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1. Introduction

For decades, federal, state and local governments have directly or indirectly redistributed

income across locations. This redistribution can take many forms: It can be a subsidy for

development of new low-income housing (Davis et al., 2019); a subsidy to local businesses

operating in low-income areas such as Empowerment Zones (Busso et al., 2013); a large-scale

government works projects (Kline and Moretti, 2014); or other forms. Thus, a central area

of investigation in economics is to understand the context in which redistribution across

locations improves welfare.

Recent papers by Fajgelbaum and Gaubert (2019), Rossi-Hansberg et al. (2020) and

Gaubert et al. (2020) extend this tradition by studying optimal transfers of income across

households and locations using sophisticated equilibrium location choice models. The mod-

els include well-documented externalities in production and multiple types of households,

for example low- and high-skill. These papers quantify, using the filter of the calibrated

model, transfers across people and locations that improve expected utility for reasons of

both efficiency and equity.

We show that in location choice models a planner will have three motives to redistribute

resources across locations and people relative to an environment in which households con-

sume the income they generate and do not receive (or pay) transfers. The first, which we

call “across-type equity,” is to narrow inequality in consumption across different types of

households, for example low-skill and high-skill. The second, which we call “efficiency,”

arises from externalities and spillovers across types in production; the planner will transfer

resources to provide incentives for households to internalize the external impacts of their

decisions. Understanding motives for redistribution arising from these first two reasons has

been the focus of recent studies.

We show that a planner has a third reason to redistribute in these models: To equate the

average marginal utility of consumption of otherwise identical households that make different

location choices. A typical prediction is that a planner will redistribute resources from ex-

ante identical households choosing to live and work in high-income locations to households

choosing low-income locations. We call this third motive “within-type transfers.”

To understand why a planner may wish to make within-type transfers in location choice
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models, we need to provide some background. For all locations to be occupied in models with

ex-ante identical households, some households must choose to live in low-income locations.

In an older literature that relies on the Rosen-Roback model (Roback, 1982) to describe the

economic environment, utility in every location is assumed identical and each household is

indifferent as to its location. The Rosen-Roback model implies that population elasticities

are infinite with respect to a small change in location attributes such as consumption or

amenities holding all else fixed.

This infinite elasticity is not realistic and many researchers now use a different frame-

work where utility in every location is not assumed to be equal. Instead, households receive

“location attachment” draws that affect the utility of living in each location. These draws

randomly vary across locations and households, and with these draws included in the model

households are not indifferent to where they live. Some households will not leave their loca-

tion in response to marginal changes in utility, and researchers can calibrate the distribution

of the draws to match empirical population elasticities with respect to changes in wages,

amenities, or other location characteristics. The fact that some households are sticky with

respect to location choice raises the possibility of welfare-improving place-based policies. The

calibration of the distribution of the location attachment draws that generates this stickiness

enables accurate predictions about behavioral responses to policy.

Unfortunately, we document that the exact distribution of these location attachment

draws is fundamentally not identifiable from location choice data: A continuum of distri-

butions predict exactly the same elasticities and probability distribution over all location

choices. We show this lack of identification implies the size and direction of optimal within-

type transfers are not identified, even when a model includes all three motives for redistribu-

tion. Different, untestable assumptions about the distribution of location attachment draws

can lead to large swings in predicted optimal within-type transfers and the uncertainty this

creates potentially swamps predicted redistribution arising from the motives of across-type

equity or efficiency. When researchers compare policies across a number of scenarios we often

do not know the role played by within-type transfers in generating changes to policy as com-

pared to the roles of across-type equity or efficiency. We therefore propose an adjustment

to the standard planning problem that eliminates within-type transfers, while preserving
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motives for the planner to redistribute for reasons of across-type equity or efficiency.

Our paper proceeds as follows. We start by studying a simple model with only one

type of household and no externalities where the only reason for redistribution arises from

within-type transfers. We assume the location attachment draws are iid from the Fréchet

distribution, as is typical. We then derive the result that a planner will redistribute income

from households choosing to live in high-income locations to households choosing to live in

low-income locations.

Next, we use the intuition of optimal unemployment insurance from the work of Chetty

(2006) to show why this result arises. Optimal transfers across locations equate across-

location differences in the average marginal utility of consumption to the deadweight loss in

tax collection arising from a marginal change in these transfers. The Fréchet distribution

implies a particular outcome for differences in the average marginal utility of consumption

across locations. The Fréchet distribution is just one possible distribution for the location

attachment draws. If researchers are only interested in predictions as to how location choices

respond to various changes in wages or amenities, then the choice of the Fréchet from the

class of distributions we describe is harmless, as the other distributions imply exactly the

same location choice elasticities. It is only when researchers wish to study optimal policy

that the choice of the Fréchet has consequences. We show using both theory and simulations

that we can choose from an infinite class of distributions of location attachment draws to

have the following features: (i) the probability distribution over location choices is exactly

the same as when the draws are from the Fréchet but (ii) differences in the average marginal

utility of consumption across locations can vary by a wide margin, fundamentally changing

predicted optimal within-type transfers. We show this uncertainty can overwhelm predicted

transfers arising from across-type equity or efficiency considerations in more complicated

models.

Since location choice data cannot be used to identify the distribution of the location

attachment draws, and therefore optimal within-type transfers, we propose a method for

researchers to set the distribution of these draws that does not change any aspect of the

distribution over location choices or alter any location choice elasticity, but sets differences

in the average marginal utility of consumption across locations equal to zero. In a simple
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model with one type of household and no externalities, after applying our adjustment a

planner will not redistribute resources across locations. In a more complex model, with

multiple types of households and an externality and spillovers across types in production,

our adjustment removes motives for redistribution arising from within-type transfers, but

preserves motives to redistribute arising from across-type equity and efficiency.

2. Proving Lack of Identification of Within-Type Transfers

2.1. A Common Model

We start by considering the predictions of a simple location choice model with no ex-

ternalities and one type of household that is at the core of some more complicated models.

The economy consists of a measure 1 of ex-ante identical households and each household

must choose where to live from one of n = 1, . . . , N discrete locations. Households value

consumption, which is produced and transferrable across locations. Each household living in

location n produces zn units of output. Ln is the measure of households living and working

in n.

Denote cn as consumption enjoyed by each household living in location n, not necessarily

equal to zn. The utility of household i choosing to live in location n is

uni = Ancneni

An are amenities freely enjoyed by all households living in location n. eni is a level of at-

tachment to location n by household i that varies across locations and households. Each

household draws and observes eni for n = 1, . . . , N before making a location choice. House-

holds differ only with respect to these draws. We assume, as is common, that the eni are

drawn iid across locations for each household and iid across all households from the Fréchet

distribution with shape parameter ν.

Consider a planner with the objective to maximize expected utility subject to satisfying

aggregate feasibility,
∑

n znLn =
∑

n cnLn, population feasibility, 1 =
∑

n Ln, and respects

that households choose the location offering the maximum value of uni, i.e. household i

chooses n∗i when n∗i = argmax {uni}Nn=1. We show in Appendix A that a planner that
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maximizes expected utility will relate the per-household consumption differential between

any two locations n and n′ to the per-household income differential of those locations as

follows

cn − cn′ = (1− τ) (zn − zn′) (1)

with τ =
1

1 + ν

Equation (1) illustrates what we call within-type transfers, as the planner optimally redis-

tributes consumption from households living in high income locations to those living in low

income locations. Households choosing to work and live in low income locations receive sub-

sidies that are funded by otherwise identical households choosing to work to work and live

in high income locations. At a typical calibration of ν = 2 (Rossi-Hansberg et al., 2020),

τ = 1/3.

2.2. Economics of Within-Type Transfers

So why does the planner wish to redistribute income in this model? After all, there

are no externalities and all households have the ability to choose any location in which to

live and earn the income of that location. We use intuition from the literature on optimal

unemployment insurance show why a planner makes within-type transfers. Consider a simple

setup with only 2 locations where locations differ in their income per household, denoted w1

and w2. Assume residents of location 2 pay a tax t to finance a subsidy b paid to residents

of location 1. For example, when z1 = w1 and z2 = w2 it can be shown equation (1) implies

b =
(1− L1) (z2 − z1)

1 + ν
and t =

L1 (z2 − z1)

1 + ν

Each household draws idiosyncratic preferences for locations we label as ε1 and ε2 and

chooses the location that provides the highest utility. Utility is derived from consumption

bundled with each individual’s draws of ε1 and ε2. Expected utility in this simple model is

V = Eε1,ε2 max
(
u
(
w1 + b, ε1

)
, u
(
w2 − t(b), ε2

))
with t(b) =

L1

1− L1

b
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The second expression is the government balanced budget condition assuming there is a

measure 1 of households in the economy.

The optimal subsidy is the value of b at which
dV

db
= 0. To characterize this optimal

subsidy, begin with the expression,

dV

db
=

∂V

∂b
+
dt

db

∂V

∂t
+
(∂L1

∂b
+
dt

db

∂L1

∂t

)
�
�
�∂V

∂L1︸︷︷︸
=0

Importantly, the third term is equal to zero because individuals who switch locations in

response to a marginal policy change receive the same utility in both locations.1

The partial effects of changing b and t depend only on the populations of the two locations

and the average marginal utility of consumption of residents in each location, denoted µ1

and µ2:

∂V

∂b
= L1

≡µ1︷ ︸︸ ︷
E

[
∂u
(
w1 + b, ε1

)
∂w1

∣∣∣∣∣u(w1 + b, ε1

)
> u

(
w2 − t, ε2

)]
∂V

∂t
= −(1− L1)E

[
∂u
(
w2 − t, ε1

)
∂w2

∣∣∣∣∣u(w1 + b, ε1

)
< u

(
w2 − t, ε2

)]
︸ ︷︷ ︸

≡µ2

The government balanced budget condition implies that

dt

db
=

L1

1− L1

(
1 +

dL1

db
b
L1

1− L1

)

The first term is the mechanical change in the tax is necessary to finance the change in

transfers in the absence of any behavioral responses. The second term captures the fact that

an additional tax increase is necessary to offset the population response to the change in

1dt/db is not a partial derivative both because people move as a result of the policy and because of the
need to balance the budget.
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taxes/transfers. We can now write

dV

db
= L1µ1 −

L1

1− L1

(
1 +

dL1

db
b
L1

1− L1

)
(1− L1)µ2

= L1

[
µ1 − µ2

(
1 +

dL1

db
b
L1

1− L1

)]

In the case when the current transfer is b = 0, the planner wishes to transfer consumption

to the location with the higher marginal utility of consumption. At the optimal transfer b

(satisfying dV/db = 0), we have

µ1 − µ2

µ2

=
dL1

db
b
L1

1− L1

(2)

This result is exactly analogous to the Baily-Chetty formula of Chetty (2006) characterizing

the optimal generosity of unemployment insurance. The left-hand side is the insurance

benefit of moving 1 dollar (in total) from location 2 to location 1, which, for most commonly

considered utility functions, is decreasing in b. The right-hand side describes the marginal

cost of raising one dollar in total from location 2, which captures the fact that as benefits

rise, the population of location 1 also increases which causes an excess burden of transferring

one additional dollar.

2.3. Location Choice and Location Specific Preference Draws

In a two location model where ein are iid drawn from the Fréchet, we can derive the

left-hand side of equation (2). A household chooses location 1 whenever e1 > e2t where

t = A2c2/ (A1c1). This implies the following expected values

E
[
e1

∣∣ e1 > e2t
]

= (1 + tν)1/ν Γ

(
1− 1

ν

)
E
[
e2

∣∣ e2 > e1/t
]

= (1 + (1/t)ν)
1/ν

Γ

(
1− 1

ν

)

where Γ is the gamma function. The average marginal utility of consumption of households

living in locations 1 and 2 is equal to the appropriate expression above multiplied by A1

for location 1 and A2 for location 2. After cancelling redundant terms, the left-hand side of
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equation (2) is equal to2

(
A1

A2

)[
1 + tν

1 + (1/t)ν

]1/ν

− 1 =

(
A1

A2

)
(A1c1)ν + (A2c2)ν

(A1c1)ν

(A2c2)ν + (A1c1)ν

(A2c2)ν


1/ν

− 1

=
1/c1 − 1/c2

1/c2

We now write down a transformation of the location attachment draws that yields exactly

the same probability distribution over all location choices but different values for the left-

hand side of equation (2) and therefore different optimal within-type transfers. Start by

noting that the optimal location choice for household i, call it n∗i , satisfies

n∗i = argmax [A1c1e1i, A2c2e2i, . . . , ANcNeNi]

Suppose a researcher had considered a different distribution for the location attachment

draws, ẽni, such that the optimal location choice for household i resulting from this distri-

bution, call it ñ∗i , satisfies

ñ∗i = argmax [A1c1ẽ1i, A2c2ẽ2i, . . . , ANcN ẽNi]

When ẽni = Dieni, with Di random but taking on a single realized value for each household

i, optimal location choices for every household are identical to those when household utility

is Ancneni:

ñ∗i = argmax [A1c1ẽ1i, A2c2ẽ2i, . . . , ANcN ẽNi]

= argmax [A1c1Die1i, A2c2Die2i, . . . , ANcNDieNi]

= argmax [A1c1e1i, A2c2e2i, . . . , ANcNeNi]

= n∗i

2Note that the Fréchet shape parameter ν only determines the marginal deadweight loss from increasing
transfers, the right-hand side of equation (2). This expression shows ν does not determine any benefits, the
left-hand side of equation (2).
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Di is fundamentally not identifiable from location choice data as optimal choices from ẽni

are all exactly the same as with eni.
3

2.4. Lack of Identification of Optimal Transfers

For predicting population responses to various changes in location attributes such as

consumption and amenities, setting Di = 1 for all households is harmless as location choice

predictions do not depend on Di. For the purposes of deriving optimal within-type transfers,

setting Di = 1 for all households is an arbitrary assumption with significant consequences

as any correlation of Di with one or more of the draws of eni for n = 1, . . . , N can change

predicted optimal transfers.

To see this, define utility in location n for household i as

Ancnẽni with ẽni = Dieni

where eni are drawn iid from the Fréchet and Di is defined as:

Di =

[
N∏
n=1

eφnni

]−1

The parameters φ1, φ2, . . . , φN govern the correlation of Di and each eni; for now, we as-

sume these parameters are the same for all households. Throughout the text, we describe

φ1, φ2, . . . , φN as nuisance parameters since they are not identifiable from location choice

data. Now consider three cases of (φ1, φ2) for the two location model with A1 = A2 = 1 and

z1 = z2.

3We can use the results of Matzkin (1993) to formally state what is identified in this model. Define utility
in location n for household i as AncnDieni. For arbitrary location m, the probability a household chooses
to live in m, call it ρm, is

ρm
(
{An}Nn=1, {cn}Nn=1

)
= Prob{logAm + log cm + logDi + log emi > logAn + log cn + logDi + log eni} for n 6= m

= Prob{log emi − log eni > logAn − logAm + log cn − log cm} for n 6= m

The joint CDF of the N−1 terms (log emi − log eni) is all that is nonparametrically identified, assuming
sufficient continuous variation in consumption or amenities. Notice that the Di terms do not appear and
therefore they are not identifiable.
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• Case 1: φ1 = φ2 = 0

Utility in location 1 = c1e1i and Utility in location 2 = c2e2i

Household i chooses location 1 as long as e1i/e2i ≥ c2/c1. Given the eni are drawn iid

from the Fréchet distribution, optimal transfers are characterized by equation (1), and

since z1 = z2 the planner optimally sets c1 = c2 and no resources are transferred across

locations.

• Case 2: φ1 = 0 and φ2 = 1

Utility in location 1 = c1

(
e1i

e2i

)
and Utility in location 2 = c2

Household i chooses location 1 as long as e1i/e2i ≥ c2/c1 implying that for any given

values of e1i and e2i, households choose exactly the same locations as in case 1.

The planner will not optimally choose to set c1 = c2. Suppose that c1 = c2 and

households choose location 1 whenever e1i/e2i > 1. The marginal utility of consumption

for all households living in location 2 is always 1. The average marginal utility of

consumption for all households choosing to live in location 1 at at this allocation is

E

[
e1i

e2i

∣∣ e1i

e2i

> 1

]
> 1

When c1 = c2, the average marginal utility of consumption of residents optimally

choosing to live in location 1 is strictly larger than the average marginal utility of

consumption of residents choosing to live in location 2. Therefore, the planner will

transfer some consumption from location 2 to location 1 and c1 > c2.

• Case 3: φ1 = 1 and φ2 = 0 such that

Utility in location 1 = c1 and Utility in location 2 = c2

(
e2i

e1i

)

As with cases 1 and 2, household i chooses location 1 as long as e1i/e2i ≥ c2/c1. For any
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given values of e1i and e2i, households optimally sort into exactly the same locations

as in cases 1 and 2. Now consider the allocation c1 = c2, such that households choose

to live in location 2 whenever e2i/e1i > 1. The marginal utility of consumption for all

households living in location 1 is 1. The average marginal utility of consumption for

all households choosing to live in location 2 is

E

[
e2i

e1i

∣∣ e2i

e1i

> 1

]
> 1

At the allocation c1 = c2, the average marginal utility of consumption of households

optimally choosing to live in location 2 is strictly larger than the average marginal

utility of consumption of households choosing to live in location 1. The planner will

transfer some consumption from location 1 to location 2 and c2 > c1, exactly the

opposite result as in case 2.

In each of cases 1-3, households choose to live in location 1 as long as e1i/e2i ≥ c2/c1 and

this choice is completely independent of the values of φ1 and φ2. Yet in case 1 the planner

chooses no transfers, in case 2 the planner transfers consumption from location 2 to location

1, and in case 3 the planner transfers consumption from location 1 to location 2. Thus, the

size and direction of the transfers is determined by the nuisance parameters φ1 and φ2.

This simple example is sufficient for the general point we wish to make: Since φ1, φ2, . . . , φN

are not identified from location choice data, optimal within-type transfers across locations

are also not identified.

2.5. Numerical Examples

To illustrate the potential quantitative significance of this problem, we simulate the

planning solution to a two location version of the model when utility for household i in

location n is defined as

uni = Ancnẽni

with ẽni = Dieni and Di =

[
N∏
n=1

eφnni

]−1
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where eni is drawn iid from the Fréchet distribution with shape parameter ν = 2. In simula-

tions we consider values of φ1 ∈ {0.0, 0.5, 1.0} and φ2 ∈ {0.0, 0.5, 1.0}. For all combinations

of φ1 and φ2, we consider the case of equally productive locations, z1 = z2 = 1.0, and location

1 more productive, z1 = 4/3 and z2 = 2/3. We set A1 = A2 = 1.0 in all simulations.

Given the draws of ẽni, we assume each household chooses the location that provides

the highest level of utility and then determine the allocation of consumption to residents of

each location that maximizes overall average utility in the economy, subject to the resource

constraint
∑
n

Ln (zn − cn) = 0 and population constraint
∑
n

Ln = 1. Note that when φ1 =

φ2 = 1, ẽni is drawn iid from the Weibull distribution, the focus of an early draft of our

paper.

The top panel of Figure 1 shows results for the case in which residents of both locations are

equally productive and the bottom panel shows results when residents of location 1 are more

productive. The y-axis of the top panel marks per-household consumption in location 1 less

that of location 2, c1−c2, and the y-axis of the bottom panel marks the ratio of the difference

in per-household consumption to the difference in per-household income, (c1 − c2) / (z1 − z2).

The x-axis of both panels marks the value of φ2 and the different lines show results for various

values of φ1. The dashed black lines mark allocations where consumption in each location

equals production in that location and no within-type transfers occur.

The case of iid draws from the Fréchet is shown at (φ1, φ2) = (0, 0), the dark blue circle in

each panel. In this case, when the two locations are equally productive, there are no transfers

(top panel); and when households in location 2 are more productive than in location 1, the

planner redistributes (c1 − c2) / (z1 − z2) = 2/3 = 1− (1 + ν)−1 of that difference, exactly as

predicted by equation (1). Unfortunately, Figure 1 also makes clear that optimal transfers

can vary quite a lot depending on the other values of the nuisance parameters (φ1, φ2). For

any value of φ1, increasing φ2 – a movement from left to right along any given line – increases

consumption allocated to households living in location 1 relative to those living in location

2. For any given value of φ2, increasing φ1 – moving down from a higher line to a lower line

holding φ2 fixed – increases allocations of consumption to households living in location 2

relative to those in location 1. These patterns are consistent with the intuition of the three

cases discussed in section 2.4.
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3. Method for Eliminating Motive for Within-Type Transfers

3.1. The Method

Since location choice data do not identify optimal within-type transfers, we advocate

setting the distribution of the location attachment draws such that the planner optimally

chooses no within-type transfers in a simple model with one type of household and no exter-

nalities. Below, we propose a 5-step algorithm to find a distribution of location attachment

draws that accomplishes this objective and does not change any household’s optimal location

choice. Throughout the text, we describe this algorithm as implementing an adjustment to

the planning problem:

1. Guess a variable called ωi = 1.0 for all households in the simulation

2. Multiply the utility function by ωi. Find the allocation of cτn for all n = 1, . . . , N and

τ = 1, . . . , T that is feasible and maximizes the planner’s objectives at the current

guess for ωi.

3. Given each household’s optimal choice at this allocation, n̂i, compute ω̂i as the inverse

of the marginal utility of consumption for that household at the optimally chosen

location. For example, using the framework described in section 2.5, if we define n̂i as

the optimally chosen location for household i at the current guess of cτn then we set

ω̂i = (An̂i Di en̂i)
−1.

4. Compute ω′i = ωi + d · (ω̂i − ωi), where d ∈ (0, 1] is a dampening factor.

5. Update ωi = ω′i and repeat steps 2-5 until cτn has converged.

This algorithm finds the solution the planner’s problem that is consistent with the marginal

utility of consumption equal to 1 for all households, thus setting the left-hand side of equation

(2) to zero.

3.2. The Adjustment Applied to the Simple Model

Denote the planner’s objective asO. In the model we have analyzed so far, our adjustment

normalizes the location attachment draws as follows

O = Ei

[
max
n
{Ancnêni}Nn=1

]
where êni = ωiẽni and ẽni = Dieni (3)
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In the above, êni are the normalized draws and ωi is set to the inverse of the marginal

utility of consumption for household i at the planner’s optimal allocation. Explaining, if

household i optimally chooses location n∗i given the planner’s allocation c∗1, c
∗
2, . . . , c

∗
N , then

ωi =
(
An∗i Di en∗i i

)−1
. Since ωi is fixed across locations for any given household it does

not affect any location choices of households; additionally, since ωi rescales the draws such

that all households have the same marginal utility of consumption of 1, the planner has

no motives for within-type transfers. Given any initial researcher chosen distribution of

location attachment draws ẽni, êni implies exactly the same optimal location choices but

removes motives for the planner to implement within-type transfers.

Referring to Figure 1, when we set ωi in this way, the planner optimally chooses the

dashed line at 0.0 in the top panel (c1 = c2 = z1 = z2) and the dashed line at 1.0 in the

bottom panel for any combination of the nuisance parameters (φ1, φ2) determining Di.

3.3. More Complicated Models

3.3.1. Theory

In our introduction, we describe three possible motives for a planner to redistribute re-

sources across people and locations: Across-type equity, efficiency, and within-type transfers.

So far, we have analyzed a simple model where a planner has no motives for redistribution

due to across-type equity (as there is only one type of household) or efficiency (as there are

no externalities). We now show that in a more complicated model where all three motives

may be present, our adjustment removes motives for within-type redistribution but motives

for redistribution due to across-type equity and efficiency remain.

Consider an environment in which there are are n = 1, . . . , N discrete locations, τ =

1, . . . , T distinct types of people, and possible externalities and complementarities across

types in production. We assume a planner can choose any level of consumption for any type

of household in any location, as long as the overall allocation satisfies aggregate feasibility

conditions and respects individual optimization, i.e. households are assumed to optimally

choose locations given their location attachment draws and given the allocation of consump-

tion across locations.4

4In this framework, the planner does not need to and will not want to implement across-location transfers
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The planner chooses consumption for each type in each location to maximize the social

welfare function

∑
τ

ΠτLτU (V τ ) (4)

where Πτ is the planner’s Pareto weight on type τ households in the economy, Lτ is the

total population of type τ , V τ is the expected utility associated with a type τ household and

U is a concave function. The constraints on the problem are listed below, with Lagrange

multipliers placed to the left of the brackets:

Expected Utility, by type: τ = 1, . . . , T λτ
[
Eeni

(
max
n′

uτn′i

)
− V τ

]
= 0

Resource constraint: P

[∑
n

∑
τ
tτnL

τ
n

]
= 0

Population, by type: τ = 1, . . . , T γτ
[
Lτ −

∑
n
Lτn

]
= 0

Optimization, by type and location: τ = 1, . . . , T and n = 1, . . . , N W τ
n [ρτnL

τ − Lτn] = 0

Lτn is the population of type τ in location n, uτni for agent i of type τ is the function

un (cn, Di, eni) with cτn = zτn − tτn where zτn is income generated by one type τ worker in

location n.5 ρτn is the probability that n = argmaxn′ u
τ
n′i for n′ = 1, . . . , N .

In Appendix B.1 we derive the solution to this problem; below we copy the equation

from that Appendix that characterizes optimal location- and type-specific transfers for type

τ in location n

κU τΠτµτn − UΠµ̄

UΠµ̄︸ ︷︷ ︸ −
κετn
UΠµ̄︸ ︷︷ ︸ =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
︸ ︷︷ ︸

(1) (2) (3)

This solution is similar to the solution of the simple model, equation (2), but modified to

as a means to implement across-type transfers. We can modify the environment to restrict transfers across
locations to be identical across types. If different types tend to occupy different locations, then across-
location transfers accomplish some across-type redistribution (Gaubert et al., 2020). This changes details of
the solution but does not affect our general conclusions.

5This can be a function of Lτ
′

n for τ ′ = 1, . . . , T , for example zτn = z
(
zn, L

1
n, L

2
n, . . . , L

T
n

)
where zn is TFP

for location N .
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allow for multiple types of people in the economy and the possibility of complementarities

across types and externalities in production. For a given type τ in location n, the first term

on the left-hand side captures the difference in the Pareto-weighted (κU τΠτ ) marginal utility

of consumption of that type in that location (µτn) from the economywide-average marginal

utility of consumption (UΠµ̄) and the second term captures the economy-wide utility net

benefit of production spillovers generated by that type in that location (κετn).6 The difference

of these two terms is equated to the marginal deadweight loss from increasing transfers, the

third term.

In Appendix B.2, we derive the impact of our procedure on the solution for the optimal

transfer to type τ in location n, which we copy below

(
κU τΠτ − UΠ

)
− κετn =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
(5)

After the adjustment, the planner continues to have motives to transfer resources across

types and locations. The right-hand side of equation (5), the marginal deadweight loss

from increasing transfers, does not change. The term in parentheses on the left-hand side,

κU τΠτ−UΠ, is constant across locations for any given type, but this term allows for transfers

arising from motives of across-type equity based on differences in Pareto weights Πτ and the

slope of the concave function U evaluated at the optimal policy.7 The term κετn measures the

impact of spillovers and externalities in production and within-type variation in this term

determines across-location, within-type transfers.

3.3.2. Numerical Examples

We now demonstrate that optimal transfers across locations are unidentified in more

complicated models by examining these transfers in an environment with two locations and

6The Uτ term is the derivative of the U function in the planner’s objective function for type τ . κ is a
scalar related to economy-wide fiscal externalities, marginal utilities of consumption and average production
externalities and spillovers.

7Our adjustment causes the marginal utility of consumption of all households of all types to be identical.
This means that the planner will not redistribute from high-income types to low-income types unless the
Pareto weights for low-income types are higher than for high-income types. Researchers can pick Pareto
weights to replicate optimal across-type transfers that are the solution to the planner’s problem prior to
applying our adjustment, if desired.
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two types of people. In what follows, the planner maximizes equation (4) where U is the

natural logarithm function and Π1 = Π2 = 0.5 such that the planner cares about both

types equally. Denote cτn as the consumption the planner allocates to type τ agents living in

location n. Utility of household i of type τ in location n is

Anc
τ
nẽni

where ẽni = Dτ
i eni and Dτ

i =
[
e
φτ1
1i e

φτ2
2i

]−1

implying V τ = Ei∈τ [maxAnc
τ
nD

τ
i eni]. In all simulations, we draw eni iid from the Fréchet

distribution with shape parameter ν = 2. We always set (φτ1, φ
τ
2) = (0, 0) for type τ = 2 and

consider (φτ1, φ
τ
2) = (0, 0) , (0, 1) , (1, 0) and (1, 1) for type τ = 1. As before, A1 = A2 = 1.

In each location, the two types of labor are aggregated as follows to form a composite

labor input

Ln =
[(
λ1
n · L1

n

)ρ
+
(
L2
n

)ρ]1/ρ
L1
n and L2

n are the measures of type 1 and type 2 households in location n, respectively.

Total output produced in location n is znLn with zn = 4/3 in location 1 and 2/3 in loca-

tion 2. We consider two different values for ρ, ρ = 1.0 (perfect substitutes) and ρ = 0.5

(complementarities across types in production).

In all simulations, we set λ1
n = 1 for location 2 (n = 2). In simulations without any

externalities, we set λ1
n = 1 for location 1. In simulations with an externality, we specify an

increasing impact of the share of type 1 workers on type 1 productivity in location 1

λ1
n =

(
L1
n

L1
n + L2

n

)δ
for n = 1 (only) with δ = 0.15. In all simulations we specify population measures of 0.32

type 1 households and 0.68 type 2 households.

Figure 2 shows results for optimal within-type redistribution across locations for type

1 agents for the economy without an externality (top panel) and the economy with an

externality (bottom panel). We measure this redistribution as (c1
1 − c1

2) / (w1
1 − w1

2), where
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w1
n is the marginal product of labor of type 1 agents living in location n, measured as

w1
n = znL1−ρ (λ1

n

)ρ (
L1
n

)ρ−1

A value of 1.0 indicates that no within-type redistribution across locations occurs for type

1 agents; a value less than 1.0 indicates that consumption is redistributed from type 1

households living in location 1 to those living in location 2; and, and a value greater than 1.0

indicates consumption is redistributed from type 1 households living in location 2 to those

living in location 1.

For now, ignore the black lines in Figure 2 and focus only on the blue and red lines. The

solid blue and red lines in both panels correspond to ρ = 1, perfect substitutes, and the

dashed blue and red lines correspond to ρ = 0.5. The x-axis of each graph shows the value

of φτ2 for τ = 1, either 0 or 1. The y-axis shows the measure of within-type redistribution

for Type 1 households. Finally, the blue lines correspond to values for φτ1 = 0 for τ = 1 and

the red lines correspond to values for φτ1 = 1, also for τ = 1.

A few points jump out from this figure. First, by comparing the results in the bottom

panel to those in the top panel, we can see the impact of the externality on redistribution: For

any given parameterization of ρ, φτ1 and φτ2 for τ = 1, the planner wants less redistribution

from type 1 residents in location 1 to location 2 when the externality is present. Second,

by comparing the dashed to solid lines for either the blue or red lines, we can observe how

the elasticity of substitution of the two types in production affects optimal redistribution

from type 1 residents in location 1 to location 2. Finally, the figure shows how the nuisance

parameters φτ1 and φτ2 for τ = 1 affect optimal redistribution. When the value of φτ1 is large

relative to φτ2 for τ = 1, the marginal utility of consumption of households optimally choosing

location 1 is relatively low, and the planner optimally redistributes consumption away from

location 1 and towards location 2. When the value of φτ2 is large relative to φτ2 for τ = 1, the

opposite happens. As the panels make clear, the unidentifiable variation in φτ1 and φτ2 for

τ = 1 can cause optimal transfers across locations for type 1 agents to be almost anything,

even in the presence of a large externality in production in one location.

To implement our adjustment, we redefine the location attachment draws for household
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i of type τ in location n such that utility is

Anc
τ
nêni (6)

where êni = ωiẽni, ẽni = Dτ
i eni, D

τ
i =

[
e
φτ1
1i e

φτ2
2i

]−1

and ωi =
[
An∗i i D

τ
i en∗i i

]−1

where n∗i is the optimally chosen location for agent i given realized eni at the planner’s

optimal allocation of consumption for that type cτ∗n for n = 1, . . . , N . Including ωi in utility

in this way ensures that the average marginal utility of consumption in a location is constant

across locations at the planner’s chosen allocation, and thus the planner has no motive to

redistribute to equate within-type marginal utilities of consumption.8

The impact of the adjustment on redistribution among Type 1 agents is shown by the

black lines in Figure 2. In the top panel, the version of the model with no externalities,

the planner chooses no redistribution. This result does not depend on the the value of ρ,

φτ1 or φτ2 for τ = 1. In the bottom panel, the planner chooses to redistribute from type 1

agents living in location 2 to type 1 agents living in location 1, to incentivize type 1 agents to

live in location 1 due to the production externality. The amount of redistribution does not

depend on φ1 or φ2 but does depend on the elasticity of substitution in production between

the two types of agents. This example shows our adjustment allows for the direct study of

optimal place-based transfers in response to production externalities and spillovers across

types, without the size and the direction of those transfers influenced by differences in the

marginal utility of consumption across locations that are not identifiable from location choice

data.

3.4. Discussion of Uniqueness

In all simulations where we apply our adjustment, we use the 5-step procedure outlined

in section 3.1 to find optimal allocations. Since we are embedding something that looks like

a fixed point into the planning problem, readers might be concerned this procedure may not

produce a unique candidate solution. The procedure finds an allocation with the following

8As discussed, the planner may still want to redistribute across locations and types for reasons of across-
type equity or efficiency.
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property: With weights ωi set equal to the inverse of the marginal utility of consumption

at the candidate allocation, the candidate allocation solves the adjusted planner’s problem

– adjusted to include ωi. An allocation has this property if and only if it is a solution to

equation (5). Therefore, if equation (5) has a unique solution our procedure also produces

a unique solution. Uniqueness of equation (5) depends on researcher choices that determine

elasticities, externalities, and Pareto weights.9 As long as researchers can prove equation (5)

has a unique solution, then our experience suggests our procedure will find that solution as

long as the dampening factor d is sufficiently small.10

4. Additional Thoughts and Conclusions

The essence of results we document have been identified in at least one other area of

economics. For example, we can relate the differences in predicted optimal transfers between

our cases 2 and 3 from section 2.4 to intuition from Klevin et al. (2009) on optimal taxation

of married couples. In that paper, the secondary earner can choose not to work for one of

two reasons: he/she either receives a bad draw of market earnings or a good draw of home

productivity. Klevin et al. (2009) show that optimal policy depends on which of the two

explanations caused the secondary earner to not work in the market.11

One path for future research may be to use data to estimate differences across locations in

the average marginal utility of consumption of otherwise identical households. Researchers

in other fields of economics have attempted to estimate state dependence in the marginal

utility of consumption. For example, health economists have tried to identify how the state

of a person’s health affects their marginal utility of consumption. Finkelstein et al. (2009)

survey the various approaches and results in the literature and conclude, “Currently available

estimates offer little in the way of a consensus on the sign or magnitude of health state

dependence.” The hurdle for estimation is high in location choice models, as researchers

need to understand variation in the average marginal utility of consumption across locations

and we believe this will be difficult to measure. Even if a policy experiment exogenously

9For example, multiple candidate solutions may exist depending on the properties of agglomeration ex-
ternalities in the model.

10We set the dampening factor to 1 (no dampening) in all the numerical examples in this paper.
11We thank Patrick Kline for suggesting this connection.
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shifts location choices of some marginal households, optimal policy depends on the marginal

utility of consumption of all households including – perhaps most importantly – those least

likely to move. Until we have direct evidence on differences in the average marginal utility

of consumption across locations, we advocate imposing a solution to planning problems that

removes a planner’s incentives for within-type transfers across locations absent motives of

productive efficiency or externalities.
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Figure 1: Redistribution from Location 2 to 1, Various Values of φ1 and φ2
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Figure 2: Redistribution from Location 2 to 1, Type 1, Various Values of φτ1 and φτ2
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Appendix A. Planning Solution

Denote An as amenities in location n and cn as consumption in location n such that the

deterministic portion of utility in location n is un = Ancn and utility for person i in location

n is uni = uneni where eni is drawn iid from the Fréchet distribution with parameter ν. Also

denote Ln as the population in location n and let G denote the pre-determined amount of

government expenditure that needs to be funded by taxation. The planner solves:

max
{cn,Ln}Nn=1

U

subject to the following constraints (Lagrange multipliers are to the left of the brackets)

Expected Utility λ

[(∑
n

uνn

) 1
ν

− U

]
= 0

Resource constraint P

[∑
n

Lnzn −
∑
n

Lncn −G
]

= 0

Population: µ

[
1−

∑
n

Ln

]
= 0

Utility n=1,. . . ,N θn [Ancn − un] = 0

Individual optimization n=1,. . . ,N: Wn

[(un
U

)ν
− Ln

]
= 0

First-order conditions are

un : 0 = λLnU − θnun + νWnLn

cn : 0 = θnun − PLncn

Ln : 0 = P (zn − cn)Ln − WnLn − µLn

U : 0 = 1− λ − (ν/U)
∑

nWnLn

From the FOC for U we have (ν/U) (
∑

nWnLn) = 1 − λ. Add the Focs for un to get 1 =∑
n θn (un/U). Now add the FOCs for cn to get (U/P ) = GDP −G where GDP =

∑
n

znLn.

Now start with the FOC for Ln

0 = P (zn − cn)Ln − WnLn − µLn
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Use FOC for un

WnLn =
1

ν
(θnun) − 1

ν
(λLnU) =

1

ν
(PLncn) − 1

ν
(λLnU)

Insert

0 = PLnzn − PLncn −
1

ν
(PLncn) +

1

ν
(λLnU) − µLn

0 = zn − cn −
1

ν
(cn) +

1

Pν
(λU) − µ

P

= zn −
[

1 + ν

ν

]
cn +

(
U

P

)(
λ

ν
− µ

U

)

Rearrange terms and substitute for U/P to get

cn =

[
ν

1 + ν

]
zn +

λ− µν

U
1 + ν

 (GDP −G) (A.1)

If we multiply the above equation by Ln and then sum over n, we get the expression

(
λ− µν

U

)
(GDP −G) = (1 + ν) (GDP −G) − νGDP

= GDP − (1 + ν)G (A.2)

After inserting equation (A.2) into (A.1), we get the following expression for optimal con-

sumption in location n

cn = (1− τ) zn + T

where τ =
1

1 + ν
and T = τ ·GDP − G
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Appendix B. Multiple Types of Households, Multiple Locations and Produc-

tion Externalities

Appendix B.1. No Adjustment

We now consider an environment with n = 1, . . . , N discrete locations and τ = 1, . . . , T

types. We assume a planner can choose any level of consumption for any type in any location,

as long as the allocation satisfies aggregate feasibility conditions and respects individual op-

timization, i.e. households optimally choose locations given their location attachment draws

and given the allocation of consumption across locations.

The objective of the planner is as follows

max
{{tτn,Lτn}Tτ=1}Nn=1

∑
τ

ΠτLτU (V τ )

where U is a concave function, Lτn is the population of type τ in location n, Lτ is the

total population of type τ and V τ is the expected utility associated with type τ . Then

planner maximizes this function subject to constraints listed below. Note that in the list of

constraints the Lagrange multipliers are to the left of the brackets:

Expected Utility, by type: τ = 1, . . . , T λτ
[
Eeni

(
max
n′

uτn′i

)
− V τ

]
= 0

Resource constraint: P

[∑
n

∑
τ
tτnL

τ
n

]
= 0

Population, by type: τ = 1, . . . , T γτ
[
Lτ −

∑
n
Lτn

]
= 0

Optimization, by type and location: τ = 1, . . . , T and n = 1, . . . , N W τ
n [ρτnL

τ − Lτn] = 0

uτni for agent i of type τ is the function un (cn, Di, eni) with cτn = zτn− tτn where zτn is income

generated by one type τ worker in location n which can be a function of Lτ
′
n for τ ′ = 1, . . . , T ,

for example zτn = z
(
zn, L

1
n, L

2
n, . . . , L

T
n

)
where zn is TFP for location N . As specified, this

framework allows for complementarities across types or externalities involving one or more

types in production.12 ρτn is the probability that n = argmaxn′ u
τ
n′i for n′ = 1, . . . , N .

12As an example, in a decentralized economy firms may take as given in location n multifactor productivity
of an where an = zn (Lτ∗n )

δ
, with Lτ∗n an externality in type τ∗ workforce. The planner explicitly takes into

consideration the impact of allocations on the externality.
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The first-order conditions are:

V τ : 0 =

(
∂U

∂V τ

)
ΠτLτ − λτ

Lτn : 0 =
∑
τ ′
λτ
′

∂Eeni
(

max
n′

uτ
′

n′i

)
∂Lτn

+ Ptτn − γτ −W τ
n

tτn : 0 = −λτ

∂Eeni
(

max
n′

uτn′i

)
∂cτn

+ PLτn +
∑
m

W τ
mL

τ

(
∂ρτm
∂tτn

)

where we have made use in the last equation that ∂cτn/∂t
τ
n = −1.

To reduce notation, for any given type τ ′ define the derivative of the expected value with

respect to Lτn as

∂Eeni

(
max
n′

uτ
′

n′i

)
∂Lτn

=
∂Eeni

(
max
n′

uτ
′

n′i

)
∂cτ ′n

· ∂c
τ ′
n

∂Lτn
=

∂Eeni

(
max
n′

uτ
′

n′i

)
∂cτ ′n

· ετ→τ ′n

Also define

∂Eeni

(
max
n′

uτn′i

)
∂cτn

=

(
Lτn
Lτ

)
µτn

where µτn is the average of the marginal utility of consumption of type τ agents that have

chosen to live in location n:

µτn = E

[
∂uτni
∂cτn

∣∣∣ n = argmaxuτn′i

]

After substituting U τ = ∂U/∂V τ , this allows us to rewrite the FOCs as:

V τ : 0 = U τΠτLτ − λτ

Lτn : 0 =
∑
τ ′
λτ
′
(
Lτ
′
n

Lτ ′

)
µτ
′
n ε

τ→τ ′
n + Ptτn − γτ −W τ

n

tτn : 0 = −λτ
(
Lτn
Lτ

)
µτn + PLτn +

∑
m

W τ
mL

τ

(
∂ρτm
∂tτn

)
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Consider the FOC for Lτn after reducing for λτ :

0 =
∑
τ ′

U τ ′Πτ ′Lτ
′

n µ
τ ′

n ε
τ→τ ′
n + Ptτn − γτ −W τ

n

Multiply everything by Lτn and sum over n

0 =
∑
n

Lτn

[∑
τ ′

U τ ′Πτ ′Lτ
′

n µ
τ ′

n ε
τ→τ ′
n

]
+ P

∑
n

tτnL
τ
n − γτ

∑
n

Lτn −
∑
n

W τ
nL

τ
n

Define total tax revenues collected for type τ residents as T τ . After rearranging terms, this

reduces to

γτ =
∑
n

(
Lτn
Lτ

)[∑
τ ′

U τ ′Πτ ′Lτ
′

n µ
τ ′

n ε
τ→τ ′
n

]
+ P

(
T τ

Lτ

)
−
∑
n

W τ
n

(
Lτn
Lτ

)

Insert this expression for γτ into the FOC for Lτn, rearrange terms, and replace n with m

everywhere:

W τ
m =

Ptτm − P
(
T τ

Lτ

)
+
∑
m′

W τ
m′

(
Lτm′

Lτ

)
+
∑
τ ′

Uτ ′Πτ ′Lτ
′
mµ

τ ′
mε

τ→τ ′
m −

∑
m′

(
Lτm′

Lτ

)[∑
τ ′

Uτ ′Πτ ′Lτ
′
m′µ

τ ′
m′ε

τ→τ ′
m′

]

Now return to the tn equation and substitute for λτ

U τΠτLτnµ
τ
n = PLτn +

∑
m

W τ
mL

τ

(
∂ρτm
∂tτn

)

Insert for W τ
m

UτΠτLτnµ
τ
n =

PLτn +
∑
m

{
Ptτm − P

(
T τ

Lτ

)
+
∑
m′

W τ
m′

(
Lτ
m′

Lτ

)
+
∑
τ ′
Uτ

′
Πτ

′
Lτ

′
mµ

τ ′
mε

τ→τ ′
m −

∑
m′

(
Lτ
m′

Lτ

)[∑
τ ′
Uτ

′
Πτ

′
Lτ

′
m′µ

τ ′
m′ε

τ→τ ′
m′

]}
Lτ
(
∂ρτm
∂tτn

)

Note that since the overall population of type τ is fixed, this implies
∑
m

(∂ρτm/∂t
τ
n) = 0.
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Thus, the above can be reduced to:

U τΠτLτnµ
τ
n = PLτn + P

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
+
∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)

Add across τ and rearrange:

∑
τ

U τΠτLτnµ
τ
n −

∑
τ

∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
= P

∑
τ

Lτn + P
∑
τ

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

Sum over n

∑
n

∑
τ

UτΠτLτnµ
τ
n −

∑
n

∑
τ

∑
m

∑
τ ′

Uτ
′
Πτ ′

Lτ
′

mµ
τ ′

mε
τ→τ ′

m Lτ
(
∂ρτm
∂tτn

)
= P

∑
n

∑
τ

Lτn + P
∑
n

∑
τ

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

Define UΠ, µ̄, ` and ∆ as follows

UΠ =
∑
n

∑
τ

U τΠτLτn

µ̄ =
(
UΠ
)−1∑

n

∑
τ

U τΠτLτnµ
τ
n

` =
∑
n

∑
τ

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
∆ =

∑
n

∑
τ

∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)

For economic interpretation, µ̄ is the Pareto-weighted average marginal utility of consump-

tion in the economy; ` measures the impact on the tax base generated by the location

responses to a marginal increase in taxes that is uniformly applied across locations and

types; ∆ measures the Pareto-weighted sum of the marginal change in economy-wide utility

arising from spillovers generated by the location responses to a marginal increase in taxes

that is uniformly applied across locations and types.13

13In the special case in which utility is linear in consumption and location-specific preferences are additive
to utility then

∑
n

(∂ρτm/∂t
τ
n) = 0 giving ` = ∆ = 0.
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With this notation, we write

P =
UΠµ̄ − ∆

1 + `
= UΠµ̄

1 − ∆

UΠµ̄

1 + `


Insert this definition of P and return to the FOC for tn

UτΠτLτnµ
τ
n −

∑
m

∑
τ ′

Uτ ′Πτ ′Lτ
′
mµ

τ ′
mε

τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
= UΠµ̄

1− ∆

UΠµ̄

1 + `


[
Lτn +

∑
m

tτmL
τ

(
∂ρτm
∂tτn

)]

Divide by Lτn

UτΠτµτn −
(

1

Lτn

)∑
m

∑
τ ′

Uτ
′
Πτ ′

Lτ
′

mµ
τ ′

mε
τ→τ ′

m Lτ
(
∂ρτm
∂tτn

)
= UΠµ̄

1− ∆

UΠµ̄

1 + `


[

1 +

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)]

Define κ = 1+`
1− ∆
UΠµ̄

. Then

κUτΠτµτn − κ
(

1

Lτn

)∑
m

∑
τ ′

Uτ ′Πτ ′Lτ
′
mµ

τ ′
mε

τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
= UΠµ̄

[
1 +

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)]

Subtract UΠµ̄ and then divide.

κUτΠτµτn − UΠµ̄

UΠµ̄
−

κ

(
1

Lτn

)∑
m

∑
τ ′
Uτ ′Πτ ′Lτ

′
mµ

τ ′
mε

τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
UΠµ̄

=

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

Define ετn as the Pareto-weighted sum of the marginal change in economy-wide utility arising

from spillovers generated by the location responses to a marginal increase in taxes that is

applied in location n to type τ :

ετn =

(
1

Lτn

)∑
m

∑
τ ′

U τ ′Πτ ′Lτ
′

mµ
τ ′

mε
τ→τ ′
m Lτ

(
∂ρτm
∂tτn

)
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Rewrite the above as

κU τΠτµτn − UΠµ̄

UΠµ̄︸ ︷︷ ︸ −
κετn
UΠµ̄︸ ︷︷ ︸ =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
︸ ︷︷ ︸

(1) (2) (3)

(B.1)

For a given type τ in location n, the first term on the left-hand side captures the difference in

the Pareto-weighted marginal utility of consumption of that type in that location from the

economywide-average and the second term captures the economy-wide utility (net) benefit

of production spillovers generated by that type in that location. The difference of these two

terms is equated to the the marginal deadweight loss from increasing transfers for that type

in that location, the third term.

We can rewrite this third term to gain some intuition. To start, note the following

∂ρτn
∂tτn

= −
∑
m 6=n

∂ρτm
∂tτn

Then the third term becomes

(
1

Lτn

)
∂ρτn
∂tτn

Lτ

tτn −
∑
m6=n

tτm

(
∂ρτm
∂tτn

)
∑
m 6=n

∂ρτm
∂tτn

 (B.2)

This “fiscal externality” is the amount by which the tax from type τ in location n exceeds

the tax that the marginal leavers of type τ will be exposed to, on average, conditional on

leaving location n.

Appendix B.2. With our Proposed Adjustment

It is convenient to rewrite equation (B.1) as follows

κU τΠτ (µτn − µτ ) + κU τΠτµτ − UΠµ̄

UΠµ̄
− κετn
UΠµ̄

=

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)

where µτ =
∑
n

(Lτn/L
τ )µτn. We have shown earlier that location data do not pin down

within-type transfers that are only based on differences in within-type marginal utility of
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consumption across locations, the term involving µτn − µτ . For this reason, we advocate

setting µτn = µτ , thereby eliminating the desire for a planner to redistribute for this motive.

If researchers wish to eliminate these transfers, they simply need to ensure that the

average marginal utility of consumption for a given type does not vary across locations. There

are many possible ways to generate this outcome. We propose simply setting µτn = µτ = 1

for all households, which also implies µ̄ = 1. After this adjustment, the optimal tax on type

τ at location n satisfies:

(
κU τΠτ − UΠ

)
− κετn =

(
1

Lτn

)∑
m

tτmL
τ

(
∂ρτm
∂tτn

)
(B.3)

With one type and no externalities in production, ετn = 0 and ∆ = 0. The condition for

optimality can be written as

` · U =

(
1

Ln

)∑
m

tm

(
∂ρm
∂tn

)

Notice that the left-hand side does not vary across locations. The only solution that satisfies

this equation for every location is tn = 0 for all n.14

Returning to the multiple-type case of equation (B.3) , the framework has the capacity

to deliver both transfers across and within types. The term κU τΠτ − UΠ is constant across

locations for any given type, but allows transfers of consumption across types based on

differences in Pareto weights and the slope of the concave function U evaluated at the optimal

policy. The term κετn measures the impact of spillovers and externalities in production (which

we believe the data can identify).15 Within-type variation in this term determines across-

location, within-type transfers.

14` = 0 when tn = 0 at every n.
15Recall we have set µτn = 1, such that ετn contains Pareto weights, elasticities of location choices with

respect to income, and production-function spillovers and externalities.
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