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1 Introduction

Detailed measurement of consumption expenditures is a key ingredient for questions spanning a

range of fields across economics and finance. To address such questions, researchers have typically

turned to government surveys of households, ‘scanner’ data with product-level consumer good

purchases, or imputing consumption as the residual of the budget constraint using administrative

tax records. These approaches each had disadvantages such as high costs, small sample sizes, short

panels, being slow to update, covering only portions of the household budget, or being prone to

measurement error.

Recent years have seen a surge in research taking advantage of a new class of data that is cen-

tered around comprehensive panels of financial transactions from credit, debit, and checking ac-

counts across many thousands or even millions of individuals. Derived from sources such as banks,

financial aggregator services (eg. FinTech apps), and credit card companies, the data are often able

to be linked to complete views of a households finances across many types of accounts and con-

taining information on both detailed flows as well as high frequency balances. Researchers have

employed this data to answer questions about consumption behavior, household balance sheets,

and the response to income fluctuations or government policy changes and have greatly enhanced

the understanding of heterogeneity in income, balance sheets, beliefs, preferences, and household

decision-making in general.

The data has seen such a swift uptake among researchers due to a host of advantages it offers

relative to existing survey, scanner, or administrative data. Massive sample sizes, often in the

millions of individuals, offer increased statistical precision and the ability to drill down on small

sub-samples of interest. Moreover, the granularity of the data and the fact that it is often paired

with other financial accounts owned by the individual mean that questions can be asked about the

entirety of the household balance sheet or financial flows. Researchers can better control for any

number of confounding variables and reject alternative explanations for a given question.

As one example of the rapid proliferation of research in this area, Figure 1 displays the trend

in papers utilizing transaction data over time in two of the major repositories for economics and

finance research: the National Bureau of Economic Research’s (NBER) working paper series and

the Social Science Research Network (SSRN) working paper repository. In both cases, there has
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been a steady growth in papers utilizing this class of data over the past two decades. Notably,

2020 saw the most dramatic growth in papers written using transaction data as researchers took

advantage of the granularity of this data and the speed with which it can be accessed to quickly

write high impact papers about the COVID-19 pandemic’s economic impacts on households and

businesses. This new type of data also allowed researchers to quickly evaluate some of the fiscal,

monetary, and regulatory interventions enacted all over the world.

As this class of data has increased in availability, researchers have also worked to reduce many

of its inherent disadvantages by linking transaction databases with external credit records, con-

ducting surveys of users, or matching to administrative data. Such external linkages increase the

ability of researchers to gain qualitative data about a household’s characteristics, beliefs, and fi-

nancial resources.

A first wave of research using direct access to consumer’s financial transactions was built

around individual brokerage accounts. A range of papers focused on behavioral finance ques-

tions about investors, such as Odean (1998), Barber & Odean (2000), Barber & Odean (2001),

and Choi et al. (2001). With transaction level brokerage data, researchers could better understand

how retail investors made trading decisions, uncovering a number of important stylized facts about

heterogeneity across observable types (eg. gender or trading propensities) and how many investors

seemed to make systematic mistakes that reduced their overall returns.

Detailed transaction-level data from consumers’ bank accounts and credit cards was later to

appear, though some work utilized bank and credit card data aggregated to individual-month lev-

els, such as Agarwal et al. (2007). Beginning in the early 2010s, additional research began to

appear that utilized transaction data across large sample sizes that was also linked to bank account

balances.

Many of these papers aimed to use the new-found level of granularity to provide additional

insights into the relationship between income and consumption at a household or individual level.

For instance, in one of the first papers to leverage transaction level spending data, Gelman et al.

(2014) showed that households responded to the receipt of predictable income by increasing spend-

ing in the days immediately after a paycheck, demonstrating that many of the classic models of

consumption smoothing may break down at high-frequency levels.

The remainder of the paper is organized as follows. Section 2 describes the sources of trans-
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action data as well as common linkages made to transaction-level data. Section 3 compares

transaction-level data to some alternative sources of consumption or household financial flows

data. Section 4 details some of the research that has taken advantage of transaction-level data.

Section 5 discusses emerging strands of research utilizing transaction-level data across a number

of fields and Section 6 concludes.

2 Sources of Payments Data

While earlier work such as Barber & Odean (2000) and Choi et al. (2001) utilized data on finan-

cial transactions obtained from brokerage firms, recent transaction data have been derived from a

multitude of sources and has expanded to cover all sorts of financial accounts.

One major source of transaction data has been banking institutions. Researchers around the

world have been able to form partnerships with both brick and mortar banks (eg. Aydin (2019),

Ganong & Noel (2019), Andersen et al. (2020b)) as well as solely online banks (eg. Loos et al.

(2020), Baker et al. (2021), D’Acunto et al. (2019)) to gain access to anonymized transaction-level

data from their customers. Most banks offer a wide range of services to customers such as savings

and checking accounts, debit and credit cards, and mortgages and other lending facilities. Given

this span of services, these partnerships offer the possibility of not only observing comprehensive

spending and income flows but also various types of assets, borrowing behavior, and other demo-

graphic information collected by the banks. Researchers are sometimes limited to a subset of types

of financial accounts or to transactions from a limited sample of the bank’s customers.

A more limited option has been to obtain access to transaction data directly from credit card

firms (eg. Einav & Klenow (2021)) or credit card issuers (eg. Gathergood et al. (2019b)). Such

sources will be limited to spending through particular channels and cards and likely have no infor-

mation regarding income for a given individual or household. Even narrower sets of transactions

have been obtained from other proprietary sources. Cookson (2018), for instance, uses transaction-

level ATM withdrawal information obtained from casinos throughout the United States. The rise

of payment apps such as Apple Pay, Venmo, and AliPay have also allowed for a new avenue to

directly observe household spending transactions across large portions of the population in many
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countries.1

While long-standing financial institutions have provided valuable access to transaction level

data, much of the pioneering work with this class of data has been enabled by an emerging ecosys-

tem of FinTech products and apps. These products take two extremely broad forms: those that act

mainly to aggregate and track a customer’s disparate financial accounts for better monitoring and

those that are more focused on a particular end-goal such as increasing savings rates or assisting

in paying down debt.

For instance, work such as Baugh et al. (2018), Carlin et al. (2017), Baker (2018), and Medina

(2020) utilize data obtained from aggregator apps. A significant benefit of these apps is that users

typically have a more comprehensive set of financial accounts linked, allowing for both more

flexibility in the sorts of questions being asked and also more confidence in the validity of a given

set of results. In contrast, Kuchler & Pagel (2018) and Baker et al. (2020c) use data from apps

that focus more on encouraging savings or debt repayment and thus both have more potential

issues with sample selection but also the completeness of an individual’s finances visible within

the product.

At least one government entity has also worked to develop a transaction database through

a government survey; see Schuh (2018). The Diary of Consumer Payment Choice, run by the

Federal Reserve Bank of Atlanta, measures spending behavior through a transaction-level diary

among a group of survey respondents. This approach combines much of the utility of surveys with

the granularity of transaction data and makes the data widely available to researchers. However,

the survey suffers relative to proprietary data obtained from financial institutions in a much smaller

sample size and more limited time window (only a few days of transaction data per respondent).

2.1 Ancillary Data Linkages

The basic building blocks of transaction databases shares many similarities across the large variety

of sources of such data: generally a complete view of time-stamped financial flows at a transaction

level for a set of financial accounts across a large sample of individuals. This provides high quality

information regarding household consumption flows. Depending on the source, transaction data

1One paper to utilize this data is Xing et al. (2021), wherein the authors use data from Alipay to determine the
impact of short-term spending subsidies on consumer spending.
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can be accompanied and enriched by other types of financial and demographic characteristics.

Some of the additional data takes the form of account or transaction level metadata. Making use

of not only the date of a transaction but also the precise time within a day that a transaction takes

place, Gu et al. (2018) identifies ‘shirking’ at work by examining online shopping purchases during

working hours. Aggregators and other financial platforms also generally track how individuals

interact with their various online accounts. Olafsson & Pagel (2017) utilize internal data from a

FinTech app in order to proxy for attention paid to investment accounts by measuring the number

of times a user logs into her account.

Beyond the metadata from the transactions and accounts, many sources link self-reported de-

mographic information to the individual in question, such as age, gender, marital status, levels of

education, and number of children (eg. Farrell et al. (2020)). This can also be combined with either

self-reported or geo-tagged information on locations of residence or of each individual transaction.

While not all sources contain self-reported or administrative data on demographics, some of the

firms take the approach of constructing proxies or best guesses for demographic characteristics

(eg. gender and age ranges) using observable financial or account characteristics.

A number of researchers are also able to put detailed location data to good use in conjunc-

tion with various observed transactions. For instance, Gelman et al. (2019a) utilize locations to

identify relevant gasoline prices that individuals face, while Meeuwis et al. (2019) use zipcode

level locations to proxy for likely political leanings among users of an investment service. Agar-

wal et al. (2020b) focus explicitly on location-driven peer effects in Singapore as they examine

how bankruptcies affect spending and other financial behavior among co-residents of individual

apartment blocks.

Another key element of data linked to transaction databases have been surveys, either admin-

istered by the source firm for its own purposes or by the firm on behalf of researchers. Work such

as Bachas et al. (2020), Schuh (2018), Baker et al. (2020c), and D’Acunto et al. (2020) all employ

surveys of individuals to better contextualize the transactions that are directly observed.2 Such

efforts can help researchers better understand the beliefs, expectations, and reasoning behind the

financial decisions that are directly observable, at least partially mitigating one of the issues with

context-free transaction data.
2Others, such as Giglio et al. (2021), have taken this approach to map brokerage transactions to survey responses

regarding beliefs of investors.
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For some sources, researchers may also be able to link to various credit reporting agency infor-

mation like credit scores, numbers of accounts, or negative marks on credit. For instance, Ponce

et al. (2017) and Elizondo & Seira (2017) are able to link bank account data to credit bureau data in

collaboration with the government in Mexico and Baker (2018) observes credit scores for a subset

of users, taking advantage of fact that users of this financial aggregator often choose to connect

their credit report.

Transaction databases stemming from financial aggregators are some of the most complete and

flexible. This is driven, in part, by the ancillary data that is linked to the financial accounts. Many

aggregators contain self-reported data not only on demographics, but also on financial goals and

budgets, financial risk tolerances, and financial sophistication. Such data can help researchers to

understand how shocks can have heterogeneous responses across agents that vary greatly in key

modeling parameters like risk preferences.

Access to the underlying data from FinTech apps has also enabled research into the impacts

of this emerging technology, itself, on household financial behavior. Carlin et al. (2017) take a

broad overview of the usage of a FinTech app in Iceland, examining differences in patterns of

usage across generations. Becker (2017) uses transaction data from a large European bank to

demonstrate that access to a money management tool encourages households to start saving and

increase savings balances. Levi & Benartzi (2020) utilize the roll-out of a FinTech app across

different device types (eg. Android, iOS) to establish that users increase attention paid to their

finances and cut discretionary expenditures, with effects concentrated among lower income and

high spending-to-income users.

Beyond explicitly linked financial accounts or other data, many researchers have been able to

make numerous inferences about individual preferences characteristics using transaction data. For

instance, a number of researchers identify a measure of financial sophistication through the propen-

sity for individuals to make financial ‘mistakes’ like overdrafting or paying credit card penalties

when possessing sufficient liquidity to avoid them (eg. Jorring (2019) and Carvalho et al. (2019)).

Attention to and salience of financial data and accounts are measured with the frequency by which

individuals login to their accounts, and labor market status can be deduced from the receipt of

regular direct deposit paychecks or social security income. Account balances may even be able to

be partially imputed (when lacking account balance data) using interest income in bank accounts.
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These types of inferences are continually refined and augmented across a number of transaction

data sources as more researchers begin to work with this class of data.

3 Comparison with Alternate Measures of Consumption

Measuring consumption using household transaction data offers many benefits but also some

downsides compared to other sources of consumption data. Table 1 offers a comparison of the

attributes of transaction data to those of more traditional sources of consumption data. Importantly,

the relative weights placed on these attributes can vary depending on the nature of the question the

researcher is asking; each class of data has situations in which it dominates.

For instance, research necessitating product level consumption data will necessitate something

akin to scanner data or detailed consumer diary surveys, which sees consumption at a granularity

finer than store-level transactions available from credit card statements for example. Questions

revolving around durable purchases and financing may be difficult to understand using transaction

data, as such purchases often are observed within bank accounts only by a stream of financing

charges rather than the actual purchase information. Here, data from tax registries or credit bureau

data may dominate. Transaction data will also be inferior when approaching questions regarding

aggregate consumption trends over time, since long time horizons are generally unavailable from

such sources.

3.1 Advantages of Transaction Data

Some of the longest-standing measures of consumption available to researchers are government-

run surveys such as the Consumer Expenditure Survey in the US and the Living Costs and Food

Survey in the UK. However, surveys are limited in scope and complexity due to both monetary

and time costs. Individuals cannot be asked to answer every question about types of spending

or sources of income that might ever be of interest to researchers. Data collection in transaction

databases is fully automated, and thus adding an additional transaction incurs no time cost for users

and requires minimal monetary costs for the database to log and store it in perpetuity.

Unconstrained by marginal cost concerns on both the part of the user and the entity collecting

the data, every individual transaction can be stored along with metadata regarding that transaction.
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Therefore, while a survey question cannot easily be asked retroactively, the granular and complete

nature of transaction data means that it can be mined far in the future for indicators of behavior or

purchases. This is often made possible by the extreme detail offered by the transaction description

field, as elaborated on in Section 4.5.

Conditional on having complete views of all of an individual’s accounts, values of spending,

income, and assets are exact and are not as prone to recall bias as in a survey setting. This can be

especially useful when working to measure the value of highly volatile assets like equity portfolios

or when investigating atypical spending patterns.

This completeness across financial accounts also drives the main benefits relative to so-called

‘scanner data’ such as the AC Nielsen Consumer Panel, which tracks subsets of household pur-

chases at an individual product level. Scanner data can grant even finer detail on elements of

household spending by decomposing a transaction into its constituent products. However, the set

of covered products and stores is limited (generally to nondurable purchases from retail stores) and

other financial attributes of the individual are often lacking.3

Similarly, researchers employing data from credit bureaus can track some aggregated versions

of household spending through the observation of credit card balances. Durables purchased with

debt such as vehicles and homes are well tracked in such data, but credit card balances mix re-

volving debt with current charges (see Fulford & Schuh (2020)), making it difficult to ascertain the

flow of household consumption even when all household purchases are made via credit card rather

than debit or cash spending.

Beyond any of the advantages stemming the types of data available from these databases, trans-

action data is often distinguished from other data sources by its sheer size. Table 2 enumerates the

sample sizes for some common survey databases as well as some of transaction databases used by

researchers in recent years. For many of these databases, sample sizes are often one or two orders

of magnitude larger, yielding correspondingly smaller standard errors, especially when examining

behavior of a particular subset of the population.

The advantage of size has fueled a substantial expansion in research into the micro-foundations

of the macroeconomy and has focused new attention on models that incorporate heterogeneity

across individuals and households. The ability to divide a sample jointly by income, liquidity,
3For instance, the NCP covers approximately $400 of household spending per month for its panel members, a

small fraction of total household spending in the United States.
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credit, and age can help to test new tools such as Heterogeneous Agent New Keynesian (HANK)

models, which add both heterogeneity and idiosyncratic risk to Representative Agent New Keyne-

sian (RANK) models. More broadly, new questions about inequality of wealth and income can be

more thoroughly answered when the top 1% of a sample is composed of 10,000 individuals rather

than 500.

Recent years have also seen an increase in researchers employing detailed administrative data

on income and wealth to compute ‘imputed’ consumption as the residual of the household’s budget

constraint. Countries such as Denmark, Sweden, and Norway have made annualized financial

data on all citizens available for research, including things like bank balances, income, and asset

holdings. This approach is exemplified by work such as Koijen et al. (2014) in Sweden, De Giorgi

et al. (2020) in Denmark, and Fagereng & Halvorsen (2017) in Norway. Relative to transaction-

level data, these databases substantially reduce issues of sample selection and incompleteness and

also make other links to government databases possible. However, they do not provide any high

frequency measures of financial activity and can generally not directly measure spending, meaning

that only an aggregate annual level of spending or consumption can be imputed. In addition,

calculating consumption as a residual implies that different types of consumption (eg. spending on

non-durables, food, services, or durables) cannot be observed.

In developing countries with fewer resources to devote to systematically collecting economic

data, transaction data can also fill a gap in coverage. While not all countries collect detailed

survey-based microdata, all have substantial penetration of banks, card payment systems, or Fin-

Tech products. Just as many countries are leap-frogging wired telephone infrastructure in favor

of cell phones, some countries have largely bypassed credit and debit cards, moving to mobile-

based payment systems. In such areas, collaborating with FinTech apps can give researchers and

policymakers a clearer view of the economy through this type of transaction data.

Finally, transaction data can increasingly provide a tool to understand not only what has hap-

pened, but also what is happening. Seen most clearly with the proliferation of research employing

transaction data during the COVID-19 pandemic, transaction data can be utilized to give policy-

makers a new and highly detailed view into the current state of the real economy, beyond financial

markets, without having to wait weeks, months, or years for surveys to be administered.

The high frequency nature of the data allows researchers to unpack fast-moving events like a
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government shutdown (eg. Gelman et al. (2018)) or the onset of the COVID-19 pandemic (eg.

Chen et al. (2020)) or even to examine patterns of spending across hours of the day (eg. Gu et al.

(2018)). This enables researchers to more directly observe economic trends and shocks rather than

imputing effects from data aggregated to monthly, quarterly, or annual level.

3.2 Limitations of Transaction Data

3.2.1 Account Completeness

While transaction data offers a number of substantial advantages over more traditional data sources,

they exhibit disadvantages, as well. One basic difficulty is in interpreting the unit of analysis be-

cause, for many such databases, the unique identifier is an ‘account’. While in a survey, a surveyor

can set well-defined boundaries on the unit of analysis, households often use individual financial

accounts and aggregator apps in a variety of ways. Take, for instance, a married couple who pos-

sess a number of individual financial accounts as well as several joint accounts. Each member of

this couple may have their own account with the financial aggregator app that then contains links

to their own individual as well as joint accounts. Another possibility is that they may have a single

account with the app that contains both sets of individual accounts as well as all the joint accounts.

In general, a researcher can never be certain that they are observing all relevant financial ac-

counts owned by an individual or a household, and must make assumptions or sample restrictions

to try to isolate the more ‘complete’ users. Many researchers take the approach of excluding users

with small numbers of transactions per month, no visible sources of income, or financial transfers

to accounts that are unlinked. Such ambiguity may make it difficult to interpret the raw levels of

income and spending and how they can be compared to other sources of information where the unit

of analysis is more clearly documented. More broadly, these databases tend to lack the decades of

supporting documentation found in government surveys and other sources that are designed from

the ground up to be used by researchers and to make accurate economic inferences.

3.2.2 Sample Selection

Even in the most information-rich and comprehensive transaction databases, some disadvantages

remain. One common criticism is that, by their very nature, financial transaction databases are
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composed of a selected sample of individuals rather than a nationally representative one. Even

when dealing with data sourced from large national financial institutions, there exists a sizable

minority of the population that do not have bank accounts or credit cards of any type and deal

primarily in cash.

The selection issue becomes more acute in instances where the transaction data is obtained

from more specialized financial institutions or FinTech apps that are targeted at particular slices

of the population. For instance, some apps may be aimed at poorer individuals, who have trouble

saving, at individuals who enjoy trading stocks, or at individuals who have a large number of

varied financial accounts that need managing. Each of these data sources may exhibit a somewhat

different bias relative to the population when investigating a given question. Baker (2018) uses

the demographic and financial characteristics linked with transaction data to demonstrate that such

sample selection issues can be mostly resolved using population weights given sufficient numbers

of users.

3.2.3 Transaction Categorization

Spending done via cash or paper checks can pose problems for researchers using transaction data.

Cash transactions cannot be observed directly, though may be able to be inferred by measuring

ATM withdrawals. Check transactions can be observed but cannot be automatically categorized

into the types of spending that they represent. This concern has declined as cash and checks have

come to represent smaller fractions of spending, though the growth in peer-to-peer cash transfer

apps (eg. Venmo) often present some of the same concerns.

More broadly, unlike scanner or some types of survey data, categorization of spending is nec-

essarily done at a transaction level rather than a product level. While a transaction at a restaurant

is easily interpretable, a transaction at a big box retailer (or at an online retailer like Amazon.com)

may contain a range of products from non-durable consumables like groceries to semi-durable and

durables like clothing, furniture, or mechanical equipment. Researchers may choose to focus on

these more unambiguous categories such as restaurants when, for instance, they discuss responses

of ‘non-durable’ spending to an income shock.

Categorization of spending within household transaction data is generally done by algorithms

constructed by the parent organization collecting the transaction data (eg. the bank or account
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aggregator). Typically, these utilize a combination of Merchant Category Codes (MCC) linked

to merchant IDs as well as textual analysis of transaction descriptions to arrive at a category for

a given merchant. In some cases, miscategorizations may occur or transactions may be left as

‘uncategorized’. However, the textual descriptions and other metadata linked to each transaction

can allow researchers to improve on such categorization algorithms or directly observe particular

transactions of interest without being limited to the categories assigned by the parent organization.

3.2.4 Replication

The proprietary nature of these databases can also present problems for accessibility for future

research as well as for the ability to replicate a given analysis. At an extreme case, some private

sources of data such as smaller FinTech apps may go out of business or deprecate older data to

minimize storage costs, making it impossible to replicate results. More broadly, research done

with some of these databases is the result of personal relationships between researchers and the

firms and there is often no established way for other researchers to gain access.

These issues stand in stark contrast to many of the traditional data sources that are primarily

sourced from public agencies. Many common government survey data are publicly accessible

online or have a standard application process for gaining access to more detailed data. One avenue

for expanding the utility of transaction databases is for governments or large research institutions

to cement more permanent means of collaboration between researchers and private data providers.

4 Research Avenues Exploiting Benefits of Linked Accounts

4.1 Micro-based Aggregate Consumption Statistics

When it comes to tracking consumer spending in the economy, many economists have turned

either to national aggregates such as Personal Consumption Expenditures (PCE) from the National

Income and Product Accounts (NIPA) or to national surveys such as the Census Bureau’s Retail

Trade Survey. However, these data are produced with a substantial lag and provide no detail at a

sub-national level. Using transaction data as a building block for better aggregate statistics offers

a promising path to a clearer picture of the economy.
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Batch et al. (2019) test whether modern machine learning paired with alternative (and faster-

to-update) data can provide better advance GDP estimates or lower the size of GDP revisions.

While they themselves only have access to an aggregated version of transaction data provided by

a financial services vendor, they find that such data is extremely valuable for better predicting

components of national accounts. Aladangady et al. (2019) go further, using transaction-level

data from a large electronic payments company to provide a disaggregated and higher frequency

version of these national consumption statistics. They demonstrate the utility of this measure in

tracking spending during fast-moving economic shocks like the 2019 government shutdown and

major hurricanes in 2017.

Of these various efforts, those found in Chetty et al. (2020) are perhaps the most ambitious. In

the authors’ own words: “We build a publicly available platform that tracks economic activity at a

granular level in real time using anonymized data from private companies.” Many of the statistics

presented and tracked are derived from detailed transaction data that allow the authors to provide

many dimensions of heterogeneity in high-frequency spending behavior, including disaggregated

statistics by geographic area, income, and industry. The ability to publicly provide such detailed

statistics in a continuous and up-to-date format is of great importance to both researchers as well

as policy-makers when seeking to understand economic events as they occur rather than waiting

months for reliable data.

4.2 Linked Financial Accounts

Household transaction data by itself allows for a wide range of new insights into household behav-

ior and the responses to economic shocks. For instance, Einav & Klenow (2021), Baugh & Correia

(2020), and Baker et al. (2020a) work solely with transaction databases that do not feature much

other information about account balances, assets, or demographics.

However, while transaction data has proven useful even when unaccompanied by a fuller suite

of financial information, this class of data has had the largest impact when paired with more com-

plete household financial information. Given the sources of the data are most commonly banks and

financial aggregators, it is common to have comprehensive overviews financial information for an

individual across a range of important account types. One of the most important components that

such comprehensive financial data offer is a time-varying measure of individual liquidity and credit
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access. This has allowed a large group of researchers to demonstrate the importance of liquidity in

driving household responses to both anticipated and unanticipated income shocks. Baker (2018),

Agarwal & Qian (2014), Ganong & Noel (2019), Andersen et al. (2020c), and Kueng (2018) all

leverage metrics like account balances and credit availability to map out household level hetero-

geneity in consumption behavior.

For instance, Agarwal & Qian (2014) and Baker (2018) take this data to the classic ques-

tion about the consumption response to unanticipated income shocks and how the consumption

response varies across households with different levels of liquid assets and credit access. The for-

mer uses transaction level data from a Singaporean bank to investigate the consumption response

to an economic stimulus policy in Singapore, finding that households begin to respond upon the

announcement of the upcoming payments and that households with lower levels of liquidity and

credit respond more strongly to its receipt. The latter uses shocks to households’ employers to in-

strument for permanent income shocks, finding similar levels of heterogeneity across credit access

and liquidity.

Another common linkage is between transaction accounts and home mortgage accounts, en-

hancing the ability of researchers to examine how home values, mortgage terms, and mortgage

performance interact with consumption decisions. Park (2016) takes advantage of information

from household transactions to predict mortgage delinquencies, using the propensity of house-

holds being charged late fees or overdrafts to proxy for risk. Similarly, Jorring (2019) shows that

mistakes in checking or credit accounts (eg. avoidable overdrafts or late fees) can predict the con-

sumption response to predictable changes in mortgage payments. Households who seem to make

such financial mistakes often fail to smooth consumption around these theoretically known events.

A number of papers, such as Ganong & Noel (2020) and Bernstein (2020), have been able

to directly examine the impact of home values, mortgage policies and mortgage terms like ARM

resets on household consumption behavior and labor supply. Given the prominence that homes

and mortgages have among household balance sheets around the world, such questions are of first

order importance when thinking about the transmission of monetary policy or associated changes

to federal home loan policies.

Beyond houses and mortgages, linkages of transaction data to investment and retirement ac-

counts have also been able to provide additional clarity about household balance sheets. For in-
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stance, Brauer et al. (2019) and Meyer & Pagel (2019) look to more fully characterize consump-

tion responses to dividends as well as both realized and unrealized capital gains and losses. Again,

transaction data provide a way to credibly identify how asset price fluctuations may be transmitted

through the economy and can highlight heterogeneity across owners of these assets, as well.

Others rely on transactions across multiple financial accounts to test for offsetting behavior

that may net out in aggregate or may be missed if solely observing one type of financial accounts.

Medina (2020) highlights the importance of testing for offsetting financial behavior across separate

financial accounts. Garcia et al. (2020) examine whether similar offsetting behavior comes about

after inducing individuals to save more through a similar intervention, finding little response on

the credit utilization. Kukk & Raaij (2020) look at savings distributions across individual and joint

accounts within households, finding a wide range of joint allocations.

4.3 Evaluating Heterogeneity and Models of Household Behavior

Models working to understand and rationalize household behavior, especially consumption behav-

ior, are also able to be more thoroughly tested when increased sample sizes are combined with the

extreme detail allowed for by transaction data. Key parameters of these models like risk aversion

and salience can be more directly captured and important financial characteristics such as precise

levels of liquidity and credit access are readily available. For instance, Ponce et al. (2017) note

that relative prices, such as interest rates, are poor predictors of how households make decisions

about which cards to utilize and which to pay down. In an experiment with randomized interest

rate offers, they find that households respond to these salient price changes, suggesting models of

limited attention or mental accounting might rationalize the empirical findings.

The sensitivity of consumption to beliefs, news, and income shocks of various types has gen-

erated a large array of research using transaction data. Most of these papers address models of in-

tertemporal optimization, often test various aspects of the permanent income hypothesis or buffer

stock models. Transaction data at an individual or household level is invaluable to such efforts,

as many of the common explanations for consumption fluctuations revolve around income volatil-

ity or uncertainty, levels of liquidity and wealth, spending shocks, and durables spending. With

detailed transaction data linked with financial account balances and credit information, these ex-

planations can be tested jointly and with great precision across a large sample size. Moreover,
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identifying precise income shocks, as well as understanding just how anticipated or unanticipated

those shocks were, is made much easier when each individual income transaction can be observed

and fully characterized according to its source.

As one example, Ganong & Noel (2020) link transaction data with mortgage data to assign

mortgage defaults into one of two categories: strategic defaults, where households default when

debt is too high relative to home values, and liquidity-driven defaults, where monthly payments

are too high given current household resources. They find evidence for the overwhelming majority

of defaults being liquidity or ‘adverse event’ driven rather than strategic, informing a debate over

optimal mortgage and debt relief policies.

Looking at responses to macroeconomic news events, Garmaise et al. (2020) use household

transaction data to identify persistent excess sensitivity of consumption, even when such events

are not necessarily meaningful for the household. For more salient events – those that garner more

media attention – responses are higher, as are responses among lower income households.

Other papers address the response of households to personal income shocks. Olafsson & Pagel

(2018) highlight excess spending among individuals on their paydays among most of the popula-

tion of Iceland. They show that even for high income and highly liquid individuals, paydays tend to

induce appreciable spending responses across many categories of consumption despite the fact that

paydays are known in advance. They explicitly test multiple models of household behavior and

reject the possibility that either current or imagined future liquidity constraints are likely the driver

of such spending responses. In Olafsson & Pagel (2019), the authors turn towards unanticipated

income shocks from lotteries, finding MPCs above one – financed by borrowing – for small wins

and low MPCs for large wins, again pointing away from liquidity constraints as the main driver of

large MPCs out of windfalls.

Households are shown to exhibit excess sensitivity to high profile and perfectly anticipated

payments from the Alaska Permanent Fund, as well. Kueng (2018) notes that excess sensitivity

in this case is actually increasing in income and is high even for those with high levels of liquid

assets. While such behavior stands in contrast to most classical rational models, he shows that

the actual welfare loss from such non-smoothing behavior is exceedingly small for these house-

holds, suggesting that many consumption deviations identified by other researchers are also likely

minimal from a welfare perspective.
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Other evidence against liquidity constraints being the primary driver of excess sensitivity of

consumption is given by Gelman (2019a). The author tests a range of parameters of the canon-

ical buffer stock model and notes that a quasi-hyperbolic version of the model performs better

than the standard exponential formulation in explaining the observed levels of excess sensitivity.

In Gelman (2019b), the author takes advantage of the vast sample size afforded by transaction

data to decompose the aggregate or average MPCs across individuals with varying observable and

unobservable characteristics. He returns to the buffer-stock model and provides perhaps the first

clear data-driven breakdown of the importance of these persistent characteristics and time-varying

shocks.

Heterogeneity across individuals is also the prime focus of Kuchler & Pagel (2018). They

demonstrate that individuals often fail to stick to explicit plans to pay down their debt, consis-

tent with present-biased agents that feature in models with quasi-hyperbolic discounting. They

push further with detailed transaction data, showing that heterogeneity across individuals in their

debt repayments is strongly correlated with cross-sectional variation in short-run impatience and

financial sophistication.

Gathergood et al. (2019a) and Gathergood & Olafsson (2020) are able to use such detailed data

to test theories of mental accounting at a household level. In Gathergood et al. (2019a), the authors

find that households do not treat all credit card expenditures equally; they tend to pay down debt

incurred by certain types of expenses more quickly than others. In particular, households tend

to pay down debt more quickly for non-durable expenditures relative to durable expenditures.

Agarwal et al. (2020a) examine how household spending changes in the days around credit card

statement dates. They suggest that household spending tended to rise substantially following these

statement dates but that most of the variation could be rationally accounted for by households

taking advantage of the free float that credit cards offer until the following pay period.

Lastly, in Gathergood & Olafsson (2020), the authors turn to the puzzle of households that

co-hold liquid balances alongside high-interest debt. Using linked transactions, credit, and bank

balances, they calculate these propensities at a daily level, finding that instances of co-holding are

usually very short term but that rational explanations are likely subordinate to mental accounting

on the part of the household.
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4.4 Experimental Interventions

Transaction data has also been utilized in conjunction with experiments on households. With such

detailed data, gathering post-treatment data is automatic and comprehensive, allowing for larger

samples and more detailed questions to be investigated.

As one example, Aydin (2019) randomizes the extension of credit lines to customers of a large

Turkish bank, finding substantial propensities to borrow even among those with sizable assets. He

takes advantage of the completeness of the credit, income, spending, and asset data to build support

for a buffer-stock model rather than more behavioral explanations. D’Acunto et al. (2020) also

investigate the spending responses to the provision of a new credit facility for borrowers and elicit

preferences through the FinTech app that they obtain transaction data from. With this data, they

are able to fully characterize spending responses across both the income and liquidity distribution

as well as across users with various beliefs and risk preferences.

Such linked data can also offer convincing evidence for a role for for behavioral ‘mistakes’

in household behavior. Medina (2020) runs an experiment on users of a financial account aggre-

gator in Brazil, randomly sending reminders to pay credit card bills to users of the service. She

finds that households significantly increase on-time payments but also increase the probability of

over-drafting on other accounts they own. This finding highlights one strength of transaction data

stemming from financial aggregators: researchers are easily able to observe potentially offsetting

behavior occurring in different financial accounts owned by the same individual in response to a

shock.

4.5 Utilization of Transaction Text Fields

One of the most flexible components of the common classes of transaction data thus far used by

researchers is the ‘text’ field. That is, the textual description that accompanies the amount and

time-stamp for each transaction. This text (or a simplified version of it) is what is observed, for

instance, when someone examines their itemized credit card statement at the end of a billing cycle.

While this text may feature complex numerical identifiers or abbreviations of firms, it is generally

possible to use this text to determine which firm a particular expenditure transaction was paid to or

which employer a particular income transaction is from.
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This field thereby allows a researcher to pick out transactions that may signal an employment

relationship, the timing of government benefit receipt, spending at a particular retailer, or the oc-

currence of an event of interest. This can all be accomplished without having to explicitly ask a

household about any of these linkages or events and it gives researchers the ability to extend their

analysis years backwards in time.

In Baker (2018), the author is able to link households to their employers in order to identify

unanticipated changes to households’ source of income. Given the scarcity of data linking em-

ployees and employers, the ability to generate these links is quite valuable in understanding the

transmission of shocks through the economy. Baker & Yannelis (2017) and Gelman et al. (2018)

also utilize this text field to identify households that contain employees of the federal government

in order to analyze differential spending behavior when such households were subjected to missed

paychecks as part of the 2013 Federal Government Shutdown.

Others, such as Agarwal et al. (2021), Einav & Klenow (2021) and Baker et al. (2020a), have

used a similar approach to map transactions to the numbers of firms that these individuals shop

at, mostly retailers or consumer service firms. Linking to a broad swatch of firms enables these

researchers to analyze the firms’ customer bases and provide new dimensions of information re-

garding risks to firm growth and an ability to disaggregated their sources of revenue. Baugh et al.

(2018) focuses on transactions at a single firm, Amazon.com, and examines responses to changes

in sales tax policy. Such linkages to spending at individual firms is not possible using alternative

consumption data sources like government surveys, scanner data, or by imputing consumption via

tax registries.

Another common tactic when using transaction data has been to identify less ‘typical’ sources

of income or benefits. While administrative data may generally be required to observe precise

amounts of unemployment insurance paid out to individuals, Ganong & Noel (2019) and Andersen

et al. (2020c) are able to pick out UI payments using the textual descriptions within transaction

databases. Similarly, Karger & Rajan (2020) is able to take the same approach with CARES Act

Stimulus payments in 2020, Kueng (2018) with payments from the Alaska Permanent Fund, and

Olafsson & Pagel (2019) with winnings from national lotteries. Baugh (2016) and Carvalho et al.

(2019) pick out loans from and repayments to payday lenders, and Gelman et al. (2019b) can

identify the precise timing and amounts of tax returns deposited into accounts via direct deposit.
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Overall, the text field found in many types of transaction data offers researchers unparalleled

room for creativity in identifying particular sources of income or types of spending.

4.6 Transaction Data During the COVID-19 Pandemic

A unique demonstration of the utility of transaction data came during the COVID-19 pandemic

that swept the world in 2020. This pandemic brought about a deep recession in many countries

that was notable for not only its size but its speed, as well. The rapidity of the economic shocks was

unlike anything seen in modern history, with many countries seeing the largest ever single-month

or single-quarter declines in employment, spending, and GDP.

The speed at which this event occurred meant that governments were grappling with policy

proposals for household and business support without being able to observe many of the economic

indicators that are only produced with a lag of weeks or months. Turning to transaction data, many

researchers were able to quickly produce diagnoses of the size and distribution of consumption

and income declines. Such analyses were conducted in a wide range of countries; eg. Andersen

et al. (2020a) for Denmark and Sweden, Chetty et al. (2020) and Cox et al. (2020) for the United

States, Chen et al. (2020) for China, Carvalho et al. (2020) for Spain, Chronopoulos et al. (2020)

and Hacioglu et al. (2020) for the United Kingdom, and Bounie et al. (2020) for France.

Governments and central banks often focus on the behavior of financial markets to provide

high-frequency views on economic activity, especially in response to recent policy initiatives. The

newfound flexibility and utility of transaction-based consumption data during a fast-moving crisis

may prompt governments or other institutions to set up persistent indicators of consumption lever-

aging high frequency transaction data. If these consumption indicators are available in the future,

policymakers may be better able to calibrate counter-cyclical policy armed with more accurate

data.
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5 Future Directions of Research

5.1 Analysis of Firms Using Transaction Data

5.1.1 Household-level Transaction Data

An emerging research agenda has begun to leverage households’ financial transactions to study

features of and risks facing firms. Researchers are able to map individual households’ transactions

to particular firms using either unique firm identifiers or the text fields from credit and debit trans-

actions. Novel firm-level panels detailing revenue sources and customer base attributes can thus

be constructed from household transactions.

For instance, Agarwal et al. (2021) use credit card data to produce disaggregated firm-level

sales data and find that such data is predictive of future stock returns. Moreover, they find that

the composition of customer bases is important, with stronger stock returns following increases in

spending from customers with higher credit scores, wealth and loyalty.

Baker et al. (2020b) demonstrate that aggregated firm-level statistics derived from household

transaction data match well to traditional sources of firm-level data like Compustat. They de-

velop two novel statistics relating to customer bases that cannot be generated using traditional data

sources, the rate of churn in a firm’s customer base and the pairwise similarity between two firms’

customer bases. They then demonstrate that these statistics can be used to inform alpha-generating

trading strategies as well as providing new insights into firm investment and markups.

Finally, Einav & Klenow (2021) use debit and credit card transactions spanning Visa’s network

to demonstrate the importance of measuring customer bases when working to understand firm

growth. That is, they demonstrate that extensive margin adjustments (eg. customers leaving or

joining a customer base) are responsible for the vast majority of firm-level sales variation over

time.

While this window into firms provides substantial additional value to these household trans-

action datasets, there are limitations to this approach. Since the source of the data is ultimately a

database of consumer transactions, firms that obtain sizable amounts of revenue from other busi-

nesses or governments will be poorly observed or measured. Moreover, only firm revenue, not

costs or employment and production characteristics, can be directly observed. Despite these draw-
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backs, consumer-facing firms constitute a large portion of most economies and feature prominently

in questions spanning fields like finance, marketing, and industrial organization.

5.1.2 Firm-level Transaction Data

Another promising area of research leverages expanded sources of transaction data to directly

observe firm-level transactions. Much as transaction data has enabled a more thorough analysis

of household behavior and heterogeneity, the transactions made by the tens of millions of small

businesses can increase visibility within this large sector of the national economy. Especially

in countries with less reliable measures of small business activity, the ability to directly observe

transactions from these firms by working with banks or other financial intermediaries can greatly

empower researchers and policymakers.

Two pioneers in this field can be seen in Weber (2019) and Kim et al. (2020). Weber (2019)

links the personal financial transactions from millions of individuals at a large financial institu-

tion to the universe of small business transactions at that institution. The author focuses on the

founders of small businesses, measuring personal financial characteristics such as cash flow man-

agement abilities, which are observable from the founders’ personal accounts. He notes that such

financial management skills are highly predictive of the financial success of the small businesses

subsequently founded by these individuals.

In Kim et al. (2020), the authors work with the JPMCI to gain access to transaction-level data

from hundreds of thousands of small businesses. In particular, they are able to match transactions

of small businesses to the personal accounts of those businesses’ proprietors and map out how the

fortunes of the businesses impact proprietors’ consumption during the COVID-19 pandemic.

5.2 Integration with Governments

Transaction data may have the potential for substantial future contributions to research and policy

through additional integration with governmental agencies and central banks. Current research

using transaction data often involves one-off relationships between researchers and data providers.

For a range of reasons that encompass both competitive and legal concerns, only a small number

of firms have allowed for more regular access to their transaction databases. As a result, obtaining

and maintaining access to such data is difficult or impossible for most researchers, and the small
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scale of most collaborations requires re-learning the idiosyncrasies of each particular transaction

database.

Partnerships with government agencies may provide one way to provide a more standardized

process for access and also leverage the expertise that many agencies have built up in producing

credible and well-documented statistics regarding national product accounts or other economic

indicators. Oversight of data access by federal regulators, built on years of facilitating access

to IRS or Census records, may also provide the legal assurance firms need to ensure that vetted

researchers will not misuse their data.

In addition, linkages of transaction data to other sensitive economic databases, such as tax

or credit registries, could be facilitated. For instance, in Denmark, Andersen et al. (2020d) use

transaction data matched to government registry data to measure the extent to which informal

transfers from family and friends act as insurance for negative income or labor supply shocks. In

the United States, Chetty et al. (2020) work with a large number of private sector partners to build

a database of economic indicators that is both granular and timely. Overarching sponsorship or

organization of such efforts by a neutral party like the Federal Reserve could provide an avenue

for the expansion of these efforts.

Governments would be well-served by aiding in these efforts to partner with data providers in

systematic way. As has been seen during the COVID-19 pandemic, transaction data can provide

some of the most up-to-date statistics and can serve to inform policy decisions at a much finer

level than aggregate statistics used in the past. In addition, as governments around the world

tackle persistent questions of inequality, transaction level data offers a ready-made window into

the economic conditions and decisions of millions of households across the income distribution.

6 Conclusion

The past decade has seen a tremendous amount of growth in research utilizing a new class of data

centered on individual financial transactions. This data is often linked to other financial data such

as asset balances, credit, and equity holdings as well as self-reported demographic characteristics

and geographical information. Whereas many of these detailed aspects of household finance were

available for a small slice of the population or could be imputed from less granular survey ques-
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tions, financial transaction data makes most financial and labor market attributes of a household

directly observable.

These databases have enabled researchers to more decisively answer classic economic ques-

tions using new identification strategies and to obtain more precise empirical estimates. Such

questions range from how households respond to economic shocks, the transmission of govern-

ment monetary and fiscal policy, and the importance of household balance sheets.

Beyond this revisiting of questions first tested using pre-existing survey and administrative

data, this class of data has also proven to be some of the most flexible in terms of its potential

for wider research. Researchers have taken advantage of the massive sample sizes to highlight

the importance of heterogeneity in both economic means and also economic beliefs and behavior

in explaining how the economy moves in response to aggregate shocks. The ability to use the

textual transaction descriptions to ex-post identify particular firms, income sources, and detailed

types of spending has enabled researchers more room to think creatively about particular shocks

to individuals or to define multidimensional characteristics that can be important for structural

estimation.

The speed of analysis possible using this data has also been highlighted during the COVID-19

pandemic, with both economic fundamentals as well as the response to government fiscal interven-

tions being tracked nearly in real time and with unprecedented granularity. This powerful demon-

stration of value seems likely to cement transaction data as an important tool for policy-makers

and may aid in the construction of more accessible datasets of this type for researchers.

As the number of sources of transaction data continues to climb around the world, many worries

– about representativeness, the proprietary nature of the many of the data sources, and the ability

to replicate research – are declining. And more researchers from additional fields are beginning

to recognize the value and flexibility of such detailed data, leading to an expansion in use among

fields like marketing, IO, development, asset pricing, and corporate finance.
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Figure 1: Counts of Papers Employing Transaction Data, by Year; Notes: Yearly counts obtained
from searches of papers containing the terms ‘credit card data’, ‘bank account data’, ‘transaction
data’ and ‘transaction level data’ from SSRN and the NBER working paper series from 2000
through 2020. Searches were conducted on the full text of articles. Searches limited to Economics
and Finance papers in the SSRN database.
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Table 1: Attributes of Consumption Data Sources
Properties / Data Source Transaction Survey Admin Scanner
Examples JPMCI, Mint.com PSID, CEX Norwegian Tax Registry Nielsen Consumer Panel
Frequency Very High Often Quarterly Often Annual High
Measurement error ($) Low Medium Low Low
Measurement error (category) Medium Low High Low
Sample size High Low Very High Medium
Comprehensiveness Medium to Very High Medium to High High Low
Demographics Medium High Low Medium
Geographic location High Low to High (confidential) High Medium
Representativeness Varied High (falling; tail issues) Very High Medium
Historical coverage Low High Medium Low
Panel length Medium (growing) Typically Low High Medium
Granularity High Medium Low Very High
Asset Coverage Low to Very High Medium High Low

Properties / Data Source Banks Credit Cards Neutral Aggregators Focused Aggregators Payment Apps
Example JPMCI Visa Mint.com ReadyForZero Alipay
Sample Size High High High Low Medium
Account Linkages High Low Very High Medium Low
Observable Income Yes No Yes Yes No
Representativeness High High Medium Low Low
External Links and Surveys Medium Low Varied Varied Low
Legal Access Hurdles High Very High Medium Low Medium
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Table 2: Sample Sizes
Paper Data Source Sample Size & Composition
Various Current Population Survey 60,000 households
Various Consumer Expenditure Survey 7,000 households
Various Nielsen Consumer Panel 40-60,000 households
Various Living Costs and Food Survey 6,000 UK households
Carvalho et al. (2020) BBVA 6.3m individuals
Baugh et al. (2018) Large US aggregator app 2.7m individuals
Andersen et al. (2020d) Danske Bank 1.1m individuals
Bachas et al. (2020) Bansefi 348,802 individuals
Agarwal et al. (2020b) Leading bank in Singapore 180,000 individuals
Ganong & Noel (2019) JP Morgan Chase Institute 182,361 households
Kim et al. (2020) JP Morgan Chase Institute 380,000 businesses
Baker & Yannelis (2017) Large US aggregator app 152,810 gov. employees
Olafsson & Pagel (2018) Meniga (aggregator app) 65,000 Icelandic households

Notes: Sample sizes obtained from summary statistics tables within listed papers. Survey data
sample sizes are approximate.
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