through that, a�ect operations
revenues, but instead, identify this e�ect from our in-sample variation in renewable
energy generation share.

Given these issues, we follow Bodéré (2022) and Gowrisankaran et al. (2022) and
�rst evaluate the �ow return across a �xed grid of states. We then estimate a regression
of these �ow return values on the state variables and treat the ��ed value of this
regression structurally. �e bene�t of this �ow return surface approach is that it allows
us to predict �ow returns without computing the operations model Bellman equation
for every state reached in the adoption model solution. �e cost is that this approach
puts functional form restrictions stemming from our regression on the �ow return
surface. �ese restrictions are an approximation to the true and unknown functional
form implied by the structural model.

Speci�cally, we start by evaluating the �ow return for eight di�erent counterfac-
tual values of K∗ at the weekly level, all relative to K∗ = 0.41 We evaluate the �ow
return over the week by simulating the optimized operations model.42 We then regress
the �ow return per unit capacity (�ow return divided byK∗) on ba�ery capacity (K∗),
renewable energy generation share, controls for peak electricity demand, natural gas
fuel prices, hydroelectricity availability (using the Sacramento Valley water-year in-
dex as a proxy), and week-of-year �xed e�ects. We use the ��ed values from the
regression—multiplied by K∗ and scaled from the weekly to the annual level—as the

40As noted above, an important limitation is that we do not allow the supply relationship to change
across years y, implying that we are not allowing for dispatchable generator exit in response to greater
renewable energy capacity.

41We use K∗ ∈ {10, 100, 1000, 5000, 10000, 15000, 25000, 50000}.
42Because we de�ne simulated realized pro�ts at the week level, our sample starts on Friday, Jan. 1,

2016 and ends on �ursday, Dec. 27, 2019. We assume that ba�eries start each week with 50% charge.
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�ow return for any state.
To obtain our ��ed values, we map each calendar year into a renewable energy

generation share that matches California’s legislated RPS schedule, interpolating in
years where the RPS is not speci�ed. �is is appropriate if our estimated relationship
between weekly renewable share on the �ow return (conditional on controls) applies
at the annual level.43 We believe this assumption is reasonable given our inclusion
of week-of-year �xed e�ects and other controls and that wind and solar production
have both been increasing in California.44 Our approach will capture the fact that
changes in renewable energy production will indirectly a�ect the within-day net load
variation, which will then a�ect storage systems’ pro�ts. Finally, while our sample
includes weeks with up to 50% renewable generation (see Figure 3), our �ow return
surface extrapolates out of sample above this level.

To solve the adoption model, we also need to estimate the state-contingent ba�ery
degradation over a year, δ(y,K∗), in (11). We estimate this function with the same
methods as our estimation of the �ow return function, except with the dependent
variable being the annualized ba�ery capacity degradation rate, as calculated by the
Xu et al. (2016) engineering model.

Last, we calibrate the evolution of ba�ery capital costs over time. We specify the
following unit root with dri� process for the cost of the storage technology, cy:

cy = cy−1 exp(τ) exp(ξy), ξy ∼ N(0, σ2
c ), (12)

with c2018 as the capital cost of ba�eries in 2018, the initial year, and τ and σc governing
the size of the dri� and future uncertainty of costs. To the extent that τ < 0, the costs of
storage will trend down over time on average. �e ξy process captures the uncertainty
about the size of these future cost declines. We assume that ξy are i.i.d. over time.

We estimate two parameters in (12): the magnitude of the downward dri� (τ ) and
the size of the shock process governing the level of cost uncertainty (σc). Online Ap-
pendix G provides details of this estimation.

43We use the 2019 sample mean values of the above controls for our ��ed values.
44California does not have separate wind and solar mandates.
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Table 2: Ba�ery Flow Return and Degradation by Year and Ba�ery Capacity

Ba�ery Flow Return
Per Unit Capacity ($/kWh)

Annual Degradation
Rate (%)

(1) (2) (3) (4)

Constant 134.6∗∗∗ 0.4187∗∗∗
(43.70) (0.1529)

ln(K∗) -2.832 -2.832 0.0623∗∗∗ 0.0623∗∗∗
(2.158) (2.195) (0.0104) (0.0106)

Renewable Share (%) 12.47∗∗∗ 10.04∗∗ 0.0805∗∗∗ 0.0705∗∗∗
(2.609) (4.229) (0.0085) (0.0092)

ln(K∗) × Renewable Share (%) -0.6883∗∗∗ -0.6883∗∗∗ -0.0049∗∗∗ -0.0049∗∗∗
(0.1298) (0.1321) (0.0006) (0.0006)

Observations 1,664 1,664 1,664 1,664
R2 0.10533 0.41319 0.23211 0.52330
Within R2 0.09888 0.10697

Controls + week �xed e�ects X X

Notes: In columns 1 and 2, the dependent variable is the annual �ow return per kWh of
storage capacity. Each observation represents a single week of the sample for a single stor-
age capacity. In columns 3 and 4, the dependent variable is the annual capacity degradation
due to operations. Columns 2 and 4 include controls for the mean load in the evening peak
hours of 5–10 PM over the week, the mean natural gas price over the week, and the Sacra-
mento Valley hydroelectric water year index (WYI) associated with that week. Peak load
is the mean load between 5 PM and 9 PM during the week. We cluster standard errors by
week of sample.

5.3 Adoption Model Results

Table 2 reports the estimates of our �ow return regressions. Column 1 shows results
from a speci�cation that regresses the ba�ery �ow return on the logarithm of aggre-
gate ba�ery capacity (ln(K∗)), renewable energy share (wind + solar share), and an
interaction term. Column 2, our preferred speci�cation, adds week-level controls for
mean load in the evening peak hours, mean natural gas price, and the Sacramento
Valley hydroelectric water year index (WYI), and week-of-year �xed e�ects.

�e speci�cations with and without controls yield very similar results, adding
to our con�dence that the estimates are not being confounded by electricity market
changes that are contemporaneous to renewable energy share changes. In our pre-
ferred speci�cation, we estimate a negative though not statistically signi�cant base
coe�cient on ln (K∗), a positive and signi�cant coe�cient on renewable share, and a
negative and signi�cant coe�cient for the interaction term, consistent with the trends
in Figure 3. Overall, our results paint a clear picture of the link between installed
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ba�ery capacity, renewable generation, and the value per unit of storage capacity.
Per-unit storage value falls quickly as the aggregate storage capacity in the market
rises, consistent with the equilibrium pricing impacts of storage we document in Sec-
tion 4.3.45

�e third and fourth columns of Table 2 show the regression results with the an-
nual ba�ery degradation rate as the dependent variable.46 �e estimates in Column
3 indicate that when the solar and wind share equals 30%, and there is a single unit
of storage in the market, capacity would degrade at an expected annual rate of 2.8%
(2.7% for Colmun 4) due to cycling. �e coe�cient on the renewable energy share is
positive: as renewable energy increases, the annual degradation rate also rises because
ba�eries engage in more charge-discharge cycles.

Figure 6 provides simulated mean competitive equilibrium adoption paths under
a variety of alternative assumptions, all using an annual discount factor of β = 0.95

and without an explicit ba�ery mandate or subsidy. �roughout each panel of Figure
6, the solid black line shows the expected ba�ery capacity trajectory under our base-
line case, in which we assume that: ba�ery capacity degrades as a function of use;
potential adopters have rational expectations over future capital costs; renewable en-
ergy increases according to the California RPS; and peak load is held �xed at the 2019
mean level. �e purple line in Figure 6a plots the expected ba�ery capital cost over
time from our estimated capital cost process. �e solid black line shows that ba�ery
adoption begins very slowly, with the �rst storage system installed in 2026.47 Total
capacity reaches 288 MWh by 2030, before increasing sharply and achieving an aggre-
gate capacity of 7,098 MWh by 2035.48 A 7,000 MWh storage �eet composed of 4-hour
duration ba�eries can produce 1,750 MW at any instant, similar to the typical output
of a large nuclear power plant. �is output could serve less than 10% of the typical
CAISO load.

�e remaining lines in Figure 6 explore several potential factors that may be limit-

45Table A.6 in Online Appendix A shows that the regression estimates are robust to alternative
speci�cations and control variables.

46In Table 2, we present results with annual ba�ery degradation rate as the dependent variable for
ease of interpretation. However, when implementing the adoption model, we run the same regression
with weekly degradation rate as the dependent variable and then rescale the regression predictions to
annual degradation rates.

47We �nd that there would be 0.91 MWh of storage in 2026 in expectation.
48Because our model does not decompose wholesale electricity prices into costs and markups, we

cannot determine whether the competitive ba�ery market would have too much or too li�le entry.
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Figure 6: Counterfactual Ba�ery Capacity Adoption Paths

(a) Ba�ery Capacity With vs. Without Degra-
dation

(b) Myopic vs. Forward-Looking Expectations

(c) Renewable Mandates and Ba�ery Capacity (d) Peak Demand and Ba�ery Capacity

Notes: In Figure 6a, the purple line shows the expected capital cost over time. In all �gures, the
solid black line plots expected ba�ery capacity under the baseline case with: capacity degradation,
forward-looking expectations, 100% RPS, and peak load held constant. �e other lines plot expected
ba�ery capacity adoption under di�erent counterfactuals. Each �gure varies a single parameter, and
holds all other assumptions �xed.

ing baseline equilibrium adoption. First, Figure 6a contrasts expected ba�ery capacity
over time without capacity degradation to the baseline. When we ignore degradation
in calculating the value of storage, adoption starts one year sooner and increases at a
much faster pace. In particular, the expected capacity would be roughly three times
higher in 2035 (20,560 MWh).

Another factor that encourages potential ba�ery adopters to delay investment is
the anticipation of future capital cost reductions. Figure 6b quanti�es the in�uence of
future cost expectations on investment by calculating the predicted adoption path for
myopic agents. While the forward-looking potential operators in our baseline know
the parameters of the stochastic capital cost process in equation (12), myopic potential
operators assume that the current capital cost will remain unchanged in future years,
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but are otherwise identical to the baseline agents. Under myopic expectations, the
�rst unit of ba�ery investment is expected in 2023, with aggregate ba�ery capacity
reaching 12,000 MWh by 2030, and surpassing 50,000 MWh by 2035. �ese results are
striking, as they indicate that expectations of future ba�ery cost declines can play a
major role in limiting early adoption.

Another key driver of the ba�ery adoption decisions is the trajectory of future re-
newable energy generation. Figure 6c measures the e�ect of changing the renewable
portfolio standard on the time path of ba�ery adoption. Speci�cally, we plot the bat-
tery investment path for a 40% RPS by 2045, a 60% RPS by 2045, an 80% RPS by 2045,
and a 100% RPS by 2045 (the current policy). With an RPS of 40%—a policy that would
hold renewable generation constant at 2019 levels—less than 400 MWh of ba�ery in-
vestment would occur by 2035. With the more aggressive renewable energy mandates,
storage investment substantially increases: the 2035 expected storage capacity would
be 1,430 MWh with the 60% RPS and 3,650 MWh with the 80% RPS.

Figure 6d explores how changes in future electricity load (demand) would change
the time path of ba�ery adoption. In our baseline case, Figure 6a, we assumed that
peak load would remain constant at 2019 levels in all future years. However, Califor-
nia’s peak load may change over time for a multitude of reasons. On the one hand,
peak load could decrease over time due to energy e�ciency retro�ts and adoption
of behind-the-meter renewable (e.g., residential solar panels) and storage technolo-
gies. On the other hand, rising adoption of electric vehicles could increase peak load
if drivers plug in their cars during evening hours. Figure 6d illustrates how di�erent
assumptions about future peak load in California would change the trajectory of bat-
tery adoption. We evaluate expected ba�ery adoption under �ve di�erent cases: (1)
25% increase in peak load, (2) 10% increase in peak load, (3) no change in peak load
(baseline), (4) 10% decrease in peak load, and (5) 25% decrease in peak load. We �nd
that peak load changes can result in signi�cant changes in expected ba�ery invest-
ment. A 25% increase in peak load leads to a massive four-fold increase in capacity by
2035, whereas a 25% decrease in peak load reduces aggregate capacity by more than
80% relative to the baseline case.

�ese results show that utility-scale ba�ery investment serves as a substitute for
other investments that reduce peak load. For instance, energy e�ciency retro�ts
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can reduce electricity demand at times of the day when the grid is most strained
(Boomhower and Davis, 2020) while home ba�eries could also reduce peak household
electricity demand. Accordingly, policies that encourage residential storage or energy
e�ciency investments would reduce the optimal capacity of utility-scale storage in-
vestment, while further investments in residential solar might complement them.

Finally, we use our results to evaluate policies. �us far, our results suggest that
a renewable portfolio standard alone is not su�cient to reach the amount of bat-
tery adoption stipulated in California’s 2024 ba�ery mandate under AB 2514. Con-
sequently, Figure 7 explores the impact of various government subsidies on ba�ery
adoption. Speci�cally, we compute the expected ba�ery capacity in 2024 for di�erent
investment subsidies o�ered by the government ranging from 0%-40% of the capital
cost. For each subsidy level, we assume that the subsidy is available to storage adopters
in each year until 2024, and then no subsidy is available therea�er. Notably, we con-
sider a 30% subsidy, similar to the energy storage investment tax credit o�ered by the
2022 U.S. In�ation Reduction Act (IRA).49

Figure 7: Evaluating Ba�ery Adoption Response to Subsidies

Notes: �e blue line plots the total installed ba�ery capacity in 2024 for di�ering levels of up-front
subsidies (as a percentage of capital cost). �e horizontal pink line indicates the California storage
mandate under AB 2514 assuming 4-hour ba�eries. �e vertical green line shows the 30% subsidy
o�ered to storage under the 2022 U.S. In�ation Reduction Act.

Figure 7 shows that very li�le adoption would occur by 2024 with subsidies below
49�e IRA includes a 30% energy storage investment tax credit, available through 2025 (House of

Representatives, 2022).
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25%. However, the 2024 expected ba�ery capacity increases substantially for subsidies
ranging from 25-40%. Speci�cally, the vertical green line shows that the IRA subsidy
would increase capacity to over 5,000 MWh. A larger 40% storage subsidy could further
boost ba�ery capacity to 25,000 MWh. We estimate that California’s ba�ery mandate,
which is equivalent to 5,200 MWh of storage capacity, could be implemented with a
30.4% up-front subsidy. Interestingly, this subsidy is very similar to the more recent
30% federal IRA subsidy that potential ba�ery operators are earning throughout the
U.S.

6 Impact of Battery Market Structure

Our results to this point have assumed that ba�eries are price takers. In this section, we
investigate the role of ba�ery market structure in determining ba�ery operations and
equilibrium prices. We consider two alternative ba�ery market structures: monopoly
and duopoly.

Unlike the competitive ba�ery operator, a monopoly ba�ery operator fully inter-
nalizes how an incremental charge (discharge) increases (reduces) equilibrium prices
on inframarginal output. A duopoly ba�ery operator partly internalizes this e�ect.
Hence, the monopoly operator corresponds roughly to the worst case from the point
of view of the system operator, while the duopoly is an intermediate case.

We let the monopolist make its operations decisions at each �ve-minute interval
at the same point as competitive operations in our baseline model. Since the monop-
olist optimizes a single-agent dynamic problem, we solve its decisions using a similar
approach to our baseline, except that we use operator pro�ts as the �ow payo�s.

In contrast, the duopoly model requires solving for the best response functions
of a dynamic game. We assume the two ba�ery operators play a Stackelberg-style
game: each player chooses its output sequentially within each �ve-minute time inter-
val and alternates as the �rst mover across time intervals. We chose a sequential-moves
game because, in our �nite horizon approximation, this game has a unique equilibrium.
However, solving the duopoly model still adds two computational complications. First,
it requires adding a state variable to track the second player’s energy held. Second,
solving for the �rst mover’s optimal policy requires a conditional nested search over
the second mover’s optimal policy given the �rst mover’s policy. �ese complications
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substantially increase computational time. �erefore, we only solve the duopoly prob-
lem for a single aggregate ba�ery capacity level, K=10,000 MWh, composed of two
operators each with K=5,000 MWh.

Figure 8a shows how ba�ery charge and discharge choices di�er across ba�ery
market structures, holding aggregate capacity �xed at 10,000 MWh. �e grey-dashed
line indicates that duopolists tend to operate their ba�eries more sparingly compared
to competitive ba�eries (solid black line)—charging less during the day and discharg-
ing less during evening peak hours. Monopolists, shown with the do�ed-blue line, are
the most conservative, charging and discharging even less than the duopolists. Intu-
itively, ba�eries with market power supply less during the morning and evening peak
periods in order to maintain higher prices for sales of their additional stored energy.50

Figure 8b and the top panel of Table 3 illustrate that all three ba�ery market struc-
tures lead to substantially lower prices relative to a market without ba�eries, espe-
cially during the evening peak periods. Without ba�eries, the load-weighted average
price during peak hours is $54.25/MWh. With competitive ba�eries, this price drops to
$45.04/MWh, highlighting the substantial impact of competitive ba�ery operations in
reducing peak hour prices. Both duopoly and monopoly prices during peak hours are
slightly higher at $46.71/MWh and $46.09/MWh, respectively. Interestingly, monopoly
prices during peak hours are slightly lower than duopoly prices. �is result is due to
the dynamic nature of dispatchable generator supply in our model. Monopolists tend
to discharge their ba�eries less during peak hours compared to duopolists (Figure 8a).
�is leads to higher lagged net load, Z̃ , during peak hours with monopolists, mean-
ing more generators are running to meet the demand. When a large unexpected price
shock occurs during peak hours, both monopolists and duopolists withhold output to
maintain higher prices. However, because fewer generators are operating before the
shock (higher Z̃), this can lead to higher relative price spikes under a duopoly than
a monopoly.51 More broadly, we �nd that with 10,000 MWh of ba�ery capacity, all
ba�ery market structures lead to an overall average price reduction between 7 to 9%
relative to a market without ba�eries.

Table 3 Panel B investigates how equilibrium prices di�er between a competitive

50�ese �ndings are consistent with the theoretical results in Andrés-Cerezo and Fabra (2023) that
market power in ba�ery operations leads to lower storage utilization.

51Online Appendix Figure A.8 shows an example of a price spike event on the evening of June 15th,
2019, which leads to higher prices under a duopoly than a monopoly.
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Figure 8: Ba�ery Output and Equilibrium Prices by Ba�ery Market Structure

(a) Mean Hourly Ba�ery Output (b) Mean Hourly Equilibrium Prices

Notes: Each line plots the mean counterfactual outcome across all days during 2016–19. All models
assume 10,000 MWh of aggregate ba�ery capacity.

and monopoly ba�ery market across di�erent levels of aggregate ba�ery capacity. For
a smaller aggregate ba�ery capacity of 5,000 MWh, the average price for the competi-
tive and monopoly markets are very similar at $33.90/MWh and $34.04/MWh, respec-
tively. However, at the higher capacity level of 25,000 MWh, the competitive market
achieves an average price of $31.02/MWh, whereas the monopoly market results in
a higher average price of $33.87/MWh. Intuitively, monopolists behave similarly to
price takers when they own small capacities. As capacity expands, monopolists begin
to withhold more capacity at peak hours to sustain higher prices.

Altogether, this set of results indicates that ba�ery operations under various mar-
ket structures can lead to substantial price reductions relative to a market without
ba�eries. In addition, we �nd that ba�ery market power results in relatively small
price distortions until aggregate capacity exceeds 10,000 MWh. �is is interesting be-
cause it is possible for electricity suppliers to exercise market power at peak times even
in relatively unconcentrated markets, due to residual demand being very inelastic at
these times (Borenstein, 2002).
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Table 3: Equilibrium Prices by Market Structure and Ba�ery Capacity

Panel A: Average Prices ($/MWh) by Market Structure,K=10,000 MWh

Price (All hours) Price (5-10 PM)
No Ba�eries 35.92 54.25
Competitive 32.70 45.04
Duopoly 33.33 46.71
Monopoly 33.06 46.09

Panel B: Average Prices ($/MWh) by Aggregate Battery Capacity (MWh)

Competitive Monopoly
0 35.92 35.92
5000 33.90 34.04
10000 32.70 33.06
25000 31.02 33.87

Notes: �is table presents the counterfactual (load-weighted) average real-time
market price across 2016-2019. Panel A calculates average prices across all hours
and for evening peak hours (5-10 PM) across the competitive, duopoly, and
monopoly model. In Panel B, all models assume an aggregate ba�ery capacity of
10,000 MWh. Panel B presents average prices across aggregate ba�ery capacities
for a competitive and monopoly ba�ery market, respectively.

7 Conclusion

A signi�cant challenge to meeting the world’s growing demand for energy is that util-
ities cannot typically store electricity for later use. As the majority of new renewable
generation capacity comes from intermi�ent resources, the interest and potential role
for ba�ery storage technology has grown substantially. �is paper develops a new
framework to understand the equilibrium e�ects of large-scale ba�ery storage and its
complementarities with intermi�ent renewable energy. We model a number of fea-
tures that we believe are critical to understanding the incentives to adopt and use
storage and the value created by storage: the equilibrium price e�ects of large-scale
ba�ery capacity, dispatchable generator market power and ramping costs, and ba�ery
degradation from use. We estimate our model using data from California’s electric-
ity market—which allows us to exploit variation in renewable energy generation over
time—but our model can be applied to explore the economic impacts of storage in other
markets and contexts.

We �nd that the equilibrium e�ects of ba�eries are large. �e �rst 5,000 to 10,000
MWh of storage capacity will reduce peak hour prices signi�cantly, but further in-
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creases will have much smaller marginal impacts. �e value that ba�eries can earn
from energy market arbitrage is also signi�cantly increasing in renewable energy pen-
etration. Despite this, utility-scale storage in California is expected to reduce revenues
for both dispatchable generators and renewable energy.

Finally, although we are currently not very far from a point where a small ba�ery
storage investment could break even in the energy market, utility-scale ba�ery adop-
tion would be limited in the absence of subsidies or mandates, due to the equilibrium
e�ects and because of the option value of waiting for future capital cost declines. We
estimate that the 2022 U.S. In�ation Reduction Act storage subsidy of 30% is roughly
su�cient to implement California’s 2024 ba�ery mandate of 5,200 MWh (1,300 MW).
However, more ambitious policies to encourage large-scale storage will be substan-
tially more costly. Moreover, our results indicate the investment in ba�ery capacity is
likely to be sensitive to future capacity costs, which may be a�ected by trade policies
being considered (�e White House, 2024).

While our analysis makes several contributions towards understanding the eco-
nomics of ba�ery storage investment, our modeling approach has several important
limitations. First, we hold �xed the existing dispatchable generation capacity and the
associated electricity supply relationship, even though our results imply that utility-
scale ba�eries would lower dispatchable generator revenues and hence would likely
lead to retirements. Relatedly, our analysis of the impact of ba�ery market power
assumes separate ownership among dispatchable generators and the ba�ery opera-
tor(s). We believe that modeling endogenous dispatchable generator retirement and
alternative ownership structures—including the potential for load serving entities to
own ba�eries—are useful areas for further research. Second, while we model generator
ramping costs, our supply relationship for generators in the presence of ramping costs
and large-scale ba�eries is an approximation to a complex dynamic oligopoly prob-
lem. �ird, we do not model the impact of storage on grid reliability, an abstraction
that interacts with the potential exit of dispatchable generators’ capacity and one wor-
thy of future research. Fourth, we assume that ba�ery costs evolve exogenously, not
allowing for ba�ery mandates to lead to declines in production costs through learning-
by-doing. Fi�h, we use weekly variation in renewable energy over our 4-year sample
period and extrapolate to predict the value of storage investment in a world where
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more renewable generation exists than we can observe within our sample. Finally,
we do not a�empt to solve for the optimal storage subsidy to mitigate environmental
externalities, given the complex interplay between a combination of mechanisms that
incentivize both renewable energy and storage.
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Online Appendix

A Additional Tables & Figures Referenced in Main

Paper

Figure A.1: Regulation Service �antity Procured by CAISO

Notes: �e �gure plots the mean hourly quantity of regulation services procured by CAISO each month.
Regulation quantity is calculated as the sum of “regulation up” and “regulation down” quantities in the
day-ahead market.
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Figure A.2: Renewable Energy Over Time Under the California Renewable Portfolio
Standard

Notes: Each horizontal line shows the share of generation that must come from renewable sources in
a particular year under the California RPS. �e “All Renewables” line shows our linear interpolation
of the California RPS. �e “Solar + Wind” line shows the assumed path of solar and wind generation
in future years.
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Figure A.3: CAISO Electricity Market Trends

(a) Load (b) Solar PV Share

(c) Wind Share (d) Solar + Wind Share

(e) Natural Gas Price ($/mmbtu) (f) RTM Price ($/MWh)

Notes: Each panel plots the weekly average of a given single variable over the sample period. �e
solar generation measure does not include distributed generation. �e reported market prices are for
the CAISO South Zone Trading Hub (SP 15).

A3



Figure A.4: Real-Time Market Prices (Five-Minute Frequency)

Notes: Figure shows the average real-time market price (South Hub - SP-15) for each �ve-minute
interval of the day, separately for 2015 and 2019.
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Figure A.5: Operations Model (Single Day)

• f – energy held

• s – time of day (e.g., Xd
s )

s ∈ 1, . . . , S, where S = 288

• Z̃ – lag of dispatchable generation

• εL – demand shock

• εP – supply shock

Elements of the state
• X – net load (i.e., load - wind - solar)
X = Xd

s + εL

Exogenous quantities

• Equilibrium supply relationship
P (d, Z, Z̃, εL, εP )

◦ Estimated for each day using
most recent seven days of DAM data
◦ Set Z = X and Z̃ = X̃ for estimation

of the supply relationship

• Joint conditional distribution of demand / supply
shocks dGε(εL

′
, εP

′|εL, εP )

◦ Estimated using 2015 data

Supply relationship and distribution of unobservables

υ2∗ – perceived round-trip e�ciency

◦ Solve perfect foresight model across
grid of candidate values for training
sample, determine best value a�er
accounting for simulated degradation
υ2

• K – total ba�ery energy capacity

• F – power �ow capacity

• υ2 – actual round-trip e�ciency

Ba�ery technology

Vd(f, s, Z̃, εL, εP ) – ba�ery operator value function

◦ Solve single agent problem
(i.e., maximize the integral of the pricing function)
Wd(f, s, Z̃, εL, εP ) – single agent value function

Ba�ery optimization criterion

• q∗(f, s, Z̃, εL, εP ) – optimal ba�ery policy function

• Q(q∗, K) – total amount of discharge (+) / charge (-) q∗ from ba�ery �eet K

• Z – amount of electricity supplied by dispatchable generators
Z = X −Q

Endogenous quantities

(εL, εP ) – estimated as the di�erence between
RTM load / price and the DAM load / price forecast

Realized market shocks

• q∗1, . . . , q∗S

• P ∗1 , . . . , P ∗S

Equilibrium prices and quantity realizations

f0 – ba�ery energy held
f0 = 0.5 (ba�ery half full)

Initial condition

fS – initial condition for the next day

Final energy inventory
Raw inputs & data

Inputs estimated parametrically from data

Inputs estimated from dynamic optimization

Outputs

Legend
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Table A.1: Summary Statistics for Estimated Supply Relationship Parameters

Parameter 2015 2016 2017 2018 2019 2016–19
θ1
Mean -6.45 -27.24 -16.52 -11.71 -10.65 -16.54
Std. Dev. 8.82 25.62 19.50 14.32 14.92 20.21
25th-percentile -5.20 -52.95 -29.78 -12.16 -9.62 -21.27
75th-percentile -2.79 -4.80 -1.98 -3.27 -2.77 -2.99

θ2
Mean 18.39 161.30 93.27 50.95 45.55 87.82
Std. Dev. 53.17 192.24 144.39 107.31 107.98 149.54
25th-percentile 1.42 3.96 0.81 1.71 1.01 1.47
75th-percentile 15.67 365.00 135.41 23.13 12.96 63.66

θ3
Mean 2.07 1.37 1.47 1.16 1.07 1.27
Std. Dev. 1.35 0.89 1.02 0.58 0.39 0.78
25th-percentile 1.01 1.01 1.01 1.01 1.01 1.01
75th-percentile 3.81 1.01 1.01 1.01 1.01 1.01

κ
Mean 2.18 4.29 3.41 2.67 2.46 3.21
Std. Dev. 1.11 2.82 2.69 2.17 2.07 2.56
25th-percentile 1.42 1.75 1.25 1.38 1.24 1.35
75th-percentile 2.55 8.00 5.46 2.70 2.31 3.87

α
Mean 0.82 0.90 0.85 0.85 0.83 0.86
Std. Dev. 0.08 0.09 0.15 0.12 0.12 0.12
25th-percentile 0.76 0.83 0.76 0.80 0.73 0.79
75th-percentile 0.88 0.97 0.97 0.95 0.94 0.97

R-squared
Mean . 0.85 0.86 0.86 0.85 0.86
Std. Dev. . 0.05 0.06 0.06 0.10 0.07
25th-percentile . 0.82 0.84 0.84 0.84 0.84
75th-percentile . 0.89 0.89 0.89 0.90 0.90

Notes: �is table summarizes the means, standard deviations, and 25th and 75th percentiles of the daily
estimated supply relationship parameters, and the r-squared for the analysis sample.
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Table A.2: Summary Statistics for Estimated Supply Relationship Residuals

2015 2016 2017 2018 2019 2016–19
Dependent Variable: εPt

εPt−1 0.947*** 0.849*** 0.897*** 0.832*** 0.839*** 0.861***
(0.013) (0.015) (0.017) (0.028) (0.019) (0.013)

Constant 0.005*** 0.004*** 0.007*** 0.010*** 0.008*** 0.007***
(0.001) (0.000) (0.001) (0.002) (0.001) (0.001)

σP,Peak 0.012 0.010 0.010 0.016 0.016 0.013
σP,O�-peak 0.010 0.006 0.008 0.012 0.014 0.010
Observations 17568 105408 105120 105120 105120 420768

Notes: �is table summarizes the estimates of the supply relationship residual (εPt ) parameters. �e
2015 sample includes only November and December. We report standard errors, clustered by day-of-
sample, in parentheses.

Table A.3: Summary Statistics for Estimated Net Load Model

2015 2016 2017 2018 2019 2016–19
(a) Dependent Variable: Net Loadt

Net Load DAM Forecast 0.969*** 0.950*** 0.950*** 0.971*** 0.955*** 0.956***
(0.003) (0.002) (0.001) (0.001) (0.002) (0.001)

Dependent Variable Mean 1794.61 1798.35 1734.13 1687.41 1599.83 1704.99
In-sample RMSE 67.721 83.007 77.494 74.292 80.513 80.511

(b) Dependent Variable: εLt
εLt−1 0.996*** 0.996*** 0.996*** 0.995*** 0.995*** 0.996***

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Constant 0.144** -0.014 -0.023 0.178*** 0.017 0.032***

(0.043) (0.016) (0.016) (0.023) (0.021) (0.009)
σL 6.426 7.110 7.245 7.591 8.131 7.530
Observations 17568 105408 105120 105120 105120 420768

Notes: �is table summarizes the estimates of the net load model. �e 2015 sample, which is used to
obtain the parameters of the AR(1) process, includes only November and December. We report standard
errors, clustered by day-of-sample, in parentheses.
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Figure A.6: Equilibrium Prices E�ects and Dispatchable Generator Output

(a) Peak Five-Minute Equilibrium Prices (b) Mean Hourly Output from Dispatchable
Generators

Notes: Each line plots the mean counterfactual outcome for speci�c storage capacity level across all
days during 2016–19.

Table A.4: Equilibrium Prices and Aggregate Ba�ery Capacity

Price (All hours) Price (6-9 AM) Price (10 AM - 3 PM) Price (5-10 PM)
0 35.92 31.44 25.15 54.25
10 35.91 31.43 25.15 54.23
100 35.84 31.39 25.13 54.04
1000 35.35 31.14 25.01 52.75
5000 33.90 30.33 24.88 48.67
10000 32.70 29.52 24.90 45.04
15000 31.96 29.03 24.95 42.79
25000 31.02 28.62 25.03 39.76
50000 30.20 28.61 25.42 36.84

Notes: Prices reported are in $/MWh and indicate the load-weighted mean across all �ve-minute inter-
vals between 2016–19.
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Figure A.7: Ba�ery Operations on Selected Days

Notes: �e black lines show the observed real-time market price in the absence of ba�ery operations.
�e orange lines show the equilibrium prices a�er incorporating storage operations. �e green lines
in both show the simulated amount of energy held in storage (i.e. the stock) as a percentage of energy
capacity on June, 23, 2016 and December, 29, 2018. �e simulations assume an aggregate storage
capacity of 25,000 MWh.

Table A.5: Skew in Distribution of Ba�ery Operating Pro�ts Across Time Periods

Time Periods - Other Percentiles Time Periods - 99th Percentile

Ba�ery Capacity in MWh: 10 17,764.74 40,679.28
Ba�ery Capacity in MWh: 100 18,707.89 41,452.05
Ba�ery Capacity in MWh: 1000 17,292.98 38,399.72
Ba�ery Capacity in MWh: 5000 17,161.93 35,114.04
Ba�ery Capacity in MWh: 10000 16,433.17 32,413.34
Ba�ery Capacity in MWh: 15000 14,961.54 30,118.45
Ba�ery Capacity in MWh: 25000 12,145.14 26,559.53
Ba�ery Capacity in MWh: 50000 7,388.77 20,621.49

Notes: �e �rst column lists the aggregate ba�ery capacity. �e second column indicates the total revenue a ba�ery
owner would earn between 2016–19 summed over the least pro�table 99 percent of time periods. �e third column
lists the total revenue a ba�ery owner would earn summed over the most pro�table 1 percent of time periods. All
numbers are in $/MWh of capacity.
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Table A.6: Robustness Checks: Ba�ery Flow Return Regressions

Ba�ery Flow Return Per Unit Capacity ($/kWh)
(1) (2) (3) (4)

ln(K∗) -2.832 -2.832 -2.832 -2.832
(2.195) (2.195) (2.196) (2.195)

Renewable Share (%) 10.04∗∗ 9.857∗∗ 7.853 17.17
(4.229) (4.542) (4.779) (14.41)

ln(K∗) × Renewable Share (%) -0.6883∗∗∗ -0.6883∗∗∗ -0.6883∗∗∗ -0.6883∗∗∗
(0.1321) (0.1321) (0.1321) (0.1321)

Peak Load (Mean) 0.1573∗ 0.4517∗∗
(0.0878) (0.2268)

Load (Mean) 0.1760
(0.1258)

O�-Peak Load (Mean) -0.4900
(0.3610)

(Renewable Share)2 -0.2735
(0.3318)

Observations 1,664 1,664 1,664 1,664
R2 0.41319 0.41069 0.41648 0.40806
Within R2 0.09888 0.09504 0.10393 0.09100

Controls + week of year �xed e�ects X X X X

Notes: �e dependent variable is the annual �ow return per kWh of storage capacity. Each obser-
vation represents a single week of the sample for a single storage capacity. All columns include
controls for the mean natural gas price over the week and the Sacramento Valley hydroelectric wa-
ter year index (WYI) associated with that week. Peak load is the mean load between 5 PM and 9 PM
during the week; o�-peak load is the mean load at all other times. We cluster standard errors by
week of sample.

Figure A.8: Ba�ery Output and Equilibrium Prices on June 15, 2019

(a) Ba�ery Output per Five-Minute Interval (b) Equilibrium Prices (Five-Minute)

Notes: Each line plots a counterfactual outcome on June 15, 2019. All models assume 10,000 MWh of
aggregate ba�ery capacity.
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B Battery Market Structure

�is appendix documents the evolving industry structure of ba�ery storage in the
California electricity market over the past several years. Before 2020, most ba�ery
storage projects were small in scale (e.g., less than 40 MW).52 �is changed starting
in 2020, with the development of the Gateway Energy Storage System in California,
which has 250 MW of capacity ba�ery storage.53 Following this trend, Paci�c Gas
and Electric (PG&E)—California’s largest investor-owned utility—unveiled the Moss
Landing site for ba�ery storage in collaboration with Tesla in June 2022. �e Moss
Landing facility composed 182.5 MW of the 955.5 MW total storage capacity operated
by PG&E. With the Moss Landing Ba�ery Storage Project beginning operations in June
of 2022, California’s Independent System Operator (CAISO) had just over 3,160 MW
of ba�ery storage capacity, with an additional 700 MW of planned storage capacity
scheduled to come online later that month (CAISO, 2022).

Table B.1: Industry Structure of the CAISO Ba�ery Market

2018 2020 2022
Number of Entities 17 28 70
Total Capacity (MW) 233.3 528.9 4737.8
Top 4 Share 67% 71% 29%
HHI 1347 2522 432
Avg. Capacity (MW) 13.7 18.9 67.7

Notes: Calculations by authors from EIA Form 860. Sample in-
cludes all operating ba�ery plants in California in each of the re-
spective years. Market shares based on capacity.

Table B.1 provides some descriptive statistics of the industry structure of Cali-
fornia’s ba�ery market between 2018 and 2022. We calculate the statistics using the
entity-level capacity information provided by the Energy Information Administration
(EIA) in Form 860. �is table indicates several pa�erns. First, the growth in ba�ery
capacity from 2018 to 2022 was substantial. For instance, in 2018, the total amount
of ba�ery capacity operating in California was negligible, amounting to less than 240
MW. But, ba�ery capacity grew by nearly 2000% over this time frame. Second, there

52For an overview of the growth of ba�ery storage projects, see EIA (2022b).
53�e Gateway Energy Storage System is managed and operated by LS Power, which also owns the

40MW Vista Project which came online in 2018 (Spector, 2020).
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has been a sizable uptick in the number of �rms operating ba�ery storage facilities in
California from 17 �rms in 2018 up to 70 �rms in 2022.

�ird, ba�ery market concentration fell markedly from 2020 to 2022 (as measured
by capacities) in terms of both the top-four share and the Her�ndahl-
Hirschman Index (HHI). In the earliest years of ba�ery entry to the California market,
total capacity was relatively small and the four largest operating companies owned 71%
of ba�ery capacity, implying a ba�ery market HHI of 2,522. In contrast, many new
operating companies entered the ba�ery market in 2022, which led to both a large
increase in the market’s total capacity and a major reduction in the concentration of
ownership. Speci�cally, the combined market share of the four largest operating fell
to just 29% and the market HHI dropped to 432 in 2022.

While the statistics presented above are useful in characterizing how the industry
structure has evolved, there are a couple of important caveats.

First, the reported market shares and HHIs are based on operating companies’
reported names on EIA Form 860. In our calculations, we assume that a di�erent
operating company name implies a di�erent �rm, but we cannot rule out that unique
operating companies may be owned by a common parent company. Second, because
the ba�ery market is changing rapidly over time, the current market structure does
not necessarily guarantee that such trends will continue in the future.

C Robustness to SupplyRelationship Functional Form

We explore the robustness of our results to our chosen functional form for the supply
relationship. Our main results are based on the Pirrong (2012) model, which has been
used in the commodity storage literature. We re-estimate our model using a functional
form for the supply relationship based on the cost function in Ryan (2012) and Fowlie
et al. (2016) (henceforth, R/FRR).54 R/FRR used this functional form to estimate costs
for cement plants, noting that this cost function accounts for increasing costs near
capacity, which gives the function the “hockey stick” shape common in the electricity
generation industry” (Ryan, 2012, p. 1029).

54Another alternative to estimate the supply relationship would be to use generator-level data on
heat rates and capacities to infer a market-level dispatch curve using a merit-order approach. We found
this approach to be inferior in explaining the behavior of electricity prices in the wholesale markets.
Online Appendix H provides more details on this point.
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In our case, we estimate a supply relationship and not a cost function. From Sec-
tion 3.2, we require that the supply relationship de�ne a unique εPt for any observed
price, as in (6). We de�ne a supply relationship based on the R/FRR cost function that
is strictly increasing in capacity utilization:

P̃ d(Z|K,K) = θ4 + θ5Z/K + θ61{Z/K > ν}(Z/K − ν)2, (C.1)

where ν (∈ (0, 1)), θ4, θ5 (> 0), and θ6 (> 0) are parameters to estimate. �e parameter
ν represents the point at which the pricing surface starts to bend from linearly increas-
ing in capacity utilization to quadratically increasing. We proceed by estimating our
entire model using the supply relationship motivated by R/FRR instead of Pirrong.55

Table C.1 compares several of our main results to the results using the R/FRR func-
tional form supply relationship. Each panel summarizes a di�erent aspect of the e�ects
of ba�ery capacity. Broadly speaking, we �nd that most results implied from the al-
ternative functional form are similar to those from our base model. In Panel A, we see
that the R/FRR functional predicts slightly muted equilibrium price e�ects relative to
the base model. Speci�cally, the base model with 50,000 MWh of ba�ery capacity pre-
dicts mean peak prices of $35.96/MWh versus $40.30/MWh with the R/FRR functional
form. Panel B shows that our estimates of the expected lifetime revenues per unit of
ba�ery capacity are relatively similar across the two models. Panel C illustrates that
with 50,000 MWh of ba�ery capacity, the R/FRR functional form yields slightly lower
estimates for ba�ery pro�ts and also that storage operations would have a smaller im-
pact on both dispatchable generators’ revenues and renewable generators’ revenues
relative to the base model. Finally, Panel D shows that predicted ba�ery adoption
between the years 2024 to 2030 is remarkably similar across the two speci�cations,
although we see slightly less adoption under the R/FRR functional form.

Importantly, both functional forms require a similar assumption that the deviations
in prices that occur between the real-time market and the day-ahead market reveal
changes in available capacity or transmission. However, these results indicate that our

55Similar to our approach with the Pirrong (2012) form, we use non-linear least squares to estimate
the R/FRR supply relationships, with parameters restrictions as follows: θ4 ∈ [−700, 500], θ5 ∈ [0, 500],
θ6 = [0, 100], ν ∈ [0, 1], κ ∈ [1.01, 4], α ∈ [0, 1]. Unlike with Pirrong, the real-time supply relationship
in (C.1) does not asymptote to P d = ∞ at K. In fewer than 1% of cases with high RTM prices, the
observed RTM price implies Z/K > 1. We simply use these prices, rather than restricting (C.1) to
Z/K = 1.

A13



baseline results are unlikely to be speci�c to a functional form choice, a consequence
of our �exible approach to estimating supply relationships that vary by sample day.
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Table C.1: Robustness of Results to Functional Form

Panel A: Mean Peak Prices by Aggregate Battery Capacity ($/MWh)

Base
Model

R/FRR
Functional

Form

1000 MWh 50.44 51.74
10000 MWh 43.57 48.65
50000 MWh 35.96 40.30

Panel B: Present Value of Expected Lifetime Battery Revenues per Unit
by Aggregate Battery Capacity ($/kWh)

1000 MWh 204.83 192.58
10000 MWh 149.21 176.90
50000 MWh 67.80 93.37

Panel C: Annual Operating Pro�ts/Revenues forK∗ = 50,000 MWh ($1M)

Ba�ery Pro�t per GWh Capacity 5.34 4.71
∆ Dispatchable Generator Revenue Relative to K=0 -1,392.97 -960.74
∆ Solar and Wind Revenue Relative to K=0 -86.69 -33.13

Panel D: Cumulative Battery Adoption by Year (MWh)

2024 0.00 0.00
2026 0.91 0.00
2028 28.99 13.54
2030 263.33 228.89

Notes: Column 1 summarizes key results for our base model that uses the Pirrong (2012) functional
form for the supply relationship. Column 2 reports analogous results from an alternative functional
form (R/FRR) for the supply relationship based on Ryan (2012) and Fowlie et al. (2016). Panel
A compares the counterfactual equilibrium prices across the speci�cations and calculates peak
prices as the mean predicted price between 5 PM and 9 PM across our sample, 2016-2019. Panel B
reports the expected lifetime revenues per unit of ba�ery capacity for di�erent aggregate capacity
levels. �e estimates in Panel B assume that the grid conditions in our sample persist forever
(e.g., renewable energy is held constant). Panel C calculates the change in market participants’
expected annual pro�ts or revenues during our sample period with 50,000 MWh of ba�ery storage
compared to the market with no storage. Panel D uses the adoption model to �nd the expected
cumulative ba�ery capacity over time across the model speci�cations.
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D Details of Supply Relationship Estimation

For each sample day, d, we estimate the supply relationship parameters using net load
and price data from the day-ahead market (DAM) over the previous week. Varia-
tion in these parameters across sample days may be caused by shi�s in natural gas
prUices, changes in the availability of low-cost generation coming from nuclear power
plants and hydroelectric sources, as well as day-to-day changes in generator availabil-
ity and imports and exports from neighboring states. By using the DAM to estimate
the marginal cost curve, our approach allows us to account for market characteris-
tics that vary at a high frequency, while ensuring that our dynamic operations model
remains feasible in that it only uses information that would be available to a storage
operator in bidding in the real-time market.

Turning to speci�cs of the estimation of the supply relationship given in (4), we
facilitate estimation by standardizing each day’s DAM prices and net load forecasts.
For the DAM prices, we subtract the median and divide by the interquartile range
over the sample window. For net load, we divide by the maximum of that sample
window’s net load forecast. Finally, we restrict the parameter domain, Θ, to be such
that θ1 ∈ [−700, 500], θ2 ∈ [0, 500], θ3 ∈ [1.01, 4], κ ∈ [1, 8], α ∈ [0, 1].56 �ese
restrictions ensure that the supply relationship is monotonically increasing in Z̃ for
Z ≤ K .

Turning to the structural unobservable (εP ), conditional on a set of supply relation-
ship parameters for any particular day, we recover a time series of εPt as the shocks
required to rationalize the RTM price observed at time t with the realizations of net
load and lagged net load. At time t, we obtain:

εPt = ln

[
Zt +

(
PRTM
t − θ1

θ2

)−1/θ3]
− ln

[
καZ̃1−α

t

]
, (D.1)

where we use the sample day d estimated values of (θ, κ, α).
As an example of the features of our approach towards modeling the supply rela-

tionship, Figure D.1 provides the supply relationship on June 2, 2016, when net load
was approaching the constraint on available generating capacity. From Figure D.1a, at
5:30 PM, the market equilibrium was near an in�ection point: an increase in net load

56We also compute a perfect foresight model, which uses the same marginal cost curve parameters.
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Figure D.1: Time-Varying Supply Relationship Curve

(a) Price Rises at Capacity Constraint (b) Generation Output at t− 1 shi�s MC

(c) Equilibrium Before Price Spike Event (d) Equilibrium During Price Spike Event

Notes: �is �gure displays supply relationships for June 2, 2016. Figure D.1a shows the market equi-
librium and the implied generation capacity available for a single �ve-minute interval. Figure D.1b
shows how 20% changes in last period’s dispatchable generation would shi� the supply relationship.
Figures D.1c and D.1d show how both the net load and the supply relationship shi�s during a period
when price increased rapidly over a 20-minute span.

would signi�cantly raise equilibrium price, while a decrease in net load would have a
smaller e�ect in decreasing price. Figure D.1b illustrates the importance of ramping
costs in our model. At this same time, a 20% decrease in generation from fossil fuel
generators in the previous period (Z̃) would lead to a substantial price increase, with
a smaller price decrease from a 20% increase in Z̃ .

Figures D.1c and D.1d illustrate how our model rationalizes a rapid change in price
that occurred in the real-time market. At 5:10 PM on June 2, 2016, the real-time market
price was just under $50/MWh, then at 5:30 PM price rises to above $500/MWh. As
evidenced by the change in the supply relationship curves between 5:10 PM (top sub-
panel of c) and 5:30 PM (top sub-panel of d), the model largely rationalizes this price
change as being due to a shock in the available generating capacity, εPt —as opposed to
an anticipated or unanticipated movement along the curve driven by net load—perhaps
due to unplanned generator outages or a transmission congestion event.
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�e assumption that RTM supply relationship �uctuations are due to generator
unavailability—and not a shock common to all generators—is important for our anal-
ysis (see Section 3.2). Table D.1 provides evidence regarding the plausibility of our
modeling assumptions. It displays the results of several regressions of prices in the
day-ahead and real-time markets (and their deviations) on fuel prices as measured by
the daily spot price for natural gas. It shows �rst that daily natural gas prices strongly
impact mean PDAM

t . �e magnitude is consistent with complete pass-through from
natural gas prices to wholesale electricity prices.57 A similar pa�ern holds for PRTM

t .
�is motivates our estimation of separate supply relationship and demand parameters
by sample day. In contrast, when gas prices are high, we �nd no positive associa-
tion with PRTM

t being higher than PDAM
t . In other words, gas price variation does

not appear to be causing price spikes in RTM prices relative to DAM prices. �is lends
credence to our assumption that RTM price spikes are due to generator or transmission
unavailability, which ba�eries can then mitigate, rather than common cost shocks.

Table D.1: Regression Results of Day-Ahead (DAM) and Real-time Market (RTM)
Prices on Natural Gas Price

Dependent Variable:
PDAMt PRTMt PRTMt − PDAMt

Mean Mean 10th 90th Mean 10th 90th
PNG 10.40*** 7.31*** 4.62*** 11.50*** -3.09*** -5.93*** 0.81

(0.58) (0.59) (0.54) (1.01) (0.46) (0.62) (0.63)

R-squared 0.32 0.15 0.09 0.14 0.04 0.06 0.00
Observations 1459 1459 1459 1459 1459 1459 1459

Notes: �is table summarizes the coe�cient estimates on the natural gas price from several regressions
where the dependent variable is a part of the distribution of the daily day-ahead (PDAM

t ) or real-
time (PRTM

t ) market prices or their deviation for that particular day. In all regressions, the unit of
observation is a day, and the sample is all days from 2016 to 2019. We calculate the distribution from
�ve-minute or hourly prices over the day. We report heteroskedasticity consistent standard errors in
parentheses.

Figure D.2 provides the �t of the supply relationship for June 28, 2016. �e maroon
dots show the net load forecasts and DAM price realizations. �e blue solid line shows
the predicted DAM prices as a function of the forecasts of net load from our estimated

57We calculate that the median gas generator in California had a heat rate of 8.79, which should be
scaled up by approximately 5% to account for losses from gross to net generation. �e scaled �gure is
similar to our estimated coe�cient of 10.40.
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model. Finally, the orange dashed line shows the predicted DAM prices as a function
of the forecasts of net load from a model estimated without ramping costs (i.e., α = 1).
By allowing for ramping costs, the solid line is able to explain more of the variation in
the DAM prices than the dashed line, and hence lies closer to the maroon dots.

Figure D.2: Supply Relationship From Day-Ahead Market

Notes: �is �gure displays the day-ahead market prices and forecast of net load for each hour for
June 28, 2016 (maroon dots). Additionally, the �gure displays the estimated supply relationship with
ramping costs (blue solid line) and without ramping costs (orange dashed line). �e reported market
prices are for the CAISO South Zone Trading Hub (SP 15).

E �e Kalman Filter/Smoother

As described in Section 3.2, a complication of our data is that CAISO implements the
day-ahead market (DAM) only at the hourly frequency, reporting prices and forecasts
for net load that are constant over the 12 �ve-minute intervals of each hour. Our
operations model and the real-time market (RTM) prices use a �ve-minute frequency.
�us, our estimation procedure needs to accommodate the mixed-frequency nature of
the data.

We use the Kalman �lter/smoother to temporally disaggregate (i.e., interpolate)
the forecasts of net load to yield a forecast at the �ve-minute frequency. Generically,
assume that a series At is observed only every h periods, and what is observed is the
average of the interim h periods of the latent process at, so At = 1

h

∑h−1
j=0 at−j . Our

objective is to take the observed seriesAt and construct estimates of the latent process
at such that the implied values of the accumulated version of that series, φt, match the
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observable data (At) at the end of the h periods. We cast the problem as a state space
model and use the Kalman �lter/smoother to estimate the latent process (e.g., Proie�i,
2006).

More speci�cally, we use the following state space model:

At = Ht

 at

φt

 ,
 at

φt

 = Mt

 at−1

φt−1

+ Utψt, ψt ∼ N(0, 1),

whereHt is a deterministically time-varying selection matrix58 designed to handle the
missing observations of At; Mt

59 and Ut60 are deterministically time-varying matrices
designed to create the accumulated version of the latent process, φt; and ψt is a serially
independent error term that contributes to the time series variation in the latent pro-
cess of interest at. We use the techniques outlined in Harvey (1989) and Durbin and
Koopman (2012) to recover an estimate of the latent at for each �ve-minute interval in
our sample.61 We then use these estimates to augment our data on the deterministic
portion of net load, XL

s .

F Modeling Battery Capacity Degradation

We calculate the best perceived e�ciency level given capacity as the one that maxi-
mizes an approximation of the expected discounted future value accounting for capac-
ity degradation. For any candidate υp we approximate this value by �rst calculating
the realized pro�ts over 2015 from the solutions to the Bellman equations (2), which
we denote Π(υp). We then calculate the capacity degradation, δ(υp), using Xu et al.

58Ht iterates between the matrix [0 1] on the last period of each hour (the period we observe At,
and [0 0] for the �rst to penultimate period of each hour.

59Mt takes 12 possible values for each period within the hour such that Mt = [1 0; 1/j(t) (j(t)−
1)/j(t)], where j(t) is the period within the hour associated with time period t.

60Ut takes 12 possible values for each period within the hour such that Ut = [1; 1/j(t)], where j(t)
is the period within the hour associated with time period t.

61See Brave et al. (2021) for the explicit recursive formulation of the Kalman �lter/smoother equa-
tions for a temporally aggregated series involving an average.
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(2016), as we discuss below.62

�is allows us to scale these pro�ts by 1− β − δ(υp) which provides the expected
discounted value, with the approximation that the pro�ts in future years will be similar
to pro�ts in the current year. Finally, we solve for υ∗ as:

υ∗ = arg max
υp

Π(υp)

1− β − δ(υp)
. (F.1)

In words, υ∗ is the optimal perceived roundtrip e�ciency for a single agent to maxi-
mize 2015 expected discounted pro�ts, accounting for the capacity degradation gen-
erated by its charge/discharge decisions.

In Xu et al. (2016), capacity degradation depends on: (1) temperature, (2) depth-
of-discharge, (3) state-of-charge, (4) calendar time, and (5) number of cycles. For our
application, we assume that ba�eries are operated at 25◦C (77◦F) throughout the year,
which is the Xu et al. base case.

Let K denote the ba�ery’s capacity this period, K ′ denote its capacity next pe-
riod,63 and gd be the term that determines degradation between the current period and
next period, so that:

K ′ = K exp(−gd). (F.2)

From Xu et al. (2016), gd consists of calendar degradation and cycle degradation.
�e �rst component of the degradation function, calendar degradation gt, is the

portion that occurs regardless of how much the ba�ery is charged or discharged. Cal-
endar degradation is a function of elapsed time as well as the ba�ery’s mean state-
of-charge. Ba�ery capacity will degrade more if the ba�ery is le� idle at full state-of-
charge relative to if the ba�ery is le� idle at 50% state-of-charge. More concretely, at
25◦C, calendar degradation is the following function of elapsed time in seconds, t̃, and
the mean state-of-charge during the time elapsed, σ̄:

gt = 0.000000000414× t̃× exp(1.04(σ̄ − 0.5)). (F.3)

�e second component of the degradation function, cycle degradation, is degrada-
tion a�ributable to operations. Using the Xu et al. notation, de�ne N to be the total

62With a slight abuse of notation, we express Π and δ as functions of υp and suppress the argument
K in this appendix.

63We use a period length of a week, as we discussed in Section 5.2.
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number of cycles that the ba�ery undertakes during a time period, where a full cycle
indicates a ba�ery making a roundtrip of charging and discharging; ni to indicate if
cycle i was a full roundtrip cycle (ni = 1) or a half cycle (ni = 0.5) of either charge
or discharge; and gci to be the cycle degradation during cycle i. �e cycle degradation
gci depends on the mean state-of-charge during cycle i, σi, as well as the depth of dis-
charge of the cycle, δ̃i. �e depth of discharge indicates what fraction of power was
gained or lost during the cycle. Cycle degradation is convexly increasing in the depth
of discharge. E.g., cycling from 0% to 100% once is more damaging than cycling from
25–75% twice. Applying Xu et al. (2016) to the case of 25◦C,

gci = exp(1.04(σi − 0.5))× (140000δ̃i
−0.501

− 123000)−1. (F.4)

We combine the di�erent degradation terms to write:

gd = gt +
N∑
i

nigci. (F.5)

From (F.3)–(F.5), capacity degradation gd is a function of t̃, σ̄, ni, δ̃i, and σi, ∀i =

1, . . . , N .
Following Xu et al. (2016), we perform the following algorithm to simulate capacity

degradation on our evaluation sample using υ∗:64

1. Solve the optimal policy for a given week. Recall that we solve for policies sep-
arately for each day within the week and that our policy functions for the eval-
uation sample incorporate a heuristic approach that limits cycling due to degra-
dation.

2. Use the optimal policy from (1) and the realized stream of net load residuals εL,
price residuals εP , and supply curve parameters across all time periods in the
week to simulate charge/discharge actions.

• Record the ba�eries’ state-of-charge for each �ve-minute time interval of
the simulation.

64Our algorithm for the training sample is similar, but we calculate it over the entire 2015 training
sample period (rather than separately by each week), use perfect foresight policies, and evaluate it
separately across candidate values of υp.
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3. Calculate gt over the simulation period using (F.3).

• Use the recorded state-of-charge path to calculate the mean state-of-charge
over the simulation period, σ̄.

• Over one week, t̃ = 60× 60× 24× 7 = 604, 800.

4. Feed the recorded state-of-charge path into a rain�ow cycle counting algorithm.

• See h�ps://www.mathworks.com/matlabcentral/�leexchange/3026-rain�ow-
counting-algorithm.

• �e rain�ow counting algorithm returns N , ni, δ̃i, and σi, ∀i = 1, . . . , N .
In words, it returns the number of cycles and whether each cycle is full or
half, and determines the depth-of-discharge and mean state-of-charge for
each cycle.

5. Calculate gci,∀i = 1, . . . , N using (F.4).

6. Calculate the total degradation rate exp(−gd) for each week-long simulation
using the above estimates and (F.5) and (F.2).

Finally, we note that this formulation implicitly assumes that both power and en-
ergy capacity degrade through cycling. �e engineering literature shows that primar-
ily energy capacity should degrade. �erefore, our calculation should provide a lower
bound on the social value of storage.

G Details of Battery Capital Costs Estimation

�is appendix provides details on our estimation of ba�ery capital costs. �e National
Renewable Energy Laboratory (NREL) cost projections in Figure 2a motivate the func-
tional form we use in (12). In particular, they demonstrate: (i) a downward trend in
costs, (ii) a non-linear trajectory to costs, (iii) an increase in the uncertainty the further
we are in the future, and (iv) positive skewness in the distribution of future costs. �e
downward trend in costs motivates the dri� term in our model; the non-linear trajec-
tory motivates the exponential formulation; the increasing level of uncertainty in the
forecast uncertainty motivates the unit-root (in logarithms) formulation of the model;

A23

 https://www.mathworks.com/matlabcentral/fileexchange/3026-rainflow-counting-algorithm
 https://www.mathworks.com/matlabcentral/fileexchange/3026-rainflow-counting-algorithm


and the positive skewness in the cost assessments justi�es the log-normal distribution
for the shock process.

Our estimation treats the �rst year of our sample, 2018, as y = 0. We rescale costs
in year y to be relative to initial cost c0, so that c̃y ≡ cy/c0. Taking logs of both sides
of the (rescaled) capital cost evolution equation (12) from Section 5.2, we obtain:

ln (c̃y)− ln (c̃0)︸ ︷︷ ︸
ln 1=0

= τ × y +

y∑
1

ξy. (G.1)

We use a method of moments approach to recover the two parameters τ and σc.
Using (G.1), we derive the following moment conditions. First moment:

E[ln (c̃y)] = τ × y. (G.2)

Second moment:

Var [ln (c̃y)] = Var
[
yτ +

y∑
1

ξy

]

⇒ Var [ln (c̃y)] = Var [yτ ] + Var
[

y∑
1

ξy

]
⇒ Var [ln (c̃y)|y] = y × Var [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × SD [ξy]

⇒ SD [ln (c̃y)|y] =
√
y × σ. (G.3)

We estimate the parameters τ and σc that solve the two moment conditions by
estimating two univariate regressions, pooling across the set of cost projections. For
the �rst regression, the dependent variable is ln (c̃y), and the independent variable is
y.

For the second regression, the dependent variable is the standard deviation of all
the logged cost realizations ln (c̃y) conditional on y and the independent variable is
√
y. To accommodate the variation in the number of cost assessments over time, the

second regression uses weights based on the number of cost projections that were
made for that year.65

65Figure 2a shows that years that are further in the future tend to have fewer cost projections.
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Importantly, we do not observe actual realizations of the ba�ery capital cost pro-
cess, only the set of projected cost realizations from Cole and Frazier (2019). �erefore,
our estimation treats each cost projection (i.e., each line in Figure 2a) as a realization
of the cost process. Our estimates for the cost process are τ̂ = −0.044 (with a stan-
dard error of 0.001) and σ̂c = 0.064 (with a standard error of 0.003). Following Cole
and Frazier (2019), our simulations use an initial condition for capital costs in 2018 of
c2018=$380/kWh. Since we use NREL data, our estimates pertain exclusively to lithium-
ion ba�ery costs, and do not include alternative storage technologies or account for
learning-by-doing.

H Identifying the Counterfactual Supply Relation-

ship with CEMS Cost Data

�is appendix considers an alternative way to identify dispatchable generator pricing
under counterfactual environments, that we considered but did not use in our main
analysis. �is method involves calculating the observable components of marginal
costs at the generator level. We could then use these calculated costs to recover the
sum of markups and ramping costs. Controlling for marginal costs in this way could
also potentially allow us to estimate separate ramping costs by generator type.

Towards these ends, we gathered all the generators that report their generation
and fuel consumption in the Environmental Protection Agency’s (EPA) Continuous
Emissions Monitoring System (CEMS) database in the state of California, calculating
their capacity and heat rate following Gowrisankaran et al. (2022). We constructed an
observable marginal cost for each generator by using the following formula:

MCit = Heat Rateit × Fuel Pricet × (1.0526) + 2.37, (H.1)

where Fuel Pricet is the spot price for fuel (e.g., natural gas) and can vary over time,
the scale 1.0526 re�ects the adjustment for approximated 5% losses from gross to net
generation (Gra� Zivin et al., 2014), and $2.37 re�ects an adjustment for variable op-
erations and maintenance (O&M) costs from the CEC 2019 report (California Energy
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Commission, 2019).66 Next, we constructed an industry observable marginal cost curve
by sorting the generators from lowest to highest observable marginal cost and assum-
ing constant observable marginal costs for each generator up to its capacity. When
combined with information on total net generation, the industry observable marginal
cost curve can be used to predict the market clearing price, absent misspeci�cations,
other costs, and market power.

We de�ned the set of available generators in the market at each hour with two
di�erent approaches:

1. For every hour, we assume that only generators that produced in that hour are
available to produce.

2. For every month, we assume that generators that produce at some hour in that
month are available to produce at every hour in that month.

For both approaches, we implemented a robustness check where we restrict the gener-
ators in the sample to those in Southern California, which we de�ne as below latitude
36.7378 (essentially south of Fresno).

Figure H.1 displays the industry observable marginal cost curve, using July 2016
natural gas prices and method 2 for calculating the set of available generators. We ob-
serve the hockey-stick nature of the industry observable marginal cost curve: costs are
below $40MWh for much of the domain of the curve, but tick up sharply a�er 30,000
MWh. We plot the distribution of the hourly total generation from all the units in the
CEMS data during July 2016 on top of the industry observable marginal cost curve.
Surprisingly, we do not observe even one hour with net load su�cient to reach the
steep part of the cost curve. �is �gure shows that this cost curve is unlikely to repro-
duce the observed wholesale electricity price spikes, which are a crucial component
of the revenues that ba�eries earn.

Figure H.2 displays the cost curve and distribution of total hourly generation for
July 2016, but now for generators in Southern California. While both the cost curve
and distribution of total hourly generation are shi�ed to the le�, we observe the same
pa�ern as in Figure H.1.

Next, we summarize the descriptive evidence of how the two measures of industry
observable marginal cost relate to the day-ahead market prices we observe for the

66Note that the marginal costs in (H.1) do not include ramping costs.
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SP-15 hub. To do this, we run regressions of the following form:

PDAM
t = β0 + β1MCt + εt

where PDAM
t is the day-ahead market price and MCt is industry marginal costs (de-

�ned using both methods). In some speci�cations, we include a day-of-sample �xed
e�ect, in which case the coe�cient β1 is identi�ed only from within-day (hourly) vari-
ation in market-level marginal costs and day-ahead market prices.

Tables H.1 reports the coe�cient estimates from these speci�cations for all gener-
ators in California, while Table H.2 includes only Southern California generators. �e
tables show that, without �xed e�ects, industry observable marginal costs explain only
a relatively small fraction—21 percent at the highest—of the overall DAM price varia-
tion. Method 2 performs be�er than method 1 in explaining DAM prices. Nonetheless,
across speci�cations and sample, the highest R2 we observe is 37 percent, implying

Figure H.1: Market-Wide Hourly Generation and Supply Curve

Notes: �is �gure plots the (sorted) distribution of observable marginal costs for each generator in
California (using method 2 to determine available generators) along with the histogram of generation.
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that this approach does not predict the majority of the DAM price variation.
We opted not to use this method for our main simulations because of its lack of pre-

dictive power and the fact that it cannot predict the price spikes observed in the real-
time market. Our supply relationship accounts for four potential forces that we cannot
obtain from the CEMS data: market power, ramping costs, imports, and transmission
constraints. We believe that these forces may explain some of these discrepancies.

Figure H.2: Southern California Hourly Generation and Supply Curve

Notes: �is �gure plots the (sorted) distribution of observable marginal costs for each generator in
Southern California (using method 2 to determine available generators) along with the histogram of
generation.
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Table H.1: Results of Day-Ahead Market Prices on Marginal Costs

Dependent Variable: PDAMt

Industry MC Method 1 Industry MC Method 2
Marginal Cost 0.73 2.63 1.66 15.24

(0.02) (0.34) (0.04) (1.18)
Constant 2.35 -81.16 -3.16 -313.43

(0.63) (14.87) (0.78) (26.94)

Day FEs X X
R-squared 0.16 0.07 0.20 0.37
Observations 34988 34988 34988 34988

Notes: �is table displays coe�cient estimates for regressions of the day-ahead market price on observ-
able marginal costs for all generators in California. We report heteroskedasticity consistent standard
errors in parentheses.

Table H.2: Results of Day-Ahead Market Prices on observable Marginal Costs (South
CA)

Dependent Variable: PDAMt

Industry MC Method 1 Industry MC Method 2
Marginal Cost 0.82 2.28 1.70 11.88

(0.02) (0.26) (0.04) (0.90)
Constant 1.16 -59.22 -4.19 -237.15

(0.67) (10.57) (0.80) (20.71)

Day FEs X X
R-squared 0.17 0.08 0.21 0.33
Observations 34988 34988 34988 34988

Notes: �is table displays coe�cient estimates for regressions of the day-ahead market price on observ-
able marginal costs for all generators in Southern California. We report heteroskedasticity consistent
standard errors in parentheses.
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