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1 Introduction

This paper develops a new method to estimate state dependence in a choice model that allows

for flexible unobserved heterogeneity through individual-by-product fixed effects. We apply

the method to unravelling the sources of persistence in health insurance plan choices, an issue

which has led to considerable policy debate. Our method is nonparametric, but we also consider

parametric models. We then compare the empirical results from the models that allow for

individual-by-product fixed effects to a familiar set of parametric models that do not. The

models with fixed effects find an upper bound to switching costs that is considerably lower than

the estimates from models that do not allow for fixed effects and a counterfactual indicates that

the difference is likely to have substantial implications for the analysis of price effects.

Distinguishing the impacts of unobserved heterogeneity from those of state dependence in

discrete choice models has implications for the interpretation and policy implications of many

observed phenomena.1 Both the increase in the availability of panel data discrete choice data

sets, and the recognition that inattention and/or switching costs have dynamic implications,

have made the distinction even more salient in empirical work. Inattention is likely particu-

larly relevant for choices that can be reversed if needed, and/or where repeated evaluations of

alternative choices have cognitive costs that rival implied utility gains. So it is not surprising

that so much attention has been paid to the impact of state dependence in health insurance

choices.2

Addressing inattention requires a model which conditions both on past choices and on pref-

erences. Our empirical analysis asks whether past choices (their “state”) or unobserved pref-

erences underlies the low price responsiveness that has been found in health insurance choice.

This question is both economically important and policy-relevant. Governments set rules for

1The analysis of unemployment durations seeks to separate out the causal effects of being unemployed on
future employment from unobserved heterogeneity in worker employability (see Kroft, Lange, and Notowidigdo
(2013) and the articles cited therein). Both the marketing and I.O. literatures face the problem of distinguishing
switching costs from unobserved preferences in explaining the constancy of individual purchasing patterns over
time (see the review by Keane (1997)). Network models often need to distinguish between common preferences
and the causal effects of the network (see for example, Conley and Udry (2010)), A similar problem arises
in distinguishing the effects of moral hazard from adverse selection in evaluating policies designed to monitor
behavior in insurance markets (Abbring, Heckman, Chiappori, and Pinquet, 2003)

2Directly relevant here is the literature on mechanisms behind state dependence in health insurance choices,
distinguishing factors like search costs, rational inattention, and true switching hassles (Heiss, McFadden, Win-
ter, Wuppermann, and Zhou, 2021; Abaluck and Adams-Prassl, 2021; Brown and Jeon, 2024; Brot-Goldberg,
Layton, Vabson, and Wang, 2023).
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market-based health insurance programs in the Affordable Care Act exchanges, Medicare Part

D, and Medicaid managed care that cover more than 100 million people and cost over $750

billion in public spending per annum in the U.S. alone. Recent applied work suggests that

choice persistence driven by state dependence (or “switching costs”) may lead to larger insur-

ance markups (Ho, Hogan, and Scott Morton, 2017), may interact with problems created by

adverse selection (Handel, 2013; Polyakova, 2016), and may lead to invest-then-harvest pricing

dynamics (Ericson, 2014). It is unsurprising, then, that regulators often seek to encourage

switching through reminders and outreach, with the idea that active shopping will improve

market outcomes. However, as noted by Dafny, Ho, and Varela (2013), if choice persistence is

primarily due to preference heterogeneity, those policies may be misguided; it may be better to

simply encourage product variety.3

Prior econometric models for distinguishing state dependence from unobserved heterogeneity

have considered two general approaches. One approach estimates a fully parametric utility

model that includes a cost of switching from an individual’s lagged choice (their “state”). As

emphasized by Heckman (1981), this requires treatment of the “initial conditions” problem.4

Alternatively one can use the results in Honoré and Kyriazidou (2000) that allow for (very

flexible) unobserved preferences, captured by individual-by-product fixed effects, but requires

finding cases where all product characteristics (including prices) are constant (or nearly so) over

time. In many settings—including the health insurance context we study—such conditions are

rare enough that the conditioning set becomes exceedingly small.

We offer a new way of distinguishing between state dependence and heterogeneity. It uses

moment inequalities derived from revealed preference in a model which allows for fully flexible

product-by-individual specific fixed effects and non-parametric disturbance and price coefficient

distributions to identify bounds on the impact of state dependence. The moment inequalities

lead to an analysis which is similar to the “within” analysis in continuous choice models. The

3Similar questions about the role and implications of heterogeneity vs. state dependence have been studied
in a variety of applied settings. Examples include consumer products markets (Keane, 1997; Dubé, Hitsch,
and Rossi, 2009, 2010; Bronnenberg, Dubé, and Gentzkow, 2012), residential electricity markets (Hortaçsu,
Madanizadeh, and Puller, 2017), auto insurance (Honka, 2014), and paid television services (Shcherbakov,
2016).

4That is it requires data on individuals who make choices without any state dependence (e.g., a first-time
product choice), or with the unlikely proposition that their state is unrelated to their preferences. Valid initial
conditions are not always available, and even when they are, identification of switching costs comes partly from
the parametric specification of their distribution conditional on observable determinants of the choice.
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bounds they generate are obtained from patterns of switching choices in response to changes

in prices (or other product characteristics). The central assumption needed for the analysis is

that once we allow for individual-by-product fixed effects and state dependence, the remaining

unobservables in the agent’s utilities for the various choices is identically distributed over time.

This enables a revealed preference argument that makes the economic intuition underlying the

bounds transparent.

To see this consider the simple case where price is the only observed product characteristic

of interest—i.e. relegate the impact of other observables to the fixed effects. To obtain an upper

bound start with a group of agents who were at choice c in t−2. Say the relative price of c rises

in t−1 and a portion switch out of c. Now consider price changes at time t. Regardless of what

those changes are there is a value for the state dependence parameter that is large enough to

insure that the fraction of the original group who chose c in t should be less then the fraction

that chose c in t− 1. If the fraction of the group who are in c at t is smaller than in t− 1 the

state dependence parameter must be bounded from above.

For the lower bound consider a group of agents who are at c in t − 3 and stayed in c in

t− 2. Now say the relative price of c goes up in t− 1 and some of that group switch to other

choices. Then the price of c falls to a lower level then it was at t− 2 yet less chose c in t than

in t − 2. The price of c in t is lower than in t − 2 yet agents do not switch back because to

chose c in t they would incur switching costs whereas when they chose c in t− 2 they did not

have to incur those costs. So there are two changes when we compare the choice of c in the two

periods; i) the relative price of c is lower in period t, and ii) the choice of c in t did generate

switching costs while that choice in t− 2 did not. If fewer people chose c in t than in t− 2 the

switching costs must have generated more disutility than the price decrease caused increase in

utility, giving us our lower bound.

The next section formalizes these arguments and considers both extensions to allow for more

than one variable to change over time, and the simplifications that are available if the data

contains individuals who make the choice for the first time. Though our analysis can be used

to bound the impact of state dependence on the coefficients of interest, a more detailed model

may be needed to uncover the mechanism that generate it. Relatedly, the moment inequalities

we derive are unlikely to provide a sharp characterization of the identifying information on κ0,

but we exploit variation in choices in a straightforward way that should appeal to practitioners.
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In the nonparametric case we consider, a sharp characterization is, in principle, possible via a

computationally intensive algorithm recently developed in Mbakop (2023).5

Related Econometric Literature. We build on two strands of the literature: papers that

analyze discrete choice models with fixed effects and papers that add state dependence to that

problem. Chamberlain (1980) shows how an assumption of “logit” disturbances generates a

consistent conditional likelihood estimator for that problem. Manski’s (1987) maximum score

estimator provides consistent estimates for the binary choice problem with fixed effects and a

nonparametric disturbance distribution. Papers by Shi, Shum, and Song (2018) and Pakes and

Porter (2024), which we return to below, use an assumption of stationarity of the marginal

distribution of disturbances over time to obtain their estimators for multinomial problems.

Also related is work by Tebaldi, Torgovitsky, and Yang (2023) that develops a method to

estimate static demand for health insurance in a model with flexible, nonparametric preference

heterogeneity.

As noted, Honoré and Kyriazidou (2000) allow for state dependence and fixed effects and

generate point identification by conditioning on observations that are matched across periods.

A recent paper by Honoré and Weidner (2024) considers a binary logit model with state de-

pendence that does not require matching (or situations with constant product characteristics

over time).6 Honoré and Tamer (2006) examine identified sets from a related model, and Khan,

Ouyang, and Tamer (2021) investigate different assumptions on disturbances using both condi-

tioning and matching. Torgovitsky (2019) considers state dependence through a nonparametric

dynamic binary potential outcome framework and provides an approach to computing sharp

bounds on state dependent treatment effects under various assumptions.

Empirical Results. Our empirical work analyzes health insurance choices in the Common-

wealth Care (“CommCare”) program in Massachusetts, enacted as part of the state’s “Romn-

eyCare” reform. The program provided subsidized health insurance for citizens with incomes

5Relatedly, our focus is on utility function parameters, rather than on the quantiles or averages of utilities,
which is the focus of Chernozhukov, Fernández-Val, Hahn, and Newey (2013), or the treatment effect parameters
defined in Torgovitsky (2019). This is largely due to our interest in evaluating counterfactuals, including
equilibrium responses to changes in the environment.

6Honoré and Weidner (2024) use a “functional differencing” method (Bonhomme, 2012) that allows them to
construct moment functions across possible outcomes that exactly difference out choice probabilities from the
logit model, generating a mean-zero GMM moment and point identification of the state dependence parameter.
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below 300% of the federal poverty level via an insurance exchange that let consumers choose

among competing private plans. The program started in 2007 and grew steadily during 2007

and 2008. We begin our analysis in 2009 at the time of the first large price change (conditioning

on choices prior to this) and use plan switching behavior from 2009 to 2013 (just before the

transition to the Affordable Care Act) for our empirical estimates. Importantly, the program

features several large price changes that provide identifying variation for our method.

We use individual-level panel data on insurance choices to estimate switching costs in our

model using both our non-parametric and parametric moment inequality approaches. In our

non-parametric analysis, we find bounds on κ0 of $102 to $186 per year (with a 99% confidence

range of ($78, $450)). In our main parametric model, we find a somewhat larger (point) estimate

of $591 per year (with a 99% confidence interval of ($432, $754)). These switching costs are

meaningful relative to average (subsidized) consumer premiums in the market, which vary from

$575-$740 per year during this period.

The upper bound on switching costs is a focus of our analysis. This is because we find that

the upper bounds from our method are much smaller than the point estimates from methods

used in the prior applied literature, and the difference is large enough to have a substantial

impact on our counterfactual analysis.

To show this we use our data to estimate logit choice models that allow for state depen-

dence but do not allow for individual-by-product fixed effects, instead relying on alternative

approaches to capture unobserved heterogeneity. These choice models include plan fixed effects

interacted with: (i) increasingly detailed consumer attributes (up to 252 interactions between

consumer and product attributes), (ii) individual random effects assumed to be orthogonal to

an initial lagged choice, and (iii) individual random effects starting from a plausible initial

condition (a consumer’s first choice in the market), with the likelihood function simulated over

their full sequence of subsequent choices.

Across these comparison models, we estimate much higher switching costs of $989 to $1527

per year — values that are two to three times larger than the upper bound of the confidence

interval from our non-parametrics method ($450). These higher estimates are consistent with

prior work on the CommCare data (see Shepard (2022), who finds κ0 ≈ $1, 000) and with

similarly high estimates in other health insurance settings (e.g., Handel, 2013; Polyakova, 2016;

Heiss, McFadden, Winter, Wuppermann, and Zhou, 2021). The much lower switching costs from

6



our method (with flexible fixed effects) suggests a large role for unobserved preferences that is

not easily captured by observed consumer attributes or random effects in the health insurance

context,7 implying less inertia and considerably larger price-responsiveness than obtained from

prior procedures.

We conclude with an examination of the implications of the difference between the estimates

that do and do not allow for fixed effects. The largest plan in our data experimented from 2011-

12 with increasing its average annual premium from $701 to $1,171. After experiencing sharp

losses in market share, it reduced its premium to $554 in 2013. Using the comparison models

to compare the implications of the estimates of κ that do and do not allow for fixed effects, we

consider a counterfactual where instead the plan priced at the average of the 2012 and 2013

prices in both years. The difference in the predictions from using the different κ estimates is

dramatic. The predicted share decline in 2012 is four to five times larger when we use our

estimates, and the predictions for the two-year change actually differed in sign.

Outline of Paper. We begin with a revealed preference inequality that provides the rela-

tionship between price (or attribute) changes and switching behavior that underlies all of our

results. Next we consider the implications of a method that makes only weak assumptions

on the disturbance terms. These implications are then used to investigate the role of state

dependence in the choice of plans made by the participants in CommCare. Next we consider

the implications of revealed preference when one is willing to make parametric assumptions

on the disturbances, first without and then with the additional structure of extreme value dis-

turbances. The implications of the differences between the various estimators are explored in

the counterfactual analysis. We conclude with a brief summary. All proofs are provided in

Appendix 6.4.

7One plausible reason is the key role of varying hospital and physician networks across plans, combined
with individual-specific preferences for accessing certain doctors/hospitals with whom patients have an existing
relationship (see Shepard, 2022; Tilipman, 2022). Another plausible explanation is varying perceptions of insurer
brand quality (Starc, 2014), perhaps based on local advertising or recommendations of family and friends.
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2 Overview: Price Changes that Induce Switching.

We consider a panel data setting where consumers (i) choose from a choice set Dt over a

sequence of periods t ∈ {0, 1, ...}. We denote the choice of consumer i at time t as yit. We allow

for state dependence in which an individual’s lagged choice, yi,t−1 (their “state”), influences the

desirability of choosing this same option in period t. For expositional ease we begin with the

simple case in which the price coefficient is constant over time but can differ across individuals,

while the monetary equivalent of “switching costs”, that is the ratio of switching costs to price,

does not vary across either time or individuals. So the utility individual i derives from choice

d at time t is

Ud,i,t = (−pd,i,t − κ0 · 1{yi,t−1 ̸= d}) · γi + λd,i︸ ︷︷ ︸
Structural Utility (=SUd,i,t)

+ εd,i,t︸︷︷︸
Error

(2.1)

where we assume that γi > 0. We call the first set of terms the “structural utility” of option d

at time t for person i, or SUd,i,t. It captures both the value of observed product characteristics,

which for expositional simplicity we limit to prices (pd,i,t), the role of switching costs (κ0), and

unobserved preferences which vary across products for each individual (λd,i). The model also

includes a disturbance (εd,i,t) on which we entertain various assumptions below. Consumers

choose the option that maximizes their utility8 so yi,t = argmaxd∈Dt Ud,i,t.

Below we generalize and allow for additional observables, say xi,t, that vary over time and

individuals and can impact both the price coefficient, so γi becomes γ(xi,t), and the switching

costs, so κ0 becomes κ0(xi,t); generalizations whose importance are accentuated by our empirical

findings. The distinction between the xi,t and the λd,i is that the observed characteristics can

change over time, whereas the λd,i do not. Our analysis will only compare choices that are no

more than two periods apart, so we expect the λd,i to capture much of the individual specific

differences in utility across products.

The key identification challenge in applied work is separately distinguishing the switching

cost κ0 from unobserved preferences, λd,i. A naive approach that ignores unobserved preferences

8By modeling the choice in this way we are not allowing perceptions of the future to have a direct impact
on the current choice. This limits the applicability of the model, as there are many instances where these
perceptions are integral to analyzing the questions of interest. For both a review of the literature that does
incorporate decision models that are explicitly forward looking, and a set of restrictions which enables one to
use sufficient statistics to circumvent related technical problems that arise in estimation, see Aguirregabiria,
Gu, and Luo (2021).
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and simply estimates a specification like (2.1) with the λ’s omitted is likely to yield an upward-

biased estimate of switching costs (κ0) and bias the price coefficient (γi) towards zero. When

prices change the naive estimate of κ0 will pick up both real switching costs and the fact that

people who chose d last period likely had stronger unobserved preferences for it (high λd,i). This

will increase the response to last period’s choice (or the “state”), and decrease the estimate of

the response to price. Researchers can partly address this concern by adding more observed

heterogeneity to the model,9 but it is difficult to know whether the included variables capture

all the relevant sources of heterogeneity in preferences.

Our approach uses the simple logic of revealed preferences to “difference out” or isolate

unobserved preferences, yielding moment inequalities that can separate the impact of price

movements from state dependence in the presence of arbitrary λd,i. To see how this works,

consider two choices c and d that are both feasible in period s. If the agent chose c instead of

d, revealed preference implies Ui,c,s ≥ Ui,d,s, or

Ui,c,s−Ui,d,s =
(
−[pc,i,s−pd,i,s]−[1{yi,s−1 ̸= c}−1{yi,s−1 ̸= d}]κ0

)
γi+[λc,i−λd,i]+[ϵc,i,s−ϵd,i,s] ≥ 0.

Now consider a second period, say t > s, where the same two choices were available but a

relative price change induced the agent to choose d instead of c. Then

Ud,i,t−Uc,i,t =
(
−[pd,i,t−pc,i,t]−[1{yi,t−1 ̸= d}−1{yi,t−1 ̸= c}]κ0

)
γi+[λd,i−λc,i]+[ϵd,i,t−ϵc,i,t] ≥ 0.

Denote the difference in these two utility differences between periods t and s by

∆∆Ud,c
i,t,s ≡ (Ud,i,t − Uc,i,t)− (Ud,i,s − Uc,i,s) .

Analogously, denote the difference in the associated price differences between the two periods

by ∆∆pd,ci,t,s, and the difference in disturbances by ∆∆ϵd,ci,t,s. Adding the two revealed preference

inequalities yields ∆∆Ud,c
i,t,s and, crucially, cancels the fixed effect terms:

∆∆Ud,c
i,t,s =

(
−∆∆pd,ci,t,s −∆∆swd,c

i,t,s · κ0

)
γi +∆∆ϵd,ci,t,s ≥ 0, (2.2)

9For a health insurance example, see Figure 5 in Heiss, McFadden, Winter, Wuppermann, and Zhou (2021).
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where ∆∆swd,c
i,t,s is the difference between the current and prior period of the difference in the

indicator for whether the individual was at state c or d when the two choices were made, or

formally

∆∆swd,c
i,t,s = ∆∆swd,c

i,t,s(yi,t−1, yi,s−1)

≡ (1{yi,t−1 ̸= d} − 1{yi,t−1 ̸= c})− (1{yi,s−1 ̸= c} − 1{yi,s−1 ̸= d}).

This observable term will play an important role in what can be learned about switching costs,

κ0, from this sequence of choices. We show below that when ∆∆swd,c
i,t,s is nonzero, its sign

determines whether upper or lower bound information about κ0 is available.

For a given distribution of the errors, equation (2.2) can be used to bound the probability

of the sequence of choices described (i.e. yi,s = c, yi,t = d). In section 4, we implement this

inequality under the logistic assumption. However, our main results do not rely on parametric

distributional assumptions on the error term. Next, we show how within differencing can

translate to bounds on κ0 under weak assumptions on the distribution of errors.

2.1 Nonparametric Bounds

We are allowing for fixed effects, so we are analyzing the determinants of changes in individuals’

choices over time (the analogue of analyzing the “within” dimension in models with continuous

left hand side variables). Equation (2.2) implies that the response of the choices to the price

differences in the two periods depends only on κ0 and ∆∆ϵd,ci,t,s. Typically estimation and infer-

ence of dynamic discrete choice models is based on logistic or other parametric distributional

assumptions for the disturbance term. We will focus on the non-parametric case where the main

assumption on the ϵi,t ≡ [ϵ1,i,t, . . . ϵD,i,t] is a stationarity assumption. Let λi ≡ [λ1,i, . . . , λD,i],

pi,t ≡ [p1,i,t, . . . pD,i,t], and pi ≡ [pi,1, . . . , pi,T ]. Additional covariates xi,t will be included below,

so we will also include covariates in the statement of the assumption with xi ≡ [xi,1, . . . , xi,T ].

The distribution of the error terms must satisfy the following.

Assumption 2.1.

ϵi,t | pi, xi, yi,t−1, yi,t−2, . . . , yi,1, γi, λi ∼ ϵi,s| γi, λi

10



for all time periods t and s. □

Assumption 2.1 covers many panel settings.10 It does not impose any restrictions on the corre-

lation between the {λi}i and the observable determinants of the choice (there can be “correlated

effects”), and it allows ϵd,i,t to be freely correlated with ϵc,i,t, ∀(c, d) ∈ D2. We also assume

the ϵi are identically distributed across individuals, though the identification results could be

re-written to allow for non-identical distributions.

Note, however, that this assumption does imply that the current disturbance is conditionally

independent of past disturbances, so we are attributing all dependence of choices over time

that are not a function of changes in observables to state dependence. This contrasts with

prior non-parametric work on models with state dependence and fixed effects which allocates

all additional time dependence in choices to serial correlation in disturbances.11 By attributing

all the additional time dependence in choices to κ0 here, we hope to get a robust upper bound

to its value.

Since Assumption 2.1 places no restrictions on the marginal distribution of errors, the scale

of random utilities is not identified. Without loss of generality, then, we can normalize γi ≡ 1

when taking this nonparametric approach. In this formulation, only the ratio of the switching

cost coefficient to the price coefficient is potentially identifiable. Below we will generalize the

specification to allow the ratio of state dependence to price to depend on observable individual

characteristics that may change over time.

From the point of view of revealed preference, Assumption 2.1 implies that the difference

in an individual’s probability of choosing d instead of c between any two periods cannot arise

from differences in the distributions of the disturbance in those periods. Instead, it must result

solely from the difference in the structural utility between the two periods. So if we eliminate

10In our discussion paper (Pakes et. al. 2021) we show that equation (2.2) can identify bounds when all

that is assumed is that the conditional median of ∆∆ϵd,ci,t,s = 0, if and only if there are cells in the data where
the probability of switching twice is greater than a half. If this condition is satisfied then one can allow the
distribution of ϵi,t to differ over time. Unfortunately this rules out most studies of insurance choices, though it
often does not rule out retail market choices, particularly those with periodic sales.

11Pakes and Porter (2024) provide sharp bounds for “static” panel data choice models under the alternative
assumption that the disturbances are freely correlated over time but there is neither state dependence nor
correlation between the disturbances, which represent unobserved preferences, and the included regressors. Here
we allow for both arbitrary unobserved preferences that are fixed over comparison periods and state dependence,
but no serial correlation in the disturbances. By eliminating serial correlation we maximize the role for state
dependence in accounting for the persistence of individual choices over time.
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the impact of the λd,i, as we do in equation (2.2), the differences in choices following a relative

price change will be determined by the tradeoff between the importance of price and that of

state dependence in determining utility.

We now show how this logic can generate moments that identify upper and lower bounds

on κ0. In doing so we describe the moments that we actually use in our empirical analysis. For

the upper bound, the intuition is that a relatively high probability of switching to a particular

choice will be evidence that switching costs cannot be too large. We use the discrete choice

model, under Assumption 2.1, to determine which choices allow us to make use of this intuition.

Given a switching cost of κ, suppose that choice d∗ satisfies

SUd∗,i,t(d
∗;κ)−SUd∗,i,t−1(yi,t−2;κ) = −(pd∗,i,t−pd∗,i,t−1)+κ ≥ SUc,i,t(d

∗;κ)−SUc,i,t−1(yi,t−2;κ)

(2.3)

for all choices c ̸= d∗, where the lagged dependent variable yi,t−2 is a choice other than d∗, and

we are writing structual utility as a function of the lagged dependent variable and the switching

costs, κ. Note that since we are comparing the same choice in different periods the fixed effects

drop out of both sides of this equation.

Equation (2.3) states that choice d∗ experiences the largest increase in structural utility

from t − 1 to t. If the given value of κ is the true value of switching costs, then this increase

in structural utility for choice d∗ will necessarily lead to a corresponding increase in the choice

probability, so

Pr(yi,t = d∗ | yi,t−1 = d∗, λi) ≥ Pr(yi,t−1 = d∗ | yi,t−2 = c, λi). (2.4)

Inequality (2.4) is stated for individual specific probabilities. Since these probabilities de-

pend on λi, they are not directly measurable from the data. Note that the inequality in equation

(2.3), which implies (2.4), does not depend on the fixed effects λi. Still the differing conditioning

sets of the two choice probabilities in (2.4), and the fact that we do not know the distribution

of the λi, means that one cannot simply average or integrate out the λi from both sides of the

inequality. Below, in (2.12), we find that a more subtle argument which uses Jensen’s Inequal-

ity shows that equation (2.3) implies that for a sufficiently large κ the proportion of a set of
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individuals who chose c in t− 2, that chose d∗ in t− 1 and in t− 2 must satisfy

Pr(yi,t = d∗ | yi,t−1 = d∗, yi,t−2 = c) ≥ Pr(yi,t−1 = d∗ | yi,t−2 = c), (2.5)

where now Pr(·) refers to the probability (or proportions), and these can be consistently esti-

mated.

This result is the “positive” implication of a κ that satisfies equation (2.3). That is, if (2.3)

is true for those at c in t− 2, then the inequality in equation (2.5) must be true. Empirically,

we make use of the “contrapositive,”12 that is, if the inequality in (2.5) is violated, then κ0 can

not satisfy (2.3). Since equation (2.3) can be rewritten

κ ≥ max

{
∆∆pd

∗,c
i,t,t−1

2
, max
c′ ̸=d∗,c

∆∆pd
∗,c′

i,t,t−1

}
≡ MaxP (d∗), (2.6)

if we find that (2.5) is not satisfied we will learn that

κ0 < MaxP (d∗).

When are we likely to get this upper bound to κ0? Consider individuals who start at some

c ̸= d∗ in t − 2. If the price of c relative to that of d∗ rises in period t − 1, we expect some of

those who chose c in t− 2 to switch to d∗ in t− 1. Now say the price of all c ̸= d∗ fall in period

t. If enough people who switched out in t− 1 do not switch back in t, it must be the case that

there is an upper bound to switching cost.

We next provide moments which generate a lower bound for κ0. Lower bounds are generated

by turning around the argument for upper bounds. To get a lower bound, we compare the

probability of staying with a given choice in period s to the probability of switching to that

choice in period t. To consider a switch in the later period t, we need to allow s and t to be

separated by at least two periods, e.g. s = t− 2. This pattern of choices is the opposite of the

pattern for the upper bound, and so it will lead to a different sign on the switching variable,

that is on the coefficient of κ, in the difference of utilities. This sign flip on κ coincides with

obtaining lower bound information rather than upper bound information. More intuitively,

12That is, if A implies B, then B is not true implies A is not true.
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when the switch at time t has low probability relative to the probability of staying at time

t− 2, then this will potentially provide evidence that switching costs cannot be too low.

We now show how particular choices generate a lower bound. Suppose choice d∗ has the

largest increase in structural utility between periods t and t− 2, that is

SUd∗,i,t(yi,t−1;κ)−SUd∗,i,t−2(d∗;κ) = −(pd∗,i,t−pd∗,i,t−2)−κ ≥ SUc,i,t(yi,t−1;κ)−SUc,i,t−2(d∗;κ)

(2.7)

for all c ̸= d∗ and yi,t−1 is a choice other than d∗. Again, since we are considering differences

in structural utilities of the same choice at different times, the fixed effects drop out of all of

these differenced expressions.

If (2.7) holds for κ equal to the true value κ0, then choice d∗ experiencing the largest increase

in structural utility implies that this choice will have a corresponding increase in probability,

Pr(yi,t = d∗ | yi,t−1, yi,t−2 = d∗, λi) ≥ Pr(yi,t−2 = d∗ | yi,t−3 = d∗, λi), (2.8)

where yi,t−1 ̸= d∗.

As with the upper bound, the inequality in (2.7) does not depend on λi, but averaging out

over the individual probabilites in (2.8) presents a challenge due to the presence of the differ-

ent lagged dependent variables in the conditioning sets. Below, in (2.12), we invoke Jensen’s

Inequality to deal with this issue, and find that equation (2.7) with yi,t−1 = c (̸= d∗) will also

imply that if we consider the people who started at d∗ and chose d∗ at t− 2, and then look at

the proportions who chose d∗ in t after choosing c in yt−1,

Pr(yi,t = d∗ | yi,t−1 = c, yi,t−2 = d∗) ≥ Pr(yi,t−1 = c, yi,t−2 = d∗ | yi,t−2 = d∗), (2.9)

where now Pr(·) refers to the probability (or proportions) which can be consistently estimated.

Finally, using the contrapositive of this result, if the inequality in (2.9) is violated then (2.7)

will also fail. Failure of (2.7) can be re-written as a lower bound for κ0,

κ0 > min

{
−
∆∆pd∗,ci,t,t−2

2
, min
c′ ̸=d∗,c

−∆∆pd∗,c
′

i,t,t−2

}
.
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The rest of this subsection provides an overview of the three extensions to these results

which we use in our empirical work. A more formal presentation of the results leading to them

is given in the Appendix.

Initial Condition Estimators. Heckman (1981) introduces an initial condition estimator

for the problem of analyzing discrete choice models with state dependence and versions of it

have been used extensively since. It requires data on individuals who are making the specified

choice for the first time, and we do have individuals who enter CommCare for the first time.

The initial condition estimator is typically used in conjunction with a parametric assumption

on the distribution of the disturbances conditional on the observable determinants of the choice.

The estimator makes the assumption that the agent knows the value of the individual specific

effects (the vector {λi}) before making their initial choice. When we add this assumption to our

stationarity assumption we can obtain a moment inequality estimator that is less demanding

of the data. This is because there is no state dependence when the initial choice is made. So

adding the initial revealed preference inequality to that from a later period differences out the

fixed effects and generates inequalities that bound κ0. The form of the upper and lower bounds

for κ0 is in Appendix 6.3, and our empirical work considers this generalization in the context

of the health insurance choices in the CommCare data.

Other observable determinants of the importance of switching costs. The next sec-

tion explains and the Appendix formally derives non-parametric bounds that allow the ratio of

switching costs to price to differ across individuals and/or over time. Our empirical work does

not use individuals who experience differences in choice set characteristics other than price,

and allows the preferences for those characteristics to vary freely across cells constructed from

individuals with similar value of observable covariates. Given these constraints we investigate

whether the ratio of switching costs to price within cells differs with income and/or health

status.

Parametric Methods. Our focus is on non-parametric analysis, but there are two reasons to

also consider parametric versions of the revealed preference analysis that allows for fixed effects

and state dependence. First, we want to understand the sources of the difference between the
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bounds obtained from our nonparametric procedure and the estimates from prior parametric

models that do not allow for fixed effects: are they a result of the parametric assumptions, or

due to the absence of the fixed effects? To this end we also use our data to provide estimates

from prior models that allow for state dependence but not our λi and compare them to our non-

parametric results. Second, once we make parametric assumptions we can derive inequalities

that do not require the choice set to be constant over the periods comparred, an extension

which is likely to be particularly useful in panel data studies of purchases at retail outlets.

There are parametric inequalities that are “generic” in the sense that they can be derived

for any distribution of the disturbance terms. Unfortunately these inequalities do not provide

upper bounds for the magnitude of the ratio of state dependence to price which is our focus.

As a result we consider adding the additional information available from models which assume

a logit distribution for the disturbances, the dominant parametric assumption used in prior

research on health insurance choice.

2.2 Generalizations and the Use of Jensen’s Inequality.

We start with a generalization of the discussion of the last section which allows switching costs

to depend on covariates and considers probabilities of choosing a subset of the available choices.

The reader who is not interested in these derivations should be able to go directly to section 3,

and follow the remainder of the text.

We maintain the stationarity Assumption 2.1 and the normalization that γi ≡ 1, and con-

sider variation in choice probabilities across two periods t and s, with t > s. The structural

utility for the more general specification is

SUd,i,t(yi,t−1) ≡ −pd,i,tγ0(xi,t)− 1{yi,t−1 ̸= d}δ0(xi,t) + λd,i, (2.10)

where we have made explicit the dependence of coefficients on the observable, xi,t. Switching

costs will be captured by the ratio of the coefficients on state dependence and price, κ0(xi,t) =

δ0(xi,t)/γ0(xi,t).

We first establish an inequality on the choice probabilities that extends an analogous result

from the panel data discrete choice literature that does not allow for state dependence. The

inclusion of state dependence in the choice probabilities distinguishes our case from that earlier
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case and makes the inequality derived in that literature not directly applicable to a model with

state dependence. We then show how to use Jensen’s Inequality to transform that inequality

in a way that generates a new probability inequality that can be implemented when state

dependence is present.

For any choice d ∈ D, we can consider the change or difference in the structural utility,

SUd,i,t(yi,t−1) − SUd,i,s(yi,s−1). Since these are differences in the utility of the same choice in

two periods, the fixed effects cancel. We can then order these changes by choice from largest to

smallest for a given xi ≡ (xi,1, . . . , xi,T ). The result from the previous literature that does not

allow for state dependence (Pakes and Porter 2024) is that if we order the choices based on the

differences in structural utility (with the true values of the parameters), then the probability

of choosing one of the highest ranked choices will be greater in period t than in period s. That

is, the choices with the largest structural utility difference will have a larger probability in t

than in s. Given that the distribution of the unobservable part of utility (including the fixed

effects) is stationary over time, it is intuitive that increases in the structural utility lead to

higher probabilities.

We can summarize this result as follows. Let D0 be a set of choices containing the top

ranked changes in structural utility. That is, if D0 is a singleton, then it will contain only the

choice with the largest increase in structural utility. If D0 contains two choices, then these will

be the choices with the largest and second largest increases in the structural utility, and so on.

More explicitly, suppose D0 satisfies

min
d∈D0

SUd,i,t(yi,t−1)− SUd,i,s(yi,s−1) ≥ max
c̸∈D0

SUc,i,t(yi,t−1)− SUc,i,s(yi,s−1).

Then,

Pr(yi,t ∈ D0|yi,t−1, pi, xi;λi) ≥ Pr(yi,s ∈ D0|yi,s−1, pi, xi;λi). (2.11)

In the model without state dependence the conditional probabilities in this inequality would

not include a lagged dependent variable, and hence the conditioning sets on either side of the

inequality would be identical. In that case, the fixed effects can be integrated out from both sides

of the inequality to obtain conditional probabilities that could be used in estimation. In our

current setting, the conditioning sets on the two sides of the inequality contain different lagged
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endogenous variables that depend on the fixed effects, so that simple method of integrating out

the fixed effects is not applicable.

To see how we deal with this challenge, take the case where D0 is a singleton, {d∗}, and

s = t − 1. Then, the probability inequality above is Pr(yi,t = d∗|yi,t−1 = d∗, yi,t−2, pi, xi;λi) ≥

Pr(yi,t−1 = d∗|yi,t−2, pi, xi;λi).Multiplying both sides of this inequality by Pr(yi,t−1 = d∗|yi,t−2, pi, xi, ;λi)

and applying Jensen’s Inequality, we have

Pr(yi,t = d∗, yi,t−1 = d∗|yi,t−2, pi, xi)≡ Eλi
[Pr(yi,t = d∗, yi,t−1 = d∗|yi,t−2, pi, xi;λi)|yi,t−2, pi, xi]

≥ Eλi
[(Pr(yi,t−1 = d∗|yi,t−2, pi, xi;λi))

2 |yi,t−2, pi, xi]

≥ [Eλi
(Pr(yi,t−1 = d∗|yi,t−2, pi, xi, λi))]

2

≡ (Pr(yi,t−1 = d∗|yi,t−2, pi, xi))
2 , (2.12)

Finally divide both sides of (2.12) by Pr(yi,t−1 = d∗|yi,t−2, pi, xi) to obtain

Pr(yi,t = d∗ | yi,t−1 = d∗, yi,t−2, pi, xi) ≥ Pr(yi,t−1 = d∗ | yi,t−2, pi, xi). (2.13)

Given γ(xi) and δ(xi), we compute a value d∗. The inequality in (2.13) can then be checked

empirically. Violations of (2.13) can then be used to rule out or provide evidence against the

given values of γ(xi) and δ(xi).

Two additional points are worth noting. First the slackness in (2.13) is due to the fact that

it ignores the variance in Pr(yi,t−1 = d∗|yi,t−2, pi, xi;λi) conditional only on (yi,t−2, pi, xi). This

conditional variance, in turn, depends on the variance of the λi conditional on those variables.

The λi are explained by both the observable and unobservable determinants of utility, and

the richer the set of observable characteristics that we condition on, the lower the conditional

variance of the λi in the data, and the more powerful this inequality. Second, though the result

holds for all s < t, it requires the assumption that the {λi} is fixed over the two comparison

periods so s should not be too distant from t. Below we form cells with common observable

characteristics, and only use choices made at an s ≥ t− 2.

The result in the theorem to follow extends the argument above in two ways. First we

broaden the argument to apply to choice probabilities of non-singleton sets. When s = t−1 the

extension just requires replacing d∗ with D0 as defined above. Second, if s < t−1, constructing
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the inequality for D0 requires specifying yi,t−1, and as in our discussion of the lower bound

above, multiple values of yi,t−1 can imply that the inequality is satisfied. The next condition

defines the set of values yi,t−1 can take, and labels that set as D1.

Condition 2.2. Given t > s and choice sets D0, D1 ⊂ D, for all d′ ∈ D1,

min
d∈D0

[SUd,i,t(d
′)− SUd,i,s(yi,s−1)] ≥ max

c/∈D0

[SUc,i,t(d
′)− SUc,i,s(yi,s−1)].

The next theorem generalizes the result in (2.13) to take account of these changes.

Theorem 2.3. Suppose Assumption 2.1 holds.

(a) For s = t− 1, for any choice set D0 = D1 satisfying Condition 2.2,

Pr(yi,t ∈ D0 | yi,t−1 ∈ D0, yi,t−2, pi, xi) ≥ Pr(yi,t−1 ∈ D0 | yi,t−2, pi, xi)

(b) For s < t− 1, for any choice sets D0 and D1 satisfying Condition 2.2,

Pr(yi,t ∈ D0 | yi,t−1 ∈ D1, yi,s ∈ D0, yi,s−1, pi, xi) ≥ Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi).

3 Data, Estimation, and Non-parametric Results.

We analyze health insurance plan choices made by enrollees in the Commonwealth Care (“Comm-

Care”) program in Massachusetts between 2009-2013. The program provided heavily subsidized

insurance to low-income adults (earning less than 300% of the Federal Poverty Level) via a mar-

ket featuring competing private health insurers. Five insurers participate in the market during

our data period, with each insurer (by rule) offering a single plan. Program rules required each

enrollee to make a separate choice; there was no family coverage, and kids were covered in the

separate Medicaid program. Individuals make plan choices at two times: (1) when they join

the market as a new enrollee, and (2) during an annual open enrollment month when they are

allowed to switch plans. Because our focus is on switching costs, we study open enrollment

choices, setting the prior choice (the state, yi,t−1) equal to the individual’s plan in the month
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prior to open enrollment.13 For more detail on the data and the CommCare program see Shep-

ard (2022); Finkelstein, Hendren, and Shepard (2019); McIntyre, Shepard, and Wagner (2021);

Shepard and Wagner (2025).

Treatment of the data. We want to capture switching costs that are not induced by changes

in the individual’s choice environment, other than by prices, yi,t−1, and xi,t (when we allow for

heterogeneity in switching costs), and we need the choice set to be the same in the two periods

we compare. We therefore remove comparisons for individuals who changed regions (there are

five in the data), or who faced different plan offerings in the comparison periods and, as noted,

only consider s = t− 1 and t− 2.

We begin by assuming that the relative cost of switching, relative to individual specific

aversions to price, does not vary across individuals, and then generalize to allow the cost of

switching relative to price to differ between health and income groups. The health groups are

defined by whether one is below or above the median of the medical risk score distribution in year

t.14 There are five income groups in the data, defined by income relative to the federal poverty

line (FPL): 0-100% FPL, 100-150% FPL, 150-200% FPL, 200-250% FPL, and 250-300% FPL.

Subsidies—and therefore post-subsidy premiums—vary across these groups, with lower-income

groups both paying lower premiums overall and having narrower premium differences across

plans.15 Besides variation across income groups due to subsidies, price variation was limited by

regulations. Prices could vary by region in 2009-2010 but not from 2011-on. No variation was

allowed on other factors including age, gender, health status, or any other characteristics.

Our model assumes that individual-level unobserved plan preferences (λd,i) are stable over

the time periods we compare. This is consistent with the characteristics of the CommCare

market. Coverage is heavily regulated, with all cost sharing and covered medical services com-

pletely standardized across insurers. The only flexible plan attributes are provider networks.

13In rare circumstances, individuals are allowed to switch plans mid-year (e.g., if they move across regions).
Though we do not include these mid-year switching opportunities in our estimation, we do condition on any
switches that occur mid-year and update the lagged plan accordingly for the next switching opportunity at open
enrollment.

14We use risk scores from the Department of HHS’s Hierarchical Condition Categories (HHS-HCC) method
that is used for risk adjustment in the ACA Marketplaces. We apply the method as posted on the HHS website
to demographics and diagnoses observed on our claims data.

15When we include switching cost heterogeneity across incomes (see below), we only allow heterogeneity for
two income groups: 100-200% FPL versus 200-300% FPL. This reduces the number of parameters we need to
estimate for the more time-intensive method.
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These were largely stable during our sample period with one major exception. Network Health

(one of our plans) dropped Partners Healthcare (the state’s largest medical system) from its

hospital network at the start of 2012. This decreases the value of Network Health. By transi-

tivity of preferences those who either stayed with Network or switched to Network would have

preferred Network with the prior values of their individual specific fixed effects, so their 2012

choices can be used below. However those who left Network could have left because the value

they assigned to Network decreased when Network dropped Partners, so their 2012 choices are

dropped from the data. There were no other major changes in the networks of the plans during

our study period. However, one plan enters mid-sample (Celticare during 2010-11), and one

plan (Fallon) exits several areas in 2011.

Forming Inequalities. To form the sample analogues of the inequalities in Theorem 2.3 we

form cells with the same observed characteristics and yi,s−1. The observed characteristics of a

cell are denoted by zi and are defined by the Cartesian product of: a) couple of years, b) the

five income groups (separately in year t and s), c) region, and d) plan availability (separately in

year s and t). Note that this implies that the λi represent differences in tastes among consumers

with the same zi and yi,s−1.

Table 1 provides summary statistics on both the full underlying dataset, and the estimation

sample that is limited to cells with N ≥ 50 members (which we use for reasons described

presently). If two sets of inequalities are positive at the true parameter value we can sum

them into a single inequality which is also positive at that value. Since we are focused on

price responsiveness, we summed our cell inequalities into groups that exhibited the same price

changes and initial choice. Our groups are then defined by (a) couple of years, (b) income

group in t and s (which set subsidies) and (c) prior choice. In total, our estimation sample

includes 158,994 member-choices, which fall into 722 cells and 446 groups. Because of many

plan availability changes in 2011, there is insufficient data with stable plan choice sets to use

year-pairs where s and t cross 2011. Therefore, our final sample includes four sets of year-pairs:

(2009, 2010), (2011, 2012), and (2012, 2013) for s = t− 1 (from which we derive upper bounds

on κ), and (2011, 2013) for s = t− 2 (from which we derive lower bounds).16

16Given our assumptions, the variables defining our groups are conditionally independent of the disturbances
in the comparison periods. This implies that we can use subsets of the groups in estimation without incurring a
selection bias. This assumes that the plan-specific effects are constant over time; but regulation insured that all
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Table 1: Sample Sizes for the Nonparametric Estimator

Full dataset Estimation sample (N ≥ 50)

Year Pair
Number of
Members

Number of
Groups

Number of
Members

Number of
Cells

Number of
Groups

Year pairs: s = t− 1
(2009, 2010) 51,548 378 35,941 194 73
(2011, 2012) 55,657 462 47,168 184 127
(2012, 2013) 60,544 480 50,479 205 138

Year pairs: s = t− 2
(2011, 2013) 33,747 458 25,406 139 108

Total 201,496 1,778 158,994 722 446

Notes: The table shows summary statistics for the nonparametric estimator sample, by pair of years (s, t). See

the text for definitions of cells and groups used in the estimation. The table lists the number of members and

groups, both before and after applying the minimum cell-size cutoff of 50 members.

Price movements. Figure 1 provides the average prices paid by consumers (i.e. after sub-

sidy) by year and plan. It indicates that the prices of each of the plans do go both up and

down over time. Large price changes occurred between 2011 and 2012. This reflects a new set

of rules introduced by the market regulators in 2012 that changed the nature of competition

in the market. In all years, enrollees with incomes 0-100% FPL were fully subsidized, meaning

they paid $0 for all available plans. Prior to 2012 these enrollees were fully subsidized regardless

of the plan they chose; however from 2012 on these new enrollees were only allowed to choose

from the two lowest-price plans in their area. This created an auction-like dynamic in which

the two lowest-bidding plans “won” access to this large group, representing about half of new

enrollees.

The different plans reacted differently to the rule change. Boston Medical Center’s plan

(BMC), the largest plan as of 2011, increased its price sharply in 2012, essentially ceding the

market for full-subsidy new enrollees to the other insurers, but then lowered its price by an even

greater amount in 2013. This generated the two largest price changes in Figure 1, though there

were also significant changes in the prices of Network and Celticare plans in that period, and

smaller changes in the other plans. As noted there were no major changes in BMC’s network or

non-price non-network plan characteristics, including cost sharing and covered medical services, were constant
over time, and we have controlled for the only notable change in networks.
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Figure 1: Massachusetts Health Insurance Market: Plan Choice and Premiums
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Notes: The figure shows average annual enrollee premiums (after subsidies) for each of the Massachusetts

CommCare plans over our sample period of 2008-2013. Averages shown are for above-poverty enrollees only;

below-poverty enrollees pay $0 for all plans in all years.

other quality attributes over this period. Instead the change in 2012 appears to reflect BMC’s

strategic response to the new competitive rule. BMC chose to raise its price in 2012 and earn a

larger margin on those members who did not leave. In contrast, Network Health and CeltiCare

bid low in 2012 and “won” the auction. As a result of these choices, BMC lost almost half of

its market share during 2012, and then decided to reverse course in 2013 and undercut both

its competitors. This allowed it to rebuild its market share in 2013, leading into the important

transition of CommCare into an Affordable Care Act exchange in 2014.

Table 2 summarizes the path of enrollment between 2011 and 2013 for people enrolled

in CommCare in 2011. The top panel indicates that about two thirds of those enrolled in

CommCare in 2011 had moved out of CommCare by 2013. This is a market with a lot of

“churn” (largely induced by movements in and out of low-income eligibility due to employment

changes). The bottom panel reports on switching behavior among subscribers who stayed in

CommCare between 2011 and 2013. Among those who were in CommCare for the three years,
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Table 2: Statistics on Enrollment and Switching for 2011 Enrollees over 2011-2013

All 2011
Enrollees BMC All Other Plans

Number of Enrollees
Total Enrollees in 2011 114,752 38,131 76,621
    Leave Market before 2013 78,654 26,113 52,541
    Stay in Market 2011-13 36,098 12,018 24,080

Switching Rates (among stayers in market)
Switch Plans from 2011-2012 13.4% 16.9% 11.6%
Switch in 2012, Switch Back in 2013 2.2% 5.3% 0.6%
Switch in 2012, Do Not Switch Back 2013 11.2% 11.6% 11.1%

By 2011 Plan

Note: The table shows statistics on enrollment and switching rates over the 2011-13 period. The sample is
people enrolled in CommCare in 2011 who are not in the below-poverty income group (who do not pay premiums
so do not experience the premium changes shown in Figure 1), and the columns separate this group by their
plan in 2011. The top panel shows enrollment numbers, and the bottom panel shows switching rates among
people who stay in the market from 2011-13.

the fraction who switch plans in 2012 is 13.4%; BMC, the plan with the largest price increase,

loses 17% of its 2011 subscribers. Though all prices changed in 2013, BMC is the only plan

whose average price decreased. Of the subscribers who left BMC in 2012, a little less that a

third switch back in 2013, while only five percent of those who switched out of other plans in

2012 switched back in 2013.

Estimation and Inference. We estimate the identified set using the sample moment in-

equalities computed at the group level. For confidence sets, we adopt a Bayesian approach,

as proposed by Kline and Tamer (2020). In particular, we construct confidence sets using the

“Bayesian bootstrap,” which is relatively easy to apply and understand. We draw samples

that mimic the observed sample and check which parameters satisfy the inequalities from the

simulated samples. A parameter value that is accepted in (1-α) percentage of the simulated

samples is in the α−level confidence set.17

Formally, the Bayesian bootstrap combines an uninformative prior with the data to generate

17A prior version of this paper initially used a common inequality approach that obtained confidence sets based
on an approximate distribution for the objective function test statistic (that minimizes the squared negative
part of the inequalities derived directly from the data). This procedure is based on Gaussian approximations
to the distribution of the empirical choice probabilities. When cell sizes are small and some empirical choice
probabilities are near zero, the simulated moments can imply probabilities that are negative and produce
degenerate confidence sets. These issues led to the use of the Bayesian bootstrap, which is especially well suited
to the case of near zero choice probabilities.
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a Dirichlet posterior distribution for the choice probabilities for each cell in the data. Given the

uninformative prior, the Dirichlet posterior parameters are set to mimic the observed frequencies

and sample size of the cell, as in Chamberlain and Imbens (2003). The posterior simulation

draws values of probabilities for possible choice sequences in each cell. For the upper bound

we focus on choices from consecutive time periods, so if the choice set has four plans, we draw

probabilities for the 42 = 16 choice sequences in each cell. The lower bound uses choices from

three consecutive time periods, so we draw probabilities for 43 = 64 choice sequences.

For each set of random draws we construct the inequalities based on the simulated prob-

abilities implied by Theorem 2.3 with singleton sets D0 (D0 = d∗ or d∗ in the notation of

section 2.1), s ≥ t− 2, and all t for each cell. We then sum these inequalities over our groups,

divide each aggregated inequality by its standard error (derived from the multinomial formula

for each cell), and look for a set of parameters that satisfy these inequalities. If none do (the

usual case for the Bayesian bootstrap), we minimize a quadratic norm of the negative parts

of the inequalities. These steps are repeated a large number of times and then a credible set

(or confidence interval) is formed that covers the upper and lower bounds of our parameters a

given percentage of the simulated samples.

3.1 Nonparametric Empirical Results.

Table 3 provides estimates of the identified set and both 95% and 99% confidence sets for the

model with a single κ and different cell size cutoffs. Since the 99% confidence set was identical

for a minimum cell size of 50 and 100, we use a minimum cell size of 50 and 99% confidence

sets throughout the paper.

Figure 2 plots the objective function (the sum of squared negative parts of moments) for

this case, where lower values imply a better fit to the data. The units on the x-axis are dollars

per annum. The jumps in the objective function occur when an additional constraint(s) is

violated. The flat segment enclosed by the gray lines defines our estimate of the identified set,

which is κ ∈ ($102, $186), while the 99% credible set is the interval between the red dashed

lines (κ ∈ ($78, $450)).18 Though the confidence set is rather wide, its upper bound is less

than half of the average estimate of κ = $1047 per year from prior research on this data using

18We also investigated the robustness of our result with respect to the number of bootstrap samples, say ns.
We report results with ns = 500, but the results did not vary provided ns ≥ 100.
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Table 3: Nonparametrics ID Set and Confidence Intervals for κ

Sample ID Set (κ) 95% CI 99% CI
LB UB LB UB LB UB

Min cell size = 20 $150 $168 $150 $270 $150 $354

Min cell size = 50
(main sample)

$102 $186 $78 $294 $78 $450

Min cell size = 100 $78 $186 $78 $450 $78 $450

Note: The table shows estimates from our nonparametrics estimator of the identified set and 95% and 99%
confidence sets (or credible sets) for the switching cost κ in dollars per year.

a standard multinomial logit model with observable preference heterogeneity and coarse fixed

effects (see Shepard (2022)). We come back to implications of this difference below.

Figure 3 shows the underlying estimates from the lower-bound (s = t−2) and upper bound

(s = t − 1) moments; the objective function in Figure 2 is the sum of these two. The lower

bound moments show that the data strongly reject κ < 0, and, for positive values of κ, the

objective function is relatively flat. The objective function for the upper bound moments rises

gradually and then more steeply after about κ = $300, corresponding to the upper bound of

the 95% confidence set.

Initial Conditions Estimators. We know the first time a consumer enters the Massachusetts

exchange. So provided we are willing to add the assumption that the agents know their own

choice specific fixed effects before making their first choice on the exchange, we can apply

the non-parametric generalization of the initial condition estimator described above and in

Appendix 6.3 to estimate κ.

When we combine both the “standard” moments (used in Figure 2) and the initial conditions

moments, we get a larger value for the identified set (in this case, a point) of κ = $480 but a

relatively similar 99% confidence set of κ ∈ ($180, $480) (see Appendix Figure 6). However,

when we use only the initial conditions moments, we get rather different results. The size of

the sample that only uses the initial condition moments is about a third of that used for the

estimates that condition on the prior choice but, as noted in section 2, the initial condition

moments can obtain bounds from fewer switches. Using the initial condition moments alone
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Figure 2: Nonparametrics Estimator Objective Function
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Notes: The figure shows the objective function (or “criterion function,” which is the sum of squared moments)

for the main nonparametrics estimator. The x-axis is the switching cost parameter (κ) in dollars per year.

The on-graph note indicates the identified set and 95% and 99% credible sets.

generates a lower bound on κ of $600 and does not generate an upper bound. So the confidence

set generated by the initial condition estimator does not intersect that from the data that

conditions on the initial choice and is relatively uninformative.

This seems largely to be a result of a lack of power in the initial condition moments. The

upper bound is found by comparing the proportion of switches in the period following entry

to the shares at entry within our cells. To get an upper bound the switches must be larger

than the shares resulting from the initial choices. The initial choices roughly distribute like the

shares of the various plans in the data, but the proportion of switches is always less than the

share of the smallest plans.19

Heterogeneity in the cost of switching relative to price. Next we consider whether the

relationship of switching cost to price varies by income. Observations with income (denoted Ii,t)

19This likely would be problematic if we were interested on the determinants of plan preferences, but is much
less so when the interest is in the determinants of switching behavior and we condition on the individual specific
plan preferences embodied in the fixed effects.
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Figure 3: Nonparametrics Estimator: Lower and Upper Bound Moments Separately
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Notes: The figure shows the objective function (or “criterion function,” which is the sum of squared moments)

for the main nonparametrics estimator, separately for lower bound (s = t− 2) and upper bound (s = t− 1)

moments. The x-axis is the switching cost parameter (κ) in dollars per year. The criterion function in Figure

2 is the sum of these two sets of moments.

less that 100% of the federal poverty level (or FPL) were fully subsidized.20 So for income we

distinguish between those with income between 100-200% of the FPL and those with 200-300%

of the FPL and use the structural utility model

SUd,i,t = −pd,i,t
(
1 + γ0 · {2FPL < Ii,t ≤ 3FPL}

)
− {yi,t−1 ̸= d}δ0 + λd,i.

Recall that we can divide by a person-specific positive constant without changing the impli-

cations of the model, so we set the low-income price coefficient equal to one. This makes the

ratio of switching costs to price for low-income observations equal to δ0, but that ratio for

high-income people is now κ0 = δ0/(1 + γ0).

Estimates of the identified set and confidence sets for the nonparametrics estimator with

heterogeneity are shown in Figure 4 and Table 4. The top panel (labeled “Full Sample”) shows

the results reported above from the model without heterogeneity. The next panel (labeled “By

Income Group”) shows estimates separately for the low-income and high-income groups. The

two confidence sets do not intersect, and as might have been expected, their bounds correspond

roughly to kinks in the objective function in Figure 2. We conclude that the relative importance

20The FPL was $10,380 in 2010, and was adjusted by the CPI-U thereafter.
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Figure 4: Nonparametrics Estimator with Heterogeneity by Income and Sickness
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Notes: The figure shows estimates from the nonparametrics estimator with heterogeneity by income and

sickness. The top panel (labeled “Full Sample”) shows results reported in Table 3 from the model without

heterogeneity. The next panel (labeled “By Income Group”) shows estimates separately for the low-income

(100-200% FPL) and high-income (200-300% FPL) groups. The bottom panel (labeled “By Income x Health”)

shows estimates separately for income x health groups, where sickness is defined as above or below the median

of the medical risk score distribution in year t. The red bar indicates the identified set, and the gray line

indicate the 99% confidence sets.

of switching costs, relative to price, is lower for higher income people among this low income

population.21

Notice also that once we distinguish different income groups the confidence intervals narrow

considerably (they are about a third the width of the confidence set for the model with a single

κ0). This convinced us to push the analysis one step further and distinguish between more and

less healthy observations. To that end we use the medical risk score (described above) and let

the sickness variable, our Si,t, equal one for those above its median value and zero for those

below.

The impact of health on the cost of switching insurers is not clear a priori. It could be that

21The alternative non-parametric panel data discrete choice model in Pakes and Porter (2024) which allows
for fixed effects and arbitrarily serially correlated disturbances, but did not allow for state dependence and used
different moments from the same underlying data, also obtained the result that higher income people in this
low income population were less sensitive to price.
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Table 4: Switching Cost (κ) Estimates in Nonparametrics Heterogeneity Model

Low-Income Group High-Income Group

By Income-Only Model
ID Set [$240, $257] [$408, $432]

95% CSet [$240, $343] [$408, $480]
99% CSet [$240, $369] [$408, $516]

By Income x Health Model
Healthy (sit = 0): ID Set [$292, $377] [$432, $528]

95% CSet [$240, $377] [$408, $528]
99% CSet [$240, $377] [$408, $528]

Sick (sit = 1): ID Set [$75, $154] [$120, $216]
95% CSet [$0, $171] [$0, $240]
99% CSet [$0, $189] [$0, $264]

Note: This table shows estimates of identified sets and 95% and 99% confidence sets for the nonparametrics
estimator with heterogeneity in switching costs, as also shown in Figure 4. Low-income indicates income between
100-200% of the Federal Poverty Line (FPL) while high-income indicates income between 200-300% FPL. People
with income less than poverty did not pay any premiums, so their price coefficients are not identified. Sick
(Sit = 1) indicates that an individual’s medical risk score in year t is above the median in the population
distribution.

being sick makes one more sensitive to price as it impacts perception of likely future wealth.

Alternatively if patients have developed relationships with plan specific health care providers,

being sick could make patients more hesitant to switch. The model we use to investigate this is

SUd,i,t = −pd,i,t
(
1 + γ0 · {2FPL < Ii,t ≤ 3FPL}

)
− {yi,t−1 ̸= d}

(
δ0 + δs · {si,t = 1}

)
+ λd,i,

so now the relative cost of switching differs with both income and health.

The final panel of Figure 4 and Table 4 (labeled “By Income x Health”) presents the results.

The confidence intervals for the healthy group are shifted up from those that did not condition

on health status, the shift being most noticeable for the upper bound. The sicker part of both

income groups have much lower switching costs, with an upper bound less than half of that for

the non-sick group. The confidence sets of the sicker and less sick groups for a given income

group do not intersect. Moreover, though the identified set for the less sick groups are bounded

away from zero and fairly narrow, the data does not have enough power to reject a lower bound

greater than zero for the sick groups.
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4 Parametric Models With and Without F.E.s.

The prior literature on panel data discrete choice models that allowed for state dependence

used parametric models and did not allow for fully flexible individual and choice specific fixed

effects. In the case of health insurance choice, this generated estimates of “switching costs”

from the CommCare data that were more than twice as high as the maximal upper bound

reported in Table 3. We first show that we obtain similar results when we estimate the models

without fixed effects using the cuts of the data we use. We then consider parametric functional

forms with fixed effects. Throughout whenever we require a specific parametric distribution for

the disturbances we assume that distribution to be logistic.22

Parametric models without fixed effects.

Table 5 presents the results from an assortment of models that allow for state dependence but

do not allow for choice specific fixed effects that differ by person. The first four columns present

the results for models with increasing numbers of observed explanatory variables. These are

standard multinomial logit choice models with utility function:

UMNL
i,d,t = γ · Pi,d,t + X ′

i,d,tβ + ξd,t(Zi) + δ · 1{yi,t−1 ̸= d} + ϵi,d,t (4.1)

where Pi,d,t is consumer price; X ′
i,d,t is a vector of plan attributes (e.g. hospital networks) whose

value can across individuals; ξd,t(Zi) are a set of plan dummies that can vary across regions,

demographics, and health status; δ is the switching cost; and ϵi,d,t is the “logit” error.

Like prior research on alternative data sets (e.g., Figure 5 in Heiss et. al. 2021), as we add

explanatory variables the estimates of the importance of state dependence relative to price falls.

Our base case, which includes only plan fixed effects and price, generates an estimate of $1382.5

(column (1)). When we allow for plan dummies interacted with each of age-sex, region, network

and chronic illness dummies, a model with 249 parameters, we get an estimate of the ratio of

switching costs relative to price of $1018 (column (3)). Then we add three variables constructed

22We also add back in the data on individuals who changed their choice set across periods as a constant choice
set is not needed once we specify the distribution of disturbances. This does increase sample size (see Appendix
Table 7). We also estimated all models used in this section with the data used in the non-parametric section of
the paper, but there was very little difference in any of the results.
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Table 5: Multinomial Logit Estimation

Simple
Plan

Dummies

Detailed
Plan
Dum.

Detailed
Plan Dum.
+ Network

Plan Dum.
+ Rand.

Eff.

Include
New Enr

New Enr
+ Rand.

Eff.
(1) (2) (3) (4) (5) (6) (7)

Normalize ϵi,d,t to EV1
Switching Cost (δ) -4.340 -4.481 -4.466 -4.427 -4.809 -4.221 -5.003

(0.008) (0.008) (0.009) (0.009) (0.058) (0.007) (0.065)
Price ($ per month) (γ) -0.038 -0.049 -0.053 -0.054 -0.050 -0.035 -0.039

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)
Hospital Network Utility — — — 0.201 — — —

(0.012)
Prev. Used Hospitals Covered — — — 0.656 — — —

(0.025)
Prev. Used×Partners Hosp. — — — 1.122 — — —

(0.034)

Normalize γ ≡ 1
Switching Cost ($/year) 1,382.5 1,101.3 1,018.4 986.8 1,149.1 1,429.8 1,527.0

(κ = 12 ∗ δ/γ) (7.1) (4.8) (4.5) (4.3) (16.5) (5.8) (20.4)

Plan Dummies — Yes Yes Yes Yes Yes Yes
Plan ×(Area, Age–Sex, Illness) — — Yes Yes — — —
Plan Random Effects — — — — Yes — Yes
N Parameters 2 7 249 252 11 7 11
N Individuals × Years 2,134,763 2,134,763 2,134,763 2,134,763 213,575 3,476,550 348,242

by Shepard (2022) to capture an individual-specific value assigned to each plan and individual-

specific prior experience with each plan’s network (column (4)).23 As in Shepard (2022) all

three are highly significant, but they only reduce the estimate of switching costs relative to

price to $987.

We also considered models with random normal plan effects. These are estimated using

simulated maximum likelihood. Column (5) provides the results of a model which conditions

on the initial choice and assumes the random normal effects are independent of it, as well as the

other right hand side variables. Column (7) is an initial conditions estimator. It adds the initial

choices to the choices to be explained and allows for the random plan effects. For comparison

column (6) adds the initial choice but does not use the random normal plan effects. All of

these generate estimates of the switching cost relative to price that are considerably more than

$1,000.
23These variables are a “network utility” variable calculated from the indirect utility from a hospital choice

model, which captures the option demand value of access to the plan’s network, and two variables which
measure the share of a patient’s previously used hospitals covered by each plan, capturing prior experience with
the network’s hospitals (one allows for interaction with Partners Healthcare hospitals, for which loyalty seemed
to be especially strong).
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We conclude that models of state dependence on our data that do not allow for fixed effects

generate estimates that are twice as large as the upper bound to the estimates that we obtained

once we allowed for fixed effects.

Parametric models with fixed effects.

Once we specify a particular distribution for the disturbances the shape restrictions of that

distribution will generally allow for identification of separate price and state dependence coef-

ficients. For ease of exposition we develop the relevant parametric inequalities for a model in

which the switching cost and price coefficients do not vary over time or across individuals. So

equation (2.1) becomes

Ud,i,t = −pd,itγ0 − 1{yi,t−1 ̸= d}δ0 + λd,i + ϵd,i,t, (4.2)

and we assume (γ0, δ0) > (0, 0). Our focus is still on κ0 ≡ δ0/γ0. We begin with “generic”

parametric inequalities; i.e. inequalities that are available regardless of the parametric error

distribution assumed.

Generic Parametric Inequalities. Provided d and c are feasible choices in both t and s,

and d was chosen in period t while c was chosen in period s, the revealed preference double

difference that enables us to difference out the individual and choice specific fixed effects (the

analogue of equation 2.2 above) becomes

−∆∆pd,ci,t,sγ0 −∆∆swd,c
i,t,s(yi,t−1, yi,s−1)δ0 +∆∆ϵd,ci,t,s ≥ 0,

where we now assume ∆∆ϵd,ci,t,s has the known distribution F(·). Since the model implies that

∆∆ϵd,ci,t,s ≥ ∆∆pd,ci,t,sγ0 +∆∆swd,c
i,t,sδ0, we have

Pr(yi,t = d, yi,s = c|yi,s−1, pi, λi)︸ ︷︷ ︸
≡Prd,ct,s

≤ 1−F
(
∆∆pd,ci,t,sγ0 +∆∆swd,c

i,t,s(yi,t−1, yi,s−1)δ0

)
.

Notice that this inequality did not require the same choice set in both periods, just that

we are willing to specify the joint distribution of the disturbances in t and s. This is true for
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all the parametric inequalities. It enables us to increase the size of the data set used in our

comparisons by more than 40%, and is likely to generate even larger increments in studies of

retail markets where choice set changes are typically more frequent.

Since F (.) is a strictly increasing distribution function, we can rearrange and use its inverse

to yield

∆∆pd,ci,t,sγ0 +∆∆swd,c
i,t,s(yi,t−1, yi,s−1)δ0 ≤ F−1(1− Prd,ct,s ). (4.3)

∆∆pd,ci,t,s and ∆∆swd,c
i,t,s(·) can be calculated for each cell in our data. So consistent estimates of

Prd,ct,s (·), say P̂ r
d,c

t,s (·), and this inequality can be used to bound estimates of (γ0, δ0).

As noted in our data P̂ r
t,s

d,c < .5 in all cells, so F−1(1−Prd,ct,s ) is always positive. By plotting

the boundary of inequality (4.3) for the cases where ∆∆pd,ci,t,s is either positive or negative, and

∆∆swd,c
i,t,s(·) is either positive, negative, or zero, Appendix 6.2 shows that if F−1(1 − Prd,ct,s )

is always positive inequality (4.3) can provide upper bounds for both parameters, but lower

bounds for neither. Since κ0 = δ0/γ0, without a lower bound on γ0 we do not get an upper

bound on κ0.

Distribution Specific Inequalities. Having made parametric distributional assumptions,

additional bounds will typically still be available, but they will differ with the form of the

assumed ϵ distribution. We work with the logit case, as that has been used extensively in the

related literature. This also generates a distribution for the double difference of disturbances

(for ∆∆ϵd,ci,t,s) that is analytic, simplifying computation.24

Assumption 4.1. The utility function is equation (2.1), and ε1,i,t, . . . , εD,i,t are independent

and identically distributed across choices, where ε1,i,t has a standard Gumbel distribution.

Recall how we obtained the non-parametric lower bound. We considered a group who started

at c in t− 3 and stayed at c in t− 2, then substituted away from c in t− 1, and never switched

back in t despite the fact that the relative price of c in t was lower then it was in t − 2 (see

the discussion leading to equation 2.4). That logic also generates a lower bound of the same

24That distribution and its density are

F(y) =
exp(y)(y − 1) + 1

(exp(y)− 1)2
, and f(y) =

exp(y)(exp(y)(y − 2) + y + 2)

(exp(y)− 1)3
.
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form for the parametric logit case. That is, if for the group of people who started at c in t− 3,

Pr(yi,t = c|yi,t−3 = c, pi, xi) < Pr(yi,t−2 = c|yi,t−3 = c, pi, xi), then δ0/γ0 ≥ .5mind∈D ∆∆pd,ci,t,t−2

which will lead to a positive lower bound for δ0/γ0 if the relative price of c in t, relative to all

other goods, is less than it was in t − 2. Of course if Assumption 4.1 holds, then use of the

parametric form to obtain the bounds generates different lower bounds than those obtained in

the non-parametric section.

The method of proof for the parametric and non-parametric lower bounds are different. The

non-parametric proofs use Jensen’s inequality to bound the squared average probability by its

variance. With parametric functional forms that variance depends on the unknown distribution

of the λi, so to obtain the lower bound from the logit assumption we work directly with the

individual specific inequalities generated by assumption (4.1). We were unable to find an upper

bound in this way. However there is a special feature of the logit distribution which does

generate both upper and lower bounds. If we condition on being at c in period s − 1, then

the log odds ratio of continuing to c and then switching to d, relative to choosing d and then

switching to c, also bounds γ0/δ0. The next theorem formalizes the bounds for the logit case

and is proven in the Appendix.

Theorem 4.2. Suppose Assumption 4.1 holds. Then, in addition to the generic inequalities in

equation (4.3), we have

A. if Dt = Dt−2 ≡ D, mind̸=c,d∈D ∆∆pd,ci,t,t−2 > 0 and Pr(yi,t = c|yi,t−3 = c, pi, xi) < Pr(yi,t−2 =

c|yi,t−3 = c, pi, xi) then

κ0 = δ0/γ0 >
1

2
∆∆pd,ci,t,t−2

B. and if s ∈ {t− 1, t− 2} and (d, c) ∈ Dt ∩ Ds, then

exp
[
∆∆pc,di,t,sγ0

]
≤ Pr(yi,t = d, yi,s = c | yi,s−1 = c, pi, xi)

Pr(yi,t = c, yi,s = d | yi,s−1 = c, pi, xi)
≤ exp

[
2δ0 +∆∆pc,di,t,sγ0

]
.

Parametric Empirical Results with Fixed Effects. As noted once we allow for a para-

metric distribution of the disturbances we can compare sequences of choices that faced different

choice sets. Appendix Table 7 provides the analogue of the sample size Table 1 for the para-

metrics estimator data set that allows for these changes, and there you can see that it expands

the number of sequences we can use. However, the results from the parametric model with the
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expanded data and with the non-parametric data set were not noticeably different from one

another.

Figure 5 provides the results from the expanded data set when we stack the generic para-

metric inequalities in equation (4.3) with the inequalities from Theorem 4.2. The dotted line

provides the upper and lower bound for κ0 = δ0/γ0 from the non-parametric model with a single

κ0. The shaded area is the 99% confidence set for (δ0, γ0) from the parametric inequalities.

Figure 5: Parametrics Estimator with All Parametric Inequalities

Notes: The figure shows results from the parametric model with fixed effects when we stack all moments,

including the generic parametric inequalities in equation (4.3) and the inequalities from Theorem 4.2. For

references, the 99% confidence set from the non-parametric model is shown as a dotted line. The black dot is

the identified point, and the blue shaded area is the 99% confidence set for (δ, γ).

There are no values of (δ0, γ0) that satisfy all the inequalities so the “identified set” generated

by these inequalities is the point that minimizes the objective function. The estimated value

of κ0 and its confidence interval are $591 and ($432, $754) respectively. The point estimate is

clearly outside the non-parametric confidence set, and the two confidence sets barely overlap.

Still we note that the confidence sets obtained from the parametric model that allows for fixed

effects only about half of those obtained from the models that did not allow for fixed effects.

The difference between the parametric and non-parametric results seems to be a result of
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part B of theorem (4.2); i.e. that the ratio of the log odds ratios do not depend on the fixed

effects. When we only used the generic parametric inequalities, the logit inequality for the lower

bound that is the analogue of the non-parametric inequality for the lower bound (part A of that

theorem), and the non-parametric inequalities, we obtained an estimate of the identified set for

κ0 of ($141, $187), very similar to the nonparametric estimate of ($102, $186). The upper and

lower bound of the confidence set for κ0 this generated were ($76, $452); almost identical to the

non-parametric confidence set of ($78, $450).

4.1 Counterfactual Comparisons.

We now explore whether the difference between the κ0 bounds obtained from the inequality

estimator, and the κ0 estimates obtained from the comparison models that allow for state

dependence but not individual-by-product specific fixed effects, is likely to have economically

important implications for a counterfactual of interest. Figure 1 showed that BMC, the largest

plan with over a third of the market in 2011 (see Table 2), increased its relative price dramati-

cally in 2012 and then decreased it by an even greater amount in 2013. We consider predictions

for what would have happened had they instead kept their price constant at the average of the

2012 and 2013 prices in those two years.

The calculation conditions on the 2011 choices of enrolled individuals. We then predict

BMC’s market share in 2012 twice; once using the actual and once the counterfactual prices.

Finally, we use these predictions and the actual and counterfactual prices in 2013 to obtain the

predicted shares from the counterfactual policy for the two year period from 2011-2013. The

predictions for these sequences are done in pairs, one of which uses the (γ0, δ0) estimates from

a comparison model in Table 5, the other uses the γ0 estimate from the relevant comparison

model but restricts δ0 to equal γ0 · κ̂ where κ̂ = $186, the upper bound of the identified set

from the non-parametric estimates. The latter need not equal what our model would predict,

as that would require either a model or bounds for the {λi,d}i,d. Still, the difference between

the two predictions should provide an indication of whether the implications of a model that

allowed for fixed effects are likely to be different than a model which does not.

Table 6 provides the results. The bottom row shows that the average actual BMC premiums,

averaged over all incumbent enrollees who were not in the below-poverty group (and hence paid
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Table 6: Counterfactual Comparisons (κ = $186)

Specification
2011

market shares
2012 2013

status-quo cfactual diff status-quo cfactual diff

Market shares without imposing κ
Plan FE 0.357 0.290 0.327 0.037 0.338 0.333 -0.005
Plan × Region FE 0.357 0.291 0.327 0.036 0.341 0.334 -0.007
Plan FE + RE 0.357 0.284 0.324 0.040 0.327 0.328 -0.001

Market shares imposing κ
Plan FE 0.357 0.029 0.151 0.123 0.545 0.156 -0.389
Plan × Region FE 0.357 0.050 0.197 0.147 0.531 0.215 -0.316
Plan FE + RE 0.357 0.048 0.205 0.157 0.607 0.264 -0.343

Annual Premium $701 $1,171 $847 — $554 $878 —

premiums), was $701 per year in 2011. In 2012 that average increased to $1171, and in 2013

it fell to $554; the changes that generated the sharp spike in the price plot in Figure 1. We

consider counterfactual prices that equal the average of the prices in 2012 and 2013 in each

income group, and then hold that price fixed in both years. That results in an average price of

$847 in 2012 and $878 in 2013 (with the slight difference coming from changes in the relative

size of different income groups in the two years).

The actual predictions differ somewhat between the pairs defined by the comparison models

but their qualitative nature does not. The fall in price in 2012 from the $1,171 to $847 leads

to a prediction of a 3.7 to 4.0 point increase in share when we use the parameters estimated

by the comparison models, but a prediction of a share increase that was more than three times

that (12.3 to 15.7 points) when we constrain κ̂ = 186. In 2013 when the counterfactual average

price was $878 compared to the actual average price of $554, the estimates predict a change of

share of less than 1.0 point, whereas when we use κ̂ = 186 the higher counterfactual price in

2013 generates a two period prediction of a 30 to 40 point share fall. The impact of the higher

κ0 estimates on the comparison models’ prediction in any one year spills over to the following

years, making longer term predictions particularly problematic.
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5 Conclusion.

We have provided both empirical results on switching costs in health insurance choices and

methodological results on estimating models which allow for both individual by choice specific

fixed effects and state dependence.

Our empirical results indicate lower estimates of state dependence than do models that do

not allow for very flexible unobserved heterogeneity in our low income sample. When we hold

the ratio of the switching cost to price constant but allow the price coefficient to vary arbitrarily,

we estimate an upper bound to that ratio of $516 per annum and a lower bound of $78. The

upper bound is about half of what prior research and our own analysis generates from models

that do not allow for individual by choice specific fixed effects on the same data. Our estimates

are based on comparing sequences of choices of individuals who have similar observed sequences

of characteristics, the same choice set, and the same initial choice leading into the comparison

periods.

When, in addition, we allow the ratio of switching cost to price to differ between the lower

and the higher income parts of our low income sample, the results sharpen considerably. The

higher income subset of the data generate a confidence set with a lower bound of $408 and an

upper about $528, while the lower income subsets generate a confidence set of [$240, $377].

Differentiating the ratio of switching cost to price further by allowing it to depend on health

status seems also to be important. The sicker half of our subset in each income class have

confidence sets entirely below those we obtain from the sicker parts of each income class; their

upper bounds are $189 and $264 respectively, about half of those for the less sick group in the

two income classes.

The differences between these estimates and estimates that do not allow for individual by

plan fixed effects seem large enough to make significant differences in the likely impacts of price

movements on switching behavior, and the longer the prediction horizon the larger the range of

possible biases. So it appears important to allow for flexible individual-level preferences, likely

because of the very heterogeneous way that similar consumers value plan provider networks (the

key plan attribute in our context). For instance, people may care very strongly about whether

their current doctor is covered in a given plan (Shepard, 2022; Tilipman, 2022), an individual-

by-plan specific match factor that is not likely to be captured with coarse plan interactions.
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Our methodological results apply to the analysis of the increasingly available panel data

discrete choice data sets. They are likely to be most relevant for repeated decisions on a

set of choices that can be reversed if needed and/or have cognitive costs of re-evaluating the

choices that rival the expected benefits of re-evaluation. The estimation algorithm stems from

the implications of revealed preference when the utility function allows for flexible individual

by product fixed effects, state dependence, and a non-parametric vector of product specific

disturbances that distribute independently over time. This contrasts with related prior work

on panel data discrete choice models with individual by product fixed effects that allows for

arbitrary serial correlation in disturbances but no state dependence (Pakes and Porter 2024).

The latter attributes all the dependence in choices over time that cannot be explained by

observables to serial correlation in the disturbances, while the dynamic environment considered

here attributes all this dependence to state dependence in an attempt to make our upper bounds

to state dependence robust.

To obtain our bounds we use a double difference which differences out the fixed effects and

then employ the inequalities implied when evaluated at the true value of the parameters of

the utility function in a moment inequality estimation algorithm. Use of a Bayesian bootstrap

(Kline and Tamer, 2020) makes the algorithm both easy to understand and to program. We

show that the algorithm can accommodate switching costs that vary with observed charac-

teristics, as well as arbitrary heterogeneity in the coefficient of price. Though the algorithm

is likely to generate especially sharp parameter estimates from panel data problems in which

there typically is a lot of switching (for e.g. sales in retail outlets), it also can be effective in

cases where switching is typically less frequent, as in the repeated choices of insurance policies

studied here.

From a methodological point of view much remains to be done. The non-parametric frame-

work requires a constant choice set over comparison periods. We also provide a model that

assumes a parametric form for the distribution of the disturbance vector and it can accommo-

date different choice sets over comparison periods. There are “generic” moment inequalities

that apply to any parametric form of the disturbance vector, but they do not generate upper

bounds to the switching cost coefficient. Upper bounds can typically be found but they will

depend on the parametric form of the disturbance vector. In addition we have not investigated

new computational methods for sharp identification (Mbakop (2023)) in our framework, nor
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have we asked when the framework would lead to point identification; both questions that are

central to the methodological literature on moment inequalities.
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6 Appendix: For Online Publication Only

6.1 Additional Figures and Tables

Figure 6: Nonparametrics Estimator: Including Continuing Enrollees and Initial Conditions
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Notes: The figure shows the objective function (or “criterion function,” which is the sum of squared moments)

for the nonparametrics estimator that includes both continuing enrollees and initial conditions moments. The

graph is analogous to Figure 2, which is for the main nonparametrics estimator with only continuing enrollee

moments. The x-axis is the switching cost parameter (κ) in dollars per year. The on-graph note indicates the

identified set and 95% and 99% credible sets.
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Table 7: Sample Sizes for the Parametrics Estimator

Full dataset Estimation sample (N ≥ 50)

Year Pair
Number of
Members

Number of
Groups

Number of
Members

Number of
Cells

Number of
Groups

Year pairs: s = t− 1
(2009, 2010) 53,167 100 6,332 14 10
(2010, 2011) 56,971 100 2,095 4 4
(2011, 2012) 58,359 125 31,160 30 23
(2012, 2013) 60,725 125 31,869 27 22

Year pairs: s = t− 2
(2009, 2011) 27,753 100 5,840 25 18
(2010, 2012) 33,516 100 4,760 23 20
(2011, 2013) 35,302 125 16,589 54 42

Total 325,793 775 98,645 177 139

Notes: The table shows summary statistics for the parametrics estimator sample, by pair of years (s, t). See

the text for definitions of cells and groups used in the estimation. The table lists the number of members and

groups, both before and after applying the minimum cell-size cutoff of 50 members.
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6.2 Generic Inequality Cases

Below we graphically display the information on the parameters (γ0, δ0) contained in the equa-

tion (4.3). Define y = ∆∆swd,c
i,t,s(yi,t−1, yi,s−1) and q∗ = F−1(1− Prd,ct,s ).

Figure 7 [8] considers the case where q∗ > 0 [< 0]. If F(0) = 0.5, then the case q∗ > 0 [< 0]

corresponds to Prd,ct,s < 0.5 [ > 0.5].

Figure 7: Inequalities for q∗ > 0
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Two cases in Figure 7 corresponding to ∆∆pd,ci,t,s < 0 and y ≤ 0 are uninformative. For

these cases, the whole first quadrant satisfies the inequality. In our empirical work, we use the

remaining four cases to inform bounds on κ0. As noted previously, the case q∗ < 0 does not

occur in the empirical work, so we do not make use of the cases in Figure 8.

6.3 Initial Condition Bounds

In section 2.1, we illustrate moment inequalities that generate upper and lower bounds for

switching costs. Here we repeat the analogous exercise for the case where the first period under

consideration is the initial period for individual i with no lagged dependent variable. Suppose

s = 1 is the initial period.

An upper bound for κ0 can be obtained based on the first two periods. Suppose, for

choice d∗, SUd∗,i,2(yi,1 = d∗) − SUd∗,i,1 ≥ maxc̸=d∗ [SUc,i,2(yi,1 = d∗)− SUc,i,1]. Then, Pr(yi,2 =
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Figure 8: Inequalities for q∗ < 0
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d∗|yi,1 = d∗, pi, xi) ≥ Pr(yi,1 = d∗|pi, xi). So, violation of this probability inequality implies

that κ0 < maxc̸=d∗ ∆∆pd
∗,c

i,2,1.

Next, consider the first three periods for a lower bound. Suppose, for choice d∗ and c ned,

SUd∗,i,3(yi,2 = c) − SUd∗,i,1 ≥ maxc′ ̸=d∗ [SUc′,i,3(yi,2 = c)− SUc′,i,1]. Then, Pr(yi,3 = d∗|yi,2 =

c, yi,1 = d∗, pi, xi) ≥ Pr(yi,2 = c, yi,1 = d∗|pi, xi). So, if ∆∆pc
′,d
i,3,1 ≥ 0 for all c′ ̸= c, then violation

of the probability inequality implies that κ0 > ∆∆pc,di,3,1.

6.4 Proofs

First, we formalize (2.11) in a lemma. Recall the form of structural utility in (2.10).

Lemma 6.1. Suppose Assumption 2.1 holds. Assume t > s, and D0 ⊂ D. If

min
d∈D0

[SUd,i,t(yi,t−1)− SUd,i,s(yi,s−1)] ≥ max
c/∈D0

[SUc,i,t(yi,t−1)− SUc,i,s(yi,s−1)] ,

then

Pr(yi,t ∈ D0|yi,t−1, pi, xi;λi) ≥ Pr(yi,s ∈ D0|yi,s−1, pi, xi;λi). □

Proof of Lemma 6.1:
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For all c ̸∈ D0, d ∈ D0,

SUc,i,s(yi,s−1)− SUd,i,s(yi,s−1) ≥ SUc,i,t(yi,t−1)− SUd,i,t(yi,t−1).

Hence, for all d ∈ D0,{
εi,s
∣∣ εd,i,s ≥ max

c̸∈D0

[SUc,i,s(yi,s−1)− SUd,i,s(yi,s−1) + εc,i,s]

}

⊆
{
εi,t
∣∣ εd,i,t ≥ max

c̸∈D0

[SUc,i,t(yi,t−1)− SUd,i,t(yi,t−1) + εc,i,t]

}

=

{
εi,t
∣∣SUd,i,t(yi,t−1) + εd,i,t ≥ max

c̸∈D0

[SUc,i,t(yi,t−1) + εc,i,t]

}

So,

Pr(yi,t ∈ D0 | yi,t−1, pi, xi;λi)

= Pr

( ⋃
d∈D0

{
εi,t
∣∣SUd,i,t(yi,t−1) + εd,i,t ≥ max

c̸∈D0

[SUc,i,t(yi,t−1) + εc,i,t]

} ∣∣∣∣λi

)

≥ Pr

( ⋃
d∈D0

{
εi,s
∣∣SUd,i,s(yi,s−1) + εd,i,s ≥ max

c̸∈D0

[SUc,i,s(yi,s−1) + εc,i,s]

} ∣∣∣∣λi

)
= Pr(yi,s ∈ D0 | yi,s−1, pi, xi;λi)

In the second and third probabilities, the terms pi, xi, yi,t−1, and yi,s−1 denote the realized

values of these variables from the conditioning statement.

⊠

Proof of Theorem 2.3:
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(a) The supposition of Lemma 6.1 is satisfied for D0 and yi,t−1 = d′ for any d′ ∈ D0. Hence,

Pr(yi,t ∈ D0, yi,t−1 ∈ D0 | yi,t−2, pi, xi, λi)

=
∑
d′∈D0

Pr(yi,t ∈ D0, yi,t−1 = d′ | yi,t−2, pi, xi, λi)

=
∑
d′∈D0

Pr(yi,t ∈ D0 | yi,t−1 = d′, pi, xi, λi) · Pr(yi,t−1 = d′ | yi,t−2, pi, xi, λi)

≥
∑
d′∈D0

Pr(yi,t−1 ∈ D0 | yi,t−2, pi, xi, λi) · Pr(yi,t−1 = d′ | yi,t−2, pi, xi, λi)

= [Pr(yi,t−1 ∈ D0 | yi,t−2, pi, xi, λi)]
2

Next, apply Jensen’s Inequality to integrate out λi.

Pr(yi,t ∈ D0, yi,t−1 ∈ D0 | yi,t−2, pi, xi)

= E [ Pr(yi,t ∈ D0, yi,t−1 ∈ D0 | yi,t−2, pi, xi, λi) | yi,t−2, pi, xi]

≥ E
[
[Pr(yi,t−1 ∈ D0 | yi,t−2, pi, xi, λi)]

2 | yi,t−2, pi, xi

]
≥ [E [ Pr(yi,t−1 ∈ D0 | yi,t−2, pi, xi, λi) | yi,t−2, pi, xi]]

2

= [Pr(yi,t−1 ∈ D0 | yi,t−2, pi, xi)]
2

(b) s < t− 1.

The supposition of Lemma 6.1 is satisfied for D0 and yi,t−1 = d′ for any d′ ∈ D1. Hence,

Pr(yi,t ∈ D0, yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi, λi)

=
∑
d′∈D1

Pr(yi,t ∈ D0, yi,t−1 = d′, yi,s ∈ D0 | yi,s−1, pi, xi, λi)

=
∑
d′∈D1

Pr(yi,t ∈ D0 | yi,t−1 = d′, pi, xi, λi) · Pr(yi,t−1 = d′, yi,s ∈ D0 | yi,s−1, pi, xi, λi)

≥
∑
d′∈D1

Pr(yi,s ∈ D0 | yi,s−1, pi, xi, λi) · Pr(yi,t−1 = d′, yi,s ∈ D0 | yi,s−1, pi, xi, λi)

= Pr(yi,s ∈ D0 | yi,s−1, pi, xi, λi) · Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi, λi)

≥ [Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi, λi)]
2
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Next, apply Jensen’s Inequality to integrate out λi.

Pr(yi,t ∈ D0, yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi)

= E [Pr(yi,t ∈ D0, yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi, λi) | yi,s−1, pi, xi]

≥ E
[
Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi, λi)

2 | yi,s−1, pi, xi

]
≥ (E [Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi, λi) | yi,s−1, pi, xi])

2

= [Pr(yi,t−1 ∈ D1, yi,s ∈ D0 | yi,s−1, pi, xi)]
2

⊠

Derivation of Equation (4.3):

A≡
{
(εi,t, εi,s) | − pd,i,tγ0 − 1{yi,t−1 ̸= d}δ0 + λd,i + εd,i,t ≥

maxd′ ̸=d [−pd′,i,tγ0 − 1{yi,t−1 ̸= d′}δ0 + λd′,i + εd′,i,t] ,

−pc,i,sγ0 − 1{yi,s−1 ̸= c}δ0 + λc,i + εc,i,s ≥

maxc′ ̸=c [−pc′,i,sγ0 − 1{yi,s−1 ̸= c′}δ0 + λc′,i + εc′,i,s]

}
⊂
{
(εi,t, εi,s) | − pd,i,tγ0 − 1{yi,t−1 ̸= d}δ0 + λd,i + εd,i,t ≥

−pc,i,tγ0 − 1{yi,t−1 ̸= c}δ0 + λc,i + εc,i,t,

−pc,i,sγ0 − 1{yi,s−1 ̸= c}δ0 + λc,i + εc,i,s

≥ −pd,i,sγ0 − 1{yi,s−1 ̸= d}δ0 + λd,i + εd,i,s

}
⊂
{
(εi,t, εi,s) |∆∆εd,ci,t,s ≥ ∆∆pd,ci,t,sγ0 +∆∆swd,c

i,t,s(yi,t−1, yi,s−1)δ0

}
,

which implies

Pr(yi,t = d, yi,s = c|yi,s−1, pi, λi) ≤ Pr((εi,t, εi,s) ∈ A | yi,s−1, pi, λi)

≤ Pr(∆∆εd,ci,t,s ≥ ∆∆pd,ci,t,sγ0 +∆∆swd,c
i,t,s(yi,t−1, yi,s−1)δ0 | yi,s−1, pi, λi)

Integrate both sides with respect to the conditional distribution of λi, and the result follows.

Proof of Theorem 4.2(A): Recall SUd,i,t(yi,t−1) = −pd,i,tγ0 − 1{yi,t−1 ̸= d}δ0 + λd,i.
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We consider choice c that satisfies mind̸=c,d∈D ∆∆pd,ci,t,t−2 > 0. We will prove the result via

the contrapositive. Suppose for all d′ ̸= c, ∆∆pd
′,c

i,t,t−2γ0 ≥ 2δ0. It follows straightforwardly that

for all d′, f ∈ D with d′ ̸= c,

SUd′,i,t−2(c)− SU c,i,t−2(c) ≥ SUd′,i,t(f)− SU c,i,t(f),

where the fixed effects cancel from this inequality and so play no role. This inequality, in turn,

implies that (for all λi),

1 ≤
∑
f∈D

Pr(yi,t−1 = f | yi,t−3 = c, pi, xi, λi)

∑
d′∈D exp(SUd′,i,t−2(c)− SU c,i,t−2(c))∑

d′∈D exp(SUd′,i,t(f)− SU c,i,t(f))
.

This inequality implies that (for all λi),

exp(SU c,i,t−2(c))∑
d′∈D exp(SUd′,i,t−2(c))

≤
∑
f∈D

Pr(yi,t−1 = f | yi,t−3 = c, pi, xi, λi)
exp(SU c,i,t(f))∑

d′∈D exp(SUd′,i,t(f))

which is equivalent to for all λi,

∑
f∈D

Pr(yi,t = c | yi,t−1 = f, yi,t−3 = c, pi, xi, λi) Pr(yi,t−1 = f | yi,t−3 = c, pi, xi, λi)

≥ Pr(yi,t−2 = c | yi,t−3 = c, pi, xi, λi),

or, for all λi,

Pr(yi,t = c | yi,t−3 = c, pi, xi, λi) ≥ Pr(yi,t−2 = c | yi,t−3 = c, pi, xi, λi),

which finally yields

Pr(yi,t = c | yi,t−3 = c, pi, xi) ≥ Pr(yi,t−2 = c | yi,t−3 = c, pi, xi).

The result follows as the contrapositive. ⊠
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Lemma 6.2. Let Mt(c, λi) =
∑

r∈Dt
exp[−pr,tγ0 − 1{c ̸= r}δ0 + λr,i]. For any c, d,

e−δ0 ≤ Mt(d, λi)

Mt(c, λi)
≤ eδ0

Proof of Lemma 6.2:

For any c, d, r, −1− 1{c ̸= r} ≤ −1{d ̸= r} ≤ 1− 1{c ̸= r}, and so

e−δ0Mt(c, λi) =
∑
r∈Dt

e(−1−1{c̸=r})δ0 exp[−pr,tγ0 + λr,i] ≤
∑
r∈Dt

e−1{d̸=r}δ0 exp[−pr,tγ0 + λr,i]

= Mt(d, λi) ≤
∑
r∈Dt

e(1−1{c̸=r})δ0 exp[−pr,tγ0 + λr,i]

= eδ0Mt(c, λi)

The result follows. ⊠

The following theorem extends the result in Theorem 4.2(B).

Theorem 6.3. Suppose Assumption 4.1 holds, and (d, c) ∈ Dt∩Ds. Then, for s ∈ {t−1, t−2}

and yi,s−1 ̸= d,

Pr(yi,t = c, yi,s = d | yi,s−1, pi, xi) e
(1{yi,s−1=c}−1)δ0e∆∆pc,dt,s γ0

≤ Pr(yi,t = d, yi,s = c | yi,s−1, pi, , xi)

≤ Pr(yi,t = c, yi,s = d | yi,s−1pi, xi) e
(1{yi,s−1=c}+1)δ0e∆∆pc,dt,s γ0

Remark 6.4. The case yi,s−1 = d is implied by the case yi,s−1 = c.

Proof of Theorem 6.3:
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(i) s = t− 1.

Pr(yi,t = d, yi,t−1 = c | yi,t−2, pi, xi, λi)

= Pr(yi,t = d | yi,t−1 = c, pi, xi, λi) Pr(yi,t−1 = c | yi,t−2, pi, xi, λi)

=
e−pd,i,tγ0−1{c̸=d}δ0+λd,i

Mt(c, λi)

e−pc,i,t−1γ0−1{yi,t−2 ̸=c}δ0+λc,i

Mt−1(yi,t−2, λi)

=
e−pd,i,tγ0e−pc,i,t−1γ0−1{yi,t−2 ̸=c}δ0e−1{c̸=d}δ0eλd,i+λc,i

Mt(c, λi)Mt−1(yi,t−2, λi)

Similarly, for Pr(yi,t = c, yi,t−1 = d | yi,t−2, pi, xi, λi).

So,

Pr(yi,t = d, yi,t−1 = c | yi,t−2, pi, xi, λi)

Pr(yi,t = c, yi,t−1 = d | yi,t−2, pi, xi, λi)
=

e−pd,i,tγ0e−pc,i,t−1γ0−1{yi,t−2 ̸=c}δ0Mt(d, λi)

e−pc,i,tγ0e−pd,i,t−1γ0−1{yi,t−2 ̸=d}δ0Mt(c, λi)

= exp
[
−∆∆pd,ci,t,t−1γ0

]
exp [− (1{yi,t−2 ̸= c} − 1{yi,t−2 ̸= d}) δ0] ·

Mt(d, λi)

Mt(c, λi)

By Lemma 6.2,

Pr(yi,t = c, yi,t−1 = d | yi,t−2, pi, xi, λi) e
−δ0e−∆∆pd,ci,t,t−1γ0e−(1{yi,t−2 ̸=c}−1{yi,t−2 ̸=d})δ0

≤ Pr(yi,t = d, yi,t−1 = c | yi,t−2, pi, xi, λi)

≤ Pr(yi,t = c, yi,t−1 = d | yi,t−2, pi, xi, λi) e
δ0e−∆∆pd,ci,t,t−1γ0e−(1{yi,t−2 ̸=c}−1{yi,t−2 ̸=d})δ0

The result for the case s = t− 1 follows by integrating out λi.
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(ii) s = t− 2.

Pr(yi,t = d, yi,t−2 = c | yi,t−3, pi, xi, λi)

=
∑

r∈Dt−1

Pr(yi,t = d | yi,t−1 = r, pi, xi, λi) Pr(yi,t−1 = r | yi,t−2 = c, pi, xi, λi)

·Pr(yi,t−2 = c | yi,t−3, pi, xi, λi)

=

 ∑
r∈Dt−1

e−(1{r ̸=d}+1{c̸=r})δ0e−pr,i,t−1γ0+λr,i

Mt(r, λi)

 · e
−pd,i,tγ0e−pc,i,t−2γ0−1{yi,t−3 ̸=c}δ0eλd,i+λc,i

Mt−1(c, λi)Mt−2(yi,t−3, λi)

Similarly, for Pr(yi,t = c, yi,t−2 = d | pi, yi,t−3, xi = x, λi).

Hence,

Pr(yi,t = d, yi,t−2 = c | yi,t−3, pi, xi, λi)

Pr(yi,t = c, yi,t−2 = d | yi,t−3, pi, xi, λi)
=

e−(pd,i,t+pc,i,t−2)γ0e−1{c̸=yi,t−3}δ0Mt−1(d, λi)

e−(pc,i,t+pd,i,t−2)δ0e−1{d̸=yi,t−3}δ0Mt−1(c, λi)

= exp
[
−∆∆pd,ci,t,t−2γ0

]
exp [− (1{yi,t−3 ̸= c} − 1{yi,t−3 ̸= d}) δ0] · Mt−1(d, λi)

Mt−1(c, λi)

As in the s = t− 1 case, the result for s = t− 2 now follows by application of Lemma 6.2(a)

and integrating out λi.

⊠
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