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In his seminal work on myopia and dynamic inconsistency, Strotz (1955) posed the fol-
lowing question about an individual choosing “a plan of consumption for a future period of
time”: “If he is free to reconsider his plan at later dates, will he abide by it or disobey it?” A
fundamental intuition arising from his work is that individuals who do not discount future
consumption at a constant rate will have time-inconsistent preferences and often choose to
revise their consumption plans. For example, individuals might exhibit present focus, as in
the quasi-hyperbolic discounting model, and thus revise their plans toward more immediately
gratifying alternatives over time (e.g., Laibson, 1997, O’Donoghue and Rabin, 1999).

This raises a natural question that we answer in this paper: If an analyst observes
individuals who tend to revise their consumption plans in a certain systematic direction,
while being subject to random taste shocks, when can the analyst infer that the individuals
are time-inconsistent, and when can the analyst quantify the degree of time inconsistency?

A number of influential empirical studies that utilize what we call revision designs have
assumed that the presence of any type of systematic choice reversal implies time inconsis-
tency. A classic example is the study by Read and van Leeuwen (1998), which is often cited
as “a canonical example of a preference reversal” (Ericson and Laibson, 2019). Read and
van Leeuwen find that when planning a week in advance, 50 percent of individuals choose a
healthy over an unhealthy snack, but this fraction declines to 20 percent when individuals are
given a surprise opportunity to revise their plans a week later. The implicit assertion in the
conclusions drawn by Read and van Leeuwen is that if individuals systematically revise their
plans toward some types of alternatives over others, then they must have time-inconsistent
preferences. Economists and psychologists have since conducted numerous revision design
studies, often with richer choice sets, in domains such as intertemporal allocation of work,
entertainment choice, financial plan-making, opioid use, and nutrition.1,2 In contrast to
standard experiments on take-up of commitment contracts and other more qualitative tests
of time inconsistency, a key motivation for revision designs has been the important goal
of obtaining point estimates of time-preference parameters.3 Additionally, revision designs

1Work allocation: Augenblick, Niederle, and Sprenger (2015), Abebe, Caria, and Ortiz-Ospina (2021),
Andreoni et al. (2020), Barton (2015), Corbett (2016), Imas, Kuhn, and Mironova (forthcoming), Kölle
and Wenner (2019), Augenblick and Rabin (2019), Fedyk (2018), see Imai, Rutter, and Camerer (2021)
for a review; Financial plan-making: Kuchler and Pagel (2021); Entertainment: Read, Loewenstein, and
Kalyanaraman (1999), Milkman, Rogers, and Bazerman (2009), Bartos et al. (forthcoming); Opioid use:
Badger et al. (2007); Nutrition choice: Sadoff, Samek, and Sprenger (2019).

2Typical designs elicit preferences from an identical choice set at two different points in time in an
incentive-compatible way by informing individuals that their initial preferences and revised preferences both
have a positive probability of determining their outcomes. Which preference is implemented is determined
after both are elicited.

3See, e.g., Augenblick, Niederle, and Sprenger (2015), Andreoni et al. (2020), Augenblick and Rabin
(2019), Augenblick (2018).
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were intended to identify time inconsistency without the assumption that people are fully
aware of it.4

This paper provides formal results about the choice patterns in revision designs that can
and cannot reject time consistency. Our model considers a data set of an agent’s revealed
ordinal preferences over a finite set of alternatives at two different points in time: an advance
choice stage (time 0) and a revision stage (time 1). To encompass the different empirical
designs used in practice, we allow the analyst to observe the preferences completely or incom-
pletely. For example, in some designs, researchers elicit only the most preferred alternative;
in other designs agents choose from different budget sets, which allows researchers to almost
completely observe preferences. At time 1, the agent’s preferences are state-dependent; e.g.,
the agent’s rankings over different food items might depend on their level of hunger. To
consider a best-case scenario for identification, we suppose that the data set includes the
exact distribution of the agent’s time-1 preferences.5 We say that an agent’s choices can
be rationalized by time-consistent expected utility maximization (TC-EU) if there is an in-
formation structure and utility function that rationalizes the observed distribution of the
agent’s time-1 preferences, and the agent’s time-0 ranking of alternatives is consistent with
the (objective) expectation of time-1 utilities.6

In the first part of the paper, we show that TC-EU can rationalize a variety of different
data that feature systematic choice reversals. We begin with numerical examples that capture
several types of prominent designs. In these examples, we show that inferences about time
inconsistency are highly sensitive to assumptions about how information is revealed to the
agent over time.

Our first formal result, Theorem 1, shows that when the choice set is single-dimensional,
time-1 preferences are single-peaked, and when at least the time-0 preference is completely

4Empirical work estimating both time inconsistency and people’s sophistication about it typically finds
that people are partially, but not fully, aware of their time inconsistency. See, e.g., DellaVigna and Mal-
mendier (2006), Acland and Levy (2015), Augenblick and Rabin (2019), Chaloupka, Levy, and White (2019),
Bai et al. (forthcoming), Carrera et al. (2022). The preferences-over-menu elicitations that are proposed in
the decision theory literature (e.g., Gul and Pesendorfer, 2001, Dekel and Lipman, 2012, Ahn and Sarver,
2013), however, implicitly require full sophistication.

5In practice, data sets do not have more than several observations of an individual’s propensity to revise
their choices. A typical assumption that facilitates identification is that individuals who make the same
choice in time 0 are homogeneous in their preferences and economic environments, and any differences in
time-1 choices are due to independent realizations of time-1 taste shocks.

6To be clear, belief-based biases that generate behavior resembling time inconsistency, such as the
planning fallacy (Kahneman and Tversky, 1982, Buehler, Griffin, and Peetz, 2010, Brunnermeier, Papakon-
stantinou, and Parker, 2008), overoptimism (Browning and Tobacman, 2015, Breig, Gibson, and Shrader,
2021) or other misperceptions of the time-1 decision environment (Sadoff, Samek, and Sprenger, 2019), are
violations of TC-EU in our framework as the time-0 preference is not derived by taking the (correct) expec-
tation over time-1 utilities. Our results thus imply that such biases can also not be identified from revision
designs.
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observed, the data can be rationalized by TC-EU as long as there is no simple dominance
violation—i.e., alternatives x1 and x2 such that x1 is preferred to x2 in time 0, but where
x2 is preferred to x1 with probability 1 at time 1. In the general case where preferences are
incompletely observed, Theorem 1 states that the data can be rationalized by TC-EU under
the more general requirement that there is no cyclic dominance violation—i.e., a collection
of alternatives x1, . . . , xk such that xj+1 is preferred to xj either at time 0 or with probability
1 at time 1, and such that also x1 is preferred to xk either at time 0 or with probability 1 at
time 1. Theorem 2 shows that under the additional assumption that the analyst knows the
utility functions to be strictly concave in both time 0 and time 1, the data are consistent
with TC-EU if and only if there is no simple dominance violation and the time-0 ranking of
alternatives is single-peaked.

As neither of these patterns are empirically observed, Theorems 1 and 2 imply that, in
line with our numerical examples, existing data sets can not reject the hypothesis that the
agent is a time-consistent expected utility maximizer. Our findings caution against the use
of revision designs to identify time-consistency if the environment does not admit additional
structural properties that facilitate identification, which we discuss in Section 4.

We view Theorems 1 and 2 as our main results that cover a range of environments of
economic interest. In addition, provide results for preferences that are not single-peaked. We
show by example that TC-EU can be rejected for non-single-peaked preferences even when
there are no cyclic dominance violations. The reason is that there may be stochastic domi-
nance violations—which we define to be the case where lottery L is revealed to stochastically
dominate lottery L′ according to time-1 preferences, but where L′ stochastically dominates
L according to time-0 preferences. Proposition 1 shows that a data set is consistent with
TC-EU if and only if there are no stochastic dominance violations. Proposition 3 generalizes
this result to the case where the analyst obtains (or assumes) additional cardinal information
by directly observing (or assuming) an agent’s preferences over a set of lotteries. Addition-
ally, we provide sufficient conditions for when data sets do not exhibit stochastic dominance
violations.

In Section 4 we present a set of conditions under which the degree of time inconsistency
can be identified. Roughly speaking, point identification requires the existence of at least one
dimension of consumption, such as money “far in the future,” such that the agent’s beliefs
about the marginal utility of consumption along this dimension do not change between time
0 and time 1. We argue that the conditions for identification are plausible in recent work
such as Augenblick and Rabin (2019), Augenblick (2018), and Fedyk (2018).

Because our results about the difficulty of identification arise due to random taste shocks
and other decision-relevant information being realized between time 0 and time 1, we guage
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the importance of this in Section 5.1. We show that data from recent work suggests that only
a small fraction of the variance in time-1 choice revisions can be explained by stable individual
differences in time preferences, which suggests a quantitatively large role for random taste
shocks or the revelation of other decision-relevant information.

Section 5.2 addresses tests that attempt to differentiate between time preferences and
random taste shocks by utilizing augmented designs that link choice in revision designs to
decisions about take-up of commitment contracts. We show that combining revision design
data with commitment contract take-up decisions does not mitigate the non-identification
issues.

Our research question belongs to a small and important theoretical literature that studies
what types of data sets can be rationalized by expected utility maximization with Bayesian
learning. Shmaya and Yariv (2016) characterize data sets that can reject EU preferences in
experimental designs where the agent might believe that the amount of information provided
to them reveals information about an underlying state and the analyst observes which state
subjects deem most likely. In the context of optimal stopping problems, Heidhues and Strack
(2020) show that time preferences can not be identified from observing the distribution of
times when an agent completes a task. De Oliveira and Lamba (2021) characterize, for
general dynamic decision problems, what sequences of choices can be rationalized by EU
preferences if the analyst knows the agent’s utility function. They find that a distribution
over actions can be rationalized if and only if the agent could not improve their expected
payoff by deviating and changing their actions.

The rest of this paper proceeds as follows. Section 1 presents numerical examples. Sec-
tion 2 presents the formal model. Section 3 presents our main results about the types of data
sets that are consistent with TC-EU. Section 4 presents results about economic environments
where it is possible to identify the degree of time inconsistency. Section 5 discusses gener-
alizations, robustness, and connections to other related literatures in economics. Section 6
concludes. Proofs are relegated to the appendix.

1 Motivating Examples

1.1 Intertemporal Allocation of Consumption

To illustrate the difficulty of identifying time inconsistency from a revision data set, consider
the following stylized example based on research designs that study people’s intertemporal
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allocation of effort.7 The insights from this example apply equally to empirical work on
intertemporal allocation of consumption.

An agent has to complete a task that requires one unit of effort. They can decide what
fraction x ∈ [0, 1] of effort to complete at time 1 and what fraction of effort 1−x to complete
at time 2. The agent is first asked to decide on the division of effort at time 0 and then
given the chance to revise their decision at time 1. Truth-telling is incentive-compatible at
both times because each decision is implemented with positive probability, as is typical in
such experimental designs (e.g., Imai, Rutter, and Camerer, 2021). At time 0 and time 1,
respectively, the agent chooses x to minimize:

Time 0: E0 [βθ1c(x) + βθ2c(1− x)]

Time 1: E1 [θ1c(x) + βθ2c(1− x)]

where Et[·] denotes the expectation given the agent’s time-t information. These preferences
correspond to the commonly-assumed quasi-hyperbolic preferences.8

The analyst observes that the agent divides the effort equally between the two periods
when deciding at time 0. However, at time 1 the agent instead allocates an average of 45%
to period 1, with a standard deviation of 12%. The observed distribution of the ratio of
efforts x/(1−x) follows a log-normal distribution.9 The analyst knows that the cost of effort
is c(x) = xγ, for a known value of γ > 1. Assuming that the analyst knows the cost of effort
facilitates identification, but we show that nevertheless little can be inferred about the time
inconsistency parameter β.

The challenge for identification arises because there are multiple plausible assumptions
about how information is revealed to the agent that all fit the data exactly. In Table 1
below, we consider seven different assumptions about information revelation, all of which
perfectly match the analyst’s data set, but which produce significantly different estimates of
the present focus parameter β. Appendix C provides formal mathematical calculations for
each of these different sets of assumptions about information revelation.

Rows 1 and 2 consider the case where both θ1 and θ2 are independently and identically
distributed, and are both revealed at time 1. Rows 3 and 4 consider the case where θ1 and

7For experimental studies using similar designs see, e.g., Augenblick, Niederle, and Sprenger (2015),
Barton (2015), Corbett (2016), Kölle and Wenner (2019), Andreoni et al. (2020), Abebe, Caria, and Ortiz-
Ospina (2021), Imas, Kuhn, and Mironova (forthcoming); and Imai, Rutter, and Camerer (2021) for a
review.

8We normalize the “exponential discount factor” δ to 1, which is without loss of generality as it can be
included in θ2.

9The allocations of 50 and 45 percent, respectively, are roughly in line with the data in Augenblick,
Niederle, and Sprenger (2015).

5



Table 1: Implied time inconsistency under different information revelation assumptions

Distribution of shocks
Information

γ
Estimated

time 0 time 1 β

1 iid θ1, θ2 2 0.82
2 iid θ1, θ2 3 0.67
3 independent θ1 θ1, θ2 2 0.93
4 independent θ1 θ1, θ2 3 1.11
5 independent θ2 θ1, θ2 2 0.72
6 independent θ2 θ1, θ2 3 0.41
7 independent θ1 2 0.72
8 independent θ1 3 0.41
9 mult. random walk θ1, θ2 2 0.93
10 mult. random walk θ1, θ2 3 1.11
11 mult. AR(1), α=1.5 θ1 2 1.53
12 mult. AR(1), α=1.5 θ1 3 8.17
13 mult. AR(1), α=0.5 θ1 2 0.56
14 mult. AR(1), α=0.5 θ1 3 0.15

θ2 are distributed independently, with nothing learned at time 0 and only θ1 learned at time
1. Rows 5-8 instead consider the case where the information obtained between time 0 and
time 1 is θ1. Rows 9 and 10, like rows 1 and 2, assume that θ1 and θ2 are learned at time
1, but make the alternative assumption that their joint distribution follows a multiplicative
random walk, where θ2 = θ1 × ε, with ε log-normally distributed and independent of θ1.
Rows 11-14 make the same assumptions as rows 3 and 4 about when θ1 and θ2 are learned,
but instead assume that their joint distribution follows a multiplicative AR(1) process, where
log(θ2) = α log(θ1) + log(ε) and ε is log-normally distributed and independent of θ1.

Table 1 shows that inferences about β are highly sensitive to equally-plausible assump-
tions about the agent’s learning process. Existing empirical work analyzing data sets anal-
ogous to this example utilizes a reduce-form regression model—sometimes referred to as
the “intertemporal Euler equation” (Augenblick, Niederle, and Sprenger 2015, Imai, Rutter,
and Camerer 2021)—that corresponds to the assumptions in rows 1 and 2. The estimating
equation utilized in the literature can be written as

(γ − 1) log

(
x1

1− x1

)
= (γ − 1) log

(
x0

1− x0

)
+ log(β) + ε,
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where ε is normally distributed with E[ε] = 0. To see that it corresponds to the assumptions
in rows 1 and 2, note that more generally, the optimal effort at time t satisfies

(γ − 1) log
xt

1− xt
= log

Et[θ2]

Et[θ1]
+ log(β)1t=1 .

where 1t=1 is an indicator that the decision is made at time t = 1. If, as in rows 1 and 2,
θ2 and θ1 are iid and log-normal, and if they are both learned at time 1, then log E1[θ2]

E1[θ1]
is

normally distributed with mean 0, while log E0[θ2]
E0[θ1]

= 0. However, the learning processes in
the other rows are inconsistent with the reduced-form linear model that the literature has
previously used to estimate β. Moreover, Table 1 makes clear that the assumptions in rows
1 and 2 cannot be used to obtain either lower or upper bounds on β. Other assumptions can
lead to significantly lower values of β, or to significantly higher values of β consistent with
future focus.10 While this example is stylized, our formal results show that the inability to
identify time inconsistency is not a consequence of any of the special features of this example,
but a general feature of revision designs.

1.2 Food choice

Inspired by Read and van Leeuwen (1998) and related studies,11 consider an agent who
chooses between a healthy snack and an unhealthy snack. In the Read and van Leeuwen
(1998) experiment, participants choose between a healthy and an unhealthy snack at time
0, to be delivered at time 1 (after seven days). Then, at time 1, participants are given a
surprise opportunity to revise their time-0 choice. On average (collapsing across individuals
and conditions), subjects at time 0 choose the healthy snacks approximately 50 percent of the
time, but at time 1 choose healthy snacks approximately 20 percent of the time.12 Moreover,
Read and van Leeuwen report that switching to the unhealthy snack was far more common
than switching to the healthy snack.

10In Appendix B, Augenblick, Niederle, and Sprenger (2015) consider the alternative assumption that
there is uncertainty on the curvature of the cost of effort functions, and that the shocks to time 1 and
2 cost of effort functions are perfectly correlated. Under these assumptions, they find that uncertainty
generates moderate upward bias in their estimate of the present focus parameter β. As our results show,
other forms of taste shocks—in particular those that affect the cost in both periods differentially— can
generate either upward or downward bias in estimates of present focus. Relatedly, our additional analysis
in Supplementary Appendix E.2.1 shows that Augenblick, Niederle, and Sprenger’s supplementary data on
commitment contract take-up does not substantially narrow the set of time preferences consistent with their
data.

11Empirical designs with similar structures include the food-delivery field experiment of Sadoff, Samek,
and Sprenger (2019), Read, Loewenstein, and Kalyanaraman’s (1999) study of choice between high-brow
and low-brow video rentals, and Milkman, Rogers, and Bazerman’s (2009) quasi-experimental extension of
Read, Loewenstein, and Kalyanaraman (1999).

12These summary statistics are reported in Cohen et al. (2020).
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To obtain the results of Read and van Leeuwen with time-consistent preferences, consider
a population of agents with the following preferences. At time 1, the agents feel gorged with
probability 20 percent, in which case they crave cleansing healthy food, so that the utility
difference between the unhealthy and healthy snack equals −5. With probability 80 percent
the utility difference between the unhealthy and healthy snack equals 1. At time 0 it is thus
optimal for the agents to choose the healthy snack if they do not know the time-1 state,
as 0.8 × 1 + 0.2 × (−5) < 0. Now suppose that 38 percent of the agents do not know the
time-1 state at time 0, while the remaining 62 already know the state at time 0. Thus,
0.38 + 0.62 · 0.2 = 50 percent choose the healthy snack at time 0. However, only 20 percent
choose the healthy snack at time 1. Moreover, the direction of revisions is asymmetric: 38
percent switch from choosing the healthy snack at time 0 to choosing the unhealthy snack
at time 1, but no one switches from choosing the unhealthy snack to choosing the healthy
snack.

2 Model
Preference data set There is an agent who has a preference over a finite set of alternatives
X at time 0 and time 1.13 Their preference at time 0 is deterministic and denoted by ⪯0.
Their preference ⪯1 at time 1 is a random draw from (⪯1

1, . . . ,⪯1
n), with n < ∞. We

denote by (f1, . . . , fn) the strictly positive probabilities (or frequencies) associated with each
realization. A data set

(⪯0,⪯1
1, . . . ,⪯1

n, f1, . . . , fn)

consists of a time-0 preference ⪯0 and a probability distribution over time-1 preferences,
which we compactly write as (⪯1, f).

In practice, some revision design experiments allow the analyst to observe preferences
(almost) completely, while others provide much more limited information. For example,
experimental designs can provide more detailed information about preferences by studying
choice from multiple budget sets. We leave our model general enough to cover these possi-
bilities by assuming that the preferences can be either complete, i.e. the ranking of any two
alternatives is observed, or incomplete.14 We assume that if two alternatives x, y ∈ X are
related by the (potentially incomplete) preference ⪯, then the analyst observes whether the
agent is indifferent or prefers one of the alternatives strictly; i.e., either x ∼ y, or x ≺ y, or

13We make the assumption that the choice set is finite to avoid technicalities and streamline the presen-
tation. We put no bound on the size of the choice set. In empirical applications the choice set is necessarily
finite.

14We do not require ⪯0 or any of the ⪯1
j to relate the same pairs of alternatives, or even the same number

of alternatives.
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y ≺ x.15 Note that if strict preferences cannot be observed, then any data set is trivially
consistent with TC-EU, where the utility function assigns the same value to each alternative.

Time-Consistent Expected Utility Preferences The stochasticity in observed time-1
preferences might result from the agent receiving information at the beginning of time 1
about payoff-relevant aspects of the decision—such as how busy they will be in the future
or whether they crave sweet or savory foods—that is not resolved until time 1. The analyst
does not observe these states directly and only knows the distribution over the different
rankings that result from variation in time-1 states.

To model this formally we consider a time-consistent expected-utility (TC-EU) agent
who evaluates alternatives according to the utility function

u : X × Ω → R

that depends on the chosen alternative x ∈ X and state ω ∈ Ω. The states capture taste
shocks or information that arrives between time 0 and time 1, and the agent does not know
the state at time 0, but observes it at time 1. Our convention is to denote the state by a
subscript and the alternative as an argument, so that uω(x) denotes the utility of alternative
x in state ω.

Without loss, we can assume that there as many states as realizations of the time-1
preference, with each realization of the time-1 preference corresponding to a state, so that
Ω = {1, . . . , n}.16 The TC-EU agent prefers alternative x over y in state ω at time 1 if and
only if x has a higher associated utility; i.e., for all x, y ∈ X, ω ∈ Ω,

y ⪯1
ω x ⇔ uω(y) ≤ uω(x) . (1)

At time 0 the TC-EU agent prefers x over y if and only if the expected utility of x exceeds
15Formally, ⪯ is a preorder where we interpret x ⪯ y and y ⪯ x as indifference x ∼ y, and x ⪯ y but

not y ⪯ x as a strict preference for u over x. The preference between x,y is unobserved if neither x ⪯ y nor
y ⪯ x. If the ranking of any two alternatives is observed then ⪯ is a complete preorder.

16To see that assuming that each state corresponds to an observed preference profile is without loss, note
that if we have a TC-EU representation (u,Ω, F ), consisting of a utility u, a state space Ω, and a prior F
that is consistent with the ordinal preferences (⪯0,⪯1), then without loss of generality we can associate each
set Ωk of states that leads to a preference profile ⪯1

k with the newly defined state k. We define a utility
function on this new state space as the conditional expectation ũk(x) =

∫
Ωk

uω(x)dF∫
Ωk

dF
and obtain a new EU

representation with the desired state space {1, . . . , n}.
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the expected utility of y; i.e., for all x, y ∈ X,

y ⪯0 x ⇔
∑
ω∈Ω

fωuω(y) ≤
∑
ω∈Ω

fωuω(x) . (2)

Definition 1 (Consistency with TC-EU). A data set (⪯0,⪯1, f) is consistent with TC-EU
if there exists a utility function u : X × Ω → R that satisfies (1) and (2).

In words, consistency with TC-EU means that there exists a state-dependent utility
function that is consistent with the observed time-1 preference ⪯1

ω in each state ω, and such
that the expectation of this utility function is consistent with the observed time-0 preference
⪯0. Our definition of TC-EU requires the agent to correctly understand the distribution
of states. Thus, time-inconsistent behavior generated by belief-based biases such as the
planning fallacy17 or other forms of overoptimism18 is not compatible with our definition of
TC-EU.

Remark 1. Our assumption of deterministic time-0 preferences is without loss: if the analyst
observes the time-1 choices conditional on the agent’s time-0 choice, our results apply to
the conditional choice distribution. If the analyst observes only the marginal distributions of
preferences, she has strictly less information and identification of time-inconsistency becomes
harder, which means that all our non-identification results apply.19

Remark 2. Our assumptions facilitate identification of time-inconsistent behavior, as the
analyst observes the exact distribution of time-1 preferences. This corresponds to the limit
case where the analyst either observes the same agent’s behavior in exactly the same situation
infinitely often, or to the limit case where the analyst observes infinitely many agents with
identical preferences in the exactly same informational environment (but with independent
realizations of states at time 1). Empirical work typically attempts to approximate one of
these limit cases, usually by imposing some type of homogeneity assumption. Thus, our
results can be seen as showing that rejecting TC-EU is difficult even with these arguably
strong assumptions.

17See e.g. Kahneman and Tversky (1982), Buehler, Griffin, and Peetz (2010), Brunnermeier, Papakon-
stantinou, and Parker (2008).

18See e.g. Browning and Tobacman (2015), Breig, Gibson, and Shrader (2021).
19While we do not formally introduce random time-0 choice in the body of the paper as it adds no insight

and complicates notation, we recognize its empirical relevance and present the model with random time-0
choice in Supplementary Appendix E.
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3 Rejecting Time Consistency

3.1 Single-Peaked Preferences

We first consider the case where the alternatives are real numbers X ⊂ R, and the time-1
preferences are single-peaked, defined as follows:

Definition 2 (Single-Peaked Preference). A potentially incomplete preference ⪯ is single-
peaked if for any alternatives x < y < z either x ≺ y or z ≺ y.

The random preference ⪯1 is single-peaked if each possible realization (⪯1
ω)ω∈Ω is single-

peaked. The single-peaked property is natural in environments where agents choose how to
allocate consumption or effort over time, as in the numerical example in Section 1.1. If the
utility from leisure is concave in each period, then the agent’s utility function will be concave
and thus single-peaked in the share of work done in time 1. The single-peaked property also
mechanically applies to binary choice sets, as in the example in Section 1.2. We consider the
slightly stronger assumption of concavity in the next subsection.

Our definition of single-peaked preferences applies to incomplete preferences. For exam-
ple, suppose that it is known that an agent’s most preferred alternative is some x∗ ∈ X.
The single-peakness implies that moving further left or right of x∗ leads to less attractive
alternatives, but it provides no information about how the agent compares alternatives to
the left of x∗ against those to the right of x∗.

A natural requirement on a data set is that the agents’ choices do not contradict them-
selves: if at time 1 the agent always prefers some alternative over another then they should
also prefer that alternative at time 0. The next definition formalizes this idea.

Definition 3 (Simple Dominance Violations). A data set (⪯0,⪯1, f) exhibits simple dom-
inance violations if there exist x, y ∈ X such that x ⪯0 y, y ⪯1

ω x for all ω ∈ Ω, and either
x ≺0 y or y ≺1

ω x for some ω ∈ Ω.

For example, if the analyst observes that the agent always prefers the unhealthy over the
healthy snack at time 1, then the agent should also prefer the unhealthy snack at time 0 if
they are time-consistent. It follows immediately from the definition that any data set that
is consistent with TC-EU cannot exhibit simple dominance violations. Theorem 1 below
presents a converse of that statement when the time-0 preference is complete and the time-1
preference is single-peaked.

We also introduce a generalization of simple dominance violations to provide a more
general characterization of incomplete preferences. To simplify notation, we denote by ⪯1

∗

the preorder that is generated by agreement of the agent’s preferences in all states ω: x ⪯1
∗

y ⇔ x ⪯1
ω y for all ω.
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Definition 4 (Cyclic Dominance Violations). A data set (⪯0,⪯1, f) exhibits cyclic domi-
nance violations if there exists a sequence of alternatives x1, x2, . . . , xk that are alternatingly
ranked by the orders ⪯0,⪯1

∗,

x1 ⪯0 x2 ⪯1
∗ x3 ⪯0 . . . ⪯0 xk ⪯1

∗ x1,

with at least one relation strict.20

Clearly, a simple dominance violation is a cyclic dominance violation with a cycle of
length 2. And as Lemma 3 in Appendix A.1 shows, cyclic dominance violations imply simple
dominance violations when the time-0 preference is complete. In general, however, data sets
can exhibit cyclic dominance violations without exhibiting simple dominance violations (see
Example 1 below). The absence of a cyclic dominance violation is trivially necessary for a
data set to be compatible with TC-EU and our next result shows that it is indeed sufficient.

Theorem 1 (Consistency with TC-EU). Consider X ⊂ R and let (⪯0,⪯1, f) be a data set
with strict and single-peaked time-1 preferences.

(i) The data set is consistent with TC-EU if and only if it exhibits no cyclic dominance
violations.

(ii) If ⪯0 is complete, then the data set is consistent with TC-EU if and only if it exhibits
no simple dominance violations.

Theorem 1 implies that it could be difficult to reject TC-EU using revision designs. For
example, if at time 0 the agent chooses to allocate a fraction x = 1/2 of resources to time 1
(and the remainder x = 1/2 to time 2), then TC-EU is rejected if and only if at time 1 the
agent always revises to allocate more resources to time 1, i.e. x > 1/2.

How demanding of a test this is depends on the randomness of taste shocks at time
1. In a deterministic environment (i.e., |Ω| = 1) with a rich choice set, an agent with
dynamically inconsistent time preferences will often exhibit dominance violations. However,
the more variability there is in an agent’s time-1 preference, the more unlikely dominance
violations become, even if the agent does have dynamically inconsistent time preferences.
Thus, Theorem 1 suggests that while revision designs can provide discerning tests of time
inconsistency in deterministic environments, they are fairly uninformative about whether an
agent is time-consistent or time-inconsistent when there is significant stochasticity in time-1

20We only need to consider cycles where the order is generated between alternations between ⪯1
∗ and ⪯0

because due to transitivity we can always remove elements that are bounded from above and below in the
same order. Any such cycle has an even number of elements.
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choices.21 We are not aware of any revision design study where the data contain a simple or
cyclic dominance violation.

Remark 3. The consistency conditions in Theorem 1 do not involve the probabilities f .
Thus, Theorem 1 also applies to the case where the analyst simply knows that each time-1
preference profile ⪯1

j occurs with positive probability. An analogous comment applies to the
other theorems in this section.

We end this section with an example of a data set that admits a cyclic but not simple
dominance violation.

Example 1. There are four alternatives X = {1, 2, 3, 4} and only one state, with single-
peaked time-1 preference ⪯1 in that state. The time-1 (incomplete) preference is 1 ≺1 2 and
4 ≺1 3, while the time-0 (incomplete) preference is 2 ≺0 4 and 3 ≺0 1. Since each preference
relates a different pair of alternatives, there is no simple dominance violation. However,
no utility function is consistent with both the time-0 and time-1 preferences, as the time-1
preference would imply that u(1) < u(2), the time-0 preference would imply that u(2) < u(4),
the time-1 preference would also imply that u(4) < u(3), which would then imply that
u(1) < u(3), violating the time-0 preference. The cycle here is 1 ≺1 2 ≺0 4 ≺1 3 ≺0 1.

3.2 Concave Utilities

An additional plausible restriction is that the agent’s time-1 utility is concave in each state.
For example, it is natural to assume that each period, the utility from consumption is concave,
or that the cost of effort is convex. If the agent decides what share of resources x to allocate
to time 1, and what share 1− x to allocate to time 2, and if uω(x) = v1ω(x)+ v2ω(1− x), with
v1 and v2 both concave, then uω will be concave as well. We say that a data set is consistent
with concave TC-EU if is consistent with TC-EU for a strictly concave utility function.

It is immediate that any concave utility function leads to single-peaked preferences. More-
over, because the expectation of a strictly concave function is itself strictly concave, it follows
that the time-0 utility must be concave whenever all time-1 utilities are concave. This im-
mediately implies that a necessary condition for a data set to be consistent with concave

21Theorem 1 and related results about ordinal preference data sets can be generalized from TC-EU to
recursive preferences that nest TC-EU, such as the Epstein and Zin (1989) preferences. To see this, let ⪯0

be complete and note that any time-0 preference that is a monotonic (but not necessarily linear) function of
time-1 utilities cannot generate simple dominance violations. Conversely, as TC-EU is a recursive preference,
any data set consistent with TC-EU is also consistent with recursive preferences. Theorem 1 thus implies that
if a strict, single-peaked data set is consistent with some monotone recursive preference it is also consistent
with TC-EU, and hence TC-EU imposes little restrictions on the data. We thank Yoram Halevy and Faruk
Gul for pointing this out.
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TC-EU is that the time-0 preference must be single-peaked. Our next result shows that this
condition, together with no simple dominance violations, is also sufficient, and thus provides
a complete characterization of all data sets that are consistent with concave TC-EU.

Theorem 2. If X ⊂ R, a data set (⪯0,⪯1, f) is consistent with concave TC-EU if and
only if (i) time-0 and time-1 preferences are single-peaked and (ii) the data exhibit no simple
dominance violations.

We note that the additional restriction that the time-0 preference is also single-peaked
implies that lack of simple dominance violations is enough to guarantee consistency with
TC-EU; it is not necessary to consider cyclic dominance violations more generally in this
case. In Example 1, the time-0 preference is not single-peaked, because single-peakness
would require that 1 ⪯0 2 and 2 ⪯0 3 if 2 ≺0 4, which is inconsistent with 3 ≺0 1.

3.3 A Sketch of the Proofs of our Main Results

We next sketch the idea behind the proofs of Theorems 1 and 2. We invite readers not
interested in the mathematical argument to skip this section. First, define U0 ⊂ R|X| to
be the set of utilities consistent with ⪯0 and Ū1 ⊂ R|X| to be the set of expected utilities
consistent with the random preference ⪯1. The sets U0, Ū1 have an empty intersection if
and only if the data set (⪯0,⪯1, f) cannot be explained by TC-EU. The sets U0, Ū1 are
convex, relatively open cones that are closed under the addition of constants. Thus, they
have an empty intersection if and only if there exists a hyperplane that properly separates
U0 and Ū1; i.e., there is a vector p ∈ R|X| and a constant c ∈ R such that p · u0 ≥ c ≥ p · u1

for all u0 ∈ U0 and u1 ∈ Ū1, with one of the inequalities strict. Due to the structure
of U0, Ū1, this hyperplane must pass through the origin (i.e., c = 0) and the entries of p

must sum to 0. Moreover, we show that that the same inequality must remain strict for
all u0 ∈ U0 and u1 ∈ Ū1. These properties imply that we can write p as the difference of
two component-wise non-negative vectors whose entries sum to 1, and thus correspond to
lotteries over alternatives. These lotteries have the property that one is preferred under any
utility representation of the time-0 preference ⪯0, while the other is preferred under any
utility representation of the time-1 preference ⪯1, with one of these preferences strict (we
state variants of this insight as Propositions 1 and 3). The goal, then, is to establish that
the existence of these lotteries, together with the assumptions of Theorems 1 or 2, implies
cyclic or simple dominance violations, respectively.

For clarity, we sketch the remainder of the argument only for the case where all preferences
are complete, and where there is a unique least-preferred alternative at both time 0 and
in every state at time 1. Without these restrictions, the argument is substantially more
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involved, and makes use of supplementary results on aggregation of incomplete preorders
in Appendix A.1. In the complete preference case, the remainder of the proof establishes
that if Ū1 is generated by either single-peaked or concave utilities, then the existence of
two such lotteries implies that one can find two degenerate lotteries with the same property,
which then correspond to a simple dominance violation. Mathematically, this is the main
step of the argument and might be of independent interest: It corresponds to establishing a
condition under which if a separating hyperplane exists between two cones, there also exists
a hyperplane where p has only two non-zero entries equal to +1 and −1.

We prove this result by induction over the number of alternatives. It is trivially true
for two alternatives. For any number of alternatives larger than 2 we establish that the
alternative that is least preferred according to the time-0 preference is such that (i) it either
dominates another alternative according to the time-1 preference or (ii) its corresponding
coefficient in p must equal zero. Case (i) implies a separating hyperplane with only two
non-zero entries. Case (ii) reduces the problem to one with one less alternative, which then
completes the proof by the induction hypothesis.

To establish the claim in case (ii) above, we show that if a given alternative x does
not dominate any other alternative according to the time-1 preferences, and preferences are
either single-peaked or concave, there exists time-1 utility representations that leaves the
expected utility of any other alternative unchanged, and decreases the expected utility of x
by an arbitrary amount. As x is chosen to be the least preferred element according to the
time-0 preference, one can also arbitrarily decrease its utility in a representation of the time-0
preferences. But because the hyperplane separates U0 and Ū1, the coefficient corresponding
to x in the hyperplane p must then be zero.

3.4 Other Types of Ordinal Preference Data

We have thus far characterized consistency with TC-EU for data sets where the time-1
preference is single-peaked. A natural question is whether the results generalize to non-
single-peaked preferences. The example below shows that they do not.

Example 2. There are 6 alternatives X = {1, 2, 3, 4, 5, 6} and two states Ω = {1, 2}. All
preferences are strict and given by

1 ≺0 2 ≺0 3 ≺0 4 ≺0 5 ≺0 6

2 ≺1
1 3 ≺1

1 6 ≺1
1 1 ≺1

1 4 ≺1
1 5

4 ≺1
2 1 ≺1

2 2 ≺1
2 5 ≺1

2 6 ≺1
2 3 .
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It is easy to check that the preferences given in Example 2 exhibit no simple or cyclic
dominance violations. However, the preferences are not consistent with TC-EU. In both
states, the time-1 preference implies that the individual strictly prefers a uniform lottery
over {1, 3, 5} to a uniform lottery over {2, 4, 6} in each state, since the former first-order
stochastically dominates the latter. However, the time-0 preference implies that the individ-
ual strictly prefers a uniform lottery over {2, 4, 6} to a uniform lottery over {1, 3, 5}.22

To formalize more general necessary and sufficient conditions for consistency with TC-
EU, recall that a complete ordinal preference ⪯ over X induces an incomplete preference over
lotteries through first-order stochastic dominance. Formally, denote by L(x) the probability
assigned to x by the lottery L ∈ ∆(X). For x1 ⪯ x2 ⪯ . . . ⪯ x|X| the lottery L is dominated
by L′ if for all r ∈ {1, . . . , |X|},

r∑
s=1

L(xs) ≥
r∑

s=1

L′(xs) .

Strict dominance—denoted by ≺—holds if dominance holds, but not equality. We can also
generalize the stochastic dominance order to incomplete preferences: L ⪯ L′ if and only if
first-order stochastic dominance holds for all completions of the incomplete preference.

Example 2 motivates a stronger necessary and sufficient condition for consistency with
TC-EU that involves lotteries:

Definition 5 (Stochastic Dominance Violations). A data set (⪯0,⪯1, f) exhibits a stochastic
dominance violation if there exist lotteries L,L′ ∈ ∆(X) such that L ⪯0 L′, L′ ⪯1

ω L for all
ω ∈ Ω and either L ≺0 L′ or L′ ≺1

ω L for some ω ∈ Ω.

Since the lotteries can be degenerate, any simple dominance violation is also a stochas-
tic dominance violation. Similarly, a cyclic dominance violation also implies a stochastic
dominance violation.24 Our next result establishes that absence of stochastic dominance
violations characterises TC-EU preferences.

Proposition 1 (Consistency with TC-EU). A data set (⪯0,⪯1, f) is consistent with TC-EU
if and only if it exhibits no stochastic dominance violations.

22Example 2 is minimal in the following sense: For all data sets with two states (|Ω| = 2) and fewer than
6 alternatives (|X| < 6), consistency with TC-EU is ensured when there are no simple dominance violations
(i.e., the conclusion of Theorem 1 holds for non single-peaked data with |Ω| = 2, |X| < 6). Furthermore,
Example 2 is the only data set (up to relabeling of the states) with |Ω| = 2, |X| = 6 where Theorem 1 does
not hold.23 But there are many other examples of data sets not consistent with TC-EU and not exhibiting
simple dominance violations when |Ω| > 2 or |X| > 6.

24Following the notation of Definition 4, let L′ be a uniform lottery over the alternatives with even indices
in the cycle, and let L be a uniform lottery over the alternatives with odd indices in the cycle. Then L ⪯0 L′

and L′ ⪯1
ω L for all ω, with at least one of the preferences strict.
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Proposition 1 follows from more familiar separation arguments that serve as Lemmas for
our main results in Theorems 1 and 2.25 Although it is possible to reject TC-EU without
cyclic dominance violations for certain types of non-single-peaked preferences, the proposi-
tion shows that, loosely speaking, rejecting TC-EU is not that much easier for other classes
of preferences. Practically, the proposition is most useful for interpreting empirical designs
where the alternatives are not naturally ordered along a single dimension; e.g., designs where
individuals might choose between three or more different food options. Because in such de-
signs the choice set is unlikely to be large, checking for stochastic dominance violations is
not difficult in these applications.

Designs where the elements are not naturally ordered are often analyzed with convenient
parametric models of stochastic discrete choice, such as the Luce model. Below, we provide
a sufficient (but not necessary) condition that may be easier to check in some applications
than the necessary and sufficient condition in Proposition 1—and that speaks directly to a
key property of commonly used discrete choice models. The sufficient condition extends our
simple dominance consistency condition to a consistency condition over sets.

Proposition 2. The data set (⪯0,⪯1, f) is consistent with TC-EU if one of the following
holds:

(i) For each x there is a ω such that for all y ⪰0 x we do not have x ⪰1
ω y.

(ii) For each x there is a ω such that for all y ⪯0 x we do not have x ⪯1
ω y.

As an illustration, suppose that each alternative is the most preferred alternative with
positive probability—a positivity condition that holds for many standard stochastic discrete
choice models. Positivity holds, for example, in models with a random effect that follows a
Type-1 extreme value distribution—such as the one used by Sadoff, Samek, and Sprenger
(2019) to estimate the degree of dynamic inconsistency in food choice. In this case, all
alternatives that are lower-ranked according to the time-0 preference will also be lower-
ranked according to the preferences in the state where it is the most preferred alternative.
Thus, the second sufficient condition of the above proposition holds.

25An immediate conclusion obtained by combining Theorems 1 and 2 and Proposition 1 is the following
equivalence: A data set (⪯0,⪯1, f) with strict single-peaked time-1 and either complete or single peaked time-
0 preferences admits a stochastic dominance violation if and only if it admits a simple dominance violation.
Thus, intuitively, data sets composed of single-peaked preferences cannot violate dynamic consistency in a
complicated way without also violating it in a simpler way. We thank Xiaosheng Mu and Pietro Ortoleva
for pointing out this equivalence as an alternative perspective on our results.
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3.5 Cardinal Preferences Data

Proposition 1 follows from a more general result that applies to cases where some cardinal
information is known about time-0 or time-1 preferences. For example, some cardinal infor-
mation can be acquired by observing preferences over a set of lotteries, allowing the analyst
to draw some conclusions about the curvature of the utility functions. Some types of cardinal
information might also be assumed. For example, the analyst might use supplementary data
on risk aversion, the elasticity of labor supply, or the elasticity of intertemporal substitution
to decide what is a “reasonable” degree of curvature.

Formally, we associate each cardinal preference with a vector uω ∈ R|X|. We consider a
data set (U0, U1) where it is known that the time-1 cardinal preferences in state ω satisfy
uω(·) ∈ U1

ω ⊆ R|X|, and we set U1 ⊆ R|X|×|Ω| to be the product of the sets U1
ω. We make

three assumptions about U1: (i) U1
ω is convex; (ii) U1

ω is open relative to its affine hull;
(iii) if uω ∈ U1

ω then λ0 + λ1 uω ∈ U1
ω for all λ0 ∈ R and λ1 ∈ R++. Assumption (iii)

corresponds to the fact that cardinal information about utility functions can only be learned
up to monotonic linear transformations. Assumption (ii) is an innocuous technical condition.
Assumption (i) is arguably the strongest.

All three of these assumptions are satisfied for sets U0 and U1 of utility functions that
represent the ordinal relations ⪯0 and ⪯1, respectively (see Lemma 7 in the Appendix). The
following definition generalizes consistency with TC-EU.

Definition 6 (Consistency with TC-EU). A data set (U0, U1, f) is consistent with TC-EU
if there exist utility functions u1 ∈ U1 and u0 ∈ U0 such that for all x ∈ X,

u0(x) =
∑
ω∈Ω

fωu
1
ω(x) .

Intuitively, U0 captures the information that the analyst has about time-0 preferences
and U1 captures the information that the analyst has about time-1 preferences. A data set
(U0, U1, f) is consistent with TC-EU if there is a way of picking a utility function consis-
tent with the time-1 information such that the induced time-0 expected utility function is
consistent with the information the analyst has about time-0 utility.

To characterize the preferences that are consistent with TC-EU, it will be necessary to
consider lotteries over the alternatives, as we have done in the previous subsection. For any
lottery L ∈ ∆(X) and utility function u : X → R, we define the associated expected utility
u(L) =

∑
x∈X L(x)u(x).

Definition 7 (Dominance with Respect to U1). We say that L′ weakly dominates L if
u1
ω(L

′) ≥ u1
ω(L) for all u1 ∈ U1 and ω ∈ Ω. We say that L′ strictly dominates L if it weakly
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dominates L for each u1 ∈ U1, and there exists ω such that u1
ω(L

′) > u1
ω(L).

The above definition is equivalent to first-order stochastic dominance whenever U1
ω is the

set of all utility functions consistent with a given ordinal preference ⪯1
ω. We generalize our

definition of stochastic dominance violations accordingly.

Definition 8. A data set (U0, U1, f) exhibits stochastic dominance violations if there exist
lotteries L,L′ ∈ ∆(X) such that for every u0 ∈ U0 either

(i) L′ weakly dominates L with respect to U1 and u0(L) > u0(L′), or
(ii) L′ strictly dominates L with respect to U1 and u0(L) ≥ u0(L′).

This definition facilitates the following generalization of Proposition 1:

Proposition 3. A data set (U0, U1, f) is consistent with TC-EU if and only if it exhibits no
stochastic dominance violations.

4 Estimating Time Inconsistency

4.1 Data Sets with Identification of Time Inconsistency

We now propose a set of restrictions under which identification is possible. As a motivat-
ing example illustrating the intuition, consider the following hypothetical variation of the
experiment by Read and van Leeuwen:

Example 3 (Read and van Leeuwen with Money). Suppose again, as in the example in
Section 1.2, that the agent chooses between a healthy snack and an unhealthy snack. As
before, there are two time-1 states, where the agent either feels normal (ω = 1) or gorged
(ω = 2), with the corresponding probabilities f1 = 0.8 and f2 = 0.2. But suppose now that
the experimenter elicits—both at time 0 and at time 1—the maximal amount of money (to
be received later at “time 2”) that a person is willing to forego to receive their preferred
option.26 Given the small amounts of money involved, the experimenter assumes that the
agent’s preferences are (approximately) quasi-linear in the monetary amounts varied in the
experiment, and that the marginal utility from money does not vary with the hunger state.
Under these assumptions, TC-EU implies that the WTP for the healthy snack at time 0
must equal the average WTP at time 1.

Concretely, suppose that the agent has a WTP of $1 for the healthy snack over the
unhealthy snack at time 0. At time 1, the agent prefers the unhealthy snack by $1 with

26For the purpose of this example, assume that both time-0 and time-1 decisions concern time-2 money, to
eliminate any potential issues with money discounting. As we discuss later, the assumptions of this example
are most likely to be satisfied when time 2 is reasonably far away from time 1.
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probability 0.8, and prefers the healthy snack by $5 with probability 0.2. Thus, because the
agent has an average WTP for the healthy snack of 0.2× 5− 0.8× 1 = $0.20 < $1 at time 1,
their behavior is inconsistent with TC-EU. Relative to the healthy snack, the agent values
the unhealthy snack more at time 1 than at time 0, which might be explained by the pull of
immediate gratification, as arising from models such as quasi-hyperbolic discounting.

We next formalize this idea for general environments, starting with two definitions.

Definition 9. Preferences (⪯0,⪯1, f) on X ⊆ Y ×Z have an additively separable represen-
tation (h0, h1, g0, g1) if there exist h0, h1

ω : Y → R and g0, g1ω : Z → R such that for all states
ω,

u0(y, z) = h0(y) + g0(z)

u1
ω(y, z) = h1

ω(y) + g1ω(z)

are consistent with ⪯0 and ⪯1
ω, respectively.27

Definition 10. A preference ⪯ over X is responsive if there exists a reference alternative y◦

such that for every pair (y, y◦) ∈ Y 2 there exists a pair (z, z◦) ∈ Z2 such that (y, z) ∼ (y◦, z◦).
An agent’s preferences in a data set (⪯0,⪯1, f) are responsive if ⪯0 and ≺1

ω are responsive
for all ω, with the same reference alternative y◦.

As Example 3 illustrated, the assumptions of separability and responsiveness correspond
to the case where the agent’s preference for receiving an alternative y ∈ Y instead of y◦ ∈ Y

can be “priced out” in units of Z.28 The key additional assumption needed to use the
priced-out valuations to point identify time preferences is that g is state-independent; i.e.,
the agent’s valuations of alternatives in Z are state-independent. In the context of Example 3,
this assumption amounts to the assumption that the agent’s marginal utility of money does
not vary with their appetite. The proposition below formalizes the general case.

Proposition 4. If preferences in the data set (⪯0,⪯1, f) are responsive, additively separable,
and g ≡ g0 ≡ g11 ≡ . . . ≡ g1|Ω| is known, then the following is point-identified:

h0(y)− h0(y◦)∑
ω fω[h

1
ω(y)− h1

ω(y
◦)]

=
g(z◦0,y)− g(z0,y)∑

ω fω[g(z
◦
ω,y)− g(zω,y)]

, (3)

where (y, z0,y) ∼0 (y◦, z◦0,y) and (y, zω,y) ∼1
ω (y◦, z◦ω,y) for all ω ∈ Ω.

27To be clear, we use h1 = (h1
ω)ω∈Ω and g1 = (g1ω)ω∈Ω to denote vectors of possible time-1 utilities.

28Practically, a responsive data set can be easily generated using standard multiple price list or Becker–
DeGroot–Marschak (BDM) techniques. The analyst simply needs to elicit how much money an agent is
willing to forego to obtain their preferred option, and ensure enough range in monetary amounts to elicit
the agent’s maximum willingness to pay.
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The right-hand-side of (3) is observable in the data set because g is known and the
alternatives z0,y, z0,y◦ , zω,y, zω,y◦ that make the agent indifferent between y and y◦ are observed
in a responsive data set. Intuitively, the ratio on the right-hand-side captures how the agent’s
valuation of alternatives in Y , measured in units of Z, changes over time (on average). For
a TC-EU agent, h0(y) =

∑
ω fω h

1
ω(y) for all y, and thus the expression in (3) must equal 1.

An identification strategy corresponding to the logic of Proposition 4 is utilized in Au-
genblick and Rabin (2019), Augenblick (2018), and Fedyk (2018). We summarize the main
idea in the example below:

Example 4 (Augenblick and Rabin 2019). Augenblick and Rabin elicit willingness to work
for various amounts of money. Suppose that preferences follow the quasi-hyperbolic dis-
counting model and are given by

u0(y, z) =

[∑
ω

fωβ h1
ω(y)

]
+ β g(z)

u1(y, z) = h1
ω(y) + β g(z)

(4)

where y is work at time 1 and z is compensation for this work, paid out later. Here, the
analyst assumes that the marginal utility of money is independent of the marginal costs of
effort in the experiment. Also, given the small stakes, the analyst has good reason to believe
that utility is quasi-linear in money and thus sets g(z) = z.29 As h0 ≡

∑
ω βfωh

1
ω, we have

that
β =

h0(y)− h0(y◦)∑
ω fω[h

1
ω(y)− h1

ω(y
◦)]

and Proposition 4 implies that because g is known, β is point-identified. The intuition is
that quasi-hyperbolic discounting implies that estimated willingness-to-accept for an extra
unit of work must be higher by a proportion 1/β, on average, in time 1 versus time 0.

As Examples 3 and 4 illustrate, one strategy to obtain point identification is to monetize
agents’ preferences over alternatives in Y , under conditions that ensure that it is plausible to
assume that (i) preferences are separable over money and Y , (ii) the marginal utility of money
does not vary with shocks to utility from alternatives in Y , and (iii) the analyst can estimate
a utility function over money, either by assuming quasi-linearity or by using preferences over
lotteries to estimate curvature. Although this set of conditions is restrictive, it is possible to
plausibly approximate these conditions in the field, as has been done by Chaloupka, Levy,
and White (2019), Carrera et al. (2022) and Allcott et al. (2022), building on the ideas in

29Alternatively, assume that the analyst gathers additional data on preferences over monetary lotteries
to estimate the curvature of g.
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DellaVigna and Malmendier (2004) and especially Acland and Levy (2015).
Of course, having a monetary domain is neither necessary nor sufficient to achieve point

identification. In general, what is important is that at time 1, the agent does not update
their expectation of utility over Z. This is most likely to be satisfied when (i) time 0 and time
1 are “close together,” (ii) Y corresponds to consumption events realized at time 1, and (iii)
Z corresponds to time-2 consumption events that are “far away” from time 1. For example,
if time 1 is one week away from time 0, but Z corresponds to consumption or effort that is
one year away, then it is unlikely that any information could be revealed between time 0 and
time 1 that would alter the agent’s expectation of utility from Z. This suggests strategies
for point identification that don’t involve money.30 On the other hand, the conditions of
Proposition 4 are unlikely to be satisfied if Y and Z correspond to large sums of money
received at time 1 and time 2, with time 1 sufficiently far away from time 0 such that an
agent subject to serially correlated liquidity and income shocks may plausibly update their
beliefs at time 1 about their time-2 marginal utility of money.

4.2 Partial Identification of Quasi-hyperbolic Discounting

We next show provide a set identification result in a model where preferences are additively
separable and responsive, but not independent along any of the dimensions. For expositional
clarity, we focus on the quasi-hyperbolic discounting model with multiplicative taste shocks:

Definition 11 (Quasi-hyperbolic Discounting with Multiplicative Shocks). A data set
(⪯0,⪯1, f) is consistent with quasi-hyperbolic discounting with multiplicative taste shocks
if it is consistent with utilities of the form

u0(y, z) =
∑
ω∈Ω

fω
(
θ1ωh(y) + θ2ωg(z)

)
u1(y, z) = θ1ω h(y) + β θ2ω g(z) .

(5)

Note that if preferences can be represented as in (5), then there exists an additively
separable representation (h0, h1, g0, g1) of the preferences where the function g1 does not
depend on the state and equals g0. To obtain this representation, simply set h0 ≡

∑
ω fωθ1ω∑
ω fωθ2ω

h,

30For a concrete example, consider a modification of the example in Section 1.1, but suppose now that
time 2 corresponds to work that must be completed in one year. In this modified design, it is plausible to
assume that the agent does not update their beliefs about the time-2 effort costs between time 0 and time 1,
and thus that the expected cost of time-2 effort is constant across all states of the world. Thus, if the analyst
is justified in assuming separable effort costs over time, so that choices from multiple budget sets identify
time-2 effort costs, then Proposition 4 implies that β is identified. Thus, the convex time budget approach
can be used to identify time preferences as long as the time-2 consumption/effort events are sufficiently far
in time that the agent does not update their beliefs about time-2 utility between time 0 and time 1.
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h1
ω ≡ θ1ω

βθ2ω
h, g0 = g and g1 = βg.

To obtain intuition for the types of inferences that can be made about the parameter
β given data consistent with quasi-hyperbolic discounting with multiplicative taste shocks,
consider an identification strategy that (wrongly) assumes no taste shocks and assumes
instead that all differences in time 1 are due to variation in the time-preference parameter
β. That is, if at time 0 the agent is indifferent between (y, z0,y) ∼0 (y◦, z◦0,y) and at time 1 is
indifferent between (y, zω,y) ∼1

ω (y◦, z◦ω,y), then

h(y) + g(z0,y) = h(y◦) + g(z◦0,y)

h(y) + β̂ωg(zω,y) = h(y◦) + β̂ωg(z
◦
ω,y) .

Rearranging these equations yields that

β̂ω =
g(z◦0,y)− g(z0,y)

g(z◦ω,y)− g(zω,y)
. (6)

We use the “hat” notation in the definition above because β̂ω can also be thought of as a
“noisy” estimate of the true present focus parameter β, which is a common statistic to report
in empirical studies. An immediate corollary of Proposition 4 is that if utility over the Z

dimension is state-independent, then β is point-identified and given by

β =
1∑

ω∈Ω fωβ̂−1
ω

. (7)

Without the state independence assumption, the range of the distribution of β̂ω identifies
the range of possible values of β consistent with the data. This result provides a formal
generalization of the numerical example in Section 1.1.

Proposition 5. A responsive data set (⪯0,⪯1, f) is consistent with quasi-hyperbolic dis-
counting with multiplicative taste shocks if and only if

(i) it has an additively separable representation (h0, h1, g0, g1) where for all ω ∈ Ω, g0 =

g1ω = g and h1
ω(y)

h0(y)
is non-negative and constant in y ∈ Y , and

(ii) β ∈
(
minω β̂ω,maxω β̂ω

)
for β̂ω =

g(z◦0,y)−g(z0,y)

g(z◦ω,y)−g(zω,y)
.

The range of β̂ω is estimable, and is frequently reported, which facilitates the application
of Proposition 5. In practice, because many experiments feature only one revision observa-
tion per person, β̂ω is obtained as an individual-level estimate of present focus—we discuss
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this in greater detail in Appendix E. To illustrate what distributions of β̂ look like in prac-
tice, the left panel of Figure 1 presents estimates β̂ reported in Augenblick, Niederle, and
Sprenger (2015), while the right panel presents estimates reported in Augenblick and Rabin
(2019). Under the assumption of state-independent preferences over one dimension made in
Proposition 4, the population (average) present focus is obtained from the average of these
point estimates.31 In Section 4.1 we have argued that the assumptions of Proposition 4 are
plausible for Augenblick and Rabin (2019), but in Section 1.1 we have illustrated that they
are less plausible for Augenblick, Niederle, and Sprenger (2015). Instead, under the assump-
tions of Proposition 5, the population β in Augenblick, Niederle, and Sprenger (2015) can
be any value between the minimum and maximum of the support of the estimated β̂. As
we show in Appendix E.2, this implies that the data is consistent with any β in the range
[0.66, 1.12], even after 20 percent of the most extreme observations of the estimated distri-
bution of β̂ are excluded. This range includes values of population β that imply both future
focus and significant present focus, consistent with the types of illustrative calculations we
presented in Section 1.1.

Figure 1: Distribution of estimates β̂ from two studies
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Notes: The left panel presents the histogram of of individual-level estimates β̂ using the first
experimental block in Augenblick, Niederle, and Sprenger (2015), as reported in the top panel of
their Figure 6. The right panel presents the histogram of individual-level estimates β̂ in Augenblick
and Rabin (2019), as reported in the left panel of their Figure 6. The formatting of the histogram
from Augenblick, Niederle, and Sprenger (2015) is slightly altered to match the formatting choice
of the histogram in Augenblick and Rabin (2019).

31See Appendix E.2 for more details.
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5 Discussion

5.1 Are Taste Shocks Important?

In principle, the analyst could simply assume that no individuals face uncertainty between
time 0 and time 1, and thus that all differences in time-1 choices between individuals making
the same time-0 choice are due solely to individual differences in time preferences.Both
intuition and evidence suggest that this assumption is unrealistic. For example, Read and
van Leeuwen (1998) experimentally show that variation in individuals’ satiation has a large
effect on their preferences for healthy versus unhealthy foods at time 1.

The strong assumption of no random taste shocks also implies that because any difference
between time-0 and time-1 choice is due to (stable) time preferences, these differences should
be stable within individuals over time. To test this assumption, the analyst needs to estimate
individuals’ time-0 and time-1 preferences on two (or more) separate occasions, j ∈ {1, 2}.
If on both occasions the analyst obtains an identical measure of time preference for each
individual (e.g., β̂1

i = β̂2
i for all agents i in the quasi-hyperbolic discounting model), then

the assumption is satisfied. For example, Sadoff, Samek, and Sprenger (2019) include two
sets of decisions to study the stability of their measure of time inconsistency. Sadoff, Samek,
and Sprenger find correlations between 0.2 and 0.33 in agents’ propensity to switch toward
unhealthier foods at time 1, which suggests that stable individual differences explain 0.22 =

0.04 to 0.332 = 0.11 of the variance in time-1 revisions of time-0 choices, leaving random
taste shocks and other forms of updating to explain the remaining variation. Similarly, as
we show in Appendix E.1, stable individual differences in time preferences can explain at
most 2 percent of the variation in time-1 revisions of time-0 preferences in the Augenblick,
Niederle, and Sprenger (2015) data.

5.2 Commitment

Although demand for choice set restrictions cannot be used to point identify time-preference
parameters (see, e.g., Carrera et al., 2022),32 in some cases it serves as a useful correlate
of time preferences that can help refine their set identification. For example, Augenblick,
Niederle, and Sprenger (2015) find that their measure of demand for commitment relates
negatively to their estimates of the present-focus parameter β, and thus provides evidence
of some stable individual differences in time preferences. In Appendix E.2 we illustrate

32Commitment take-up is a coarse measure that might lead to false negatives in tests of time inconsistency
because uncertainty and thus demand for flexibility reduce demand for choice set restrictions (Heidhues and
Kőszegi, 2009, Laibson, 2015, Carrera et al., 2022), and can also deliver false positives because of noise in
take-up decisions (Carrera et al., 2022).
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how this finding can be used in conjunction with Proposition 5 to refine the set of time
preferences that could be consistent with individuals’ full set of choices. Appendix E.2 also
illustrates the simple but important point that augmenting revision design data with data
on commitment contract take-up does not restore point identification of time-preference
parameters, for largely the same reasons that point identification on the full experimental
sample was not possible in the first place.

5.3 Heterogeneity

Our results concern a data set in which the analyst observes an agent’s time-0 preference
and the full distribution of time-1 preferences. In practice, data sets are less rich, which
implies that our results are a “best case” for identification. A more typical data set consists
of a large population of individuals who each make a single choice at time 0 and at time 1.

One approach to analyzing such data sets is to assume that all individuals who make the
same time-0 choice are homogeneous both in preferences and the economic environment, and
consequently treat variation in time-1 decisions as due to realization of uncertainty. Under
this assumption, the set of all individuals who make the same time-0 choice constitutes the
kinds of data sets that we study in this paper.

Even without this homogeneity assumption, however, most of our key results still apply,
as we show in Appendix B and further illustrate in Appendix E.2.

5.4 Costly Self Control

We assume the domain of TC-EU preferences to be the set of alternatives X, which rules
out models of costly self-control (see e.g., Gul and Pesendorfer, 2001, Fudenberg and Levine,
2006). Thus, data sets that we show to reject TC-EU could be consistent either with time-
inconsistent preferences or with costly self-control preferences.

5.5 Other Related Literature

Related mathematical results Propositions 1 and 3 are related to existing results in the
literatures on social choice, dynamically-consistent preferences over acts, and random utility
models. Our main results in Theorems 1 and 2 do not, to our knowledge, resemble existing
mathematical results. In Appendix D we flesh out connections to technical results in the
literatures on social choice, random utility models, and dynamically consistent preferences
over acts.
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“Static” preference reversals and money discounting. While the focus of this paper
is on dynamic preference reversals, there is also an important literature on static preference
reversals. A large literature studies how people trade off between the size of a monetary
reward and its delay, under the assumption that time-dated payments and time-dated utils
are interchangeable (see, e.g., Cohen et al. 2020 for a review). A smaller literature conducts
such studies with real consumption events, such as juice squirts (McClure et al., 2007).
These studies are an important and complementary source of evidence, although some of the
results concerning monetary rewards could be due to violations of stationarity rather than
time consistency (Halevy, 2015), or due to uncertainty changing with delay (Halevy, 2005,
2008, Andreoni and Sprenger, 2012, Chakraborty, Halevy, and Saito, 2020).

While there is an important ongoing conversation about whether time-dated monetary
rewards should be treated interchangeably with time-dated utils (see, e.g., Ericson and Laib-
son 2019 and Cohen et al. 2020 for reviews), our results suggest one possible additional reason
why studies such as those of Augenblick, Niederle, and Sprenger (2015) estimate fewer pref-
erence reversals for money versus actual consumption: utility over money may be subject to
fewer random taste shocks.33

6 Conclusion
Our general characterization of consistency with TC-EU shows that in typical revision de-
signs, it is difficult to identify the degree of time inconsistency. The difficulty arises from
random taste shocks or other arrival of information, which are particularly plausible in more
complex and economically consequential field settings. However, we have also provided
guidance on the types of economic environments where the assumptions required for point
identification are plausible. Thus, while identification of time inconsistency may be more
difficult than initially intuited, it is certainly theoretically and empirically feasible.

Of course, our results do not imply that nothing can be learned from data sets where we
show that it is not possible to formally reject TC-EU. For example, it is unlikely to be mere
coincidence or file-drawer bias that in most circulated papers, the systematic reversals tend

33There are a number of other papers (see Imai, Rutter, and Camerer 2021 for a review) that follow
Andreoni and Sprenger (2012) in applying the convex time budget (CTB) approach to time-dated monetary
rewards. Our paper largely focuses its discussion and examples on revision designs with real consumption
events because of the ambiguities highlighted by the ongoing conversation about interpreting preferences over
time-dated monetary rewards. But given an interpretation, our results apply to those designs as well. For
example, if the monetary rewards are treated as real consumption events, but the subjects are not plausibly
subject to liquidity shocks that change their marginal utility of money, then our results imply that monetary
CTBs constitute deterministic environments that allow point identification of time preferences.
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to be toward more immediately gratifying options.34 Just as proper Bayesian scientists re-
servedly update about causal relationships from all well-measured associations—even when
the associations are not produced by experimental or quasi-experimental techniques—we
think it is appropriate to carefully update from all revision design data. Correlational anal-
yses that link choice revisions to supplementary proxies of time inconsistency or observable
determinants of taste shocks (see, e.g., Augenblick, Niederle, and Sprenger, 2015, Sadoff,
Samek, and Sprenger, 2019) can bolster the updating. At the same time, by formally study-
ing identification in a general theoretical framework, this paper clarifies just how strong the
assumptions for (point) identification of time inconsistency have to be, and helps identify
the most theoretically robust designs. We hope that this will help further the important
agenda of measuring time inconsistency.
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A Proofs
The appendix proceeds as follows: Section A.1 derives several results on the aggregation
of incomplete preorders. Section A.2 derives several results on the separation of finite-
dimensional cones generated by sets of utility functions. In Section A.3 we use these results
to formalize the proof sketches in the body of the paper.

A.1 Results on Aggregating Incomplete Preorders

Recall that we defined a new preorder ⪯1
∗ that ranks one alternative y weakly higher than

an alternative x if the agent ranks that alternative higher in all states ω

x ⪯1 y ⇔ x ⪯1
ω y for all ω ∈ Ω .

1



We thus denote by ⪯1
∗ the preorder that is generated by agreement of the preorders ⪯1

ω in
the different states ω. We define another binary relation �∗ such that y is weakly preferred
to x if it is either preferred according to the time-0 preference or according to all time-1
preferences

x�∗ y ⇔ x ⪯0 y or x ⪯1
∗ y . (8)

We define �∗ to be the asymmetric component of �∗. We note that �∗ need not to be
transitive and define � to be the smallest transitive closure of �∗. We define ∼� to be the
symmetric part of �, and � to be the asymmetric part of �.

Lemma 1. If the data set admits no simple dominance violations then

x�∗ y ⇔ x ≺0 y or x ≺1
∗ y.

Proof. We first note that x�∗ y if x�∗ y and neither y ⪯1
∗ x nor y ⪯0 x. We furthermore

note that if there is no simple dominance violation, then x ≺0 y implies that we do not have
y ⪯1

∗ x, and x ≺1
∗ y implies that we do not have y ⪯0 x. Hence, x ≺0 y or x ≺1

∗ y implies
x�∗ y.

To see that the converse direction also holds, note that x�∗ y implies that neither y ⪯0 x

nor y ⪯1
∗ x, and either x ⪯0 y or x ⪯1

∗ y, which together implies that either x ≺0 y or
x ≺1

∗ y.

We next translate the condition of no cyclic dominance violations in the data set (⪯0,⪯1

, f) into a condition on the induced order �∗.

Definition 12 (Only Weak Cycles). We say that �∗ admits only weak cycles if x1 �
∗ · · ·�∗

xn �
∗ x1 implies that x1 ∼�∗ · · · ∼�∗ xn.

Lemma 2. The following are equivalent:
(i) The data set has no cyclic dominance violation.

(ii) The data set has no simple dominance violation and �∗ satisfies the only weak cycles
condition.

Proof. (ii) ⇒ (i): Suppose that the elements x1, . . . , xk constitute a cyclic dominance
violation. Without loss we can assume that the first inequality is strict (otherwise reorder the
elements) and according to the time-0 order (the argument for the time-1 order is identical)

x1 ≺0 x2 ⪯1
∗ x3 ⪯0 . . . ⪯0 xk ⪯1

∗ x1 .
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If there is no simple dominance violation, then Lemma 1 implies that

x1 �
∗ x2 �

∗ x3 �
∗ . . .�∗ xk �

∗ x1 ,

and thus a violation of the only weak cycles condition.
(i) ⇒ (ii): Suppose (ii) does not hold. If the data set has a simple dominance violation it

also has a cyclic dominance violation, as any simple dominance violation is a cyclic dominance
violation with a cycle of length 2. Thus, suppose that there is no simple dominance violation
but that there is a non-weak cycle in �∗ involving x1, . . . , xk. Without loss, assume that
xk �

∗ x1. Then Lemma 1 implies that there exist alternatives x1, . . . , xk such that:

(i) For all j ≤ k − 1, either xj ⪯0 xj+1 or xj ⪯1
∗ xj+1

(ii) Either xk ≺0 x1 or xk ≺1
∗ x1

Now if xj ⪯0 xj+1 ⪯0 xj+2, then xj ⪯0 xj+2, and thus there is a non-weak cycle over the
set {x1, . . . , xk} \ {xj+1}. A similar statement applies to three adjacent alternatives in a
cycle related by ⪯1

∗. Thus, any non-weak cycle can be reduced to a non-weak cycle where no
three adjacent alternatives are in increasing order according to ⪯0 or according to ⪯1

∗; this
non-weak cycle amounts to a cyclic dominance violation.

Lemma 3. If ⪯0 is complete and the data set (⪯0,⪯1, f) exhibits cyclic dominance violations
then there exists a simple dominance violation.

Proof. We prove this result by contraposition. Assume that there is no simple dominance
violation. Then �∗ preserves the asymmetric part of ⪯0 by Lemma 1. As ⪯0 is by assumption
complete, �∗ must be complete as well. As ⪯0 is transitive, �∗ can only admit weak cycles.
But then Lemma 2 implies that there is no cyclic dominance violation.

Lemma 4. Suppose that �∗ satisfies the only weak cycles condition. Then x�∗ y ⇒ x� y.

Proof. Suppose that x�∗ y. Then the only way for y�x is if there is a cycle in �∗ involving
x and y. Since x�∗ y, this cycle is not a weak cycle.

Lemma 5. Suppose that ⪯0 and ⪯1 are single-peaked, and that there are no simple dominance
violations. Then there exists a set X∗ ⊆ {minX,maxX} such that x� x∗ does not hold for
any x ∈ X \X∗ and x∗ ∈ X∗, and such that minX ∼� maxX if X∗ = {minX,maxX}.

Proof. Consider the set of alternatives that is not strictly better than any other alternative
according to the preorder �

X = {x ∈ X : there does not exist y ∈ X with y � x} .
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We first argue that X ∩ {minX,maxX} ̸= ∅. If not, then there would exist y ∈ X such
that either minX ≻0 y or minX ≻1

∗ y. Suppose first that minX ≻0 y. Single-peakness
implies that if y ̸= maxX then minX ≻0 y ⪰0 maxX, so that minX ≻0 maxX. Thus,
minX ≻0 maxX if minX /∈ X . Now if maxX /∈ X , then a similar argument shows
that minX ≺1

∗ maxX (since minX ≺0 maxX is impossible by transitivity), which implies a
simple dominance violation. Thus, if minX ≻0 y, then there is a simple dominance violation.
A symmetric argument also shows that minX ≻1

∗ y implies a simple dominance violation.
Next, pick a maximal subset of X , X∗, such that X∗ ∩ {minX,maxX} ̸= ∅, and such

that x ∼� x′ for all x, x′ ∈ X∗. Without loss, assume that minX ∈ X∗. We now argue
that X∗ ⊆ {minX,maxX}. If not, then there is a y ∈ X \ {minX,maxX} such that
y ∼�∗ minX. Then, because we assumed no simple dominance violations, either

(i) there is some y ∈ X \ {minX,maxX} such that either y ∼0 minX or y ∼1
∗ minX, or

(ii) minX and y are part of a cycle in �∗ that is not a weak cycle

To see why (ii) must hold if (i) does not, note that if minX were part of a weak cycle that
relates it to y through ∼�∗ , and condition (i) did not hold for any y′ ∈ X \ {minX,maxX},
then there would need to be simple dominance violations to generate the indifferences in the
weak cycle.

We next argue that in both cases (i) and (ii) above, either minX ≻0 maxX or minX ≻1
∗

maxX. We then show that neither possibility is inconsistent with there being no simple
dominance violations.

Case (i) If y ∼0 minX then single-peakness implies that y ≻0 maxX and thus minX ≻0

maxX. An identical argument shows that y ∼1
∗ minX implies that minX ≻1

∗ maxX.
Case (ii) If minX is part of a cycle in �∗ that is not a weak cycle, then there is some

y ∈ X\{minX,maxX} such that either (i) y ∼0 minX or (ii) y ∼1
∗ minX or (iii) y ≺0 minX

or (iv) y ≺1
∗ minX. In the first two cases, we have already shown that minX ≻0 maxX

or minX ≻1
∗ maxX. In the second two cases, the first paragraph of this proof shows that

either minX ≻0 maxX or minX ≻1
∗ maxX.

Thus, if X∗ ⊆ {minX,maxX} does not hold, then either minX ≻0 maxX or minX ≻1
∗

maxX, and thus maxX �minX. But since minX ∈ X∗, the definition of X∗ requires that
minX ∼� maxX, and thus that maxX ∈ X∗. Moreover, since either minX ≻0 maxX

or minX ≻1
∗ maxX, the only way for minX ∼� maxX to hold in the absence of simple

dominance violations is if there is a non-weak cycle involving both minX and maxX. But
then, reasoning identical to Case (ii) above implies that we must have maxX ≻0 minX or
maxX ≻1

∗ minX, which implies a simple dominance violation.
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A.2 Results on the Cones Generated from Sets of Utility Func-
tions

As there are only finitely many alternatives we will throughout identify utilities with vectors
in R|X|.

For any sets A and B, we define the Minkowsky sum A + B := {a + b | a ∈ A, b ∈ B}.
We say that a set A ⊂ Rn is constant shift invariant if a ∈ A implies that a+(λ, . . . , λ) ∈ A

for all λ ∈ R.

Lemma 6 (Cone Separation Lemma). Suppose that A,B ⊂ Rn are convex cones that are
open relative to their affine hull and constant shift invariant with A ∩ B = ∅. Then there
exists a vector p ∈ Rn with p ̸= 0 and

∑n
i=1 pi = 0, such that for all a ∈ A, b ∈ B

p · a ≥ 0 ≥ p · b

and one of the inequalities is strict for all a ∈ A and b ∈ B.

Proof. As A,B are disjoint they can be properly separated by a hyperplane; i.e., there
exists p ∈ Rn with p ̸= 0 and c ∈ R such that for all a ∈ A, b ∈ B

p · a ≥ c ≥ p · b

with at least one inequality strict. As A is constant shift invariant, a + (λ, . . . , λ) ∈ A if
a ∈ A, which implies that for all λ ∈ R

p · a+ λ
n∑

i=1

pi ≥ c .

The above inequality can only hold for all λ ∈ R if
∑n

i=1 pi = 0, which thus must hold.
Similarly, as A is a cone, a ∈ A implies that λa ∈ A for all λ > 0 and hence

λ(p · a) ≥ c .

Taking the limit λ → 0 yields that 0 ≥ c. Applying the same argument using that B is a
cone yields that c ≥ 0 and hence we have that c = 0.

By the proper separation there exists either a ∈ A such that p · a ̸= 0 or b ∈ B such that
p · b ̸= 0. Consider the first case and assume that a1 ∈ A with p · a1 > 0. If no a2 ∈ A exists
with p · a2 = 0 we have established that p · a > 0 for all a ∈ A and thus completed the proof.
If a2 ∈ A exists with p · a2 = 0 consider another point a3 = a2 + ϵ(a2 − a1). As A is open
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relative to its affine hull, a3 ∈ A for ϵ small enough. However, note that

p · a3 = (1 + ϵ)(p · a2)− ϵ(p · a1) = −ϵ(p · a1) < 0 .

This contradicts that p · a ≥ 0 for all a ∈ A and thus implies that no a2 ∈ A with p · a2 = 0

can exist. Hence, we have established that p · a > 0 for all a ∈ A.
The proof for the case where there exists a b ∈ B with p ·b < 0 is analogous. This implies

that one of the inequalities is always strict for all a ∈ A and b ∈ B. This completes the
proof.

Lemma 7. The set of utility functions consistent with a given (potentially incomplete)
preference relation is open relative to its affine hull.

Proof. Fix two utility functions u, v consistent with ⪯ and fix ϵ > 0 such that

ϵ <
miny,y′ : u(y)>u(y′) u(y)− u(y′)

maxy,y′ : v(y)>v(y′) v(y)− v(y′)
.

We have that u(x) > u(x′) and v(x) > v(x′) implies that

[u(x) + ϵ(u(x)− v(x))]− [u(x′) + ϵ(u(x′)− v(x′))] ≥ [u(x)− u(x′)]− ϵ[v(x)− v(x′)] > 0 .

Similarly, u(x) = u(x′) and v(x) = v(x′) implies that

u(x) + ϵ(u(x)− v(x)) = u(x′) + ϵ(u(x′)− v(x′)) .

Hence, the utility u(x) + ϵ(u(x)− v(x)) is also consistent with the preference ⪯ for every ϵ

small enough and the set of utilities consistent with ⪯ is open relative to its affine hull (c.f.
Aliprantis and Border, 2006, page 277).

Lemma 8. The set of strictly concave utility functions is open.

Proof. A utility function u is strictly concave if for all x, y, z ∈ X

y − z

y − z
u(x) +

z − x

y − z
u(y) < u(z) .

Note that if v ∈ Bϵ(u) (i.e., an ϵ ball around u) we have that[
y − z

y − z
v(x) +

z − x

y − z
v(y)

]
− v(z) ≤

[
y − z

y − z
u(x) +

z − x

y − z
u(y)

]
− u(z) + 2ϵ .
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Thus we have that the utility v is strictly concave for

ϵ <
1

2
min

x,y,z∈X

∣∣∣∣[y − z

y − z
u(x) +

z − x

y − z
u(y)

]
− u(z)

∣∣∣∣ .
We also make use of the following straightforward properties of Minkowski sums of sets

of utilities in our proofs. Define Ū1 =
∑

ω U
1
ω and note that Ū1 is convex and open relatively

to its affine hull if all (U1
ω)ω are convex and open relative to their affine hull. Note also

that if each of the U1
ω are cones and constant shift invariant, then so is Ū1: if ū ∈ Ū , then

(λ0, · · · , λ0) + λ1ū ∈ Ū , for any λ1 > 0 and any real λ0. Finally, note that v =
∑

ω fωuω for
some choices of uω ∈ U1

ω if and only if v =
∑

ω uω for some choices of uω ∈ U1
ω.

Lemma 9. Let U1 denote all utility functions consistent with the single-peaked time-1 pref-
erences. Fix an alternative m ∈ {minX,maxX} such that for every x ̸= m there exists
ω such that x ⪯1

ω m does not hold. Then for every v ∈ U1 there is u ∈ U1 such that
E [uω(x)] = E [vω(x)]− 1x=m∆ .

Similarly, if U1 denotes all concave utility functions consistent with the single-peaked time-
1 preferences, then for every v ∈ U1 there is u ∈ U1 such that E [uω(x)] = E [vω(x)]−1x=m∆ .

Proof. Without loss, assume that m = minX. By assumption, there exists at least one
state ω′ such that maxX ⪯1

ω′ m does not hold. For this ω′, it is then more generally true that
x ⪯1

ω′ m does not hold for any x ̸= m by the definition of single-peaked preferences. To see
this, note that if x ̸= maxX and x ⪯1

ω′ m, then single-peakness requires that maxX ⪯1
ω′ x,

and thus that maxX ⪯1
ω′ minX.

Now define
uω(x) = vω(x)− 1x=m and ω=ω′

∆

fω′
.

By construction, uω is identical to vω in all states ω ̸= ω′. Moreover, because m is not weakly
preferred to any other alternative x ̸= m in state ω′, it follows that if vω′ is consistent with
⪯1

ω′ then subtracting a positive constant from v′ω(m) still preserves consistency with ⪯1
ω′ as

well as single-peakness. Thus, v ∈ U1 if u ∈ U1, and E [uω(x)] = E [vω(x)] − 1x=m∆ by
construction.

Finally, note that if vω is concave for all ω, including ω = ω′, then subtracting a positive
constant from vω′(m) also preserves concavity. This establishes the last part of the Lemma.

Lemma 10. Assume that time-1 preferences are single-peaked and have no indifferences.
Let U1 denote all single-peaked utility functions with no indifferences that are consistent with
the time-1 preferences. Fix an alternative m /∈ {minX,maxX} such that for every x ̸= m

7



there exists ω such that x ≺1
ω m does not hold. Then for every v ∈ U1 there is u ∈ U1 such

that E [uω(x)] = E [vω(x)]− 1x=m∆ .

Proof. By definition, there exist states ω′ and ω′′ such that minX ≺1
ω′ m and maxX ≺1

ω′′ m

do not hold. We will show that u : X × Ω → R defined as below belongs to U1 if v ∈ U1:

uω(x) =


vω(x) + ∆ if ω /∈ {ω′, ω′′}

vω(x)− 1x≥m
∆
fω′

+∆ if ω = ω′

vω(x)− 1x≤m
∆
fω′′

+∆ if ω = ω′′

.

First, note that if minX ≺1
ω′ m does not hold, then y ≺1

ω′ m cannot hold for any y <

m. Otherwise, if y ≺1
ω′ m, then minX ≺1

ω′ y by definition of single-peakness, and thus
minX ≺1

ω′ m. Similarly, m ≺1
ω′ x cannot hold for any x > m. We now argue that y ≺1

ω′ x

cannot hold for y < m < x. If it did, then m ≻1
ω′ y by single-peakness. But we have already

shown that this cannot hold.
Together, this implies that y ≺1

ω′ x cannot hold for any x ≥ m and y < m (and indiffer-
ence cannot occur by the assumption of the lemma). Thus, subtracting a constant from vω′

for all alternatives x ≥ m leads to another utility function compatible with the preference
⪯1

ω′ . A symmetric argument implies that subtracting a constant from vω′′ for all alternatives
x ≤ m leads to another utility compatible with the preference ⪯1

ω′′ .
Thus, the utility function u defined above belongs to U1 if v ∈ U1 (where we also us the

obvious fact that adding ∆ to the utility from all elements preserves inclusion in U1).
Observe that

E [uω(x)] = E [vω(x)]− E [1ω=ω′ ]1x≥m
∆

fω′
− E [1ω=ω′′ ]1x≤m

∆

fω′′
+∆

= E [vω(x)]− 1x≥m∆− 1x≤m∆+∆

= E [vω(x)]− 1x=m∆ ,

which completes the proof.

Lemma 11. Let L1, L2 ∈ ∆(|X|) be two lotteries over outcomes.
(i) L2 dominates L1 with respect to U1 if and only if ū(L2) ≥ ū(L1) for all ū ∈ Ū1.

(ii) L2 strictly dominates L1 with respect to U1 if and only if ū(L2) > ū(L1) for all ū ∈ Ū1.

Proof. If L2 weakly dominates L1 then uω(L2) ≥ uω(L1) for all ω ∈ Ω, u ∈ U1. Thus,∑
ω uω(L2) ≥

∑
ω uω(L1) for all u in U1 and hence weak dominance implies ū(L2) ≥ ū(L1)

for all ū ∈ Ū1. The argument for strict dominance is analogous.
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For the opposite direction observe that ū(L2) ≥ ū(L1) for all ū ∈ Ū1 implies that for
all u ∈ U1 we have

∑
ω uω(L2) ≥

∑
ω uω(L1) . Note that if uω ∈ U1

ω then αωuω ∈ U1
ω for all

αω > 0. Thus, for all α ∈ R|Ω|
++, we have that∑

ω

αωuω(L2) ≥
∑
ω

αωuω(L1) .

Choosing αω = 1ω=ω̃ + ϵ1ω ̸=ω̃ for ϵ > 0 yields that

uω̃(L2)− uω̃(L1) ≥ ϵ

(∑
ω ̸=ω̃

uω(L1)− uω(L2)

)
.

Taking the limit ϵ → 0 yields that for each state ω̃ we have that uω̃(L2) ≥ uω̃(L1), and thus
that L2 weakly dominates L1. This establishes part (i) of the Lemma. Furthermore, note
that if ū(L2) > ū(L1), and if uω(L2) ≥ uω(L1) for all ω, then the inequality must be strict
for at least one ω, which establishes part (ii) of the Lemma.

A.3 Proofs of Theorems and Propositions in the Paper

To simplify exposition we will say that a set is relatively open if it is open relative to its
affine hull.

Proof of Theorem 1. Let Ū1 =
∑

ω U
1
ω be the set of all utility functions that can be

rationalized as sums of single-peaked utility functions representing the time-1 preferences
⪯1

ω. Let U0 be the set of all utility functions that are consistent with ⪯0. We will show that
if U0 and Ū1 do not intersect and the data set exhibits no violation of the only weak cycles
condition, then there is a simple dominance violation. By Lemma 2 this implies a cyclic
dominance violation; hence, if U0 and Ū1 do not intersect, there must be a cyclic dominance
violation.

Because the set of all utility functions consistent with a given (potentially incomplete)
preference relation is relatively open by Lemma 7, the set of single-peaked utility functions
is relatively open, and the intersection of relatively open sets is relatively open, it follows
that U0 and each U1

ω are relatively open. Because the Minkowski sum of relatively open sets
is relatively open it follows that Ū1 is relatively open.

By Lemma 6 there exists a separating hyperplane p ∈ R|X| with p ̸= 0 and
∑

x∈X px = 0

(throughout, we denote by px the entry of p corresponding to alternative x ∈ X) such that
for all u0 ∈ U0, u1 ∈ Ū1

p · u0 ≥ 0 ≥ p · u1 (9)
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and at least one of the inequalities is strict for all u0, u1.
We next argue that this implies the existence of another hyperplane p̃ ∈ R|X| that satisfies

the same properties and only two non-zero entries, which is equivalent to the existence of
a simple dominance violation and thus the statement of the theorem. We prove this by
induction, showing that if the statement holds for a set with |X| − 1 objects then it holds
for a set with |X| objects.

Induction hypothesis We first prove the result for two alternatives |X| = 2. In this case,
by definition p is either (+α,−α) or (−α,+α) for some α > 0, and thus the result holds.

Induction step We next prove the induction step. Assume that the result holds whenever
the number of alternatives is not more than |X| − 1. We consider the preorder � defined
above.

Consider the set of alternatives the is not strictly better than any other alternative
according to the preorder �

X = {x ∈ X : there does not exist y ∈ X with y � x}.

Note that |X | > 0 because � is by construction transitive. Clearly, the elements in X are
either related by indifference ∼� or unrelated. Pick a maximal subset of this set X∗ such
that x ∼� x′ for all x, x′ ∈ X∗. By definition for all x′ /∈ X∗ and x ∈ X∗ we have that x′ � x

can not hold as otherwise there exists an element y � x′ � x which contradicts that x ∈ X∗

as � is transitive.
Fix any x∗ ∈ X∗. As x ⪯0 x∗ implies x �∗ x∗, and thus x � x∗ we have that x ⪯0 x∗

implies x ∈ X∗. By the same argument x ⪯1
∗ x

∗ implies x ∈ X∗.
Thus, if x∗ ∈ X∗ and x /∈ X∗, either x∗ ≺0 x, or x is unrelated to x∗ by ⪯0. Thus, if

u0 ∈ U0 then u0 − λ1x∈X∗ ∈ U0 for all λ ≥ 0, as we can always make alternatives that are
either least preferred or unranked relative to others worse without violating the ranking of
the alternatives implied by ⪯0. Thus, for every u0 ∈ U0 we have that

0 ≤ p · (u0 − λ1x∈X∗) = p · u0 − λ
∑
x∈X∗

px .

Taking λ → ∞ implies that ∑
x∈X∗

px ≤ 0. (10)

Because time-1 preferences are strict, it follows that if there are no simple dominance
violations, then for any x ∈ X∗ and any x′ ∈ X, there is a state ω′ such that x ⪰1

ω′ x′ does not
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hold. Otherwise it would have to be that x′ ⪯1
∗ x, which implies x′ ≺1

∗ x because we rule out
indifference; thus Lemma 1 implies x′ �∗ x, and Lemma 4 x′ � x, which contradicts x ∈ X∗.
If there is a simple dominance violation then we have reached our desired contradiction. So
assume that there is not, so that for any x ∈ X∗ and any x′ ∈ X, there is a state ω′ such
that x ⪰1

ω′ x′ does not hold.
Then, Lemmas 9 and 10 imply that if x∗ ∈ X∗ and u1 ∈ Ū1, then u1 − λ1x=x∗ ∈ Ū1 for

all λ ≥ 0. Thus, for every u1 ∈ Ū1 we have that

0 ≥ p · (u1 − λ1x=x∗) = p · u1 − λ1x=x∗px∗ .

Taking λ → ∞ implies that px∗ ≥ 0 for every x∗ ∈ X∗. Together with (10), this implies that
px∗ = 0.

Thus, there exists a vector p ∈ R|X|−|X∗| such that
∑

x∈X\X∗ px = 0 with p ̸= 0 such that
(9) is satisfied on the set X \X∗. As the preferences are single-peaked on X \X∗ and this set
contains only |X|− |X∗| alternatives, there exists a vector p ̸= 0 with

∑
x∈X px = 0 and only

two non-zero entries, satisfying (9) on that set of alternatives. As this vector corresponds to
a simple dominance violation this completes the proof.

Proof of Theorem 2. As in the proof of Theorem 1, we will show that if U0 and Ū1 do
not intersect, then there must be a simple dominance violation. Because the set of all utility
functions consistent with a given (potentially incomplete) preference relation is relatively
open by Lemma 7, the set of strictly concave utility functions is relatively open by Lemma 8,
and the intersection of relatively open sets is relatively open, it follows that U0 and U1

ω are
relatively open. Because the Minkowski sum of relatively open sets is relatively open it
follows that Ū1 is relatively open.

By Lemma 6 there exists a separating hyperplane p ∈ R|X| with p ̸= 0 and
∑

x∈X px = 0

such that equation (9) is satisfied for all u0 ∈ U0, u1 ∈ Ū1, with at least one of the inequalities
strict. As in the proof of Theorem 1, we show that this implies the existence of another
hyperplane p̃ ∈ R|X| that consists of only two non-zero entries, which is equivalent to the
existence of a simple dominance violation and thus the statement of Theorem 2. We prove
this by induction, showing that if the statement holds for a set with |X| − 1 objects then it
holds for a set with |X| objects.

As in the proof of Theorem 1, the statement holds trivially when |X| = 2. We next prove
the induction step and assume that the result holds whenever the number of alternatives is
less than |X|−1. If there is a simple dominance violation then the statement of the theorem
holds. If there is not, then Lemma 5 implies that there exists a set X∗ ⊆ {minX,maxX}
such that if x ∈ X \X∗ and x∗ ∈ X∗, then x � x∗ cannot hold, and such that x ∼� x′ for
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x, x′ ∈ X∗.
As in the proof of Theorem 1, if u0 ∈ U0 then u0 − λ1x∈X∗ ∈ U0 for all λ ≥ 0, as we can

always make alternatives that are either least preferred or unranked relative to others worse
without violating the ranking of the alternatives implied by ⪯0.

Now for every u0 ∈ U0 we have that

0 ≤ p · (u0 − λ1x∈X∗) = p · u0 − λ
∑
x∈X∗

px .

Taking λ → ∞ implies that ∑
x∈X∗

px ≤ 0. (11)

We divide the remainder of the proof into five cases. We rely on the induction step in the
last three cases, which imply a vector p ∈ R|X|−|X∗| such that

∑
x∈X\X∗ px = 0 with p ̸= 0

such that (9) is satisfied on the set X \X∗.
Case (i): Suppose that X∗ = {minX,maxX} and either minX ≺1

∗ maxX or maxX ≺1
∗

minX. In the first case, this implies that maxX ⪯0 minX; otherwise, we would have
minX � maxX, which violates the assumption that X∗ = {minX,maxX}. However, if
maxX ⪯0 minX and minX ≺1

∗ maxX, then there is a simple dominance violation, which
establishes the claim. The second case follows analogously.

Case (ii): Suppose that X∗ = {minX,maxX}, minX ∼1
∗ maxX and the time-0

preference relates minX and maxX. Then as the time zero preference relates minX and
maxX it must also be that minX ∼0 maxX if there is not a simple dominance violation.

Thus, we can just identify the alternatives minX and maxX with each other to arrive
at a problem with |X| − 1 alternatives. Formally, for any p satisfying (9), note that p′ given
by p′minX = 0 and p′maxX = 2pmaxX also satisfies (9) but belongs to R|X|−1. By the induction
hypothesis, there must thus exist a simple dominance violation on X \ {minX}.

Case (iii): Suppose that X∗ = {minX,maxX}, minX ∼1
∗ maxX and the time-0

preference does not relate minX and maxX. Note that by construction, if x ∈ X \X∗ and
x∗ ∈ X∗, then either x∗ ≺0 x or x∗ is unrelated to x. Thus, if the time-zero preference does
not relate minX and maxX, then for any x∗ ∈ X∗ and any x ̸= x∗, x ⪯0 x∗ cannot hold.
Because of this, u0 ∈ U0 implies that u0 − λ1x=x∗ ∈ U0 for all λ ≥ 0 and each x∗ ∈ X∗,
as we can always make alternatives that are either least preferred or unranked relative to
others worse without violating the ranking of the alternatives implied by ⪯0. Thus, for every
u0 ∈ U0 and x∗ ∈ X∗ we have that

0 ≤ p · (u0 − λ1x=x∗) = p · u0 − λ1x=x∗px∗
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and taking λ → ∞ implies that px∗ ≤ 0 for each x∗ ∈ X∗.
Now because minX ∼1

∗ maxX and they do not dominate any other alternative in X, we
can identify them with each other in Ū1, and thus Lemma 9 implies that if u1 ∈ Ū1 then

u1 − λ1x∈X∗ ∈ Ū1

Thus, for every u1 ∈ Ū1 we have that

0 ≥ p · (u1 − λ1x∈X∗) = p · u1 − λ
∑
x∈X∗

px .

Taking λ → ∞ implies that
∑

x∈X∗ px ≥ 0, which implies that px = 0 for each x ∈ X∗.
Case (iv): Suppose that X∗ has only one element x∗. Since x ⪯1

∗ x∗ cannot hold for
any x ̸= x∗, Lemma 9 implies that if u1 ∈ Ū1 then u1 − λ1x=x∗ ∈ Ū1 for all λ ≥ 0. Thus, for
every u1 ∈ Ū1 we have that

0 ≥ p · (u1 − λ1x=x∗) = p · u1 − λ1x=x∗px∗ .

Taking λ → ∞ implies that px∗ ≥ 0 for every x∗ ∈ X∗. Together with (11), this implies that
px∗ = 0.

Case (v): Suppose that X∗ = {minX,maxX}, and that neither minX ⪯1
∗ maxX nor

maxX ⪯1
∗ minX. Then application of Lemma 9 as in Case (iv) implies that px∗ ≥ 0 for

each x∗ ∈ X∗. Together with (11), this again implies that px∗ = 0 for all x∗ ∈ X∗.
Completing the proof in Cases (iii), (iv), and (v): In all of these cases, there exists

a vector p ∈ R|X|−|X∗| such that
∑

x∈X\X∗ px = 0 with p ̸= 0 such that (9) is satisfied on
the set X \X∗. As the preferences are single-peaked on X \X∗ and this set contains only
|X| − |X∗| alternatives, there exists a vector p with |px| = 1 or px = 0 ∀x ∈ X, satisfying
(9) on that set of alternatives. As this vector corresponds to a simple dominance violation
this completes the proof.

Proof of Proposition 2. First note that we can restrict to the case where preferences
are complete. This is because if the preferences are incomplete and satisfy one of the two
conditions, then there exist completions of the preferences that satisfy one of the conditions.
And the incomplete preferences can of course be rationalized by TC-EU if their completions
can be.

We shall prove the proposition under the assumption that condition 1 holds. The proof
for condition 2 uses identical arguments that start with the most preferred time-0 alternatives
rather than the least preferred time-0 alternatives.
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As in the proof of Theorem 1, Lemma 7 implies that U0, U1
ω and Ū1 can be shown to

be relatively open. We shall show that under the conditions of the Proposition, if p ∈ R|X|

satisfies (i)
∑

x∈X px = 0 and (ii) p · u0 ≥ 0 ≥ p · u1 for all u0 ∈ U0, u1 ∈ Ū1, then p ≡ 0.This
then implies that U0 ∩ Ū1 ̸= ∅, which is the statement of the Proposition.

We shall prove this by induction, showing that if the statement holds for a set with no
more than |X| − 1 objects, then it holds for a set with |X| objects.

Let X∗ denote the set of least preferred elements of the time-0 preference. Observe that if
u0 ∈ U0 then u0−λ1x∈X∗ ∈ U0 for all λ ≥ 0: we can always make least preferred alternatives
worse without changing the ranking of the alternatives. Thus, for every u0 ∈ U0 we have
that

0 ≤ p · (u0 − λ1x∈X∗) = p · u0 − λ
∑
x∈X∗

px . (12)

Taking λ → ∞ implies that
∑

x∈X∗ px ≤ 0.
Now by the assumption of the proposition, for each x∗ ∈ X∗ there exists a state ω∗ in

which x∗ is the least preferred element. We have that if u1 ∈ U1 then u1− λ
fω∗

1x=x∗ and ω=ω∗ ∈
U1 for all λ > 0. This implies that if u ∈ Ū1 then u− λ1x=x∗ ∈ Ū1 for all λ ≥ 0. Thus, for
every u ∈ Ū1, we have that

0 ≥ p · (u− λ1x=x∗) = p · u− λpx∗ .

Taking λ → ∞ implies that px∗ ≥ 0. Together with the condition that
∑

x∈X∗ px ≤ 0, this
implies that px∗ = 0 for all x∗ ∈ X∗.

Now when |X| = 2, the above implies that at least one of the elements of p must equal
0, which implies that all elements of p must equal zero by the condition that

∑
x∈X px = 0.

When |X| > 2, the above implies that at least one of the elements of p must equal
0. Say that this element corresponds to an element x∗, and note that the condition of the
proposition still applies to preferences on the set X \ {x∗}. Thus, if the result holds for sets
of size |X| − 1 ≥ 2, it must hold for sets of size |X|.

Proof of Proposition 3. Assume that U0 ∩ Ū1 = ∅ and the data set can thus not be
rationalized by TC-EU. By Lemma 6, there exists p ∈ R|X| with p ̸= 0 and

∑
x∈X px = 0

such that p · u0 ≥ 0 ≥ p · u for u0 ∈ U0 and all u ∈ Ū1, such that at least one inequality is
strict for all u0 ∈ U0 and u ∈ Ū1. Define L1, L2 ∈ R|X|

L1(x) =
max{px, 0}∑
x̃∈X max{px̃, 0}

and L2(x) =
max{−px, 0}∑
x̃∈X max{−px̃, 0}

.
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Note that by definition, the entries of L1, L2 are non-negative and sum up to one, which
implies that L1, L2 are well-defined lotteries over the alternatives X. Furthermore, we have
that

0 =
∑
x̃∈X

px̃ =
∑
x̃∈X

max{px̃, 0} −
∑
x̃∈X

max{−px̃, 0} .

This implies that

L1(x)− L2(x) =
max{px, 0}∑
x̃∈X max{px̃, 0}

− max{−px, 0}∑
x̃∈X max{−px̃, 0}

= px
1∑

x̃∈X max{px̃, 0}
.

Thus, p ·u0 ≥ 0 implies that u0(L1) ≥ u0(L2), and p ·u0 > 0 implies that u0(L1) > u0(L2).
Similarly, p ·u ≤ 0 for all u ∈ Ū implies that ū(L2) ≥ ū(L1) for all u ∈ Ū and p ·u < 0 for all
u ∈ Ū implies that ū(L2) > ū(L1) for all u ∈ Ū . Thus, by Lemma 11, for all u0 ∈ U0, either
(i) u0(L1) ≥ u0(L2) and L2 strictly dominates L1 with respect to U1 or (ii) u0(L1) > u0(L2)

and L2 weakly dominates L1 with respect to U1. Hence, according to Definition 8, the data
set exhibits a stochastic dominance violation if U0 ∩ Ū1 = ∅; i.e., if the data set (U0, U1, f)

is inconsistent with TC-EU then it exhibits a stochastic dominance violation.
The opposite direction is immediate: Suppose that the data set is consistent with TC-EU

and for u0 ∈ U0, u1 ∈ U1

u0(x) =
∑
ω∈Ω

fωu
1
ω(x) .

Then, u1
ω(L2) ≥ u1

ω(L1) for all ω implies that u0(L2) ≥ u0(L1), and thus the data set cannot
exhibit dominance violations.

Proof of Proposition 4. As preferences are responsive, there exists zω,y and z◦ω,y known
to the analyst such that

(y, zω,y) ∼1
ω (y◦, z◦ω,y) .

As preferences are additive, this means that

h1
ω(y) + g(zω,y) = h1

ω(y
◦) + g(z◦ω,y) .

This implies that h1
ω(y)− h1

ω(y
◦) = g(z◦ω,y)− g(zω,y) for each ω, and thus that∑

ω

(
h1
ω(y)− h1

ω(y
◦)
)
=
∑
ω

(
g(z◦ω,y)− g(zω,y)

)
.

By the same argument, there exist z0,y and z◦0,y such that

h0(y)− h0(y◦) = g(z◦0,y)− g(z0,y) .
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Dividing the terms yields that

h0(y)− h0(y◦)∑
ω fω(h

1
ω(y)− h1

ω(y
◦))

=
g(z◦0,y)− g(z0,y)∑
ω fω(z

◦
ω,y − zω,y)

.

As all terms on the right-hand side are observable to the analyst, it follows that the left-hand
side is point-identified.

Proof of Proposition 5. We first argue necessity of the conditions. Revealed additive
separability is implied by additive separability, by simply setting h0 ≡ θ1ω

θ2ω
h and h1

ω ≡ θ1ω
βθ2ω

h.
To see that the condition on β is necessary, observe that for any representation (h, g) of
preferences consistent with (5)

β =
(
∑

ω fωθ
1
ω)(h(y)− h(y◦))∑

ω fωθ
1
ω
1
β
(h(y)− h(y◦))

=
(
∑

ω fωθ
1
ω)/(

∑
ω fωθ

2
ω)(h(y)− h(y◦))

(
∑

ω fωθ
2
ω)

−1(
∑

ω fωθ
1
ω
1
β
(h(y)− h(y◦)))

=
g(z◦)− g(z0,y)

(
∑

ω fωθ
2
ω)

−1
∑

ω fωθ
2
ω(g(zω,y)− g(z◦ω,y))

=
g(z◦)− g(z0,y)∑

ω αω(g(zω,y)− g(z◦ω,y))

∈
(
min
ω

g(z◦)− g(z0,y)

g(zω,y)− g(z◦ω,y)
,max

ω

g(z◦)− g(z0,y)

g(zω,y)− g(z◦ω,y)

)
= (min β̂ω,max β̂ω) ,

where we define αω = fωθ
2
ω/(
∑

ω′ fω′θ2ω′).
We next prove sufficiency. By the assumptions of the proposition there exist weights

α ∈ ∆|Ω| such that
β =

1∑
ω∈Ω αωβ̂−1

ω

.

We define θ1ω = αω

fω
β̂−1
ω , θ2ω = αω

fω
. We note that as h1

ω(y)
h0(y)

= h1
ω(y

◦)
h0(y◦)

by the assumptions of the
proposition,

β̂ω =
g(z◦0,y)− g(z0,y)

g(z◦ω,y)− g(zω,y)
=

h0(y)− h0(y◦)

h1
ω(y)− h1

ω(y
◦)

=
h0(y)− h0(y◦)

h0(y)h
1
ω(y)

h0(y)
− h0(y◦)h

1
ω(y

◦)
h0(y◦)

=
h0(y◦)

h1
ω(y

◦)
.

We thus have that

h1
ω(y) + g(z) = h0(y)

h1
ω(y

◦)

h0(y◦)
+ g(z) = h0(y)β̂−1

ω + g(z) = h0(y)
θ1ω
θ2ω

+ g(z) .

Consequently, the utility
θ1ωh

0(y) + θ2ωg(z)
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represents the preference ⪯1
ω. Finally, we have that

∑
ω

fωθ
1
ωh

0(y) = h0(y)
∑
ω

αωβ̂
−1
ω =

1

β
h0(y)∑

ω

fωθ
2
ωg(z) = g(z)

∑
ω

αω = g(z) ,

which completes the proof.

B Heterogeneity
Theorems 1 and 2 and Propositions 1 and 3 continue to hold verbatim when it’s possible to
observe the joint distribution of time-0 and time-1 preferences. Because the only pattern that
rejects time consistency with homogeneous preferences is a (stochastic) dominance violation,
and because such a violation cannot be explained by heterogeneous preferences, a data set is
consistent with TC-EU under homogeneous preferences if and only if it is consistent with TC-
EU under heterogeneous preferences. To see this, fix a time-0 preference profile, allowing
for individuals to be heterogeneous conditional on this time-0 preference. If the analyst
observes a dominance violation (simple for Theorems 1 and 2, or stochastic for Propositions
1 and 3), then the analyst must conclude that all agents with that time-0 preference are
time-inconsistent. If the analyst does not observe a dominance violation, then Theorems 1
and 2 and Propositions 1 and 3 imply that the data can be rationalized with a homogeneous
time-consistent EU agent.

Our identification results in Propositions 4 and 5 are also straightforward to generalize to
give a measure of average time inconsistency when there is some unobserved heterogeneity.
To give a concrete example of applying Proposition 4 to a heterogeneous population, suppose
that there there is a finite number of agent types making the same time-0 choice, with agents
of each type having the same preferences and receiving independent draws from the same
distribution of taste shocks. Suppose the analyst observes only a single realization of the
time-1 preference for each agent. Then, the logic of Example 3 is still identical (under the
maintained assumptions of that example): In expectation, the average time-1 WTP for the
healthy over the unhealthy snack must equal the average time-0 WTP for the unhealthy over
healthy snack. In Supplementary Appendix E.2 we provide additional examples applying
Propositions 3 and 4 to heterogeneous populations, with applications to the data sets from
Augenblick, Niederle, and Sprenger (2015) and Augenblick and Rabin (2019).
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C Mathematical Details for Section 1.1
Denote by var0(logE1[θ2]/E1[θ1]) the variance of logE1[θ2]/θ1 conditional on time 0 informa-
tion.

Lemma 12. Suppose that the agent choose the allocation x0 = 1/2 at time 0 and the
(random) allocation x1 at time 1. Suppose that log(x1/(1− x1)) is normally distributed with
mean m and variance v. Then

E0[θ2] = E0[θ1]

(γ − 1)m = E0

[
log

E1[θ2]

θ1

]
+ log(β)

(γ − 1)2v = var0
(
log

E1[θ2]

θ1

)
.

(13)

Proof. Taking first order conditions yields that the optimal effort at time 0 is satisfies

(γ − 1) log
x0

1− x0
= log

E0[θ2]

E0[θ1]
.

The optimal effort at time 1 satisfies

(γ − 1) log
x1

1− x1
= log

E1[θ2]

θ1
+ log(β) .

As x0 = 1− x0, we have that E0[θ2] = E0[θ1]. Taking expectations yields that

(γ − 1)m = (γ − 1)E0

[
log

x1

1− x1

]
= E0

[
log

E1[θ2]

θ1

]
+ log(β) .

Furthermore, we we have that

(γ − 1)2v = var0
(
log

E1[θ2]

θ1

)
.

With this Lemma in hand, we now provide calculations for how β is identified under the
different structural assumptions listed in Table 1.
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Rows 1 and 2: Independent θ2, θ1, revealed at t = 1 Suppose that θ1, θ2 are indepen-
dent and log(θ1) ∼ N (µ1, σ

2
1), log(θ2) ∼ N (µ2, σ

2
2). Then (13) becomes

exp(µ1 + σ2
1/2) = E0[θ1] = E0[θ2] = exp(µ2 + σ2

2/2)

(γ − 1)m = E0[log(θ2/θ1)]− log(β) = µ2 − µ1 + log(β)

(γ − 1)2v = σ2
1 + σ2

2 = σ2
1(1 + σ2

2/σ
2
1) .

The first equation and third equation imply that

µ2 − µ1 = 0.5(σ2
1 − σ2

2) = 0.5σ2
1(1− σ2

2/σ
2
1) = 0.5(γ − 1)2v

1− σ2
2/σ

2
1

1 + σ2
2/σ

2
1

.

Plugging into the second equation yields

log(β) = (γ − 1)m− 0.5(γ − 1)2v
1− σ2

2/σ
2
1

1 + σ2
2/σ

2
1

.

In the case of i.i.d. taste shocks, this reduces to

log(β) = (γ − 1)m.

The analysts estimate thus depends σ2
2/σ

2
1 which captures what the analyst assumes about

how well informed the agent is at time 0 about their time 2 taste-shock relative to their time
1 taste-shock. This ration capture both he variance of the agents taste shocks as well as the
quality of the information about the agents taste shocks. Setting σ2

2/σ
2
1 = ∞ captures the

case where the analyst assumes that the agent is uninformed about the time 1 preference
at time 0. Setting σ2

2/σ
2
1 = 0 captures the case where the analyst assumes that the agent

is uninformed about the time 2 preference at time 0 (and recovers the result we obtained
before. If the agent knows equally much about their time 1 and time 2 preferences at time
0, i.e. σ2

2/σ
2
1 = 0 we get that

log(β) = (γ − 1)m.

Rows 3 and 4: θ1 learned at t = 0 and θ2 learned in t = 1 If θ1 is learned at time 0
but θ2 is not, then θ1 must always take on the value θ1 = E1θ2. Then (13) becomes

θ1 = E0[θ2] = exp(µ2 + σ2
2/2)

(γ − 1)m = E0[log(θ2/θ1)]− log(β) = µ2 − log(θ1) + log(β)

(γ − 1)2v = σ2
2 .
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The first equation and third equation imply that

µ2 − log(θ1) = −0.5σ2
2 = −.5(γ − 1)2v .

Plugging this into the second equation yields that

log(β) = .5(γ − 1)2v + (γ − 1)m

Rows 5 and 6: θ2 learned in t = 0 and θ1 learned in t = 1 If θ2 is learned at time 0
but θ1 is not, then θ2 must always take on the value θ2 = E1θ1. Then (13) becomes

θ2 = E0[θ1] = exp(µ1 + σ2
1/2)

(γ − 1)m = E0[log(θ2/θ1)]− log(β) = log(θ2)− µ1 + log(β)

(γ − 1)2v = σ2
1 .

The first equation and third equation imply that

µ1 − log(θ2) = −0.5σ2
1 = −.5(γ − 1)2v .

Plugging this into the second equation yields that

log(β) = −.5(γ − 1)2v + (γ − 1)m

Rows 7 and 8: θ1 learned in t = 1 and θ2 learned after t = 1 Assume that log(θ1) is
Normally distributed with mean µ and variance σ2, and assume, without loss of generality,
that E[θ1] = 1. By assumption we have that E0[θ2] = E1[θ2] and hence (13) becomes

1 = E0[θ1] = exp(µ1 + σ1/2)

(γ − 1)m = log(E0[θ2])− E0 [log(θ1)] + log(β)

(γ − 1)2v = var0(log(θ1)) = σ2
1 .

The first and third equation together imply that µ = −σ2/2 = −0.5(γ − 1)2v and hence

log(β) = (γ − 1)m− [µ+ σ2/2] + µ = (γ − 1)m− σ2/2 = (γ − 1)m− 0.5(γ − 1)2v .

Rows 9 and 10: Multiplicative random walk with θ1, θ2 both learned in t = 1

Formally, θ2 = θ1 · ϵ1, where log(ϵ1) ∼ N(µ, σ) is log-Normally distributed and θ1, θ2 are
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learned by the agent only at the beginning of time 1. Then (13) becomes

1 = E0[ϵ1] = exp(µ+ σ2/2)

(γ − 1)m = E0[log(ϵ1)]− log(β) = µ− log(β)

(γ − 1)2v = σ2 .

The first and third equation together imply that µ = −σ2/2 = −0.5(γ − 1)2v and hence

log(β) = (γ − 1)m+ 0.5(γ − 1)2v .

Rows 11-14: Mulitplicative AR(1), with θ1 learned in t = 1 and θ2 learned after
t = 1 Suppose that log(θ2) = α log(θ1) + log(ε), where log(θ1) ∼ N(µ1, σ

2
1) and log(ε) ∼

N(µε, σ
2
ε). That is, log(θ1) and log(θ2) form an AR(1) process. The agent learns θ1 at time 1

and ε at time 2. The scalar α can be regarded as a parametrization of how much is learned
at about time-1 versus time-2 shocks at time 1. For example, α = 0 means that nothing is
learned about time-2 shocks at time 1, while α → ∞ captures the case where at time 1 the
agent mostly learns about time-2 shocks.

Under this process, we have that log θ2|θ1 ∼ N(α log θ1 + µε, σ
2
ε) and E1[log θ2|θ1] =

αθ1 + µε + σ2
ε/2. Thus, (13) becomes

exp(µ1 + σ2
1/2) = E0[θ1] = E0[θ2] = exp(αµ1 + α2σ2

1/2 + µε + σ2
ε/2)

(γ − 1)m = E0[α log θ1 + µε + σ2
ε/2− log θ1] + log β = (α− 1)µ1 + µε + σ2

ε/2 + log β

(γ − 1)2v = (α− 1)2σ2
1 .

The first equality implies that

(α2 − 1)µ1 + µε + σ2
ε/2 = (1− α2)σ2

1/2.

The third equality implies that

σ2
1 = (γ − 1)2v/(α− 1)2

and thus that
(1− α2)σ2

1/2 = 0.5(γ − 1)2v
1− α2

(α− 1)2
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Plugging this into the expression for (γ − 1)m yields

log β = (γ − 1)m− 0.5(γ − 1)2v
1− α2

(α− 1)2

= (γ − 1)m+ 0.5(γ − 1)2v
1 + α

α− 1

Now when α > 1, β becomes arbitrarily large as α converges to 1 from the right. When
α < 1, β becomes arbitrarily small as α converges to 1 from the left.
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D Relation to Other Technical Results
Social Choice. The ordinal efficiency welfare theorem (McLennan, 2002, Carroll, 2010)
states that for any lottery that is Pareto efficient given a vector of ordinal preferences,
there exist utility functions consistent with the ordinal preferences such that this lottery
maximizes the sum of utilities. This result is mathematically equivalent to the special case
of Proposition 3 where the analyst only observes the most preferred time-0 alternative.35

The sharper and more interesting characterizations that we provide for single-peaked and
concave preferences in Theorems 1 and 2 do not, to our knowledge, relate to any known
results in the social choice literature—although they of course have implications for that
literature. For example, they imply that for complete single-peaked preferences, it is not
necessary to consider lotteries: an alternative is a maximand of some social welfare function
as long as it is not Pareto dominated by any other alternative. Example 2 shows that this
stronger conclusion fails for social choice problems without the single-peaked property.36

Dynamically Consistent Preferences over Acts. A literature in decision theory has
studied the question of when preferences over acts are consistent with EU (e.g. Chapter 8.2
in Strzalecki, 2021). In this literature the analyst observes any decision-relevant state as well
as preferences over acts. This contrasts with our setting where states are unobserved and
only preferences over actions—i.e., constant acts—are observed by the analyst. For example,
in the context of food choices, the assumption made in this literature would correspond to
the analyst observing how hungry the agent is, what type of meal he had last, and whether
or not it is a warm day, as well as preferences over strategies that specify at time 0 what
the agent will eat in each of these observable states. Notably, such a data set—where
states and preferences over strategies are observable—is much richer than the data sets
collected in the preference reversal literature, which are our objects of study. This decision
literature refers to the analogue of our no simple dominance violations condition on acts as
“dynamic consistency” (Axiom 8.6 in Strzalecki, 2021). Imposed over acts this condition is
much more restrictive and (together with consequentialism) implies that there is a subjective
EU representation of the preference (Theorem 8.10 and Theorem 8.24 in Strzalecki, 2021
and Ghirardato, 2002). This is in contrast to our setting where we show that “no simple
dominance violation” is, without the restriction to single-dimensional choice sets and single-
peaked preferences, not sufficient to ensure the existence of an EU representation.

35Specifically, this is the case for the more general version stated by Carroll (2010). The original version
stated by McLennan (2002) imposes a more special structure.

36It is perhaps also worth clarifying that to our knowledge and understanding, our results do not have a
mathematical connection to the literature on aggregation of time preferences (e.g., Jackson and Yariv, 2015,
Millner, 2020).
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Random Utility Models. In the literature on random utility models, the analyst observes
the distribution of optimal choices from all choice sets at a single point in time (comparable
to our time-1 data (⪯1, f)). The question is what can be learned about the agent’s mean
utility for the different alternatives. By contrast, we assume that the analyst observes the
distribution of preferences over a choice set. This data can not be reconstructed from the
optimal choices (Fishburn, 1998). The data sets we study, which are based on the types of
experimental data collected in practice, are therefore richer. Allowing the analyst to observe
the distribution over a complete ranking of all alternatives is equivalent to allowing the
analyst to observe a joint distribution of preferred alternatives from all subsets in the random
utility literature.37 While our time-1 data is always consistent with EU, one needs additional
conditions to ensure consistency with EU when only the marginal distribution of choices from
subsets, but not the joined distribution is observed. A focus of the random utility literature
has been to identify such conditions (Block, Marschak et al., 1959, McFadden and Richter,
1990, Clark, 1996, Gul and Pesendorfer, 2006).

A second difference is that the random utility literature typically makes the “positivity”
assumption that each alternative is the most preferred one with positive probability. This
is a strong assumption when combined with the assumption of single-peaked preferences,
which are the main focus of our paper. Positivity and single-peakness together imply that
the agent ranks the alternatives both in increasing and decreasing order with positive prob-
ability. Furthermore, a corollary of our Proposition 1 implies that this assumption is highly
consequential, as it implies that the average utility cannot be identified without imposing ad-
ditional structure on the preference shocks.38 This generalizes the insight from Alós-Ferrer,
Fehr, and Netzer (2021) who highlight a related identification issue in a setting where the
analyst has less information and only observes the marginal distribution of preferences over
binary choice sets. They propose to resolve it by inferring cardinal information from response
times, which is similar to the additional choice dimension we propose in Section 4.2.39

37Formally, when observing the distribution f over strict rankings, one can infer the probability of choosing
x from the set M ⊆ X as

∑
ω fω1x⪰1

ωy∀y ̸=x.
38There is also a thematic, but not mathematical, connection to identifying time preferences in dynamic

discrete choice models. See, e.g., Magnac and Thesmar (2002), Abbring and Daljord (2020), Levy and
Schiraldi (2021), Mahajan, Michel, and Tarozzi (2020).

39The literature on dynamic random utility (e.g. Fudenberg and Strzalecki, 2015, Frick, Iijima, and
Strzalecki, 2019) studies questions that are further removed from ours. We are interested in settings where
the agent makes the same choice repeatedly, while that literature studies when a sequence of dynamic choices
can be rationalized if the agent’s utility function and choice set can change over time. An exception is the
case of Bayesian evolving beliefs discussed in Section 6.2 of Frick, Iijima, and Strzalecki (2019). Their
Proposition 6 concerns a special case of their model which is similar to a special case of our Proposition
3 where preferences over some set of lotteries are observable. Similarly, our model is different from those
analyzed in the literature on preferences for flexibility due to taste uncertainty, as in Ahn and Sarver (2013),
where the agent chooses a menu at time-0 and then chooses from that menu at time-1.
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E Additional Results on Implementation
In this appendix, we illustrate the additional tests that researchers can conduct to gauge
the importance of random taste shocks in their data. We also illustrate how researchers can
apply Propositions 3 and 4 to data sets featuring these taste shocks to point or set identify
the quasi-hyperbolic discounting model. We provide these illustrations by reanalyzing the
data from the important work of Augenblick, Niederle, and Sprenger (2015) and Augenblick
and Rabin (2019), which generate ideal data sets for these types of analyses.

E.1 Gauging Uncertainty

In the Augenblick, Niederle, and Sprenger (2015) experiment, participants are asked to
allocate effort—in the form of units of unpleasant tasks such as transcriptions—between
weeks 2 and 3 of the experiment. Participants do this in week 1 (time 0) and week 2 (time
1). The week 1 preference is implemented with probability 10 percent, and the week 2
preference is implemented with probability 90 percent.

Individuals also complete this task a second time, in weeks 4-6. Consistent with Augen-
blick, Niederle, and Sprenger, we call weeks 1-3 block 1, denoted j = 1, and we call weeks
4-6 block 2, denoted j = 2.

Throughout this appendix, we follow Augenblick, Niederle, and Sprenger in limiting
analysis to the “80 subjects who completed all aspects of the experiment with positive
variation in their responses in each week.” We use β̂1

i to denote an individual-level estimate
of person i’s present focus from block 1, and we use β̂2

i to denote an individual-level estimate
of person i’s present focus from block 2.

We find a statistically insignificant and directionally negative correlation between β̂1
i and

β̂2
i of −0.08, with a 95% confidence interval of [−0.29, 0.15]. This rules out correlations larger

than 0.15 with high confidence, and suggests that taste shocks and other forms of updating
explain most of the variation in individuals’ time-1 revisions of their time-0 choices. The
upper bound of 0.15 on the correlation suggests that stable time preferences cannot explain
more than about 0.152 ≈ 2 percent of the variance in time-1 revisions of time-0 preferences.
Figure B1 presents the relationship between the two estimates of present focus in the real-
effort task.

Another variable analyzed by Augenblick, Niederle, and Sprenger is an indicator for
present focus: PBj

i = β̂j
i < 1. We find that the correlation between PB1

i and PB2
i is 0.04,

with a 95% confidence interval of [−0.18, 0.26].
We also note that this low correlation is unlikely to be due to mere “noise” in the data. As

Figure B2 shows, subjects’ revised (time 1) allocations of effort are very similar to subjects’
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Figure B1: Within-person stability of the individual-level estimates of present focus over
effort
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Notes: This figure presents a binned scatter plot of the relationship between β̂2
i , the block 2

individual-level estimates of present focus over effort (y-axis) and β̂1
i , the block 1 individual-level

estimates of present focus over effort (x-axis).

initial (time 0) allocations of effort. The correlations between revised and initial effort share
allocations are 0.76 and 0.83 in blocks 1 and 2, respectively. A regression of revised on
initial allocations produces coefficients of 0.83 (cluster-robust SE 0.05) and 0.82 (cluster-
robust SE 0.04) in blocks 1 and 2, respectively, and these decrease only modestly to 0.57
(cluster-robust SE 0.08) and 0.68 (cluster-robust SE 0.06) when including dummies for the
five different task rates and the type of task (Tetris versus transcription). This persistence in
allocation preferences across time is consistent with large individual differences in preferences
over effort allocation. Sources of these differences could include individuals already knowing
at time 0 whether they will be relatively more busy in week 2 or in week 3, or stable
individual differences in the curvature of the effort cost function. In sum, these results
suggest that stable individual differences can be well-measured in the Augenblick, Niederle,
and Sprenger (2015) design, but that individual differences in the present focus parameter
β are not the primary explanation for the variation in the differences between time 1 and
time 0 preferences.
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Figure B2: Revised vs. Initial Effort Allocations in Block 1 (left) and Block 2 (right)
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Notes: This figure presents binned scatter plots of the revised versus the initial allocations of
effort, pooled over the five task rates and the two types of tasks. The first panel presents results
for block 1 (weeks 1-3), while the second panel presents results for block 2 (weeks 4-6). The x-axes
correspond to the average effort share designated for weeks 2 and 5 by subjects in weeks 1 and 4,
respectively. The y-axes correspond to the average effort share designated for weeks 2 and 5 by
subjects in weeks 2 and 4, respectively.

E.2 Identification

We next show how Propositions 4 and 5 can be used to draw inferences about present focus
using data in Augenblick, Niederle, and Sprenger (2015) and Augenblick and Rabin (2019).

E.2.1 Set Identification in Augenblick, Niederle, and Sprenger (2015)

We begin by discussing Augenblick, Niederle, and Sprenger (2015). As different decisions
are taken at time 0, we define a state (α, ω) to capture both the variation in time 0 and time
1 choices. We denote by fω|α the probability of the time-1 state ω conditional on the time-0
state α. Suppose that the cost of effort is additively separable and isoelastic, as assumed
in Augenblick, Niederle, and Sprenger (2015). Suppose, moreover, that taste shocks are
multiplicative, as in the assumptions of Proposition 5; i.e.,

u0(y, z) = δθ̄1αy
γ + δ2θ̄2αz

γ

u1
ω(y, z) = θ1ω,αy

γ + βδθ2ω,αz
γ

where θ̄1α :=
∑

ω fω|αθ
1
ω, θ̄2α :=

∑
ω fω|αθ

2
ω. We assume that γ is known; Augenblick, Niederle,

and Sprenger identify this parameter by observing how preferred allocations vary with the
returns to time-2 effort.

The analysis in Supplementary Appendix E.1 above has shown that empirically, much of
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the variation in individual-level point estimate β̂i is not due to variation in time preferences,
but rather due to taste shocks. We thus begin by assuming that β is homogeneous in the
population. Note that for each value of α that fixes a time-0 choice, β̂ω,α—as defined in
equation (6) in the body of the paper—is the key object in Proposition 5. In terms of the
assumed model primitives, β̂ω,α is given by

β̂ω,α =
g(z◦0,α,y)− g(z0,y)

g(z◦ω,α,y)− g(zω,α,y)
=

1∑
ω fω|αθ2ω,α

(∑
ω∈Ω fω|αθ

1
ω,αh(y)−

∑
ω∈Ω fω|αθ

1
ω,αh(y

◦)
)

1
βθ2ω,α

(
θ1ω,αh(y)− θ1ω,αh(y

◦)
)

= β
θ̄1α/θ̄

2
α

θ1ω,α/θ
2
ω,α

.

Similarly, taking first-order conditions for each realization of (α, ω) implies an equation
analogous to equation (6) of Augenblick, Niederle, and Sprenger, except with β replaced by

β̂ω,α = β
θ̄1α/θ̄

2
α

θ1ω,α/θ
2
ω,α

.

Thus, the individual-level estimates β̂ produced by Augenblick, Niederle, and Sprenger give
the β̂ω,α that Proposition 4 applies to. Intuitively, this is because under the assumption of
isoelastic cost functions with equal curvature, Augenblick, Niederle, and Sprenger’s budget
set variation allows them to estimate g up to multiplicative taste shocks. Thus, their data
set is informationally equivalent to the data set assumed in Proposition 4.

To facilitate identification of β assume that the distribution of θ̄1α/θ̄
2
α

θ1ω,α/θ
2
ω,α

conditional on
α is independent of α. This assumption is satisfied, for example, if taste shocks are multi-
plicatively separable over time: θtω,α = θ̄tα × ϵtω for t ∈ {1, 2}. If one does not make such an
assumption, more values of β are consistent with the data. This independence assumption
implies that the distribution of β̂ω,α does not depend on α. Proposition 5 then implies that
β ∈ [min β̂ω,α,max β̂ω,α].

Because Augenblick, Niederle, and Sprenger produce an estimate of β̂ω,α for each in-
dividual when they estimate equation (6) individual by individual (under the homogeneity
assumption), the distribution of β̂ω,α is estimated by the empirical distribution of Augenblick,
Niederle, and Sprenger’s individual-level estimates β̂i, where i indexes the subjects.40

Using their estimates we obtain that the 90-percent intervals that exclude the 5 percent
highest and 5 percent lowest estimates of β̂i are [0.43,1.17] in block 1, and [0.57, 1.25] in
block 2. The 80-percent intervals that exclude the 10 percent highest and 10 percent lowest

40Formally, the empirical distribution converges to the distribution of β̂ω,α as the number of subjects goes
to infinity.
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estimates of β̂i are [0.66,1.12] in block 1 and [0.69,1.14] in block 2.41 Thus, the data are
consistent both with future focus, as well as with present focus if one allows for taste shocks.

Of course, the complete homogeneity assumption may be too strong, even if the analysis
surrounding Figure B1 above suggests that it might be a good approximation. Clearly,
relaxing this assumption can only make identification harder. Augenblick, Niederle, and
Sprenger (2015) report that individuals who desire a choice set restriction in week 4 have a
lower estimate of β̂i. The average value of β̂i is 0.86 and 0.95 in blocks 1 and 2, respectively,
for individuals who want the choice set restriction; it is 0.96 and 1.05 in blocks 1 and 2,
respectively, for individuals who do not want the choice set restriction. Thus, there are at
least some individual differences in present focus. Our results are easily compatible with
the incorporation of observed heterogeneity, as set identification is possible when splitting
individuals by their demand for a commitment device in week 4 of the experiment.

Concretely, assume instead that present focus is homogeneous conditional on the decision
to take up or not the commitment device. We can then apply Proposition 5 to each of the
subgroups. We obtain the following identified sets if we base them on 80-percent intervals
that exclude the 10 percent highest and 10 percent lowest estimates. For those who take up
commitment, we infer that their β could belong to the set [0.44, 1.11] based on block-1 data,
and to the set [0.66, 1.13] based on block-2 data. For those who do not take up commitment,
we obtain [0.73, 1.13] and [0.84, 1.16] for blocks 1 and 2, respectively. In particular, note that
it is possible that present focus is large for both those who do and don’t take up commitment.
It is also possible that present focus is small for both groups, and in fact that those who do
not take up commitment contracts are future-focused. Both possibilities are realistic. As
Carrera et al. (2022) show, uncertainty about the future erodes demand for commitment
even among present-focused individuals, so that large present focus is possible even among
those who do not take up commitment. On the other hand, Carrera et al. (2022) also show
that there may be noise and confusion in commitment take-up, so that even individuals
who are time-consistent might erroneously take up commitment contracts. Finally, note
that individuals who are future-focused are still time-inconsistent, and thus might take up
commitment contracts as well. Thus, theoretically, any value of β can be consistent with
commitment take-up, and our identified set is consistent with this theoretical ambiguity.

41We report our results for the two blocks separately to facilitate immediate comparison to the results
in Augenblick, Niederle, and Sprenger (2015), who focus on block 1 in the body of the paper and relegate
separate analysis of block 2 to the appendix.

29



E.2.2 Point Identification in Augenblick and Rabin (2019)

Assume that there is no variation in θ2 and that preferences over the second dimension are
known. As the second consumption dimension in Augenblick and Rabin (2019) corresponds
to small monetary amounts, this assumption is equivalent to assuming that taste shocks do
not affect preferences over money and the agent is (approximately) risk neutral over small
monetary amounts. We relax the assumption that β is homogeneous and allow for β to be
a random variable (capturing variation of β in the population). We first observe that for a
fixed value of β and a fixed time-0 choice captured by α, we have that

1

β
=
∑
ω∈Ω

fω|α
1

β̂ω,α

= E

[
1

β̂ω,α

∣∣∣∣∣α, β
]
.

The first equality we derived in equation (7) in the body of the paper and the second
equality follows by definition because fω|α is the probability of the time-1 state realization ω

conditional on the time-0 state realization α. Then taking iterated expectations, we obtain
the following immediate corollary of equation (7):

E
[
1

β

]
= E

[
E

[
1

β̂ω,α

∣∣∣∣∣α, β
]]

= E

[
1

β̂ω,α

]
. (14)

Thus, the average over the observed estimates 1

β̂i
—i.e., present focus estimates produced

from each individual’s data—constitute an unbiased estimator of 1
β
. The logic above does

not rely on multiplicative taste shocks. Nearly-identical reasoning can be used to derive (14)
under the more general assumptions of Proposition 4.

30


