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1 Introduction

In recent years, and in parallel to popular microeconometric identification strategies, empiri-

cal practice in applied macroeconometrics has turned towards “external” sources of plausibly

exogenous variation. Such external instrumental variables (IVs, or proxy variables) are now

routinely used to estimate causal effects through a simple Two-Stage Least Squares version

of Local Projections (Jordà, 2005; Ramey, 2016). Appealingly, this approach is valid even

without the assumption of invertibility – the ability to recover structural shocks from current

and past (but not future) values of the observed macro variables (Nakamura & Steinsson,

2018b; Stock & Watson, 2018).

However, applied researchers are often not just interested in dynamic causal effects, but

also want to learn about a particular shock’s contribution to macroeconomic fluctuations

(Christiano et al., 1999; Beaudry & Portier, 2006; Smets & Wouters, 2007). If the IV is a

perfect measure of the underlying structural macro shock, then the desired variance decom-

positions are readily computed from standard Local Projection regression output (Gorod-

nichenko & Lee, 2020). In many applications, though, it is likely that external shock measures

are contaminated by substantial measurement error, causing attenuation bias. For example,

Gertler & Karadi (2015) use high-frequency changes in asset prices around monetary policy

announcements as credible instruments for monetary shocks; since these instruments at best

capture a subset of all monetary shocks, simple direct regressions on the IV are likely to sub-

stantially understate the importance of monetary disturbances. Up to this point, the only

possible alternative approach was to combine the IV with conventional Structural Vector

Autoregressive (SVAR) methods (Stock, 2008; Mertens & Ravn, 2013), thus automatically

imposing the otherwise unnecessary and empirically dubious invertibility assumption.

In this paper, we show precisely to what extent external instruments are informative

about shock importance. Throughout, we consider an unrestricted linear moving average

model, disciplined only by IVs. This model nests conventional, invertible SVARs, as well

as essentially all linearized macro models. We prove three main results. First, without

further restrictions, the variance decomposition of the instrumented shock’s contribution to

macroeconomic fluctuations is interval-identified, with informative lower and upper bounds.

Second, if the researcher is willing to impose the assumption of recoverability – i.e., that

the shock is spanned by current, past and future values of the observed macro variables –

then both variance decompositions and historical decompositions (the shock’s contribution

to realized fluctuations) are point-identified. Third, we derive a simple Granger causality
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pre-test for invertibility that we show exploits the strongest possible testable implication.

We complement this set of theoretical results with an extensive code suite that implements

all our inference procedures.

We adopt the exact same structural vector moving average (SVMA) model with external

IVs as in Stock & Watson (2018), but focus on variance decompositions, rather than im-

pulse responses. The key identifying assumption of this model is the availability of external

instruments that correlate with the shock of interest, but are otherwise dynamically uncor-

related with all other macro shocks. Importantly, the IVs may be contaminated by classical

measurement error. Stock & Watson (2018) show that, in this SVMA-IV model, relative

impulse responses (which normalize the impact effect) are point-identified, cf. also Mertens

(2015). While such relative impulse responses do not require identification of the scale of the

underlying shock, scale inevitably matters for variance and historical decompositions, and

so lies at the heart of the identification challenge we face in this paper.

We bound the importance of the instrumented structural shock from above and from

below by viewing the model as a dynamic measurement error model. Our question is: Given

the second moments (autocovariances) of the macro variables and the IVs, what can be said

about (forecast or unconditional) variance decompositions? The identification challenge is

that we do not know the signal-to-noise ratio of the IV a priori ; however, we prove that it

is possible to bound this ratio using the moments of the data. At one extreme, our lower

bound corresponds to the previously discussed approach of treating the IV as the shock (zero

measurement error). If – as seems likely in practice – the IV is actually not perfect, then this

lower bound may substantially understate the true importance of the shock. At the other

extreme, given that we observe a certain degree of co-movement between the IV and the

macro observables at various leads and lags, we know that measurement error also cannot be

too pervasive. We translate this intuition into formal bounds and prove that these bounds

are sharp, i.e., they exhaust all the information about variance decompositions contained in

the second moments of the data.

We also characterize the set of additional assumptions that researchers could impose to

point-identify both variance and historical decompositions. Here our main result is that point

identification obtains if the instrumented shock is assumed to be recoverable, i.e., spanned

by all lags and leads of the endogenous macro variables. Appealingly, recoverability obtains

in any macro model with as many observables as shocks; in particular, it holds even in many

models with news and noise shocks, unlike the strictly stronger (and, as we show, testable)

invertibility assumption made in SVAR analysis (Leeper et al., 2013).
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We provide the applied researcher with an easy-to-use code suite that constructs confi-

dence intervals for all parameters of interest. In a first step, we use a reduced-form VAR in

macro variables and IVs as a convenient tool for approximating the second moments of the

data. The second step then constructs sample analogues of our identification bounds and

inserts these into the confidence procedure of Imbens & Manski (2004); alternatively, we

also provide confidence intervals valid under the additional point-identifying restriction of

recoverability. We prove that our confidence intervals have asymptotically valid frequentist

coverage under weak nonparametric conditions on the data generating process.

To demonstrate the feasibility and applicability of our procedures, we bound the impor-

tance of monetary shocks for inflation dynamics in the U.S. We employ the high-frequency

IV proposed by Gertler & Karadi (2015), mentioned above. As discussed in Ramey (2016),

the rising importance of forward guidance since the early 1990s is likely to invalidate the

invertibility assumption and so threatens consistency of the standard SVAR-IV estimator

used by Gertler & Karadi. Indeed, we find that the data are consistent with substantial

non-invertibility. Applying our robust methodology, we find that monetary shocks are al-

most irrelevant for aggregate inflation in our post-1990 sample: The 90% confidence intervals

for the forecast variance contribution of monetary shocks rules out values above 8% at all

horizons. Thus, to the extent that inflation is a monetary phenomenon, it is so because of

the systematic part of U.S. monetary policy, not because of its erratic conduct.

Finally, we use a series of analytical and quantitative examples to give intuition for why,

in spite of its weak identifying assumptions, our method will often manage to give very tight

upper bounds on shock importance, consistent with our findings in the monetary application.

Literature. Plagborg-Møller & Wolf (2021) prove that the invertibility-robust Local Pro-

jection IV impulse response estimator has the same estimand as a recursive SVAR that in-

cludes the IV and orders it first. This paper complements our other work by analyzing the

identification of variance and historical decompositions, which requires completely different

mathematical arguments.

Non-invertibility and its effects on SVAR identification have received substantial atten-

tion in recent years (see the references in Plagborg-Møller, 2019, sec. 2.3). Previous work has

emphasized that, in the empirically relevant case of foresight about economic fundamentals

or policy (“news”), conventional SVAR analysis invariably fails: Rational expectations equi-

libria create non-invertible SVMA representations, and so SVARs cannot correctly recover

the structural shocks (Leeper et al., 2013; Wolf, 2020). In contrast, non-invertibility poses
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no challenge to the methods developed in this paper. We also show that, in the SVMA-IV

model, the degree of invertibility is set-identified. Our proposed test of invertibility is related

to the Granger causality tests developed in SVAR settings by Giannone & Reichlin (2006)

and Forni & Gambetti (2014). Finally, the weaker notion of “recoverability” studied here has

independently been proposed by Chahrour & Jurado (2021) outside the context of external

IV identification.1

Outline. Section 2 defines the SVMA-IV model and the parameters of interest, and states

the identification problem. Section 3 derives our identification results. Section 4 gives a prac-

tical overview of our procedures and their implementation. Section 5 applies the procedures

to bound the importance of monetary shocks. Section 6 illustrates the usefulness and inter-

pretation of the upper bound on shock importance through analytical examples. Section 7

compares the finite-sample performance of our procedures to the SVAR-IV approach through

simulations. Section 8 concludes. Proofs of our main results are relegated to Appendix A.

The Matlab code suite and a supplemental appendix are available online.2

2 Econometric framework

We begin by defining the econometric model and the parameters of interest. Then we state

the identification problem.

2.1 Model

Following Stock & Watson (2018), we assume a SVMA-IV model. This model allows for

an unrestricted linear shock transmission mechanism and, unlike standard SVAR analysis,

does not require shocks to be invertible. We also assume the availability of valid external

IVs (proxy variables) – variables that correlate with the shock of interest, but not with the

other shocks. For notational clarity, we assume throughout that all time series below have

zero mean and are strictly non-deterministic.

First, we define the SVMA model, which places no restrictions on the linear transmission

of the vector of shocks εt to the vector of observed endogenous variables yt.

1Recoverability is formally equivalent to the assumption that the structural shock is spanned by current
and future reduced-form VAR forecast errors. Such dynamic rotations of ut have been exploited in non-IV
settings by Lippi & Reichlin (1994), Mertens & Ravn (2010), and Forni et al. (2017a,b).

2https://github.com/mikkelpm/svma_iv
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Assumption 1. The ny-dimensional vector yt = (y1,t, . . . , yny ,t)
′ of observed macro variables

is driven by an unobserved nε-dimensional vector εt = (ε1,t, . . . , εnε,t)
′ of exogenous economic

shocks,

yt = Θ(L)εt, Θ(L) ≡
∞∑
`=0

Θ`L
`, (1)

where L is the lag operator. The matrices Θ` are each ny × nε and absolutely summable

across `. Θ(x) is assumed to have full row rank for all complex scalars x on the unit circle.

The shocks are mutually orthogonal white noise processes:

εt ∼WN (0, Inε),

where In denotes the n-dimensional identity matrix.

The (i, j) element Θi,j,` of the moving average coefficient matrix Θ` is the impulse response

of variable i to shock j at horizon `. The j-th column of Θ` is denoted by Θ•,j,` and the i-th

row by Θi,•,`. The full-rank assumption guarantees a nonsingular stochastic process. This

condition requires nε ≥ ny, but – crucially – we do not assume that the number of shocks nε

is known. The mutual orthogonality of the shocks is the standard assumption in empirical

macroeconomics. The model is semiparametric in that we place no a priori restrictions on

the coefficients of the infinite moving average, except to ensure a valid stochastic process. In

particular, the infinite-order SVMA model (1) is consistent with all discrete-time Dynamic

Stochastic General Equilibrium (DSGE) models and all stable SVAR models for yt.

Second, we assume the availability of one or more external IVs for the shock of in-

terest, with the shock of interest specified to be the first one, ε1,t. Each of the nz IVs

zt = (z1,t, . . . , znz ,t)
′ are assumed to correlate with the first shock but not the other shocks,

after controlling for lagged variables: For all i = 1, . . . , nz,

E(z̃i,tε1,t) 6= 0, E(z̃i,tεj,τ ) = 0 for all (j, τ) 6= (i, t), (2)

where z̃i,t is the population residual from projecting zi,t on all lags of {zt, yt}. The key

exclusion restriction is that the shock of interest ε1,t is the only contemporaneous shock to

correlate with the IVs zt. Thus, z̃t is a proxy for ε1,t (up to scale) that is contaminated by

classical measurement error. This is a strong assumption that must be carefully defended

in applications. Ramey (2016) and Stock & Watson (2018) survey the extensive applied

literature that has constructed plausibly valid external IVs for various shocks.

Using linear projection notation, we can equivalently express the IV exclusion restrictions
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(2) as the assumption that the IVs zt are proportional to the shock of interest ε1,t plus classical

measurement error vt (and possibly lagged observed variables).

Assumption 2. The IVs zt = (z1,t, . . . , znz ,t)
′ satisfy

zt =
∞∑
`=1

(Ψ`zt−` + Λ`yt−`) + αλε1,t + Σ1/2
v vt, (3)

where Ψ` is nz×nz, Λ` is nz×ny, λ is an nz-dimensional vector normalized to unit Euclidean

length and with its first nonzero element being positive, α ≥ 0 is a scalar, and Σv is a

symmetric positive semidefinite nz × nz matrix. The elements of Ψ` and Λ` are absolutely

summable across `, and the polynomial x 7→ det(Inz−
∑∞

`=1 Ψ`x
`) has all its roots outside the

unit circle. The disturbance vector vt is a white noise process that is dynamically uncorrelated

with the structural shocks εt:

vt ∼WN (0, Inz), Cov(εt, vτ ) = 0nε×nz for all t, τ.

The interpretation of external IVs as noisy measures of true shocks is discussed in Mertens

& Ravn (2013) and Stock & Watson (2018). In our notation (3), the scale parameter α

(along with the residual variance-covariance matrix Σv) measures the overall strength of

the IVs, while the unit-length vector λ determines which IVs are stronger than others.

The assumptions on the coefficients Ψ` and Λ` ensure stationarity. We emphasize that the

linearity of equation (3) is not a structural assumption; it arises from a linear projection

(as in the “first stage” of cross-sectional IV). In particular, Assumption 2 is consistent with

the IV being a binary or censored series, since such a variable can still satisfy the moment

conditions (2) that are equivalent with equation (3).

Since we restrict attention to identification from second moments, we may without loss

of generality simplify notation by assuming that all disturbances are Gaussian.

Assumption 3. (ε′t, v
′
t)
′ is i.i.d. jointly Gaussian.

The Gaussianity assumption is strictly for notational convenience. We could instead have

maintained the above white noise assumptions (which allow for conditional heteroskedastic-

ity) and phrased all our results using linear projection notation. The sole meaningful restric-

tion is that we only exploit second moments of the data for identification, as is standard in

the applied macro literature, and without loss of generality for Gaussian data.3 We drop the

3If we were to take the assumption of i.i.d. shocks seriously, and the shocks were not Gaussian, higher-
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Gaussianity assumption when developing inference procedures in Section 4.

Finally note also that Assumptions 1 to 3 together imply that the (ny + nz)-dimensional

data vector (y′t, z
′
t)
′ is strictly stationary.

2.2 Parameters of interest

We are interested in the propagation of the first structural shock ε1,t to the macroeconomic

aggregates yt. This section lists the parameters of interest to the applied macroeconomist.

Impulse responses. As discussed above, the (i, 1) element Θi,1,` of the moving average

coefficient matrix Θ` is the impulse response of variable i to shock 1 at horizon `. We

distinguish such absolute impulse responses from relative impulse responses Θi,1,`/Θ1,1,0,

which give the response of yi,t+` to a shock to ε1,t that increases y1,t by one unit on impact.

Invertibility and recoverability. The shock ε1,t is said to be invertible if it is

spanned by past and current (but not future) values of the endogenous variables yt: ε1,t =

E(ε1,t | {yτ}−∞<τ≤t). This condition may or may not hold in a given moving average model

(1), depending on the impulse response parameters Θ`. Conventional SVAR analysis invari-

ably imposes invertibility, since the SVAR model obtains from the additional assumptions

that nε = ny and that Θ(L) has a one-sided inverse, so the shocks εt = Θ(L)−1yt are spanned

by current and past data. However, in many structural macro models, at least some of the

shocks cannot be recovered from only lagged macro observables, i.e., the moving average

representation is noninvertible. For example, this is often the case in models with news (an-

ticipated) shocks or noise (signal extraction) shocks (Blanchard et al., 2013; Leeper et al.,

2013). Furthermore, if nε > ny, it is impossible for all shocks to be invertible.

A continuous measure of the degree of invertibility is the R2 value in a population regres-

sion of the shock on past and current observed variables (Sims & Zha, 2006, pp. 243–245;

Forni et al., 2019). More generally, we define

R2
` ≡ Var(E(ε1,t | {yτ}−∞<τ≤t+`)), (4)

the population R-squared value in a projection of the shock of interest on data up to time t+`

(recall that Var(ε1,t) = 1). If the shock is invertible in the sense of the previous paragraph,

order moments of the data would be informative about the parameters. However, we agree with most of the
literature that the assumption of i.i.d. shocks is too strong due to the likely presence of stochastic volatility.
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then R2
0 = 1. Hence, if R2

0 < 1, then no SVAR model can generate the impulse responses

Θ(L), although the model is nearly consistent with SVAR structure if R2
0 ≈ 1 (Wolf, 2020).

A weaker condition than invertibility is that the shock of interest is recoverable from

all leads and lags of the endogenous variables – that is, if E(ε1,t | {yτ}−∞<τ<∞) = ε1,t, or

equivalently if R2
∞ = 1. A sufficient condition is that nε = ny, since then Θ(L) automatically

has a two-sided inverse (Brockwell & Davis, 1991, Thm. 3.1.3), and thus the shocks εt =

Θ(L)−1yt are spanned by current, past, and future data. This is the case in many DSGE

models with news (i.e., anticipated) shocks (e.g., Leeper et al., 2013).

Variance decompositions. Variance decompositions are the key parameters of interest

in this paper. We focus in the main text on the forecast variance ratio (FVR), where the

FVR for the shock of interest for variable i at horizon ` is defined as

FVRi,` ≡ 1− Var(yi,t+` | {yτ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+` | {yτ}−∞<τ≤t)
=

∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)
.

The FVR measures the reduction in the econometrician’s forecast variance that would arise

from being told the entire path of future realizations of the first shock. The larger this

measure is, the more important is the first shock for forecasting variable i at horizon `. The

FVR is always between 0 and 1.

Appendix B.1 defines and provides identification analysis for two additional variance

decomposition concepts. First, the forecast variance decomposition (FVD) is like the FVR

but instead conditions on the history of all past shocks {ετ}−∞<τ≤t, rather than the history

of observables {yτ}−∞<τ≤t. Under invertibility, the FVR and FVD are identical (since then

the information set {yτ}−∞<τ≤t equals the information set {ετ}−∞<τ≤t), explaining why the

previous SVAR literature has not distinguished between the two. Second, we consider the

unconditional frequency-specific variance decomposition (VD) of Forni et al. (2019, sec. 3.4).

Historical decomposition. The historical decomposition of variable yi,t at time t at-

tributable to the shock of interest is defined as E(yi,t | {ε1,τ}−∞<τ≤t) =
∑∞

`=0 Θi,1,`ε1,t−`.

2.3 Identification problem

Our goal for the remainder of the paper is to answer the question: Given Assumptions 1 to 3,

what do the second moments (autocovariances) of the data (y′t, z
′
t)
′ say about the parameters

of interest defined above? In particular, can we test whether the shock ε1,t is invertible?
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Stock & Watson (2018) showed that relative impulse responses are point-identified in the

SVMA-IV model. To see this transparently, consider the case with a single IV, so λ = 1.

Since

Cov(yi,t, zt | {yτ , zτ}−∞<τ<t) = αΘi,1,`, (5)

the absolute impulse responses Θi,1,` for all variables i and all horizons ` are identified up

to the single scale parameter α. Thus, the relative impulse responses Θi,1,`/Θ1,1,0 are point-

identified, as α drops out from the fraction.

The main challenge addressed in this paper is that (partial) identification of variance and

historical contributions requires (partial) identification of the absolute impulse responses, and

thus of the scale parameter α.

3 Identification results

This section contains our main theoretical identification results. Readers who are primarily

interested in practical implementation are encouraged to skip ahead to Section 4. For expo-

sition, we start in Section 3.1 by deriving results for a simple static version of our SVMA-IV

model. We then turn to the general dynamic model in Sections 3.2 to 3.4, applying the static

results to the frequency domain representation of the data. We initially focus on the case

with a single IV, but we discuss the straight-forward extension to multiple IVs in Section 3.5.

3.1 Static model

To build intuition, consider a static version of the SVMA-IV model with a single instrument:

yt = Θ•,1,0ε1,t + ξt,

zt = αε1,t + σvvt,

(ε1,t, vt, ξt)
′ i.i.d.∼ N

(
0,

(
I2 02×ny

0ny×2 Σξ

))
.

Here α, σv ≥ 0 are scalars, ξt ≡
∑nε

j=2 Θ•,j,0εj,t is an ny-dimensional random vector that

captures all the structural shocks other than the one of interest, and Σξ ≡ Var(ξt).
4

4While the static model is primarily intended to provide intuition about the analysis of the SVMA-IV
model, the results in this subsection are directly relevant for identification in the more restrictive SVAR
model with an external IV. In that framework, yt would denote the ny reduced-form VAR residuals, which
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Our main parameter of interest is the Forecast Variance Ratio

FVRi,1 = 1− Var(yi,t | ε1,t)
Var(yi,t)

=
Θ2
i,1,0

Var(yi,t)
.

This is just the population R-squared value in the (infeasible) regression of yi,t on ε1,t. Since

Cov(yi,t, zt) = αΘi,1,0, it is easy to see that the FVR is identified up to a factor 1/α2:

FVRi,1 =
1

α2
× Cov(yi,t, zt)

2

Var(yi,t)
. (6)

Thus, we ask: What does the variance-covariance matrix of the data (y′t, zt)
′ say about the

scale parameter α2?

Our key insight is that the static model is nothing but a multivariate classical measure-

ment error model: Whereas we would like to measure the R-squared value from a regression

of yt on ε1,t, we only observe the noisy proxy zt for the “regressor”. Intuitively, the con-

tribution of ε1,t to yt is not point-identified because the signal-to-noise ratio α2/σ2
v of the

proxy zt is not known a priori. For example, upon observing a small correlation between

the IV and macro observables, we do not know whether this correlation is small because of

measurement error or because the shock is unimportant. Nevertheless, the moments of the

data are informative about the signal-to-noise ratio. At one extreme, the IV can never be

more than perfect – at best, there is no measurement error (infinite signal-to-noise ratio).

At the other extreme, the signal-to-noise ratio cannot be zero, since then the IV would not

correlate at all with macro observables. We now formalize this intuition.5

Lower bound on shock importance. We begin with a lower bound on the importance

of the shock (and so on the amount of measurement error), or equivalently an upper bound

on α2. To derive this bound, simply observe that

α2 ≤ α2 + σ2
v = Var(zt).

This inequality binds when there is no measurement error in the IV, i.e., when σv = 0.

are linear functions of the vector εt of nε contemporaneous structural shocks.
5Our bounds do not follow from existing results in the literature on measurement error in linear regression

(e.g., Klepper & Leamer, 1984), since our parameters of interest are not regression coefficients.
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Mapping this upper bound on α2 into a lower bound on the FVR via (6), we get

FVRi,1 ≥
Cov(yi,t, zt)

2

Var(zt) Var(yi,t)
= Corr(yi,t, zt)

2. (7)

The lower bound corresponds to the population R-squared value in a regression of yi,t on

zt, that is, a regression which treats the IV as if it were a perfect measure of the shock ε1,t

(up to scale). The attenuation bias imparted by the measurement error vt implies that this

regression yields a lower bound on the true FVR.

Upper bound on shock importance. To derive the upper bound on the importance

of the shock (and on the amount of measurement error), or equivalently the lower bound on

α, define first z†t ≡ E(zt | yt) and ε†1,t ≡ E(ε1,t | yt). Then, by standard linear projection

algebra, we must have

Var(z†t ) = α2 Var(ε†1,t) ≤ α2 Var(ε1,t) = α2.

Intuitively, α2 = Var(E(zt | ε1,t)) is the explained sum of squares from a projection of zt on

the shock ε1,t. This must weakly exceed the explained sum of squares Var(z†t ) = Var(E(zt |
yt)) from a projection of zt on yt, simply because the variables in yt are effectively noisy

measures of the shock ε1,t contaminated by other structural shocks ξt, and uncorrelated with

vt. In other words, the explanatory power of the variables yt for the IV zt puts a lower bound

on the possible signal-to-noise ratio α2/σ2
v = α2/(Var(zt)− α2). The inequality above binds

when the shock is invertible (ε†1,t ≡ E(ε1,t | yt) = ε1,t), i.e., when the macro observables yt

explain as much of the variation in the IV as the shock ε1,t itself does.

Mapping the lower bound on α2 into an upper bound on the FVR via (6), we get

FVRi,1 ≤
Cov(yi,t, zt)

2

Var(z†t ) Var(yi,t)
=

Cov(yi,t, z
†
t )

2

Var(z†t ) Var(yi,t)
= Corr(yi,t, z

†
t )

2. (8)

The upper bound corresponds to treating the projection z†t = αε†1,t of the IV on the macro

observables as a perfect measure of the shock (up to scale). This is correct if indeed the

shock were invertible (ε†1,t = ε1,t), but otherwise overstates the importance of the shock.

Intuitively, unless the shock is in fact invertible, the upper bound mistakenly attributes too

much of the lack of co-movement between yt and zt to measurement error (rather than the

actual limited importance of ε1,t).
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Whereas the lower bound (7) on the FVR for variable i does not depend on the entire

set of observed macro aggregates yt, the upper bound (8) decreases monotonically as we add

more variables to the vector yt. In particular, the upper bound equals the trivial bound of 1

if there is only one observable (ny = 1), since in this case we cannot rule out that the scalar

time series yt is driven entirely by the first shock, with the imperfect correlation between

yt and zt purely caused by measurement error.6 However, when ny ≥ 2, the upper bound

is generally below 1. We present an analytical example in Section 6.1 that shows how the

addition of extra observables helps sharpen identification, and clarifies the conditions under

which we can expect the upper bound to be close to the true FVR.

Identified set. The bounds α2 ∈ [Var(z†t ),Var(zt)] are sharp, i.e., exploit all information

contained in the second moments of the data, in the following sense. Suppose we are given

any non-singular variance-covariance matrix for the data (y′t, zt)
′, as well as any value of α2

in our interval. We can then choose appropriate values of the remaining parameters such

that the model matches the given variance-covariance matrix of the data.7

Under what conditions are the bounds on α2 – and thus on the FVR – likely to be tight

(i.e., close to the true FVR)? We can express the identified set for 1/α2 in terms of the

underlying model parameters as follows:

1

α2
∈
[

α2

α2 + σ2
v

× 1

α2
,

1

Var(E(ε1,t | yt))
× 1

α2

]
.

The lower bound is closer to the true value 1/α2 when the actual signal-to-noise ratio α2/σ2
v

is larger, i.e., when the IV is stronger. The upper bound is closer to the true FVR when

the degree of invertibility R2
0 = Var(ε†1,t) = Var(E(ε1,t | yt)) is larger, i.e., when the macro

variables yt are more informative about the hidden shock ε1,t. Finally, the identified set is

never empty, and it collapses to a point only in case of a perfect IV and invertibility.

Point identification. Point identification obtains if the researcher assumes either that

the IV is perfect (σv = 0), in which case the lower bound for the FVR binds, or that the

shock of interest is invertible (ε†1,t = ε1,t), in which case the upper bound binds.

6Mathematically, when yt is a scalar, then z†t = E(zt | yt) ∝ yt, so Corr(yt, z
†
t ) = ±1.

7This is achieved by the choices Θ•,1,0 = 1
α Cov(yt, zt), σ

2
v = Var(zt) − α2, and Σξ = Var(yt) −

1
α2 Cov(yt, zt) Cov(yt, zt)

′. This choice of σ2
v is nonnegative since Var(zt) ≥ α2, and Lemma 1 in Ap-

pendix A.2.1 implies that the choice of Σξ is a positive semidefinite matrix since α2 ≥ Var(z†t ) =
Cov(zt, yt) Var(yt)

−1 Cov(yt, zt).
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3.2 Dynamic model: shock scale

We now analyze identification in the general dynamic model of Section 2.1. The key idea in

our proofs is to apply the logic of the static model frequency-by-frequency to the frequency

domain representation of the data.

As in the static case, we begin in this section by characterizing the identified set for the

scale parameter α. While not economically interesting in itself, this scale parameter is ulti-

mately key to identification of our actual parameters of interest. We maintain Assumptions 1

to 3 throughout, but for the moment consider the case of a single IV (nz = 1), leaving the

generalization to Section 3.5. That is, zt is a scalar and λ = 1 in equation (3). We write

Σ
1/2
v = σv ≥ 0, a scalar.

Preliminaries. It will prove convenient to define the IV projection residual that removes

any dependence on lagged observed variables:

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αε1,t + σvvt. (9)

Note that z̃t is serially uncorrelated by construction.

Next, we need to define our notation for spectral density matrices. For any two jointly

stationary vector time series at and bt of dimensions na and nb, respectively, define the na×nb
cross-spectral density matrix function (Brockwell & Davis, 1991, ch. 4 and 11)

sab(ω) ≡ 1

2π

∞∑
`=−∞

e−iω` Cov(at, bt−`), ω ∈ [0, 2π].

For any vector time series at, we denote its spectrum by sa(ω) ≡ saa(ω).

Lower bound on shock importance. We again begin with a lower bound on shock

importance (or the amount of measurement error), which corresponds to an upper bound on

the scale parameter α. As in the static model, we find

α2 ≤ α2 + σ2
v = Var(z̃t) ≡ α2

UB. (10)

Thus, once we look at the residualized IV in (9), the bound construction works as in the

static case, with the boundary α = αUB corresponding to a perfect IV.
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Upper bound on shock importance. For the upper bound on shock importance (or

the lower bound on α2), we apply a version of the argument from the static case to the joint

spectrum of the data at every frequency. First, as in the static case, we define the projections

of z̃t and ε1,t, respectively, just now onto all leads and lags of the endogenous variables yt:

z̃†t ≡ E(z̃t | {yτ}−∞<τ<∞), (11)

ε†1,t ≡ E(ε1,t | {yτ}−∞<τ<∞).

Note that z̃†t = αε†1,t, since the measurement error vt is dynamically uncorrelated with yt.

Applying the same logic as in the static case at an arbitrary frequency ω ∈ [0, 2π], we have

sz̃†(ω) = α2sε†1
(ω) ≤ α2sε1(ω) = α2 × 1

2π
. (12)

The last equality uses that the shock ε1,t is white noise with variance 1. Similar to the

static case, the inequality above arises because the “explained sum of squares” sε†1
(ω) from a

frequency-specific projection of the shock ε1,t on all leads and lags of the macro observables

yt must be less than the “total sum of squares” sε1(ω).8 Exploiting the inequality (12) at all

frequencies, we obtain the lower bound

α2 ≥ 2π supω∈[0,π] sz̃†(ω) ≡ α2
LB. (13)

The bound binds if at some frequency ω ∈ [0, π] the observed macro aggregates are perfectly

informative about the hidden shock ε1,t. This is the natural dynamic, frequency-domain

analogue of the condition in the static case, where we required the static yt to be perfectly

informative about ε1,t. If the macro aggregates are in fact not perfectly informative about

the shock at any frequency, then the lower bound attributes too much of the (frequency-by-

frequency) lack of co-movement between yt and zt to measurement error.

The identified set. The main theoretical result of this paper is that the above bounds

α2
LB, α

2
UB are sharp.

Proposition 1. Let there be given a joint spectral density for wt = (y′t, z̃t)
′, continuous and

positive definite at every frequency, with z̃t unpredictable from {wτ}−∞<τ<t. Choose any

8Brockwell & Davis (1991, Remark 3, p. 439) show that sz̃†(ω) = syz̃(ω)∗sy(ω)−1syz̃(ω) and sε†1
(ω) =

syε1(ω)∗sy(ω)−1syε1(ω). Since the joint spectrum is positive semidefinite, sε1(ω) ≥ sε†1(ω) for all ω.
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α ∈ (αLB, αUB]. Then there exists an SVMA-IV model as in Assumptions 1 and 2 with the

given α such that the model-implied spectral density of wt matches the given spectral density.

Recall that the previous discussion has already shown that any value of α2 /∈ [α2
LB, α

2
UB]

is impossible. The proposition strengthens this result to say that, given the second moments

of the data, we cannot rule out any values of α2 in the interval [α2
LB, α

2
UB].9

To interpret the identified set, we proceed as in the static model and express the interval

in terms of the underlying model parameters. We focus on the identified set for 1
α2 , as

this transformation is again the most relevant one for identifying the FVR and degree of

invertibility/recoverability, as shown below. We can write the identified set for 1/α2 as

1

α2
∈
[

α2

α2 + σ2
v︸ ︷︷ ︸

instrument strength

× 1

α2
,

1

1− 2π infω∈[0,π] sε1−ε†1
(ω)︸ ︷︷ ︸

informativeness of data for shock

× 1

α2

]
. (14)

As in the static case, the lower bound is larger (and closer to the true 1
α2 ) when the instrument

is stronger in the sense of a higher signal-to-noise ratio α2/σ2
v . The upper bound is again

smaller (and closer to the true 1
α2 ) when the data are more informative about the shock of

interest. The relevant notion of informativeness, however, is now more complicated than in

the static case, for two reasons: First, we now exploit the explanatory power of all leads

and lags of the macro aggregates when forming the projection ε†1,t ≡ E(ε1,t | {yτ}−∞<τ<∞);

and second, we consider all frequencies of the data separately. The upper bound is close to

the truth as long as the leads and lags of yt are highly informative about the frequency-ω

fluctuations of the shock at some frequency ω (e.g., in the long run ω ≈ 0), in the sense that

the spectral density of the projection residual ε1,t− ε†1,t vanishes at this frequency. This does

not require the macro variables to be informative about the shock at all frequencies (e.g., in

the short run ω ≈ π). We illustrate this point in Section 6.2.

Similar to the static case, the identified set for 1
α2 does not collapse to a point unless

the instrument is perfect and there exists a frequency ω for which the data are perfectly

informative about the frequency-ω cyclical component of the shock.

Practical upper bound on shock importance. In practice, we do not recommend

exploiting the sharp lower bound on α for estimation and inference. The reason is that αLB

in equation (13) equals the supremum of a function, which depends on the spectral density

9The proposition does not cover the knife-edge case α = αLB due to economically inessential technicalities.
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matrix of the data. Nonparametric estimation of the supremum of an unknown function

is highly challenging given the moderate sample sizes available to applied macroeconomists

(Gafarov et al., 2018). For this reason, our implementation in Section 4 instead uses the

weaker bound

α2 ≡ Var(z̃†t ) =

∫ 2π

0

sz̃†(ω) dω ≤ 2π sup
ω∈[0,π]

sz̃†(ω) = α2
LB. (15)

Since α2 is given by an integral of the spectrum as opposed to a supremum, its point estimator

defined in Section 4 is consistent and asymptotically normal, as shown in Appendix B.8.10

Since Var(z̃†t ) = α2 Var(ε†1,t) = α2 × R2
∞, the weaker lower bound on α2 will nevertheless

be close to the truth if the shock of interest is close to being recoverable (R2
∞ ≈ 1), and thus

in particular if the shock is close to being invertible (R2
0 ≈ 1). In Section 6.3 we show by

example that the bound α2 binds in a model with news shocks, which cannot be analyzed

using conventional SVAR-IV methods that assume invertibility.

3.3 Dynamic model: parameters of interest

Given the identified set for 1
α2 , it is now straight-forward to derive identified sets for variance

decompositions as well as the degree of invertibility and recoverability.

Variance decompositions. The FVR satisfies

FVRi,` =

∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)
=

1

α2
×
∑`−1

m=0 Cov(yi,t, z̃t−m)2

Var(yi,t+` | {yτ}−∞<τ≤t)
. (16)

Hence, as in the static case, the identified set for FVRi,` equals the identified set for 1
α2 ,

scaled by the (point-identified) second fraction on the far right-hand side above. As discussed

previously, and as in the static case, the lower bound for the FVR depends on the strength

of the IV, and the upper bound on the FVR depends on the informativeness of the macro

variables for the shock of interest. Adding more variables to the vector yt of endogenous

observables always leads to a weakly narrower identified set (in percentage terms, since the

10Methods from the moment inequality literature could be applied to develop confidence intervals that
exploit our sharp lower bound α2

LB (Andrews & Shi, 2013, 2017; Chernozhukov et al., 2013). We leave this
more complicated option to future work. Alternatively, if researchers have a strong a priori reason to believe
that the shock is likely to be particularly important at certain frequencies, then they may fix frequency
bounds [ω1, ω2] and compute the integral in (15) by integrating over this interval only.
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parameter FVRi,` itself also changes when we change the vector yt). Unlike in the static

case, the upper bound in the dynamic case is generally below 1 even if we only observe a

single macro time series (ny = 1), as shown by example in Section 6.2.

Appendix B.1 derives bounds on the other variance decomposition concepts (VD and

FVD) introduced in Section 2.2. Bounding the FVD in particular requires more work.

Degree of invertibility & recoverability. The definition (4) of R2
` implies

R2
` =

1

α2
× Var(E(z̃t | {yτ}−∞<τ≤t+`)). (17)

Since the variance on the right-hand side above is point-identified, the identified sets for the

degree of invertibility (` = 0) and the degree of recoverability (` = ∞) follow immediately

from the identified set for 1
α2 .

From the sharp bounds on R2
0 and R2

∞, we can also derive testable conditions under which

the distribution of the observable data is consistent with invertibility or recoverability.

Proposition 2. Assume α2
LB > 0. The identified set for R2

0 contains 1 if and only if the

instrument residual z̃t does not Granger cause the macro observables yt. The identified set

for R2
∞ contains 1 if and only if the projection z̃†t is serially uncorrelated.

According to Proposition 2, ε1,t is certain to be noninvertible if and only if z̃t Granger

causes yt (which is equivalent with the condition that zt Granger causes yt). This result will

be the basis for the pre-test of invertibility in Section 4. Note, however, that a finding of

Granger non-causality need not imply that R2
0 = 1; the identified set for R2

0 always includes

values below 1. Proposition 2 additionally implies that ε1,t is certain to be non-recoverable

if and only if z̃†t , defined in (11), is serially correlated at some lag.11

Absolute impulse responses. For completeness, we note that the identified set for the

absolute impulse response Θi,1,` is obtained by scaling the identified set for 1
α

, cf. equation

(5). This extends existing results on the point-identification of relative impulse responses

(Stock & Watson, 2018), as discussed at the end of Section 2.

11We leave the development of a practical statistical test of recoverability to future research.
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3.4 Dynamic model: point identification

As we have seen, without further restrictions, our various parameters of interest are only

interval-identified, albeit with informative bounds. In this section we complement those

results by stating a menu of sufficient conditions, each of which guarantees point identification

of the FVR and historical decompositions.

Informative instruments. Point identification obtains if the researcher is willing to

assume that the instrument is perfect, i.e., σv = 0. In this case the lower bounds on the

FVR and degree of invertibility/recoverability bind. Indeed, since the instrument equals the

shock up to scale, z̃t = αε1,t, the FVR and historical decompositions are easily computed

through regressions (Jordà, 2005; Gorodnichenko & Lee, 2020). Note that the assumption

that the IV is perfect is not testable.

Informative macro aggregates. The second set of sufficient conditions relates to the

informativeness of the macro aggregates yt for the hidden shock ε1,t. In this category, our

weakest condition for point identification is that the data yt is perfectly informative about

ε1,t at some frequency, i.e., the spectral density of the projection residual ε1,t − ε†1,t vanishes

at some frequency ω. Then α = αLB, so the FVR and degree of invertibility/recoverability

are identified. This assumption is not testable.

A stronger but more easily interpretable assumption is recoverability, i.e., ε†1,t ≡ E(ε1,t |
{yτ}−∞<τ<∞) = ε1,t. This assumption is testable, cf. Proposition 2. As explained in

Section 2.2, recoverability is restrictive, but it is a meaningfully weaker requirement than

invertibility in many economic applications, such as in the news shock model in Section 6.3

below. In particular, it is satisfied whenever there are as many shocks as variables, nε =

ny. Under recoverability, the shock itself can be identified as ε1,t = 1
α
z̃†t , so the historical

decomposition E(yi,t | {ε1,τ}−∞<τ≤t) = E(yi,t | {z̃†τ}−∞<τ≤t) is also identified.

3.5 Extension: multiple instruments

To conclude, we briefly extend the analysis to a model with multiple IVs for the shock of

interest (nz ≥ 2). This extended multiple-IV model is testable, unlike the single-IV model.

As in the single-IV case, define the projection residual

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αλε1,t + Σ1/2
v vt. (18)
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Appendix B.2 shows that the testable implication of the multiple-IV model is that the cross-

spectrum syz̃(ω) has a rank-1 factor structure. The validity of the multiple-IV model can be

rejected if and only if this factor structure fails.

When the multiple-IV model is consistent with the distribution of the data, then the

identification analysis can be reduced to the single-IV case in Sections 3.2 to 3.4. Specifically,

Appendix B.2 shows that (i) λ is point-identified, and (ii) the identified sets for α, variance

decompositions, and the degree of invertibility are the same as the identified sets that exploit

only the scalar instrument

z̆t ≡
1

λ′Var(z̃t)−1λ
λ′Var(z̃t)

−1z̃t. (19)

Intuitively, z̆t ∝ E(ε1,t | z̃t). Because z̆t is a linear combination of all nz instruments, the

identified sets are narrower than if we had used any one instrument zk,t in isolation.

In Appendix B.3 we also derive sharp bounds in the more general case of multiple instru-

ments being correlated with multiple structural shocks, as in Mertens & Ravn (2013).

4 Practical implementation

We now describe the practical implementation of our inference procedures for variance de-

compositions and our test of invertibility of the shock of interest. To keep the exposition

self-contained, we review some of the conclusions from Section 3. For ease of notation we fo-

cus on the case with a single IV zt in this section. The generalization to multiple instruments

is straight-forward, cf. Section 3.5.

The key Proposition 1 in Section 3 showed that, without further assumptions, variance

decompositions and the degree of invertibility are only partially identified. That is, even

if the sample size were infinite so we knew the autocovariance function of the observed

data Wt ≡ (y′t, zt)
′ perfectly, we would not be able to exactly pinpoint the true values of

these parameters. However, we were able to derive informative bounds on the parameters of

interest. The remainder of this section gives an overview of how to compute those bounds in

practice, how to do inference on the identified set, and how the additional a priori assumption

of recoverability allows for consistent point estimation of all economic parameters of interest.

As mentioned in the introduction, a Matlab code suite that implements all steps below

is available online.
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4.1 Preliminaries: approximating the autocovariance function

Our bounds are simple functions of the autocovariances of the data Wt ≡ (y′t, zt)
′. The

first step of our procedure is thus to estimate this autocovariance function. Though vari-

ous estimators could in principle be used in conjunction with our identification results, we

choose here to approximate the distribution of the observed data with a finite-order VAR

(we discuss nonparametric consistency below). Note that this is an approximation of the

reduced-form dynamics of the data; we do not need to assume a structural VAR model and

the restrictive invertibility assumption that goes with it. Since our analysis in Section 3

assumes stationarity, the data should be appropriately transformed and detrended prior to

the analysis.12

As a first step, we select the VAR lag length p by a standard information criterion, such

as the Akaike Information Criterion (AIC). We then estimate a VAR(p) model for the data

Wt = (y′t, zt)
′ by OLS. Finally, we compute the VAR-implied estimates of the autocovariances

and cross-covariances of yt and the projection residual z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ≤t−1).
Denote these estimates by V̂ar(z̃t), Ĉov(z̃t, yt+h), and Ĉov(yt, yt−h) for h = 0, 1, . . . ; see

Appendix A.1 for explicit formulas.

4.2 Pre-test for invertibility

Though our identification bounds below are valid irrespective of the invertibility of the

shocks, some researchers may wish to have available a convenient pre-test of the null hy-

pothesis of invertibility. Proposition 2 showed that the distribution of the data is consistent

with the shock of interest ε1,t being invertible if and only if the IV zt does not Granger cause

the vector yt of macro observables. Intuitively, if the shock is invertible, then lags of the

macro observables yt capture all the forecasting power of lags of the shock ε1,t; hence, lags

of the IV zt (a noisy measure of ε1,t) do not contribute anything to forecasting. We can test

the null hypothesis of no Granger causality in the following standard way:

• Reject the null hypothesis of invertibility of ε1,t at the chosen significance level if

the ny×p VAR coefficients on all lags of zt in all the yt equations are jointly statistically

significant (for example using a Wald test, cf. Kilian & Lütkepohl, 2017, ch. 2.5).

12Because our analysis relies heavily on the spectral density matrix of the data, it is not straight-forward to
extend our procedures to work directly with non-stationary data (without prior transformation/detrending).
We leave this important topic to future research.
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Non-rejection should not be interpreted as strong evidence in favor of invertibility: Any valid

test of invertibility necessarily has trivial power against some non-invertible alternatives,

since it is possible for zt not to Granger cause yt even if the shock ε1,t is non-invertible.13

4.3 Estimating the identification bounds

We now describe how to estimate our identification bounds for the Forecast Variance Ratio

(FVR) and the degrees of invertibility and recoverability. Bounds on Variance Decomposi-

tions (VDs) and Forecast Variance Decompositions (FVDs) are provided in Appendix B.1.

The bounds all depend on the two scalar quantities

α̂2 ≡ V̂ar(E(z̃t | {yτ}−∞<τ<∞)), ˆ̄α2 ≡ V̂ar(z̃t),

which are lower and upper bounds for α2, cf. Proposition 1 and the discussion surrounding

(15). An explicit formula for the somewhat non-standard projection variance α̂2 – as well as

other, similar projection variances mentioned below – is given in Appendix A.1.

• The estimated bounds for the Forecast Variance Ratio FVRi,` of variable yi,t at

horizon ` are given by[
1

ˆ̄α2
×
∑`−1

m=0 Ĉov(yi,t, z̃t−m)2

V̂ar(yi,t+` | {yτ}−∞<τ≤t)
,

1

α̂2 ×
∑`−1

m=0 Ĉov(yi,t, z̃t−m)2

V̂ar(yi,t+` | {yτ}−∞<τ≤t)

]
, (20)

cf. equation (16). The interval is always non-empty and never collapses to a point.

The true FVR is contained in this interval with high probability asymptotically, but

the analysis does not allow us to say where in the interval the parameter lies without

making further assumptions. The lower bound – which upon inspection corresponds

to pretending that the residualized IV z̃t is a perfect measure of ε1,t – is closer to the

true FVR when the IV is stronger (i.e., there is less measurement error), cf. equation

(14). The upper bound instead does not depend on the amount of measurement error,

and is closer to the true FVR when the macro variables yt are more informative about

the hidden shock ε1,t (in the sense that the degree of recoverability R2
∞ is larger).

13Stock & Watson (2018) develop an invertibility test which directs power against alternatives with impulse
response functions that differ substantially from the invertible null. It is not immediately clear whether their
test has power against all falsifiable non-invertible alternatives, as our proposed test does.
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• The estimated bounds for the degree of invertibility R2
0 are given by[

1

ˆ̄α2
× V̂ar(E(z̃t | {yτ}−∞<τ≤t)) ,

1

α̂2 × V̂ar(E(z̃t | {yτ}−∞<τ≤t))
]
,

cf. equation (17). The data are consistent with substantial non-invertibility of the

shock ε1,t if the above interval contains values substantially below 1. By the definition

of α̂2, this is the case if future values of the macro observables help to predict the

residualized IV z̃t.

• The estimated bounds for the degree of recoverability R2
∞ are given by[

α̂2

ˆ̄α2
, 1

]
,

cf. (17). The data are consistent with substantial non-recoverability of the shock of

interest ε1,t if the interval contains values substantially below 1. The reason why the

upper bound above equals the trivial bound of 1 is that we do not exploit the sharp

upper bound, which is difficult to estimate in realistic sample sizes, as discussed at the

end of Section 3.2. The theoretical sharp upper bound was derived in Proposition 1.

Point identification/estimation under recoverability. Finally, our analysis in

Section 3.4 showed that it is possible to point-identify many of the parameters of interest

if the researcher is willing to impose additional a priori assumptions. In particular, if we

are willing to assume that the shock is recoverable – i.e., R2
∞ = 1 – then the upper bound

for FVRi,` in (20) is a consistent estimator of the true FVR, as argued in Section 3.4. As

discussed in Sections 2.2 and 6, recoverability is a mathematically and economically weaker

assumption than the invertibility assumption required by conventional SVAR-IV analysis.

4.4 Confidence intervals

In Appendix B.8 we prove that the above-mentioned bounds are jointly asymptotically nor-

mal under weak nonparametric regularity conditions on the data generating process (DGP).

We assume neither that the true DGP is a finite-order VAR, nor that the shocks are Gaus-

sian. This argument requires the VAR lag length p = pT used for estimation to diverge with

the sample size T at an appropriate rate.

Since the bounds are asymptotically normal, we can use standard arguments to construct
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confidence sets (Imbens & Manski, 2004). Consider any one of the partially identified pa-

rameters discussed above and denote the estimates of its bounds by the generic notation

[θ̂, ˆ̄θ]. We then use a conventional bootstrap for VAR models (Kilian & Lütkepohl, 2017, ch.

12.2) to generate bootstrap samples of the bound estimates θ̂ and ˆ̄θ, and let q̂
β

and ˆ̄qβ denote

the bootstrap β-quantiles of the lower and upper bounds, respectively. Then the interval

[q̂
β/2
, ˆ̄q1−β/2] is a valid 1 − β confidence interval for the identified set of the parameter in

question.14 That is, the probability that the confidence interval contains the entire identi-

fied set is greater than or equal to 1−β asymptotically; in particular, this confidence interval

is therefore also a valid confidence set for the parameter itself.15 Under the additional point-

identifying assumption that the shock is recoverable, the FVR is consistently estimated by

the upper bound ˆ̄θ, so we can construct a 1− β confidence interval as [ˆ̄qβ/2, ˆ̄q1−β/2].

Because VAR inference is subject to well-known small-sample biases (Kilian & Lütkepohl,

2017), we recommend that the following alternative formulas be used. Let θ̂
∗

and ˆ̄θ∗ denote

the average bootstrap draws of θ̂ and ˆ̄θ. Then we report the bias-corrected point estimate

[2θ̂−θ̂
∗
, 2ˆ̄θ− ˆ̄θ∗] of the bounds, as well as Hall’s percentile confidence interval [2θ̂−q̂

1−β/2, 2
ˆ̄θ−

ˆ̄qβ/2]. Similar corrections can be applied in the case of point identification via recoverability.

5 Application to monetary policy shocks

To illustrate our method, we revisit an old question: the importance of monetary shocks for

U.S. macro fluctuations. Our main result is that monetary shocks are of limited importance

for post-1990 aggregate dynamics, especially for inflation. The application illustrates that

our upper bound on variance decompositions can yield surprisingly sharp inference, despite

the weakness of our identifying assumptions.

Background. Gertler & Karadi (2015) construct an external instrument for monetary

shocks from high-frequency changes in asset prices in very short time windows around FOMC

announcements, following earlier work by Kuttner (2001), Cochrane & Piazzesi (2002), and

Gürkaynak et al. (2005). While Gertler & Karadi (2015) focus on estimation of relative

14The validity requires that the VAR bootstrap procedure is consistent. For example, the bootstrap must
take into account the conditional heteroskedasticity of the data. See Kilian & Lütkepohl (2017, ch. 12.2) for
a menu of procedures, formal results, and regularity conditions.

15In principle one could construct narrower confidence intervals that only guarantee coverage of the pa-
rameter itself (not the identified set), as in Imbens & Manski (2004) and Stoye (2009), and we do this in our
Matlab code suite. However, the decrease in length appears to be minimal in realistic applications.
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IRFs, we will seek to quantify shock importance, taking the validity of their instrument as

given.16 This setting is ideal for illustrating the appeal of our method, for two reasons.

First, measurement error is likely to be substantial. Intuitively, while short time windows

around FOMC meetings may be a clean way of isolating some monetary shocks, all shocks

occurring outside of that window are necessarily missed. Moreover, financial data are subject

to noise due to market microstructure effects and uninformed traders. Treating the IV as the

shock – as in the method of Gorodnichenko & Lee (2020), which is equivalent to our lower

bound – will then understate the importance of monetary shocks due to attenuation bias.17

Second, non-invertibility is a threat to SVAR-IV analysis. For example, Ramey (2016),

citing the increasing prevalence of forward guidance in the conduct of U.S. monetary policy,

cautions against the conventional SVAR-IV approach. In contrast, our partial identification

approach does not require the shock to be invertible (or even recoverable).

Model. Our specification largely follows Gertler & Karadi (2015), except that we do not

impose a SVAR structure. We consider four endogenous macro variables yt: output growth

(log growth rate of industrial production), inflation (log growth rate of CPI inflation), the

Federal Funds Rate (FFR), and the Excess Bond Premium of Gilchrist & Zakraǰsek (2012)

as a measure of the non-default-related corporate bond spread. For robustness, we also

try replacing the FFR with the 1-year Treasury rate, as in Gertler & Karadi (2015). The

external IV zt is constructed from changes in 3-month-ahead futures prices written on the

FFR, where the changes are measured over short time windows around Federal Open Market

Committee monetary policy announcement times.18 Data are monthly from January 1990

to June 2012. The AIC selects p = 6 lags in the reduced-form VAR. We use 1,000 bootstrap

draws from a homoskedastic recursive residual VAR bootstrap.

16Caldara & Herbst (2019) compute FVDs for a similar specification, assuming an SVAR model. Their
estimates of the importance of monetary shocks for inflation are somewhat larger than our upper bounds.

17Formally, let the total monetary shock consist of two independent components, ε1,t ≡ ε̄1,t+ε̃1,t, where ε̄1,t
captures those shocks that occur inside FOMC announcement windows. Assume {ε̄1,t, ε̃1,t} are independent
of {ε2,t, . . . , εnε,t}. If zt = ε̄1,t + v̄t, where the noise v̄t is independent of {ε̄1,t, ε̃1,t, ε2,t, . . . , εnε,t}, then
the IV moment conditions (2) are satisfied. For the case v̄t = 0, our results in Section 3 imply that the
Gorodnichenko & Lee (2020) FVR estimator will be biased downward by a factor of Var(ε̄1,t) ∈ [0, 1].

18See Gertler & Karadi (2015) for details on the construction of the IV and a discussion of the exclusion
restriction. Nakamura & Steinsson (2018a) argue that the monetary shock identified using this IV partially
captures revelation of the Federal Reserve’s superior information about economic fundamentals. This is
related to the idea in Campbell et al. (2012) that monetary policy communication can be both “Delphic”
and “Odyssean”. Appendix B.3 shows that our FVR bounds can generally be interpreted as bounding the
importance of the particular linear combination of shocks that tend to hit during FOMC announcements,
e.g., a weighted sum of “Delphic” and “Odyssean” shocks.
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Results. The data are consistent with substantial non-invertibility. Table 1 shows point

estimates and 90% confidence intervals for the identified sets of the degree of invertibility

and the degree of recoverability, either using the FFR or the 1-year rate as the interest

rate variable. When we use the FFR, we can reject invertibility at the 10% level, since the

confidence set for the degree of invertibility excludes 1. When we use the 1-year rate, we

cannot outright reject invertibility, but the confidence set is still consistent with very low

degrees of invertibility.19 Since the data cannot rule out a low degree of invertibility in either

case, we proceed with our invertibility-robust SVMA-IV analysis. The data are similarly

consistent with a wide range of values for the degree of recoverability.

Figure 1 shows partial identification robust confidence intervals for the forecast variance

ratio of the four endogenous macro variables with respect to the monetary shock. We report

point estimates and confidence intervals for the identified sets at each horizon separately. We

focus here on the specification with the FFR instead of the 1-year rate, since our quantitative

conclusions are if anything even starker with the latter observable. At all forecast horizons,

the 90% confidence intervals rule out FVRs above 31% for output growth and 8% for inflation.

At forecast horizons up to 6 months, we can rule out that the monetary shock accounts

for more than 19% of the forecast variance of the Excess Bond Premium. However, we

cannot rule out that the monetary shock is an important contributor to medium- or long-

run forecasts of the bond premium. On the other hand, we cannot rule out that the monetary

shock is completely unimportant either.

Our analysis reveals that the weak assumptions of the SVMA-IV model suffice to ob-

tain tight upper bounds on the forecast variance contribution of monetary shocks for several

variables, especially inflation. This is despite the finding by Stock & Watson (2018) that

standard errors for impulse response functions are large in this application. Many commen-

tators have documented a recent divorce between inflation and output dynamics (Hall, 2011);

our results document a similar divorce in dynamics conditional on monetary policy shocks

in post-1990 data. Although this finding echoes previous SVAR work (Christiano et al.,

1999; Ramey, 2016), our identifying assumptions are weaker – we merely impose validity of

the IV.20 We conclude that, if inflation is a monetary phenomenon, it is so because of the

systematic component of monetary policy, not because of erratic policy shocks.

19The p-values for the Granger causality pre-test of invertibility in Section 4 are 0.0001 (FFR) and 0.390 (1-
year rate). Note that Stock & Watson (2018) fail to reject invertibility in a somewhat different specification.

20Appendix B.6 reports variance decompositions obtained from a conventional SVAR-IV procedure. These
results confirm the limited importance of the monetary shock, though under stronger identifying assumptions.
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Empirical application: Degree of invertibility/recoverability

FFR 1-year rate

R2
0 Bound estimates [0.196, 0.684] [0.118, 0.922]

90% conf. interval [0.097, 0.877] [0.029, 1.000]

R2
∞ Bound estimates [0.282, 1.000] [0.119, 1.000]

90% conf. interval [0.190, 1.000] [0.028, 1.000]

Table 1: Bounds on the degree of invertibility R2
0 and the degree of recoverability R2

∞. Interest
rate variable is either Federal Funds Rate (left) or 1-year Treasury rate (right). All numbers are
bootstrap bias corrected.

Empirical application: Forecast variance ratios
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Figure 1: Point estimates and 90% confidence intervals for the identified sets of forecast variance
ratios, across different variables and forecast horizons. For visual clarity, we force bias-corrected
estimates/bounds to lie in [0, 1]. The interest rate variable is the Federal Funds Rate.
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Other application: Oil news shocks. In Appendix B.7 we show that our method

also yields highly informative upper bounds on the importance of international oil supply

news shocks for the U.S. and global business cycles. We use an IV constructed by Känzig

(2021) from OPEC announcements.21 We find the oil news shock to be highly non-invertible,

causing conventional SVAR-IV analysis to reach several spurious conclusions.

6 Analytical illustrations

In this section we consider three simple analytical examples that illustrate how our identifica-

tion bounds depend on the characteristics of the data. Section 3.2 argued that the tightness

of our lower bound on variance decompositions depends solely on the strength of the IV.

We here show that, under stylized but empirically motivated assumptions, the upper bound

can be expected to be highly informative, in the sense that it at worst mildly overstates the

instrumented shock’s contribution to macroeconomic fluctuations.

Throughout this section we assume the availability of a single IV zt = αε1,t + σvvt,

and then consider different illustrative toy models for the yt variables, as specified below.

In Appendix B.5 we extend the analytical intuition below to the much richer quantitative

DSGE model developed by Smets & Wouters (2007).

6.1 Information content of several observables

As our first example, consider the static model

yt = Θ0εt

with ny = 2 observables: inflation (y1,t) and the monetary policy interest rate (y2,t). We

think of ε1,t as a conventional monetary policy shock. If we only observed inflation y1,t in

addition to an IV, we would not be able to rule out that the monetary shock drives all the

variation in this single variable, as explained in Section 3.1. How can adding the interest

rate to the data set help tighten the identified set for the FVR of inflation?

To gain economic intuition, let the reduced-form moments of the data be given by

Var(yt) =
(
1 ρ
ρ 1

)
, and Cov(yt, zt) =

(
1
−ζ
)
,

21Our empirical specification otherwise differs somewhat from his because we work with stationarity-
transformed variables and restrict the sample to the period where the IV is available.
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where ζ ≥ 0. We see that, even with the amount of measurement error unknown, the IV

zt reveals the signs and the relative magnitudes of the co-movement in observables induced

by monetary shocks: The shock ε1,t moves inflation and interest rates in opposite directions

(Uhlig, 2005), while the unconditional correlation of interest rates and inflation is ρ.

We consider three instructive special cases. For the first two, we set ζ = 1; applying our

identification analysis, we then get the bounds

FVRi,0 ≤
1

2
(1− ρ), i = 1, 2.

Now suppose first that ρ = −1; that is, interest rates and inflation are not just perfectly

negatively correlated conditional on monetary shocks, but also unconditionally. In that case

the upper bound for the FVR of both variables equals 1: The data cannot rule out that

the correlation of the IV with macro observables is imperfect purely because of measurement

error. Second, suppose that ρ = 1; that is, interest rates and inflation are perfectly positively

correlated in the data. Then our upper bound for the FVR suddenly equals zero: The

monetary shock induces co-movement patterns that we never see in the data, so it cannot

possibly explain any observed macro fluctuations. Third, if instead ρ = 0, then our upper

bounds are, for any ζ ≥ 0,

FVR1,0 ≤
1

1 + ζ2
, FVR2,0 ≤

ζ2

1 + ζ2
.

Suppose that nominal rates respond much more to the monetary shock than inflation does,

i.e., ζ � 1. Then the upper bound on the inflation variance decomposition FVR1,0 is very

small; intuitively, since the IV reveals that the monetary shock moves interest rates by much

more than inflation, but both have the same unconditional variance, the monetary shock

cannot possibly be an important driver of inflation. This third example rationalizes the

findings in our application to monetary shocks in Section 5: The IV zt correlates much more

with interest rates than with prices, yet prices are not commensurately less volatile than

interest rates, so monetary shocks cannot account for much of the volatility in prices.

This example shows that our upper bound on the FVR is close to the true value if

either the shock is very prominent (so that the bound of one is not far from the truth) or if

the shock induces somehow atypical co-movements of the various observed macro aggregates.

This second condition is equivalent to the shock being prominent for some linear combination

of the macro observables yt, which is equivalent to the shock being nearly invertible in this

static model. Thus, the preceding arguments agree with the analysis in Section 3.1.

29



6.2 Dynamic information content

Whereas the previous example illustrated how the availability of several macro time series

sharpens identification in a static context, we now show how the dynamics of individual time

series can do the same. Consider the univariate but dynamic model

yt =
nε∑
j=1

∞∑
`=0

ρ`jεj,t−`

with ny = 1. That is, we observe a single variable yt driven by nε independent AR(1)

processes. To fix ideas, we think of ε1,t as a technology shock and yt as aggregate output.

Now assume that long-run fluctuations in output yt are exclusively driven by the tech-

nology shock ε1,t; that is, consider the limit ρ1 → 1, while fixing |ρj| < 1 for all j ≥ 2. In

this case, the sharp lower bound on α2 converges to the truth:22

lim
ρ1→1

α2
LB = lim

ρ1→1
2π sup

ω∈[0,π]
sz̃†(ω) = lim

ρ1→1
2πsz̃†(0) = α2.

Intuitively, at spectral frequency zero, all fluctuations in yt are driven by the technology

shock. Loosely speaking, applying a low-pass filter to yt therefore isolates the fluctuations

caused by the technology shock. Leads and lags of this low-pass filtered series are thus highly

correlated with the IV, putting a lower bound on the signal-to-noise ratio in the IV. This is

why the sharp upper bound for the FVR converges to the true value.

The example reveals that cross-restrictions over time can be highly informative even if

the shock of interest is neither invertible nor recoverable. Intuitively, for the sharp upper

bound on the FVR to bind, our method only needs the shock to dominate at some frequency;

the across-frequency restrictions then do the rest, exactly like the cross-variable restrictions

in the static example above.23

22Note that syz̃(0) = α
2π

∑∞
`=0 ρ

`
1 = α

2π ×
1

1−ρ1 and sy(0) = 1
2π (
∑nε

j=1

∑∞
`=0 ρ

`
j)

2 = 1
2π (
∑nε

j=1
1

1−ρj )2.

Footnote 8 then implies 2πsz̃†(0) = syz̃(0)2/sy(0) = ((1− ρ1)syz̃(0))2/((1− ρ1)sy(0))→ α2 as ρ1 → 1.
23As mentioned in Section 3.2, for finite-sample statistical reasons, we recommend the use of a weaker

lower bound α2 on α2 in place of the sharp bound α2
LB . This weaker lower bound does not converge to

α2 as ρ1 → 1, unless ε1,t is recoverable. However, as discussed in Footnote 10, researchers may leverage
a strong prior belief about the low-frequency importance of shocks by computing the integral in (15) for a
pre-specified range of (low) frequencies.
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6.3 Non-invertibility and news shocks

In the third example, we show how our method deals with non-invertible news shocks. First

discussed in Pigou (1927), news shocks have recently received much attention as drivers

of macroeconomic fluctuations (Beaudry & Portier, 2006, 2014; Jaimovich & Rebelo, 2009;

Schmitt-Grohé & Uribe, 2012). Unfortunately, foresight of economic agents complicates con-

ventional SVAR-based analysis since it induces equilibria with non-invertible MA represen-

tations (Leeper et al., 2013). In contrast, our methods are valid irrespective of invertibility.

To illustrate, consider a moving average model of order 1 with ny = nε = 2:

yt = (1 + ζL)Θ0εt,

where ζ > 1. As is well known, this assumption implies that the moving average represen-

tation is non-invertible. We think of ε1,t as a monetary forward guidance shock: The shock

moves inflation and nominal interest rates by more tomorrow (when the shock directly hits

the monetary policy rule) than today (when the news is revealed).

The conventional SVAR-IV approach mis-measures the FVR because of non-invertibility.

By standard arguments (e.g., Leeper et al., 2013) the reduced-form VAR residuals equal

ut ≡ yt − E(yt | {yτ}−∞<τ<t) = Θ0εt + (1− 1/R2
0)
∞∑
`=1

(−ζ)−` Θ0εt−`, (21)

where the degree of invertibility equals

R2
0 = ζ−2.

Since SVAR procedures assume that the structural shocks εt can be obtained as linear

functions of the reduced-form residuals ut, equation (21) shows that any SVAR analysis will

conflate the explanatory power of the shock ε1,t with that of its lags. As a consequence,

Appendix B.4 shows that the SVAR-IV estimand of the FVR overstates the contribution of

the shock to one-step-ahead forecasts:

FVRSVAR−IV
1,0 =

1

R2
0

× FVR1,0 > FVR1,0.

Clearly, the population bias of the SVAR-IV estimand worsens as the degree of invertibil-

ity R2
0 decreases to 0 (see also Forni et al., 2019). In the oil news shock application in
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Appendix B.7 we demonstrate that the SVAR-IV bias can be large in practice.

In contrast, our identification bounds are valid irrespective of invertibility, since we do not

assume that ε1,t can be recovered as a function of only the contemporaneous VAR residuals

ut. In fact, in this model with as many observables as shocks, both shocks εt = (ε1,t, ε2,t)
′

are recoverable.24 Hence, if we exploit this knowledge, we can even point-identify the shock

as ε1,t ∝ z†t = E(zt | {yτ}−∞<τ<∞). The key is that our method can use the future values

of nominal rates and inflation, yτ , τ ≥ t, to recover the forward guidance shock ε1,t at time

t. In so doing, it effectively realigns the information sets of the economic agents and of the

econometrician, sidestepping the invertibility problem.

7 Simulation study

We finish by showing that our inference procedures have good finite-sample performance

in simulations. Our methods continue to work well in non-invertible models, unlike the

conventional SVAR-IV procedure.

DGP. We adopt a variant of the DGP in Kilian & Kim (2011) and assume that the macro

aggregates yt follow a structural VARMA(p,1) model:

yt =
∑p

`=1 Ξ`yt−` + Θ0(εt + ζεt−1).

We consider ny = 2 macro variables, p = 1 autoregressive lag (with one exception discussed

below), and set Ξ1 =
(
ρy 0
0.5 0.5

)
. For the MA part, we consider nε = 2 shocks (which are

thus both recoverable) and set Θ0 = chol ( 1 0.8
0.8 1 ) , where “chol” denotes the lower triangular

Cholesky decomposition. As in Section 6.3, ζ is a scalar parameter that governs the degree

of invertibility, with ζ > 1 implying non-invertibility. We add an external instrument zt for

the shock of interest ε1,t:

zt = ρzzt−1 + ρzy(y1,t−1 + y2,t−1) + ε1,t + σvvt.

Notice that we have normalized α = 1. Finally, the measurement error and structural shocks

are i.i.d. Gaussian and orthogonal as in Assumption 3.

We run Monte Carlo experiments for nine different parameterizations of the above DGP.

24In particular, εt = −R2
0Θ−10 ut −

(
1−R2

0

)∑∞
`=1 (−ζ)

−`
Θ−10 ut+`.
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Specifically, we consider various deviations from a baseline parametrization. In our bench-

mark, we set ρy = 0.5, ρz = ρzy = 0, ζ = 0, σv = 1, and sample size T = 250. We then

consider variations with more autoregressive persistence (either ρy = 0.9, or ρz = 0.8 and

ρzy = 0.3), an invertible MA component (ζ = 0.5), a non-invertible MA component (ζ = 2),

a weaker instrument (σv = 2), and different sample sizes (T = 100, T = 500). Finally, we

allow for richer dynamics, with p = 4 and Ξj = 1
j2

Ξ1 for j = 2, 3, 4.

Results. Our parameters of interest are the degree of invertibility R2
0 and the FVR for

variable y2,t at horizons 1 and 4. We conduct 5, 000 Monte Carlo repetitions per DGP, and

construct confidence intervals at the 90% level using 1, 000 bootstrap draws per simulation.

We use a homoskedastic recursive residual bootstrap. The reduced-form VAR lag length is

selected using AIC, and we use Hall’s percentile bootstrap confidence interval, cf. Section 4.

Table 2 shows that the partial identification robust SVMA-IV confidence sets defined in

Section 4 achieve coverage rates close to or exceeding the desired level of 90% throughout.

We report coverage rates for both the population identified sets (columns “Set”) and for the

underlying parameters (columns “Param”). The coverage rate for the parameter is never

below 86.8% in any case. The coverage rate for the identified set is mostly close to 90% and at

worst 82.9% in our experiments. We also report the coverage rates of conventional SVAR-IV

bootstrap confidence intervals for the FVR (columns “SVAR”). The coverage distortions of

our SVMA-IV procedures are almost always smaller than those of the SVAR-IV procedure.

Most notably, our procedures have acceptable coverage even in the non-invertible case (ζ =

2), whereas the SVAR-IV procedure under-covers severely in this case.25

We make the following additional remarks. First, coverage deteriorates slightly with

noisier/weaker instruments (σv = 2), as expected. Our inference methods are not robust to

arbitrarily weak instruments (σv →∞); we leave this issue to future work. Second, we face

some well-known parameter-at-the-boundary issues. For most experiments, R2
0 = 1. This

explains the over-coverage of confidence intervals for this parameter and, less so, for the

overall identified set. Similar problems would arise if the true FVR were close to 0. Third,

for more persistent DGPs, the AIC tends to select an insufficient number of lags, resulting

in moderate under-coverage, in particular for the FVRs at horizon 4. For example, in the

experiment with p = 4 autoregressive lags, the AIC selects an average lag length of 2.2.

25We acknowledge, however, that in DGPs with only mild non-invertibility, SVAR-IV procedures may
be preferable to our more robust SVMA-IV procedure, since the former procedure has fewer parameters to
estimate and will be only mildly biased (cf. Appendix B.4).
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8 Conclusion

Applied macroeconomists have recently turned to external sources of exogenous variation to

identify dynamic causal effects. Though such external instruments or proxies are frequently

used to estimate impulse responses, existing methods did not allow researchers to quantify

the contribution of individual shocks to business-cycle fluctuations – a question of first-order

interest in traditional business-cycle analysis. We fill this gap by providing identification

results and inference techniques for variance decompositions, historical decompositions, and

the degree of invertibility. Our methods require neither the absence of measurement error in

the external instrument, nor the often dubious assumption that the instrumented shock is

invertible (as assumed in conventional SVAR analysis). We prove that the importance of the

instrumented shock is generally interval-identified. Point identification can be achieved if the

shock is known to be recoverable – a substantively weaker assumption than invertibility. We

provide a software package that implements all steps of our inference procedures. Applying

our method to U.S. data, we are able to establish a tight upper bound on the importance of

monetary shocks for recent inflation dynamics, despite our weak identifying assumptions.
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A Appendix

A.1 Formulas for estimation and inference

Here we provide the remaining formulas needed for the inference procedures in Section 4.

Let Â1, . . . , Âp denote the (ny + 1)× (ny + 1) coefficient matrix estimates for the VAR in

Wt = (y′t, zt)
′. Let Σ̂ denote the residual sample variance-covariance matrix. Let Σ̂1/2 denote

any square matrix such that Σ̂1/2Σ̂1/2′ = Σ̂, e.g., the Cholesky factor. Compute the moving

average coefficients B̂(L) ≡ (Iny+1 −
∑p

`=1 Â`L
`)−1Σ̂1/2 using the familiar recursion

B̂0 = Σ̂1/2, B̂h =
∑min{h,p}

`=1 Â`B̂h−`, h ≥ 1.

Denote the top ny rows of B̂h by B̂y,h and the bottom row by B̂z,h. Then

V̂ar(z̃t) ≡ B̂z,0B̂
′
z,0, Ĉov(z̃t, yt+h) ≡

B̂z,0B̂
′
y,h if h ≥ 0,

01×ny otherwise,

Ĉov(yt, yt−h) ≡
∑∞

`=0 B̂y,`B̂
′
y,`+h for h ≥ 0.

In practice, we truncate the infinite sum above at a large value of `.

Define now the projection variances26

V̂ar(E(z̃t | {yτ}−∞<τ<∞)) ≡ Σ̂z̃,y,(M,M)Σ̂
−1
y,(M,M)Σ̂

′
z̃,y,(M,M),

V̂ar(yi,t+` | {yτ}−∞<τ≤t) ≡ V̂ar(yi,t)− (Ĉov(yi,t+`, yt), . . . , Ĉov(yi,t+`, yt−M))Σ̂−1y,(M,0)

× (Ĉov(yi,t+`, yt), . . . , Ĉov(yi,t+`, yt−M))′,

V̂ar(E(z̃t | {yτ}−∞<τ≤t)) ≡ (Ĉov(z̃t, yt), 01×nyM)Σ̂−1y,(M,0)(Ĉov(z̃t, yt), 01×nyM)′,

where Σ̂z̃,y,(M,M) is the estimated covariance vector of z̃t and (y′t+M , . . . , y
′
t, . . . , y

′
t−M)′ ob-

tained by stacking the estimates Ĉov(z̃t, yt+h) defined above, Σ̂y,(M,M) is similarly the esti-

mated variance-covariance matrix of (y′t+M , . . . , y
′
t, . . . , y

′
t−M)′, and Σ̂y,(M,0) is the estimated

variance-covariance matrix of (y′t, y
′
t−1, . . . , y

′
t−M)′.

In these formulas, the integer M is a numerical truncation parameter. For example, we

estimate Var(E(z̃t | {yτ}−∞<τ<∞)) using an estimate of the truncated conditional variance

26These could alternatively be computed using the Kalman filter, but there appears to be little difference
in numerical accuracy or speed relative to the formulas stated here.
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Var(E(z̃t | {yτ}t−M≤τ≤t+M)). M should exceed at least 50 to yield an accurate approxima-

tion. We recommend checking that the numerical results do not change much when M is

increased, since the effects of truncation will depend on the persistence of the data.

A.2 Proofs of main results

A.2.1 Auxiliary lemma

Lemma 1. Let B be an n × n Hermitian positive definite complex-valued matrix and b

an n-dimensional complex-valued column vector. Let x be a nonnegative real scalar. Then

B − x−1bb∗ is positive (semi)definite if and only if x >(≥) b∗B−1b.

Please find the proof in Appendix B.9.1.

A.2.2 Proof of Proposition 1

Let α and the spectrum sw(ω) be given. Define the ny-dimensional vectors

Θ•,1,` = α−1 Cov(yt, z̃t−`), ` ≥ 0,

and the corresponding vector lag polynomial

Θ•,1(L) =
∞∑
`=0

Θ•,1,`L
`.

Since α2 ≤ α2
UB, we may define σv =

√
Var(z̃t)− α2. Since α2 > α2

LB, Lemma 1 implies that

sy(ω)− 2π

α2
syz̃(ω)syz̃(ω)∗ = sy(ω)− 1

2π
Θ•,1(e

−iω)Θ•,1(e
−iω)∗

is positive definite for every ω ∈ [0, 2π]. Hence, the Wold decomposition theorem (Hannan,

1970, Thm. 2′′, p. 158) implies that there exists an ny × ny matrix lag polynomial Θ̃(L) =∑∞
`=0 Θ̃`L

` such that27

sy(ω)− 1

2π
Θ•,1(e

−iω)Θ•,1(e
−iω)∗ =

1

2π
Θ̃(e−iω)Θ̃(e−iω)∗, ω ∈ [0, 2π].

27We can rule out a deterministic term in the Wold decomposition because a continuous and positive
definite spectral density satisfies the full-rank condition of Hannan (1970, p. 162).
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Thus, the following model for wt = (y′t, z̃t)
′ generates the desired spectrum sw(ω):

yt = Θ•,1(L)ε1,t + Θ̃(L)ε̃t,

z̃t = αε1,t + σvvt,

(ε1,t, ε̃
′
t, vt)

′ i.i.d.∼ N(0, Iny+2).

Note that the construction requires only nε = ny + 1 shocks, ε1,t ∈ R and ε̃t ∈ Rny .

A.2.3 Proof of Proposition 2

Identified set for R2
0. If the identified set contains 1, then there must exist an α ∈

[αLB, αUB] and i.i.d., independent standard Gaussian processes ε1,t and vt such that (i)

z̃t = α× ε1,t + vt, (ii) vt is uncorrelated with yt at all leads and lags, and (iii) ε1,t lies in the

closed linear span of {yτ}−∞<τ≤t. This immediately implies the “only if” statement.

For the “if” part, assume z̃t does not Granger cause yt. By the equivalence of Sims and

Granger causality, z̃†t = E(z̃t | {yτ}−∞<τ<∞) = E(z̃t | {yτ}−∞<τ≤t). Note that the latter

best linear predictor is white noise since, for any ` ≥ 1,

Cov
(
E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= Cov(z̃t, yt−`)− Cov

(
z̃t − E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= 0− 0,

using the fact that z̃t is a projection residual. In conclusion, the best linear predictor z̃†t of

z̃t given {yτ}−∞<τ<∞ depends only on {yτ}−∞<τ≤t and it has a constant spectrum. From

the expression for α2
LB, we get that α2

LB = Var(E(z̃t | {yτ}−∞<τ≤t)). Hence, expression (17)

implies that the upper bound of the identified set for R2
0 equals 1.

Identified set for R2
∞. The upper bound of the identified set for R2

∞ equals 1 if and

only if 2π supω∈[0,π] sz̃†(ω) = Var(E(z̃t | {yτ}−∞<τ<∞)). The right-hand side of this equation

equals Var(z̃†t ) =
∫ 2π

0
sz̃†(ω) dω. But supω∈[0,π] sz̃†(ω) = 1

2π

∫ 2π

0
sz̃†(ω) dω if and only if sz̃†(ω)

is constant in ω almost everywhere, i.e., z̃†t is white noise.
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