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It is well-known that human judgment is noisy, meaning two individuals with the same

information may make meaningfully di↵erent predictions or decisions. In a recent book,

Kahneman, Sibony, and Sunstein (2021) discuss many areas in which noise is prevalent,

including medicine, finance, hiring, and the justice system. In this paper, we study noise

in equity analysts’ corporate earnings forecasts. We begin by quantifying it, distinctly from

forecasting bias (the focus of most existing literature), and analyzing its term structure. We

next explore ways to adjust for forecasting noise, and finally propose a model of its origin

that is quantitatively consistent with the evidence we document.

Our approach to quantifying noise relies on a simple decomposition. Denote Fityt+1 as the
forecast of yt+1 formed by forecaster i at date t and Iit as her information set. Additionally,

denote Xt as the information set of an econometrician. We can rewrite the forecaster’s

forecast as:

Fityt+1�������������
subjective forecast

= E(yt+1�Xt)������������������������������������������������
econometric forecast

+E(yt+1�Iit) −E(yt+1�Xt)�������������������������������������������������������������������������������������������������������������������������������������������������
forecaster’s private information

+B(Iit)�������������
bias

+ ⌘it,�
noise

where by definition B(Iit) = E(Fityt+1−yt+1�Iit) and thus ⌘it = Fityt+1−E(Fityt+1�Iit). The bias
term in this equation is the predictable deviation from rational expectations, conditional on

available information. Noise comes on top of the bias, private information, and the rational

component – it is outside of the information set by definition. Now consider the econome-

trician’s forecast using Xt, and further assume that Xt ⊂ Iit. Under mild assumptions, the

econometric MSE writes:

MSE�
subjective MSE

= MSEm���������������������
econometric MSE

−E (E(yt+1�Iit) −E(yt+1�Xt))2������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
forecaster’s information advantage

+EB (Iit)2�������������������������������������
bias

+ var (⌘it) ,�������������������������������������
noise

(1)

where MSEm = E (yt+1 −E(yt+1�Xt))2 is the econometric MSE (i.e. the rational MSE given

Xt). According to (1), the di↵erence in MSE between subjective forecasters and the econo-

metrician can be decomposed into three components: noise, bias, and the forecasters’ infor-

mational advantage (as in Satopää, Salikhov, Tetlock, and Mellers 2020).

This paper uses the above decomposition, along with some additional assumptions, to

quantify the noise and bias in equity analysts forecasts of corporate earnings. Analyst fore-

cast data are an interesting in several respects: equity analysts are skilled and incentivized

forecasters, and forecast data are available for a large panel of firms at various horizons.

Beyond analyst forecasts, our approach is simple and applicable to any dataset on subjective

forecasts. A key di↵erence from existing literature is our approach does not make strong
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restrictions on the data-generating process.

First, in order to perform the decomposition described above to estimate expectation noise,

we need to compare subjective and econometric expectations. To form econometric forecasts,

we explore a variety of well-known supervised machine learning estimators (e.g. Lasso,

Ridge, and tree-based methods). We find these estimators clearly dominate simpler OLS

approaches, consistent with existing evidence (e.g. Ball and Ghysels 2018; van Binsbergen,

Han, and Lopez-Lira 2020; Cao, Jiang, Wang, and Yang 2021). At the one-year horizon,

econometric forecasts are less precise than subjective ones, but this dramatically reverses at

longer horizons.

We then quantify the three components that determine the di↵erence in accuracy between

analyst and econometric forecasts: (i) information advantage; (ii) bias; (iii) noise. In contrast

to most of the extant literature, we place no restriction on the data generating process. Our

approach does rely on one key assumption on the belief formation process: forecasters are

unbiased with respect to their private information. Under this assumption, we show that

estimating the three components of the decomposition in (1) is simple.

Applying our estimation strategy, we find that noise in subjective expectations is large.

Quantitatively, we estimate the amount of noise in analyst expectations is about 60% of

the magnitude of the bias (i.e. the predictable component of analyst forecast errors), which

is especially large given we work with consensus forecasts. At the one-year horizon, we

find forecaster bias and noise are small compared to the analyst information advantage

– this is why short-horizon subjective expectations dominate econometric forecasts. At

longer forecasting horizons (two and three-years), information advantage does not decay,

but forecaster bias and noise increase dramatically. Quantitatively, bias is more than twice

as large as the information advantage at the three-year horizon and noise is 1.5 times bigger.

In sum, forecaster bias and noise both sharply increase with horizon, while the term structure

of information advantage is flat.

Given noise and bias deteriorate the quality of subjective forecasts (as the (1) makes

clear), our findings suggest two ways of improving the predictive power of forecasts. The

first approach consists of an optimal combination of statistical and subjective forecasts. We

implement such an combination using the same supervised learning approaches as above

and find penalized-linear methods are slightly dominated by tree-based methods. At short

horizons, the improvement from using this optimal combined forecast relative to subjective

forecasts is small – a meak 10% reduction of MSE – which is expected given these forecasts
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have little bias and noise. However, since noise and bias are much larger at longer horizons,

there is a much larger improvement from optimal combined forecast – a reduction in MSE

of about 33%. These findings are reminiscent of the recommendation from Kahneman et al.

(2021) to use mechanical rules when human judgment is noisy. In this setting, the combined

forecast implements a mechanical rule in the form of shrinkage: subjective expectations are

shrunk towards the statistical rule, which reduces noise at the expense of losing information.

The second approach to tame noise and improve precision is increasing the number of

forecasters in the consensus – the classic “wisdom of crowds” argument. In the data, we find

when there is a larger number of analysts, the consensus exhibits a smaller amount of noise,

but noise does not vanish to zero as the number of analysts grows very large. The success of

this aggregation suggests noise is indeed imperfectly correlated across forecasters, but there

might be some non-zero correlation.

Next, we examine which models of belief formation can jointly match the upward sloping

term structures of noise and bias we estimate. We first revisit a large class of models,

including models of noisy information (Woodford 2003), bounded rationality (Sims 2003),

diagnostic expectations (Bordalo, Gennaioli, Ma, and Shleifer 2020), over-confidence (Daniel,

Subrahmanyam, and Hirshleifer 1998), and over-extrapolation (Greenwood and Shleifer 2014;

Angeletos, Huo, and Sastry 2020). In their simple form, all these models predict downward

sloping term structures for both bias and noise. This is because these models rely on the

law of iterated expectations to determine the term structure of forecasts: since forecasters

know the true data-generating process, they recognize the best forecast for long horizons is

the unconditional mean, which is the rational expectation. These models essentially assume

reversion in forecasts to the true mean as the forecasting horizon increases.

Motivated by the failure of these models, we deviate by exploring a variant of the model

in Patton and Timmermann (2010) that has two key components. First, forecasters exhibit

a form of bounded rationality in the spirit of Gabaix (2014). Specifically, forecasts are a

weighted sum of a cognitive default and the true conditional expectation, with less weight

on the former as the latter becomes more accurate. This dependence is assumed, but not

micro-founded following Patton and Timmermann (2010). The second key ingredient is the

cognitive default of forecasters is anchored on the current observation (e.g. Kahneman and

Tversky 1972), but also contains cognitive noise. This model has three key horizon-invariant

parameters: one for default bias, one for default noise, and one that determines the relative

weight on the anchor.
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We then formally estimate this model and find it quantitatively matches the term struc-

tures of bias and noise we document. The estimated noise in cognitive defaults is twice as

large as the variation in the true data generating process, which allows us to match the large

average level of noise in the data. We also find evidence of a tendency of analysts to over-

weight the current observation, which helps match the average level of bias. Our ability to

match the upward slope of the bias and noise term structures is driven by a form of bounded

rationality: forecasters rely more on their cognitive defaults at longer horizons because the

true conditional expectation is less accurate in absolute terms. Quantitatively, the level

of bounded rationality we estimate is similar to what the attention function calibrated in

Gabaix (2019) would predict in our setting.

Finally, we explore two additional predictions of the model. The first prediction is that

forecaster disagreement should increase with horizon – the original variable of interest in Pat-

ton and Timmermann (2010) – as all disagreement in the model arises from noisy cognitive

defaults. Although the model parameters were matched on the term structure of noise and

bias, we find the predicted term structure of disagreement matches the data well. The sec-

ond prediction of the model is that noise is increasing with earnings volatility. The intuition

is forecasters choose to rely more on their noisy defaults at all horizons when earnings are

harder to forecast. When sorting firms based on volatility, we find the model quantitatively

matches the empirical relation between noise and residual volatility.

Related literature. Subjective forecast noise is discussed in the large literature on

noisy information (e.g. Woodford 2003; Azeredo da Silveira, Sung, and Woodford 2020) and

in cognitive psychology (e.g. Khaw, Li, and Woodford 2019; Woodford 2020; Kahneman

et al. 2021). Our contribution to this literature is twofold: (i) our evidence on the size

and term structure of noise (in contrast to bias) using analyst forecast data and (ii) our

methodology that places no restrictions on the data-generating process. Our methodology

is similar in spirit to Satopää et al. (2020), who perform a similar bias-information-noise

(“BIN”) decomposition and find a consistent property of good subjective forecasters is noise

reduction, consistent with our proposals for noise reduction. Our approach is also related to

Bianchi, Ludvigson, and Ma (2020) and Nagel (2021), who discuss how supervised learning

is useful for studying subjective expectations data.

Our work is also related to the extant empirical literature on expectations formation. This

literature generally focuses on estimating forecaster bias (e.g. Manski 2017) and forecaster

information disadvantage (e.g. Coibion and Gorodnichenko 2015). In contrast, we measure

two additional components: subjective forecasters’ information advantage and noise. We
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further document the term structure of these components and explore a modeling assumption

– reliance on noisy default – that allows us to fit the data.

Our finding of an upward sloping term structure of noise is, to our knowledge, novel.

Patton and Timmermann (2010) document that disagreement in macro forecasts increases

with horizon, which is consistent with this observation. The upward sloping term-structure

of bias is consistent with emerging evidence in asset prices and expectations data (Giglio

and Kelly 2018; Bordalo, Gennaioli, La Porta, and Shleifer 2019; D’Arienzo 2020; Angeletos

et al. 2020; Afrouzi, Kwon, Landier, Ma, and Thesmar 2021). More precisely, this literature

documents more overreaction at long horizons, which our approach cannot show due to our

lack of restrictions on the DGP. Closely related evidence is presented in Dessaint, Foucault,

and Frésard (2020), who show that long-term forecasts are less predictive of future earnings

realization. This is consistent with long-term forecasts being either more biased or noisier

(or both).

Because we estimate statistical forecasts, our paper also engages with the recent literature

applying supervised machine learning in economics and finance (see Mullainathan and Spiess

2017, for a review). To perform our decomposition, we study the predictability of corporate

earnings at various horizons using firm-level observables (from accounting and price data) and

standard ML estimators (penalized methods and tree-based methods). So (2013) proposes

a parsimonious model to forecast EPS based on OLS. A slew of recent papers have applied

ML techniques to this problem, mostly at shorter horizons (see Ball and Ghysels 2018; van

Binsbergen et al. 2020; Hansen and Thimsen 2020; Cao and You 2020). Like these papers,

and like papers implementing a similar exercise on equity returns directly (e.g. Gu, Kelly,

and Xiu 2018; Kozak, Nagel, and Santosh 2020; Bryzgalova, Huang, and Julliard 2020), we

find that there are gains to using supervised ML techniques over non-regularized estimators

(e.g. OLS). Another outcome of our analysis is that tree-based forecasts marginally dominate

penalized methods – this is also consistent with the literature on EPS forecasting.

Finally, our paper is related to the extensive literature on analyst forecasts (see Kothari,

So, and Verdi 2016, for a review) in finance and accounting. Our findings that analyst

forecasts are more accurate at a horizon of less than a year is broadly consistent with this

literature (e.g. Brown and Roze↵ 1978; Bradshaw, Drake, Myers, and Myers 2012), and our

estimate of a large analyst information advantage corroborates the survey evidence in Brown,

Call, Clement, and Sharp (2015). Our proposed model features a form of bounded rational-

ity, consistent with evidence of attention constraints shaping analyst forecast behavior by

a↵ecting e↵ort allocation (Harford, Jiang, Wang, and Xie 2019) and inducing social learning
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(Kumar, Rantala, and Xu 2021).

Outline. Section 1 describes data and forecast formation. Section 2 compares the accu-

racy of statistical and subjective forecasts at di↵erent horizons. Section 3 introduces and

performs our decomposition and subsequently discusses noise reduction. Section 4 explains

how existing models fail to match the term structure of bias and noise we document and

estimates our proposed model. Section 5 quantitatively tests additional predictions of our

model. Section 6 concludes and an Appendix contains additional results and derivations.

1 Data and Forecast Construction

In this section, we first describe the construction of the data we use. Next, we explain

how we build the three forecasts of EPS that form the core of our analysis: (i) the analyst

forecast (the “subjective” forecast), (ii) the econometric/statistical forecast (the “machine”

forecast), and (iii) the combined forecast (the “machine + analyst” forecast).

1.1 Data Description

The data used in this paper comes from three sources: I/B/E/S, Compustat, and CRSP.

We start by collecting the reported fiscal-year-end earnings-per-share (EPS) and their respec-

tive announcement dates from the I/B/E/S actuals file for all US firms with announcements

between 1990 and 2020. In our analysis, we focus entirely on fiscal-year end earnings reports

to avoid issues associated with seasonality in earnings (see Kothari 2001). We winsorize the

current year’s EPS within each year at 5%-95%. Following Bouchaud, Krüger, Landier, and

Thesmar (2019), we keep all EPS forecasts for the following three fiscal year ends that are

issued within 45 days of the most recent annual earnings announcement (prior fiscal year

end). The corresponding realizations of EPS are denoted EPSit+h, where h ∈ {1,2,3} years.
Ideally we would consider longer forecasting horizons, but the data are insu�ciently well-

populated. We drop observations where there is more than a 23 month gap before the next

announcement.

Next, we merge the remaining observations with Compustat Annual and collect the vari-

ables reported in Panel A of Appendix Table A1 at the fiscal year end for firm i in year t.

These are the most common Compustat variables, which we chose in order to maximize the
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number of variables that had a large number of non-missing observations. We use Compu-

stat data instead of ratios identified by prior literature as good predictors (e.g. Hansen and

Thimsen 2020) in order to mitigate look ahead bias in our statistical forecasts, which would

occur if we used variables identified ex-post by prior literature. We then merge the remaining

data with CRSP and collect variables listed in Panel B of Table A1, making adjustments

for performance-related delistings (Shumway 1997). Finally, we delete all observations for

securities that are not ordinary equity securities (CRSP share codes 10 and 11).

We impose two final sample filters. First, we require that a firm-year (i, t) has a non-

missing value of total assets in year t−1 and all checked variables in Table A1 are non-missing.

Secondly, we delete all firms classified as financial firms by their 1-digit SIC code.1

1.2 Analyst Forecasts

We denote FtEPSit+h as the consensus of analyst EPS forecasts of firm i for year t + h.
More precisely, we compute the median2 of analyst forecasts for fiscal year t + h, issued

within 45 days after the announcement of annual earnings t. We only keep the earliest

forecast of each analyst when calculating the median, if an analyst issues multiple forecasts.

We focus on this 45 days period to make sure our subjective forecasts are not stale and are

taken with similar information sets across analysts3, but also to make the information set

contemporaneous with the machine forecast, to which we now turn.

1.3 Machine Forecasts

We denote Fm
t EPSit+h as the machine forecast for firm i as of date t for fiscal year t + h.

Given a set of public information Xit, our goal is to approximate the conditional expectation

function, E(EPSit+h�Xit), as accurately as possible. As is well-known, E(EPSit+h�Xit) is the
solution to the problem of minimizing mean squared error across all possible (measurable)

1In addition, we delete a very small number observations where the median analyst forecast error normal-
ized by price in our sample of EPSit+h is outside 8 times the interquartile range, which are likely data errors.
Aside from this final criterion, none of our sample filters described in this section induce look-ahead bias,
which is important to ensure comparability in information sets between subjective and statistical forecasts.

2We choose to use the median analyst forecast to mitigate the impact of a few outliers, but we note the
correlation between the mean and median analyst forecast in our sample is 0.9993.

3Our main results are robust to using a 30 day instead of 45 day window for forecasts.
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functions of Xit:

Et(EPSit+h�Xit) = argmin
h(Xit)

E �(EPSit+h − h(Xit))2� (2)

≡ ft(Xit)
In practice, solving (2) is infeasible because it requires searching over an infinite dimensional

function space. To gain tractability, we leverage supervised machine learning approaches that

restrict h(Xit) to be within a particular class of functions, such as linear functions, and use

di↵erent forms of regularization developed in supervised machine learning to address the high

dimensionality of the set of variables in Xit. Before describing the details of these procedures,

we first describe how we define our firm-level conditioning variables, which constitute the

information set Xit.

To form Xit, we use all the variables listed in Table A1, which come from Compustat and

CRSP.4 We scale all of the Compustat variables by total assets except total assets itself,

EPS, book equity per share, SIC codes, end-of-year price per share from Compustat. We

use these variables for fiscal year t, t−1 and t−2. Given that we forecast EPS for year t+h,
this means that that the machine needs to wait until the annual earnings announcements in

year t before forming its forecast. So the machine forecast can be thought of as being issued

at the same time as the analyst forecast described above.

To solve (2) and generate an estimate of ft(⋅), we next need to define the training sample.

To avoid look-ahead bias, we use rolling windows of 5 years to train the various statistical

forecasting models. This period is chosen to maximize the size of the training set subject to

computational constraints.5 Moreover, by choosing a rolling window, we implicitly allow for

low-frequency changes in the data generating process for earnings over time. More precisely,

for each date t, we use all firm-year observations (i, s) in years s ∈ {t−4, t−3, ..., t} to forecast

earnings at t+1, t+2, t+3. Given forecasting variables Xis, our estimation consists in finding

the function ft(Xis) that has the minimum MSE in explaining in-sample future EPSi,s+h,
using various regularization techniques described below.

Finally, we describe the supervised learning techniques we use to estimate the forecasting

4In Appendix G, we our one-year horizon forecasting results are robust to using an alternative set of
variables in Xit that are used by van Binsbergen et al. (2020).

5To check that our conclusions are not sensitive to the choice of a 5 year window, we ran one of our
estimators (Gradient-Boosted Trees) using a growing window, where all past data is used (this is too com-
putationally challenging for our penalized linear estimators, as we include many interactions in those esti-
mations). We found the MSE of the machine forecast reduced only by 2.0%, and the machine + analyst
forecast MSE increased by 0.6%.
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function ft(⋅) by solving (2). We choose to depart from using OLS to form these forecasts for

two reasons. First, since our goal is approximation of a conditional expectation functions,

we want to impose minimal restrictions on the form of ft(Xit). However, if Xit was low-

dimensional, we could in principle use OLS, which we do explore below as a benchmark using

a subset of Xit. Secondly, since Xit is not low-dimensional, OLS is inconsistent and unstable

due to its tendency to overfit. Thus, we turn to supervised learning techniques, which restrict

the spaces of possible functions in (2) to be tractable yet flexible, while simultaneously

minimizing the risk of over-fitting using various forms of regularization. The following is a

brief presentation of our approach; we refer the reader to Appendix A for more discussion

on the theoretical properties of these estimators and our implementation.

Simple benchmarks. We consider two simple benchmarks in order to illustrate the

gains from ML techniques. The first benchmark we consider is a random walk benchmark,

in Fm
t EPSit+h = EPSit, ∀h ∈ {1,2,3}. Although this will be our worst performing forecast, it

is benchmark commonly used in the extensive literature on analyst forecasts (e.g. Bradshaw

et al. 2012). Secondly, we consider the procedure developed by So (2013). This methodology

uses a restricted number of accounting ratios and is estimated using annual cross-sectional

OLS regressions.

Penalized linear estimators. The first set of estimators we explore falls within the

class of penalized linear estimators. Given we are interested in capturing non-linearities,

we include all two-way interactions (including squares) between variables in Xit as features

when using penalized linear estimators. This results in approximately 8,000 features in each

year. Penalized linear estimators consists in finding the linear combination of these features

that minimizes MSE while minimizes over-fitting out of sample.

We explore five penalized linear estimators. The first three are commonly used: Lasso,

Ridge, and Elastic Net. These estimators are defined by the solution to the same objective

function that OLS solves (minimizing in-sample mean squared error), but with an additional

penalty term on the size of the coe�cients, where the size of the penalty is chosen via cross-

validation on the training set (detailed in Appendix A). Intuitively, cross-validation consists

of breaking up the training sample into smaller datasets, fitting models on these smaller

datasets, and examining which penalty value generates the best performance on the other

parts of the training set. Importantly, cross-validation is done entirely using the training set

to avoid introducing any look-ahead bias.

The second two penalized linear estimators we explore are Post-Lasso and Iterative-Lasso.
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Post-Lasso consists of running a second-stage OLS regression using only variables with non-

zero coe�cients in a first-stage Lasso estimation. Post-Lasso has been shown to improve

performance, given that Lasso su↵ers from substantial regularization bias (Chernozhukov,

Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins 2016). Iterative-Lasso is calculated

by solving the same optimization problem as Lasso, but an alternative iterative method (de-

scribed in Appendix A) is used to estimate the penalty parameter instead of cross-validation.

This iterative method has been shown to generate near-oracle rates of convergence (Belloni,

Chernozhukov, and Hansen 2011). Additionally, this iterative method substantially reduces

the likelihood of any over-fitting relative to cross-validation, as the penalty parameter is

chosen without regard to model performance on the training set.

Tree-based methods. We also consider two tree-based methods: Random Forests (RF)

and Gradient-Boosted Trees (GBT). The building block of tree-based estimators are regres-

sion trees, which are nonparametric (unlike penalized linear estimators) regression estimators

designed to capture arbitrary non-linearities among the variables in Xit. Used alone, regres-

sion trees have a tendency to over-fit, which led to the development various “ensemble”

methods that introduce forms of regularization. RF and GBT are two such ensemble meth-

ods based on the same core idea: grow a large number of uncorrelated trees and then average

their predictions.

RF is constructed based on the intuition of bootstrapping. On each bootstrapped sample,

a regression tree is grown. After doing this multiple times, final predictions from the Random

Forest are calculated by averaging predictions across the multiple regression trees. Averaging

across many trees, which have di↵erent structures due to the randomness in the subset of

predictor variables chosen, is the regularization in this method that limits over-fitting and

reduces prediction variance. Similar to the penalized linear estimators, the parameters that

govern the shape of the regression trees can be chosen using cross-validation on the training

set.

GBT starts by fitting a very shallow tree, meaning only a small number of variables are

used. This shallow tree is likely has terrible in-sample fit. To improve its fit, a second shallow

tree is fit on the residuals calculated from the first tree. Predicted values are then formed

by using a weighted average of the predicted values from the two trees. This procedure

is repeated many times, after which the predicted value will be a weighted-average of the

predicted value from all the shallow trees. The sequential growing of trees on residuals from

the previous trees makes the trees less correlated, which is why averaging over trees limits

over-fitting. As with the other methods, the parameters governing the size of these shallow
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trees and the weights in the weighted average are be chosen using cross-validation on the

training set.

1.4 Combined Machine & Analyst Forecasts

Finally, we denote Fm+a
t EPSit+h as the forecast that combines the conditioning variables

in Xit as well as analyst forecasts FtEPSit+h. Both types of information are available to the

econometrician 45 days after earnings announcement. To obtain this estimate, we implement

the same approaches (5 linear methods and 2 tree-based methods). We estimate these models

on a rolling 5 year sample. The only di↵erence is that we add the analyst consensus to the

list of possible variables, as well as its squared value and interactions with other variables

for our penalized linear estimators.

2 The Term Structure of Forecasting Accuracy

In this section, we compare the accuracy of the three forecasts discussed in Section 1. We

will present the mean squared errors of all of our forecasts calculated out-of-sample across

the entire sample, after normalizing by the mean squared realized EPS. This normalization is

simple to understand, but we give it a quantitative interpretation using the following simple

portfolio choice model.

Interpretive model. Assume to simplify that EPS is uncorrelated across firms. The

volatility of each firm i’s EPS is assumed to be constant and is denoted �2.6 Let � be the

investor’s (absolute) risk aversion and ✓i the number of shares bought of firm i. We omit

t subscripts here, as we consider the investor solving this problem each year. Consider an

investor with utility from her h period ahead forecasts given by:

⇧h =�
i

�✓iEPSit+h − �

2
�2✓2i �

The investor maximizes the expectation of this criterion under her own subjective measure.

6It is possible to write down a version of this interpretative model with heterogeneous scaling parameters
(variances or price levels). Then, the means would have to be reweighted by the inverse of these scaling pa-
rameters. We have experimented with heterogeneous variances sand found little di↵erence with our baseline
analysis here.
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Let FtEPSit+h be her subjective forecast of EPS of firm i in year t + h. In this case, we can

easily derive the loss due to forecasting rule Ft relative to perfect foresight (i.e. knowing the

ex-post realization of EPSit+h). It is given by:

⇧PF
h −⇧F

h

⇧PF
h

= MSEF
t+h

MSSt+h (3)

where ⇧PF
h is the realized utility under perfect foresight and ⇧F

h is the realized utility with

the forecasting rule F . MSEF
t+h is the realized mean-squared error of forecasting rule Ft,

MSSt+h is the realized mean of squared EPS. Thus, (3) shows normalizing mean-squared

errors by the mean squared EPS can be interpreted as the allocative loss compared to a

situation of perfect foresight. In Table 1, we report these means for three di↵erent horizons

in Panels A, B, and C.

Results. The first thing to note from Table 1 is that there are gains from applying super-

vised machine learning techniques when forecasting EPS, over simpler methods.7 The second

and third rows of each panel report the MSE (in percent) of two simple approaches. The

first one is the random walk predictor: using the most recent realization of EPS as a forecast

of next year’s EPS. The second row uses the procedure developed by So (2013), which uses a

small number of accounting ratios highlighted by the literature to forecast EPSs and rolling

OLS (Fama-MacBeth) regressions. At the one-year horizon, the ML estimators – reported

below – have an MSE between 20 and 25% lower than these two simple specifications. This

substantial accuracy gain from using machine learning estimators is consistent evidence in

Hansen and Thimsen (2020) and van Binsbergen et al. (2020). These findings also justify the

use of ML estimators in our subsequent analysis. If we were just using a simple approach, we

would underestimate the value added of the machine and therefore overestimate the analyst’s

information advantage in Section 3. At longer horizons, there is still a substantial benefit to

applying ML techniques, especially tree-based methods.

The second (and more important) result from Table 1 is that there is a term structure of

subjective forecast accuracy. At the one-year horizon, analyst forecasts are extremely accurate

and dominate all variants of our machine forecasts. However, at the two-year horizon, all of

our machine forecasts, including the most basic random walk forecast, outperform analyst

forecasts. This finding is magnified at the three-year horizon, in which the best machine

forecast presents an approximately 40% gain in utility for an investor with the objective

function described above.
7See Appendix C for the comparison of MSEs across forecasts in di↵erent years.
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Table 1. The Term Structure of Forecasting Accuracy

This table contains the mean squared error of various forecasts over our entire sample, normalized by the mean squared EPS. Machine and machine+ analyst forecasts are formed using the procedure described in Section 1 and Appendix A. The Random Walk forecast is simply earnings-per-share

in the current year; the OLS machine forecast is formed following the approach as described in So (2013). The mean squared errors displayed in the

table are calculated by first calculating the mean squared error within each year and normalizing by the mean squared realized earnings-per-share

in that year, which represents the percentage utility loss relative to having perfect foresight in the interpretive model presented in each year

(Section 2). We then take a weighted average across all years with weights proportional to the number of observations in each year (results are

insensitive to this weighting) to arrive at the numbers presented in this table, which represent the the average losses to the investor considered in

Section 2. Each panel presents results for a di↵erent horizon forecast. The final samples in Panels A, B, and C contain and 47,542, 39,973, and

10,831 firm-year observations, respectively.

Panel A: One-Year Horizon Forecasts

Analyst Machine Machine + Analyst
Data 11.04% - -
Random Walk - 20.05% -
OLS - 21.86% -
Penalized linear estimators
Lasso - 15.71% 9.65%
Post-Lasso - 16.22% 9.94%
Iterative Lasso - 16.36% 9.88%
Ridge - 17.07% 11.11%
Elastic Net - 15.72% 9.67%
Tree-based estimators
Random Forest - 15.6% 10.03%
Gradient-Boosted Trees - 15.91% 10.0%

Panel B: Two-Year Horizon Forecasts

Analyst Machine Machine + Analyst
Data 36.67% - -
Random Walk - 34.87% -
OLS - 31.73% -
Penalized linear estimators
Lasso - 27.79% 25.21%
Post-Lasso - 29.2% 26.61%
Iterative Lasso - 28.94% 26.18%
Ridge - 28.33% 25.73%
Elastic Net - 27.79% 25.14%
Tree-based estimators
Random Forest - 26.18% 24.2%
Gradient-Boosted Trees - 27.34% 25.0%

Panel C on Next Page
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Table 1. The Term Structure of Forecasting Accuracy (continued)

Panel C: Three-Year Horizon Forecasts

Analyst Machine Machine + Analyst
Data 42.38% - -
Random Walk - 35.09% -
OLS - 30.65% -
Penalized linear estimators
Lasso - 28.24% 26.89%
Post-Lasso - 30.37% 29.26%
Iterative Lasso - 29.61% 28.01%
Ridge - 28.26% 26.97%
Elastic Net - 28.12% 26.79%
Tree-based estimators
Random Forest - 25.06% 24.32%
Gradient-Boosted Trees - 26.55% 25.93%

The third takeaway from Table 1 is that subjective forecasts are valuable at all horizons.

Despite the accuracy of analyst forecasts at the one-year horizon, the machine + analyst

forecast improves upon these forecasts by around 10%, which is economically sizeable. This

complementarity is still present, but slightly smaller at longer horizons – approximately 5-

8%. This improvement from combining subjective and statistical forecasts suggests some

complementarity in forecasting – subjective forecasts clearly have information that is not

contained in our subjective forecasts, given analyst forecasts are more accurate than machine

forecasts at the one-year horizon, but there is evidently some ine�ciencies subjective forecasts

that statistical techniques can reduce. We formalize this intuition when we discuss noise

reduction in Section 3.

Finally, Table 1 shows relatively consistent performance across di↵erent supervised ma-

chine learning estimators, especially short horizons. At the one-year horizon, estimators that

are consistent under (approximate) sparsity conditions (i.e. variants of Lasso and Elastic

Net) perform very well, suggesting that the data generating process for earnings may be rel-

atively sparse. However, given that tree-based methods perform relatively well, the strong

performance of our sparse estimators may be driven by model uncertainty rather than true

sparsity.8 The strong performance of Lasso in our setting is similar to evidence on forecasting

8Giannone, Lenza, and Primiceri (2018) argue that using the relative performance of methods that assume
sparsity to detect sparsity is invalid, since a sparse estimator could arise in sample due to either a truly sparse
DGP or large model uncertainty. In the penalized linear estimators we use, one regularization parameter
controls both of these, so we cannot distinguish between the two. However, we simply wish to make the
point we find less direct evidence against sparsity in our setting, relative to the literature that estimates
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macro aggregates (Bianchi et al. 2020), but is at odds with from recent evidence in empirical

asset pricing suggesting a non-sparse stochastic discount factor (Gu et al. 2018; Kozak et al.

2020; Bryzgalova et al. 2020). So while variation in expected returns are non-sparse, vari-

ation earnings seem to be. At longer horizons, sparse estimators continue to perform well,

but tree-based methods perform even better, possibly due to increasing complexity in the

data generating process.9

In sum, the evidence in this section shows subjective forecasts become less accurate relative

to statistical forecasts at longer horizons, but contain valuable information orthogonal to the

public information in Xit at all horizons. In principle, this reduction in relative subjective

forecast accuracy could occur for two reasons. First, subjective forecasters could have access

to less information orthogonal to Xit at longer horizons. For example, analysts may receive

strong signals from discussions with management about a firm’s near-term prospects or use

high-frequency data sources (Dessaint et al. 2020), but this information may be less valuable

for longer horizons. Alternatively, analysts may issue more biased or noisy forecasts at longer

horizons, possibly driven by weaker forecast incentives at these horizons or a greater cost of

processing public information. In the next section, we perform a decomposition that allows

us to separate between these two explanations.

3 Decomposing the Term Structure of Subjective Ex-

pectations

In order to structurally interpret the term structure of forecasting accuracy discussed in

the previous section, this section decomposes subjective forecasts into three components:

information advantage, bias, and noise. Statistical forecasts can reduce noise and bias, but

do not have access to all information. In order to isolate and measure each one of these three

elements at di↵erent forecasting horizons, we write down a simple structural model that we

then estimate.

pricing kernels.
9Note the tendency to overfit is significantly stronger for tree-based estimators compared to penalized-

linear estimators because of the large number of hyperparameters. Lasso-based methods have the benefit of
only one parameter (except in the case of Iterative Lasso, in which there is no hyperparametric because the
penalty level is theoretically chosen), which makes them less susceptible to overfitting and thus more likely
for the results in our sample to be similar on other samples.
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3.1 Setup

Denote earnings-per-share at time t + h for firm i as EPSit+h. We consider three time

t information sets relevant for forecasting EPSit+h. First, denote the set of publicly avail-

able information about EPSit+h observed at time t as Xit. In our empirical analysis, this

corresponds to the set of variables in Table A1.10 Secondly, denote the set of information

observed by the analyst about EPSit+h at time t as Iit. Finally, denote the set of information

representing the set of the analyst’s information that is not subsumed by public information

as Zit = Iit �Xit. Intuitively, Xit represents quantifiable information relevant for forecasting

firm-level earnings that is publicly observable, while Zit represents non-quantifiable (soft) or

quantifiable private information that is also useful for forecasting firm-level earnings.

Given these information sets, we can decompose EPSit+h (without loss of generality) as

EPSit+h = E (EPSit+h�Xit) +E (EPSit+h�Zit) + "it+h ≡ xh
it + zhit + "it+h, (4)

where "it+h corresponds to the innovation. We assume a constant is included in Xit such

that E(Zit) = 0. Note (4) is an orthogonal decomposition by construction:

E �"it+h�xh
it, z

h
it� = E �zhit�xh

it� = 0.

Let us now discuss how forecasts are formed. In the main text, our core structural as-

sumption is that the consensus analyst forecast is formed as follows:11

FtEPSit+h = gh(Xit) + zhit + ⌘hit. (5)

where gh(⋅) ∶ Xit → R determines how the analyst maps components of public information

into her subjective forecast. Importantly, we place no restrictions on the functional form of

10There is no reason to believe Xit captures all public information about EPSit+h – in principle we could
incorporate many other sources of information into it. However, this does not a↵ect the decomposition we
do here, in which Zit is defined as the information not contained in Xit.

11Our choice to model the consensus analyst forecast is driven by the fact that our empirical methodology
does not permit identification of analyst-specific bias and noise. In Section 4, we discuss the consequences
of this assumption in more detail when we explore models of belief formation.
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gh(⋅).12 There are two possible deviations from full-information rationality in this framework:

g(Xit) ≠ xh
it�����������������������������������������������������

bias

, ⌘hit ≠ 0�
noise

.

For clarity of exposition, (5) restricts the analyst to be unbiased with respect to private in-

formation, but we explore a variant of this model that relaxes this restriction in Appendix D.

Lastly, ⌘hit is our primary object of interest: the expectation noise term. Broadly speaking,

expectation noise could be microfounded in two ways: (i) noisy information models (e.g.

Woodford 2003) or (ii) evidence from cognitive psychology (e.g. Khaw et al. 2019; Kahneman

et al. 2021).13 In the former, noise comes from noise in the agent’s information set. In the

latter, noise comes noise in the internal retrieval and storage of a given set of information

(e.g Woodford 2020). Note that by definition E(⌘hit�Xit, Zit) = 0 – the part spanned by Xit

would be bias not noise.

Within this fairly general framework, we use natural definitions of the forecasters infor-

mation advantage, bias, and noise. With these definitions, we obtain our key decomposition.

Definition 1. The information advantage of the analyst’s forecast at horizon h is

defined as ⇥h ≡ var (zhit) . The bias in the analyst’s forecast at horizon h is defined as

�h ≡ E �(xh
it − gh(Xit))2� . The noise in the analyst’s forecast at horizon h is defined as

⌃h = var(⌘t,h).
Proposition 1. The di↵erence between the forecasting accuracy of the machine, MSEm

t+h ≡
E �(EPSit+h −E (EPSit+h �Xit))2�, and the forecasting accuracy of the subjective forecaster,

MSEa
t+h ≡ E �(EPSit+h − FtEPSit+h)2�, can be decomposed as follows:

MSEa
t+h −MSEm

t+h =�h +⌃h −⇥h. (6)

All derivations are provided in Appendix F. The decomposition in (6) shows the di↵er-

ence in forecasting accuracy between the machine and the analyst mixes three terms: (i)

information; (ii) bias; (iii) noise. The informational advantage, ⇥h, represents the value (in

terms of MSE) for forecasting EPS of every piece of information in Zit, which is the infor-

12We of course assume gh(⋅) satisfies regularity conditions such that it can be estimated with the supervised
learning techniqes we use.

13Any elicitation noise or classical measurement error will also be picked up in ⌘hit. However, we do
not emphasize this interpretation because there is little reason to expect these to be large in our setting.
Moreover, even if they were, there is no reason why we’d expect them to vary over the forecasting horizon
when we use newly updated forecasts.
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mation used by the analyst to make her forecast not subsumed by the public information

set, Xit. This information could be soft (it cannot be put in a dataset), private, or (in our

application) it could be public information outside Compustat. Because the machine does

not have access to this information, MSEa
t+h −MSEm

t+h is decreasing in ⇥h. Missing on this

public information will lead us to overestimate the analyst’s informational advantage.

The other two terms in (6) are the bias and noise. The bias, �h, is restricted to a↵ect

public information and may arise for many reasons, such as bounded rationality, cognitive

mistakes, or incentives structures that change the analyst’s objective away form minimizing

forecast MSE (e.g. Chen and Jiang 2006; Groysberg, Healy, and Maber 2011). We take no

stand on the source of this bias. Since machines are unbiased, MSEa
t+h−MSEm

t+h is increasing
in the bias. Similarly, this di↵erence is increasing in the noise, ⌃h, which machines are not

susceptible to. In Section 4, we explore models in which the bias and noise are endogenous.

The most restrictive assumption in our framework is that the analyst processes the in-

formation in Zit without bias. This is made for empirical tractability, as adding a bias on

private information makes it more complex to take the model to the data. However, in

Appendix D, we discuss the impact of this assumption on our results and show it is possible

to extend this framework to allow for and estimate the extent of bias on private information.

Specifically, Appendix D extends (5) to include a term in ↵hzhit, where ↵h ≠ 1 corresponds to

biased treatment of the information in Zit. We estimate ↵h by adding two other structural

assumptions: (i) ⌃h is inversely proportional to the number of analysts following the firm

and (ii) the number of analysts following the firm is independent of Zit. The intuition for

the first assumption is each analyst has an independent forecasting noise term, so the noise

should decrease in the number of analysts. The second assumption is restrictive and we are

cannot be confident in whether it holds, which is why we exclude these results in the main

text. We do discuss these results in Section 3.4.

3.2 Moment Selection

In this section we discuss how to identify our three parameters of interest, ⇥h, �h, and

⌃h, using observable moments. The following proposition presents an identification result

using three moments that are intuitive.

Proposition 2. Denote F ∗t EPSit+h and EPS∗it+h as the projections of analyst forecast and
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realized EPS on the space orthogonal to observable information, Xit:

F ∗t EPSit+h ≡ FtEPSit+h −E (FtEPSit+h�Xit) = zhit + ⌘hit
EPS∗it+h ≡ EPSit+h −E (EPSit+h�Xit) = zhit + "it+h

Then the information advantage, bias, and noise are identified using the following moments:

�h = E �(E(FtEPSit+h�Xit) −E(EPSit+h�Xit))2�
⇥h = cov (F ∗t EPSit+h,EPS∗it+h)
⌃h = var (F ∗t EPSit+h) − cov (F ∗t EPSit+h,EPS∗it+h)

Proposition 2 contains straightforward results. The bias is obtained by projecting the

forecast error on observables. The information advantage is measured through the covariance

between forecasted and realized EPS. The noise is the di↵erence between the variance of

forecasts and information advantage. Taken together, these three equations suggest a simple

method to estimate the three components in (6) that determine the relative accuracy of

statistical and subjective forecasts.14

3.3 Estimation Procedure

We now discuss estimation of our three parameters of interest using Proposition 2. The

approach is straightforward, but we describe it in detail in this sub-section.

First, we flexibly estimate E (EPSit+h �Xit) and E (FtEPSit+h �Xit) using the di↵erent

supervised machine learning methods described in Section 1.3. Note that E (EPSit+h �Xit) =
Fm
t EPSit+h, which are the machine forecasts we examined in Section 2. For forecasts, we

estimate gh(Xit) with the same method, replacing EPSit+h with FtEPSit+h as our dependent
variable. This results in one set of firm-level projections, for both EPS and forecasts, per

ML technique. By replacing conditional expectations with function approximations from

our machine learning estimators, we are implicitly making the assumption that our ma-

chine learning estimators are consistent at reasonable rates given our sample size. Without

placing further restrictions on the data-generating process for EPSit+h, there are no theoret-

ical results that justify this assumption. However, there is a growing theoretical literature

14Appendix D shows an identification result in the model extension with bias on the information in Zit,
which are more complicated than the simple expressions here.

19



suggesting this assumption is satisfied under a variety of reasonable DGP assumptions.15

Secondly, we use these ML estimates to compute, at the level of each firm-year observation

(i, t), the projections of EPS and the forecast onto the variables in Xit, as well as EPS∗it+h
and F ∗t EPSit+h. These capture variation in EPS realizations and analyst forecasts orthogonal

to Xit.

Thirdly, we divide all four projections by the price per share Pit. This rescaling is done

to address heteroskedasticity issues, as EPS has arbitrary units. We could have directly

estimated the ML on normalized EPS and forecasts, but have not done so for comparability

of Section 2 with the rest of the literature that directly forecasts the dollar level of EPS (e.g.

van Binsbergen et al. 2020).16

Finally, we use the analogy principle and compute the three sample moments needed

to apply Proposition 2 to directly obtain the three structural components. We estimate

standard errors of these parameters using a firm-level block bootstrap (we draw entire firm

histories to account for within-firm autocorrelation). This standard errors are are likely to

be too tight because they ignore sampling uncertainty in the predictions generated form our

machine learning estimators, e↵ectively treating them as raw data that is resampled directly

to compute moments. Here we are constrained by (to our knowledge) the lack of asymptotic

results that characterize the behavior of our statistical learning estimators in large samples,

so we have no other choice but to take the predictors as given. This is approach is standard

in the literature (e.g. Patton and Verardo 2012).17

3.4 Estimation Results

We report the results from estimating our three parameters of interest in Table 2. Each row

corresponds to results obtained with one ML approach. To ease comparability with Table 1,

we normalize the three components by the mean sum of square of EPS normalized by prices:
1
N ∑it �EPSt+h

Pit
�2. The interpretation is the same Section 2 – each one of the components is

15For asymptotic results on the approximation error of various supervised learning estimators under di↵er-
ent DGP assumptions in large samples, see Belloni et al. (2011) for Iterative Lasso, Chetverikov, Liao, and
Chernozhukov (2020) for cross-validated Lasso, Wager and Athey (2018) for random forests, and Schmidt-
Hieber (2020) for deep neural networks.

16This normalization is not crucial to our findings, but significantly improves the distribution properties
of the data.

17We could in principle bootstrap the data and re-estimate our models, but this is too computationally
intensive. Moreover, it’s not clear that every estimator satisfies the regularity conditions required for the
bootstrap to be asymptotically valid (Horowitz 2001).
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a contribution to the loss of profits relative to the perfect foresight rule, but now we adjust

for the price normalization discussed in the prior section.

Table 2. The Term Structure of Information, Bias, and Noise

This table presents our results from estimating the three parameters in our model using the estimation procedure described in Section 3.3. As

described in Section 3.1, ⇥h represents the analyst information advantage; �h represents the analyst bias; ⌃h is the analyst noise. Each row

corresponds to the use of a di↵erent ML estimator to estimate the two conditional expectation functions described in Section 3.3. Each panel

focuses on a di↵erent horizon forecast. Parameter estimates are normalized by the average squared earnings-per-share divided by price, calculated

across the entire sample. Standard errors are calculated using a clustered bootstrap at the firm level with 1,000 iterations. For each estimation,

the firm-year level variables in Proposition 2 are trimmed at 5 times the interquartile range, after they are scaled by price. See Section 3.3

for additional details on our estimation procedure. The final samples in Panels A, B, and C contain and 41,208, 35,458, and 11,533 firm-year

observations, respectively.

Panel A: One-Year Horizon Forecasts

Estimator ⇥ s.e. � s.e. ⌃ s.e.
Lasso 5.58% (0.13%) 2.12% (0.03%) 1.46% (0.07%)
Post-Lasso 6.26% (0.13%) 3.31% (0.04%) 1.9% (0.08%)
Iterative Lasso 6.24% (0.12%) 1.56% (0.02%) 1.5% (0.09%)
Ridge 7.0% (0.14%) 3.27% (0.04%) 2.16% (0.1%)
Elastic Net 5.63% (0.12%) 2.1% (0.03%) 1.43% (0.09%)
Random Forest 4.31% (0.09%) 1.99% (0.03%) 1.17% (0.07%)
Gradient-Boosted Trees 4.73% (0.11%) 2.36% (0.03%) 1.45% (0.07%)

Mean 5.68% 2.39% 1.58%

Panel B: Two-Year Horizon Forecasts

Estimator ⇥ s.e. � s.e. ⌃ s.e.
Lasso 4.6% (0.15%) 10.62% (0.14%) 4.85% (0.17%)
Post-Lasso 5.05% (0.22%) 13.53% (0.17%) 6.02% (0.2%)
Iterative Lasso 5.86% (0.24%) 8.73% (0.11%) 5.71% (0.2%)
Ridge 5.52% (0.2%) 12.3% (0.17%) 6.31% (0.18%)
Elastic Net 4.63% (0.18%) 10.65% (0.16%) 4.82% (0.17%)
Random Forest 3.11% (0.14%) 11.66% (0.16%) 4.4% (0.16%)
Gradient-Boosted Trees 3.65% (0.17%) 12.0% (0.18%) 4.23% (0.18%)

Mean 4.63% 11.36% 5.19%

Panel C: Three-Year Horizon Forecasts

Estimator ⇥ s.e. � s.e. ⌃ s.e.
Lasso 5.51% (0.36%) 11.46% (0.22%) 8.41% (0.43%)
Post-Lasso 6.33% (0.4%) 16.97% (0.37%) 9.57% (0.52%)
Iterative Lasso 8.17% (0.45%) 8.4% (0.14%) 8.8% (0.49%)
Ridge 5.51% (0.36%) 13.52% (0.28%) 10.22% (0.41%)
Elastic Net 5.69% (0.43%) 11.43% (0.22%) 8.09% (0.46%)
Random Forest 4.15% (0.34%) 11.54% (0.25%) 7.1% (0.33%)
Gradient-Boosted Trees 4.0% (0.31%) 14.82% (0.33%) 8.38% (0.38%)

Mean 5.62% 12.59% 8.65%
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Panel A presents the results for one-year ahead forecasts. Here the analyst information

advantage, ⇥1, is larger than the bias and the noise combined,�1+⌃1. Given (6), this result is

consistent with the fact that MSEa
t+1 <MSEm

t+1 in Panel A of Table 1 – analysts outperform

at short horizons because they have a significant information advantage. Although the bias

and noise are smaller than the information advantage at this horizon, they are non-negligible.

This is consistent with the gain to combining subjective and statistical forecasts in Panel A

of Table 1.

Panels B and C examine the information, bias, and noise for two-year and three-year

ahead forecasts. The first thing to note from these panels is the information advantage does

not decay with the horizon. According to (6), this implies the decline in subjective forecast

accuracy across horizons in Table 1 must be driven and increase in bias and/or noise. This is

exactly what we find – noise increases approximately linearly across horizons, while the bias

jumps between between the one and two-year horizons and increases slightly between the

second and third-year horizons. This non-linearity in the increase in bias is driven by sample

composition, as discussed below. These estimation results in Table 2 appear relatively stable

across the di↵erent supervised machine learning estimators.

The results in Table 2 are di�cult to interpret because moving from one-year to three-year

horizon forecasts changes the sample composition significantly — most firms in I/B/E/S have

data on one-year ahead forecast, but only larger, older, and more profitable firms have data

on three-year ahead forecasts. Notably, the number of observations only decreases slightly

between one-year and two-year ahead forecasts, while it decreases by a factor of four at the

three-year horizon.

In Figure 1, we plot the term structure of our three parameters estimated on the sub-

sample of firm-year observations for which we observe a consensus analyst forecast at all three

horizons. The results show that the term structure of the analyst information advantage

is still essentially flat, and the term structure of bias and noise are still upward sloping.

However, the term structure of bias and noise are now increasing approximately linearly.

As discussed above, we also explore a variant of this framework that allows for bias in

private information, but requires strong assumptions. The results in Appendix D show

the term structure of �h is una↵ected. We also find evidence of an upward sloping term

structure of bias on the information in Zit, ↵h, with ↵h ≈ 1 at short-horizons and ↵h > 1 at

long horizons. We continue to find an upward sloping term structure of noise, albeit less

steep, and the term structure of ⇥h becomes slightly downward sloping.
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Figure 1. The Term Structure of Information, Bias, and Noise

This table presents our results from estimating the three parameters in our model using the estimation procedure described in Section 3.3 on the

sub-sample of firm-year observations for which we have analyst forecast data at all three forecasting horizons. As described in Section 3.1, ⇥h
represents the analyst information advantage; �h represents the analyst bias; ⌃h is the analyst noise. For the results plotted here, we used Elastic

Net to estimate the two conditional expectation functions. Parameter estimates are normalized by the average squared earnings-per-share divided

by price, calculated across this entire sub-sample. For each estimation, the firm-year level variables in Proposition 2 are trimmed at 5 times the

interquartile range, after they are scaled by price. See Section 3.3 for additional details on our estimation procedure. This sample contains 10,831

firm-year observations. Black bars represent 95% confidence intervals based on a clustered bootstrap at the firm-level with 100 iterations.
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In sum, the evidence in Table 2 and Figure 1 suggest there is a strong upward sloping term

structure of bias and noise, but a relatively flat term structure of the analyst information

advantage. In the next section, we examine the model ingredients needed to jointly match

this term structure of bias and noise. Henceforth, we ignore the term structure of information

since it is flat, although there is likely heterogeneity in the cross-section of firms that could

be explored.

3.5 Mitigating Forecast Noise and Bias

In this last sub-section, we explore two options to mitigate forecasting noise and bias.

The first option, extensively discussed in Kahneman et al. (2021), consists of using a fixed

rule to discipline subjective forecasts. The intuition for the e↵ectiveness of this strategy

for reducing noise follows from standard state-space models (e.g. Kalman filter). In these

models, the optimal way to use a noisy signal is to apply some shrinkage. This is essentially

what the machine + analyst forecast formed in Section 1.4 implements. Column 4 of Table 1

shows the performance of this forecast, using various techniques to optimally combine the

data available to the econometrician and subjective forecasts. The relative “weights” (these

methods are non-linear) of the two types of information are chosen optimally using the various

ML techniques described above. At the one-year horizon, the improvement brought by these

optimal rules is modest (about 10% of MSE), but at longer horizons, the improvement

becomes much larger (about 33% reduction in MSE). This is because long-term subjective

forecasts are both strongly noisy and biased.

The second option to tame noise directly is to increase the number of forecasters. To

illustrate this, we generate estimates of noise at h = 1,2,3 across bins of firm-years based

on the number of analysts that make up the consensus forecast at horizon h, denoted Nh
it.

The estimation strategy we use to do so is intuitive and requires one meaningful identifying

assumption discussed in Appendix B. In Figure 2, we report estimated the level of noise on

the y-axis and 1
Nh

it
on the x-axis. We expect the relationship to be linear, with the intercept

term being equal to zero if noise is perfectly uncorrelated across analysts. Looking at the

Figure 2, several patterns emerge. First, the relationship between noise and inverse number

of analysts is approximately linear at all three horizons. Secondly, the reduction of noise from

going from 1 to 10 analysts is sizable: at the one-year horizon, it buys 1.2ppt MSE reduction

of MSS (not huge because noise is small at this horizon). At three-year horizon, it buys a

more significant 3.5ppt reduction. Finally, even with an infinite number of forecasters, noise
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does not seem to disappear, which suggesting correlation in noise – we estimate it would go

from 1.8% to 0.4% at one-year horizon and from 6.5% to 3.2% at three-year horizon.

Figure 2. Noise and the Number of Forecasters

This figure plots our estimates of noise at three di↵erent horizons across evenly-spaced bins of
1

Nh
it

, where Nh
it is the number of analysts that

make up the consensus forecast firm i in year t at horizon h. We form moments using the Random Forest for statistical forecasts. To estimate

conditional noise, we perform our conditional estimation described in Section 3.5 and Appendix B. Prior to conducting the estimation, the firm-year

level variables in Proposition B1 are trimmed at 5 times the interquartile range, after they are scaled by price. Estimates are normalized by the

mean squared EPS across the entire sample. Confidence intervals are calculated using a clustered bootstrap at the firm level with 1,000 iterations

and have 90% joint coverage across all points within each figure. Critical values for these joint confidence intervals are calculated using the 1,000

bootstrap iterations. The final sample used to produce these figures has 47,542, 39,973, and 13,066 firm-year observations at the one-year, two-year,

and three-year horizons respectively. For noise at the three-year horizon, there are only four bins because there is less variation in the number of

analysts.

4 Models of the Term Structure of Bias and Noise

This section explores the extent to which existing models can jointly fit our estimated

patterns in the term structure of bias and noise. We first explore a large class of existing

models that deviate from full-information rational expectations. We show these models, in

their simplest form, cannot jointly match the sign and magnitude of the slopes of these term

structures. Thus, a mechanism needs to be added – we propose a simple model based on a

noisy cognitive default. This mechanism is portable and could be added to existing models.

4.1 Existing Models

We first consider a list of existing models for the term structure of bias and noise. We

primarily focus on variants and extensions of noisy information models, which is a standard
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framework that has predictions on the term structure of expectation noise and bias. This

noise is crucial to our setting because we can clearly reject the null hypothesis of noiseless

forecasts. Thus, we will not consider some popular used models of belief formation, such as

backward looking models (e.g. adaptive expectations and pure extrapolation).

Setup. Recall the framework described in Section 3.1, where we have

EPSit+h = xh
it + zhit + "it+h,

FtEPSit+h = gh(Xit) + ⌘hit + zhit. (7)

As discussed previously, the first equation is a normalization and the second equation is an

assumption. Each model we consider delivers a forecasting equation of the form in (7), where

g(Xit) and the variance of ⌘it are determined by the primitives of the model. We continue

to assume the analyst is unbiased with respect to private information.

To clarify the discussion, we now impose additional structure on the data-generating pro-

cess to be able to analytically compare multiple existing models (which work with AR1

processes). Importantly, our conclusion in this section that the law of iterated expecta-

tions embedded in most models makes it di�cult to fit our evidence does not rely on this

assumption.

Assumption 1. Denote xit ≡ x1
it. The data generating process for xit is:

xit = µ(1 − ⇢) + ⇢xit−1 + uit, E (uit � xit−1) = 0, var (xit) ≡ �2
x.

Given we have estimated E (EPSit+h �Xit) = Fm
t EPSit+h, we can test the validity of this

assumption. Table A8 provides evidence that an AR(1) is a reasonable description of the

data.

4.1.1 Baseline Noisy Information Model

We first consider a baseline noisy information model in the spirit of Woodford (2003).

This noisy information framework is the most natural starting place, given it is a classic

model that generates both bias (from the viewpoint of the econometrician) and noise. In

this model, the analyst observes noisy signals of xit, denoted Sit, but is an otherwise rational

(i.e. Bayesian) forecaster that knows µ and ⇢. Given Sit, the analyst applies Bayes rule to
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form forecasts as follows:

Ftxit = E (xit � Sit) , Ftxit+h = �1 − ⇢h−1�µ + ⇢hFtxit. (8)

In this setting, an explicit characterization of the analyst’s forecasts requires placing

structure on Sit and the innovation DGP uit. For example, assuming the analyst observes

sit = xit + vit each period and vit is normally distributed results in the Kalman filtering solu-

tion, where Ftxit = Gitsit + (1 −Git)Ft−1xit and Git is the Kalman gain. However, regardless

of the structure of Sit, we can characterize the slope of the term structure of bias and noise

implied by this model.

Proposition 3. In the baseline noisy information model, the term structure of bias and

noise are downward sloping with the same slope:

∀h > 1 ∶ �h

�1
= ⌃h

⌃1
= ⇢2(h−1) < 1.

In this model, the intuition for the downward sloping term structure of bias and noise

follows from considering the extreme case in which h → ∞. Because xit is a stationary

process, the best infinite horizon forecast is the long-run mean, µ, which the analyst knows.

Thus, the analyst will be unbiased in this extreme case and will also issue noiseless forecasts

because the analyst will place no weight on her sequence of noisy signals. As h shrinks

towards 1 from this extreme case, the analyst relies more on noisy signals and less on her

knowledge of the long-run mean. This introduces bias and and noise in her forecast, resulting

in downward sloping term structures. The evidence in Section 3.4 provides a clear rejection

of the baseline noisy information model, as we find upward sloping term structures of bias

and noise.

4.1.2 Variants of Baseline Noisy Information Model

The baseline noisy information model of the previous section is characterized by the fol-

lowing two equations:

Ftxit = E (xit � Sit) , (9)

Ftxit+h = �1 − ⇢h−1�µ + ⇢h−1Ftxit. (10)
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Prior literature has proposed multiple variants of this baseline model than can be seen as

simply adjusting one of these two equations. We now discuss the predictions of commonly-

used variants one-by-one.

Bounded rationality. A common microfoundation for noisy information models is

bounded rationality (e.g. Sims 2003). In these models, the set of signals, Sit, is endoge-

nously chosen to maximize an objective function decreasing in forecast errors, subject to a

cost function increasing in the mutual information of the signals, Sit, and the state variable,

xit. Thus, these models amount to changing the form of Sit in (9). Although these models

introduce a tight connection between the signals and primitives (e.g. signal informativeness

and cognitive capacity), they also have downward sloping term structures of bias and noise.

This follows from the fact that Proposition 3 was derived without requiring placing structure

on the distribution on Sit.
Diagnostic expectations. Bordalo et al. (2020) combine diagnostic expectations, which

generates overreaction to recent news, with noisy information. This model breaks (9) due to

non-rational expectations. In its simplest form, this model exhibits a downward sloping term

structure of bias and noise for the same reason as the baseline noisy information model: the

analyst knows xit is mean-reverting, so she shrink her forecasts towards the long-run mean, µ,

as h grows. When the DGP is an AR1 process, as in assumption 3 (and in most applications

of this model), bias and noise monotonically decrease with horizon.

Over-confidence. Another common way to generate non-rational reactions in the noise

information framework is via agents’ overconfidence about their signal qualities (e.g. Daniel

et al. 1998; Eyster, Rabin, and Vayanos 2019). In the common case where Sit consists

of signals each period with independent normal errors, over-confidence corresponds to the

analyst updating using a variance lower than the true signal variance. Since overconfidence

only changes (9), it will only change the level of bias and noise, but both term structures

will still be downward sloping.

In sum, noisy information models and their commonly-used variants need an additional

mechanism in order to match the term structure of bias and noise we document. As they are

currently written, the forecaster knows µ and ⇢ and forecasts the term structure according to

(10). Thus, the law of iterated expectations holds, implying the forecaster cannot be biased

or noisy as h→∞.
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4.1.3 Alternative Frameworks that Break Condition (10)

The previous section shows noisy information models cannot match the term structure of

bias and noise because (10) holds. We now consider three sets of models that break this

equation in di↵erent ways.

Unknown persistence. The first way to break (10) is to assume the forecaster believes

the persistence of xit is ⇢̂ > ⇢, while maintaining noisy information. Angeletos et al. (2020)

show this over-extrapolation is necessary for matching over-reaction in macroeconomic ex-

pectations. Although this type of over-extrapolation does make the term structure of bias

and noise less downward sloping in our setting, the only way for this to deliver upward

sloping term structures is to assume ⇢̂ > 1, which Table A8 provides evidence against.

Unknown mean. The second way to break (10) is to assume the forecaster believes

the long-run mean of xit is µ̂ ≠ µ. Afrouzi et al. (2021) provide a model of this sort,

where the forecaster does not know µ and consequently overweights recent information in

the estimation of it. In Appendix E, we show this model has the potential to qualitatively

match our data, as long-run forecasts are further from the rational expectation, but cannot

do so quantitatively.

Failure of law of iterated expectations. Fuster, Laibson, and Mendel (2010) propose

a framework in which the law of iterated expectations fails, known as natural expectations.

In this framework, the true DGP is a stationary AR(2) in levels, but the forecaster has

an “intuitive” DGP that is an AR(1) in changes. Importantly, because the intuitive model

is non-stationary, this model gets a larger weight at longer horizons, which generates an

upward sloping term structure of bias. This model does not have a source of noise, but the

framework we introduce next is motivated by this idea that the failure of the law of iterated

expectations can generate long-run forecasts further away from the rational expectation.

4.2 Proposed Model

Setup. We next present a model with a mechanism that can qualitatively and quan-

titatively match the upward sloping term structures of bias and noise. In our model, the

forecaster issues forecasts according to:

Ft [E (EPSit+h�Xit)] = (1 −mh)xd
it +mhE (EPSit+h�Xit) , (11)
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= (1 −mh)xd
it +mhx

h
it = (1 −mh)xd

it +mhF
m
t EPSit+h.

This forecasting equation is motivated by the limited attention framework of Gabaix (2014),

where xd
it corresponds to a cognitive default and mh ∈ [0,1] represents the horizon-specific

amount of attention paid to processing the public information contained in Xit. If mh = 1,
the analyst issues forecast equal to the conditional expectation (i.e. the machine’s forecast).

Unlike Gabaix (2014), we assume xd
it is a random variable, which we parameterize as follows:

xd
it = ↵ + �EPSit + vit, E (vit �Xit, Zit) = E(vit) = 0, var(vit) ≡ �2

v .

The default, xd
it, may have a fixed bias, ↵, is partly anchored on the current value of the state

variable, � (in the spirit of the availability heuristic), but also contains noise, vit.18 The fact

that xd
i is a noisy default is crucial to this framework, which could be micro-founded using

evidence in cognitive psychology that suggests individuals’ decision-making has significant

variation orthogonal to observables (e.g. Azeredo da Silveira et al. 2020; Enke and Graeber

2020; Kahneman et al. 2021).

To discipline the term structure of mh, we follow Patton and Timmermann (2010) and

assume:

mh = 2

2 +MSEFIRE
t+h

, (12)

where

MSEFIRE
t+h =MSEm

t+h −⇥h = E �(EPSit+h −E (EPSit+h �Xit, Zit))2�
is the MSE of the full-information rational expectations (FIRE) forecast. This specification

of mh captures of a form of bounded rationality: as the rational forecast error increases,

the forecaster relies more on her default.19 The extent to which the rational forecast error

matters is captured by . As  → 0, the forecaster always relies on her default. As  →∞,

the forecaster becomes perfectly rational.

Term structure of bias and noise. Within our proposed model, we can calculate the

term structure of bias and noise.
18Our model will fit the term structure of bias and noise even if we restrict ↵ = � = 0. We choose to allow

for an arbitrary ↵ and � so that we can target the EFtEPSit+h as one of our moments in the estimation.
19In principle we could formula mh as being chosen by the forecaster based on a bounded rationality

problem in the spirit of Sims (2003). In that case,  would be an endogenous object, depending on information
constraint faced by the forecaster. We have chosen not to do this for simplicity in estimation (following Patton
and Timmermann 2010), as any of these models would generate a similar formula for mh, with the di↵erence
being the specific microfoundation for . In all cases, as the forecasters bounded rationality constraint is
relaxed, we would obtain →∞.
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Proposition 4. The term structure of bias and noise are given by:

�h = (1 −mh)2
������E ��x

h
it�2� + ↵2 + �2E �EPS2

it� + 2↵�E(EPSit)−
2↵E �xh

it� − 2�E �EPSitx
h
it�
������,

⌃h = (1 −mh)2 �2
v .

The formula for noise is simple: all expectation noise comes from noise in the prior, so

noise increases as the weight on the prior increases (i.e. mh decreases). To build intuition for

the formula for �h, consider the case where ↵ = � = 0. Then �h = (1 −mh)2E (xh
it)2. This

expression shows bias increases as the weight on the prior increases and further depends on

the second moment of the conditional expectation, xh
it.

These two expressions illustrate how our model delivers a tight link between bias and

noise through bounded rationality. Therefore, in order to match the upward sloping term

structure of bias and noise in the data, we need mh to decreases h. Given (12), this is the

case because Table 1 shows MSEm
t+h increases with the horizon, while Table 2 shows ⇥h is

approximately constant. These expressions also show that a model in which only �v varies

across horizons will not work because it will not generate a term structure of bias.

In sum, our model is parametrically parsimonious with three key parameters: (i) �2
v , which

pins down by the average level of noise in subjective forecasts; (ii) ↵, which pins down the

average level of optimism; (iii) , which determines the relative weight of the rational forecast

and governs the term structure of both noise and bias. The parameter � is less critical and

is only here to ensure forecasts line up with EPS levels in the cross-section.

Estimation. We estimate our model using Generalized Method of Moments (GMM). Our

parameter vector is

✓ = � ↵ � �v�T ∈ R4.

We target the following nine moments: bias at all three horizons, noise at all three horizons,

and the mean analyst forecast at all three horizons. We then perform an iterative GMM20

to generate our estimate of the parameter vector. To calculate standard errors, we perform

20Specifically, we solve the GMM objective using an identity weighting matrix, generate an estimate of
the optimal weighting matrix, then solve the GMM objective again. We continue this iteration, solving the
objective and updating the weighting matrix, until each element of the parameter vector changes by less
than 1%. This takes between 2 and 3 iterations depending on the bootstrap sample.
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a clustered bootstrap at the firm-level, and then re-estimate the iterative GMM on each

bootstrap sample.21

Table 3. Model Estimation Results

This table presents the results from estimating the model in Section 4.2 using an Iterative GMM. The model has four parameters and we target

nine moments – the term structure of bias and noise, as well as the mean analyst forecast at all three horizons. The sample used here is the same

sample as in Figure 1. To calculate bias and noise, we use Elastic Net to estimate the two conditional expectation functions. Standard errors are

based on a clustered bootstrap at the firm-level with 100 iterations.

 ↵ � �v

GMM Estimate 0.0709 0.0191 2.648 0.0774
Std. Error (0.0017) (0.0019) (0.0783) (0.0034)

Implied mh

m1 = 0.95 m2 = 0.85 m3 = 0.78

Results. The results from our GMM estimation are presented in Table 3. We first note

that our standard errors are relatively small for all four model parameters, suggesting the

model is robust to local misspecification (Andrews, Gentzkow, and Shapiro 2017). Turning

to the parameter estimates, we find evidence of significant noise in the default: �v ≈ 0.08.
For reference, sd (x1

it) ≈ 0.037, implying the noisy we estimate in the default is around two

times as large as the noise in the data generating process. This significant cognitive noise is

needed to match the average level of noise across the three horizons and we discuss it further

in Section 5.1. We also find ↵ > 0 and � > 0, suggesting there is some fixed optimism bias in

the prior of analysts and a tendency to over-weight the current observation, in the spirit of

the availability heuristic. The combination of the fixed bias and availability heuristic help

match the average level of bias across the three horizons, but are not crucial to match the

slope of the bias (or noise) term structure.

Our model’s most important parameter is , which determines the slope of the term

structure of bias and noise through mh. We estimate  ≈ 0.07. To interpret this estimate,

Table 3 presents the implied values ofmh from this value of , which arem1 = 0.95, m2 = 0.85,
and m3 = 0.78. This declining term structure of mh is crucial for the ability of our model to

fit the data, as an upward sloping term structure of bias and noise in our model comes from

forecasters relying more on their biased and noisy defaults at longer horizons.

Figure 3 plots the term structure of bias and noise in our estimated model versus the

21We use the bootstrap procedure from Hahn (1996), in which the GMM objective function is not re-
centered before estimation on each bootstrap sample. This generates standard errors with valid coverage
(asymptotically) even under model misspecification.
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Figure 3. The Term Structure of Information, Bias, and Noise: Model and Data

This table presents a comparison of the term structures of bias and noise in the data versus in the model in Section 4.2. The moments in the

model are calculated using Proposition 4 and the parameter estimates in Table 3. The sample used here is the same sample as in Figure 1. To

calculate bias and noise, we use Elastic Net to estimate the two conditional expectation functions. Black bars represent 95% confidence intervals

based on a clustered bootstrap at the firm-level with 100 iterations.
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data. The results show our model reproduces the term structure of bias and noise very well,

due to the decreasing term structure of mh in Table 3. The moments in our model are

not statistically di↵erent than the moments in the data, except for noise at the three-year

horizon. The inability to fit ⌃3 is partly driven by the fact that we use the GMM optimal

weighting matrix and ⌃3 is the least precisely estimated. Nevertheless, we note the term

structure for noise looks more convex than the term structure for bias, which is something

that could be explored in more detail if data on longer horizon forecasts were available.

Comparison of estimated mh with existing literature. The key equation in our

model, (11), is motivated by the limited attention framework of Gabaix (2014). Because

of the similarities between these frameworks, we can compare the values of mh implied by

our estimate of  to literature that estimates the attention parameters in the Gabaix (2014)

framework. In Gabaix (2014), an agent perceives the value of a state variable, x, to be

xs = (1 −m)xd +mx, where m ∈ [0,1] represents the agent’s attention paid to the state

variable and xd is the agent’s cognitive default. Gabaix (2019) reviews the literature that

estimates m and finds a strong positive relationship across studies between the estimated m

and a measure of attribute importance (AI), which captures how much using xs = x versus

xs = xd matters for the agent’s decision utility. This positive relationship is consistent with

a form of bounded rationality.

In our setting, the analog of AI from Gabaix (2019) at horizon h is
sd�xh

it�
sd(EPSit) , which repre-

sents the ratio of the standard deviation of the true state variable to that of the forecaster’s

default. This ratio is 0.85, 0.82, and 0.81 at h = 1, 2, 3, respectively. These values are high

compared to Allcott and Wozny (2014), which has an AI22 of 0.58 and estimate m = 0.76.
Since Allcott and Wozny (2014) have the highest AI of the studied surveyed by Gabaix

(2019), we would expect their estimatedm = 0.76 to be a lower bound on our estimates ofmh.

This is indeed the case, suggesting analysts are relatively attentive in our setting because

of large di↵erences in forecasting performance between the random walk forecasting rule,

FtEPSit+h = EPSit, and the true conditional expectation, FtEPSit+h = xh
it = Fm

t EPSit+h.23
22See Gabaix (2019), Table 1, for a calculation of AI across di↵erent studies.
23Gabaix (2019) formally calibrates an attention function, m = A(AI), which maps attribute importance

to attention. Using non-linear least squares, he estimates A(x) =max � x
0.09−1
x

0.09+44.8 ,0� using data on estimated

m’s and AIs across studies. Applying this function to our setting gives m1 ≈ 0.95 and m2 ≈ m3 ≈ 0.94.
This value of m1 is close to what we estimate, but the values of m2 and m3 are too high, suggesting more
curvature in the attention function for high values of AI is needed.
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5 Additional Model Predictions

In this section, we discuss how the model proposed in Section 4.2 can quantitatively match

two non-targeted moments: (i) an upward sloping term structure of disagreement and (ii) a

positive relation between noise and volatility.

5.1 Term Structure of Disagreement

The existing models discussed in Section 4.1 that fail to match the upward sloping term

structure of bias and noise also predict downward sloping term structures of disagreement,

a point made by Patton and Timmermann (2010). This happens because forecasters know

the parameters of the true data generating process and shrink their forecasts to the long-run

mean as the forecasting horizon increases, reducing disagreement across forecasters.

Figure 4. The Term Structure of Forecaster Disagreement and Noise

This table presents a comparison of the term structures of forecaster disagreement and noise in the data. To calculate forecaster disagreement,

we first calculate the variance across analyst forecasts of horizon h for a given firm-year. As in Section 3.3, we next normalize this variance by

price-per-share squared. We then average this variance across all-firm years for each horizon h, using the same sample of firm-year observations

in Figure 1. To calculate noise, we use Elastic Net to estimate the two conditional expectation functions. Finally, we normalize both the noise

and disagreement by the average squared earnings-per-share divided by price, calculated across the entire sample (Section 2). Black bars represent

95% confidence intervals based on a clustered bootstrap at the firm-level with 100 iterations.
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In Figure 4, we plot the term structure of forecaster disagreement, calculated as variance

of the individual analyst forecasts that make up the consensus forecast averaged across firm-

years. Contrary to the predictions of the models in Section 4.1, the results show the term

structure of disagreement is upward sloping. Figure 4 also shows the values of disagreement

and noise are similar at all three horizons. This is exactly what our model would predict:

in our model all disagreement across forecasters comes from heterogeneity in defaults due to

vit. Thus, another way to interpret our estimate of �v is as a measure of prior heterogeneity.

Patton and Timmermann (2010) similarly document an upward sloping term structure

of disagreement among professional private sector GDP and inflation forecasters. Using a

similar framework to the one in Section 4.2, they estimate the standard deviation of priors

across forecasters is 2.5 times as large as the standard deviation of the forecasting variable

for GDP and 5 times as large for inflation.

Since the standard deviation of priors across forecasters is equal to �v in our model, we

can similarly calculate the standard deviation of forecaster priors relative to the forecasting

variable, �v

sd�x1

it� . Using the estimate of �v ≈ 0.08 from Table 3 and sd (x1
it) ≈ 0.037, we find

�v

sd�x1

it� ≈ 2.2. Thus, we get a quantitatively similar estimate of heterogeneity in forecasters’

priors to Patton and Timmermann (2010) in a very di↵erent forecasting setting.

5.2 Noise and Earnings Volatility

The data features a second relationship: the amount of noise increases with residual

earnings volatility. In Figure 5 Panel A we reproduce this fact using return volatility as

a measure of earnings surprises. We split the sample into equally-spaced 10 bins of equity

volatility (computed using rolling 5-year windows of monthly returns) and compute noise in

each one of these bins (see Appendix B for additional details on this calculation). Panel A

reports binscatters for each horizon, which illustrate noise is monotonically and smoothly

increasing with return volatility.

In Panel B, we check if the model is able to quantitatively match this fact. We do

this without assuming an asset pricing model. For each bin of equity returns volatility,

we compute earnings conditional volatility as �2
✏,h = MSEm

t+h − ⇥h, which is the di↵erence

between the MSE of the econometric forecast and the informational advantage. Our model
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Figure 5. Noise and Volatility

Panel A of this figure plots our estimates of noise at three di↵erent horizons across evenly-spaced bins of equity volatility, measured using the

annualized standard deviation of monthly stock returns from CRSP over the past five years for firm i in year t. Panel B of this figure plots this same

empirical (conditional) noise against the model-implied noise for each bin. We form moments using the Random Forest for statistical forecasts.

To estimate conditional noise both Panels, we perform our conditional estimation described in Section 3.5 and Appendix B, replacing Nh
it with

equity volatility. To estimate the model-implied noise in Panel B, we follow the procedure described in Section 5.2 to generate an estimate of

MSEFIRE
t+h within each bin, which we convert into an estimate of model implied noise using (12), Proposition 4, and our estimates of  and �v

from Table 3. Prior to conducting the estimation, the firm-year level variables in Proposition B1 are trimmed at 5 times the interquartile range,

after they are scaled by price. Estimates are normalized by the mean squared EPS across the entire sample. Confidence intervals are calculated

using a clustered bootstrap at the firm level with 100 iterations and have 90% joint coverage across all points within each figure. Critical values

for these joint confidence intervals are calculated using the 1,000 bootstrap iterations. The final sample used to produce these figures has 47,239,

39,707, and 12,991 firm-year observations at the one-year, two-year, and three-year horizons respectively.

Panel A: Noise versus Equity Volatility

Panel B: Empirical versus Model-Implied Noise
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then predicts that:

⌃h = � MSEm
t+h −⇥h

2 +MSEm
t+h −⇥h

�2 �2
v

which is decreasing with , the weight of the rational forecast, and increasing with MSEm
t+h−

⇥h, the FIRE mean squared error. In Panel B, we plot empirically estimated noise versus the

noise predicted by the above equation, using our estimates of  and �v from Table 3. While

our model is statistically rejected at the two and three-year horizons, the fit is quantitatively

reasonable. This is impressive since the estimation in Table 3 did not target these cross-

sectional moments, but rather the term structure of noise and bias.

6 Conclusion

We study the term structure of subjective expectations using analyst earnings forecasts.

We find these forecasts perform better than statistical forecasts at short horizons, but un-

derperform at longer horizons. Decomposing these di↵erences in forecasting accuracy, we

find the decreasing accuracy of subjective forecasts with the forecasting horizon is driven

by an upward sloping term structure of bias and noise, while the information advantage of

subjective forecasters is relatively constant across horizons.

Existing models, in their current form, lack a feature to match these upward sloping term

structures of bias and noise. We propose such a mechanism based on bounded rationality and

noisy defaults. This model quantitatively matches these term structures and our estimation

of it implies a significant degree of noise in forecasters’ cognitive defaults. The model is

parsimonious, as it it has three key parameters: default noise, expectations bias, and the

relative weight between rational forecast and noise default. This last parameter succeeds at

matching both the term structures of noise and bias.

Our model of belief formation has two direct implications for which we find empirical

support: (i) an upward sloping term structure of disagreement and (ii) noise should be an

increasing function of earnings volatility. When fitted on the term structures of noise and

bias, our model also manages to replicate these two facts quantitatively.

A crucial aspect of our model is the existence of noisy defaults, for which we appeal to

existing evidence but give no formal micro-foundation. In this sense, our model provides the

reduced-form representation that a more micro-founded model must admit in order to match

our empirical results. In subsequent work, we hope to enrich the model in this direction, in
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addition to studying more closely the properties of individual-level rather than consensus-

level forecasts.
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